1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "Utils/WebAssemblyUtilities.h" 18 #include "WebAssemblyMachineFunctionInfo.h" 19 #include "WebAssemblySubtarget.h" 20 #include "WebAssemblyTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetOptions.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "wasm-lower" 44 45 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 46 const TargetMachine &TM, const WebAssemblySubtarget &STI) 47 : TargetLowering(TM), Subtarget(&STI) { 48 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 49 50 // Booleans always contain 0 or 1. 51 setBooleanContents(ZeroOrOneBooleanContent); 52 // Except in SIMD vectors 53 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 54 // We don't know the microarchitecture here, so just reduce register pressure. 55 setSchedulingPreference(Sched::RegPressure); 56 // Tell ISel that we have a stack pointer. 57 setStackPointerRegisterToSaveRestore( 58 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 59 // Set up the register classes. 60 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 61 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 62 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 63 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 64 if (Subtarget->hasSIMD128()) { 65 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 } 76 // Compute derived properties from the register classes. 77 computeRegisterProperties(Subtarget->getRegisterInfo()); 78 79 // Transform loads and stores to pointers in address space 1 to loads and 80 // stores to WebAssembly global variables, outside linear memory. 81 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 82 setOperationAction(ISD::LOAD, T, Custom); 83 setOperationAction(ISD::STORE, T, Custom); 84 } 85 if (Subtarget->hasSIMD128()) { 86 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 87 MVT::v2f64}) { 88 setOperationAction(ISD::LOAD, T, Custom); 89 setOperationAction(ISD::STORE, T, Custom); 90 } 91 } 92 if (Subtarget->hasReferenceTypes()) { 93 // We need custom load and store lowering for both externref, funcref and 94 // Other. The MVT::Other here represents tables of reference types. 95 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 96 setOperationAction(ISD::LOAD, T, Custom); 97 setOperationAction(ISD::STORE, T, Custom); 98 } 99 } 100 101 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 102 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 103 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 104 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 105 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 106 setOperationAction(ISD::BRIND, MVT::Other, Custom); 107 108 // Take the default expansion for va_arg, va_copy, and va_end. There is no 109 // default action for va_start, so we do that custom. 110 setOperationAction(ISD::VASTART, MVT::Other, Custom); 111 setOperationAction(ISD::VAARG, MVT::Other, Expand); 112 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 113 setOperationAction(ISD::VAEND, MVT::Other, Expand); 114 115 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 116 // Don't expand the floating-point types to constant pools. 117 setOperationAction(ISD::ConstantFP, T, Legal); 118 // Expand floating-point comparisons. 119 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 120 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 121 setCondCodeAction(CC, T, Expand); 122 // Expand floating-point library function operators. 123 for (auto Op : 124 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 125 setOperationAction(Op, T, Expand); 126 // Note supported floating-point library function operators that otherwise 127 // default to expand. 128 for (auto Op : 129 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 130 setOperationAction(Op, T, Legal); 131 // Support minimum and maximum, which otherwise default to expand. 132 setOperationAction(ISD::FMINIMUM, T, Legal); 133 setOperationAction(ISD::FMAXIMUM, T, Legal); 134 // WebAssembly currently has no builtin f16 support. 135 setOperationAction(ISD::FP16_TO_FP, T, Expand); 136 setOperationAction(ISD::FP_TO_FP16, T, Expand); 137 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 138 setTruncStoreAction(T, MVT::f16, Expand); 139 } 140 141 // Expand unavailable integer operations. 142 for (auto Op : 143 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 144 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 145 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 146 for (auto T : {MVT::i32, MVT::i64}) 147 setOperationAction(Op, T, Expand); 148 if (Subtarget->hasSIMD128()) 149 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 150 setOperationAction(Op, T, Expand); 151 } 152 153 if (Subtarget->hasNontrappingFPToInt()) 154 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 155 for (auto T : {MVT::i32, MVT::i64}) 156 setOperationAction(Op, T, Custom); 157 158 // SIMD-specific configuration 159 if (Subtarget->hasSIMD128()) { 160 // Hoist bitcasts out of shuffles 161 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 162 163 // Combine extends of extract_subvectors into widening ops 164 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 165 166 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 167 // conversions ops 168 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 169 ISD::EXTRACT_SUBVECTOR}); 170 171 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 172 // into conversion ops 173 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 174 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 175 176 setTargetDAGCombine(ISD::TRUNCATE); 177 178 // Support saturating add for i8x16 and i16x8 179 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 180 for (auto T : {MVT::v16i8, MVT::v8i16}) 181 setOperationAction(Op, T, Legal); 182 183 // Support integer abs 184 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 185 setOperationAction(ISD::ABS, T, Legal); 186 187 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 188 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 189 MVT::v2f64}) 190 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 191 192 // We have custom shuffle lowering to expose the shuffle mask 193 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 194 MVT::v2f64}) 195 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 196 197 // Custom lowering since wasm shifts must have a scalar shift amount 198 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 199 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 200 setOperationAction(Op, T, Custom); 201 202 // Custom lower lane accesses to expand out variable indices 203 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 204 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 205 MVT::v2f64}) 206 setOperationAction(Op, T, Custom); 207 208 // There is no i8x16.mul instruction 209 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 210 211 // There is no vector conditional select instruction 212 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 213 MVT::v2f64}) 214 setOperationAction(ISD::SELECT_CC, T, Expand); 215 216 // Expand integer operations supported for scalars but not SIMD 217 for (auto Op : 218 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 219 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 220 setOperationAction(Op, T, Expand); 221 222 // But we do have integer min and max operations 223 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 225 setOperationAction(Op, T, Legal); 226 227 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 228 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 229 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 230 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 231 232 // Custom lower bit counting operations for other types to scalarize them. 233 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 234 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 235 setOperationAction(Op, T, Custom); 236 237 // Expand float operations supported for scalars but not SIMD 238 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 239 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 240 for (auto T : {MVT::v4f32, MVT::v2f64}) 241 setOperationAction(Op, T, Expand); 242 243 // Unsigned comparison operations are unavailable for i64x2 vectors. 244 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 245 setCondCodeAction(CC, MVT::v2i64, Custom); 246 247 // 64x2 conversions are not in the spec 248 for (auto Op : 249 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 250 for (auto T : {MVT::v2i64, MVT::v2f64}) 251 setOperationAction(Op, T, Expand); 252 253 // But saturating fp_to_int converstions are 254 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 255 setOperationAction(Op, MVT::v4i32, Custom); 256 } 257 258 // As a special case, these operators use the type to mean the type to 259 // sign-extend from. 260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 261 if (!Subtarget->hasSignExt()) { 262 // Sign extends are legal only when extending a vector extract 263 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 264 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 265 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 266 } 267 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 268 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 269 270 // Dynamic stack allocation: use the default expansion. 271 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 272 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 273 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 274 275 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 276 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 277 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 278 279 // Expand these forms; we pattern-match the forms that we can handle in isel. 280 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 281 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 282 setOperationAction(Op, T, Expand); 283 284 // We have custom switch handling. 285 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 286 287 // WebAssembly doesn't have: 288 // - Floating-point extending loads. 289 // - Floating-point truncating stores. 290 // - i1 extending loads. 291 // - truncating SIMD stores and most extending loads 292 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 293 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 294 for (auto T : MVT::integer_valuetypes()) 295 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 296 setLoadExtAction(Ext, T, MVT::i1, Promote); 297 if (Subtarget->hasSIMD128()) { 298 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 299 MVT::v2f64}) { 300 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 301 if (MVT(T) != MemT) { 302 setTruncStoreAction(T, MemT, Expand); 303 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 304 setLoadExtAction(Ext, T, MemT, Expand); 305 } 306 } 307 } 308 // But some vector extending loads are legal 309 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 310 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 311 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 312 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 313 } 314 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 315 } 316 317 // Don't do anything clever with build_pairs 318 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 319 320 // Trap lowers to wasm unreachable 321 setOperationAction(ISD::TRAP, MVT::Other, Legal); 322 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 323 324 // Exception handling intrinsics 325 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 326 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 327 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 328 329 setMaxAtomicSizeInBitsSupported(64); 330 331 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 332 // consistent with the f64 and f128 names. 333 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 334 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 335 336 // Define the emscripten name for return address helper. 337 // TODO: when implementing other Wasm backends, make this generic or only do 338 // this on emscripten depending on what they end up doing. 339 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 340 341 // Always convert switches to br_tables unless there is only one case, which 342 // is equivalent to a simple branch. This reduces code size for wasm, and we 343 // defer possible jump table optimizations to the VM. 344 setMinimumJumpTableEntries(2); 345 } 346 347 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 348 uint32_t AS) const { 349 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 350 return MVT::externref; 351 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 352 return MVT::funcref; 353 return TargetLowering::getPointerTy(DL, AS); 354 } 355 356 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 357 uint32_t AS) const { 358 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 359 return MVT::externref; 360 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 361 return MVT::funcref; 362 return TargetLowering::getPointerMemTy(DL, AS); 363 } 364 365 TargetLowering::AtomicExpansionKind 366 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 367 // We have wasm instructions for these 368 switch (AI->getOperation()) { 369 case AtomicRMWInst::Add: 370 case AtomicRMWInst::Sub: 371 case AtomicRMWInst::And: 372 case AtomicRMWInst::Or: 373 case AtomicRMWInst::Xor: 374 case AtomicRMWInst::Xchg: 375 return AtomicExpansionKind::None; 376 default: 377 break; 378 } 379 return AtomicExpansionKind::CmpXChg; 380 } 381 382 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 383 // Implementation copied from X86TargetLowering. 384 unsigned Opc = VecOp.getOpcode(); 385 386 // Assume target opcodes can't be scalarized. 387 // TODO - do we have any exceptions? 388 if (Opc >= ISD::BUILTIN_OP_END) 389 return false; 390 391 // If the vector op is not supported, try to convert to scalar. 392 EVT VecVT = VecOp.getValueType(); 393 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 394 return true; 395 396 // If the vector op is supported, but the scalar op is not, the transform may 397 // not be worthwhile. 398 EVT ScalarVT = VecVT.getScalarType(); 399 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 400 } 401 402 FastISel *WebAssemblyTargetLowering::createFastISel( 403 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 404 return WebAssembly::createFastISel(FuncInfo, LibInfo); 405 } 406 407 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 408 EVT VT) const { 409 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 410 if (BitWidth > 1 && BitWidth < 8) 411 BitWidth = 8; 412 413 if (BitWidth > 64) { 414 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 415 // the count to be an i32. 416 BitWidth = 32; 417 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 418 "32-bit shift counts ought to be enough for anyone"); 419 } 420 421 MVT Result = MVT::getIntegerVT(BitWidth); 422 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 423 "Unable to represent scalar shift amount type"); 424 return Result; 425 } 426 427 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 428 // undefined result on invalid/overflow, to the WebAssembly opcode, which 429 // traps on invalid/overflow. 430 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 431 MachineBasicBlock *BB, 432 const TargetInstrInfo &TII, 433 bool IsUnsigned, bool Int64, 434 bool Float64, unsigned LoweredOpcode) { 435 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 436 437 Register OutReg = MI.getOperand(0).getReg(); 438 Register InReg = MI.getOperand(1).getReg(); 439 440 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 441 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 442 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 443 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 444 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 445 unsigned Eqz = WebAssembly::EQZ_I32; 446 unsigned And = WebAssembly::AND_I32; 447 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 448 int64_t Substitute = IsUnsigned ? 0 : Limit; 449 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 450 auto &Context = BB->getParent()->getFunction().getContext(); 451 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 452 453 const BasicBlock *LLVMBB = BB->getBasicBlock(); 454 MachineFunction *F = BB->getParent(); 455 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 456 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 457 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 458 459 MachineFunction::iterator It = ++BB->getIterator(); 460 F->insert(It, FalseMBB); 461 F->insert(It, TrueMBB); 462 F->insert(It, DoneMBB); 463 464 // Transfer the remainder of BB and its successor edges to DoneMBB. 465 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 466 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 467 468 BB->addSuccessor(TrueMBB); 469 BB->addSuccessor(FalseMBB); 470 TrueMBB->addSuccessor(DoneMBB); 471 FalseMBB->addSuccessor(DoneMBB); 472 473 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 474 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 475 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 476 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 477 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 478 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 479 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 480 481 MI.eraseFromParent(); 482 // For signed numbers, we can do a single comparison to determine whether 483 // fabs(x) is within range. 484 if (IsUnsigned) { 485 Tmp0 = InReg; 486 } else { 487 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 488 } 489 BuildMI(BB, DL, TII.get(FConst), Tmp1) 490 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 491 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 492 493 // For unsigned numbers, we have to do a separate comparison with zero. 494 if (IsUnsigned) { 495 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 496 Register SecondCmpReg = 497 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 498 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 499 BuildMI(BB, DL, TII.get(FConst), Tmp1) 500 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 501 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 502 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 503 CmpReg = AndReg; 504 } 505 506 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 507 508 // Create the CFG diamond to select between doing the conversion or using 509 // the substitute value. 510 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 511 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 512 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 513 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 514 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 515 .addReg(FalseReg) 516 .addMBB(FalseMBB) 517 .addReg(TrueReg) 518 .addMBB(TrueMBB); 519 520 return DoneMBB; 521 } 522 523 static MachineBasicBlock * 524 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 525 const WebAssemblySubtarget *Subtarget, 526 const TargetInstrInfo &TII) { 527 MachineInstr &CallParams = *CallResults.getPrevNode(); 528 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 529 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 530 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 531 532 bool IsIndirect = CallParams.getOperand(0).isReg(); 533 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 534 535 bool IsFuncrefCall = false; 536 if (IsIndirect) { 537 Register Reg = CallParams.getOperand(0).getReg(); 538 const MachineFunction *MF = BB->getParent(); 539 const MachineRegisterInfo &MRI = MF->getRegInfo(); 540 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 541 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 542 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 543 } 544 545 unsigned CallOp; 546 if (IsIndirect && IsRetCall) { 547 CallOp = WebAssembly::RET_CALL_INDIRECT; 548 } else if (IsIndirect) { 549 CallOp = WebAssembly::CALL_INDIRECT; 550 } else if (IsRetCall) { 551 CallOp = WebAssembly::RET_CALL; 552 } else { 553 CallOp = WebAssembly::CALL; 554 } 555 556 MachineFunction &MF = *BB->getParent(); 557 const MCInstrDesc &MCID = TII.get(CallOp); 558 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 559 560 // See if we must truncate the function pointer. 561 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 562 // as 64-bit for uniformity with other pointer types. 563 // See also: WebAssemblyFastISel::selectCall 564 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 565 Register Reg32 = 566 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 567 auto &FnPtr = CallParams.getOperand(0); 568 BuildMI(*BB, CallResults.getIterator(), DL, 569 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 570 .addReg(FnPtr.getReg()); 571 FnPtr.setReg(Reg32); 572 } 573 574 // Move the function pointer to the end of the arguments for indirect calls 575 if (IsIndirect) { 576 auto FnPtr = CallParams.getOperand(0); 577 CallParams.removeOperand(0); 578 579 // For funcrefs, call_indirect is done through __funcref_call_table and the 580 // funcref is always installed in slot 0 of the table, therefore instead of having 581 // the function pointer added at the end of the params list, a zero (the index in 582 // __funcref_call_table is added). 583 if (IsFuncrefCall) { 584 Register RegZero = 585 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 586 MachineInstrBuilder MIBC0 = 587 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 588 589 BB->insert(CallResults.getIterator(), MIBC0); 590 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 591 } else 592 CallParams.addOperand(FnPtr); 593 } 594 595 for (auto Def : CallResults.defs()) 596 MIB.add(Def); 597 598 if (IsIndirect) { 599 // Placeholder for the type index. 600 MIB.addImm(0); 601 // The table into which this call_indirect indexes. 602 MCSymbolWasm *Table = IsFuncrefCall 603 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 604 MF.getContext(), Subtarget) 605 : WebAssembly::getOrCreateFunctionTableSymbol( 606 MF.getContext(), Subtarget); 607 if (Subtarget->hasReferenceTypes()) { 608 MIB.addSym(Table); 609 } else { 610 // For the MVP there is at most one table whose number is 0, but we can't 611 // write a table symbol or issue relocations. Instead we just ensure the 612 // table is live and write a zero. 613 Table->setNoStrip(); 614 MIB.addImm(0); 615 } 616 } 617 618 for (auto Use : CallParams.uses()) 619 MIB.add(Use); 620 621 BB->insert(CallResults.getIterator(), MIB); 622 CallParams.eraseFromParent(); 623 CallResults.eraseFromParent(); 624 625 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 626 // table slot with ref.null upon call_indirect return. 627 // 628 // This generates the following code, which comes right after a call_indirect 629 // of a funcref: 630 // 631 // i32.const 0 632 // ref.null func 633 // table.set __funcref_call_table 634 if (IsIndirect && IsFuncrefCall) { 635 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 636 MF.getContext(), Subtarget); 637 Register RegZero = 638 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 639 MachineInstr *Const0 = 640 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 641 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 642 643 Register RegFuncref = 644 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 645 MachineInstr *RefNull = 646 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 647 BB->insertAfter(Const0->getIterator(), RefNull); 648 649 MachineInstr *TableSet = 650 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 651 .addSym(Table) 652 .addReg(RegZero) 653 .addReg(RegFuncref); 654 BB->insertAfter(RefNull->getIterator(), TableSet); 655 } 656 657 return BB; 658 } 659 660 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 661 MachineInstr &MI, MachineBasicBlock *BB) const { 662 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 663 DebugLoc DL = MI.getDebugLoc(); 664 665 switch (MI.getOpcode()) { 666 default: 667 llvm_unreachable("Unexpected instr type to insert"); 668 case WebAssembly::FP_TO_SINT_I32_F32: 669 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 670 WebAssembly::I32_TRUNC_S_F32); 671 case WebAssembly::FP_TO_UINT_I32_F32: 672 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 673 WebAssembly::I32_TRUNC_U_F32); 674 case WebAssembly::FP_TO_SINT_I64_F32: 675 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 676 WebAssembly::I64_TRUNC_S_F32); 677 case WebAssembly::FP_TO_UINT_I64_F32: 678 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 679 WebAssembly::I64_TRUNC_U_F32); 680 case WebAssembly::FP_TO_SINT_I32_F64: 681 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 682 WebAssembly::I32_TRUNC_S_F64); 683 case WebAssembly::FP_TO_UINT_I32_F64: 684 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 685 WebAssembly::I32_TRUNC_U_F64); 686 case WebAssembly::FP_TO_SINT_I64_F64: 687 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 688 WebAssembly::I64_TRUNC_S_F64); 689 case WebAssembly::FP_TO_UINT_I64_F64: 690 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 691 WebAssembly::I64_TRUNC_U_F64); 692 case WebAssembly::CALL_RESULTS: 693 case WebAssembly::RET_CALL_RESULTS: 694 return LowerCallResults(MI, DL, BB, Subtarget, TII); 695 } 696 } 697 698 const char * 699 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 700 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 701 case WebAssemblyISD::FIRST_NUMBER: 702 case WebAssemblyISD::FIRST_MEM_OPCODE: 703 break; 704 #define HANDLE_NODETYPE(NODE) \ 705 case WebAssemblyISD::NODE: \ 706 return "WebAssemblyISD::" #NODE; 707 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 708 #include "WebAssemblyISD.def" 709 #undef HANDLE_MEM_NODETYPE 710 #undef HANDLE_NODETYPE 711 } 712 return nullptr; 713 } 714 715 std::pair<unsigned, const TargetRegisterClass *> 716 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 717 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 718 // First, see if this is a constraint that directly corresponds to a 719 // WebAssembly register class. 720 if (Constraint.size() == 1) { 721 switch (Constraint[0]) { 722 case 'r': 723 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 724 if (Subtarget->hasSIMD128() && VT.isVector()) { 725 if (VT.getSizeInBits() == 128) 726 return std::make_pair(0U, &WebAssembly::V128RegClass); 727 } 728 if (VT.isInteger() && !VT.isVector()) { 729 if (VT.getSizeInBits() <= 32) 730 return std::make_pair(0U, &WebAssembly::I32RegClass); 731 if (VT.getSizeInBits() <= 64) 732 return std::make_pair(0U, &WebAssembly::I64RegClass); 733 } 734 if (VT.isFloatingPoint() && !VT.isVector()) { 735 switch (VT.getSizeInBits()) { 736 case 32: 737 return std::make_pair(0U, &WebAssembly::F32RegClass); 738 case 64: 739 return std::make_pair(0U, &WebAssembly::F64RegClass); 740 default: 741 break; 742 } 743 } 744 break; 745 default: 746 break; 747 } 748 } 749 750 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 751 } 752 753 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 754 // Assume ctz is a relatively cheap operation. 755 return true; 756 } 757 758 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 759 // Assume clz is a relatively cheap operation. 760 return true; 761 } 762 763 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 764 const AddrMode &AM, 765 Type *Ty, unsigned AS, 766 Instruction *I) const { 767 // WebAssembly offsets are added as unsigned without wrapping. The 768 // isLegalAddressingMode gives us no way to determine if wrapping could be 769 // happening, so we approximate this by accepting only non-negative offsets. 770 if (AM.BaseOffs < 0) 771 return false; 772 773 // WebAssembly has no scale register operands. 774 if (AM.Scale != 0) 775 return false; 776 777 // Everything else is legal. 778 return true; 779 } 780 781 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 782 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 783 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 784 // WebAssembly supports unaligned accesses, though it should be declared 785 // with the p2align attribute on loads and stores which do so, and there 786 // may be a performance impact. We tell LLVM they're "fast" because 787 // for the kinds of things that LLVM uses this for (merging adjacent stores 788 // of constants, etc.), WebAssembly implementations will either want the 789 // unaligned access or they'll split anyway. 790 if (Fast) 791 *Fast = true; 792 return true; 793 } 794 795 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 796 AttributeList Attr) const { 797 // The current thinking is that wasm engines will perform this optimization, 798 // so we can save on code size. 799 return true; 800 } 801 802 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 803 EVT ExtT = ExtVal.getValueType(); 804 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 805 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 806 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 807 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 808 } 809 810 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 811 const GlobalAddressSDNode *GA) const { 812 // Wasm doesn't support function addresses with offsets 813 const GlobalValue *GV = GA->getGlobal(); 814 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 815 } 816 817 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 818 LLVMContext &C, 819 EVT VT) const { 820 if (VT.isVector()) 821 return VT.changeVectorElementTypeToInteger(); 822 823 // So far, all branch instructions in Wasm take an I32 condition. 824 // The default TargetLowering::getSetCCResultType returns the pointer size, 825 // which would be useful to reduce instruction counts when testing 826 // against 64-bit pointers/values if at some point Wasm supports that. 827 return EVT::getIntegerVT(C, 32); 828 } 829 830 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 831 const CallInst &I, 832 MachineFunction &MF, 833 unsigned Intrinsic) const { 834 switch (Intrinsic) { 835 case Intrinsic::wasm_memory_atomic_notify: 836 Info.opc = ISD::INTRINSIC_W_CHAIN; 837 Info.memVT = MVT::i32; 838 Info.ptrVal = I.getArgOperand(0); 839 Info.offset = 0; 840 Info.align = Align(4); 841 // atomic.notify instruction does not really load the memory specified with 842 // this argument, but MachineMemOperand should either be load or store, so 843 // we set this to a load. 844 // FIXME Volatile isn't really correct, but currently all LLVM atomic 845 // instructions are treated as volatiles in the backend, so we should be 846 // consistent. The same applies for wasm_atomic_wait intrinsics too. 847 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 848 return true; 849 case Intrinsic::wasm_memory_atomic_wait32: 850 Info.opc = ISD::INTRINSIC_W_CHAIN; 851 Info.memVT = MVT::i32; 852 Info.ptrVal = I.getArgOperand(0); 853 Info.offset = 0; 854 Info.align = Align(4); 855 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 856 return true; 857 case Intrinsic::wasm_memory_atomic_wait64: 858 Info.opc = ISD::INTRINSIC_W_CHAIN; 859 Info.memVT = MVT::i64; 860 Info.ptrVal = I.getArgOperand(0); 861 Info.offset = 0; 862 Info.align = Align(8); 863 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 864 return true; 865 default: 866 return false; 867 } 868 } 869 870 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 871 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 872 const SelectionDAG &DAG, unsigned Depth) const { 873 switch (Op.getOpcode()) { 874 default: 875 break; 876 case ISD::INTRINSIC_WO_CHAIN: { 877 unsigned IntNo = Op.getConstantOperandVal(0); 878 switch (IntNo) { 879 default: 880 break; 881 case Intrinsic::wasm_bitmask: { 882 unsigned BitWidth = Known.getBitWidth(); 883 EVT VT = Op.getOperand(1).getSimpleValueType(); 884 unsigned PossibleBits = VT.getVectorNumElements(); 885 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 886 Known.Zero |= ZeroMask; 887 break; 888 } 889 } 890 } 891 } 892 } 893 894 TargetLoweringBase::LegalizeTypeAction 895 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 896 if (VT.isFixedLengthVector()) { 897 MVT EltVT = VT.getVectorElementType(); 898 // We have legal vector types with these lane types, so widening the 899 // vector would let us use some of the lanes directly without having to 900 // extend or truncate values. 901 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 902 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 903 return TypeWidenVector; 904 } 905 906 return TargetLoweringBase::getPreferredVectorAction(VT); 907 } 908 909 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 910 SDValue Op, const TargetLoweringOpt &TLO) const { 911 // ISel process runs DAGCombiner after legalization; this step is called 912 // SelectionDAG optimization phase. This post-legalization combining process 913 // runs DAGCombiner on each node, and if there was a change to be made, 914 // re-runs legalization again on it and its user nodes to make sure 915 // everythiing is in a legalized state. 916 // 917 // The legalization calls lowering routines, and we do our custom lowering for 918 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 919 // into zeros. But there is a set of routines in DAGCombiner that turns unused 920 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 921 // turns unused vector elements into undefs. But this routine does not work 922 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 923 // combination can result in a infinite loop, in which undefs are converted to 924 // zeros in legalization and back to undefs in combining. 925 // 926 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 927 // running for build_vectors. 928 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 929 return false; 930 return true; 931 } 932 933 //===----------------------------------------------------------------------===// 934 // WebAssembly Lowering private implementation. 935 //===----------------------------------------------------------------------===// 936 937 //===----------------------------------------------------------------------===// 938 // Lowering Code 939 //===----------------------------------------------------------------------===// 940 941 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 942 MachineFunction &MF = DAG.getMachineFunction(); 943 DAG.getContext()->diagnose( 944 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 945 } 946 947 // Test whether the given calling convention is supported. 948 static bool callingConvSupported(CallingConv::ID CallConv) { 949 // We currently support the language-independent target-independent 950 // conventions. We don't yet have a way to annotate calls with properties like 951 // "cold", and we don't have any call-clobbered registers, so these are mostly 952 // all handled the same. 953 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 954 CallConv == CallingConv::Cold || 955 CallConv == CallingConv::PreserveMost || 956 CallConv == CallingConv::PreserveAll || 957 CallConv == CallingConv::CXX_FAST_TLS || 958 CallConv == CallingConv::WASM_EmscriptenInvoke || 959 CallConv == CallingConv::Swift; 960 } 961 962 SDValue 963 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 964 SmallVectorImpl<SDValue> &InVals) const { 965 SelectionDAG &DAG = CLI.DAG; 966 SDLoc DL = CLI.DL; 967 SDValue Chain = CLI.Chain; 968 SDValue Callee = CLI.Callee; 969 MachineFunction &MF = DAG.getMachineFunction(); 970 auto Layout = MF.getDataLayout(); 971 972 CallingConv::ID CallConv = CLI.CallConv; 973 if (!callingConvSupported(CallConv)) 974 fail(DL, DAG, 975 "WebAssembly doesn't support language-specific or target-specific " 976 "calling conventions yet"); 977 if (CLI.IsPatchPoint) 978 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 979 980 if (CLI.IsTailCall) { 981 auto NoTail = [&](const char *Msg) { 982 if (CLI.CB && CLI.CB->isMustTailCall()) 983 fail(DL, DAG, Msg); 984 CLI.IsTailCall = false; 985 }; 986 987 if (!Subtarget->hasTailCall()) 988 NoTail("WebAssembly 'tail-call' feature not enabled"); 989 990 // Varargs calls cannot be tail calls because the buffer is on the stack 991 if (CLI.IsVarArg) 992 NoTail("WebAssembly does not support varargs tail calls"); 993 994 // Do not tail call unless caller and callee return types match 995 const Function &F = MF.getFunction(); 996 const TargetMachine &TM = getTargetMachine(); 997 Type *RetTy = F.getReturnType(); 998 SmallVector<MVT, 4> CallerRetTys; 999 SmallVector<MVT, 4> CalleeRetTys; 1000 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1001 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1002 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1003 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1004 CalleeRetTys.begin()); 1005 if (!TypesMatch) 1006 NoTail("WebAssembly tail call requires caller and callee return types to " 1007 "match"); 1008 1009 // If pointers to local stack values are passed, we cannot tail call 1010 if (CLI.CB) { 1011 for (auto &Arg : CLI.CB->args()) { 1012 Value *Val = Arg.get(); 1013 // Trace the value back through pointer operations 1014 while (true) { 1015 Value *Src = Val->stripPointerCastsAndAliases(); 1016 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1017 Src = GEP->getPointerOperand(); 1018 if (Val == Src) 1019 break; 1020 Val = Src; 1021 } 1022 if (isa<AllocaInst>(Val)) { 1023 NoTail( 1024 "WebAssembly does not support tail calling with stack arguments"); 1025 break; 1026 } 1027 } 1028 } 1029 } 1030 1031 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1032 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1033 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1034 1035 // The generic code may have added an sret argument. If we're lowering an 1036 // invoke function, the ABI requires that the function pointer be the first 1037 // argument, so we may have to swap the arguments. 1038 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1039 Outs[0].Flags.isSRet()) { 1040 std::swap(Outs[0], Outs[1]); 1041 std::swap(OutVals[0], OutVals[1]); 1042 } 1043 1044 bool HasSwiftSelfArg = false; 1045 bool HasSwiftErrorArg = false; 1046 unsigned NumFixedArgs = 0; 1047 for (unsigned I = 0; I < Outs.size(); ++I) { 1048 const ISD::OutputArg &Out = Outs[I]; 1049 SDValue &OutVal = OutVals[I]; 1050 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1051 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1052 if (Out.Flags.isNest()) 1053 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1054 if (Out.Flags.isInAlloca()) 1055 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1056 if (Out.Flags.isInConsecutiveRegs()) 1057 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1058 if (Out.Flags.isInConsecutiveRegsLast()) 1059 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1060 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1061 auto &MFI = MF.getFrameInfo(); 1062 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1063 Out.Flags.getNonZeroByValAlign(), 1064 /*isSS=*/false); 1065 SDValue SizeNode = 1066 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1067 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1068 Chain = DAG.getMemcpy( 1069 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 1070 /*isVolatile*/ false, /*AlwaysInline=*/false, 1071 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 1072 OutVal = FINode; 1073 } 1074 // Count the number of fixed args *after* legalization. 1075 NumFixedArgs += Out.IsFixed; 1076 } 1077 1078 bool IsVarArg = CLI.IsVarArg; 1079 auto PtrVT = getPointerTy(Layout); 1080 1081 // For swiftcc, emit additional swiftself and swifterror arguments 1082 // if there aren't. These additional arguments are also added for callee 1083 // signature They are necessary to match callee and caller signature for 1084 // indirect call. 1085 if (CallConv == CallingConv::Swift) { 1086 if (!HasSwiftSelfArg) { 1087 NumFixedArgs++; 1088 ISD::OutputArg Arg; 1089 Arg.Flags.setSwiftSelf(); 1090 CLI.Outs.push_back(Arg); 1091 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1092 CLI.OutVals.push_back(ArgVal); 1093 } 1094 if (!HasSwiftErrorArg) { 1095 NumFixedArgs++; 1096 ISD::OutputArg Arg; 1097 Arg.Flags.setSwiftError(); 1098 CLI.Outs.push_back(Arg); 1099 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1100 CLI.OutVals.push_back(ArgVal); 1101 } 1102 } 1103 1104 // Analyze operands of the call, assigning locations to each operand. 1105 SmallVector<CCValAssign, 16> ArgLocs; 1106 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1107 1108 if (IsVarArg) { 1109 // Outgoing non-fixed arguments are placed in a buffer. First 1110 // compute their offsets and the total amount of buffer space needed. 1111 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1112 const ISD::OutputArg &Out = Outs[I]; 1113 SDValue &Arg = OutVals[I]; 1114 EVT VT = Arg.getValueType(); 1115 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1116 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1117 Align Alignment = 1118 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1119 unsigned Offset = 1120 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1121 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1122 Offset, VT.getSimpleVT(), 1123 CCValAssign::Full)); 1124 } 1125 } 1126 1127 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1128 1129 SDValue FINode; 1130 if (IsVarArg && NumBytes) { 1131 // For non-fixed arguments, next emit stores to store the argument values 1132 // to the stack buffer at the offsets computed above. 1133 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 1134 Layout.getStackAlignment(), 1135 /*isSS=*/false); 1136 unsigned ValNo = 0; 1137 SmallVector<SDValue, 8> Chains; 1138 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1139 assert(ArgLocs[ValNo].getValNo() == ValNo && 1140 "ArgLocs should remain in order and only hold varargs args"); 1141 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1142 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1143 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1144 DAG.getConstant(Offset, DL, PtrVT)); 1145 Chains.push_back( 1146 DAG.getStore(Chain, DL, Arg, Add, 1147 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1148 } 1149 if (!Chains.empty()) 1150 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1151 } else if (IsVarArg) { 1152 FINode = DAG.getIntPtrConstant(0, DL); 1153 } 1154 1155 if (Callee->getOpcode() == ISD::GlobalAddress) { 1156 // If the callee is a GlobalAddress node (quite common, every direct call 1157 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1158 // doesn't at MO_GOT which is not needed for direct calls. 1159 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1160 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1161 getPointerTy(DAG.getDataLayout()), 1162 GA->getOffset()); 1163 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1164 getPointerTy(DAG.getDataLayout()), Callee); 1165 } 1166 1167 // Compute the operands for the CALLn node. 1168 SmallVector<SDValue, 16> Ops; 1169 Ops.push_back(Chain); 1170 Ops.push_back(Callee); 1171 1172 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1173 // isn't reliable. 1174 Ops.append(OutVals.begin(), 1175 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1176 // Add a pointer to the vararg buffer. 1177 if (IsVarArg) 1178 Ops.push_back(FINode); 1179 1180 SmallVector<EVT, 8> InTys; 1181 for (const auto &In : Ins) { 1182 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1183 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1184 if (In.Flags.isInAlloca()) 1185 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1186 if (In.Flags.isInConsecutiveRegs()) 1187 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1188 if (In.Flags.isInConsecutiveRegsLast()) 1189 fail(DL, DAG, 1190 "WebAssembly hasn't implemented cons regs last return values"); 1191 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1192 // registers. 1193 InTys.push_back(In.VT); 1194 } 1195 1196 // Lastly, if this is a call to a funcref we need to add an instruction 1197 // table.set to the chain and transform the call. 1198 if (CLI.CB && 1199 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { 1200 // In the absence of function references proposal where a funcref call is 1201 // lowered to call_ref, using reference types we generate a table.set to set 1202 // the funcref to a special table used solely for this purpose, followed by 1203 // a call_indirect. Here we just generate the table set, and return the 1204 // SDValue of the table.set so that LowerCall can finalize the lowering by 1205 // generating the call_indirect. 1206 SDValue Chain = Ops[0]; 1207 1208 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1209 MF.getContext(), Subtarget); 1210 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1211 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1212 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1213 SDValue TableSet = DAG.getMemIntrinsicNode( 1214 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1215 MVT::funcref, 1216 // Machine Mem Operand args 1217 MachinePointerInfo( 1218 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1219 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1220 MachineMemOperand::MOStore); 1221 1222 Ops[0] = TableSet; // The new chain is the TableSet itself 1223 } 1224 1225 if (CLI.IsTailCall) { 1226 // ret_calls do not return values to the current frame 1227 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1228 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1229 } 1230 1231 InTys.push_back(MVT::Other); 1232 SDVTList InTyList = DAG.getVTList(InTys); 1233 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1234 1235 for (size_t I = 0; I < Ins.size(); ++I) 1236 InVals.push_back(Res.getValue(I)); 1237 1238 // Return the chain 1239 return Res.getValue(Ins.size()); 1240 } 1241 1242 bool WebAssemblyTargetLowering::CanLowerReturn( 1243 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1244 const SmallVectorImpl<ISD::OutputArg> &Outs, 1245 LLVMContext & /*Context*/) const { 1246 // WebAssembly can only handle returning tuples with multivalue enabled 1247 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1248 } 1249 1250 SDValue WebAssemblyTargetLowering::LowerReturn( 1251 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1252 const SmallVectorImpl<ISD::OutputArg> &Outs, 1253 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1254 SelectionDAG &DAG) const { 1255 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1256 "MVP WebAssembly can only return up to one value"); 1257 if (!callingConvSupported(CallConv)) 1258 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1259 1260 SmallVector<SDValue, 4> RetOps(1, Chain); 1261 RetOps.append(OutVals.begin(), OutVals.end()); 1262 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1263 1264 // Record the number and types of the return values. 1265 for (const ISD::OutputArg &Out : Outs) { 1266 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1267 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1268 assert(Out.IsFixed && "non-fixed return value is not valid"); 1269 if (Out.Flags.isInAlloca()) 1270 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1271 if (Out.Flags.isInConsecutiveRegs()) 1272 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1273 if (Out.Flags.isInConsecutiveRegsLast()) 1274 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1275 } 1276 1277 return Chain; 1278 } 1279 1280 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1281 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1282 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1283 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1284 if (!callingConvSupported(CallConv)) 1285 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1286 1287 MachineFunction &MF = DAG.getMachineFunction(); 1288 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1289 1290 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1291 // of the incoming values before they're represented by virtual registers. 1292 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1293 1294 bool HasSwiftErrorArg = false; 1295 bool HasSwiftSelfArg = false; 1296 for (const ISD::InputArg &In : Ins) { 1297 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1298 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1299 if (In.Flags.isInAlloca()) 1300 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1301 if (In.Flags.isNest()) 1302 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1303 if (In.Flags.isInConsecutiveRegs()) 1304 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1305 if (In.Flags.isInConsecutiveRegsLast()) 1306 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1307 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1308 // registers. 1309 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1310 DAG.getTargetConstant(InVals.size(), 1311 DL, MVT::i32)) 1312 : DAG.getUNDEF(In.VT)); 1313 1314 // Record the number and types of arguments. 1315 MFI->addParam(In.VT); 1316 } 1317 1318 // For swiftcc, emit additional swiftself and swifterror arguments 1319 // if there aren't. These additional arguments are also added for callee 1320 // signature They are necessary to match callee and caller signature for 1321 // indirect call. 1322 auto PtrVT = getPointerTy(MF.getDataLayout()); 1323 if (CallConv == CallingConv::Swift) { 1324 if (!HasSwiftSelfArg) { 1325 MFI->addParam(PtrVT); 1326 } 1327 if (!HasSwiftErrorArg) { 1328 MFI->addParam(PtrVT); 1329 } 1330 } 1331 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1332 // the buffer is passed as an argument. 1333 if (IsVarArg) { 1334 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1335 Register VarargVreg = 1336 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1337 MFI->setVarargBufferVreg(VarargVreg); 1338 Chain = DAG.getCopyToReg( 1339 Chain, DL, VarargVreg, 1340 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1341 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1342 MFI->addParam(PtrVT); 1343 } 1344 1345 // Record the number and types of arguments and results. 1346 SmallVector<MVT, 4> Params; 1347 SmallVector<MVT, 4> Results; 1348 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1349 MF.getFunction(), DAG.getTarget(), Params, Results); 1350 for (MVT VT : Results) 1351 MFI->addResult(VT); 1352 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1353 // the param logic here with ComputeSignatureVTs 1354 assert(MFI->getParams().size() == Params.size() && 1355 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1356 Params.begin())); 1357 1358 return Chain; 1359 } 1360 1361 void WebAssemblyTargetLowering::ReplaceNodeResults( 1362 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1363 switch (N->getOpcode()) { 1364 case ISD::SIGN_EXTEND_INREG: 1365 // Do not add any results, signifying that N should not be custom lowered 1366 // after all. This happens because simd128 turns on custom lowering for 1367 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1368 // illegal type. 1369 break; 1370 default: 1371 llvm_unreachable( 1372 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1373 } 1374 } 1375 1376 //===----------------------------------------------------------------------===// 1377 // Custom lowering hooks. 1378 //===----------------------------------------------------------------------===// 1379 1380 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1381 SelectionDAG &DAG) const { 1382 SDLoc DL(Op); 1383 switch (Op.getOpcode()) { 1384 default: 1385 llvm_unreachable("unimplemented operation lowering"); 1386 return SDValue(); 1387 case ISD::FrameIndex: 1388 return LowerFrameIndex(Op, DAG); 1389 case ISD::GlobalAddress: 1390 return LowerGlobalAddress(Op, DAG); 1391 case ISD::GlobalTLSAddress: 1392 return LowerGlobalTLSAddress(Op, DAG); 1393 case ISD::ExternalSymbol: 1394 return LowerExternalSymbol(Op, DAG); 1395 case ISD::JumpTable: 1396 return LowerJumpTable(Op, DAG); 1397 case ISD::BR_JT: 1398 return LowerBR_JT(Op, DAG); 1399 case ISD::VASTART: 1400 return LowerVASTART(Op, DAG); 1401 case ISD::BlockAddress: 1402 case ISD::BRIND: 1403 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1404 return SDValue(); 1405 case ISD::RETURNADDR: 1406 return LowerRETURNADDR(Op, DAG); 1407 case ISD::FRAMEADDR: 1408 return LowerFRAMEADDR(Op, DAG); 1409 case ISD::CopyToReg: 1410 return LowerCopyToReg(Op, DAG); 1411 case ISD::EXTRACT_VECTOR_ELT: 1412 case ISD::INSERT_VECTOR_ELT: 1413 return LowerAccessVectorElement(Op, DAG); 1414 case ISD::INTRINSIC_VOID: 1415 case ISD::INTRINSIC_WO_CHAIN: 1416 case ISD::INTRINSIC_W_CHAIN: 1417 return LowerIntrinsic(Op, DAG); 1418 case ISD::SIGN_EXTEND_INREG: 1419 return LowerSIGN_EXTEND_INREG(Op, DAG); 1420 case ISD::BUILD_VECTOR: 1421 return LowerBUILD_VECTOR(Op, DAG); 1422 case ISD::VECTOR_SHUFFLE: 1423 return LowerVECTOR_SHUFFLE(Op, DAG); 1424 case ISD::SETCC: 1425 return LowerSETCC(Op, DAG); 1426 case ISD::SHL: 1427 case ISD::SRA: 1428 case ISD::SRL: 1429 return LowerShift(Op, DAG); 1430 case ISD::FP_TO_SINT_SAT: 1431 case ISD::FP_TO_UINT_SAT: 1432 return LowerFP_TO_INT_SAT(Op, DAG); 1433 case ISD::LOAD: 1434 return LowerLoad(Op, DAG); 1435 case ISD::STORE: 1436 return LowerStore(Op, DAG); 1437 case ISD::CTPOP: 1438 case ISD::CTLZ: 1439 case ISD::CTTZ: 1440 return DAG.UnrollVectorOp(Op.getNode()); 1441 } 1442 } 1443 1444 static bool IsWebAssemblyGlobal(SDValue Op) { 1445 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1446 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1447 1448 return false; 1449 } 1450 1451 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { 1452 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1453 if (!FI) 1454 return None; 1455 1456 auto &MF = DAG.getMachineFunction(); 1457 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1458 } 1459 1460 static bool IsWebAssemblyTable(SDValue Op) { 1461 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1462 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { 1463 const GlobalValue *Value = GA->getGlobal(); 1464 const Type *Ty = Value->getValueType(); 1465 1466 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) 1467 return true; 1468 } 1469 return false; 1470 } 1471 1472 // This function will accept as Op any access to a table, so Op can 1473 // be the actual table or an offset into the table. 1474 static bool IsWebAssemblyTableWithOffset(SDValue Op) { 1475 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) 1476 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && 1477 IsWebAssemblyTableWithOffset(Op->getOperand(0))) || 1478 (Op->getOperand(0).getSimpleValueType() == MVT::i32 && 1479 IsWebAssemblyTableWithOffset(Op->getOperand(1))); 1480 1481 return IsWebAssemblyTable(Op); 1482 } 1483 1484 // Helper for table pattern matching used in LowerStore and LowerLoad 1485 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, 1486 const SDLoc &DL, 1487 const SDValue &Base, 1488 GlobalAddressSDNode *&GA, 1489 SDValue &Idx) const { 1490 // We expect the following graph for a load of the form: 1491 // table[<var> + <constant offset>] 1492 // 1493 // Case 1: 1494 // externref = load t1 1495 // t1: i32 = add t2, i32:<constant offset> 1496 // t2: i32 = add tX, table 1497 // 1498 // This is in some cases simplified to just: 1499 // Case 2: 1500 // externref = load t1 1501 // t1: i32 = add t2, i32:tX 1502 // 1503 // So, unfortunately we need to check for both cases and if we are in the 1504 // first case extract the table GlobalAddressNode and build a new node tY 1505 // that's tY: i32 = add i32:<constant offset>, i32:tX 1506 // 1507 if (IsWebAssemblyTable(Base)) { 1508 GA = cast<GlobalAddressSDNode>(Base); 1509 Idx = DAG.getConstant(0, DL, MVT::i32); 1510 } else { 1511 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); 1512 if (GA) { 1513 // We are in Case 2 above. 1514 Idx = Base->getOperand(1); 1515 assert(GA->getNumValues() == 1); 1516 } else { 1517 // This might be Case 1 above (or an error) 1518 SDValue V = Base->getOperand(0); 1519 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); 1520 1521 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) 1522 return false; 1523 1524 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), 1525 V->getOperand(0)); 1526 Idx = IdxV; 1527 } 1528 } 1529 1530 return true; 1531 } 1532 1533 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1534 SelectionDAG &DAG) const { 1535 SDLoc DL(Op); 1536 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1537 const SDValue &Value = SN->getValue(); 1538 const SDValue &Base = SN->getBasePtr(); 1539 const SDValue &Offset = SN->getOffset(); 1540 1541 if (IsWebAssemblyTableWithOffset(Base)) { 1542 if (!Offset->isUndef()) 1543 report_fatal_error( 1544 "unexpected offset when loading from webassembly table", false); 1545 1546 SDValue Idx; 1547 GlobalAddressSDNode *GA; 1548 1549 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1550 report_fatal_error("failed pattern matching for lowering table store", 1551 false); 1552 1553 SDVTList Tys = DAG.getVTList(MVT::Other); 1554 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; 1555 SDValue TableSet = 1556 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, 1557 SN->getMemoryVT(), SN->getMemOperand()); 1558 return TableSet; 1559 } 1560 1561 if (IsWebAssemblyGlobal(Base)) { 1562 if (!Offset->isUndef()) 1563 report_fatal_error("unexpected offset when storing to webassembly global", 1564 false); 1565 1566 SDVTList Tys = DAG.getVTList(MVT::Other); 1567 SDValue Ops[] = {SN->getChain(), Value, Base}; 1568 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1569 SN->getMemoryVT(), SN->getMemOperand()); 1570 } 1571 1572 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1573 if (!Offset->isUndef()) 1574 report_fatal_error("unexpected offset when storing to webassembly local", 1575 false); 1576 1577 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1578 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1579 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1580 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1581 } 1582 1583 return Op; 1584 } 1585 1586 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1587 SelectionDAG &DAG) const { 1588 SDLoc DL(Op); 1589 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1590 const SDValue &Base = LN->getBasePtr(); 1591 const SDValue &Offset = LN->getOffset(); 1592 1593 if (IsWebAssemblyTableWithOffset(Base)) { 1594 if (!Offset->isUndef()) 1595 report_fatal_error( 1596 "unexpected offset when loading from webassembly table", false); 1597 1598 GlobalAddressSDNode *GA; 1599 SDValue Idx; 1600 1601 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) 1602 report_fatal_error("failed pattern matching for lowering table load", 1603 false); 1604 1605 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1606 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; 1607 SDValue TableGet = 1608 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, 1609 LN->getMemoryVT(), LN->getMemOperand()); 1610 return TableGet; 1611 } 1612 1613 if (IsWebAssemblyGlobal(Base)) { 1614 if (!Offset->isUndef()) 1615 report_fatal_error( 1616 "unexpected offset when loading from webassembly global", false); 1617 1618 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1619 SDValue Ops[] = {LN->getChain(), Base}; 1620 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1621 LN->getMemoryVT(), LN->getMemOperand()); 1622 } 1623 1624 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1625 if (!Offset->isUndef()) 1626 report_fatal_error( 1627 "unexpected offset when loading from webassembly local", false); 1628 1629 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1630 EVT LocalVT = LN->getValueType(0); 1631 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1632 {LN->getChain(), Idx}); 1633 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1634 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1635 return Result; 1636 } 1637 1638 return Op; 1639 } 1640 1641 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1642 SelectionDAG &DAG) const { 1643 SDValue Src = Op.getOperand(2); 1644 if (isa<FrameIndexSDNode>(Src.getNode())) { 1645 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1646 // the FI to some LEA-like instruction, but since we don't have that, we 1647 // need to insert some kind of instruction that can take an FI operand and 1648 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1649 // local.copy between Op and its FI operand. 1650 SDValue Chain = Op.getOperand(0); 1651 SDLoc DL(Op); 1652 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1653 EVT VT = Src.getValueType(); 1654 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1655 : WebAssembly::COPY_I64, 1656 DL, VT, Src), 1657 0); 1658 return Op.getNode()->getNumValues() == 1 1659 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1660 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1661 Op.getNumOperands() == 4 ? Op.getOperand(3) 1662 : SDValue()); 1663 } 1664 return SDValue(); 1665 } 1666 1667 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1668 SelectionDAG &DAG) const { 1669 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1670 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1671 } 1672 1673 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1674 SelectionDAG &DAG) const { 1675 SDLoc DL(Op); 1676 1677 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1678 fail(DL, DAG, 1679 "Non-Emscripten WebAssembly hasn't implemented " 1680 "__builtin_return_address"); 1681 return SDValue(); 1682 } 1683 1684 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1685 return SDValue(); 1686 1687 unsigned Depth = Op.getConstantOperandVal(0); 1688 MakeLibCallOptions CallOptions; 1689 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1690 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1691 .first; 1692 } 1693 1694 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1695 SelectionDAG &DAG) const { 1696 // Non-zero depths are not supported by WebAssembly currently. Use the 1697 // legalizer's default expansion, which is to return 0 (what this function is 1698 // documented to do). 1699 if (Op.getConstantOperandVal(0) > 0) 1700 return SDValue(); 1701 1702 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1703 EVT VT = Op.getValueType(); 1704 Register FP = 1705 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1706 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1707 } 1708 1709 SDValue 1710 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1711 SelectionDAG &DAG) const { 1712 SDLoc DL(Op); 1713 const auto *GA = cast<GlobalAddressSDNode>(Op); 1714 1715 MachineFunction &MF = DAG.getMachineFunction(); 1716 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1717 report_fatal_error("cannot use thread-local storage without bulk memory", 1718 false); 1719 1720 const GlobalValue *GV = GA->getGlobal(); 1721 1722 // Currently Emscripten does not support dynamic linking with threads. 1723 // Therefore, if we have thread-local storage, only the local-exec model 1724 // is possible. 1725 // TODO: remove this and implement proper TLS models once Emscripten 1726 // supports dynamic linking with threads. 1727 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1728 !Subtarget->getTargetTriple().isOSEmscripten()) { 1729 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1730 "non-Emscripten OSes: variable " + 1731 GV->getName(), 1732 false); 1733 } 1734 1735 auto model = GV->getThreadLocalMode(); 1736 1737 // Unsupported TLS modes 1738 assert(model != GlobalValue::NotThreadLocal); 1739 assert(model != GlobalValue::InitialExecTLSModel); 1740 1741 if (model == GlobalValue::LocalExecTLSModel || 1742 model == GlobalValue::LocalDynamicTLSModel || 1743 (model == GlobalValue::GeneralDynamicTLSModel && 1744 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { 1745 // For DSO-local TLS variables we use offset from __tls_base 1746 1747 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1748 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1749 : WebAssembly::GLOBAL_GET_I32; 1750 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1751 1752 SDValue BaseAddr( 1753 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1754 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1755 0); 1756 1757 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1758 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1759 SDValue SymOffset = 1760 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1761 1762 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1763 } 1764 1765 assert(model == GlobalValue::GeneralDynamicTLSModel); 1766 1767 EVT VT = Op.getValueType(); 1768 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1769 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1770 GA->getOffset(), 1771 WebAssemblyII::MO_GOT_TLS)); 1772 } 1773 1774 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1775 SelectionDAG &DAG) const { 1776 SDLoc DL(Op); 1777 const auto *GA = cast<GlobalAddressSDNode>(Op); 1778 EVT VT = Op.getValueType(); 1779 assert(GA->getTargetFlags() == 0 && 1780 "Unexpected target flags on generic GlobalAddressSDNode"); 1781 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1782 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1783 1784 unsigned OperandFlags = 0; 1785 if (isPositionIndependent()) { 1786 const GlobalValue *GV = GA->getGlobal(); 1787 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1788 MachineFunction &MF = DAG.getMachineFunction(); 1789 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1790 const char *BaseName; 1791 if (GV->getValueType()->isFunctionTy()) { 1792 BaseName = MF.createExternalSymbolName("__table_base"); 1793 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1794 } 1795 else { 1796 BaseName = MF.createExternalSymbolName("__memory_base"); 1797 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1798 } 1799 SDValue BaseAddr = 1800 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1801 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1802 1803 SDValue SymAddr = DAG.getNode( 1804 WebAssemblyISD::WrapperREL, DL, VT, 1805 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1806 OperandFlags)); 1807 1808 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1809 } 1810 OperandFlags = WebAssemblyII::MO_GOT; 1811 } 1812 1813 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1814 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1815 GA->getOffset(), OperandFlags)); 1816 } 1817 1818 SDValue 1819 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1820 SelectionDAG &DAG) const { 1821 SDLoc DL(Op); 1822 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1823 EVT VT = Op.getValueType(); 1824 assert(ES->getTargetFlags() == 0 && 1825 "Unexpected target flags on generic ExternalSymbolSDNode"); 1826 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1827 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1828 } 1829 1830 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1831 SelectionDAG &DAG) const { 1832 // There's no need for a Wrapper node because we always incorporate a jump 1833 // table operand into a BR_TABLE instruction, rather than ever 1834 // materializing it in a register. 1835 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1836 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1837 JT->getTargetFlags()); 1838 } 1839 1840 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1841 SelectionDAG &DAG) const { 1842 SDLoc DL(Op); 1843 SDValue Chain = Op.getOperand(0); 1844 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1845 SDValue Index = Op.getOperand(2); 1846 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1847 1848 SmallVector<SDValue, 8> Ops; 1849 Ops.push_back(Chain); 1850 Ops.push_back(Index); 1851 1852 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1853 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1854 1855 // Add an operand for each case. 1856 for (auto MBB : MBBs) 1857 Ops.push_back(DAG.getBasicBlock(MBB)); 1858 1859 // Add the first MBB as a dummy default target for now. This will be replaced 1860 // with the proper default target (and the preceding range check eliminated) 1861 // if possible by WebAssemblyFixBrTableDefaults. 1862 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1863 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1864 } 1865 1866 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1867 SelectionDAG &DAG) const { 1868 SDLoc DL(Op); 1869 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1870 1871 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1872 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1873 1874 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1875 MFI->getVarargBufferVreg(), PtrVT); 1876 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1877 MachinePointerInfo(SV)); 1878 } 1879 1880 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1881 SelectionDAG &DAG) const { 1882 MachineFunction &MF = DAG.getMachineFunction(); 1883 unsigned IntNo; 1884 switch (Op.getOpcode()) { 1885 case ISD::INTRINSIC_VOID: 1886 case ISD::INTRINSIC_W_CHAIN: 1887 IntNo = Op.getConstantOperandVal(1); 1888 break; 1889 case ISD::INTRINSIC_WO_CHAIN: 1890 IntNo = Op.getConstantOperandVal(0); 1891 break; 1892 default: 1893 llvm_unreachable("Invalid intrinsic"); 1894 } 1895 SDLoc DL(Op); 1896 1897 switch (IntNo) { 1898 default: 1899 return SDValue(); // Don't custom lower most intrinsics. 1900 1901 case Intrinsic::wasm_lsda: { 1902 auto PtrVT = getPointerTy(MF.getDataLayout()); 1903 const char *SymName = MF.createExternalSymbolName( 1904 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1905 if (isPositionIndependent()) { 1906 SDValue Node = DAG.getTargetExternalSymbol( 1907 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1908 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1909 SDValue BaseAddr = 1910 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1911 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1912 SDValue SymAddr = 1913 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1914 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1915 } 1916 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1917 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1918 } 1919 1920 case Intrinsic::wasm_shuffle: { 1921 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1922 SDValue Ops[18]; 1923 size_t OpIdx = 0; 1924 Ops[OpIdx++] = Op.getOperand(1); 1925 Ops[OpIdx++] = Op.getOperand(2); 1926 while (OpIdx < 18) { 1927 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1928 if (MaskIdx.isUndef() || 1929 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1930 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1931 } else { 1932 Ops[OpIdx++] = MaskIdx; 1933 } 1934 } 1935 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1936 } 1937 } 1938 } 1939 1940 SDValue 1941 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1942 SelectionDAG &DAG) const { 1943 SDLoc DL(Op); 1944 // If sign extension operations are disabled, allow sext_inreg only if operand 1945 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1946 // extension operations, but allowing sext_inreg in this context lets us have 1947 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1948 // everywhere would be simpler in this file, but would necessitate large and 1949 // brittle patterns to undo the expansion and select extract_lane_s 1950 // instructions. 1951 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1952 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1953 return SDValue(); 1954 1955 const SDValue &Extract = Op.getOperand(0); 1956 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1957 if (VecT.getVectorElementType().getSizeInBits() > 32) 1958 return SDValue(); 1959 MVT ExtractedLaneT = 1960 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1961 MVT ExtractedVecT = 1962 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1963 if (ExtractedVecT == VecT) 1964 return Op; 1965 1966 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1967 const SDNode *Index = Extract.getOperand(1).getNode(); 1968 if (!isa<ConstantSDNode>(Index)) 1969 return SDValue(); 1970 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1971 unsigned Scale = 1972 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1973 assert(Scale > 1); 1974 SDValue NewIndex = 1975 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1976 SDValue NewExtract = DAG.getNode( 1977 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1978 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1979 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1980 Op.getOperand(1)); 1981 } 1982 1983 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1984 SDLoc DL(Op); 1985 if (Op.getValueType() != MVT::v2f64) 1986 return SDValue(); 1987 1988 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 1989 unsigned &Index) -> bool { 1990 switch (Op.getOpcode()) { 1991 case ISD::SINT_TO_FP: 1992 Opcode = WebAssemblyISD::CONVERT_LOW_S; 1993 break; 1994 case ISD::UINT_TO_FP: 1995 Opcode = WebAssemblyISD::CONVERT_LOW_U; 1996 break; 1997 case ISD::FP_EXTEND: 1998 Opcode = WebAssemblyISD::PROMOTE_LOW; 1999 break; 2000 default: 2001 return false; 2002 } 2003 2004 auto ExtractVector = Op.getOperand(0); 2005 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2006 return false; 2007 2008 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2009 return false; 2010 2011 SrcVec = ExtractVector.getOperand(0); 2012 Index = ExtractVector.getConstantOperandVal(1); 2013 return true; 2014 }; 2015 2016 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2017 SDValue LHSSrcVec, RHSSrcVec; 2018 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2019 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2020 return SDValue(); 2021 2022 if (LHSOpcode != RHSOpcode) 2023 return SDValue(); 2024 2025 MVT ExpectedSrcVT; 2026 switch (LHSOpcode) { 2027 case WebAssemblyISD::CONVERT_LOW_S: 2028 case WebAssemblyISD::CONVERT_LOW_U: 2029 ExpectedSrcVT = MVT::v4i32; 2030 break; 2031 case WebAssemblyISD::PROMOTE_LOW: 2032 ExpectedSrcVT = MVT::v4f32; 2033 break; 2034 } 2035 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2036 return SDValue(); 2037 2038 auto Src = LHSSrcVec; 2039 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2040 // Shuffle the source vector so that the converted lanes are the low lanes. 2041 Src = DAG.getVectorShuffle( 2042 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2043 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2044 } 2045 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2046 } 2047 2048 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2049 SelectionDAG &DAG) const { 2050 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2051 return ConvertLow; 2052 2053 SDLoc DL(Op); 2054 const EVT VecT = Op.getValueType(); 2055 const EVT LaneT = Op.getOperand(0).getValueType(); 2056 const size_t Lanes = Op.getNumOperands(); 2057 bool CanSwizzle = VecT == MVT::v16i8; 2058 2059 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2060 // possible number of lanes at once followed by a sequence of replace_lane 2061 // instructions to individually initialize any remaining lanes. 2062 2063 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2064 // swizzled lanes should be given greater weight. 2065 2066 // TODO: Investigate looping rather than always extracting/replacing specific 2067 // lanes to fill gaps. 2068 2069 auto IsConstant = [](const SDValue &V) { 2070 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2071 }; 2072 2073 // Returns the source vector and index vector pair if they exist. Checks for: 2074 // (extract_vector_elt 2075 // $src, 2076 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2077 // ) 2078 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2079 auto Bail = std::make_pair(SDValue(), SDValue()); 2080 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2081 return Bail; 2082 const SDValue &SwizzleSrc = Lane->getOperand(0); 2083 const SDValue &IndexExt = Lane->getOperand(1); 2084 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2085 return Bail; 2086 const SDValue &Index = IndexExt->getOperand(0); 2087 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2088 return Bail; 2089 const SDValue &SwizzleIndices = Index->getOperand(0); 2090 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2091 SwizzleIndices.getValueType() != MVT::v16i8 || 2092 Index->getOperand(1)->getOpcode() != ISD::Constant || 2093 Index->getConstantOperandVal(1) != I) 2094 return Bail; 2095 return std::make_pair(SwizzleSrc, SwizzleIndices); 2096 }; 2097 2098 // If the lane is extracted from another vector at a constant index, return 2099 // that vector. The source vector must not have more lanes than the dest 2100 // because the shufflevector indices are in terms of the destination lanes and 2101 // would not be able to address the smaller individual source lanes. 2102 auto GetShuffleSrc = [&](const SDValue &Lane) { 2103 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2104 return SDValue(); 2105 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2106 return SDValue(); 2107 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2108 VecT.getVectorNumElements()) 2109 return SDValue(); 2110 return Lane->getOperand(0); 2111 }; 2112 2113 using ValueEntry = std::pair<SDValue, size_t>; 2114 SmallVector<ValueEntry, 16> SplatValueCounts; 2115 2116 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2117 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2118 2119 using ShuffleEntry = std::pair<SDValue, size_t>; 2120 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2121 2122 auto AddCount = [](auto &Counts, const auto &Val) { 2123 auto CountIt = 2124 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2125 if (CountIt == Counts.end()) { 2126 Counts.emplace_back(Val, 1); 2127 } else { 2128 CountIt->second++; 2129 } 2130 }; 2131 2132 auto GetMostCommon = [](auto &Counts) { 2133 auto CommonIt = 2134 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2135 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2136 return *CommonIt; 2137 }; 2138 2139 size_t NumConstantLanes = 0; 2140 2141 // Count eligible lanes for each type of vector creation op 2142 for (size_t I = 0; I < Lanes; ++I) { 2143 const SDValue &Lane = Op->getOperand(I); 2144 if (Lane.isUndef()) 2145 continue; 2146 2147 AddCount(SplatValueCounts, Lane); 2148 2149 if (IsConstant(Lane)) 2150 NumConstantLanes++; 2151 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2152 AddCount(ShuffleCounts, ShuffleSrc); 2153 if (CanSwizzle) { 2154 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2155 if (SwizzleSrcs.first) 2156 AddCount(SwizzleCounts, SwizzleSrcs); 2157 } 2158 } 2159 2160 SDValue SplatValue; 2161 size_t NumSplatLanes; 2162 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2163 2164 SDValue SwizzleSrc; 2165 SDValue SwizzleIndices; 2166 size_t NumSwizzleLanes = 0; 2167 if (SwizzleCounts.size()) 2168 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2169 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2170 2171 // Shuffles can draw from up to two vectors, so find the two most common 2172 // sources. 2173 SDValue ShuffleSrc1, ShuffleSrc2; 2174 size_t NumShuffleLanes = 0; 2175 if (ShuffleCounts.size()) { 2176 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2177 llvm::erase_if(ShuffleCounts, 2178 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2179 } 2180 if (ShuffleCounts.size()) { 2181 size_t AdditionalShuffleLanes; 2182 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2183 GetMostCommon(ShuffleCounts); 2184 NumShuffleLanes += AdditionalShuffleLanes; 2185 } 2186 2187 // Predicate returning true if the lane is properly initialized by the 2188 // original instruction 2189 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2190 SDValue Result; 2191 // Prefer swizzles over shuffles over vector consts over splats 2192 if (NumSwizzleLanes >= NumShuffleLanes && 2193 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2194 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2195 SwizzleIndices); 2196 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2197 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2198 return Swizzled == GetSwizzleSrcs(I, Lane); 2199 }; 2200 } else if (NumShuffleLanes >= NumConstantLanes && 2201 NumShuffleLanes >= NumSplatLanes) { 2202 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2203 size_t DestLaneCount = VecT.getVectorNumElements(); 2204 size_t Scale1 = 1; 2205 size_t Scale2 = 1; 2206 SDValue Src1 = ShuffleSrc1; 2207 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2208 if (Src1.getValueType() != VecT) { 2209 size_t LaneSize = 2210 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2211 assert(LaneSize > DestLaneSize); 2212 Scale1 = LaneSize / DestLaneSize; 2213 Src1 = DAG.getBitcast(VecT, Src1); 2214 } 2215 if (Src2.getValueType() != VecT) { 2216 size_t LaneSize = 2217 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2218 assert(LaneSize > DestLaneSize); 2219 Scale2 = LaneSize / DestLaneSize; 2220 Src2 = DAG.getBitcast(VecT, Src2); 2221 } 2222 2223 int Mask[16]; 2224 assert(DestLaneCount <= 16); 2225 for (size_t I = 0; I < DestLaneCount; ++I) { 2226 const SDValue &Lane = Op->getOperand(I); 2227 SDValue Src = GetShuffleSrc(Lane); 2228 if (Src == ShuffleSrc1) { 2229 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2230 } else if (Src && Src == ShuffleSrc2) { 2231 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2232 } else { 2233 Mask[I] = -1; 2234 } 2235 } 2236 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2237 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2238 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2239 auto Src = GetShuffleSrc(Lane); 2240 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2241 }; 2242 } else if (NumConstantLanes >= NumSplatLanes) { 2243 SmallVector<SDValue, 16> ConstLanes; 2244 for (const SDValue &Lane : Op->op_values()) { 2245 if (IsConstant(Lane)) { 2246 // Values may need to be fixed so that they will sign extend to be 2247 // within the expected range during ISel. Check whether the value is in 2248 // bounds based on the lane bit width and if it is out of bounds, lop 2249 // off the extra bits and subtract 2^n to reflect giving the high bit 2250 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2251 // cannot possibly be out of range. 2252 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2253 int64_t Val = Const ? Const->getSExtValue() : 0; 2254 uint64_t LaneBits = 128 / Lanes; 2255 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2256 "Unexpected out of bounds negative value"); 2257 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2258 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); 2259 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2260 } else { 2261 ConstLanes.push_back(Lane); 2262 } 2263 } else if (LaneT.isFloatingPoint()) { 2264 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2265 } else { 2266 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2267 } 2268 } 2269 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2270 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2271 return IsConstant(Lane); 2272 }; 2273 } else { 2274 // Use a splat, but possibly a load_splat 2275 LoadSDNode *SplattedLoad; 2276 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 2277 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 2278 Result = DAG.getMemIntrinsicNode( 2279 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 2280 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 2281 SplattedLoad->getOffset()}, 2282 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 2283 } else { 2284 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2285 } 2286 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2287 return Lane == SplatValue; 2288 }; 2289 } 2290 2291 assert(Result); 2292 assert(IsLaneConstructed); 2293 2294 // Add replace_lane instructions for any unhandled values 2295 for (size_t I = 0; I < Lanes; ++I) { 2296 const SDValue &Lane = Op->getOperand(I); 2297 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2298 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2299 DAG.getConstant(I, DL, MVT::i32)); 2300 } 2301 2302 return Result; 2303 } 2304 2305 SDValue 2306 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2307 SelectionDAG &DAG) const { 2308 SDLoc DL(Op); 2309 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2310 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2311 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2312 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2313 2314 // Space for two vector args and sixteen mask indices 2315 SDValue Ops[18]; 2316 size_t OpIdx = 0; 2317 Ops[OpIdx++] = Op.getOperand(0); 2318 Ops[OpIdx++] = Op.getOperand(1); 2319 2320 // Expand mask indices to byte indices and materialize them as operands 2321 for (int M : Mask) { 2322 for (size_t J = 0; J < LaneBytes; ++J) { 2323 // Lower undefs (represented by -1 in mask) to zero 2324 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 2325 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2326 } 2327 } 2328 2329 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2330 } 2331 2332 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2333 SelectionDAG &DAG) const { 2334 SDLoc DL(Op); 2335 // The legalizer does not know how to expand the unsupported comparison modes 2336 // of i64x2 vectors, so we manually unroll them here. 2337 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2338 SmallVector<SDValue, 2> LHS, RHS; 2339 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2340 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2341 const SDValue &CC = Op->getOperand(2); 2342 auto MakeLane = [&](unsigned I) { 2343 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2344 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2345 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2346 }; 2347 return DAG.getBuildVector(Op->getValueType(0), DL, 2348 {MakeLane(0), MakeLane(1)}); 2349 } 2350 2351 SDValue 2352 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2353 SelectionDAG &DAG) const { 2354 // Allow constant lane indices, expand variable lane indices 2355 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2356 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 2357 return Op; 2358 else 2359 // Perform default expansion 2360 return SDValue(); 2361 } 2362 2363 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2364 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2365 // 32-bit and 64-bit unrolled shifts will have proper semantics 2366 if (LaneT.bitsGE(MVT::i32)) 2367 return DAG.UnrollVectorOp(Op.getNode()); 2368 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2369 SDLoc DL(Op); 2370 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2371 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2372 unsigned ShiftOpcode = Op.getOpcode(); 2373 SmallVector<SDValue, 16> ShiftedElements; 2374 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2375 SmallVector<SDValue, 16> ShiftElements; 2376 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2377 SmallVector<SDValue, 16> UnrolledOps; 2378 for (size_t i = 0; i < NumLanes; ++i) { 2379 SDValue MaskedShiftValue = 2380 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2381 SDValue ShiftedValue = ShiftedElements[i]; 2382 if (ShiftOpcode == ISD::SRA) 2383 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2384 ShiftedValue, DAG.getValueType(LaneT)); 2385 UnrolledOps.push_back( 2386 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2387 } 2388 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2389 } 2390 2391 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2392 SelectionDAG &DAG) const { 2393 SDLoc DL(Op); 2394 2395 // Only manually lower vector shifts 2396 assert(Op.getSimpleValueType().isVector()); 2397 2398 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 2399 if (!ShiftVal) 2400 return unrollVectorShift(Op, DAG); 2401 2402 // Use anyext because none of the high bits can affect the shift 2403 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2404 2405 unsigned Opcode; 2406 switch (Op.getOpcode()) { 2407 case ISD::SHL: 2408 Opcode = WebAssemblyISD::VEC_SHL; 2409 break; 2410 case ISD::SRA: 2411 Opcode = WebAssemblyISD::VEC_SHR_S; 2412 break; 2413 case ISD::SRL: 2414 Opcode = WebAssemblyISD::VEC_SHR_U; 2415 break; 2416 default: 2417 llvm_unreachable("unexpected opcode"); 2418 } 2419 2420 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2421 } 2422 2423 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2424 SelectionDAG &DAG) const { 2425 SDLoc DL(Op); 2426 EVT ResT = Op.getValueType(); 2427 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2428 2429 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2430 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2431 return Op; 2432 2433 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2434 return Op; 2435 2436 return SDValue(); 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // Custom DAG combine hooks 2441 //===----------------------------------------------------------------------===// 2442 static SDValue 2443 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2444 auto &DAG = DCI.DAG; 2445 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2446 2447 // Hoist vector bitcasts that don't change the number of lanes out of unary 2448 // shuffles, where they are less likely to get in the way of other combines. 2449 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2450 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2451 SDValue Bitcast = N->getOperand(0); 2452 if (Bitcast.getOpcode() != ISD::BITCAST) 2453 return SDValue(); 2454 if (!N->getOperand(1).isUndef()) 2455 return SDValue(); 2456 SDValue CastOp = Bitcast.getOperand(0); 2457 MVT SrcType = CastOp.getSimpleValueType(); 2458 MVT DstType = Bitcast.getSimpleValueType(); 2459 if (!SrcType.is128BitVector() || 2460 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2461 return SDValue(); 2462 SDValue NewShuffle = DAG.getVectorShuffle( 2463 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2464 return DAG.getBitcast(DstType, NewShuffle); 2465 } 2466 2467 static SDValue 2468 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2469 auto &DAG = DCI.DAG; 2470 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2471 N->getOpcode() == ISD::ZERO_EXTEND); 2472 2473 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2474 // possible before the extract_subvector can be expanded. 2475 auto Extract = N->getOperand(0); 2476 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2477 return SDValue(); 2478 auto Source = Extract.getOperand(0); 2479 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2480 if (IndexNode == nullptr) 2481 return SDValue(); 2482 auto Index = IndexNode->getZExtValue(); 2483 2484 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2485 // extracted subvector is the low or high half of its source. 2486 EVT ResVT = N->getValueType(0); 2487 if (ResVT == MVT::v8i16) { 2488 if (Extract.getValueType() != MVT::v8i8 || 2489 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2490 return SDValue(); 2491 } else if (ResVT == MVT::v4i32) { 2492 if (Extract.getValueType() != MVT::v4i16 || 2493 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2494 return SDValue(); 2495 } else if (ResVT == MVT::v2i64) { 2496 if (Extract.getValueType() != MVT::v2i32 || 2497 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2498 return SDValue(); 2499 } else { 2500 return SDValue(); 2501 } 2502 2503 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2504 bool IsLow = Index == 0; 2505 2506 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2507 : WebAssemblyISD::EXTEND_HIGH_S) 2508 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2509 : WebAssemblyISD::EXTEND_HIGH_U); 2510 2511 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2512 } 2513 2514 static SDValue 2515 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2516 auto &DAG = DCI.DAG; 2517 2518 auto GetWasmConversionOp = [](unsigned Op) { 2519 switch (Op) { 2520 case ISD::FP_TO_SINT_SAT: 2521 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2522 case ISD::FP_TO_UINT_SAT: 2523 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2524 case ISD::FP_ROUND: 2525 return WebAssemblyISD::DEMOTE_ZERO; 2526 } 2527 llvm_unreachable("unexpected op"); 2528 }; 2529 2530 auto IsZeroSplat = [](SDValue SplatVal) { 2531 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2532 APInt SplatValue, SplatUndef; 2533 unsigned SplatBitSize; 2534 bool HasAnyUndefs; 2535 return Splat && 2536 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2537 HasAnyUndefs) && 2538 SplatValue == 0; 2539 }; 2540 2541 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2542 // Combine this: 2543 // 2544 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2545 // 2546 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2547 // 2548 // Or this: 2549 // 2550 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2551 // 2552 // into (f32x4.demote_zero_f64x2 $x). 2553 EVT ResVT; 2554 EVT ExpectedConversionType; 2555 auto Conversion = N->getOperand(0); 2556 auto ConversionOp = Conversion.getOpcode(); 2557 switch (ConversionOp) { 2558 case ISD::FP_TO_SINT_SAT: 2559 case ISD::FP_TO_UINT_SAT: 2560 ResVT = MVT::v4i32; 2561 ExpectedConversionType = MVT::v2i32; 2562 break; 2563 case ISD::FP_ROUND: 2564 ResVT = MVT::v4f32; 2565 ExpectedConversionType = MVT::v2f32; 2566 break; 2567 default: 2568 return SDValue(); 2569 } 2570 2571 if (N->getValueType(0) != ResVT) 2572 return SDValue(); 2573 2574 if (Conversion.getValueType() != ExpectedConversionType) 2575 return SDValue(); 2576 2577 auto Source = Conversion.getOperand(0); 2578 if (Source.getValueType() != MVT::v2f64) 2579 return SDValue(); 2580 2581 if (!IsZeroSplat(N->getOperand(1)) || 2582 N->getOperand(1).getValueType() != ExpectedConversionType) 2583 return SDValue(); 2584 2585 unsigned Op = GetWasmConversionOp(ConversionOp); 2586 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2587 } 2588 2589 // Combine this: 2590 // 2591 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2592 // 2593 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2594 // 2595 // Or this: 2596 // 2597 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2598 // 2599 // into (f32x4.demote_zero_f64x2 $x). 2600 EVT ResVT; 2601 auto ConversionOp = N->getOpcode(); 2602 switch (ConversionOp) { 2603 case ISD::FP_TO_SINT_SAT: 2604 case ISD::FP_TO_UINT_SAT: 2605 ResVT = MVT::v4i32; 2606 break; 2607 case ISD::FP_ROUND: 2608 ResVT = MVT::v4f32; 2609 break; 2610 default: 2611 llvm_unreachable("unexpected op"); 2612 } 2613 2614 if (N->getValueType(0) != ResVT) 2615 return SDValue(); 2616 2617 auto Concat = N->getOperand(0); 2618 if (Concat.getValueType() != MVT::v4f64) 2619 return SDValue(); 2620 2621 auto Source = Concat.getOperand(0); 2622 if (Source.getValueType() != MVT::v2f64) 2623 return SDValue(); 2624 2625 if (!IsZeroSplat(Concat.getOperand(1)) || 2626 Concat.getOperand(1).getValueType() != MVT::v2f64) 2627 return SDValue(); 2628 2629 unsigned Op = GetWasmConversionOp(ConversionOp); 2630 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2631 } 2632 2633 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2634 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2635 const SDLoc &DL, unsigned VectorWidth) { 2636 EVT VT = Vec.getValueType(); 2637 EVT ElVT = VT.getVectorElementType(); 2638 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2639 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2640 VT.getVectorNumElements() / Factor); 2641 2642 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2643 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2644 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2645 2646 // This is the index of the first element of the VectorWidth-bit chunk 2647 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2648 IdxVal &= ~(ElemsPerChunk - 1); 2649 2650 // If the input is a buildvector just emit a smaller one. 2651 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2652 return DAG.getBuildVector(ResultVT, DL, 2653 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2654 2655 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2656 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2657 } 2658 2659 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2660 // is the expected destination value type after recursion. In is the initial 2661 // input. Note that the input should have enough leading zero bits to prevent 2662 // NARROW_U from saturating results. 2663 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2664 SelectionDAG &DAG) { 2665 EVT SrcVT = In.getValueType(); 2666 2667 // No truncation required, we might get here due to recursive calls. 2668 if (SrcVT == DstVT) 2669 return In; 2670 2671 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2672 unsigned NumElems = SrcVT.getVectorNumElements(); 2673 if (!isPowerOf2_32(NumElems)) 2674 return SDValue(); 2675 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2676 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2677 2678 LLVMContext &Ctx = *DAG.getContext(); 2679 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2680 2681 // Narrow to the largest type possible: 2682 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2683 EVT InVT = MVT::i16, OutVT = MVT::i8; 2684 if (SrcVT.getScalarSizeInBits() > 16) { 2685 InVT = MVT::i32; 2686 OutVT = MVT::i16; 2687 } 2688 unsigned SubSizeInBits = SrcSizeInBits / 2; 2689 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2690 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2691 2692 // Split lower/upper subvectors. 2693 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2694 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2695 2696 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2697 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2698 Lo = DAG.getBitcast(InVT, Lo); 2699 Hi = DAG.getBitcast(InVT, Hi); 2700 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2701 return DAG.getBitcast(DstVT, Res); 2702 } 2703 2704 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2705 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2706 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2707 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2708 2709 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2710 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2711 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2712 } 2713 2714 static SDValue performTruncateCombine(SDNode *N, 2715 TargetLowering::DAGCombinerInfo &DCI) { 2716 auto &DAG = DCI.DAG; 2717 2718 SDValue In = N->getOperand(0); 2719 EVT InVT = In.getValueType(); 2720 if (!InVT.isSimple()) 2721 return SDValue(); 2722 2723 EVT OutVT = N->getValueType(0); 2724 if (!OutVT.isVector()) 2725 return SDValue(); 2726 2727 EVT OutSVT = OutVT.getVectorElementType(); 2728 EVT InSVT = InVT.getVectorElementType(); 2729 // Currently only cover truncate to v16i8 or v8i16. 2730 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2731 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2732 return SDValue(); 2733 2734 SDLoc DL(N); 2735 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2736 OutVT.getScalarSizeInBits()); 2737 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2738 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2739 } 2740 2741 SDValue 2742 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2743 DAGCombinerInfo &DCI) const { 2744 switch (N->getOpcode()) { 2745 default: 2746 return SDValue(); 2747 case ISD::VECTOR_SHUFFLE: 2748 return performVECTOR_SHUFFLECombine(N, DCI); 2749 case ISD::SIGN_EXTEND: 2750 case ISD::ZERO_EXTEND: 2751 return performVectorExtendCombine(N, DCI); 2752 case ISD::FP_TO_SINT_SAT: 2753 case ISD::FP_TO_UINT_SAT: 2754 case ISD::FP_ROUND: 2755 case ISD::CONCAT_VECTORS: 2756 return performVectorTruncZeroCombine(N, DCI); 2757 case ISD::TRUNCATE: 2758 return performTruncateCombine(N, DCI); 2759 } 2760 } 2761