xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "wasm-lower"
44 
45 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
46     const TargetMachine &TM, const WebAssemblySubtarget &STI)
47     : TargetLowering(TM), Subtarget(&STI) {
48   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
49 
50   // Booleans always contain 0 or 1.
51   setBooleanContents(ZeroOrOneBooleanContent);
52   // Except in SIMD vectors
53   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
54   // We don't know the microarchitecture here, so just reduce register pressure.
55   setSchedulingPreference(Sched::RegPressure);
56   // Tell ISel that we have a stack pointer.
57   setStackPointerRegisterToSaveRestore(
58       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
59   // Set up the register classes.
60   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
61   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
62   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
63   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
64   if (Subtarget->hasSIMD128()) {
65     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
70     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
71   }
72   if (Subtarget->hasReferenceTypes()) {
73     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75   }
76   // Compute derived properties from the register classes.
77   computeRegisterProperties(Subtarget->getRegisterInfo());
78 
79   // Transform loads and stores to pointers in address space 1 to loads and
80   // stores to WebAssembly global variables, outside linear memory.
81   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
82     setOperationAction(ISD::LOAD, T, Custom);
83     setOperationAction(ISD::STORE, T, Custom);
84   }
85   if (Subtarget->hasSIMD128()) {
86     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
87                    MVT::v2f64}) {
88       setOperationAction(ISD::LOAD, T, Custom);
89       setOperationAction(ISD::STORE, T, Custom);
90     }
91   }
92   if (Subtarget->hasReferenceTypes()) {
93     // We need custom load and store lowering for both externref, funcref and
94     // Other. The MVT::Other here represents tables of reference types.
95     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
96       setOperationAction(ISD::LOAD, T, Custom);
97       setOperationAction(ISD::STORE, T, Custom);
98     }
99   }
100 
101   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
102   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
103   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
104   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
105   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
106   setOperationAction(ISD::BRIND, MVT::Other, Custom);
107 
108   // Take the default expansion for va_arg, va_copy, and va_end. There is no
109   // default action for va_start, so we do that custom.
110   setOperationAction(ISD::VASTART, MVT::Other, Custom);
111   setOperationAction(ISD::VAARG, MVT::Other, Expand);
112   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
113   setOperationAction(ISD::VAEND, MVT::Other, Expand);
114 
115   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
116     // Don't expand the floating-point types to constant pools.
117     setOperationAction(ISD::ConstantFP, T, Legal);
118     // Expand floating-point comparisons.
119     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
120                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
121       setCondCodeAction(CC, T, Expand);
122     // Expand floating-point library function operators.
123     for (auto Op :
124          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
125       setOperationAction(Op, T, Expand);
126     // Note supported floating-point library function operators that otherwise
127     // default to expand.
128     for (auto Op :
129          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
130       setOperationAction(Op, T, Legal);
131     // Support minimum and maximum, which otherwise default to expand.
132     setOperationAction(ISD::FMINIMUM, T, Legal);
133     setOperationAction(ISD::FMAXIMUM, T, Legal);
134     // WebAssembly currently has no builtin f16 support.
135     setOperationAction(ISD::FP16_TO_FP, T, Expand);
136     setOperationAction(ISD::FP_TO_FP16, T, Expand);
137     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
138     setTruncStoreAction(T, MVT::f16, Expand);
139   }
140 
141   // Expand unavailable integer operations.
142   for (auto Op :
143        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
144         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
145         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
146     for (auto T : {MVT::i32, MVT::i64})
147       setOperationAction(Op, T, Expand);
148     if (Subtarget->hasSIMD128())
149       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
150         setOperationAction(Op, T, Expand);
151   }
152 
153   if (Subtarget->hasNontrappingFPToInt())
154     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
155       for (auto T : {MVT::i32, MVT::i64})
156         setOperationAction(Op, T, Custom);
157 
158   // SIMD-specific configuration
159   if (Subtarget->hasSIMD128()) {
160     // Hoist bitcasts out of shuffles
161     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
162 
163     // Combine extends of extract_subvectors into widening ops
164     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
165 
166     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
167     // conversions ops
168     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
169                          ISD::EXTRACT_SUBVECTOR});
170 
171     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
172     // into conversion ops
173     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
174                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
175 
176     setTargetDAGCombine(ISD::TRUNCATE);
177 
178     // Support saturating add for i8x16 and i16x8
179     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
180       for (auto T : {MVT::v16i8, MVT::v8i16})
181         setOperationAction(Op, T, Legal);
182 
183     // Support integer abs
184     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
185       setOperationAction(ISD::ABS, T, Legal);
186 
187     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
188     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
189                    MVT::v2f64})
190       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
191 
192     // We have custom shuffle lowering to expose the shuffle mask
193     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
194                    MVT::v2f64})
195       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
196 
197     // Custom lowering since wasm shifts must have a scalar shift amount
198     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
199       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
200         setOperationAction(Op, T, Custom);
201 
202     // Custom lower lane accesses to expand out variable indices
203     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
204       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
205                      MVT::v2f64})
206         setOperationAction(Op, T, Custom);
207 
208     // There is no i8x16.mul instruction
209     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
210 
211     // There is no vector conditional select instruction
212     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
213                    MVT::v2f64})
214       setOperationAction(ISD::SELECT_CC, T, Expand);
215 
216     // Expand integer operations supported for scalars but not SIMD
217     for (auto Op :
218          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
219       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
220         setOperationAction(Op, T, Expand);
221 
222     // But we do have integer min and max operations
223     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
224       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
225         setOperationAction(Op, T, Legal);
226 
227     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
228     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
229     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
230     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
231 
232     // Custom lower bit counting operations for other types to scalarize them.
233     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
234       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
235         setOperationAction(Op, T, Custom);
236 
237     // Expand float operations supported for scalars but not SIMD
238     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
239                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
240       for (auto T : {MVT::v4f32, MVT::v2f64})
241         setOperationAction(Op, T, Expand);
242 
243     // Unsigned comparison operations are unavailable for i64x2 vectors.
244     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
245       setCondCodeAction(CC, MVT::v2i64, Custom);
246 
247     // 64x2 conversions are not in the spec
248     for (auto Op :
249          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
250       for (auto T : {MVT::v2i64, MVT::v2f64})
251         setOperationAction(Op, T, Expand);
252 
253     // But saturating fp_to_int converstions are
254     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
255       setOperationAction(Op, MVT::v4i32, Custom);
256   }
257 
258   // As a special case, these operators use the type to mean the type to
259   // sign-extend from.
260   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
261   if (!Subtarget->hasSignExt()) {
262     // Sign extends are legal only when extending a vector extract
263     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
264     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
265       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
266   }
267   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
268     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
269 
270   // Dynamic stack allocation: use the default expansion.
271   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
272   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
273   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
274 
275   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
276   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
277   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
278 
279   // Expand these forms; we pattern-match the forms that we can handle in isel.
280   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
281     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
282       setOperationAction(Op, T, Expand);
283 
284   // We have custom switch handling.
285   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
286 
287   // WebAssembly doesn't have:
288   //  - Floating-point extending loads.
289   //  - Floating-point truncating stores.
290   //  - i1 extending loads.
291   //  - truncating SIMD stores and most extending loads
292   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
293   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
294   for (auto T : MVT::integer_valuetypes())
295     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
296       setLoadExtAction(Ext, T, MVT::i1, Promote);
297   if (Subtarget->hasSIMD128()) {
298     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
299                    MVT::v2f64}) {
300       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
301         if (MVT(T) != MemT) {
302           setTruncStoreAction(T, MemT, Expand);
303           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
304             setLoadExtAction(Ext, T, MemT, Expand);
305         }
306       }
307     }
308     // But some vector extending loads are legal
309     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
310       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
311       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
312       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
313     }
314     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
315   }
316 
317   // Don't do anything clever with build_pairs
318   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
319 
320   // Trap lowers to wasm unreachable
321   setOperationAction(ISD::TRAP, MVT::Other, Legal);
322   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
323 
324   // Exception handling intrinsics
325   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
326   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
327   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
328 
329   setMaxAtomicSizeInBitsSupported(64);
330 
331   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
332   // consistent with the f64 and f128 names.
333   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
334   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
335 
336   // Define the emscripten name for return address helper.
337   // TODO: when implementing other Wasm backends, make this generic or only do
338   // this on emscripten depending on what they end up doing.
339   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
340 
341   // Always convert switches to br_tables unless there is only one case, which
342   // is equivalent to a simple branch. This reduces code size for wasm, and we
343   // defer possible jump table optimizations to the VM.
344   setMinimumJumpTableEntries(2);
345 }
346 
347 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
348                                             uint32_t AS) const {
349   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
350     return MVT::externref;
351   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
352     return MVT::funcref;
353   return TargetLowering::getPointerTy(DL, AS);
354 }
355 
356 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
357                                                uint32_t AS) const {
358   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
359     return MVT::externref;
360   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
361     return MVT::funcref;
362   return TargetLowering::getPointerMemTy(DL, AS);
363 }
364 
365 TargetLowering::AtomicExpansionKind
366 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
367   // We have wasm instructions for these
368   switch (AI->getOperation()) {
369   case AtomicRMWInst::Add:
370   case AtomicRMWInst::Sub:
371   case AtomicRMWInst::And:
372   case AtomicRMWInst::Or:
373   case AtomicRMWInst::Xor:
374   case AtomicRMWInst::Xchg:
375     return AtomicExpansionKind::None;
376   default:
377     break;
378   }
379   return AtomicExpansionKind::CmpXChg;
380 }
381 
382 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
383   // Implementation copied from X86TargetLowering.
384   unsigned Opc = VecOp.getOpcode();
385 
386   // Assume target opcodes can't be scalarized.
387   // TODO - do we have any exceptions?
388   if (Opc >= ISD::BUILTIN_OP_END)
389     return false;
390 
391   // If the vector op is not supported, try to convert to scalar.
392   EVT VecVT = VecOp.getValueType();
393   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
394     return true;
395 
396   // If the vector op is supported, but the scalar op is not, the transform may
397   // not be worthwhile.
398   EVT ScalarVT = VecVT.getScalarType();
399   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
400 }
401 
402 FastISel *WebAssemblyTargetLowering::createFastISel(
403     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
404   return WebAssembly::createFastISel(FuncInfo, LibInfo);
405 }
406 
407 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
408                                                       EVT VT) const {
409   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
410   if (BitWidth > 1 && BitWidth < 8)
411     BitWidth = 8;
412 
413   if (BitWidth > 64) {
414     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
415     // the count to be an i32.
416     BitWidth = 32;
417     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
418            "32-bit shift counts ought to be enough for anyone");
419   }
420 
421   MVT Result = MVT::getIntegerVT(BitWidth);
422   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
423          "Unable to represent scalar shift amount type");
424   return Result;
425 }
426 
427 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
428 // undefined result on invalid/overflow, to the WebAssembly opcode, which
429 // traps on invalid/overflow.
430 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
431                                        MachineBasicBlock *BB,
432                                        const TargetInstrInfo &TII,
433                                        bool IsUnsigned, bool Int64,
434                                        bool Float64, unsigned LoweredOpcode) {
435   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
436 
437   Register OutReg = MI.getOperand(0).getReg();
438   Register InReg = MI.getOperand(1).getReg();
439 
440   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
441   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
442   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
443   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
444   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
445   unsigned Eqz = WebAssembly::EQZ_I32;
446   unsigned And = WebAssembly::AND_I32;
447   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
448   int64_t Substitute = IsUnsigned ? 0 : Limit;
449   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
450   auto &Context = BB->getParent()->getFunction().getContext();
451   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
452 
453   const BasicBlock *LLVMBB = BB->getBasicBlock();
454   MachineFunction *F = BB->getParent();
455   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
456   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
457   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
458 
459   MachineFunction::iterator It = ++BB->getIterator();
460   F->insert(It, FalseMBB);
461   F->insert(It, TrueMBB);
462   F->insert(It, DoneMBB);
463 
464   // Transfer the remainder of BB and its successor edges to DoneMBB.
465   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
466   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
467 
468   BB->addSuccessor(TrueMBB);
469   BB->addSuccessor(FalseMBB);
470   TrueMBB->addSuccessor(DoneMBB);
471   FalseMBB->addSuccessor(DoneMBB);
472 
473   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
474   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
475   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
476   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
477   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
478   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
479   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
480 
481   MI.eraseFromParent();
482   // For signed numbers, we can do a single comparison to determine whether
483   // fabs(x) is within range.
484   if (IsUnsigned) {
485     Tmp0 = InReg;
486   } else {
487     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
488   }
489   BuildMI(BB, DL, TII.get(FConst), Tmp1)
490       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
491   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
492 
493   // For unsigned numbers, we have to do a separate comparison with zero.
494   if (IsUnsigned) {
495     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
496     Register SecondCmpReg =
497         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
498     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
499     BuildMI(BB, DL, TII.get(FConst), Tmp1)
500         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
501     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
502     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
503     CmpReg = AndReg;
504   }
505 
506   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
507 
508   // Create the CFG diamond to select between doing the conversion or using
509   // the substitute value.
510   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
511   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
512   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
513   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
514   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
515       .addReg(FalseReg)
516       .addMBB(FalseMBB)
517       .addReg(TrueReg)
518       .addMBB(TrueMBB);
519 
520   return DoneMBB;
521 }
522 
523 static MachineBasicBlock *
524 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
525                  const WebAssemblySubtarget *Subtarget,
526                  const TargetInstrInfo &TII) {
527   MachineInstr &CallParams = *CallResults.getPrevNode();
528   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
529   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
530          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
531 
532   bool IsIndirect = CallParams.getOperand(0).isReg();
533   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
534 
535   bool IsFuncrefCall = false;
536   if (IsIndirect) {
537     Register Reg = CallParams.getOperand(0).getReg();
538     const MachineFunction *MF = BB->getParent();
539     const MachineRegisterInfo &MRI = MF->getRegInfo();
540     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
541     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
542     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
543   }
544 
545   unsigned CallOp;
546   if (IsIndirect && IsRetCall) {
547     CallOp = WebAssembly::RET_CALL_INDIRECT;
548   } else if (IsIndirect) {
549     CallOp = WebAssembly::CALL_INDIRECT;
550   } else if (IsRetCall) {
551     CallOp = WebAssembly::RET_CALL;
552   } else {
553     CallOp = WebAssembly::CALL;
554   }
555 
556   MachineFunction &MF = *BB->getParent();
557   const MCInstrDesc &MCID = TII.get(CallOp);
558   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
559 
560   // See if we must truncate the function pointer.
561   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
562   // as 64-bit for uniformity with other pointer types.
563   // See also: WebAssemblyFastISel::selectCall
564   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
565     Register Reg32 =
566         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
567     auto &FnPtr = CallParams.getOperand(0);
568     BuildMI(*BB, CallResults.getIterator(), DL,
569             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
570         .addReg(FnPtr.getReg());
571     FnPtr.setReg(Reg32);
572   }
573 
574   // Move the function pointer to the end of the arguments for indirect calls
575   if (IsIndirect) {
576     auto FnPtr = CallParams.getOperand(0);
577     CallParams.removeOperand(0);
578 
579     // For funcrefs, call_indirect is done through __funcref_call_table and the
580     // funcref is always installed in slot 0 of the table, therefore instead of having
581     // the function pointer added at the end of the params list, a zero (the index in
582     // __funcref_call_table is added).
583     if (IsFuncrefCall) {
584       Register RegZero =
585           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
586       MachineInstrBuilder MIBC0 =
587           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
588 
589       BB->insert(CallResults.getIterator(), MIBC0);
590       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
591     } else
592       CallParams.addOperand(FnPtr);
593   }
594 
595   for (auto Def : CallResults.defs())
596     MIB.add(Def);
597 
598   if (IsIndirect) {
599     // Placeholder for the type index.
600     MIB.addImm(0);
601     // The table into which this call_indirect indexes.
602     MCSymbolWasm *Table = IsFuncrefCall
603                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
604                                     MF.getContext(), Subtarget)
605                               : WebAssembly::getOrCreateFunctionTableSymbol(
606                                     MF.getContext(), Subtarget);
607     if (Subtarget->hasReferenceTypes()) {
608       MIB.addSym(Table);
609     } else {
610       // For the MVP there is at most one table whose number is 0, but we can't
611       // write a table symbol or issue relocations.  Instead we just ensure the
612       // table is live and write a zero.
613       Table->setNoStrip();
614       MIB.addImm(0);
615     }
616   }
617 
618   for (auto Use : CallParams.uses())
619     MIB.add(Use);
620 
621   BB->insert(CallResults.getIterator(), MIB);
622   CallParams.eraseFromParent();
623   CallResults.eraseFromParent();
624 
625   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
626   // table slot with ref.null upon call_indirect return.
627   //
628   // This generates the following code, which comes right after a call_indirect
629   // of a funcref:
630   //
631   //    i32.const 0
632   //    ref.null func
633   //    table.set __funcref_call_table
634   if (IsIndirect && IsFuncrefCall) {
635     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
636         MF.getContext(), Subtarget);
637     Register RegZero =
638         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
639     MachineInstr *Const0 =
640         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
641     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
642 
643     Register RegFuncref =
644         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
645     MachineInstr *RefNull =
646         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
647     BB->insertAfter(Const0->getIterator(), RefNull);
648 
649     MachineInstr *TableSet =
650         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
651             .addSym(Table)
652             .addReg(RegZero)
653             .addReg(RegFuncref);
654     BB->insertAfter(RefNull->getIterator(), TableSet);
655   }
656 
657   return BB;
658 }
659 
660 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
661     MachineInstr &MI, MachineBasicBlock *BB) const {
662   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
663   DebugLoc DL = MI.getDebugLoc();
664 
665   switch (MI.getOpcode()) {
666   default:
667     llvm_unreachable("Unexpected instr type to insert");
668   case WebAssembly::FP_TO_SINT_I32_F32:
669     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
670                         WebAssembly::I32_TRUNC_S_F32);
671   case WebAssembly::FP_TO_UINT_I32_F32:
672     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
673                         WebAssembly::I32_TRUNC_U_F32);
674   case WebAssembly::FP_TO_SINT_I64_F32:
675     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
676                         WebAssembly::I64_TRUNC_S_F32);
677   case WebAssembly::FP_TO_UINT_I64_F32:
678     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
679                         WebAssembly::I64_TRUNC_U_F32);
680   case WebAssembly::FP_TO_SINT_I32_F64:
681     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
682                         WebAssembly::I32_TRUNC_S_F64);
683   case WebAssembly::FP_TO_UINT_I32_F64:
684     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
685                         WebAssembly::I32_TRUNC_U_F64);
686   case WebAssembly::FP_TO_SINT_I64_F64:
687     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
688                         WebAssembly::I64_TRUNC_S_F64);
689   case WebAssembly::FP_TO_UINT_I64_F64:
690     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
691                         WebAssembly::I64_TRUNC_U_F64);
692   case WebAssembly::CALL_RESULTS:
693   case WebAssembly::RET_CALL_RESULTS:
694     return LowerCallResults(MI, DL, BB, Subtarget, TII);
695   }
696 }
697 
698 const char *
699 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
700   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
701   case WebAssemblyISD::FIRST_NUMBER:
702   case WebAssemblyISD::FIRST_MEM_OPCODE:
703     break;
704 #define HANDLE_NODETYPE(NODE)                                                  \
705   case WebAssemblyISD::NODE:                                                   \
706     return "WebAssemblyISD::" #NODE;
707 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
708 #include "WebAssemblyISD.def"
709 #undef HANDLE_MEM_NODETYPE
710 #undef HANDLE_NODETYPE
711   }
712   return nullptr;
713 }
714 
715 std::pair<unsigned, const TargetRegisterClass *>
716 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
717     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
718   // First, see if this is a constraint that directly corresponds to a
719   // WebAssembly register class.
720   if (Constraint.size() == 1) {
721     switch (Constraint[0]) {
722     case 'r':
723       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
724       if (Subtarget->hasSIMD128() && VT.isVector()) {
725         if (VT.getSizeInBits() == 128)
726           return std::make_pair(0U, &WebAssembly::V128RegClass);
727       }
728       if (VT.isInteger() && !VT.isVector()) {
729         if (VT.getSizeInBits() <= 32)
730           return std::make_pair(0U, &WebAssembly::I32RegClass);
731         if (VT.getSizeInBits() <= 64)
732           return std::make_pair(0U, &WebAssembly::I64RegClass);
733       }
734       if (VT.isFloatingPoint() && !VT.isVector()) {
735         switch (VT.getSizeInBits()) {
736         case 32:
737           return std::make_pair(0U, &WebAssembly::F32RegClass);
738         case 64:
739           return std::make_pair(0U, &WebAssembly::F64RegClass);
740         default:
741           break;
742         }
743       }
744       break;
745     default:
746       break;
747     }
748   }
749 
750   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
751 }
752 
753 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
754   // Assume ctz is a relatively cheap operation.
755   return true;
756 }
757 
758 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
759   // Assume clz is a relatively cheap operation.
760   return true;
761 }
762 
763 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
764                                                       const AddrMode &AM,
765                                                       Type *Ty, unsigned AS,
766                                                       Instruction *I) const {
767   // WebAssembly offsets are added as unsigned without wrapping. The
768   // isLegalAddressingMode gives us no way to determine if wrapping could be
769   // happening, so we approximate this by accepting only non-negative offsets.
770   if (AM.BaseOffs < 0)
771     return false;
772 
773   // WebAssembly has no scale register operands.
774   if (AM.Scale != 0)
775     return false;
776 
777   // Everything else is legal.
778   return true;
779 }
780 
781 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
782     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
783     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
784   // WebAssembly supports unaligned accesses, though it should be declared
785   // with the p2align attribute on loads and stores which do so, and there
786   // may be a performance impact. We tell LLVM they're "fast" because
787   // for the kinds of things that LLVM uses this for (merging adjacent stores
788   // of constants, etc.), WebAssembly implementations will either want the
789   // unaligned access or they'll split anyway.
790   if (Fast)
791     *Fast = true;
792   return true;
793 }
794 
795 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
796                                               AttributeList Attr) const {
797   // The current thinking is that wasm engines will perform this optimization,
798   // so we can save on code size.
799   return true;
800 }
801 
802 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
803   EVT ExtT = ExtVal.getValueType();
804   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
805   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
806          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
807          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
808 }
809 
810 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
811     const GlobalAddressSDNode *GA) const {
812   // Wasm doesn't support function addresses with offsets
813   const GlobalValue *GV = GA->getGlobal();
814   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
815 }
816 
817 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
818                                                   LLVMContext &C,
819                                                   EVT VT) const {
820   if (VT.isVector())
821     return VT.changeVectorElementTypeToInteger();
822 
823   // So far, all branch instructions in Wasm take an I32 condition.
824   // The default TargetLowering::getSetCCResultType returns the pointer size,
825   // which would be useful to reduce instruction counts when testing
826   // against 64-bit pointers/values if at some point Wasm supports that.
827   return EVT::getIntegerVT(C, 32);
828 }
829 
830 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
831                                                    const CallInst &I,
832                                                    MachineFunction &MF,
833                                                    unsigned Intrinsic) const {
834   switch (Intrinsic) {
835   case Intrinsic::wasm_memory_atomic_notify:
836     Info.opc = ISD::INTRINSIC_W_CHAIN;
837     Info.memVT = MVT::i32;
838     Info.ptrVal = I.getArgOperand(0);
839     Info.offset = 0;
840     Info.align = Align(4);
841     // atomic.notify instruction does not really load the memory specified with
842     // this argument, but MachineMemOperand should either be load or store, so
843     // we set this to a load.
844     // FIXME Volatile isn't really correct, but currently all LLVM atomic
845     // instructions are treated as volatiles in the backend, so we should be
846     // consistent. The same applies for wasm_atomic_wait intrinsics too.
847     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
848     return true;
849   case Intrinsic::wasm_memory_atomic_wait32:
850     Info.opc = ISD::INTRINSIC_W_CHAIN;
851     Info.memVT = MVT::i32;
852     Info.ptrVal = I.getArgOperand(0);
853     Info.offset = 0;
854     Info.align = Align(4);
855     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
856     return true;
857   case Intrinsic::wasm_memory_atomic_wait64:
858     Info.opc = ISD::INTRINSIC_W_CHAIN;
859     Info.memVT = MVT::i64;
860     Info.ptrVal = I.getArgOperand(0);
861     Info.offset = 0;
862     Info.align = Align(8);
863     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
864     return true;
865   default:
866     return false;
867   }
868 }
869 
870 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
871     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
872     const SelectionDAG &DAG, unsigned Depth) const {
873   switch (Op.getOpcode()) {
874   default:
875     break;
876   case ISD::INTRINSIC_WO_CHAIN: {
877     unsigned IntNo = Op.getConstantOperandVal(0);
878     switch (IntNo) {
879     default:
880       break;
881     case Intrinsic::wasm_bitmask: {
882       unsigned BitWidth = Known.getBitWidth();
883       EVT VT = Op.getOperand(1).getSimpleValueType();
884       unsigned PossibleBits = VT.getVectorNumElements();
885       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
886       Known.Zero |= ZeroMask;
887       break;
888     }
889     }
890   }
891   }
892 }
893 
894 TargetLoweringBase::LegalizeTypeAction
895 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
896   if (VT.isFixedLengthVector()) {
897     MVT EltVT = VT.getVectorElementType();
898     // We have legal vector types with these lane types, so widening the
899     // vector would let us use some of the lanes directly without having to
900     // extend or truncate values.
901     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
902         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
903       return TypeWidenVector;
904   }
905 
906   return TargetLoweringBase::getPreferredVectorAction(VT);
907 }
908 
909 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
910     SDValue Op, const TargetLoweringOpt &TLO) const {
911   // ISel process runs DAGCombiner after legalization; this step is called
912   // SelectionDAG optimization phase. This post-legalization combining process
913   // runs DAGCombiner on each node, and if there was a change to be made,
914   // re-runs legalization again on it and its user nodes to make sure
915   // everythiing is in a legalized state.
916   //
917   // The legalization calls lowering routines, and we do our custom lowering for
918   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
919   // into zeros. But there is a set of routines in DAGCombiner that turns unused
920   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
921   // turns unused vector elements into undefs. But this routine does not work
922   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
923   // combination can result in a infinite loop, in which undefs are converted to
924   // zeros in legalization and back to undefs in combining.
925   //
926   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
927   // running for build_vectors.
928   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
929     return false;
930   return true;
931 }
932 
933 //===----------------------------------------------------------------------===//
934 // WebAssembly Lowering private implementation.
935 //===----------------------------------------------------------------------===//
936 
937 //===----------------------------------------------------------------------===//
938 // Lowering Code
939 //===----------------------------------------------------------------------===//
940 
941 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
942   MachineFunction &MF = DAG.getMachineFunction();
943   DAG.getContext()->diagnose(
944       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
945 }
946 
947 // Test whether the given calling convention is supported.
948 static bool callingConvSupported(CallingConv::ID CallConv) {
949   // We currently support the language-independent target-independent
950   // conventions. We don't yet have a way to annotate calls with properties like
951   // "cold", and we don't have any call-clobbered registers, so these are mostly
952   // all handled the same.
953   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
954          CallConv == CallingConv::Cold ||
955          CallConv == CallingConv::PreserveMost ||
956          CallConv == CallingConv::PreserveAll ||
957          CallConv == CallingConv::CXX_FAST_TLS ||
958          CallConv == CallingConv::WASM_EmscriptenInvoke ||
959          CallConv == CallingConv::Swift;
960 }
961 
962 SDValue
963 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
964                                      SmallVectorImpl<SDValue> &InVals) const {
965   SelectionDAG &DAG = CLI.DAG;
966   SDLoc DL = CLI.DL;
967   SDValue Chain = CLI.Chain;
968   SDValue Callee = CLI.Callee;
969   MachineFunction &MF = DAG.getMachineFunction();
970   auto Layout = MF.getDataLayout();
971 
972   CallingConv::ID CallConv = CLI.CallConv;
973   if (!callingConvSupported(CallConv))
974     fail(DL, DAG,
975          "WebAssembly doesn't support language-specific or target-specific "
976          "calling conventions yet");
977   if (CLI.IsPatchPoint)
978     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
979 
980   if (CLI.IsTailCall) {
981     auto NoTail = [&](const char *Msg) {
982       if (CLI.CB && CLI.CB->isMustTailCall())
983         fail(DL, DAG, Msg);
984       CLI.IsTailCall = false;
985     };
986 
987     if (!Subtarget->hasTailCall())
988       NoTail("WebAssembly 'tail-call' feature not enabled");
989 
990     // Varargs calls cannot be tail calls because the buffer is on the stack
991     if (CLI.IsVarArg)
992       NoTail("WebAssembly does not support varargs tail calls");
993 
994     // Do not tail call unless caller and callee return types match
995     const Function &F = MF.getFunction();
996     const TargetMachine &TM = getTargetMachine();
997     Type *RetTy = F.getReturnType();
998     SmallVector<MVT, 4> CallerRetTys;
999     SmallVector<MVT, 4> CalleeRetTys;
1000     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1001     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1002     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1003                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1004                                  CalleeRetTys.begin());
1005     if (!TypesMatch)
1006       NoTail("WebAssembly tail call requires caller and callee return types to "
1007              "match");
1008 
1009     // If pointers to local stack values are passed, we cannot tail call
1010     if (CLI.CB) {
1011       for (auto &Arg : CLI.CB->args()) {
1012         Value *Val = Arg.get();
1013         // Trace the value back through pointer operations
1014         while (true) {
1015           Value *Src = Val->stripPointerCastsAndAliases();
1016           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1017             Src = GEP->getPointerOperand();
1018           if (Val == Src)
1019             break;
1020           Val = Src;
1021         }
1022         if (isa<AllocaInst>(Val)) {
1023           NoTail(
1024               "WebAssembly does not support tail calling with stack arguments");
1025           break;
1026         }
1027       }
1028     }
1029   }
1030 
1031   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1032   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1033   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1034 
1035   // The generic code may have added an sret argument. If we're lowering an
1036   // invoke function, the ABI requires that the function pointer be the first
1037   // argument, so we may have to swap the arguments.
1038   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1039       Outs[0].Flags.isSRet()) {
1040     std::swap(Outs[0], Outs[1]);
1041     std::swap(OutVals[0], OutVals[1]);
1042   }
1043 
1044   bool HasSwiftSelfArg = false;
1045   bool HasSwiftErrorArg = false;
1046   unsigned NumFixedArgs = 0;
1047   for (unsigned I = 0; I < Outs.size(); ++I) {
1048     const ISD::OutputArg &Out = Outs[I];
1049     SDValue &OutVal = OutVals[I];
1050     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1051     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1052     if (Out.Flags.isNest())
1053       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1054     if (Out.Flags.isInAlloca())
1055       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1056     if (Out.Flags.isInConsecutiveRegs())
1057       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1058     if (Out.Flags.isInConsecutiveRegsLast())
1059       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1060     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1061       auto &MFI = MF.getFrameInfo();
1062       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1063                                      Out.Flags.getNonZeroByValAlign(),
1064                                      /*isSS=*/false);
1065       SDValue SizeNode =
1066           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1067       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1068       Chain = DAG.getMemcpy(
1069           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1070           /*isVolatile*/ false, /*AlwaysInline=*/false,
1071           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1072       OutVal = FINode;
1073     }
1074     // Count the number of fixed args *after* legalization.
1075     NumFixedArgs += Out.IsFixed;
1076   }
1077 
1078   bool IsVarArg = CLI.IsVarArg;
1079   auto PtrVT = getPointerTy(Layout);
1080 
1081   // For swiftcc, emit additional swiftself and swifterror arguments
1082   // if there aren't. These additional arguments are also added for callee
1083   // signature They are necessary to match callee and caller signature for
1084   // indirect call.
1085   if (CallConv == CallingConv::Swift) {
1086     if (!HasSwiftSelfArg) {
1087       NumFixedArgs++;
1088       ISD::OutputArg Arg;
1089       Arg.Flags.setSwiftSelf();
1090       CLI.Outs.push_back(Arg);
1091       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1092       CLI.OutVals.push_back(ArgVal);
1093     }
1094     if (!HasSwiftErrorArg) {
1095       NumFixedArgs++;
1096       ISD::OutputArg Arg;
1097       Arg.Flags.setSwiftError();
1098       CLI.Outs.push_back(Arg);
1099       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1100       CLI.OutVals.push_back(ArgVal);
1101     }
1102   }
1103 
1104   // Analyze operands of the call, assigning locations to each operand.
1105   SmallVector<CCValAssign, 16> ArgLocs;
1106   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1107 
1108   if (IsVarArg) {
1109     // Outgoing non-fixed arguments are placed in a buffer. First
1110     // compute their offsets and the total amount of buffer space needed.
1111     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1112       const ISD::OutputArg &Out = Outs[I];
1113       SDValue &Arg = OutVals[I];
1114       EVT VT = Arg.getValueType();
1115       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1116       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1117       Align Alignment =
1118           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1119       unsigned Offset =
1120           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1121       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1122                                         Offset, VT.getSimpleVT(),
1123                                         CCValAssign::Full));
1124     }
1125   }
1126 
1127   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1128 
1129   SDValue FINode;
1130   if (IsVarArg && NumBytes) {
1131     // For non-fixed arguments, next emit stores to store the argument values
1132     // to the stack buffer at the offsets computed above.
1133     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1134                                                  Layout.getStackAlignment(),
1135                                                  /*isSS=*/false);
1136     unsigned ValNo = 0;
1137     SmallVector<SDValue, 8> Chains;
1138     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1139       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1140              "ArgLocs should remain in order and only hold varargs args");
1141       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1142       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1143       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1144                                 DAG.getConstant(Offset, DL, PtrVT));
1145       Chains.push_back(
1146           DAG.getStore(Chain, DL, Arg, Add,
1147                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1148     }
1149     if (!Chains.empty())
1150       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1151   } else if (IsVarArg) {
1152     FINode = DAG.getIntPtrConstant(0, DL);
1153   }
1154 
1155   if (Callee->getOpcode() == ISD::GlobalAddress) {
1156     // If the callee is a GlobalAddress node (quite common, every direct call
1157     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1158     // doesn't at MO_GOT which is not needed for direct calls.
1159     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1160     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1161                                         getPointerTy(DAG.getDataLayout()),
1162                                         GA->getOffset());
1163     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1164                          getPointerTy(DAG.getDataLayout()), Callee);
1165   }
1166 
1167   // Compute the operands for the CALLn node.
1168   SmallVector<SDValue, 16> Ops;
1169   Ops.push_back(Chain);
1170   Ops.push_back(Callee);
1171 
1172   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1173   // isn't reliable.
1174   Ops.append(OutVals.begin(),
1175              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1176   // Add a pointer to the vararg buffer.
1177   if (IsVarArg)
1178     Ops.push_back(FINode);
1179 
1180   SmallVector<EVT, 8> InTys;
1181   for (const auto &In : Ins) {
1182     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1183     assert(!In.Flags.isNest() && "nest is not valid for return values");
1184     if (In.Flags.isInAlloca())
1185       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1186     if (In.Flags.isInConsecutiveRegs())
1187       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1188     if (In.Flags.isInConsecutiveRegsLast())
1189       fail(DL, DAG,
1190            "WebAssembly hasn't implemented cons regs last return values");
1191     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1192     // registers.
1193     InTys.push_back(In.VT);
1194   }
1195 
1196   // Lastly, if this is a call to a funcref we need to add an instruction
1197   // table.set to the chain and transform the call.
1198   if (CLI.CB &&
1199       WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1200     // In the absence of function references proposal where a funcref call is
1201     // lowered to call_ref, using reference types we generate a table.set to set
1202     // the funcref to a special table used solely for this purpose, followed by
1203     // a call_indirect. Here we just generate the table set, and return the
1204     // SDValue of the table.set so that LowerCall can finalize the lowering by
1205     // generating the call_indirect.
1206     SDValue Chain = Ops[0];
1207 
1208     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1209         MF.getContext(), Subtarget);
1210     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1211     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1212     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1213     SDValue TableSet = DAG.getMemIntrinsicNode(
1214         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1215         MVT::funcref,
1216         // Machine Mem Operand args
1217         MachinePointerInfo(
1218             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1219         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1220         MachineMemOperand::MOStore);
1221 
1222     Ops[0] = TableSet; // The new chain is the TableSet itself
1223   }
1224 
1225   if (CLI.IsTailCall) {
1226     // ret_calls do not return values to the current frame
1227     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1228     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1229   }
1230 
1231   InTys.push_back(MVT::Other);
1232   SDVTList InTyList = DAG.getVTList(InTys);
1233   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1234 
1235   for (size_t I = 0; I < Ins.size(); ++I)
1236     InVals.push_back(Res.getValue(I));
1237 
1238   // Return the chain
1239   return Res.getValue(Ins.size());
1240 }
1241 
1242 bool WebAssemblyTargetLowering::CanLowerReturn(
1243     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1244     const SmallVectorImpl<ISD::OutputArg> &Outs,
1245     LLVMContext & /*Context*/) const {
1246   // WebAssembly can only handle returning tuples with multivalue enabled
1247   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1248 }
1249 
1250 SDValue WebAssemblyTargetLowering::LowerReturn(
1251     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1252     const SmallVectorImpl<ISD::OutputArg> &Outs,
1253     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1254     SelectionDAG &DAG) const {
1255   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1256          "MVP WebAssembly can only return up to one value");
1257   if (!callingConvSupported(CallConv))
1258     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1259 
1260   SmallVector<SDValue, 4> RetOps(1, Chain);
1261   RetOps.append(OutVals.begin(), OutVals.end());
1262   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1263 
1264   // Record the number and types of the return values.
1265   for (const ISD::OutputArg &Out : Outs) {
1266     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1267     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1268     assert(Out.IsFixed && "non-fixed return value is not valid");
1269     if (Out.Flags.isInAlloca())
1270       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1271     if (Out.Flags.isInConsecutiveRegs())
1272       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1273     if (Out.Flags.isInConsecutiveRegsLast())
1274       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1275   }
1276 
1277   return Chain;
1278 }
1279 
1280 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1281     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1282     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1283     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1284   if (!callingConvSupported(CallConv))
1285     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1286 
1287   MachineFunction &MF = DAG.getMachineFunction();
1288   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1289 
1290   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1291   // of the incoming values before they're represented by virtual registers.
1292   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1293 
1294   bool HasSwiftErrorArg = false;
1295   bool HasSwiftSelfArg = false;
1296   for (const ISD::InputArg &In : Ins) {
1297     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1298     HasSwiftErrorArg |= In.Flags.isSwiftError();
1299     if (In.Flags.isInAlloca())
1300       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1301     if (In.Flags.isNest())
1302       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1303     if (In.Flags.isInConsecutiveRegs())
1304       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1305     if (In.Flags.isInConsecutiveRegsLast())
1306       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1307     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1308     // registers.
1309     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1310                                            DAG.getTargetConstant(InVals.size(),
1311                                                                  DL, MVT::i32))
1312                              : DAG.getUNDEF(In.VT));
1313 
1314     // Record the number and types of arguments.
1315     MFI->addParam(In.VT);
1316   }
1317 
1318   // For swiftcc, emit additional swiftself and swifterror arguments
1319   // if there aren't. These additional arguments are also added for callee
1320   // signature They are necessary to match callee and caller signature for
1321   // indirect call.
1322   auto PtrVT = getPointerTy(MF.getDataLayout());
1323   if (CallConv == CallingConv::Swift) {
1324     if (!HasSwiftSelfArg) {
1325       MFI->addParam(PtrVT);
1326     }
1327     if (!HasSwiftErrorArg) {
1328       MFI->addParam(PtrVT);
1329     }
1330   }
1331   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1332   // the buffer is passed as an argument.
1333   if (IsVarArg) {
1334     MVT PtrVT = getPointerTy(MF.getDataLayout());
1335     Register VarargVreg =
1336         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1337     MFI->setVarargBufferVreg(VarargVreg);
1338     Chain = DAG.getCopyToReg(
1339         Chain, DL, VarargVreg,
1340         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1341                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1342     MFI->addParam(PtrVT);
1343   }
1344 
1345   // Record the number and types of arguments and results.
1346   SmallVector<MVT, 4> Params;
1347   SmallVector<MVT, 4> Results;
1348   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1349                       MF.getFunction(), DAG.getTarget(), Params, Results);
1350   for (MVT VT : Results)
1351     MFI->addResult(VT);
1352   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1353   // the param logic here with ComputeSignatureVTs
1354   assert(MFI->getParams().size() == Params.size() &&
1355          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1356                     Params.begin()));
1357 
1358   return Chain;
1359 }
1360 
1361 void WebAssemblyTargetLowering::ReplaceNodeResults(
1362     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1363   switch (N->getOpcode()) {
1364   case ISD::SIGN_EXTEND_INREG:
1365     // Do not add any results, signifying that N should not be custom lowered
1366     // after all. This happens because simd128 turns on custom lowering for
1367     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1368     // illegal type.
1369     break;
1370   default:
1371     llvm_unreachable(
1372         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1373   }
1374 }
1375 
1376 //===----------------------------------------------------------------------===//
1377 //  Custom lowering hooks.
1378 //===----------------------------------------------------------------------===//
1379 
1380 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1381                                                   SelectionDAG &DAG) const {
1382   SDLoc DL(Op);
1383   switch (Op.getOpcode()) {
1384   default:
1385     llvm_unreachable("unimplemented operation lowering");
1386     return SDValue();
1387   case ISD::FrameIndex:
1388     return LowerFrameIndex(Op, DAG);
1389   case ISD::GlobalAddress:
1390     return LowerGlobalAddress(Op, DAG);
1391   case ISD::GlobalTLSAddress:
1392     return LowerGlobalTLSAddress(Op, DAG);
1393   case ISD::ExternalSymbol:
1394     return LowerExternalSymbol(Op, DAG);
1395   case ISD::JumpTable:
1396     return LowerJumpTable(Op, DAG);
1397   case ISD::BR_JT:
1398     return LowerBR_JT(Op, DAG);
1399   case ISD::VASTART:
1400     return LowerVASTART(Op, DAG);
1401   case ISD::BlockAddress:
1402   case ISD::BRIND:
1403     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1404     return SDValue();
1405   case ISD::RETURNADDR:
1406     return LowerRETURNADDR(Op, DAG);
1407   case ISD::FRAMEADDR:
1408     return LowerFRAMEADDR(Op, DAG);
1409   case ISD::CopyToReg:
1410     return LowerCopyToReg(Op, DAG);
1411   case ISD::EXTRACT_VECTOR_ELT:
1412   case ISD::INSERT_VECTOR_ELT:
1413     return LowerAccessVectorElement(Op, DAG);
1414   case ISD::INTRINSIC_VOID:
1415   case ISD::INTRINSIC_WO_CHAIN:
1416   case ISD::INTRINSIC_W_CHAIN:
1417     return LowerIntrinsic(Op, DAG);
1418   case ISD::SIGN_EXTEND_INREG:
1419     return LowerSIGN_EXTEND_INREG(Op, DAG);
1420   case ISD::BUILD_VECTOR:
1421     return LowerBUILD_VECTOR(Op, DAG);
1422   case ISD::VECTOR_SHUFFLE:
1423     return LowerVECTOR_SHUFFLE(Op, DAG);
1424   case ISD::SETCC:
1425     return LowerSETCC(Op, DAG);
1426   case ISD::SHL:
1427   case ISD::SRA:
1428   case ISD::SRL:
1429     return LowerShift(Op, DAG);
1430   case ISD::FP_TO_SINT_SAT:
1431   case ISD::FP_TO_UINT_SAT:
1432     return LowerFP_TO_INT_SAT(Op, DAG);
1433   case ISD::LOAD:
1434     return LowerLoad(Op, DAG);
1435   case ISD::STORE:
1436     return LowerStore(Op, DAG);
1437   case ISD::CTPOP:
1438   case ISD::CTLZ:
1439   case ISD::CTTZ:
1440     return DAG.UnrollVectorOp(Op.getNode());
1441   }
1442 }
1443 
1444 static bool IsWebAssemblyGlobal(SDValue Op) {
1445   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1446     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1447 
1448   return false;
1449 }
1450 
1451 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1452   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1453   if (!FI)
1454     return None;
1455 
1456   auto &MF = DAG.getMachineFunction();
1457   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1458 }
1459 
1460 static bool IsWebAssemblyTable(SDValue Op) {
1461   const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1462   if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) {
1463     const GlobalValue *Value = GA->getGlobal();
1464     const Type *Ty = Value->getValueType();
1465 
1466     if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType()))
1467       return true;
1468   }
1469   return false;
1470 }
1471 
1472 // This function will accept as Op any access to a table, so Op can
1473 // be the actual table or an offset into the table.
1474 static bool IsWebAssemblyTableWithOffset(SDValue Op) {
1475   if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2)
1476     return (Op->getOperand(1).getSimpleValueType() == MVT::i32 &&
1477             IsWebAssemblyTableWithOffset(Op->getOperand(0))) ||
1478            (Op->getOperand(0).getSimpleValueType() == MVT::i32 &&
1479             IsWebAssemblyTableWithOffset(Op->getOperand(1)));
1480 
1481   return IsWebAssemblyTable(Op);
1482 }
1483 
1484 // Helper for table pattern matching used in LowerStore and LowerLoad
1485 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG,
1486                                                       const SDLoc &DL,
1487                                                       const SDValue &Base,
1488                                                       GlobalAddressSDNode *&GA,
1489                                                       SDValue &Idx) const {
1490   // We expect the following graph for a load of the form:
1491   // table[<var> + <constant offset>]
1492   //
1493   // Case 1:
1494   // externref = load t1
1495   // t1: i32 = add t2, i32:<constant offset>
1496   // t2: i32 = add tX, table
1497   //
1498   // This is in some cases simplified to just:
1499   // Case 2:
1500   // externref = load t1
1501   // t1: i32 = add t2, i32:tX
1502   //
1503   // So, unfortunately we need to check for both cases and if we are in the
1504   // first case extract the table GlobalAddressNode and build a new node tY
1505   // that's tY: i32 = add i32:<constant offset>, i32:tX
1506   //
1507   if (IsWebAssemblyTable(Base)) {
1508     GA = cast<GlobalAddressSDNode>(Base);
1509     Idx = DAG.getConstant(0, DL, MVT::i32);
1510   } else {
1511     GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0));
1512     if (GA) {
1513       // We are in Case 2 above.
1514       Idx = Base->getOperand(1);
1515       assert(GA->getNumValues() == 1);
1516     } else {
1517       // This might be Case 1 above (or an error)
1518       SDValue V = Base->getOperand(0);
1519       GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1));
1520 
1521       if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA)
1522         return false;
1523 
1524       SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1),
1525                                  V->getOperand(0));
1526       Idx = IdxV;
1527     }
1528   }
1529 
1530   return true;
1531 }
1532 
1533 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1534                                               SelectionDAG &DAG) const {
1535   SDLoc DL(Op);
1536   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1537   const SDValue &Value = SN->getValue();
1538   const SDValue &Base = SN->getBasePtr();
1539   const SDValue &Offset = SN->getOffset();
1540 
1541   if (IsWebAssemblyTableWithOffset(Base)) {
1542     if (!Offset->isUndef())
1543       report_fatal_error(
1544           "unexpected offset when loading from webassembly table", false);
1545 
1546     SDValue Idx;
1547     GlobalAddressSDNode *GA;
1548 
1549     if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1550       report_fatal_error("failed pattern matching for lowering table store",
1551                          false);
1552 
1553     SDVTList Tys = DAG.getVTList(MVT::Other);
1554     SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value};
1555     SDValue TableSet =
1556         DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps,
1557                                 SN->getMemoryVT(), SN->getMemOperand());
1558     return TableSet;
1559   }
1560 
1561   if (IsWebAssemblyGlobal(Base)) {
1562     if (!Offset->isUndef())
1563       report_fatal_error("unexpected offset when storing to webassembly global",
1564                          false);
1565 
1566     SDVTList Tys = DAG.getVTList(MVT::Other);
1567     SDValue Ops[] = {SN->getChain(), Value, Base};
1568     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1569                                    SN->getMemoryVT(), SN->getMemOperand());
1570   }
1571 
1572   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1573     if (!Offset->isUndef())
1574       report_fatal_error("unexpected offset when storing to webassembly local",
1575                          false);
1576 
1577     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1578     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1579     SDValue Ops[] = {SN->getChain(), Idx, Value};
1580     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1581   }
1582 
1583   return Op;
1584 }
1585 
1586 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1587                                              SelectionDAG &DAG) const {
1588   SDLoc DL(Op);
1589   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1590   const SDValue &Base = LN->getBasePtr();
1591   const SDValue &Offset = LN->getOffset();
1592 
1593   if (IsWebAssemblyTableWithOffset(Base)) {
1594     if (!Offset->isUndef())
1595       report_fatal_error(
1596           "unexpected offset when loading from webassembly table", false);
1597 
1598     GlobalAddressSDNode *GA;
1599     SDValue Idx;
1600 
1601     if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1602       report_fatal_error("failed pattern matching for lowering table load",
1603                          false);
1604 
1605     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1606     SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx};
1607     SDValue TableGet =
1608         DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps,
1609                                 LN->getMemoryVT(), LN->getMemOperand());
1610     return TableGet;
1611   }
1612 
1613   if (IsWebAssemblyGlobal(Base)) {
1614     if (!Offset->isUndef())
1615       report_fatal_error(
1616           "unexpected offset when loading from webassembly global", false);
1617 
1618     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1619     SDValue Ops[] = {LN->getChain(), Base};
1620     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1621                                    LN->getMemoryVT(), LN->getMemOperand());
1622   }
1623 
1624   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1625     if (!Offset->isUndef())
1626       report_fatal_error(
1627           "unexpected offset when loading from webassembly local", false);
1628 
1629     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1630     EVT LocalVT = LN->getValueType(0);
1631     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1632                                    {LN->getChain(), Idx});
1633     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1634     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1635     return Result;
1636   }
1637 
1638   return Op;
1639 }
1640 
1641 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1642                                                   SelectionDAG &DAG) const {
1643   SDValue Src = Op.getOperand(2);
1644   if (isa<FrameIndexSDNode>(Src.getNode())) {
1645     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1646     // the FI to some LEA-like instruction, but since we don't have that, we
1647     // need to insert some kind of instruction that can take an FI operand and
1648     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1649     // local.copy between Op and its FI operand.
1650     SDValue Chain = Op.getOperand(0);
1651     SDLoc DL(Op);
1652     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1653     EVT VT = Src.getValueType();
1654     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1655                                                    : WebAssembly::COPY_I64,
1656                                     DL, VT, Src),
1657                  0);
1658     return Op.getNode()->getNumValues() == 1
1659                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1660                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1661                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1662                                                            : SDValue());
1663   }
1664   return SDValue();
1665 }
1666 
1667 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1668                                                    SelectionDAG &DAG) const {
1669   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1670   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1671 }
1672 
1673 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1674                                                    SelectionDAG &DAG) const {
1675   SDLoc DL(Op);
1676 
1677   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1678     fail(DL, DAG,
1679          "Non-Emscripten WebAssembly hasn't implemented "
1680          "__builtin_return_address");
1681     return SDValue();
1682   }
1683 
1684   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1685     return SDValue();
1686 
1687   unsigned Depth = Op.getConstantOperandVal(0);
1688   MakeLibCallOptions CallOptions;
1689   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1690                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1691       .first;
1692 }
1693 
1694 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1695                                                   SelectionDAG &DAG) const {
1696   // Non-zero depths are not supported by WebAssembly currently. Use the
1697   // legalizer's default expansion, which is to return 0 (what this function is
1698   // documented to do).
1699   if (Op.getConstantOperandVal(0) > 0)
1700     return SDValue();
1701 
1702   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1703   EVT VT = Op.getValueType();
1704   Register FP =
1705       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1706   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1707 }
1708 
1709 SDValue
1710 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1711                                                  SelectionDAG &DAG) const {
1712   SDLoc DL(Op);
1713   const auto *GA = cast<GlobalAddressSDNode>(Op);
1714 
1715   MachineFunction &MF = DAG.getMachineFunction();
1716   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1717     report_fatal_error("cannot use thread-local storage without bulk memory",
1718                        false);
1719 
1720   const GlobalValue *GV = GA->getGlobal();
1721 
1722   // Currently Emscripten does not support dynamic linking with threads.
1723   // Therefore, if we have thread-local storage, only the local-exec model
1724   // is possible.
1725   // TODO: remove this and implement proper TLS models once Emscripten
1726   // supports dynamic linking with threads.
1727   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1728       !Subtarget->getTargetTriple().isOSEmscripten()) {
1729     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1730                        "non-Emscripten OSes: variable " +
1731                            GV->getName(),
1732                        false);
1733   }
1734 
1735   auto model = GV->getThreadLocalMode();
1736 
1737   // Unsupported TLS modes
1738   assert(model != GlobalValue::NotThreadLocal);
1739   assert(model != GlobalValue::InitialExecTLSModel);
1740 
1741   if (model == GlobalValue::LocalExecTLSModel ||
1742       model == GlobalValue::LocalDynamicTLSModel ||
1743       (model == GlobalValue::GeneralDynamicTLSModel &&
1744        getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1745     // For DSO-local TLS variables we use offset from __tls_base
1746 
1747     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1748     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1749                                        : WebAssembly::GLOBAL_GET_I32;
1750     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1751 
1752     SDValue BaseAddr(
1753         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1754                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1755         0);
1756 
1757     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1758         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1759     SDValue SymOffset =
1760         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1761 
1762     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1763   }
1764 
1765   assert(model == GlobalValue::GeneralDynamicTLSModel);
1766 
1767   EVT VT = Op.getValueType();
1768   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1769                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1770                                                 GA->getOffset(),
1771                                                 WebAssemblyII::MO_GOT_TLS));
1772 }
1773 
1774 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1775                                                       SelectionDAG &DAG) const {
1776   SDLoc DL(Op);
1777   const auto *GA = cast<GlobalAddressSDNode>(Op);
1778   EVT VT = Op.getValueType();
1779   assert(GA->getTargetFlags() == 0 &&
1780          "Unexpected target flags on generic GlobalAddressSDNode");
1781   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1782     fail(DL, DAG, "Invalid address space for WebAssembly target");
1783 
1784   unsigned OperandFlags = 0;
1785   if (isPositionIndependent()) {
1786     const GlobalValue *GV = GA->getGlobal();
1787     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1788       MachineFunction &MF = DAG.getMachineFunction();
1789       MVT PtrVT = getPointerTy(MF.getDataLayout());
1790       const char *BaseName;
1791       if (GV->getValueType()->isFunctionTy()) {
1792         BaseName = MF.createExternalSymbolName("__table_base");
1793         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1794       }
1795       else {
1796         BaseName = MF.createExternalSymbolName("__memory_base");
1797         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1798       }
1799       SDValue BaseAddr =
1800           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1801                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1802 
1803       SDValue SymAddr = DAG.getNode(
1804           WebAssemblyISD::WrapperREL, DL, VT,
1805           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1806                                      OperandFlags));
1807 
1808       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1809     }
1810     OperandFlags = WebAssemblyII::MO_GOT;
1811   }
1812 
1813   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1814                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1815                                                 GA->getOffset(), OperandFlags));
1816 }
1817 
1818 SDValue
1819 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1820                                                SelectionDAG &DAG) const {
1821   SDLoc DL(Op);
1822   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1823   EVT VT = Op.getValueType();
1824   assert(ES->getTargetFlags() == 0 &&
1825          "Unexpected target flags on generic ExternalSymbolSDNode");
1826   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1827                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1828 }
1829 
1830 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1831                                                   SelectionDAG &DAG) const {
1832   // There's no need for a Wrapper node because we always incorporate a jump
1833   // table operand into a BR_TABLE instruction, rather than ever
1834   // materializing it in a register.
1835   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1836   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1837                                 JT->getTargetFlags());
1838 }
1839 
1840 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1841                                               SelectionDAG &DAG) const {
1842   SDLoc DL(Op);
1843   SDValue Chain = Op.getOperand(0);
1844   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1845   SDValue Index = Op.getOperand(2);
1846   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1847 
1848   SmallVector<SDValue, 8> Ops;
1849   Ops.push_back(Chain);
1850   Ops.push_back(Index);
1851 
1852   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1853   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1854 
1855   // Add an operand for each case.
1856   for (auto MBB : MBBs)
1857     Ops.push_back(DAG.getBasicBlock(MBB));
1858 
1859   // Add the first MBB as a dummy default target for now. This will be replaced
1860   // with the proper default target (and the preceding range check eliminated)
1861   // if possible by WebAssemblyFixBrTableDefaults.
1862   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1863   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1864 }
1865 
1866 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1867                                                 SelectionDAG &DAG) const {
1868   SDLoc DL(Op);
1869   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1870 
1871   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1872   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1873 
1874   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1875                                     MFI->getVarargBufferVreg(), PtrVT);
1876   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1877                       MachinePointerInfo(SV));
1878 }
1879 
1880 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1881                                                   SelectionDAG &DAG) const {
1882   MachineFunction &MF = DAG.getMachineFunction();
1883   unsigned IntNo;
1884   switch (Op.getOpcode()) {
1885   case ISD::INTRINSIC_VOID:
1886   case ISD::INTRINSIC_W_CHAIN:
1887     IntNo = Op.getConstantOperandVal(1);
1888     break;
1889   case ISD::INTRINSIC_WO_CHAIN:
1890     IntNo = Op.getConstantOperandVal(0);
1891     break;
1892   default:
1893     llvm_unreachable("Invalid intrinsic");
1894   }
1895   SDLoc DL(Op);
1896 
1897   switch (IntNo) {
1898   default:
1899     return SDValue(); // Don't custom lower most intrinsics.
1900 
1901   case Intrinsic::wasm_lsda: {
1902     auto PtrVT = getPointerTy(MF.getDataLayout());
1903     const char *SymName = MF.createExternalSymbolName(
1904         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1905     if (isPositionIndependent()) {
1906       SDValue Node = DAG.getTargetExternalSymbol(
1907           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1908       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1909       SDValue BaseAddr =
1910           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1911                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1912       SDValue SymAddr =
1913           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1914       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1915     }
1916     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1917     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1918   }
1919 
1920   case Intrinsic::wasm_shuffle: {
1921     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1922     SDValue Ops[18];
1923     size_t OpIdx = 0;
1924     Ops[OpIdx++] = Op.getOperand(1);
1925     Ops[OpIdx++] = Op.getOperand(2);
1926     while (OpIdx < 18) {
1927       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1928       if (MaskIdx.isUndef() ||
1929           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1930         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1931       } else {
1932         Ops[OpIdx++] = MaskIdx;
1933       }
1934     }
1935     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1936   }
1937   }
1938 }
1939 
1940 SDValue
1941 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1942                                                   SelectionDAG &DAG) const {
1943   SDLoc DL(Op);
1944   // If sign extension operations are disabled, allow sext_inreg only if operand
1945   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1946   // extension operations, but allowing sext_inreg in this context lets us have
1947   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1948   // everywhere would be simpler in this file, but would necessitate large and
1949   // brittle patterns to undo the expansion and select extract_lane_s
1950   // instructions.
1951   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1952   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1953     return SDValue();
1954 
1955   const SDValue &Extract = Op.getOperand(0);
1956   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1957   if (VecT.getVectorElementType().getSizeInBits() > 32)
1958     return SDValue();
1959   MVT ExtractedLaneT =
1960       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1961   MVT ExtractedVecT =
1962       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1963   if (ExtractedVecT == VecT)
1964     return Op;
1965 
1966   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1967   const SDNode *Index = Extract.getOperand(1).getNode();
1968   if (!isa<ConstantSDNode>(Index))
1969     return SDValue();
1970   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1971   unsigned Scale =
1972       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1973   assert(Scale > 1);
1974   SDValue NewIndex =
1975       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1976   SDValue NewExtract = DAG.getNode(
1977       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1978       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1979   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1980                      Op.getOperand(1));
1981 }
1982 
1983 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1984   SDLoc DL(Op);
1985   if (Op.getValueType() != MVT::v2f64)
1986     return SDValue();
1987 
1988   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1989                              unsigned &Index) -> bool {
1990     switch (Op.getOpcode()) {
1991     case ISD::SINT_TO_FP:
1992       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1993       break;
1994     case ISD::UINT_TO_FP:
1995       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1996       break;
1997     case ISD::FP_EXTEND:
1998       Opcode = WebAssemblyISD::PROMOTE_LOW;
1999       break;
2000     default:
2001       return false;
2002     }
2003 
2004     auto ExtractVector = Op.getOperand(0);
2005     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2006       return false;
2007 
2008     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2009       return false;
2010 
2011     SrcVec = ExtractVector.getOperand(0);
2012     Index = ExtractVector.getConstantOperandVal(1);
2013     return true;
2014   };
2015 
2016   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2017   SDValue LHSSrcVec, RHSSrcVec;
2018   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2019       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2020     return SDValue();
2021 
2022   if (LHSOpcode != RHSOpcode)
2023     return SDValue();
2024 
2025   MVT ExpectedSrcVT;
2026   switch (LHSOpcode) {
2027   case WebAssemblyISD::CONVERT_LOW_S:
2028   case WebAssemblyISD::CONVERT_LOW_U:
2029     ExpectedSrcVT = MVT::v4i32;
2030     break;
2031   case WebAssemblyISD::PROMOTE_LOW:
2032     ExpectedSrcVT = MVT::v4f32;
2033     break;
2034   }
2035   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2036     return SDValue();
2037 
2038   auto Src = LHSSrcVec;
2039   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2040     // Shuffle the source vector so that the converted lanes are the low lanes.
2041     Src = DAG.getVectorShuffle(
2042         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2043         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2044   }
2045   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2046 }
2047 
2048 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2049                                                      SelectionDAG &DAG) const {
2050   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2051     return ConvertLow;
2052 
2053   SDLoc DL(Op);
2054   const EVT VecT = Op.getValueType();
2055   const EVT LaneT = Op.getOperand(0).getValueType();
2056   const size_t Lanes = Op.getNumOperands();
2057   bool CanSwizzle = VecT == MVT::v16i8;
2058 
2059   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2060   // possible number of lanes at once followed by a sequence of replace_lane
2061   // instructions to individually initialize any remaining lanes.
2062 
2063   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2064   // swizzled lanes should be given greater weight.
2065 
2066   // TODO: Investigate looping rather than always extracting/replacing specific
2067   // lanes to fill gaps.
2068 
2069   auto IsConstant = [](const SDValue &V) {
2070     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2071   };
2072 
2073   // Returns the source vector and index vector pair if they exist. Checks for:
2074   //   (extract_vector_elt
2075   //     $src,
2076   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2077   //   )
2078   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2079     auto Bail = std::make_pair(SDValue(), SDValue());
2080     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2081       return Bail;
2082     const SDValue &SwizzleSrc = Lane->getOperand(0);
2083     const SDValue &IndexExt = Lane->getOperand(1);
2084     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2085       return Bail;
2086     const SDValue &Index = IndexExt->getOperand(0);
2087     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2088       return Bail;
2089     const SDValue &SwizzleIndices = Index->getOperand(0);
2090     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2091         SwizzleIndices.getValueType() != MVT::v16i8 ||
2092         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2093         Index->getConstantOperandVal(1) != I)
2094       return Bail;
2095     return std::make_pair(SwizzleSrc, SwizzleIndices);
2096   };
2097 
2098   // If the lane is extracted from another vector at a constant index, return
2099   // that vector. The source vector must not have more lanes than the dest
2100   // because the shufflevector indices are in terms of the destination lanes and
2101   // would not be able to address the smaller individual source lanes.
2102   auto GetShuffleSrc = [&](const SDValue &Lane) {
2103     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2104       return SDValue();
2105     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2106       return SDValue();
2107     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2108         VecT.getVectorNumElements())
2109       return SDValue();
2110     return Lane->getOperand(0);
2111   };
2112 
2113   using ValueEntry = std::pair<SDValue, size_t>;
2114   SmallVector<ValueEntry, 16> SplatValueCounts;
2115 
2116   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2117   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2118 
2119   using ShuffleEntry = std::pair<SDValue, size_t>;
2120   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2121 
2122   auto AddCount = [](auto &Counts, const auto &Val) {
2123     auto CountIt =
2124         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2125     if (CountIt == Counts.end()) {
2126       Counts.emplace_back(Val, 1);
2127     } else {
2128       CountIt->second++;
2129     }
2130   };
2131 
2132   auto GetMostCommon = [](auto &Counts) {
2133     auto CommonIt =
2134         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2135     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2136     return *CommonIt;
2137   };
2138 
2139   size_t NumConstantLanes = 0;
2140 
2141   // Count eligible lanes for each type of vector creation op
2142   for (size_t I = 0; I < Lanes; ++I) {
2143     const SDValue &Lane = Op->getOperand(I);
2144     if (Lane.isUndef())
2145       continue;
2146 
2147     AddCount(SplatValueCounts, Lane);
2148 
2149     if (IsConstant(Lane))
2150       NumConstantLanes++;
2151     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2152       AddCount(ShuffleCounts, ShuffleSrc);
2153     if (CanSwizzle) {
2154       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2155       if (SwizzleSrcs.first)
2156         AddCount(SwizzleCounts, SwizzleSrcs);
2157     }
2158   }
2159 
2160   SDValue SplatValue;
2161   size_t NumSplatLanes;
2162   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2163 
2164   SDValue SwizzleSrc;
2165   SDValue SwizzleIndices;
2166   size_t NumSwizzleLanes = 0;
2167   if (SwizzleCounts.size())
2168     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2169                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2170 
2171   // Shuffles can draw from up to two vectors, so find the two most common
2172   // sources.
2173   SDValue ShuffleSrc1, ShuffleSrc2;
2174   size_t NumShuffleLanes = 0;
2175   if (ShuffleCounts.size()) {
2176     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2177     llvm::erase_if(ShuffleCounts,
2178                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2179   }
2180   if (ShuffleCounts.size()) {
2181     size_t AdditionalShuffleLanes;
2182     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2183         GetMostCommon(ShuffleCounts);
2184     NumShuffleLanes += AdditionalShuffleLanes;
2185   }
2186 
2187   // Predicate returning true if the lane is properly initialized by the
2188   // original instruction
2189   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2190   SDValue Result;
2191   // Prefer swizzles over shuffles over vector consts over splats
2192   if (NumSwizzleLanes >= NumShuffleLanes &&
2193       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2194     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2195                          SwizzleIndices);
2196     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2197     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2198       return Swizzled == GetSwizzleSrcs(I, Lane);
2199     };
2200   } else if (NumShuffleLanes >= NumConstantLanes &&
2201              NumShuffleLanes >= NumSplatLanes) {
2202     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2203     size_t DestLaneCount = VecT.getVectorNumElements();
2204     size_t Scale1 = 1;
2205     size_t Scale2 = 1;
2206     SDValue Src1 = ShuffleSrc1;
2207     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2208     if (Src1.getValueType() != VecT) {
2209       size_t LaneSize =
2210           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2211       assert(LaneSize > DestLaneSize);
2212       Scale1 = LaneSize / DestLaneSize;
2213       Src1 = DAG.getBitcast(VecT, Src1);
2214     }
2215     if (Src2.getValueType() != VecT) {
2216       size_t LaneSize =
2217           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2218       assert(LaneSize > DestLaneSize);
2219       Scale2 = LaneSize / DestLaneSize;
2220       Src2 = DAG.getBitcast(VecT, Src2);
2221     }
2222 
2223     int Mask[16];
2224     assert(DestLaneCount <= 16);
2225     for (size_t I = 0; I < DestLaneCount; ++I) {
2226       const SDValue &Lane = Op->getOperand(I);
2227       SDValue Src = GetShuffleSrc(Lane);
2228       if (Src == ShuffleSrc1) {
2229         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2230       } else if (Src && Src == ShuffleSrc2) {
2231         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2232       } else {
2233         Mask[I] = -1;
2234       }
2235     }
2236     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2237     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2238     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2239       auto Src = GetShuffleSrc(Lane);
2240       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2241     };
2242   } else if (NumConstantLanes >= NumSplatLanes) {
2243     SmallVector<SDValue, 16> ConstLanes;
2244     for (const SDValue &Lane : Op->op_values()) {
2245       if (IsConstant(Lane)) {
2246         // Values may need to be fixed so that they will sign extend to be
2247         // within the expected range during ISel. Check whether the value is in
2248         // bounds based on the lane bit width and if it is out of bounds, lop
2249         // off the extra bits and subtract 2^n to reflect giving the high bit
2250         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2251         // cannot possibly be out of range.
2252         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2253         int64_t Val = Const ? Const->getSExtValue() : 0;
2254         uint64_t LaneBits = 128 / Lanes;
2255         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2256                "Unexpected out of bounds negative value");
2257         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2258           auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2259           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2260         } else {
2261           ConstLanes.push_back(Lane);
2262         }
2263       } else if (LaneT.isFloatingPoint()) {
2264         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2265       } else {
2266         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2267       }
2268     }
2269     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2270     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2271       return IsConstant(Lane);
2272     };
2273   } else {
2274     // Use a splat, but possibly a load_splat
2275     LoadSDNode *SplattedLoad;
2276     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2277         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2278       Result = DAG.getMemIntrinsicNode(
2279           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2280           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2281            SplattedLoad->getOffset()},
2282           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2283     } else {
2284       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2285     }
2286     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2287       return Lane == SplatValue;
2288     };
2289   }
2290 
2291   assert(Result);
2292   assert(IsLaneConstructed);
2293 
2294   // Add replace_lane instructions for any unhandled values
2295   for (size_t I = 0; I < Lanes; ++I) {
2296     const SDValue &Lane = Op->getOperand(I);
2297     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2298       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2299                            DAG.getConstant(I, DL, MVT::i32));
2300   }
2301 
2302   return Result;
2303 }
2304 
2305 SDValue
2306 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2307                                                SelectionDAG &DAG) const {
2308   SDLoc DL(Op);
2309   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2310   MVT VecType = Op.getOperand(0).getSimpleValueType();
2311   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2312   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2313 
2314   // Space for two vector args and sixteen mask indices
2315   SDValue Ops[18];
2316   size_t OpIdx = 0;
2317   Ops[OpIdx++] = Op.getOperand(0);
2318   Ops[OpIdx++] = Op.getOperand(1);
2319 
2320   // Expand mask indices to byte indices and materialize them as operands
2321   for (int M : Mask) {
2322     for (size_t J = 0; J < LaneBytes; ++J) {
2323       // Lower undefs (represented by -1 in mask) to zero
2324       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2325       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2326     }
2327   }
2328 
2329   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2330 }
2331 
2332 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2333                                               SelectionDAG &DAG) const {
2334   SDLoc DL(Op);
2335   // The legalizer does not know how to expand the unsupported comparison modes
2336   // of i64x2 vectors, so we manually unroll them here.
2337   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2338   SmallVector<SDValue, 2> LHS, RHS;
2339   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2340   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2341   const SDValue &CC = Op->getOperand(2);
2342   auto MakeLane = [&](unsigned I) {
2343     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2344                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2345                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2346   };
2347   return DAG.getBuildVector(Op->getValueType(0), DL,
2348                             {MakeLane(0), MakeLane(1)});
2349 }
2350 
2351 SDValue
2352 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2353                                                     SelectionDAG &DAG) const {
2354   // Allow constant lane indices, expand variable lane indices
2355   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2356   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2357     return Op;
2358   else
2359     // Perform default expansion
2360     return SDValue();
2361 }
2362 
2363 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2364   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2365   // 32-bit and 64-bit unrolled shifts will have proper semantics
2366   if (LaneT.bitsGE(MVT::i32))
2367     return DAG.UnrollVectorOp(Op.getNode());
2368   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2369   SDLoc DL(Op);
2370   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2371   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2372   unsigned ShiftOpcode = Op.getOpcode();
2373   SmallVector<SDValue, 16> ShiftedElements;
2374   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2375   SmallVector<SDValue, 16> ShiftElements;
2376   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2377   SmallVector<SDValue, 16> UnrolledOps;
2378   for (size_t i = 0; i < NumLanes; ++i) {
2379     SDValue MaskedShiftValue =
2380         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2381     SDValue ShiftedValue = ShiftedElements[i];
2382     if (ShiftOpcode == ISD::SRA)
2383       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2384                                  ShiftedValue, DAG.getValueType(LaneT));
2385     UnrolledOps.push_back(
2386         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2387   }
2388   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2389 }
2390 
2391 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2392                                               SelectionDAG &DAG) const {
2393   SDLoc DL(Op);
2394 
2395   // Only manually lower vector shifts
2396   assert(Op.getSimpleValueType().isVector());
2397 
2398   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2399   if (!ShiftVal)
2400     return unrollVectorShift(Op, DAG);
2401 
2402   // Use anyext because none of the high bits can affect the shift
2403   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2404 
2405   unsigned Opcode;
2406   switch (Op.getOpcode()) {
2407   case ISD::SHL:
2408     Opcode = WebAssemblyISD::VEC_SHL;
2409     break;
2410   case ISD::SRA:
2411     Opcode = WebAssemblyISD::VEC_SHR_S;
2412     break;
2413   case ISD::SRL:
2414     Opcode = WebAssemblyISD::VEC_SHR_U;
2415     break;
2416   default:
2417     llvm_unreachable("unexpected opcode");
2418   }
2419 
2420   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2421 }
2422 
2423 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2424                                                       SelectionDAG &DAG) const {
2425   SDLoc DL(Op);
2426   EVT ResT = Op.getValueType();
2427   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2428 
2429   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2430       (SatVT == MVT::i32 || SatVT == MVT::i64))
2431     return Op;
2432 
2433   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2434     return Op;
2435 
2436   return SDValue();
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 //   Custom DAG combine hooks
2441 //===----------------------------------------------------------------------===//
2442 static SDValue
2443 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2444   auto &DAG = DCI.DAG;
2445   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2446 
2447   // Hoist vector bitcasts that don't change the number of lanes out of unary
2448   // shuffles, where they are less likely to get in the way of other combines.
2449   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2450   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2451   SDValue Bitcast = N->getOperand(0);
2452   if (Bitcast.getOpcode() != ISD::BITCAST)
2453     return SDValue();
2454   if (!N->getOperand(1).isUndef())
2455     return SDValue();
2456   SDValue CastOp = Bitcast.getOperand(0);
2457   MVT SrcType = CastOp.getSimpleValueType();
2458   MVT DstType = Bitcast.getSimpleValueType();
2459   if (!SrcType.is128BitVector() ||
2460       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2461     return SDValue();
2462   SDValue NewShuffle = DAG.getVectorShuffle(
2463       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2464   return DAG.getBitcast(DstType, NewShuffle);
2465 }
2466 
2467 static SDValue
2468 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2469   auto &DAG = DCI.DAG;
2470   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2471          N->getOpcode() == ISD::ZERO_EXTEND);
2472 
2473   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2474   // possible before the extract_subvector can be expanded.
2475   auto Extract = N->getOperand(0);
2476   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2477     return SDValue();
2478   auto Source = Extract.getOperand(0);
2479   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2480   if (IndexNode == nullptr)
2481     return SDValue();
2482   auto Index = IndexNode->getZExtValue();
2483 
2484   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2485   // extracted subvector is the low or high half of its source.
2486   EVT ResVT = N->getValueType(0);
2487   if (ResVT == MVT::v8i16) {
2488     if (Extract.getValueType() != MVT::v8i8 ||
2489         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2490       return SDValue();
2491   } else if (ResVT == MVT::v4i32) {
2492     if (Extract.getValueType() != MVT::v4i16 ||
2493         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2494       return SDValue();
2495   } else if (ResVT == MVT::v2i64) {
2496     if (Extract.getValueType() != MVT::v2i32 ||
2497         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2498       return SDValue();
2499   } else {
2500     return SDValue();
2501   }
2502 
2503   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2504   bool IsLow = Index == 0;
2505 
2506   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2507                                 : WebAssemblyISD::EXTEND_HIGH_S)
2508                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2509                                 : WebAssemblyISD::EXTEND_HIGH_U);
2510 
2511   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2512 }
2513 
2514 static SDValue
2515 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2516   auto &DAG = DCI.DAG;
2517 
2518   auto GetWasmConversionOp = [](unsigned Op) {
2519     switch (Op) {
2520     case ISD::FP_TO_SINT_SAT:
2521       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2522     case ISD::FP_TO_UINT_SAT:
2523       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2524     case ISD::FP_ROUND:
2525       return WebAssemblyISD::DEMOTE_ZERO;
2526     }
2527     llvm_unreachable("unexpected op");
2528   };
2529 
2530   auto IsZeroSplat = [](SDValue SplatVal) {
2531     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2532     APInt SplatValue, SplatUndef;
2533     unsigned SplatBitSize;
2534     bool HasAnyUndefs;
2535     return Splat &&
2536            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2537                                   HasAnyUndefs) &&
2538            SplatValue == 0;
2539   };
2540 
2541   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2542     // Combine this:
2543     //
2544     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2545     //
2546     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2547     //
2548     // Or this:
2549     //
2550     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2551     //
2552     // into (f32x4.demote_zero_f64x2 $x).
2553     EVT ResVT;
2554     EVT ExpectedConversionType;
2555     auto Conversion = N->getOperand(0);
2556     auto ConversionOp = Conversion.getOpcode();
2557     switch (ConversionOp) {
2558     case ISD::FP_TO_SINT_SAT:
2559     case ISD::FP_TO_UINT_SAT:
2560       ResVT = MVT::v4i32;
2561       ExpectedConversionType = MVT::v2i32;
2562       break;
2563     case ISD::FP_ROUND:
2564       ResVT = MVT::v4f32;
2565       ExpectedConversionType = MVT::v2f32;
2566       break;
2567     default:
2568       return SDValue();
2569     }
2570 
2571     if (N->getValueType(0) != ResVT)
2572       return SDValue();
2573 
2574     if (Conversion.getValueType() != ExpectedConversionType)
2575       return SDValue();
2576 
2577     auto Source = Conversion.getOperand(0);
2578     if (Source.getValueType() != MVT::v2f64)
2579       return SDValue();
2580 
2581     if (!IsZeroSplat(N->getOperand(1)) ||
2582         N->getOperand(1).getValueType() != ExpectedConversionType)
2583       return SDValue();
2584 
2585     unsigned Op = GetWasmConversionOp(ConversionOp);
2586     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2587   }
2588 
2589   // Combine this:
2590   //
2591   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2592   //
2593   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2594   //
2595   // Or this:
2596   //
2597   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2598   //
2599   // into (f32x4.demote_zero_f64x2 $x).
2600   EVT ResVT;
2601   auto ConversionOp = N->getOpcode();
2602   switch (ConversionOp) {
2603   case ISD::FP_TO_SINT_SAT:
2604   case ISD::FP_TO_UINT_SAT:
2605     ResVT = MVT::v4i32;
2606     break;
2607   case ISD::FP_ROUND:
2608     ResVT = MVT::v4f32;
2609     break;
2610   default:
2611     llvm_unreachable("unexpected op");
2612   }
2613 
2614   if (N->getValueType(0) != ResVT)
2615     return SDValue();
2616 
2617   auto Concat = N->getOperand(0);
2618   if (Concat.getValueType() != MVT::v4f64)
2619     return SDValue();
2620 
2621   auto Source = Concat.getOperand(0);
2622   if (Source.getValueType() != MVT::v2f64)
2623     return SDValue();
2624 
2625   if (!IsZeroSplat(Concat.getOperand(1)) ||
2626       Concat.getOperand(1).getValueType() != MVT::v2f64)
2627     return SDValue();
2628 
2629   unsigned Op = GetWasmConversionOp(ConversionOp);
2630   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2631 }
2632 
2633 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2634 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2635                                 const SDLoc &DL, unsigned VectorWidth) {
2636   EVT VT = Vec.getValueType();
2637   EVT ElVT = VT.getVectorElementType();
2638   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2639   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2640                                   VT.getVectorNumElements() / Factor);
2641 
2642   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2643   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2644   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2645 
2646   // This is the index of the first element of the VectorWidth-bit chunk
2647   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2648   IdxVal &= ~(ElemsPerChunk - 1);
2649 
2650   // If the input is a buildvector just emit a smaller one.
2651   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2652     return DAG.getBuildVector(ResultVT, DL,
2653                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2654 
2655   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2656   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2657 }
2658 
2659 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2660 // is the expected destination value type after recursion. In is the initial
2661 // input. Note that the input should have enough leading zero bits to prevent
2662 // NARROW_U from saturating results.
2663 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2664                                         SelectionDAG &DAG) {
2665   EVT SrcVT = In.getValueType();
2666 
2667   // No truncation required, we might get here due to recursive calls.
2668   if (SrcVT == DstVT)
2669     return In;
2670 
2671   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2672   unsigned NumElems = SrcVT.getVectorNumElements();
2673   if (!isPowerOf2_32(NumElems))
2674     return SDValue();
2675   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2676   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2677 
2678   LLVMContext &Ctx = *DAG.getContext();
2679   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2680 
2681   // Narrow to the largest type possible:
2682   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2683   EVT InVT = MVT::i16, OutVT = MVT::i8;
2684   if (SrcVT.getScalarSizeInBits() > 16) {
2685     InVT = MVT::i32;
2686     OutVT = MVT::i16;
2687   }
2688   unsigned SubSizeInBits = SrcSizeInBits / 2;
2689   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2690   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2691 
2692   // Split lower/upper subvectors.
2693   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2694   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2695 
2696   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2697   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2698     Lo = DAG.getBitcast(InVT, Lo);
2699     Hi = DAG.getBitcast(InVT, Hi);
2700     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2701     return DAG.getBitcast(DstVT, Res);
2702   }
2703 
2704   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2705   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2706   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2707   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2708 
2709   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2710   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2711   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2712 }
2713 
2714 static SDValue performTruncateCombine(SDNode *N,
2715                                       TargetLowering::DAGCombinerInfo &DCI) {
2716   auto &DAG = DCI.DAG;
2717 
2718   SDValue In = N->getOperand(0);
2719   EVT InVT = In.getValueType();
2720   if (!InVT.isSimple())
2721     return SDValue();
2722 
2723   EVT OutVT = N->getValueType(0);
2724   if (!OutVT.isVector())
2725     return SDValue();
2726 
2727   EVT OutSVT = OutVT.getVectorElementType();
2728   EVT InSVT = InVT.getVectorElementType();
2729   // Currently only cover truncate to v16i8 or v8i16.
2730   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2731         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2732     return SDValue();
2733 
2734   SDLoc DL(N);
2735   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2736                                     OutVT.getScalarSizeInBits());
2737   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2738   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2739 }
2740 
2741 SDValue
2742 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2743                                              DAGCombinerInfo &DCI) const {
2744   switch (N->getOpcode()) {
2745   default:
2746     return SDValue();
2747   case ISD::VECTOR_SHUFFLE:
2748     return performVECTOR_SHUFFLECombine(N, DCI);
2749   case ISD::SIGN_EXTEND:
2750   case ISD::ZERO_EXTEND:
2751     return performVectorExtendCombine(N, DCI);
2752   case ISD::FP_TO_SINT_SAT:
2753   case ISD::FP_TO_UINT_SAT:
2754   case ISD::FP_ROUND:
2755   case ISD::CONCAT_VECTORS:
2756     return performVectorTruncZeroCombine(N, DCI);
2757   case ISD::TRUNCATE:
2758     return performTruncateCombine(N, DCI);
2759   }
2760 }
2761