1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 84 85 auto *Regs = STI.getSpecialRegisters(); 86 87 // Set up the register classes. 88 if (Subtarget.hasHighWord()) 89 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 90 else 91 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 92 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 93 if (!useSoftFloat()) { 94 if (Subtarget.hasVector()) { 95 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 97 } else { 98 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 100 } 101 if (Subtarget.hasVectorEnhancements1()) 102 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 103 else 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 } 115 116 // Compute derived properties from the register classes 117 computeRegisterProperties(Subtarget.getRegisterInfo()); 118 119 // Set up special registers. 120 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(Align(2)); 133 // For performance reasons we prefer 16-byte alignment. 134 setPrefFunctionAlignment(Align(16)); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 146 147 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 148 setOperationAction(ISD::SELECT, VT, Expand); 149 150 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 151 setOperationAction(ISD::SELECT_CC, VT, Custom); 152 setOperationAction(ISD::BR_CC, VT, Custom); 153 } 154 } 155 156 // Expand jump table branches as address arithmetic followed by an 157 // indirect jump. 158 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 159 160 // Expand BRCOND into a BR_CC (see above). 161 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 162 163 // Handle integer types. 164 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 165 I <= MVT::LAST_INTEGER_VALUETYPE; 166 ++I) { 167 MVT VT = MVT::SimpleValueType(I); 168 if (isTypeLegal(VT)) { 169 setOperationAction(ISD::ABS, VT, Legal); 170 171 // Expand individual DIV and REMs into DIVREMs. 172 setOperationAction(ISD::SDIV, VT, Expand); 173 setOperationAction(ISD::UDIV, VT, Expand); 174 setOperationAction(ISD::SREM, VT, Expand); 175 setOperationAction(ISD::UREM, VT, Expand); 176 setOperationAction(ISD::SDIVREM, VT, Custom); 177 setOperationAction(ISD::UDIVREM, VT, Custom); 178 179 // Support addition/subtraction with overflow. 180 setOperationAction(ISD::SADDO, VT, Custom); 181 setOperationAction(ISD::SSUBO, VT, Custom); 182 183 // Support addition/subtraction with carry. 184 setOperationAction(ISD::UADDO, VT, Custom); 185 setOperationAction(ISD::USUBO, VT, Custom); 186 187 // Support carry in as value rather than glue. 188 setOperationAction(ISD::ADDCARRY, VT, Custom); 189 setOperationAction(ISD::SUBCARRY, VT, Custom); 190 191 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 192 // stores, putting a serialization instruction after the stores. 193 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 194 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 195 196 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 197 // available, or if the operand is constant. 198 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 199 200 // Use POPCNT on z196 and above. 201 if (Subtarget.hasPopulationCount()) 202 setOperationAction(ISD::CTPOP, VT, Custom); 203 else 204 setOperationAction(ISD::CTPOP, VT, Expand); 205 206 // No special instructions for these. 207 setOperationAction(ISD::CTTZ, VT, Expand); 208 setOperationAction(ISD::ROTR, VT, Expand); 209 210 // Use *MUL_LOHI where possible instead of MULH*. 211 setOperationAction(ISD::MULHS, VT, Expand); 212 setOperationAction(ISD::MULHU, VT, Expand); 213 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 214 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 215 216 // Only z196 and above have native support for conversions to unsigned. 217 // On z10, promoting to i64 doesn't generate an inexact condition for 218 // values that are outside the i32 range but in the i64 range, so use 219 // the default expansion. 220 if (!Subtarget.hasFPExtension()) 221 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 222 223 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 224 // default to Expand, so need to be modified to Legal where appropriate. 225 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 226 if (Subtarget.hasFPExtension()) 227 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 228 229 // And similarly for STRICT_[SU]INT_TO_FP. 230 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 231 if (Subtarget.hasFPExtension()) 232 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 233 } 234 } 235 236 // Type legalization will convert 8- and 16-bit atomic operations into 237 // forms that operate on i32s (but still keeping the original memory VT). 238 // Lower them into full i32 operations. 239 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 250 251 // Even though i128 is not a legal type, we still need to custom lower 252 // the atomic operations in order to exploit SystemZ instructions. 253 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 254 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 255 256 // We can use the CC result of compare-and-swap to implement 257 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 261 262 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 263 264 // Traps are legal, as we will convert them to "j .+2". 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 267 // z10 has instructions for signed but not unsigned FP conversion. 268 // Handle unsigned 32-bit types as signed 64-bit types. 269 if (!Subtarget.hasFPExtension()) { 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 274 } 275 276 // We have native support for a 64-bit CTLZ, via FLOGR. 277 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 278 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 280 281 // On z15 we have native support for a 64-bit CTPOP. 282 if (Subtarget.hasMiscellaneousExtensions3()) { 283 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 284 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 285 } 286 287 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 288 setOperationAction(ISD::OR, MVT::i64, Custom); 289 290 // Expand 128 bit shifts without using a libcall. 291 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 292 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 294 setLibcallName(RTLIB::SRL_I128, nullptr); 295 setLibcallName(RTLIB::SHL_I128, nullptr); 296 setLibcallName(RTLIB::SRA_I128, nullptr); 297 298 // Handle bitcast from fp128 to i128. 299 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 300 301 // We have native instructions for i8, i16 and i32 extensions, but not i1. 302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 303 for (MVT VT : MVT::integer_valuetypes()) { 304 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 305 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 307 } 308 309 // Handle the various types of symbolic address. 310 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 311 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 312 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 313 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 314 setOperationAction(ISD::JumpTable, PtrVT, Custom); 315 316 // We need to handle dynamic allocations specially because of the 317 // 160-byte area at the bottom of the stack. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 319 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 320 321 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 323 324 // Handle prefetches with PFD or PFDRL. 325 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 326 327 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 328 // Assume by default that all vector operations need to be expanded. 329 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 330 if (getOperationAction(Opcode, VT) == Legal) 331 setOperationAction(Opcode, VT, Expand); 332 333 // Likewise all truncating stores and extending loads. 334 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 335 setTruncStoreAction(VT, InnerVT, Expand); 336 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 337 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 338 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 339 } 340 341 if (isTypeLegal(VT)) { 342 // These operations are legal for anything that can be stored in a 343 // vector register, even if there is no native support for the format 344 // as such. In particular, we can do these for v4f32 even though there 345 // are no specific instructions for that format. 346 setOperationAction(ISD::LOAD, VT, Legal); 347 setOperationAction(ISD::STORE, VT, Legal); 348 setOperationAction(ISD::VSELECT, VT, Legal); 349 setOperationAction(ISD::BITCAST, VT, Legal); 350 setOperationAction(ISD::UNDEF, VT, Legal); 351 352 // Likewise, except that we need to replace the nodes with something 353 // more specific. 354 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 355 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 356 } 357 } 358 359 // Handle integer vector types. 360 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 361 if (isTypeLegal(VT)) { 362 // These operations have direct equivalents. 363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 364 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 365 setOperationAction(ISD::ADD, VT, Legal); 366 setOperationAction(ISD::SUB, VT, Legal); 367 if (VT != MVT::v2i64) 368 setOperationAction(ISD::MUL, VT, Legal); 369 setOperationAction(ISD::ABS, VT, Legal); 370 setOperationAction(ISD::AND, VT, Legal); 371 setOperationAction(ISD::OR, VT, Legal); 372 setOperationAction(ISD::XOR, VT, Legal); 373 if (Subtarget.hasVectorEnhancements1()) 374 setOperationAction(ISD::CTPOP, VT, Legal); 375 else 376 setOperationAction(ISD::CTPOP, VT, Custom); 377 setOperationAction(ISD::CTTZ, VT, Legal); 378 setOperationAction(ISD::CTLZ, VT, Legal); 379 380 // Convert a GPR scalar to a vector by inserting it into element 0. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 382 383 // Use a series of unpacks for extensions. 384 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 385 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 386 387 // Detect shifts by a scalar amount and convert them into 388 // V*_BY_SCALAR. 389 setOperationAction(ISD::SHL, VT, Custom); 390 setOperationAction(ISD::SRA, VT, Custom); 391 setOperationAction(ISD::SRL, VT, Custom); 392 393 // At present ROTL isn't matched by DAGCombiner. ROTR should be 394 // converted into ROTL. 395 setOperationAction(ISD::ROTL, VT, Expand); 396 setOperationAction(ISD::ROTR, VT, Expand); 397 398 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 399 // and inverting the result as necessary. 400 setOperationAction(ISD::SETCC, VT, Custom); 401 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 402 if (Subtarget.hasVectorEnhancements1()) 403 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 404 } 405 } 406 407 if (Subtarget.hasVector()) { 408 // There should be no need to check for float types other than v2f64 409 // since <2 x f32> isn't a legal type. 410 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 418 419 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 421 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 424 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 425 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 426 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 427 } 428 429 if (Subtarget.hasVectorEnhancements2()) { 430 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 438 439 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 440 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 443 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 444 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 445 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 446 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 447 } 448 449 // Handle floating-point types. 450 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 451 I <= MVT::LAST_FP_VALUETYPE; 452 ++I) { 453 MVT VT = MVT::SimpleValueType(I); 454 if (isTypeLegal(VT)) { 455 // We can use FI for FRINT. 456 setOperationAction(ISD::FRINT, VT, Legal); 457 458 // We can use the extended form of FI for other rounding operations. 459 if (Subtarget.hasFPExtension()) { 460 setOperationAction(ISD::FNEARBYINT, VT, Legal); 461 setOperationAction(ISD::FFLOOR, VT, Legal); 462 setOperationAction(ISD::FCEIL, VT, Legal); 463 setOperationAction(ISD::FTRUNC, VT, Legal); 464 setOperationAction(ISD::FROUND, VT, Legal); 465 } 466 467 // No special instructions for these. 468 setOperationAction(ISD::FSIN, VT, Expand); 469 setOperationAction(ISD::FCOS, VT, Expand); 470 setOperationAction(ISD::FSINCOS, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FPOW, VT, Expand); 473 474 // Special treatment. 475 setOperationAction(ISD::IS_FPCLASS, VT, Custom); 476 477 // Handle constrained floating-point operations. 478 setOperationAction(ISD::STRICT_FADD, VT, Legal); 479 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 480 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 481 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 482 setOperationAction(ISD::STRICT_FMA, VT, Legal); 483 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 484 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 485 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 486 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 487 if (Subtarget.hasFPExtension()) { 488 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 489 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 490 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 491 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 492 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 493 } 494 } 495 } 496 497 // Handle floating-point vector types. 498 if (Subtarget.hasVector()) { 499 // Scalar-to-vector conversion is just a subreg. 500 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 501 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 502 503 // Some insertions and extractions can be done directly but others 504 // need to go via integers. 505 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 506 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 507 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 508 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 509 510 // These operations have direct equivalents. 511 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 512 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 513 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 514 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 515 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 516 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 517 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 518 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 519 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 520 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 521 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 522 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 523 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 524 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 525 526 // Handle constrained floating-point operations. 527 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 536 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 537 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 538 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 539 } 540 541 // The vector enhancements facility 1 has instructions for these. 542 if (Subtarget.hasVectorEnhancements1()) { 543 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 544 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 545 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 546 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 547 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 548 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 549 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 550 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 551 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 552 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 553 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 554 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 555 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 556 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 557 558 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 559 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 560 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 561 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 562 563 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 564 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 565 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 566 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 567 568 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 569 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 570 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 571 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 572 573 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 574 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 575 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 576 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 577 578 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 579 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 580 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 581 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 582 583 // Handle constrained floating-point operations. 584 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 593 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 594 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 595 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 596 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 597 MVT::v4f32, MVT::v2f64 }) { 598 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 599 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 600 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 601 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 602 } 603 } 604 605 // We only have fused f128 multiply-addition on vector registers. 606 if (!Subtarget.hasVectorEnhancements1()) { 607 setOperationAction(ISD::FMA, MVT::f128, Expand); 608 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 609 } 610 611 // We don't have a copysign instruction on vector registers. 612 if (Subtarget.hasVectorEnhancements1()) 613 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 614 615 // Needed so that we don't try to implement f128 constant loads using 616 // a load-and-extend of a f80 constant (in cases where the constant 617 // would fit in an f80). 618 for (MVT VT : MVT::fp_valuetypes()) 619 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 620 621 // We don't have extending load instruction on vector registers. 622 if (Subtarget.hasVectorEnhancements1()) { 623 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 624 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 625 } 626 627 // Floating-point truncation and stores need to be done separately. 628 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 629 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 630 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 631 632 // We have 64-bit FPR<->GPR moves, but need special handling for 633 // 32-bit forms. 634 if (!Subtarget.hasVector()) { 635 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 636 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 637 } 638 639 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 640 // structure, but VAEND is a no-op. 641 setOperationAction(ISD::VASTART, MVT::Other, Custom); 642 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 643 setOperationAction(ISD::VAEND, MVT::Other, Expand); 644 645 // Codes for which we want to perform some z-specific combinations. 646 setTargetDAGCombine({ISD::ZERO_EXTEND, 647 ISD::SIGN_EXTEND, 648 ISD::SIGN_EXTEND_INREG, 649 ISD::LOAD, 650 ISD::STORE, 651 ISD::VECTOR_SHUFFLE, 652 ISD::EXTRACT_VECTOR_ELT, 653 ISD::FP_ROUND, 654 ISD::STRICT_FP_ROUND, 655 ISD::FP_EXTEND, 656 ISD::SINT_TO_FP, 657 ISD::UINT_TO_FP, 658 ISD::STRICT_FP_EXTEND, 659 ISD::BSWAP, 660 ISD::SDIV, 661 ISD::UDIV, 662 ISD::SREM, 663 ISD::UREM, 664 ISD::INTRINSIC_VOID, 665 ISD::INTRINSIC_W_CHAIN}); 666 667 // Handle intrinsics. 668 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 669 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 670 671 // We want to use MVC in preference to even a single load/store pair. 672 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 673 MaxStoresPerMemcpyOptSize = 0; 674 675 // The main memset sequence is a byte store followed by an MVC. 676 // Two STC or MV..I stores win over that, but the kind of fused stores 677 // generated by target-independent code don't when the byte value is 678 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 679 // than "STC;MVC". Handle the choice in target-specific code instead. 680 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 681 MaxStoresPerMemsetOptSize = 0; 682 683 // Default to having -disable-strictnode-mutation on 684 IsStrictFPEnabled = true; 685 } 686 687 bool SystemZTargetLowering::useSoftFloat() const { 688 return Subtarget.hasSoftFloat(); 689 } 690 691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 692 LLVMContext &, EVT VT) const { 693 if (!VT.isVector()) 694 return MVT::i32; 695 return VT.changeVectorElementTypeToInteger(); 696 } 697 698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 699 const MachineFunction &MF, EVT VT) const { 700 VT = VT.getScalarType(); 701 702 if (!VT.isSimple()) 703 return false; 704 705 switch (VT.getSimpleVT().SimpleTy) { 706 case MVT::f32: 707 case MVT::f64: 708 return true; 709 case MVT::f128: 710 return Subtarget.hasVectorEnhancements1(); 711 default: 712 break; 713 } 714 715 return false; 716 } 717 718 // Return true if the constant can be generated with a vector instruction, 719 // such as VGM, VGMB or VREPI. 720 bool SystemZVectorConstantInfo::isVectorConstantLegal( 721 const SystemZSubtarget &Subtarget) { 722 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 723 if (!Subtarget.hasVector() || 724 (isFP128 && !Subtarget.hasVectorEnhancements1())) 725 return false; 726 727 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 728 // preferred way of creating all-zero and all-one vectors so give it 729 // priority over other methods below. 730 unsigned Mask = 0; 731 unsigned I = 0; 732 for (; I < SystemZ::VectorBytes; ++I) { 733 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 734 if (Byte == 0xff) 735 Mask |= 1ULL << I; 736 else if (Byte != 0) 737 break; 738 } 739 if (I == SystemZ::VectorBytes) { 740 Opcode = SystemZISD::BYTE_MASK; 741 OpVals.push_back(Mask); 742 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 743 return true; 744 } 745 746 if (SplatBitSize > 64) 747 return false; 748 749 auto tryValue = [&](uint64_t Value) -> bool { 750 // Try VECTOR REPLICATE IMMEDIATE 751 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 752 if (isInt<16>(SignedValue)) { 753 OpVals.push_back(((unsigned) SignedValue)); 754 Opcode = SystemZISD::REPLICATE; 755 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 756 SystemZ::VectorBits / SplatBitSize); 757 return true; 758 } 759 // Try VECTOR GENERATE MASK 760 unsigned Start, End; 761 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 762 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 763 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 764 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 765 OpVals.push_back(Start - (64 - SplatBitSize)); 766 OpVals.push_back(End - (64 - SplatBitSize)); 767 Opcode = SystemZISD::ROTATE_MASK; 768 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 769 SystemZ::VectorBits / SplatBitSize); 770 return true; 771 } 772 return false; 773 }; 774 775 // First try assuming that any undefined bits above the highest set bit 776 // and below the lowest set bit are 1s. This increases the likelihood of 777 // being able to use a sign-extended element value in VECTOR REPLICATE 778 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 779 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 780 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 781 uint64_t Lower = 782 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 783 uint64_t Upper = 784 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 785 if (tryValue(SplatBitsZ | Upper | Lower)) 786 return true; 787 788 // Now try assuming that any undefined bits between the first and 789 // last defined set bits are set. This increases the chances of 790 // using a non-wraparound mask. 791 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 792 return tryValue(SplatBitsZ | Middle); 793 } 794 795 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 796 if (IntImm.isSingleWord()) { 797 IntBits = APInt(128, IntImm.getZExtValue()); 798 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 799 } else 800 IntBits = IntImm; 801 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 802 803 // Find the smallest splat. 804 SplatBits = IntImm; 805 unsigned Width = SplatBits.getBitWidth(); 806 while (Width > 8) { 807 unsigned HalfSize = Width / 2; 808 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 809 APInt LowValue = SplatBits.trunc(HalfSize); 810 811 // If the two halves do not match, stop here. 812 if (HighValue != LowValue || 8 > HalfSize) 813 break; 814 815 SplatBits = HighValue; 816 Width = HalfSize; 817 } 818 SplatUndef = 0; 819 SplatBitSize = Width; 820 } 821 822 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 823 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 824 bool HasAnyUndefs; 825 826 // Get IntBits by finding the 128 bit splat. 827 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 828 true); 829 830 // Get SplatBits by finding the 8 bit or greater splat. 831 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 832 true); 833 } 834 835 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 836 bool ForCodeSize) const { 837 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 838 if (Imm.isZero() || Imm.isNegZero()) 839 return true; 840 841 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 842 } 843 844 /// Returns true if stack probing through inline assembly is requested. 845 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 846 // If the function specifically requests inline stack probes, emit them. 847 if (MF.getFunction().hasFnAttribute("probe-stack")) 848 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 849 "inline-asm"; 850 return false; 851 } 852 853 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 854 // We can use CGFI or CLGFI. 855 return isInt<32>(Imm) || isUInt<32>(Imm); 856 } 857 858 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 859 // We can use ALGFI or SLGFI. 860 return isUInt<32>(Imm) || isUInt<32>(-Imm); 861 } 862 863 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 864 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 865 // Unaligned accesses should never be slower than the expanded version. 866 // We check specifically for aligned accesses in the few cases where 867 // they are required. 868 if (Fast) 869 *Fast = true; 870 return true; 871 } 872 873 // Information about the addressing mode for a memory access. 874 struct AddressingMode { 875 // True if a long displacement is supported. 876 bool LongDisplacement; 877 878 // True if use of index register is supported. 879 bool IndexReg; 880 881 AddressingMode(bool LongDispl, bool IdxReg) : 882 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 883 }; 884 885 // Return the desired addressing mode for a Load which has only one use (in 886 // the same block) which is a Store. 887 static AddressingMode getLoadStoreAddrMode(bool HasVector, 888 Type *Ty) { 889 // With vector support a Load->Store combination may be combined to either 890 // an MVC or vector operations and it seems to work best to allow the 891 // vector addressing mode. 892 if (HasVector) 893 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 894 895 // Otherwise only the MVC case is special. 896 bool MVC = Ty->isIntegerTy(8); 897 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 898 } 899 900 // Return the addressing mode which seems most desirable given an LLVM 901 // Instruction pointer. 902 static AddressingMode 903 supportedAddressingMode(Instruction *I, bool HasVector) { 904 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 905 switch (II->getIntrinsicID()) { 906 default: break; 907 case Intrinsic::memset: 908 case Intrinsic::memmove: 909 case Intrinsic::memcpy: 910 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 911 } 912 } 913 914 if (isa<LoadInst>(I) && I->hasOneUse()) { 915 auto *SingleUser = cast<Instruction>(*I->user_begin()); 916 if (SingleUser->getParent() == I->getParent()) { 917 if (isa<ICmpInst>(SingleUser)) { 918 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 919 if (C->getBitWidth() <= 64 && 920 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 921 // Comparison of memory with 16 bit signed / unsigned immediate 922 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 923 } else if (isa<StoreInst>(SingleUser)) 924 // Load->Store 925 return getLoadStoreAddrMode(HasVector, I->getType()); 926 } 927 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 928 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 929 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 930 // Load->Store 931 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 932 } 933 934 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 935 936 // * Use LDE instead of LE/LEY for z13 to avoid partial register 937 // dependencies (LDE only supports small offsets). 938 // * Utilize the vector registers to hold floating point 939 // values (vector load / store instructions only support small 940 // offsets). 941 942 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 943 I->getOperand(0)->getType()); 944 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 945 bool IsVectorAccess = MemAccessTy->isVectorTy(); 946 947 // A store of an extracted vector element will be combined into a VSTE type 948 // instruction. 949 if (!IsVectorAccess && isa<StoreInst>(I)) { 950 Value *DataOp = I->getOperand(0); 951 if (isa<ExtractElementInst>(DataOp)) 952 IsVectorAccess = true; 953 } 954 955 // A load which gets inserted into a vector element will be combined into a 956 // VLE type instruction. 957 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 958 User *LoadUser = *I->user_begin(); 959 if (isa<InsertElementInst>(LoadUser)) 960 IsVectorAccess = true; 961 } 962 963 if (IsFPAccess || IsVectorAccess) 964 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 965 } 966 967 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 968 } 969 970 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 971 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 972 // Punt on globals for now, although they can be used in limited 973 // RELATIVE LONG cases. 974 if (AM.BaseGV) 975 return false; 976 977 // Require a 20-bit signed offset. 978 if (!isInt<20>(AM.BaseOffs)) 979 return false; 980 981 bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); 982 AddressingMode SupportedAM(!RequireD12, true); 983 if (I != nullptr) 984 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 985 986 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 987 return false; 988 989 if (!SupportedAM.IndexReg) 990 // No indexing allowed. 991 return AM.Scale == 0; 992 else 993 // Indexing is OK but no scale factor can be applied. 994 return AM.Scale == 0 || AM.Scale == 1; 995 } 996 997 bool SystemZTargetLowering::findOptimalMemOpLowering( 998 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 999 unsigned SrcAS, const AttributeList &FuncAttributes) const { 1000 const int MVCFastLen = 16; 1001 1002 if (Limit != ~unsigned(0)) { 1003 // Don't expand Op into scalar loads/stores in these cases: 1004 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 1005 return false; // Small memcpy: Use MVC 1006 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 1007 return false; // Small memset (first byte with STC/MVI): Use MVC 1008 if (Op.isZeroMemset()) 1009 return false; // Memset zero: Use XC 1010 } 1011 1012 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 1013 SrcAS, FuncAttributes); 1014 } 1015 1016 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 1017 const AttributeList &FuncAttributes) const { 1018 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 1019 } 1020 1021 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 1022 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 1023 return false; 1024 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 1025 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 1026 return FromBits > ToBits; 1027 } 1028 1029 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1030 if (!FromVT.isInteger() || !ToVT.isInteger()) 1031 return false; 1032 unsigned FromBits = FromVT.getFixedSizeInBits(); 1033 unsigned ToBits = ToVT.getFixedSizeInBits(); 1034 return FromBits > ToBits; 1035 } 1036 1037 //===----------------------------------------------------------------------===// 1038 // Inline asm support 1039 //===----------------------------------------------------------------------===// 1040 1041 TargetLowering::ConstraintType 1042 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1043 if (Constraint.size() == 1) { 1044 switch (Constraint[0]) { 1045 case 'a': // Address register 1046 case 'd': // Data register (equivalent to 'r') 1047 case 'f': // Floating-point register 1048 case 'h': // High-part register 1049 case 'r': // General-purpose register 1050 case 'v': // Vector register 1051 return C_RegisterClass; 1052 1053 case 'Q': // Memory with base and unsigned 12-bit displacement 1054 case 'R': // Likewise, plus an index 1055 case 'S': // Memory with base and signed 20-bit displacement 1056 case 'T': // Likewise, plus an index 1057 case 'm': // Equivalent to 'T'. 1058 return C_Memory; 1059 1060 case 'I': // Unsigned 8-bit constant 1061 case 'J': // Unsigned 12-bit constant 1062 case 'K': // Signed 16-bit constant 1063 case 'L': // Signed 20-bit displacement (on all targets we support) 1064 case 'M': // 0x7fffffff 1065 return C_Immediate; 1066 1067 default: 1068 break; 1069 } 1070 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1071 switch (Constraint[1]) { 1072 case 'Q': // Address with base and unsigned 12-bit displacement 1073 case 'R': // Likewise, plus an index 1074 case 'S': // Address with base and signed 20-bit displacement 1075 case 'T': // Likewise, plus an index 1076 return C_Address; 1077 1078 default: 1079 break; 1080 } 1081 } 1082 return TargetLowering::getConstraintType(Constraint); 1083 } 1084 1085 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1086 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1087 const char *constraint) const { 1088 ConstraintWeight weight = CW_Invalid; 1089 Value *CallOperandVal = info.CallOperandVal; 1090 // If we don't have a value, we can't do a match, 1091 // but allow it at the lowest weight. 1092 if (!CallOperandVal) 1093 return CW_Default; 1094 Type *type = CallOperandVal->getType(); 1095 // Look at the constraint type. 1096 switch (*constraint) { 1097 default: 1098 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1099 break; 1100 1101 case 'a': // Address register 1102 case 'd': // Data register (equivalent to 'r') 1103 case 'h': // High-part register 1104 case 'r': // General-purpose register 1105 if (CallOperandVal->getType()->isIntegerTy()) 1106 weight = CW_Register; 1107 break; 1108 1109 case 'f': // Floating-point register 1110 if (type->isFloatingPointTy()) 1111 weight = CW_Register; 1112 break; 1113 1114 case 'v': // Vector register 1115 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1116 Subtarget.hasVector()) 1117 weight = CW_Register; 1118 break; 1119 1120 case 'I': // Unsigned 8-bit constant 1121 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1122 if (isUInt<8>(C->getZExtValue())) 1123 weight = CW_Constant; 1124 break; 1125 1126 case 'J': // Unsigned 12-bit constant 1127 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1128 if (isUInt<12>(C->getZExtValue())) 1129 weight = CW_Constant; 1130 break; 1131 1132 case 'K': // Signed 16-bit constant 1133 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1134 if (isInt<16>(C->getSExtValue())) 1135 weight = CW_Constant; 1136 break; 1137 1138 case 'L': // Signed 20-bit displacement (on all targets we support) 1139 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1140 if (isInt<20>(C->getSExtValue())) 1141 weight = CW_Constant; 1142 break; 1143 1144 case 'M': // 0x7fffffff 1145 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1146 if (C->getZExtValue() == 0x7fffffff) 1147 weight = CW_Constant; 1148 break; 1149 } 1150 return weight; 1151 } 1152 1153 // Parse a "{tNNN}" register constraint for which the register type "t" 1154 // has already been verified. MC is the class associated with "t" and 1155 // Map maps 0-based register numbers to LLVM register numbers. 1156 static std::pair<unsigned, const TargetRegisterClass *> 1157 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1158 const unsigned *Map, unsigned Size) { 1159 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1160 if (isdigit(Constraint[2])) { 1161 unsigned Index; 1162 bool Failed = 1163 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1164 if (!Failed && Index < Size && Map[Index]) 1165 return std::make_pair(Map[Index], RC); 1166 } 1167 return std::make_pair(0U, nullptr); 1168 } 1169 1170 std::pair<unsigned, const TargetRegisterClass *> 1171 SystemZTargetLowering::getRegForInlineAsmConstraint( 1172 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1173 if (Constraint.size() == 1) { 1174 // GCC Constraint Letters 1175 switch (Constraint[0]) { 1176 default: break; 1177 case 'd': // Data register (equivalent to 'r') 1178 case 'r': // General-purpose register 1179 if (VT == MVT::i64) 1180 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1181 else if (VT == MVT::i128) 1182 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1183 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1184 1185 case 'a': // Address register 1186 if (VT == MVT::i64) 1187 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1188 else if (VT == MVT::i128) 1189 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1190 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1191 1192 case 'h': // High-part register (an LLVM extension) 1193 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1194 1195 case 'f': // Floating-point register 1196 if (!useSoftFloat()) { 1197 if (VT == MVT::f64) 1198 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1199 else if (VT == MVT::f128) 1200 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1201 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1202 } 1203 break; 1204 case 'v': // Vector register 1205 if (Subtarget.hasVector()) { 1206 if (VT == MVT::f32) 1207 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1208 if (VT == MVT::f64) 1209 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1210 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1211 } 1212 break; 1213 } 1214 } 1215 if (Constraint.size() > 0 && Constraint[0] == '{') { 1216 // We need to override the default register parsing for GPRs and FPRs 1217 // because the interpretation depends on VT. The internal names of 1218 // the registers are also different from the external names 1219 // (F0D and F0S instead of F0, etc.). 1220 if (Constraint[1] == 'r') { 1221 if (VT == MVT::i32) 1222 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1223 SystemZMC::GR32Regs, 16); 1224 if (VT == MVT::i128) 1225 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1226 SystemZMC::GR128Regs, 16); 1227 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1228 SystemZMC::GR64Regs, 16); 1229 } 1230 if (Constraint[1] == 'f') { 1231 if (useSoftFloat()) 1232 return std::make_pair( 1233 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1234 if (VT == MVT::f32) 1235 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1236 SystemZMC::FP32Regs, 16); 1237 if (VT == MVT::f128) 1238 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1239 SystemZMC::FP128Regs, 16); 1240 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1241 SystemZMC::FP64Regs, 16); 1242 } 1243 if (Constraint[1] == 'v') { 1244 if (!Subtarget.hasVector()) 1245 return std::make_pair( 1246 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1247 if (VT == MVT::f32) 1248 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1249 SystemZMC::VR32Regs, 32); 1250 if (VT == MVT::f64) 1251 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1252 SystemZMC::VR64Regs, 32); 1253 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1254 SystemZMC::VR128Regs, 32); 1255 } 1256 } 1257 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1258 } 1259 1260 // FIXME? Maybe this could be a TableGen attribute on some registers and 1261 // this table could be generated automatically from RegInfo. 1262 Register 1263 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1264 const MachineFunction &MF) const { 1265 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 1266 1267 Register Reg = 1268 StringSwitch<Register>(RegName) 1269 .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0) 1270 .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0) 1271 .Default(0); 1272 1273 if (Reg) 1274 return Reg; 1275 report_fatal_error("Invalid register name global variable"); 1276 } 1277 1278 void SystemZTargetLowering:: 1279 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1280 std::vector<SDValue> &Ops, 1281 SelectionDAG &DAG) const { 1282 // Only support length 1 constraints for now. 1283 if (Constraint.length() == 1) { 1284 switch (Constraint[0]) { 1285 case 'I': // Unsigned 8-bit constant 1286 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1287 if (isUInt<8>(C->getZExtValue())) 1288 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1289 Op.getValueType())); 1290 return; 1291 1292 case 'J': // Unsigned 12-bit constant 1293 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1294 if (isUInt<12>(C->getZExtValue())) 1295 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1296 Op.getValueType())); 1297 return; 1298 1299 case 'K': // Signed 16-bit constant 1300 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1301 if (isInt<16>(C->getSExtValue())) 1302 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1303 Op.getValueType())); 1304 return; 1305 1306 case 'L': // Signed 20-bit displacement (on all targets we support) 1307 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1308 if (isInt<20>(C->getSExtValue())) 1309 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1310 Op.getValueType())); 1311 return; 1312 1313 case 'M': // 0x7fffffff 1314 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1315 if (C->getZExtValue() == 0x7fffffff) 1316 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1317 Op.getValueType())); 1318 return; 1319 } 1320 } 1321 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // Calling conventions 1326 //===----------------------------------------------------------------------===// 1327 1328 #include "SystemZGenCallingConv.inc" 1329 1330 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1331 CallingConv::ID) const { 1332 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1333 SystemZ::R14D, 0 }; 1334 return ScratchRegs; 1335 } 1336 1337 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1338 Type *ToType) const { 1339 return isTruncateFree(FromType, ToType); 1340 } 1341 1342 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1343 return CI->isTailCall(); 1344 } 1345 1346 // We do not yet support 128-bit single-element vector types. If the user 1347 // attempts to use such types as function argument or return type, prefer 1348 // to error out instead of emitting code violating the ABI. 1349 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1350 if (ArgVT.isVector() && !VT.isVector()) 1351 report_fatal_error("Unsupported vector argument or return type"); 1352 } 1353 1354 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1355 for (unsigned i = 0; i < Ins.size(); ++i) 1356 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1357 } 1358 1359 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1360 for (unsigned i = 0; i < Outs.size(); ++i) 1361 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1362 } 1363 1364 // Value is a value that has been passed to us in the location described by VA 1365 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1366 // any loads onto Chain. 1367 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1368 CCValAssign &VA, SDValue Chain, 1369 SDValue Value) { 1370 // If the argument has been promoted from a smaller type, insert an 1371 // assertion to capture this. 1372 if (VA.getLocInfo() == CCValAssign::SExt) 1373 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1374 DAG.getValueType(VA.getValVT())); 1375 else if (VA.getLocInfo() == CCValAssign::ZExt) 1376 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1377 DAG.getValueType(VA.getValVT())); 1378 1379 if (VA.isExtInLoc()) 1380 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1381 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1382 // If this is a short vector argument loaded from the stack, 1383 // extend from i64 to full vector size and then bitcast. 1384 assert(VA.getLocVT() == MVT::i64); 1385 assert(VA.getValVT().isVector()); 1386 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1387 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1388 } else 1389 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1390 return Value; 1391 } 1392 1393 // Value is a value of type VA.getValVT() that we need to copy into 1394 // the location described by VA. Return a copy of Value converted to 1395 // VA.getValVT(). The caller is responsible for handling indirect values. 1396 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1397 CCValAssign &VA, SDValue Value) { 1398 switch (VA.getLocInfo()) { 1399 case CCValAssign::SExt: 1400 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1401 case CCValAssign::ZExt: 1402 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1403 case CCValAssign::AExt: 1404 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1405 case CCValAssign::BCvt: { 1406 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1407 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 || 1408 VA.getValVT() == MVT::f128); 1409 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1410 ? MVT::v2i64 1411 : VA.getLocVT(); 1412 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1413 // For ELF, this is a short vector argument to be stored to the stack, 1414 // bitcast to v2i64 and then extract first element. 1415 if (BitCastToType == MVT::v2i64) 1416 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1417 DAG.getConstant(0, DL, MVT::i32)); 1418 return Value; 1419 } 1420 case CCValAssign::Full: 1421 return Value; 1422 default: 1423 llvm_unreachable("Unhandled getLocInfo()"); 1424 } 1425 } 1426 1427 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1428 SDLoc DL(In); 1429 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1430 DAG.getIntPtrConstant(0, DL)); 1431 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1432 DAG.getIntPtrConstant(1, DL)); 1433 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1434 MVT::Untyped, Hi, Lo); 1435 return SDValue(Pair, 0); 1436 } 1437 1438 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1439 SDLoc DL(In); 1440 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1441 DL, MVT::i64, In); 1442 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1443 DL, MVT::i64, In); 1444 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1445 } 1446 1447 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1448 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1449 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1450 EVT ValueVT = Val.getValueType(); 1451 assert((ValueVT != MVT::i128 || 1452 ((NumParts == 1 && PartVT == MVT::Untyped) || 1453 (NumParts == 2 && PartVT == MVT::i64))) && 1454 "Unknown handling of i128 value."); 1455 if (ValueVT == MVT::i128 && NumParts == 1) { 1456 // Inline assembly operand. 1457 Parts[0] = lowerI128ToGR128(DAG, Val); 1458 return true; 1459 } 1460 return false; 1461 } 1462 1463 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1464 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1465 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1466 assert((ValueVT != MVT::i128 || 1467 ((NumParts == 1 && PartVT == MVT::Untyped) || 1468 (NumParts == 2 && PartVT == MVT::i64))) && 1469 "Unknown handling of i128 value."); 1470 if (ValueVT == MVT::i128 && NumParts == 1) 1471 // Inline assembly operand. 1472 return lowerGR128ToI128(DAG, Parts[0]); 1473 return SDValue(); 1474 } 1475 1476 SDValue SystemZTargetLowering::LowerFormalArguments( 1477 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1478 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1479 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1480 MachineFunction &MF = DAG.getMachineFunction(); 1481 MachineFrameInfo &MFI = MF.getFrameInfo(); 1482 MachineRegisterInfo &MRI = MF.getRegInfo(); 1483 SystemZMachineFunctionInfo *FuncInfo = 1484 MF.getInfo<SystemZMachineFunctionInfo>(); 1485 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1486 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1487 1488 // Detect unsupported vector argument types. 1489 if (Subtarget.hasVector()) 1490 VerifyVectorTypes(Ins); 1491 1492 // Assign locations to all of the incoming arguments. 1493 SmallVector<CCValAssign, 16> ArgLocs; 1494 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1495 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1496 1497 unsigned NumFixedGPRs = 0; 1498 unsigned NumFixedFPRs = 0; 1499 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1500 SDValue ArgValue; 1501 CCValAssign &VA = ArgLocs[I]; 1502 EVT LocVT = VA.getLocVT(); 1503 if (VA.isRegLoc()) { 1504 // Arguments passed in registers 1505 const TargetRegisterClass *RC; 1506 switch (LocVT.getSimpleVT().SimpleTy) { 1507 default: 1508 // Integers smaller than i64 should be promoted to i64. 1509 llvm_unreachable("Unexpected argument type"); 1510 case MVT::i32: 1511 NumFixedGPRs += 1; 1512 RC = &SystemZ::GR32BitRegClass; 1513 break; 1514 case MVT::i64: 1515 NumFixedGPRs += 1; 1516 RC = &SystemZ::GR64BitRegClass; 1517 break; 1518 case MVT::f32: 1519 NumFixedFPRs += 1; 1520 RC = &SystemZ::FP32BitRegClass; 1521 break; 1522 case MVT::f64: 1523 NumFixedFPRs += 1; 1524 RC = &SystemZ::FP64BitRegClass; 1525 break; 1526 case MVT::f128: 1527 NumFixedFPRs += 2; 1528 RC = &SystemZ::FP128BitRegClass; 1529 break; 1530 case MVT::v16i8: 1531 case MVT::v8i16: 1532 case MVT::v4i32: 1533 case MVT::v2i64: 1534 case MVT::v4f32: 1535 case MVT::v2f64: 1536 RC = &SystemZ::VR128BitRegClass; 1537 break; 1538 } 1539 1540 Register VReg = MRI.createVirtualRegister(RC); 1541 MRI.addLiveIn(VA.getLocReg(), VReg); 1542 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1543 } else { 1544 assert(VA.isMemLoc() && "Argument not register or memory"); 1545 1546 // Create the frame index object for this incoming parameter. 1547 // FIXME: Pre-include call frame size in the offset, should not 1548 // need to manually add it here. 1549 int64_t ArgSPOffset = VA.getLocMemOffset(); 1550 if (Subtarget.isTargetXPLINK64()) { 1551 auto &XPRegs = 1552 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1553 ArgSPOffset += XPRegs.getCallFrameSize(); 1554 } 1555 int FI = 1556 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1557 1558 // Create the SelectionDAG nodes corresponding to a load 1559 // from this parameter. Unpromoted ints and floats are 1560 // passed as right-justified 8-byte values. 1561 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1562 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1563 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1564 DAG.getIntPtrConstant(4, DL)); 1565 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1566 MachinePointerInfo::getFixedStack(MF, FI)); 1567 } 1568 1569 // Convert the value of the argument register into the value that's 1570 // being passed. 1571 if (VA.getLocInfo() == CCValAssign::Indirect) { 1572 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1573 MachinePointerInfo())); 1574 // If the original argument was split (e.g. i128), we need 1575 // to load all parts of it here (using the same address). 1576 unsigned ArgIndex = Ins[I].OrigArgIndex; 1577 assert (Ins[I].PartOffset == 0); 1578 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1579 CCValAssign &PartVA = ArgLocs[I + 1]; 1580 unsigned PartOffset = Ins[I + 1].PartOffset; 1581 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1582 DAG.getIntPtrConstant(PartOffset, DL)); 1583 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1584 MachinePointerInfo())); 1585 ++I; 1586 } 1587 } else 1588 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1589 } 1590 1591 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1592 if (IsVarArg && Subtarget.isTargetELF()) { 1593 // Save the number of non-varargs registers for later use by va_start, etc. 1594 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1595 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1596 1597 // Likewise the address (in the form of a frame index) of where the 1598 // first stack vararg would be. The 1-byte size here is arbitrary. 1599 int64_t StackSize = CCInfo.getNextStackOffset(); 1600 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1601 1602 // ...and a similar frame index for the caller-allocated save area 1603 // that will be used to store the incoming registers. 1604 int64_t RegSaveOffset = 1605 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1606 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1607 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1608 1609 // Store the FPR varargs in the reserved frame slots. (We store the 1610 // GPRs as part of the prologue.) 1611 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1612 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1613 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1614 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1615 int FI = 1616 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1617 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1618 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1619 &SystemZ::FP64BitRegClass); 1620 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1621 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1622 MachinePointerInfo::getFixedStack(MF, FI)); 1623 } 1624 // Join the stores, which are independent of one another. 1625 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1626 makeArrayRef(&MemOps[NumFixedFPRs], 1627 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1628 } 1629 } 1630 1631 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1632 // register (R5) 1633 return Chain; 1634 } 1635 1636 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1637 SmallVectorImpl<CCValAssign> &ArgLocs, 1638 SmallVectorImpl<ISD::OutputArg> &Outs) { 1639 // Punt if there are any indirect or stack arguments, or if the call 1640 // needs the callee-saved argument register R6, or if the call uses 1641 // the callee-saved register arguments SwiftSelf and SwiftError. 1642 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1643 CCValAssign &VA = ArgLocs[I]; 1644 if (VA.getLocInfo() == CCValAssign::Indirect) 1645 return false; 1646 if (!VA.isRegLoc()) 1647 return false; 1648 Register Reg = VA.getLocReg(); 1649 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1650 return false; 1651 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1652 return false; 1653 } 1654 return true; 1655 } 1656 1657 SDValue 1658 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1659 SmallVectorImpl<SDValue> &InVals) const { 1660 SelectionDAG &DAG = CLI.DAG; 1661 SDLoc &DL = CLI.DL; 1662 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1663 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1664 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1665 SDValue Chain = CLI.Chain; 1666 SDValue Callee = CLI.Callee; 1667 bool &IsTailCall = CLI.IsTailCall; 1668 CallingConv::ID CallConv = CLI.CallConv; 1669 bool IsVarArg = CLI.IsVarArg; 1670 MachineFunction &MF = DAG.getMachineFunction(); 1671 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1672 LLVMContext &Ctx = *DAG.getContext(); 1673 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1674 1675 // FIXME: z/OS support to be added in later. 1676 if (Subtarget.isTargetXPLINK64()) 1677 IsTailCall = false; 1678 1679 // Detect unsupported vector argument and return types. 1680 if (Subtarget.hasVector()) { 1681 VerifyVectorTypes(Outs); 1682 VerifyVectorTypes(Ins); 1683 } 1684 1685 // Analyze the operands of the call, assigning locations to each operand. 1686 SmallVector<CCValAssign, 16> ArgLocs; 1687 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1688 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1689 1690 // We don't support GuaranteedTailCallOpt, only automatically-detected 1691 // sibling calls. 1692 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1693 IsTailCall = false; 1694 1695 // Get a count of how many bytes are to be pushed on the stack. 1696 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1697 1698 if (Subtarget.isTargetXPLINK64()) 1699 // Although the XPLINK specifications for AMODE64 state that minimum size 1700 // of the param area is minimum 32 bytes and no rounding is otherwise 1701 // specified, we round this area in 64 bytes increments to be compatible 1702 // with existing compilers. 1703 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1704 1705 // Mark the start of the call. 1706 if (!IsTailCall) 1707 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1708 1709 // Copy argument values to their designated locations. 1710 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1711 SmallVector<SDValue, 8> MemOpChains; 1712 SDValue StackPtr; 1713 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1714 CCValAssign &VA = ArgLocs[I]; 1715 SDValue ArgValue = OutVals[I]; 1716 1717 if (VA.getLocInfo() == CCValAssign::Indirect) { 1718 // Store the argument in a stack slot and pass its address. 1719 unsigned ArgIndex = Outs[I].OrigArgIndex; 1720 EVT SlotVT; 1721 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1722 // Allocate the full stack space for a promoted (and split) argument. 1723 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1724 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1725 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1726 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1727 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1728 } else { 1729 SlotVT = Outs[I].ArgVT; 1730 } 1731 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1732 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1733 MemOpChains.push_back( 1734 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1735 MachinePointerInfo::getFixedStack(MF, FI))); 1736 // If the original argument was split (e.g. i128), we need 1737 // to store all parts of it here (and pass just one address). 1738 assert (Outs[I].PartOffset == 0); 1739 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1740 SDValue PartValue = OutVals[I + 1]; 1741 unsigned PartOffset = Outs[I + 1].PartOffset; 1742 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1743 DAG.getIntPtrConstant(PartOffset, DL)); 1744 MemOpChains.push_back( 1745 DAG.getStore(Chain, DL, PartValue, Address, 1746 MachinePointerInfo::getFixedStack(MF, FI))); 1747 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1748 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1749 ++I; 1750 } 1751 ArgValue = SpillSlot; 1752 } else 1753 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1754 1755 if (VA.isRegLoc()) { 1756 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1757 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1758 // and low values. 1759 if (VA.getLocVT() == MVT::i128) 1760 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1761 // Queue up the argument copies and emit them at the end. 1762 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1763 } else { 1764 assert(VA.isMemLoc() && "Argument not register or memory"); 1765 1766 // Work out the address of the stack slot. Unpromoted ints and 1767 // floats are passed as right-justified 8-byte values. 1768 if (!StackPtr.getNode()) 1769 StackPtr = DAG.getCopyFromReg(Chain, DL, 1770 Regs->getStackPointerRegister(), PtrVT); 1771 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1772 VA.getLocMemOffset(); 1773 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1774 Offset += 4; 1775 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1776 DAG.getIntPtrConstant(Offset, DL)); 1777 1778 // Emit the store. 1779 MemOpChains.push_back( 1780 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1781 1782 // Although long doubles or vectors are passed through the stack when 1783 // they are vararg (non-fixed arguments), if a long double or vector 1784 // occupies the third and fourth slot of the argument list GPR3 should 1785 // still shadow the third slot of the argument list. 1786 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1787 SDValue ShadowArgValue = 1788 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1789 DAG.getIntPtrConstant(1, DL)); 1790 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1791 } 1792 } 1793 } 1794 1795 // Join the stores, which are independent of one another. 1796 if (!MemOpChains.empty()) 1797 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1798 1799 // Accept direct calls by converting symbolic call addresses to the 1800 // associated Target* opcodes. Force %r1 to be used for indirect 1801 // tail calls. 1802 SDValue Glue; 1803 // FIXME: Add support for XPLINK using the ADA register. 1804 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1805 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1806 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1807 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1808 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1809 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1810 } else if (IsTailCall) { 1811 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1812 Glue = Chain.getValue(1); 1813 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1814 } 1815 1816 // Build a sequence of copy-to-reg nodes, chained and glued together. 1817 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1818 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1819 RegsToPass[I].second, Glue); 1820 Glue = Chain.getValue(1); 1821 } 1822 1823 // The first call operand is the chain and the second is the target address. 1824 SmallVector<SDValue, 8> Ops; 1825 Ops.push_back(Chain); 1826 Ops.push_back(Callee); 1827 1828 // Add argument registers to the end of the list so that they are 1829 // known live into the call. 1830 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1831 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1832 RegsToPass[I].second.getValueType())); 1833 1834 // Add a register mask operand representing the call-preserved registers. 1835 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1836 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1837 assert(Mask && "Missing call preserved mask for calling convention"); 1838 Ops.push_back(DAG.getRegisterMask(Mask)); 1839 1840 // Glue the call to the argument copies, if any. 1841 if (Glue.getNode()) 1842 Ops.push_back(Glue); 1843 1844 // Emit the call. 1845 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1846 if (IsTailCall) 1847 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1848 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1849 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1850 Glue = Chain.getValue(1); 1851 1852 // Mark the end of the call, which is glued to the call itself. 1853 Chain = DAG.getCALLSEQ_END(Chain, 1854 DAG.getConstant(NumBytes, DL, PtrVT, true), 1855 DAG.getConstant(0, DL, PtrVT, true), 1856 Glue, DL); 1857 Glue = Chain.getValue(1); 1858 1859 // Assign locations to each value returned by this call. 1860 SmallVector<CCValAssign, 16> RetLocs; 1861 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1862 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1863 1864 // Copy all of the result registers out of their specified physreg. 1865 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1866 CCValAssign &VA = RetLocs[I]; 1867 1868 // Copy the value out, gluing the copy to the end of the call sequence. 1869 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1870 VA.getLocVT(), Glue); 1871 Chain = RetValue.getValue(1); 1872 Glue = RetValue.getValue(2); 1873 1874 // Convert the value of the return register into the value that's 1875 // being returned. 1876 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1877 } 1878 1879 return Chain; 1880 } 1881 1882 // Generate a call taking the given operands as arguments and returning a 1883 // result of type RetVT. 1884 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 1885 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 1886 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 1887 bool DoesNotReturn, bool IsReturnValueUsed) const { 1888 TargetLowering::ArgListTy Args; 1889 Args.reserve(Ops.size()); 1890 1891 TargetLowering::ArgListEntry Entry; 1892 for (SDValue Op : Ops) { 1893 Entry.Node = Op; 1894 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1895 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1896 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1897 Args.push_back(Entry); 1898 } 1899 1900 SDValue Callee = 1901 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 1902 1903 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1904 TargetLowering::CallLoweringInfo CLI(DAG); 1905 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 1906 CLI.setDebugLoc(DL) 1907 .setChain(Chain) 1908 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 1909 .setNoReturn(DoesNotReturn) 1910 .setDiscardResult(!IsReturnValueUsed) 1911 .setSExtResult(SignExtend) 1912 .setZExtResult(!SignExtend); 1913 return LowerCallTo(CLI); 1914 } 1915 1916 bool SystemZTargetLowering:: 1917 CanLowerReturn(CallingConv::ID CallConv, 1918 MachineFunction &MF, bool isVarArg, 1919 const SmallVectorImpl<ISD::OutputArg> &Outs, 1920 LLVMContext &Context) const { 1921 // Detect unsupported vector return types. 1922 if (Subtarget.hasVector()) 1923 VerifyVectorTypes(Outs); 1924 1925 // Special case that we cannot easily detect in RetCC_SystemZ since 1926 // i128 is not a legal type. 1927 for (auto &Out : Outs) 1928 if (Out.ArgVT == MVT::i128) 1929 return false; 1930 1931 SmallVector<CCValAssign, 16> RetLocs; 1932 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1933 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1934 } 1935 1936 SDValue 1937 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1938 bool IsVarArg, 1939 const SmallVectorImpl<ISD::OutputArg> &Outs, 1940 const SmallVectorImpl<SDValue> &OutVals, 1941 const SDLoc &DL, SelectionDAG &DAG) const { 1942 MachineFunction &MF = DAG.getMachineFunction(); 1943 1944 // Detect unsupported vector return types. 1945 if (Subtarget.hasVector()) 1946 VerifyVectorTypes(Outs); 1947 1948 // Assign locations to each returned value. 1949 SmallVector<CCValAssign, 16> RetLocs; 1950 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1951 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1952 1953 // Quick exit for void returns 1954 if (RetLocs.empty()) 1955 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1956 1957 if (CallConv == CallingConv::GHC) 1958 report_fatal_error("GHC functions return void only"); 1959 1960 // Copy the result values into the output registers. 1961 SDValue Glue; 1962 SmallVector<SDValue, 4> RetOps; 1963 RetOps.push_back(Chain); 1964 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1965 CCValAssign &VA = RetLocs[I]; 1966 SDValue RetValue = OutVals[I]; 1967 1968 // Make the return register live on exit. 1969 assert(VA.isRegLoc() && "Can only return in registers!"); 1970 1971 // Promote the value as required. 1972 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1973 1974 // Chain and glue the copies together. 1975 Register Reg = VA.getLocReg(); 1976 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1977 Glue = Chain.getValue(1); 1978 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1979 } 1980 1981 // Update chain and glue. 1982 RetOps[0] = Chain; 1983 if (Glue.getNode()) 1984 RetOps.push_back(Glue); 1985 1986 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1987 } 1988 1989 // Return true if Op is an intrinsic node with chain that returns the CC value 1990 // as its only (other) argument. Provide the associated SystemZISD opcode and 1991 // the mask of valid CC values if so. 1992 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1993 unsigned &CCValid) { 1994 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1995 switch (Id) { 1996 case Intrinsic::s390_tbegin: 1997 Opcode = SystemZISD::TBEGIN; 1998 CCValid = SystemZ::CCMASK_TBEGIN; 1999 return true; 2000 2001 case Intrinsic::s390_tbegin_nofloat: 2002 Opcode = SystemZISD::TBEGIN_NOFLOAT; 2003 CCValid = SystemZ::CCMASK_TBEGIN; 2004 return true; 2005 2006 case Intrinsic::s390_tend: 2007 Opcode = SystemZISD::TEND; 2008 CCValid = SystemZ::CCMASK_TEND; 2009 return true; 2010 2011 default: 2012 return false; 2013 } 2014 } 2015 2016 // Return true if Op is an intrinsic node without chain that returns the 2017 // CC value as its final argument. Provide the associated SystemZISD 2018 // opcode and the mask of valid CC values if so. 2019 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 2020 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2021 switch (Id) { 2022 case Intrinsic::s390_vpkshs: 2023 case Intrinsic::s390_vpksfs: 2024 case Intrinsic::s390_vpksgs: 2025 Opcode = SystemZISD::PACKS_CC; 2026 CCValid = SystemZ::CCMASK_VCMP; 2027 return true; 2028 2029 case Intrinsic::s390_vpklshs: 2030 case Intrinsic::s390_vpklsfs: 2031 case Intrinsic::s390_vpklsgs: 2032 Opcode = SystemZISD::PACKLS_CC; 2033 CCValid = SystemZ::CCMASK_VCMP; 2034 return true; 2035 2036 case Intrinsic::s390_vceqbs: 2037 case Intrinsic::s390_vceqhs: 2038 case Intrinsic::s390_vceqfs: 2039 case Intrinsic::s390_vceqgs: 2040 Opcode = SystemZISD::VICMPES; 2041 CCValid = SystemZ::CCMASK_VCMP; 2042 return true; 2043 2044 case Intrinsic::s390_vchbs: 2045 case Intrinsic::s390_vchhs: 2046 case Intrinsic::s390_vchfs: 2047 case Intrinsic::s390_vchgs: 2048 Opcode = SystemZISD::VICMPHS; 2049 CCValid = SystemZ::CCMASK_VCMP; 2050 return true; 2051 2052 case Intrinsic::s390_vchlbs: 2053 case Intrinsic::s390_vchlhs: 2054 case Intrinsic::s390_vchlfs: 2055 case Intrinsic::s390_vchlgs: 2056 Opcode = SystemZISD::VICMPHLS; 2057 CCValid = SystemZ::CCMASK_VCMP; 2058 return true; 2059 2060 case Intrinsic::s390_vtm: 2061 Opcode = SystemZISD::VTM; 2062 CCValid = SystemZ::CCMASK_VCMP; 2063 return true; 2064 2065 case Intrinsic::s390_vfaebs: 2066 case Intrinsic::s390_vfaehs: 2067 case Intrinsic::s390_vfaefs: 2068 Opcode = SystemZISD::VFAE_CC; 2069 CCValid = SystemZ::CCMASK_ANY; 2070 return true; 2071 2072 case Intrinsic::s390_vfaezbs: 2073 case Intrinsic::s390_vfaezhs: 2074 case Intrinsic::s390_vfaezfs: 2075 Opcode = SystemZISD::VFAEZ_CC; 2076 CCValid = SystemZ::CCMASK_ANY; 2077 return true; 2078 2079 case Intrinsic::s390_vfeebs: 2080 case Intrinsic::s390_vfeehs: 2081 case Intrinsic::s390_vfeefs: 2082 Opcode = SystemZISD::VFEE_CC; 2083 CCValid = SystemZ::CCMASK_ANY; 2084 return true; 2085 2086 case Intrinsic::s390_vfeezbs: 2087 case Intrinsic::s390_vfeezhs: 2088 case Intrinsic::s390_vfeezfs: 2089 Opcode = SystemZISD::VFEEZ_CC; 2090 CCValid = SystemZ::CCMASK_ANY; 2091 return true; 2092 2093 case Intrinsic::s390_vfenebs: 2094 case Intrinsic::s390_vfenehs: 2095 case Intrinsic::s390_vfenefs: 2096 Opcode = SystemZISD::VFENE_CC; 2097 CCValid = SystemZ::CCMASK_ANY; 2098 return true; 2099 2100 case Intrinsic::s390_vfenezbs: 2101 case Intrinsic::s390_vfenezhs: 2102 case Intrinsic::s390_vfenezfs: 2103 Opcode = SystemZISD::VFENEZ_CC; 2104 CCValid = SystemZ::CCMASK_ANY; 2105 return true; 2106 2107 case Intrinsic::s390_vistrbs: 2108 case Intrinsic::s390_vistrhs: 2109 case Intrinsic::s390_vistrfs: 2110 Opcode = SystemZISD::VISTR_CC; 2111 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2112 return true; 2113 2114 case Intrinsic::s390_vstrcbs: 2115 case Intrinsic::s390_vstrchs: 2116 case Intrinsic::s390_vstrcfs: 2117 Opcode = SystemZISD::VSTRC_CC; 2118 CCValid = SystemZ::CCMASK_ANY; 2119 return true; 2120 2121 case Intrinsic::s390_vstrczbs: 2122 case Intrinsic::s390_vstrczhs: 2123 case Intrinsic::s390_vstrczfs: 2124 Opcode = SystemZISD::VSTRCZ_CC; 2125 CCValid = SystemZ::CCMASK_ANY; 2126 return true; 2127 2128 case Intrinsic::s390_vstrsb: 2129 case Intrinsic::s390_vstrsh: 2130 case Intrinsic::s390_vstrsf: 2131 Opcode = SystemZISD::VSTRS_CC; 2132 CCValid = SystemZ::CCMASK_ANY; 2133 return true; 2134 2135 case Intrinsic::s390_vstrszb: 2136 case Intrinsic::s390_vstrszh: 2137 case Intrinsic::s390_vstrszf: 2138 Opcode = SystemZISD::VSTRSZ_CC; 2139 CCValid = SystemZ::CCMASK_ANY; 2140 return true; 2141 2142 case Intrinsic::s390_vfcedbs: 2143 case Intrinsic::s390_vfcesbs: 2144 Opcode = SystemZISD::VFCMPES; 2145 CCValid = SystemZ::CCMASK_VCMP; 2146 return true; 2147 2148 case Intrinsic::s390_vfchdbs: 2149 case Intrinsic::s390_vfchsbs: 2150 Opcode = SystemZISD::VFCMPHS; 2151 CCValid = SystemZ::CCMASK_VCMP; 2152 return true; 2153 2154 case Intrinsic::s390_vfchedbs: 2155 case Intrinsic::s390_vfchesbs: 2156 Opcode = SystemZISD::VFCMPHES; 2157 CCValid = SystemZ::CCMASK_VCMP; 2158 return true; 2159 2160 case Intrinsic::s390_vftcidb: 2161 case Intrinsic::s390_vftcisb: 2162 Opcode = SystemZISD::VFTCI; 2163 CCValid = SystemZ::CCMASK_VCMP; 2164 return true; 2165 2166 case Intrinsic::s390_tdc: 2167 Opcode = SystemZISD::TDC; 2168 CCValid = SystemZ::CCMASK_TDC; 2169 return true; 2170 2171 default: 2172 return false; 2173 } 2174 } 2175 2176 // Emit an intrinsic with chain and an explicit CC register result. 2177 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2178 unsigned Opcode) { 2179 // Copy all operands except the intrinsic ID. 2180 unsigned NumOps = Op.getNumOperands(); 2181 SmallVector<SDValue, 6> Ops; 2182 Ops.reserve(NumOps - 1); 2183 Ops.push_back(Op.getOperand(0)); 2184 for (unsigned I = 2; I < NumOps; ++I) 2185 Ops.push_back(Op.getOperand(I)); 2186 2187 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2188 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2189 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2190 SDValue OldChain = SDValue(Op.getNode(), 1); 2191 SDValue NewChain = SDValue(Intr.getNode(), 1); 2192 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2193 return Intr.getNode(); 2194 } 2195 2196 // Emit an intrinsic with an explicit CC register result. 2197 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2198 unsigned Opcode) { 2199 // Copy all operands except the intrinsic ID. 2200 unsigned NumOps = Op.getNumOperands(); 2201 SmallVector<SDValue, 6> Ops; 2202 Ops.reserve(NumOps - 1); 2203 for (unsigned I = 1; I < NumOps; ++I) 2204 Ops.push_back(Op.getOperand(I)); 2205 2206 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2207 return Intr.getNode(); 2208 } 2209 2210 // CC is a comparison that will be implemented using an integer or 2211 // floating-point comparison. Return the condition code mask for 2212 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2213 // unsigned comparisons and clear for signed ones. In the floating-point 2214 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2215 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2216 #define CONV(X) \ 2217 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2218 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2219 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2220 2221 switch (CC) { 2222 default: 2223 llvm_unreachable("Invalid integer condition!"); 2224 2225 CONV(EQ); 2226 CONV(NE); 2227 CONV(GT); 2228 CONV(GE); 2229 CONV(LT); 2230 CONV(LE); 2231 2232 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2233 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2234 } 2235 #undef CONV 2236 } 2237 2238 // If C can be converted to a comparison against zero, adjust the operands 2239 // as necessary. 2240 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2241 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2242 return; 2243 2244 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2245 if (!ConstOp1) 2246 return; 2247 2248 int64_t Value = ConstOp1->getSExtValue(); 2249 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2250 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2251 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2252 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2253 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2254 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2255 } 2256 } 2257 2258 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2259 // adjust the operands as necessary. 2260 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2261 Comparison &C) { 2262 // For us to make any changes, it must a comparison between a single-use 2263 // load and a constant. 2264 if (!C.Op0.hasOneUse() || 2265 C.Op0.getOpcode() != ISD::LOAD || 2266 C.Op1.getOpcode() != ISD::Constant) 2267 return; 2268 2269 // We must have an 8- or 16-bit load. 2270 auto *Load = cast<LoadSDNode>(C.Op0); 2271 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2272 if ((NumBits != 8 && NumBits != 16) || 2273 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2274 return; 2275 2276 // The load must be an extending one and the constant must be within the 2277 // range of the unextended value. 2278 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2279 uint64_t Value = ConstOp1->getZExtValue(); 2280 uint64_t Mask = (1 << NumBits) - 1; 2281 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2282 // Make sure that ConstOp1 is in range of C.Op0. 2283 int64_t SignedValue = ConstOp1->getSExtValue(); 2284 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2285 return; 2286 if (C.ICmpType != SystemZICMP::SignedOnly) { 2287 // Unsigned comparison between two sign-extended values is equivalent 2288 // to unsigned comparison between two zero-extended values. 2289 Value &= Mask; 2290 } else if (NumBits == 8) { 2291 // Try to treat the comparison as unsigned, so that we can use CLI. 2292 // Adjust CCMask and Value as necessary. 2293 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2294 // Test whether the high bit of the byte is set. 2295 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2296 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2297 // Test whether the high bit of the byte is clear. 2298 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2299 else 2300 // No instruction exists for this combination. 2301 return; 2302 C.ICmpType = SystemZICMP::UnsignedOnly; 2303 } 2304 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2305 if (Value > Mask) 2306 return; 2307 // If the constant is in range, we can use any comparison. 2308 C.ICmpType = SystemZICMP::Any; 2309 } else 2310 return; 2311 2312 // Make sure that the first operand is an i32 of the right extension type. 2313 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2314 ISD::SEXTLOAD : 2315 ISD::ZEXTLOAD); 2316 if (C.Op0.getValueType() != MVT::i32 || 2317 Load->getExtensionType() != ExtType) { 2318 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2319 Load->getBasePtr(), Load->getPointerInfo(), 2320 Load->getMemoryVT(), Load->getAlign(), 2321 Load->getMemOperand()->getFlags()); 2322 // Update the chain uses. 2323 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2324 } 2325 2326 // Make sure that the second operand is an i32 with the right value. 2327 if (C.Op1.getValueType() != MVT::i32 || 2328 Value != ConstOp1->getZExtValue()) 2329 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2330 } 2331 2332 // Return true if Op is either an unextended load, or a load suitable 2333 // for integer register-memory comparisons of type ICmpType. 2334 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2335 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2336 if (Load) { 2337 // There are no instructions to compare a register with a memory byte. 2338 if (Load->getMemoryVT() == MVT::i8) 2339 return false; 2340 // Otherwise decide on extension type. 2341 switch (Load->getExtensionType()) { 2342 case ISD::NON_EXTLOAD: 2343 return true; 2344 case ISD::SEXTLOAD: 2345 return ICmpType != SystemZICMP::UnsignedOnly; 2346 case ISD::ZEXTLOAD: 2347 return ICmpType != SystemZICMP::SignedOnly; 2348 default: 2349 break; 2350 } 2351 } 2352 return false; 2353 } 2354 2355 // Return true if it is better to swap the operands of C. 2356 static bool shouldSwapCmpOperands(const Comparison &C) { 2357 // Leave f128 comparisons alone, since they have no memory forms. 2358 if (C.Op0.getValueType() == MVT::f128) 2359 return false; 2360 2361 // Always keep a floating-point constant second, since comparisons with 2362 // zero can use LOAD TEST and comparisons with other constants make a 2363 // natural memory operand. 2364 if (isa<ConstantFPSDNode>(C.Op1)) 2365 return false; 2366 2367 // Never swap comparisons with zero since there are many ways to optimize 2368 // those later. 2369 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2370 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2371 return false; 2372 2373 // Also keep natural memory operands second if the loaded value is 2374 // only used here. Several comparisons have memory forms. 2375 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2376 return false; 2377 2378 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2379 // In that case we generally prefer the memory to be second. 2380 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2381 // The only exceptions are when the second operand is a constant and 2382 // we can use things like CHHSI. 2383 if (!ConstOp1) 2384 return true; 2385 // The unsigned memory-immediate instructions can handle 16-bit 2386 // unsigned integers. 2387 if (C.ICmpType != SystemZICMP::SignedOnly && 2388 isUInt<16>(ConstOp1->getZExtValue())) 2389 return false; 2390 // The signed memory-immediate instructions can handle 16-bit 2391 // signed integers. 2392 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2393 isInt<16>(ConstOp1->getSExtValue())) 2394 return false; 2395 return true; 2396 } 2397 2398 // Try to promote the use of CGFR and CLGFR. 2399 unsigned Opcode0 = C.Op0.getOpcode(); 2400 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2401 return true; 2402 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2403 return true; 2404 if (C.ICmpType != SystemZICMP::SignedOnly && 2405 Opcode0 == ISD::AND && 2406 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2407 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2408 return true; 2409 2410 return false; 2411 } 2412 2413 // Check whether C tests for equality between X and Y and whether X - Y 2414 // or Y - X is also computed. In that case it's better to compare the 2415 // result of the subtraction against zero. 2416 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2417 Comparison &C) { 2418 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2419 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2420 for (SDNode *N : C.Op0->uses()) { 2421 if (N->getOpcode() == ISD::SUB && 2422 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2423 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2424 C.Op0 = SDValue(N, 0); 2425 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2426 return; 2427 } 2428 } 2429 } 2430 } 2431 2432 // Check whether C compares a floating-point value with zero and if that 2433 // floating-point value is also negated. In this case we can use the 2434 // negation to set CC, so avoiding separate LOAD AND TEST and 2435 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2436 static void adjustForFNeg(Comparison &C) { 2437 // This optimization is invalid for strict comparisons, since FNEG 2438 // does not raise any exceptions. 2439 if (C.Chain) 2440 return; 2441 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2442 if (C1 && C1->isZero()) { 2443 for (SDNode *N : C.Op0->uses()) { 2444 if (N->getOpcode() == ISD::FNEG) { 2445 C.Op0 = SDValue(N, 0); 2446 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2447 return; 2448 } 2449 } 2450 } 2451 } 2452 2453 // Check whether C compares (shl X, 32) with 0 and whether X is 2454 // also sign-extended. In that case it is better to test the result 2455 // of the sign extension using LTGFR. 2456 // 2457 // This case is important because InstCombine transforms a comparison 2458 // with (sext (trunc X)) into a comparison with (shl X, 32). 2459 static void adjustForLTGFR(Comparison &C) { 2460 // Check for a comparison between (shl X, 32) and 0. 2461 if (C.Op0.getOpcode() == ISD::SHL && 2462 C.Op0.getValueType() == MVT::i64 && 2463 C.Op1.getOpcode() == ISD::Constant && 2464 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2465 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2466 if (C1 && C1->getZExtValue() == 32) { 2467 SDValue ShlOp0 = C.Op0.getOperand(0); 2468 // See whether X has any SIGN_EXTEND_INREG uses. 2469 for (SDNode *N : ShlOp0->uses()) { 2470 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2471 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2472 C.Op0 = SDValue(N, 0); 2473 return; 2474 } 2475 } 2476 } 2477 } 2478 } 2479 2480 // If C compares the truncation of an extending load, try to compare 2481 // the untruncated value instead. This exposes more opportunities to 2482 // reuse CC. 2483 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2484 Comparison &C) { 2485 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2486 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2487 C.Op1.getOpcode() == ISD::Constant && 2488 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2489 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2490 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2491 C.Op0.getValueSizeInBits().getFixedSize()) { 2492 unsigned Type = L->getExtensionType(); 2493 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2494 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2495 C.Op0 = C.Op0.getOperand(0); 2496 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2497 } 2498 } 2499 } 2500 } 2501 2502 // Return true if shift operation N has an in-range constant shift value. 2503 // Store it in ShiftVal if so. 2504 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2505 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2506 if (!Shift) 2507 return false; 2508 2509 uint64_t Amount = Shift->getZExtValue(); 2510 if (Amount >= N.getValueSizeInBits()) 2511 return false; 2512 2513 ShiftVal = Amount; 2514 return true; 2515 } 2516 2517 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2518 // instruction and whether the CC value is descriptive enough to handle 2519 // a comparison of type Opcode between the AND result and CmpVal. 2520 // CCMask says which comparison result is being tested and BitSize is 2521 // the number of bits in the operands. If TEST UNDER MASK can be used, 2522 // return the corresponding CC mask, otherwise return 0. 2523 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2524 uint64_t Mask, uint64_t CmpVal, 2525 unsigned ICmpType) { 2526 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2527 2528 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2529 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2530 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2531 return 0; 2532 2533 // Work out the masks for the lowest and highest bits. 2534 unsigned HighShift = 63 - countLeadingZeros(Mask); 2535 uint64_t High = uint64_t(1) << HighShift; 2536 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2537 2538 // Signed ordered comparisons are effectively unsigned if the sign 2539 // bit is dropped. 2540 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2541 2542 // Check for equality comparisons with 0, or the equivalent. 2543 if (CmpVal == 0) { 2544 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2545 return SystemZ::CCMASK_TM_ALL_0; 2546 if (CCMask == SystemZ::CCMASK_CMP_NE) 2547 return SystemZ::CCMASK_TM_SOME_1; 2548 } 2549 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2550 if (CCMask == SystemZ::CCMASK_CMP_LT) 2551 return SystemZ::CCMASK_TM_ALL_0; 2552 if (CCMask == SystemZ::CCMASK_CMP_GE) 2553 return SystemZ::CCMASK_TM_SOME_1; 2554 } 2555 if (EffectivelyUnsigned && CmpVal < Low) { 2556 if (CCMask == SystemZ::CCMASK_CMP_LE) 2557 return SystemZ::CCMASK_TM_ALL_0; 2558 if (CCMask == SystemZ::CCMASK_CMP_GT) 2559 return SystemZ::CCMASK_TM_SOME_1; 2560 } 2561 2562 // Check for equality comparisons with the mask, or the equivalent. 2563 if (CmpVal == Mask) { 2564 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2565 return SystemZ::CCMASK_TM_ALL_1; 2566 if (CCMask == SystemZ::CCMASK_CMP_NE) 2567 return SystemZ::CCMASK_TM_SOME_0; 2568 } 2569 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2570 if (CCMask == SystemZ::CCMASK_CMP_GT) 2571 return SystemZ::CCMASK_TM_ALL_1; 2572 if (CCMask == SystemZ::CCMASK_CMP_LE) 2573 return SystemZ::CCMASK_TM_SOME_0; 2574 } 2575 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2576 if (CCMask == SystemZ::CCMASK_CMP_GE) 2577 return SystemZ::CCMASK_TM_ALL_1; 2578 if (CCMask == SystemZ::CCMASK_CMP_LT) 2579 return SystemZ::CCMASK_TM_SOME_0; 2580 } 2581 2582 // Check for ordered comparisons with the top bit. 2583 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2584 if (CCMask == SystemZ::CCMASK_CMP_LE) 2585 return SystemZ::CCMASK_TM_MSB_0; 2586 if (CCMask == SystemZ::CCMASK_CMP_GT) 2587 return SystemZ::CCMASK_TM_MSB_1; 2588 } 2589 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2590 if (CCMask == SystemZ::CCMASK_CMP_LT) 2591 return SystemZ::CCMASK_TM_MSB_0; 2592 if (CCMask == SystemZ::CCMASK_CMP_GE) 2593 return SystemZ::CCMASK_TM_MSB_1; 2594 } 2595 2596 // If there are just two bits, we can do equality checks for Low and High 2597 // as well. 2598 if (Mask == Low + High) { 2599 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2600 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2601 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2602 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2603 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2604 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2605 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2606 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2607 } 2608 2609 // Looks like we've exhausted our options. 2610 return 0; 2611 } 2612 2613 // See whether C can be implemented as a TEST UNDER MASK instruction. 2614 // Update the arguments with the TM version if so. 2615 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2616 Comparison &C) { 2617 // Check that we have a comparison with a constant. 2618 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2619 if (!ConstOp1) 2620 return; 2621 uint64_t CmpVal = ConstOp1->getZExtValue(); 2622 2623 // Check whether the nonconstant input is an AND with a constant mask. 2624 Comparison NewC(C); 2625 uint64_t MaskVal; 2626 ConstantSDNode *Mask = nullptr; 2627 if (C.Op0.getOpcode() == ISD::AND) { 2628 NewC.Op0 = C.Op0.getOperand(0); 2629 NewC.Op1 = C.Op0.getOperand(1); 2630 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2631 if (!Mask) 2632 return; 2633 MaskVal = Mask->getZExtValue(); 2634 } else { 2635 // There is no instruction to compare with a 64-bit immediate 2636 // so use TMHH instead if possible. We need an unsigned ordered 2637 // comparison with an i64 immediate. 2638 if (NewC.Op0.getValueType() != MVT::i64 || 2639 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2640 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2641 NewC.ICmpType == SystemZICMP::SignedOnly) 2642 return; 2643 // Convert LE and GT comparisons into LT and GE. 2644 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2645 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2646 if (CmpVal == uint64_t(-1)) 2647 return; 2648 CmpVal += 1; 2649 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2650 } 2651 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2652 // be masked off without changing the result. 2653 MaskVal = -(CmpVal & -CmpVal); 2654 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2655 } 2656 if (!MaskVal) 2657 return; 2658 2659 // Check whether the combination of mask, comparison value and comparison 2660 // type are suitable. 2661 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2662 unsigned NewCCMask, ShiftVal; 2663 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2664 NewC.Op0.getOpcode() == ISD::SHL && 2665 isSimpleShift(NewC.Op0, ShiftVal) && 2666 (MaskVal >> ShiftVal != 0) && 2667 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2668 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2669 MaskVal >> ShiftVal, 2670 CmpVal >> ShiftVal, 2671 SystemZICMP::Any))) { 2672 NewC.Op0 = NewC.Op0.getOperand(0); 2673 MaskVal >>= ShiftVal; 2674 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2675 NewC.Op0.getOpcode() == ISD::SRL && 2676 isSimpleShift(NewC.Op0, ShiftVal) && 2677 (MaskVal << ShiftVal != 0) && 2678 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2679 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2680 MaskVal << ShiftVal, 2681 CmpVal << ShiftVal, 2682 SystemZICMP::UnsignedOnly))) { 2683 NewC.Op0 = NewC.Op0.getOperand(0); 2684 MaskVal <<= ShiftVal; 2685 } else { 2686 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2687 NewC.ICmpType); 2688 if (!NewCCMask) 2689 return; 2690 } 2691 2692 // Go ahead and make the change. 2693 C.Opcode = SystemZISD::TM; 2694 C.Op0 = NewC.Op0; 2695 if (Mask && Mask->getZExtValue() == MaskVal) 2696 C.Op1 = SDValue(Mask, 0); 2697 else 2698 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2699 C.CCValid = SystemZ::CCMASK_TM; 2700 C.CCMask = NewCCMask; 2701 } 2702 2703 // See whether the comparison argument contains a redundant AND 2704 // and remove it if so. This sometimes happens due to the generic 2705 // BRCOND expansion. 2706 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2707 Comparison &C) { 2708 if (C.Op0.getOpcode() != ISD::AND) 2709 return; 2710 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2711 if (!Mask) 2712 return; 2713 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2714 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2715 return; 2716 2717 C.Op0 = C.Op0.getOperand(0); 2718 } 2719 2720 // Return a Comparison that tests the condition-code result of intrinsic 2721 // node Call against constant integer CC using comparison code Cond. 2722 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2723 // and CCValid is the set of possible condition-code results. 2724 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2725 SDValue Call, unsigned CCValid, uint64_t CC, 2726 ISD::CondCode Cond) { 2727 Comparison C(Call, SDValue(), SDValue()); 2728 C.Opcode = Opcode; 2729 C.CCValid = CCValid; 2730 if (Cond == ISD::SETEQ) 2731 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2732 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2733 else if (Cond == ISD::SETNE) 2734 // ...and the inverse of that. 2735 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2736 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2737 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2738 // always true for CC>3. 2739 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2740 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2741 // ...and the inverse of that. 2742 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2743 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2744 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2745 // always true for CC>3. 2746 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2747 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2748 // ...and the inverse of that. 2749 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2750 else 2751 llvm_unreachable("Unexpected integer comparison type"); 2752 C.CCMask &= CCValid; 2753 return C; 2754 } 2755 2756 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2757 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2758 ISD::CondCode Cond, const SDLoc &DL, 2759 SDValue Chain = SDValue(), 2760 bool IsSignaling = false) { 2761 if (CmpOp1.getOpcode() == ISD::Constant) { 2762 assert(!Chain); 2763 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2764 unsigned Opcode, CCValid; 2765 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2766 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2767 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2768 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2769 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2770 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2771 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2772 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2773 } 2774 Comparison C(CmpOp0, CmpOp1, Chain); 2775 C.CCMask = CCMaskForCondCode(Cond); 2776 if (C.Op0.getValueType().isFloatingPoint()) { 2777 C.CCValid = SystemZ::CCMASK_FCMP; 2778 if (!C.Chain) 2779 C.Opcode = SystemZISD::FCMP; 2780 else if (!IsSignaling) 2781 C.Opcode = SystemZISD::STRICT_FCMP; 2782 else 2783 C.Opcode = SystemZISD::STRICT_FCMPS; 2784 adjustForFNeg(C); 2785 } else { 2786 assert(!C.Chain); 2787 C.CCValid = SystemZ::CCMASK_ICMP; 2788 C.Opcode = SystemZISD::ICMP; 2789 // Choose the type of comparison. Equality and inequality tests can 2790 // use either signed or unsigned comparisons. The choice also doesn't 2791 // matter if both sign bits are known to be clear. In those cases we 2792 // want to give the main isel code the freedom to choose whichever 2793 // form fits best. 2794 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2795 C.CCMask == SystemZ::CCMASK_CMP_NE || 2796 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2797 C.ICmpType = SystemZICMP::Any; 2798 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2799 C.ICmpType = SystemZICMP::UnsignedOnly; 2800 else 2801 C.ICmpType = SystemZICMP::SignedOnly; 2802 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2803 adjustForRedundantAnd(DAG, DL, C); 2804 adjustZeroCmp(DAG, DL, C); 2805 adjustSubwordCmp(DAG, DL, C); 2806 adjustForSubtraction(DAG, DL, C); 2807 adjustForLTGFR(C); 2808 adjustICmpTruncate(DAG, DL, C); 2809 } 2810 2811 if (shouldSwapCmpOperands(C)) { 2812 std::swap(C.Op0, C.Op1); 2813 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2814 } 2815 2816 adjustForTestUnderMask(DAG, DL, C); 2817 return C; 2818 } 2819 2820 // Emit the comparison instruction described by C. 2821 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2822 if (!C.Op1.getNode()) { 2823 SDNode *Node; 2824 switch (C.Op0.getOpcode()) { 2825 case ISD::INTRINSIC_W_CHAIN: 2826 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2827 return SDValue(Node, 0); 2828 case ISD::INTRINSIC_WO_CHAIN: 2829 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2830 return SDValue(Node, Node->getNumValues() - 1); 2831 default: 2832 llvm_unreachable("Invalid comparison operands"); 2833 } 2834 } 2835 if (C.Opcode == SystemZISD::ICMP) 2836 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2837 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2838 if (C.Opcode == SystemZISD::TM) { 2839 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2840 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2841 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2842 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2843 } 2844 if (C.Chain) { 2845 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2846 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2847 } 2848 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2849 } 2850 2851 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2852 // 64 bits. Extend is the extension type to use. Store the high part 2853 // in Hi and the low part in Lo. 2854 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2855 SDValue Op0, SDValue Op1, SDValue &Hi, 2856 SDValue &Lo) { 2857 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2858 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2859 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2860 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2861 DAG.getConstant(32, DL, MVT::i64)); 2862 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2863 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2864 } 2865 2866 // Lower a binary operation that produces two VT results, one in each 2867 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2868 // and Opcode performs the GR128 operation. Store the even register result 2869 // in Even and the odd register result in Odd. 2870 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2871 unsigned Opcode, SDValue Op0, SDValue Op1, 2872 SDValue &Even, SDValue &Odd) { 2873 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2874 bool Is32Bit = is32Bit(VT); 2875 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2876 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2877 } 2878 2879 // Return an i32 value that is 1 if the CC value produced by CCReg is 2880 // in the mask CCMask and 0 otherwise. CC is known to have a value 2881 // in CCValid, so other values can be ignored. 2882 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2883 unsigned CCValid, unsigned CCMask) { 2884 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2885 DAG.getConstant(0, DL, MVT::i32), 2886 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2887 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2888 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2889 } 2890 2891 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2892 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2893 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2894 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2895 // floating-point comparisons. 2896 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2897 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2898 switch (CC) { 2899 case ISD::SETOEQ: 2900 case ISD::SETEQ: 2901 switch (Mode) { 2902 case CmpMode::Int: return SystemZISD::VICMPE; 2903 case CmpMode::FP: return SystemZISD::VFCMPE; 2904 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2905 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2906 } 2907 llvm_unreachable("Bad mode"); 2908 2909 case ISD::SETOGE: 2910 case ISD::SETGE: 2911 switch (Mode) { 2912 case CmpMode::Int: return 0; 2913 case CmpMode::FP: return SystemZISD::VFCMPHE; 2914 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2915 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2916 } 2917 llvm_unreachable("Bad mode"); 2918 2919 case ISD::SETOGT: 2920 case ISD::SETGT: 2921 switch (Mode) { 2922 case CmpMode::Int: return SystemZISD::VICMPH; 2923 case CmpMode::FP: return SystemZISD::VFCMPH; 2924 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2925 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2926 } 2927 llvm_unreachable("Bad mode"); 2928 2929 case ISD::SETUGT: 2930 switch (Mode) { 2931 case CmpMode::Int: return SystemZISD::VICMPHL; 2932 case CmpMode::FP: return 0; 2933 case CmpMode::StrictFP: return 0; 2934 case CmpMode::SignalingFP: return 0; 2935 } 2936 llvm_unreachable("Bad mode"); 2937 2938 default: 2939 return 0; 2940 } 2941 } 2942 2943 // Return the SystemZISD vector comparison operation for CC or its inverse, 2944 // or 0 if neither can be done directly. Indicate in Invert whether the 2945 // result is for the inverse of CC. Mode is as above. 2946 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2947 bool &Invert) { 2948 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2949 Invert = false; 2950 return Opcode; 2951 } 2952 2953 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2954 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2955 Invert = true; 2956 return Opcode; 2957 } 2958 2959 return 0; 2960 } 2961 2962 // Return a v2f64 that contains the extended form of elements Start and Start+1 2963 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2964 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2965 SDValue Op, SDValue Chain) { 2966 int Mask[] = { Start, -1, Start + 1, -1 }; 2967 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2968 if (Chain) { 2969 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2970 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2971 } 2972 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2973 } 2974 2975 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2976 // producing a result of type VT. If Chain is nonnull, return the strict form. 2977 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2978 const SDLoc &DL, EVT VT, 2979 SDValue CmpOp0, 2980 SDValue CmpOp1, 2981 SDValue Chain) const { 2982 // There is no hardware support for v4f32 (unless we have the vector 2983 // enhancements facility 1), so extend the vector into two v2f64s 2984 // and compare those. 2985 if (CmpOp0.getValueType() == MVT::v4f32 && 2986 !Subtarget.hasVectorEnhancements1()) { 2987 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2988 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2989 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2990 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2991 if (Chain) { 2992 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2993 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2994 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2995 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2996 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2997 H1.getValue(1), L1.getValue(1), 2998 HRes.getValue(1), LRes.getValue(1) }; 2999 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3000 SDValue Ops[2] = { Res, NewChain }; 3001 return DAG.getMergeValues(Ops, DL); 3002 } 3003 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 3004 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 3005 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3006 } 3007 if (Chain) { 3008 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3009 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3010 } 3011 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 3012 } 3013 3014 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3015 // an integer mask of type VT. If Chain is nonnull, we have a strict 3016 // floating-point comparison. If in addition IsSignaling is true, we have 3017 // a strict signaling floating-point comparison. 3018 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 3019 const SDLoc &DL, EVT VT, 3020 ISD::CondCode CC, 3021 SDValue CmpOp0, 3022 SDValue CmpOp1, 3023 SDValue Chain, 3024 bool IsSignaling) const { 3025 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3026 assert (!Chain || IsFP); 3027 assert (!IsSignaling || Chain); 3028 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3029 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 3030 bool Invert = false; 3031 SDValue Cmp; 3032 switch (CC) { 3033 // Handle tests for order using (or (ogt y x) (oge x y)). 3034 case ISD::SETUO: 3035 Invert = true; 3036 LLVM_FALLTHROUGH; 3037 case ISD::SETO: { 3038 assert(IsFP && "Unexpected integer comparison"); 3039 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3040 DL, VT, CmpOp1, CmpOp0, Chain); 3041 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3042 DL, VT, CmpOp0, CmpOp1, Chain); 3043 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3044 if (Chain) 3045 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3046 LT.getValue(1), GE.getValue(1)); 3047 break; 3048 } 3049 3050 // Handle <> tests using (or (ogt y x) (ogt x y)). 3051 case ISD::SETUEQ: 3052 Invert = true; 3053 LLVM_FALLTHROUGH; 3054 case ISD::SETONE: { 3055 assert(IsFP && "Unexpected integer comparison"); 3056 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3057 DL, VT, CmpOp1, CmpOp0, Chain); 3058 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3059 DL, VT, CmpOp0, CmpOp1, Chain); 3060 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3061 if (Chain) 3062 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3063 LT.getValue(1), GT.getValue(1)); 3064 break; 3065 } 3066 3067 // Otherwise a single comparison is enough. It doesn't really 3068 // matter whether we try the inversion or the swap first, since 3069 // there are no cases where both work. 3070 default: 3071 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3072 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3073 else { 3074 CC = ISD::getSetCCSwappedOperands(CC); 3075 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3076 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3077 else 3078 llvm_unreachable("Unhandled comparison"); 3079 } 3080 if (Chain) 3081 Chain = Cmp.getValue(1); 3082 break; 3083 } 3084 if (Invert) { 3085 SDValue Mask = 3086 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3087 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3088 } 3089 if (Chain && Chain.getNode() != Cmp.getNode()) { 3090 SDValue Ops[2] = { Cmp, Chain }; 3091 Cmp = DAG.getMergeValues(Ops, DL); 3092 } 3093 return Cmp; 3094 } 3095 3096 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3097 SelectionDAG &DAG) const { 3098 SDValue CmpOp0 = Op.getOperand(0); 3099 SDValue CmpOp1 = Op.getOperand(1); 3100 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3101 SDLoc DL(Op); 3102 EVT VT = Op.getValueType(); 3103 if (VT.isVector()) 3104 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3105 3106 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3107 SDValue CCReg = emitCmp(DAG, DL, C); 3108 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3109 } 3110 3111 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3112 SelectionDAG &DAG, 3113 bool IsSignaling) const { 3114 SDValue Chain = Op.getOperand(0); 3115 SDValue CmpOp0 = Op.getOperand(1); 3116 SDValue CmpOp1 = Op.getOperand(2); 3117 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3118 SDLoc DL(Op); 3119 EVT VT = Op.getNode()->getValueType(0); 3120 if (VT.isVector()) { 3121 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3122 Chain, IsSignaling); 3123 return Res.getValue(Op.getResNo()); 3124 } 3125 3126 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3127 SDValue CCReg = emitCmp(DAG, DL, C); 3128 CCReg->setFlags(Op->getFlags()); 3129 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3130 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3131 return DAG.getMergeValues(Ops, DL); 3132 } 3133 3134 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3135 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3136 SDValue CmpOp0 = Op.getOperand(2); 3137 SDValue CmpOp1 = Op.getOperand(3); 3138 SDValue Dest = Op.getOperand(4); 3139 SDLoc DL(Op); 3140 3141 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3142 SDValue CCReg = emitCmp(DAG, DL, C); 3143 return DAG.getNode( 3144 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3145 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3146 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3147 } 3148 3149 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3150 // allowing Pos and Neg to be wider than CmpOp. 3151 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3152 return (Neg.getOpcode() == ISD::SUB && 3153 Neg.getOperand(0).getOpcode() == ISD::Constant && 3154 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3155 Neg.getOperand(1) == Pos && 3156 (Pos == CmpOp || 3157 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3158 Pos.getOperand(0) == CmpOp))); 3159 } 3160 3161 // Return the absolute or negative absolute of Op; IsNegative decides which. 3162 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3163 bool IsNegative) { 3164 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3165 if (IsNegative) 3166 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3167 DAG.getConstant(0, DL, Op.getValueType()), Op); 3168 return Op; 3169 } 3170 3171 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3172 SelectionDAG &DAG) const { 3173 SDValue CmpOp0 = Op.getOperand(0); 3174 SDValue CmpOp1 = Op.getOperand(1); 3175 SDValue TrueOp = Op.getOperand(2); 3176 SDValue FalseOp = Op.getOperand(3); 3177 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3178 SDLoc DL(Op); 3179 3180 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3181 3182 // Check for absolute and negative-absolute selections, including those 3183 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3184 // This check supplements the one in DAGCombiner. 3185 if (C.Opcode == SystemZISD::ICMP && 3186 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3187 C.CCMask != SystemZ::CCMASK_CMP_NE && 3188 C.Op1.getOpcode() == ISD::Constant && 3189 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3190 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3191 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3192 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3193 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3194 } 3195 3196 SDValue CCReg = emitCmp(DAG, DL, C); 3197 SDValue Ops[] = {TrueOp, FalseOp, 3198 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3199 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3200 3201 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3202 } 3203 3204 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3205 SelectionDAG &DAG) const { 3206 SDLoc DL(Node); 3207 const GlobalValue *GV = Node->getGlobal(); 3208 int64_t Offset = Node->getOffset(); 3209 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3210 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3211 3212 SDValue Result; 3213 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3214 if (isInt<32>(Offset)) { 3215 // Assign anchors at 1<<12 byte boundaries. 3216 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3217 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3218 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3219 3220 // The offset can be folded into the address if it is aligned to a 3221 // halfword. 3222 Offset -= Anchor; 3223 if (Offset != 0 && (Offset & 1) == 0) { 3224 SDValue Full = 3225 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3226 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3227 Offset = 0; 3228 } 3229 } else { 3230 // Conservatively load a constant offset greater than 32 bits into a 3231 // register below. 3232 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3233 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3234 } 3235 } else { 3236 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3237 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3238 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3239 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3240 } 3241 3242 // If there was a non-zero offset that we didn't fold, create an explicit 3243 // addition for it. 3244 if (Offset != 0) 3245 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3246 DAG.getConstant(Offset, DL, PtrVT)); 3247 3248 return Result; 3249 } 3250 3251 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3252 SelectionDAG &DAG, 3253 unsigned Opcode, 3254 SDValue GOTOffset) const { 3255 SDLoc DL(Node); 3256 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3257 SDValue Chain = DAG.getEntryNode(); 3258 SDValue Glue; 3259 3260 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3261 CallingConv::GHC) 3262 report_fatal_error("In GHC calling convention TLS is not supported"); 3263 3264 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3265 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3266 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3267 Glue = Chain.getValue(1); 3268 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3269 Glue = Chain.getValue(1); 3270 3271 // The first call operand is the chain and the second is the TLS symbol. 3272 SmallVector<SDValue, 8> Ops; 3273 Ops.push_back(Chain); 3274 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3275 Node->getValueType(0), 3276 0, 0)); 3277 3278 // Add argument registers to the end of the list so that they are 3279 // known live into the call. 3280 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3281 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3282 3283 // Add a register mask operand representing the call-preserved registers. 3284 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3285 const uint32_t *Mask = 3286 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3287 assert(Mask && "Missing call preserved mask for calling convention"); 3288 Ops.push_back(DAG.getRegisterMask(Mask)); 3289 3290 // Glue the call to the argument copies. 3291 Ops.push_back(Glue); 3292 3293 // Emit the call. 3294 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3295 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3296 Glue = Chain.getValue(1); 3297 3298 // Copy the return value from %r2. 3299 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3300 } 3301 3302 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3303 SelectionDAG &DAG) const { 3304 SDValue Chain = DAG.getEntryNode(); 3305 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3306 3307 // The high part of the thread pointer is in access register 0. 3308 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3309 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3310 3311 // The low part of the thread pointer is in access register 1. 3312 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3313 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3314 3315 // Merge them into a single 64-bit address. 3316 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3317 DAG.getConstant(32, DL, PtrVT)); 3318 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3319 } 3320 3321 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3322 SelectionDAG &DAG) const { 3323 if (DAG.getTarget().useEmulatedTLS()) 3324 return LowerToTLSEmulatedModel(Node, DAG); 3325 SDLoc DL(Node); 3326 const GlobalValue *GV = Node->getGlobal(); 3327 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3328 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3329 3330 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3331 CallingConv::GHC) 3332 report_fatal_error("In GHC calling convention TLS is not supported"); 3333 3334 SDValue TP = lowerThreadPointer(DL, DAG); 3335 3336 // Get the offset of GA from the thread pointer, based on the TLS model. 3337 SDValue Offset; 3338 switch (model) { 3339 case TLSModel::GeneralDynamic: { 3340 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3341 SystemZConstantPoolValue *CPV = 3342 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3343 3344 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3345 Offset = DAG.getLoad( 3346 PtrVT, DL, DAG.getEntryNode(), Offset, 3347 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3348 3349 // Call __tls_get_offset to retrieve the offset. 3350 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3351 break; 3352 } 3353 3354 case TLSModel::LocalDynamic: { 3355 // Load the GOT offset of the module ID. 3356 SystemZConstantPoolValue *CPV = 3357 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3358 3359 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3360 Offset = DAG.getLoad( 3361 PtrVT, DL, DAG.getEntryNode(), Offset, 3362 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3363 3364 // Call __tls_get_offset to retrieve the module base offset. 3365 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3366 3367 // Note: The SystemZLDCleanupPass will remove redundant computations 3368 // of the module base offset. Count total number of local-dynamic 3369 // accesses to trigger execution of that pass. 3370 SystemZMachineFunctionInfo* MFI = 3371 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3372 MFI->incNumLocalDynamicTLSAccesses(); 3373 3374 // Add the per-symbol offset. 3375 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3376 3377 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3378 DTPOffset = DAG.getLoad( 3379 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3380 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3381 3382 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3383 break; 3384 } 3385 3386 case TLSModel::InitialExec: { 3387 // Load the offset from the GOT. 3388 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3389 SystemZII::MO_INDNTPOFF); 3390 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3391 Offset = 3392 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3393 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3394 break; 3395 } 3396 3397 case TLSModel::LocalExec: { 3398 // Force the offset into the constant pool and load it from there. 3399 SystemZConstantPoolValue *CPV = 3400 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3401 3402 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3403 Offset = DAG.getLoad( 3404 PtrVT, DL, DAG.getEntryNode(), Offset, 3405 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3406 break; 3407 } 3408 } 3409 3410 // Add the base and offset together. 3411 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3412 } 3413 3414 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3415 SelectionDAG &DAG) const { 3416 SDLoc DL(Node); 3417 const BlockAddress *BA = Node->getBlockAddress(); 3418 int64_t Offset = Node->getOffset(); 3419 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3420 3421 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3422 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3423 return Result; 3424 } 3425 3426 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3427 SelectionDAG &DAG) const { 3428 SDLoc DL(JT); 3429 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3430 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3431 3432 // Use LARL to load the address of the table. 3433 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3434 } 3435 3436 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3437 SelectionDAG &DAG) const { 3438 SDLoc DL(CP); 3439 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3440 3441 SDValue Result; 3442 if (CP->isMachineConstantPoolEntry()) 3443 Result = 3444 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3445 else 3446 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3447 CP->getOffset()); 3448 3449 // Use LARL to load the address of the constant pool entry. 3450 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3451 } 3452 3453 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3454 SelectionDAG &DAG) const { 3455 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3456 MachineFunction &MF = DAG.getMachineFunction(); 3457 MachineFrameInfo &MFI = MF.getFrameInfo(); 3458 MFI.setFrameAddressIsTaken(true); 3459 3460 SDLoc DL(Op); 3461 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3462 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3463 3464 // By definition, the frame address is the address of the back chain. (In 3465 // the case of packed stack without backchain, return the address where the 3466 // backchain would have been stored. This will either be an unused space or 3467 // contain a saved register). 3468 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3469 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3470 3471 // FIXME The frontend should detect this case. 3472 if (Depth > 0) { 3473 report_fatal_error("Unsupported stack frame traversal count"); 3474 } 3475 3476 return BackChain; 3477 } 3478 3479 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3480 SelectionDAG &DAG) const { 3481 MachineFunction &MF = DAG.getMachineFunction(); 3482 MachineFrameInfo &MFI = MF.getFrameInfo(); 3483 MFI.setReturnAddressIsTaken(true); 3484 3485 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3486 return SDValue(); 3487 3488 SDLoc DL(Op); 3489 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3490 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3491 3492 // FIXME The frontend should detect this case. 3493 if (Depth > 0) { 3494 report_fatal_error("Unsupported stack frame traversal count"); 3495 } 3496 3497 // Return R14D, which has the return address. Mark it an implicit live-in. 3498 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3499 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3500 } 3501 3502 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3503 SelectionDAG &DAG) const { 3504 SDLoc DL(Op); 3505 SDValue In = Op.getOperand(0); 3506 EVT InVT = In.getValueType(); 3507 EVT ResVT = Op.getValueType(); 3508 3509 // Convert loads directly. This is normally done by DAGCombiner, 3510 // but we need this case for bitcasts that are created during lowering 3511 // and which are then lowered themselves. 3512 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3513 if (ISD::isNormalLoad(LoadN)) { 3514 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3515 LoadN->getBasePtr(), LoadN->getMemOperand()); 3516 // Update the chain uses. 3517 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3518 return NewLoad; 3519 } 3520 3521 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3522 SDValue In64; 3523 if (Subtarget.hasHighWord()) { 3524 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3525 MVT::i64); 3526 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3527 MVT::i64, SDValue(U64, 0), In); 3528 } else { 3529 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3530 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3531 DAG.getConstant(32, DL, MVT::i64)); 3532 } 3533 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3534 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3535 DL, MVT::f32, Out64); 3536 } 3537 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3538 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3539 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3540 MVT::f64, SDValue(U64, 0), In); 3541 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3542 if (Subtarget.hasHighWord()) 3543 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3544 MVT::i32, Out64); 3545 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3546 DAG.getConstant(32, DL, MVT::i64)); 3547 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3548 } 3549 llvm_unreachable("Unexpected bitcast combination"); 3550 } 3551 3552 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3553 SelectionDAG &DAG) const { 3554 3555 if (Subtarget.isTargetXPLINK64()) 3556 return lowerVASTART_XPLINK(Op, DAG); 3557 else 3558 return lowerVASTART_ELF(Op, DAG); 3559 } 3560 3561 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3562 SelectionDAG &DAG) const { 3563 MachineFunction &MF = DAG.getMachineFunction(); 3564 SystemZMachineFunctionInfo *FuncInfo = 3565 MF.getInfo<SystemZMachineFunctionInfo>(); 3566 3567 SDLoc DL(Op); 3568 3569 // vastart just stores the address of the VarArgsFrameIndex slot into the 3570 // memory location argument. 3571 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3572 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3573 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3574 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3575 MachinePointerInfo(SV)); 3576 } 3577 3578 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3579 SelectionDAG &DAG) const { 3580 MachineFunction &MF = DAG.getMachineFunction(); 3581 SystemZMachineFunctionInfo *FuncInfo = 3582 MF.getInfo<SystemZMachineFunctionInfo>(); 3583 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3584 3585 SDValue Chain = Op.getOperand(0); 3586 SDValue Addr = Op.getOperand(1); 3587 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3588 SDLoc DL(Op); 3589 3590 // The initial values of each field. 3591 const unsigned NumFields = 4; 3592 SDValue Fields[NumFields] = { 3593 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3594 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3595 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3596 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3597 }; 3598 3599 // Store each field into its respective slot. 3600 SDValue MemOps[NumFields]; 3601 unsigned Offset = 0; 3602 for (unsigned I = 0; I < NumFields; ++I) { 3603 SDValue FieldAddr = Addr; 3604 if (Offset != 0) 3605 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3606 DAG.getIntPtrConstant(Offset, DL)); 3607 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3608 MachinePointerInfo(SV, Offset)); 3609 Offset += 8; 3610 } 3611 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3612 } 3613 3614 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3615 SelectionDAG &DAG) const { 3616 SDValue Chain = Op.getOperand(0); 3617 SDValue DstPtr = Op.getOperand(1); 3618 SDValue SrcPtr = Op.getOperand(2); 3619 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3620 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3621 SDLoc DL(Op); 3622 3623 uint32_t Sz = 3624 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3625 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3626 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3627 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3628 MachinePointerInfo(SrcSV)); 3629 } 3630 3631 SDValue 3632 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3633 SelectionDAG &DAG) const { 3634 if (Subtarget.isTargetXPLINK64()) 3635 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3636 else 3637 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3638 } 3639 3640 SDValue 3641 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3642 SelectionDAG &DAG) const { 3643 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3644 MachineFunction &MF = DAG.getMachineFunction(); 3645 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3646 SDValue Chain = Op.getOperand(0); 3647 SDValue Size = Op.getOperand(1); 3648 SDValue Align = Op.getOperand(2); 3649 SDLoc DL(Op); 3650 3651 // If user has set the no alignment function attribute, ignore 3652 // alloca alignments. 3653 uint64_t AlignVal = 3654 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3655 3656 uint64_t StackAlign = TFI->getStackAlignment(); 3657 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3658 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3659 3660 SDValue NeededSpace = Size; 3661 3662 // Add extra space for alignment if needed. 3663 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3664 if (ExtraAlignSpace) 3665 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3666 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3667 3668 bool IsSigned = false; 3669 bool DoesNotReturn = false; 3670 bool IsReturnValueUsed = false; 3671 EVT VT = Op.getValueType(); 3672 SDValue AllocaCall = 3673 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace), 3674 CallingConv::C, IsSigned, DL, DoesNotReturn, 3675 IsReturnValueUsed) 3676 .first; 3677 3678 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3679 // to end of call in order to ensure it isn't broken up from the call 3680 // sequence. 3681 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3682 Register SPReg = Regs.getStackPointerRegister(); 3683 Chain = AllocaCall.getValue(1); 3684 SDValue Glue = AllocaCall.getValue(2); 3685 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3686 Chain = NewSPRegNode.getValue(1); 3687 3688 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3689 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3690 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3691 3692 // Dynamically realign if needed. 3693 if (ExtraAlignSpace) { 3694 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3695 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3696 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3697 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3698 } 3699 3700 SDValue Ops[2] = {Result, Chain}; 3701 return DAG.getMergeValues(Ops, DL); 3702 } 3703 3704 SDValue 3705 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3706 SelectionDAG &DAG) const { 3707 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3708 MachineFunction &MF = DAG.getMachineFunction(); 3709 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3710 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3711 3712 SDValue Chain = Op.getOperand(0); 3713 SDValue Size = Op.getOperand(1); 3714 SDValue Align = Op.getOperand(2); 3715 SDLoc DL(Op); 3716 3717 // If user has set the no alignment function attribute, ignore 3718 // alloca alignments. 3719 uint64_t AlignVal = 3720 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3721 3722 uint64_t StackAlign = TFI->getStackAlignment(); 3723 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3724 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3725 3726 Register SPReg = getStackPointerRegisterToSaveRestore(); 3727 SDValue NeededSpace = Size; 3728 3729 // Get a reference to the stack pointer. 3730 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3731 3732 // If we need a backchain, save it now. 3733 SDValue Backchain; 3734 if (StoreBackchain) 3735 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3736 MachinePointerInfo()); 3737 3738 // Add extra space for alignment if needed. 3739 if (ExtraAlignSpace) 3740 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3741 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3742 3743 // Get the new stack pointer value. 3744 SDValue NewSP; 3745 if (hasInlineStackProbe(MF)) { 3746 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3747 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3748 Chain = NewSP.getValue(1); 3749 } 3750 else { 3751 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3752 // Copy the new stack pointer back. 3753 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3754 } 3755 3756 // The allocated data lives above the 160 bytes allocated for the standard 3757 // frame, plus any outgoing stack arguments. We don't know how much that 3758 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3759 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3760 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3761 3762 // Dynamically realign if needed. 3763 if (RequiredAlign > StackAlign) { 3764 Result = 3765 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3766 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3767 Result = 3768 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3769 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3770 } 3771 3772 if (StoreBackchain) 3773 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3774 MachinePointerInfo()); 3775 3776 SDValue Ops[2] = { Result, Chain }; 3777 return DAG.getMergeValues(Ops, DL); 3778 } 3779 3780 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3781 SDValue Op, SelectionDAG &DAG) const { 3782 SDLoc DL(Op); 3783 3784 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3785 } 3786 3787 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3788 SelectionDAG &DAG) const { 3789 EVT VT = Op.getValueType(); 3790 SDLoc DL(Op); 3791 SDValue Ops[2]; 3792 if (is32Bit(VT)) 3793 // Just do a normal 64-bit multiplication and extract the results. 3794 // We define this so that it can be used for constant division. 3795 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3796 Op.getOperand(1), Ops[1], Ops[0]); 3797 else if (Subtarget.hasMiscellaneousExtensions2()) 3798 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3799 // the high result in the even register. ISD::SMUL_LOHI is defined to 3800 // return the low half first, so the results are in reverse order. 3801 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3802 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3803 else { 3804 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3805 // 3806 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3807 // 3808 // but using the fact that the upper halves are either all zeros 3809 // or all ones: 3810 // 3811 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3812 // 3813 // and grouping the right terms together since they are quicker than the 3814 // multiplication: 3815 // 3816 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3817 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3818 SDValue LL = Op.getOperand(0); 3819 SDValue RL = Op.getOperand(1); 3820 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3821 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3822 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3823 // the high result in the even register. ISD::SMUL_LOHI is defined to 3824 // return the low half first, so the results are in reverse order. 3825 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3826 LL, RL, Ops[1], Ops[0]); 3827 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3828 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3829 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3830 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3831 } 3832 return DAG.getMergeValues(Ops, DL); 3833 } 3834 3835 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3836 SelectionDAG &DAG) const { 3837 EVT VT = Op.getValueType(); 3838 SDLoc DL(Op); 3839 SDValue Ops[2]; 3840 if (is32Bit(VT)) 3841 // Just do a normal 64-bit multiplication and extract the results. 3842 // We define this so that it can be used for constant division. 3843 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3844 Op.getOperand(1), Ops[1], Ops[0]); 3845 else 3846 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3847 // the high result in the even register. ISD::UMUL_LOHI is defined to 3848 // return the low half first, so the results are in reverse order. 3849 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3850 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3851 return DAG.getMergeValues(Ops, DL); 3852 } 3853 3854 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 SDValue Op0 = Op.getOperand(0); 3857 SDValue Op1 = Op.getOperand(1); 3858 EVT VT = Op.getValueType(); 3859 SDLoc DL(Op); 3860 3861 // We use DSGF for 32-bit division. This means the first operand must 3862 // always be 64-bit, and the second operand should be 32-bit whenever 3863 // that is possible, to improve performance. 3864 if (is32Bit(VT)) 3865 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3866 else if (DAG.ComputeNumSignBits(Op1) > 32) 3867 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3868 3869 // DSG(F) returns the remainder in the even register and the 3870 // quotient in the odd register. 3871 SDValue Ops[2]; 3872 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3873 return DAG.getMergeValues(Ops, DL); 3874 } 3875 3876 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3877 SelectionDAG &DAG) const { 3878 EVT VT = Op.getValueType(); 3879 SDLoc DL(Op); 3880 3881 // DL(G) returns the remainder in the even register and the 3882 // quotient in the odd register. 3883 SDValue Ops[2]; 3884 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3885 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3886 return DAG.getMergeValues(Ops, DL); 3887 } 3888 3889 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3890 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3891 3892 // Get the known-zero masks for each operand. 3893 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3894 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3895 DAG.computeKnownBits(Ops[1])}; 3896 3897 // See if the upper 32 bits of one operand and the lower 32 bits of the 3898 // other are known zero. They are the low and high operands respectively. 3899 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3900 Known[1].Zero.getZExtValue() }; 3901 unsigned High, Low; 3902 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3903 High = 1, Low = 0; 3904 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3905 High = 0, Low = 1; 3906 else 3907 return Op; 3908 3909 SDValue LowOp = Ops[Low]; 3910 SDValue HighOp = Ops[High]; 3911 3912 // If the high part is a constant, we're better off using IILH. 3913 if (HighOp.getOpcode() == ISD::Constant) 3914 return Op; 3915 3916 // If the low part is a constant that is outside the range of LHI, 3917 // then we're better off using IILF. 3918 if (LowOp.getOpcode() == ISD::Constant) { 3919 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3920 if (!isInt<16>(Value)) 3921 return Op; 3922 } 3923 3924 // Check whether the high part is an AND that doesn't change the 3925 // high 32 bits and just masks out low bits. We can skip it if so. 3926 if (HighOp.getOpcode() == ISD::AND && 3927 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3928 SDValue HighOp0 = HighOp.getOperand(0); 3929 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3930 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3931 HighOp = HighOp0; 3932 } 3933 3934 // Take advantage of the fact that all GR32 operations only change the 3935 // low 32 bits by truncating Low to an i32 and inserting it directly 3936 // using a subreg. The interesting cases are those where the truncation 3937 // can be folded. 3938 SDLoc DL(Op); 3939 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3940 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3941 MVT::i64, HighOp, Low32); 3942 } 3943 3944 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3945 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3946 SelectionDAG &DAG) const { 3947 SDNode *N = Op.getNode(); 3948 SDValue LHS = N->getOperand(0); 3949 SDValue RHS = N->getOperand(1); 3950 SDLoc DL(N); 3951 unsigned BaseOp = 0; 3952 unsigned CCValid = 0; 3953 unsigned CCMask = 0; 3954 3955 switch (Op.getOpcode()) { 3956 default: llvm_unreachable("Unknown instruction!"); 3957 case ISD::SADDO: 3958 BaseOp = SystemZISD::SADDO; 3959 CCValid = SystemZ::CCMASK_ARITH; 3960 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3961 break; 3962 case ISD::SSUBO: 3963 BaseOp = SystemZISD::SSUBO; 3964 CCValid = SystemZ::CCMASK_ARITH; 3965 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3966 break; 3967 case ISD::UADDO: 3968 BaseOp = SystemZISD::UADDO; 3969 CCValid = SystemZ::CCMASK_LOGICAL; 3970 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3971 break; 3972 case ISD::USUBO: 3973 BaseOp = SystemZISD::USUBO; 3974 CCValid = SystemZ::CCMASK_LOGICAL; 3975 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3976 break; 3977 } 3978 3979 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3980 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3981 3982 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3983 if (N->getValueType(1) == MVT::i1) 3984 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3985 3986 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3987 } 3988 3989 static bool isAddCarryChain(SDValue Carry) { 3990 while (Carry.getOpcode() == ISD::ADDCARRY) 3991 Carry = Carry.getOperand(2); 3992 return Carry.getOpcode() == ISD::UADDO; 3993 } 3994 3995 static bool isSubBorrowChain(SDValue Carry) { 3996 while (Carry.getOpcode() == ISD::SUBCARRY) 3997 Carry = Carry.getOperand(2); 3998 return Carry.getOpcode() == ISD::USUBO; 3999 } 4000 4001 // Lower ADDCARRY/SUBCARRY nodes. 4002 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 4003 SelectionDAG &DAG) const { 4004 4005 SDNode *N = Op.getNode(); 4006 MVT VT = N->getSimpleValueType(0); 4007 4008 // Let legalize expand this if it isn't a legal type yet. 4009 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 4010 return SDValue(); 4011 4012 SDValue LHS = N->getOperand(0); 4013 SDValue RHS = N->getOperand(1); 4014 SDValue Carry = Op.getOperand(2); 4015 SDLoc DL(N); 4016 unsigned BaseOp = 0; 4017 unsigned CCValid = 0; 4018 unsigned CCMask = 0; 4019 4020 switch (Op.getOpcode()) { 4021 default: llvm_unreachable("Unknown instruction!"); 4022 case ISD::ADDCARRY: 4023 if (!isAddCarryChain(Carry)) 4024 return SDValue(); 4025 4026 BaseOp = SystemZISD::ADDCARRY; 4027 CCValid = SystemZ::CCMASK_LOGICAL; 4028 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4029 break; 4030 case ISD::SUBCARRY: 4031 if (!isSubBorrowChain(Carry)) 4032 return SDValue(); 4033 4034 BaseOp = SystemZISD::SUBCARRY; 4035 CCValid = SystemZ::CCMASK_LOGICAL; 4036 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4037 break; 4038 } 4039 4040 // Set the condition code from the carry flag. 4041 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4042 DAG.getConstant(CCValid, DL, MVT::i32), 4043 DAG.getConstant(CCMask, DL, MVT::i32)); 4044 4045 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4046 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4047 4048 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4049 if (N->getValueType(1) == MVT::i1) 4050 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4051 4052 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4053 } 4054 4055 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4056 SelectionDAG &DAG) const { 4057 EVT VT = Op.getValueType(); 4058 SDLoc DL(Op); 4059 Op = Op.getOperand(0); 4060 4061 // Handle vector types via VPOPCT. 4062 if (VT.isVector()) { 4063 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4064 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4065 switch (VT.getScalarSizeInBits()) { 4066 case 8: 4067 break; 4068 case 16: { 4069 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4070 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4071 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4072 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4073 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4074 break; 4075 } 4076 case 32: { 4077 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4078 DAG.getConstant(0, DL, MVT::i32)); 4079 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4080 break; 4081 } 4082 case 64: { 4083 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4084 DAG.getConstant(0, DL, MVT::i32)); 4085 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4086 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4087 break; 4088 } 4089 default: 4090 llvm_unreachable("Unexpected type"); 4091 } 4092 return Op; 4093 } 4094 4095 // Get the known-zero mask for the operand. 4096 KnownBits Known = DAG.computeKnownBits(Op); 4097 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4098 if (NumSignificantBits == 0) 4099 return DAG.getConstant(0, DL, VT); 4100 4101 // Skip known-zero high parts of the operand. 4102 int64_t OrigBitSize = VT.getSizeInBits(); 4103 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 4104 BitSize = std::min(BitSize, OrigBitSize); 4105 4106 // The POPCNT instruction counts the number of bits in each byte. 4107 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4108 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4109 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4110 4111 // Add up per-byte counts in a binary tree. All bits of Op at 4112 // position larger than BitSize remain zero throughout. 4113 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4114 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4115 if (BitSize != OrigBitSize) 4116 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4117 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4118 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4119 } 4120 4121 // Extract overall result from high byte. 4122 if (BitSize > 8) 4123 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4124 DAG.getConstant(BitSize - 8, DL, VT)); 4125 4126 return Op; 4127 } 4128 4129 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4130 SelectionDAG &DAG) const { 4131 SDLoc DL(Op); 4132 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4133 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4134 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4135 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4136 4137 // The only fence that needs an instruction is a sequentially-consistent 4138 // cross-thread fence. 4139 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4140 FenceSSID == SyncScope::System) { 4141 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4142 Op.getOperand(0)), 4143 0); 4144 } 4145 4146 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4147 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4148 } 4149 4150 // Op is an atomic load. Lower it into a normal volatile load. 4151 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4152 SelectionDAG &DAG) const { 4153 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4154 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4155 Node->getChain(), Node->getBasePtr(), 4156 Node->getMemoryVT(), Node->getMemOperand()); 4157 } 4158 4159 // Op is an atomic store. Lower it into a normal volatile store. 4160 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4161 SelectionDAG &DAG) const { 4162 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4163 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4164 Node->getBasePtr(), Node->getMemoryVT(), 4165 Node->getMemOperand()); 4166 // We have to enforce sequential consistency by performing a 4167 // serialization operation after the store. 4168 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4169 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4170 MVT::Other, Chain), 0); 4171 return Chain; 4172 } 4173 4174 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4175 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4176 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4177 SelectionDAG &DAG, 4178 unsigned Opcode) const { 4179 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4180 4181 // 32-bit operations need no code outside the main loop. 4182 EVT NarrowVT = Node->getMemoryVT(); 4183 EVT WideVT = MVT::i32; 4184 if (NarrowVT == WideVT) 4185 return Op; 4186 4187 int64_t BitSize = NarrowVT.getSizeInBits(); 4188 SDValue ChainIn = Node->getChain(); 4189 SDValue Addr = Node->getBasePtr(); 4190 SDValue Src2 = Node->getVal(); 4191 MachineMemOperand *MMO = Node->getMemOperand(); 4192 SDLoc DL(Node); 4193 EVT PtrVT = Addr.getValueType(); 4194 4195 // Convert atomic subtracts of constants into additions. 4196 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4197 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4198 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4199 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4200 } 4201 4202 // Get the address of the containing word. 4203 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4204 DAG.getConstant(-4, DL, PtrVT)); 4205 4206 // Get the number of bits that the word must be rotated left in order 4207 // to bring the field to the top bits of a GR32. 4208 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4209 DAG.getConstant(3, DL, PtrVT)); 4210 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4211 4212 // Get the complementing shift amount, for rotating a field in the top 4213 // bits back to its proper position. 4214 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4215 DAG.getConstant(0, DL, WideVT), BitShift); 4216 4217 // Extend the source operand to 32 bits and prepare it for the inner loop. 4218 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4219 // operations require the source to be shifted in advance. (This shift 4220 // can be folded if the source is constant.) For AND and NAND, the lower 4221 // bits must be set, while for other opcodes they should be left clear. 4222 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4223 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4224 DAG.getConstant(32 - BitSize, DL, WideVT)); 4225 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4226 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4227 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4228 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4229 4230 // Construct the ATOMIC_LOADW_* node. 4231 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4232 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4233 DAG.getConstant(BitSize, DL, WideVT) }; 4234 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4235 NarrowVT, MMO); 4236 4237 // Rotate the result of the final CS so that the field is in the lower 4238 // bits of a GR32, then truncate it. 4239 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4240 DAG.getConstant(BitSize, DL, WideVT)); 4241 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4242 4243 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4244 return DAG.getMergeValues(RetOps, DL); 4245 } 4246 4247 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4248 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4249 // operations into additions. 4250 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4251 SelectionDAG &DAG) const { 4252 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4253 EVT MemVT = Node->getMemoryVT(); 4254 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4255 // A full-width operation. 4256 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4257 SDValue Src2 = Node->getVal(); 4258 SDValue NegSrc2; 4259 SDLoc DL(Src2); 4260 4261 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4262 // Use an addition if the operand is constant and either LAA(G) is 4263 // available or the negative value is in the range of A(G)FHI. 4264 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4265 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4266 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4267 } else if (Subtarget.hasInterlockedAccess1()) 4268 // Use LAA(G) if available. 4269 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4270 Src2); 4271 4272 if (NegSrc2.getNode()) 4273 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4274 Node->getChain(), Node->getBasePtr(), NegSrc2, 4275 Node->getMemOperand()); 4276 4277 // Use the node as-is. 4278 return Op; 4279 } 4280 4281 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4282 } 4283 4284 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4285 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4286 SelectionDAG &DAG) const { 4287 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4288 SDValue ChainIn = Node->getOperand(0); 4289 SDValue Addr = Node->getOperand(1); 4290 SDValue CmpVal = Node->getOperand(2); 4291 SDValue SwapVal = Node->getOperand(3); 4292 MachineMemOperand *MMO = Node->getMemOperand(); 4293 SDLoc DL(Node); 4294 4295 // We have native support for 32-bit and 64-bit compare and swap, but we 4296 // still need to expand extracting the "success" result from the CC. 4297 EVT NarrowVT = Node->getMemoryVT(); 4298 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4299 if (NarrowVT == WideVT) { 4300 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4301 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4302 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4303 DL, Tys, Ops, NarrowVT, MMO); 4304 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4305 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4306 4307 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4308 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4309 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4310 return SDValue(); 4311 } 4312 4313 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4314 // via a fullword ATOMIC_CMP_SWAPW operation. 4315 int64_t BitSize = NarrowVT.getSizeInBits(); 4316 EVT PtrVT = Addr.getValueType(); 4317 4318 // Get the address of the containing word. 4319 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4320 DAG.getConstant(-4, DL, PtrVT)); 4321 4322 // Get the number of bits that the word must be rotated left in order 4323 // to bring the field to the top bits of a GR32. 4324 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4325 DAG.getConstant(3, DL, PtrVT)); 4326 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4327 4328 // Get the complementing shift amount, for rotating a field in the top 4329 // bits back to its proper position. 4330 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4331 DAG.getConstant(0, DL, WideVT), BitShift); 4332 4333 // Construct the ATOMIC_CMP_SWAPW node. 4334 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4335 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4336 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4337 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4338 VTList, Ops, NarrowVT, MMO); 4339 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4340 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4341 4342 // emitAtomicCmpSwapW() will zero extend the result (original value). 4343 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4344 DAG.getValueType(NarrowVT)); 4345 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4346 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4347 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4348 return SDValue(); 4349 } 4350 4351 MachineMemOperand::Flags 4352 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4353 // Because of how we convert atomic_load and atomic_store to normal loads and 4354 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4355 // since DAGCombine hasn't been updated to account for atomic, but non 4356 // volatile loads. (See D57601) 4357 if (auto *SI = dyn_cast<StoreInst>(&I)) 4358 if (SI->isAtomic()) 4359 return MachineMemOperand::MOVolatile; 4360 if (auto *LI = dyn_cast<LoadInst>(&I)) 4361 if (LI->isAtomic()) 4362 return MachineMemOperand::MOVolatile; 4363 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4364 if (AI->isAtomic()) 4365 return MachineMemOperand::MOVolatile; 4366 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4367 if (AI->isAtomic()) 4368 return MachineMemOperand::MOVolatile; 4369 return MachineMemOperand::MONone; 4370 } 4371 4372 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4373 SelectionDAG &DAG) const { 4374 MachineFunction &MF = DAG.getMachineFunction(); 4375 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4376 auto *Regs = Subtarget->getSpecialRegisters(); 4377 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4378 report_fatal_error("Variable-sized stack allocations are not supported " 4379 "in GHC calling convention"); 4380 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4381 Regs->getStackPointerRegister(), Op.getValueType()); 4382 } 4383 4384 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 MachineFunction &MF = DAG.getMachineFunction(); 4387 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4388 auto *Regs = Subtarget->getSpecialRegisters(); 4389 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4390 4391 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4392 report_fatal_error("Variable-sized stack allocations are not supported " 4393 "in GHC calling convention"); 4394 4395 SDValue Chain = Op.getOperand(0); 4396 SDValue NewSP = Op.getOperand(1); 4397 SDValue Backchain; 4398 SDLoc DL(Op); 4399 4400 if (StoreBackchain) { 4401 SDValue OldSP = DAG.getCopyFromReg( 4402 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4403 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4404 MachinePointerInfo()); 4405 } 4406 4407 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4408 4409 if (StoreBackchain) 4410 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4411 MachinePointerInfo()); 4412 4413 return Chain; 4414 } 4415 4416 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4417 SelectionDAG &DAG) const { 4418 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4419 if (!IsData) 4420 // Just preserve the chain. 4421 return Op.getOperand(0); 4422 4423 SDLoc DL(Op); 4424 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4425 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4426 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4427 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4428 Op.getOperand(1)}; 4429 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4430 Node->getVTList(), Ops, 4431 Node->getMemoryVT(), Node->getMemOperand()); 4432 } 4433 4434 // Convert condition code in CCReg to an i32 value. 4435 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4436 SDLoc DL(CCReg); 4437 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4438 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4439 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4440 } 4441 4442 SDValue 4443 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4444 SelectionDAG &DAG) const { 4445 unsigned Opcode, CCValid; 4446 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4447 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4448 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4449 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4450 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4451 return SDValue(); 4452 } 4453 4454 return SDValue(); 4455 } 4456 4457 SDValue 4458 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4459 SelectionDAG &DAG) const { 4460 unsigned Opcode, CCValid; 4461 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4462 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4463 if (Op->getNumValues() == 1) 4464 return getCCResult(DAG, SDValue(Node, 0)); 4465 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4466 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4467 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4468 } 4469 4470 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4471 switch (Id) { 4472 case Intrinsic::thread_pointer: 4473 return lowerThreadPointer(SDLoc(Op), DAG); 4474 4475 case Intrinsic::s390_vpdi: 4476 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4477 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4478 4479 case Intrinsic::s390_vperm: 4480 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4481 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4482 4483 case Intrinsic::s390_vuphb: 4484 case Intrinsic::s390_vuphh: 4485 case Intrinsic::s390_vuphf: 4486 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4487 Op.getOperand(1)); 4488 4489 case Intrinsic::s390_vuplhb: 4490 case Intrinsic::s390_vuplhh: 4491 case Intrinsic::s390_vuplhf: 4492 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4493 Op.getOperand(1)); 4494 4495 case Intrinsic::s390_vuplb: 4496 case Intrinsic::s390_vuplhw: 4497 case Intrinsic::s390_vuplf: 4498 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4499 Op.getOperand(1)); 4500 4501 case Intrinsic::s390_vupllb: 4502 case Intrinsic::s390_vupllh: 4503 case Intrinsic::s390_vupllf: 4504 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4505 Op.getOperand(1)); 4506 4507 case Intrinsic::s390_vsumb: 4508 case Intrinsic::s390_vsumh: 4509 case Intrinsic::s390_vsumgh: 4510 case Intrinsic::s390_vsumgf: 4511 case Intrinsic::s390_vsumqf: 4512 case Intrinsic::s390_vsumqg: 4513 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4514 Op.getOperand(1), Op.getOperand(2)); 4515 } 4516 4517 return SDValue(); 4518 } 4519 4520 namespace { 4521 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4522 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4523 // Operand is the constant third operand, otherwise it is the number of 4524 // bytes in each element of the result. 4525 struct Permute { 4526 unsigned Opcode; 4527 unsigned Operand; 4528 unsigned char Bytes[SystemZ::VectorBytes]; 4529 }; 4530 } 4531 4532 static const Permute PermuteForms[] = { 4533 // VMRHG 4534 { SystemZISD::MERGE_HIGH, 8, 4535 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4536 // VMRHF 4537 { SystemZISD::MERGE_HIGH, 4, 4538 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4539 // VMRHH 4540 { SystemZISD::MERGE_HIGH, 2, 4541 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4542 // VMRHB 4543 { SystemZISD::MERGE_HIGH, 1, 4544 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4545 // VMRLG 4546 { SystemZISD::MERGE_LOW, 8, 4547 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4548 // VMRLF 4549 { SystemZISD::MERGE_LOW, 4, 4550 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4551 // VMRLH 4552 { SystemZISD::MERGE_LOW, 2, 4553 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4554 // VMRLB 4555 { SystemZISD::MERGE_LOW, 1, 4556 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4557 // VPKG 4558 { SystemZISD::PACK, 4, 4559 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4560 // VPKF 4561 { SystemZISD::PACK, 2, 4562 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4563 // VPKH 4564 { SystemZISD::PACK, 1, 4565 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4566 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4567 { SystemZISD::PERMUTE_DWORDS, 4, 4568 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4569 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4570 { SystemZISD::PERMUTE_DWORDS, 1, 4571 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4572 }; 4573 4574 // Called after matching a vector shuffle against a particular pattern. 4575 // Both the original shuffle and the pattern have two vector operands. 4576 // OpNos[0] is the operand of the original shuffle that should be used for 4577 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4578 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4579 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4580 // for operands 0 and 1 of the pattern. 4581 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4582 if (OpNos[0] < 0) { 4583 if (OpNos[1] < 0) 4584 return false; 4585 OpNo0 = OpNo1 = OpNos[1]; 4586 } else if (OpNos[1] < 0) { 4587 OpNo0 = OpNo1 = OpNos[0]; 4588 } else { 4589 OpNo0 = OpNos[0]; 4590 OpNo1 = OpNos[1]; 4591 } 4592 return true; 4593 } 4594 4595 // Bytes is a VPERM-like permute vector, except that -1 is used for 4596 // undefined bytes. Return true if the VPERM can be implemented using P. 4597 // When returning true set OpNo0 to the VPERM operand that should be 4598 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4599 // 4600 // For example, if swapping the VPERM operands allows P to match, OpNo0 4601 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4602 // operand, but rewriting it to use two duplicated operands allows it to 4603 // match P, then OpNo0 and OpNo1 will be the same. 4604 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4605 unsigned &OpNo0, unsigned &OpNo1) { 4606 int OpNos[] = { -1, -1 }; 4607 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4608 int Elt = Bytes[I]; 4609 if (Elt >= 0) { 4610 // Make sure that the two permute vectors use the same suboperand 4611 // byte number. Only the operand numbers (the high bits) are 4612 // allowed to differ. 4613 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4614 return false; 4615 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4616 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4617 // Make sure that the operand mappings are consistent with previous 4618 // elements. 4619 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4620 return false; 4621 OpNos[ModelOpNo] = RealOpNo; 4622 } 4623 } 4624 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4625 } 4626 4627 // As above, but search for a matching permute. 4628 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4629 unsigned &OpNo0, unsigned &OpNo1) { 4630 for (auto &P : PermuteForms) 4631 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4632 return &P; 4633 return nullptr; 4634 } 4635 4636 // Bytes is a VPERM-like permute vector, except that -1 is used for 4637 // undefined bytes. This permute is an operand of an outer permute. 4638 // See whether redistributing the -1 bytes gives a shuffle that can be 4639 // implemented using P. If so, set Transform to a VPERM-like permute vector 4640 // that, when applied to the result of P, gives the original permute in Bytes. 4641 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4642 const Permute &P, 4643 SmallVectorImpl<int> &Transform) { 4644 unsigned To = 0; 4645 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4646 int Elt = Bytes[From]; 4647 if (Elt < 0) 4648 // Byte number From of the result is undefined. 4649 Transform[From] = -1; 4650 else { 4651 while (P.Bytes[To] != Elt) { 4652 To += 1; 4653 if (To == SystemZ::VectorBytes) 4654 return false; 4655 } 4656 Transform[From] = To; 4657 } 4658 } 4659 return true; 4660 } 4661 4662 // As above, but search for a matching permute. 4663 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4664 SmallVectorImpl<int> &Transform) { 4665 for (auto &P : PermuteForms) 4666 if (matchDoublePermute(Bytes, P, Transform)) 4667 return &P; 4668 return nullptr; 4669 } 4670 4671 // Convert the mask of the given shuffle op into a byte-level mask, 4672 // as if it had type vNi8. 4673 static bool getVPermMask(SDValue ShuffleOp, 4674 SmallVectorImpl<int> &Bytes) { 4675 EVT VT = ShuffleOp.getValueType(); 4676 unsigned NumElements = VT.getVectorNumElements(); 4677 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4678 4679 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4680 Bytes.resize(NumElements * BytesPerElement, -1); 4681 for (unsigned I = 0; I < NumElements; ++I) { 4682 int Index = VSN->getMaskElt(I); 4683 if (Index >= 0) 4684 for (unsigned J = 0; J < BytesPerElement; ++J) 4685 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4686 } 4687 return true; 4688 } 4689 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4690 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4691 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4692 Bytes.resize(NumElements * BytesPerElement, -1); 4693 for (unsigned I = 0; I < NumElements; ++I) 4694 for (unsigned J = 0; J < BytesPerElement; ++J) 4695 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4696 return true; 4697 } 4698 return false; 4699 } 4700 4701 // Bytes is a VPERM-like permute vector, except that -1 is used for 4702 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4703 // the result come from a contiguous sequence of bytes from one input. 4704 // Set Base to the selector for the first byte if so. 4705 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4706 unsigned BytesPerElement, int &Base) { 4707 Base = -1; 4708 for (unsigned I = 0; I < BytesPerElement; ++I) { 4709 if (Bytes[Start + I] >= 0) { 4710 unsigned Elem = Bytes[Start + I]; 4711 if (Base < 0) { 4712 Base = Elem - I; 4713 // Make sure the bytes would come from one input operand. 4714 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4715 return false; 4716 } else if (unsigned(Base) != Elem - I) 4717 return false; 4718 } 4719 } 4720 return true; 4721 } 4722 4723 // Bytes is a VPERM-like permute vector, except that -1 is used for 4724 // undefined bytes. Return true if it can be performed using VSLDB. 4725 // When returning true, set StartIndex to the shift amount and OpNo0 4726 // and OpNo1 to the VPERM operands that should be used as the first 4727 // and second shift operand respectively. 4728 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4729 unsigned &StartIndex, unsigned &OpNo0, 4730 unsigned &OpNo1) { 4731 int OpNos[] = { -1, -1 }; 4732 int Shift = -1; 4733 for (unsigned I = 0; I < 16; ++I) { 4734 int Index = Bytes[I]; 4735 if (Index >= 0) { 4736 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4737 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4738 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4739 if (Shift < 0) 4740 Shift = ExpectedShift; 4741 else if (Shift != ExpectedShift) 4742 return false; 4743 // Make sure that the operand mappings are consistent with previous 4744 // elements. 4745 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4746 return false; 4747 OpNos[ModelOpNo] = RealOpNo; 4748 } 4749 } 4750 StartIndex = Shift; 4751 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4752 } 4753 4754 // Create a node that performs P on operands Op0 and Op1, casting the 4755 // operands to the appropriate type. The type of the result is determined by P. 4756 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4757 const Permute &P, SDValue Op0, SDValue Op1) { 4758 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4759 // elements of a PACK are twice as wide as the outputs. 4760 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4761 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4762 P.Operand); 4763 // Cast both operands to the appropriate type. 4764 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4765 SystemZ::VectorBytes / InBytes); 4766 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4767 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4768 SDValue Op; 4769 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4770 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4771 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4772 } else if (P.Opcode == SystemZISD::PACK) { 4773 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4774 SystemZ::VectorBytes / P.Operand); 4775 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4776 } else { 4777 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4778 } 4779 return Op; 4780 } 4781 4782 static bool isZeroVector(SDValue N) { 4783 if (N->getOpcode() == ISD::BITCAST) 4784 N = N->getOperand(0); 4785 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4786 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4787 return Op->getZExtValue() == 0; 4788 return ISD::isBuildVectorAllZeros(N.getNode()); 4789 } 4790 4791 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4792 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4793 for (unsigned I = 0; I < Num ; I++) 4794 if (isZeroVector(Ops[I])) 4795 return I; 4796 return UINT32_MAX; 4797 } 4798 4799 // Bytes is a VPERM-like permute vector, except that -1 is used for 4800 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4801 // VSLDB or VPERM. 4802 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4803 SDValue *Ops, 4804 const SmallVectorImpl<int> &Bytes) { 4805 for (unsigned I = 0; I < 2; ++I) 4806 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4807 4808 // First see whether VSLDB can be used. 4809 unsigned StartIndex, OpNo0, OpNo1; 4810 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4811 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4812 Ops[OpNo1], 4813 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4814 4815 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4816 // eliminate a zero vector by reusing any zero index in the permute vector. 4817 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4818 if (ZeroVecIdx != UINT32_MAX) { 4819 bool MaskFirst = true; 4820 int ZeroIdx = -1; 4821 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4822 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4823 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4824 if (OpNo == ZeroVecIdx && I == 0) { 4825 // If the first byte is zero, use mask as first operand. 4826 ZeroIdx = 0; 4827 break; 4828 } 4829 if (OpNo != ZeroVecIdx && Byte == 0) { 4830 // If mask contains a zero, use it by placing that vector first. 4831 ZeroIdx = I + SystemZ::VectorBytes; 4832 MaskFirst = false; 4833 break; 4834 } 4835 } 4836 if (ZeroIdx != -1) { 4837 SDValue IndexNodes[SystemZ::VectorBytes]; 4838 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4839 if (Bytes[I] >= 0) { 4840 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4841 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4842 if (OpNo == ZeroVecIdx) 4843 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4844 else { 4845 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4846 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4847 } 4848 } else 4849 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4850 } 4851 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4852 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4853 if (MaskFirst) 4854 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4855 Mask); 4856 else 4857 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4858 Mask); 4859 } 4860 } 4861 4862 SDValue IndexNodes[SystemZ::VectorBytes]; 4863 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4864 if (Bytes[I] >= 0) 4865 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4866 else 4867 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4868 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4869 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4870 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4871 } 4872 4873 namespace { 4874 // Describes a general N-operand vector shuffle. 4875 struct GeneralShuffle { 4876 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4877 void addUndef(); 4878 bool add(SDValue, unsigned); 4879 SDValue getNode(SelectionDAG &, const SDLoc &); 4880 void tryPrepareForUnpack(); 4881 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4882 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4883 4884 // The operands of the shuffle. 4885 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4886 4887 // Index I is -1 if byte I of the result is undefined. Otherwise the 4888 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4889 // Bytes[I] / SystemZ::VectorBytes. 4890 SmallVector<int, SystemZ::VectorBytes> Bytes; 4891 4892 // The type of the shuffle result. 4893 EVT VT; 4894 4895 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4896 unsigned UnpackFromEltSize; 4897 }; 4898 } 4899 4900 // Add an extra undefined element to the shuffle. 4901 void GeneralShuffle::addUndef() { 4902 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4903 for (unsigned I = 0; I < BytesPerElement; ++I) 4904 Bytes.push_back(-1); 4905 } 4906 4907 // Add an extra element to the shuffle, taking it from element Elem of Op. 4908 // A null Op indicates a vector input whose value will be calculated later; 4909 // there is at most one such input per shuffle and it always has the same 4910 // type as the result. Aborts and returns false if the source vector elements 4911 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4912 // LLVM they become implicitly extended, but this is rare and not optimized. 4913 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4914 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4915 4916 // The source vector can have wider elements than the result, 4917 // either through an explicit TRUNCATE or because of type legalization. 4918 // We want the least significant part. 4919 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4920 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4921 4922 // Return false if the source elements are smaller than their destination 4923 // elements. 4924 if (FromBytesPerElement < BytesPerElement) 4925 return false; 4926 4927 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4928 (FromBytesPerElement - BytesPerElement)); 4929 4930 // Look through things like shuffles and bitcasts. 4931 while (Op.getNode()) { 4932 if (Op.getOpcode() == ISD::BITCAST) 4933 Op = Op.getOperand(0); 4934 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4935 // See whether the bytes we need come from a contiguous part of one 4936 // operand. 4937 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4938 if (!getVPermMask(Op, OpBytes)) 4939 break; 4940 int NewByte; 4941 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4942 break; 4943 if (NewByte < 0) { 4944 addUndef(); 4945 return true; 4946 } 4947 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4948 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4949 } else if (Op.isUndef()) { 4950 addUndef(); 4951 return true; 4952 } else 4953 break; 4954 } 4955 4956 // Make sure that the source of the extraction is in Ops. 4957 unsigned OpNo = 0; 4958 for (; OpNo < Ops.size(); ++OpNo) 4959 if (Ops[OpNo] == Op) 4960 break; 4961 if (OpNo == Ops.size()) 4962 Ops.push_back(Op); 4963 4964 // Add the element to Bytes. 4965 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4966 for (unsigned I = 0; I < BytesPerElement; ++I) 4967 Bytes.push_back(Base + I); 4968 4969 return true; 4970 } 4971 4972 // Return SDNodes for the completed shuffle. 4973 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4974 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4975 4976 if (Ops.size() == 0) 4977 return DAG.getUNDEF(VT); 4978 4979 // Use a single unpack if possible as the last operation. 4980 tryPrepareForUnpack(); 4981 4982 // Make sure that there are at least two shuffle operands. 4983 if (Ops.size() == 1) 4984 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4985 4986 // Create a tree of shuffles, deferring root node until after the loop. 4987 // Try to redistribute the undefined elements of non-root nodes so that 4988 // the non-root shuffles match something like a pack or merge, then adjust 4989 // the parent node's permute vector to compensate for the new order. 4990 // Among other things, this copes with vectors like <2 x i16> that were 4991 // padded with undefined elements during type legalization. 4992 // 4993 // In the best case this redistribution will lead to the whole tree 4994 // using packs and merges. It should rarely be a loss in other cases. 4995 unsigned Stride = 1; 4996 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4997 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4998 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4999 5000 // Create a mask for just these two operands. 5001 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 5002 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5003 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 5004 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 5005 if (OpNo == I) 5006 NewBytes[J] = Byte; 5007 else if (OpNo == I + Stride) 5008 NewBytes[J] = SystemZ::VectorBytes + Byte; 5009 else 5010 NewBytes[J] = -1; 5011 } 5012 // See if it would be better to reorganize NewMask to avoid using VPERM. 5013 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 5014 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 5015 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 5016 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 5017 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5018 if (NewBytes[J] >= 0) { 5019 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 5020 "Invalid double permute"); 5021 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 5022 } else 5023 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 5024 } 5025 } else { 5026 // Just use NewBytes on the operands. 5027 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 5028 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 5029 if (NewBytes[J] >= 0) 5030 Bytes[J] = I * SystemZ::VectorBytes + J; 5031 } 5032 } 5033 } 5034 5035 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5036 if (Stride > 1) { 5037 Ops[1] = Ops[Stride]; 5038 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5039 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5040 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5041 } 5042 5043 // Look for an instruction that can do the permute without resorting 5044 // to VPERM. 5045 unsigned OpNo0, OpNo1; 5046 SDValue Op; 5047 if (unpackWasPrepared() && Ops[1].isUndef()) 5048 Op = Ops[0]; 5049 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5050 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5051 else 5052 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5053 5054 Op = insertUnpackIfPrepared(DAG, DL, Op); 5055 5056 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5057 } 5058 5059 #ifndef NDEBUG 5060 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5061 dbgs() << Msg.c_str() << " { "; 5062 for (unsigned i = 0; i < Bytes.size(); i++) 5063 dbgs() << Bytes[i] << " "; 5064 dbgs() << "}\n"; 5065 } 5066 #endif 5067 5068 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5069 // after all else by removing the zero vector and the effect of the unpack on 5070 // Bytes. 5071 void GeneralShuffle::tryPrepareForUnpack() { 5072 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5073 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5074 return; 5075 5076 // Only do this if removing the zero vector reduces the depth, otherwise 5077 // the critical path will increase with the final unpack. 5078 if (Ops.size() > 2 && 5079 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5080 return; 5081 5082 // Find an unpack that would allow removing the zero vector from Ops. 5083 UnpackFromEltSize = 1; 5084 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5085 bool MatchUnpack = true; 5086 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5087 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5088 unsigned ToEltSize = UnpackFromEltSize * 2; 5089 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5090 if (!IsZextByte) 5091 SrcBytes.push_back(Bytes[Elt]); 5092 if (Bytes[Elt] != -1) { 5093 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5094 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5095 MatchUnpack = false; 5096 break; 5097 } 5098 } 5099 } 5100 if (MatchUnpack) { 5101 if (Ops.size() == 2) { 5102 // Don't use unpack if a single source operand needs rearrangement. 5103 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5104 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5105 UnpackFromEltSize = UINT_MAX; 5106 return; 5107 } 5108 } 5109 break; 5110 } 5111 } 5112 if (UnpackFromEltSize > 4) 5113 return; 5114 5115 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5116 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5117 << ".\n"; 5118 dumpBytes(Bytes, "Original Bytes vector:");); 5119 5120 // Apply the unpack in reverse to the Bytes array. 5121 unsigned B = 0; 5122 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5123 Elt += UnpackFromEltSize; 5124 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5125 Bytes[B] = Bytes[Elt]; 5126 } 5127 while (B < SystemZ::VectorBytes) 5128 Bytes[B++] = -1; 5129 5130 // Remove the zero vector from Ops 5131 Ops.erase(&Ops[ZeroVecOpNo]); 5132 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5133 if (Bytes[I] >= 0) { 5134 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5135 if (OpNo > ZeroVecOpNo) 5136 Bytes[I] -= SystemZ::VectorBytes; 5137 } 5138 5139 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5140 dbgs() << "\n";); 5141 } 5142 5143 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5144 const SDLoc &DL, 5145 SDValue Op) { 5146 if (!unpackWasPrepared()) 5147 return Op; 5148 unsigned InBits = UnpackFromEltSize * 8; 5149 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5150 SystemZ::VectorBits / InBits); 5151 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5152 unsigned OutBits = InBits * 2; 5153 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5154 SystemZ::VectorBits / OutBits); 5155 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5156 } 5157 5158 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5159 static bool isScalarToVector(SDValue Op) { 5160 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5161 if (!Op.getOperand(I).isUndef()) 5162 return false; 5163 return true; 5164 } 5165 5166 // Return a vector of type VT that contains Value in the first element. 5167 // The other elements don't matter. 5168 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5169 SDValue Value) { 5170 // If we have a constant, replicate it to all elements and let the 5171 // BUILD_VECTOR lowering take care of it. 5172 if (Value.getOpcode() == ISD::Constant || 5173 Value.getOpcode() == ISD::ConstantFP) { 5174 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5175 return DAG.getBuildVector(VT, DL, Ops); 5176 } 5177 if (Value.isUndef()) 5178 return DAG.getUNDEF(VT); 5179 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5180 } 5181 5182 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5183 // element 1. Used for cases in which replication is cheap. 5184 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5185 SDValue Op0, SDValue Op1) { 5186 if (Op0.isUndef()) { 5187 if (Op1.isUndef()) 5188 return DAG.getUNDEF(VT); 5189 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5190 } 5191 if (Op1.isUndef()) 5192 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5193 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5194 buildScalarToVector(DAG, DL, VT, Op0), 5195 buildScalarToVector(DAG, DL, VT, Op1)); 5196 } 5197 5198 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5199 // vector for them. 5200 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5201 SDValue Op1) { 5202 if (Op0.isUndef() && Op1.isUndef()) 5203 return DAG.getUNDEF(MVT::v2i64); 5204 // If one of the two inputs is undefined then replicate the other one, 5205 // in order to avoid using another register unnecessarily. 5206 if (Op0.isUndef()) 5207 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5208 else if (Op1.isUndef()) 5209 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5210 else { 5211 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5212 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5213 } 5214 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5215 } 5216 5217 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5218 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5219 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5220 // would benefit from this representation and return it if so. 5221 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5222 BuildVectorSDNode *BVN) { 5223 EVT VT = BVN->getValueType(0); 5224 unsigned NumElements = VT.getVectorNumElements(); 5225 5226 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5227 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5228 // need a BUILD_VECTOR, add an additional placeholder operand for that 5229 // BUILD_VECTOR and store its operands in ResidueOps. 5230 GeneralShuffle GS(VT); 5231 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5232 bool FoundOne = false; 5233 for (unsigned I = 0; I < NumElements; ++I) { 5234 SDValue Op = BVN->getOperand(I); 5235 if (Op.getOpcode() == ISD::TRUNCATE) 5236 Op = Op.getOperand(0); 5237 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5238 Op.getOperand(1).getOpcode() == ISD::Constant) { 5239 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5240 if (!GS.add(Op.getOperand(0), Elem)) 5241 return SDValue(); 5242 FoundOne = true; 5243 } else if (Op.isUndef()) { 5244 GS.addUndef(); 5245 } else { 5246 if (!GS.add(SDValue(), ResidueOps.size())) 5247 return SDValue(); 5248 ResidueOps.push_back(BVN->getOperand(I)); 5249 } 5250 } 5251 5252 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5253 if (!FoundOne) 5254 return SDValue(); 5255 5256 // Create the BUILD_VECTOR for the remaining elements, if any. 5257 if (!ResidueOps.empty()) { 5258 while (ResidueOps.size() < NumElements) 5259 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5260 for (auto &Op : GS.Ops) { 5261 if (!Op.getNode()) { 5262 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5263 break; 5264 } 5265 } 5266 } 5267 return GS.getNode(DAG, SDLoc(BVN)); 5268 } 5269 5270 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5271 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5272 return true; 5273 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5274 return true; 5275 return false; 5276 } 5277 5278 // Combine GPR scalar values Elems into a vector of type VT. 5279 SDValue 5280 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5281 SmallVectorImpl<SDValue> &Elems) const { 5282 // See whether there is a single replicated value. 5283 SDValue Single; 5284 unsigned int NumElements = Elems.size(); 5285 unsigned int Count = 0; 5286 for (auto Elem : Elems) { 5287 if (!Elem.isUndef()) { 5288 if (!Single.getNode()) 5289 Single = Elem; 5290 else if (Elem != Single) { 5291 Single = SDValue(); 5292 break; 5293 } 5294 Count += 1; 5295 } 5296 } 5297 // There are three cases here: 5298 // 5299 // - if the only defined element is a loaded one, the best sequence 5300 // is a replicating load. 5301 // 5302 // - otherwise, if the only defined element is an i64 value, we will 5303 // end up with the same VLVGP sequence regardless of whether we short-cut 5304 // for replication or fall through to the later code. 5305 // 5306 // - otherwise, if the only defined element is an i32 or smaller value, 5307 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5308 // This is only a win if the single defined element is used more than once. 5309 // In other cases we're better off using a single VLVGx. 5310 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5311 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5312 5313 // If all elements are loads, use VLREP/VLEs (below). 5314 bool AllLoads = true; 5315 for (auto Elem : Elems) 5316 if (!isVectorElementLoad(Elem)) { 5317 AllLoads = false; 5318 break; 5319 } 5320 5321 // The best way of building a v2i64 from two i64s is to use VLVGP. 5322 if (VT == MVT::v2i64 && !AllLoads) 5323 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5324 5325 // Use a 64-bit merge high to combine two doubles. 5326 if (VT == MVT::v2f64 && !AllLoads) 5327 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5328 5329 // Build v4f32 values directly from the FPRs: 5330 // 5331 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5332 // V V VMRHF 5333 // <ABxx> <CDxx> 5334 // V VMRHG 5335 // <ABCD> 5336 if (VT == MVT::v4f32 && !AllLoads) { 5337 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5338 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5339 // Avoid unnecessary undefs by reusing the other operand. 5340 if (Op01.isUndef()) 5341 Op01 = Op23; 5342 else if (Op23.isUndef()) 5343 Op23 = Op01; 5344 // Merging identical replications is a no-op. 5345 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5346 return Op01; 5347 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5348 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5349 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5350 DL, MVT::v2i64, Op01, Op23); 5351 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5352 } 5353 5354 // Collect the constant terms. 5355 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5356 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5357 5358 unsigned NumConstants = 0; 5359 for (unsigned I = 0; I < NumElements; ++I) { 5360 SDValue Elem = Elems[I]; 5361 if (Elem.getOpcode() == ISD::Constant || 5362 Elem.getOpcode() == ISD::ConstantFP) { 5363 NumConstants += 1; 5364 Constants[I] = Elem; 5365 Done[I] = true; 5366 } 5367 } 5368 // If there was at least one constant, fill in the other elements of 5369 // Constants with undefs to get a full vector constant and use that 5370 // as the starting point. 5371 SDValue Result; 5372 SDValue ReplicatedVal; 5373 if (NumConstants > 0) { 5374 for (unsigned I = 0; I < NumElements; ++I) 5375 if (!Constants[I].getNode()) 5376 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5377 Result = DAG.getBuildVector(VT, DL, Constants); 5378 } else { 5379 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5380 // avoid a false dependency on any previous contents of the vector 5381 // register. 5382 5383 // Use a VLREP if at least one element is a load. Make sure to replicate 5384 // the load with the most elements having its value. 5385 std::map<const SDNode*, unsigned> UseCounts; 5386 SDNode *LoadMaxUses = nullptr; 5387 for (unsigned I = 0; I < NumElements; ++I) 5388 if (isVectorElementLoad(Elems[I])) { 5389 SDNode *Ld = Elems[I].getNode(); 5390 UseCounts[Ld]++; 5391 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5392 LoadMaxUses = Ld; 5393 } 5394 if (LoadMaxUses != nullptr) { 5395 ReplicatedVal = SDValue(LoadMaxUses, 0); 5396 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5397 } else { 5398 // Try to use VLVGP. 5399 unsigned I1 = NumElements / 2 - 1; 5400 unsigned I2 = NumElements - 1; 5401 bool Def1 = !Elems[I1].isUndef(); 5402 bool Def2 = !Elems[I2].isUndef(); 5403 if (Def1 || Def2) { 5404 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5405 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5406 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5407 joinDwords(DAG, DL, Elem1, Elem2)); 5408 Done[I1] = true; 5409 Done[I2] = true; 5410 } else 5411 Result = DAG.getUNDEF(VT); 5412 } 5413 } 5414 5415 // Use VLVGx to insert the other elements. 5416 for (unsigned I = 0; I < NumElements; ++I) 5417 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5418 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5419 DAG.getConstant(I, DL, MVT::i32)); 5420 return Result; 5421 } 5422 5423 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5424 SelectionDAG &DAG) const { 5425 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5426 SDLoc DL(Op); 5427 EVT VT = Op.getValueType(); 5428 5429 if (BVN->isConstant()) { 5430 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5431 return Op; 5432 5433 // Fall back to loading it from memory. 5434 return SDValue(); 5435 } 5436 5437 // See if we should use shuffles to construct the vector from other vectors. 5438 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5439 return Res; 5440 5441 // Detect SCALAR_TO_VECTOR conversions. 5442 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5443 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5444 5445 // Otherwise use buildVector to build the vector up from GPRs. 5446 unsigned NumElements = Op.getNumOperands(); 5447 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5448 for (unsigned I = 0; I < NumElements; ++I) 5449 Ops[I] = Op.getOperand(I); 5450 return buildVector(DAG, DL, VT, Ops); 5451 } 5452 5453 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5454 SelectionDAG &DAG) const { 5455 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5456 SDLoc DL(Op); 5457 EVT VT = Op.getValueType(); 5458 unsigned NumElements = VT.getVectorNumElements(); 5459 5460 if (VSN->isSplat()) { 5461 SDValue Op0 = Op.getOperand(0); 5462 unsigned Index = VSN->getSplatIndex(); 5463 assert(Index < VT.getVectorNumElements() && 5464 "Splat index should be defined and in first operand"); 5465 // See whether the value we're splatting is directly available as a scalar. 5466 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5467 Op0.getOpcode() == ISD::BUILD_VECTOR) 5468 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5469 // Otherwise keep it as a vector-to-vector operation. 5470 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5471 DAG.getTargetConstant(Index, DL, MVT::i32)); 5472 } 5473 5474 GeneralShuffle GS(VT); 5475 for (unsigned I = 0; I < NumElements; ++I) { 5476 int Elt = VSN->getMaskElt(I); 5477 if (Elt < 0) 5478 GS.addUndef(); 5479 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5480 unsigned(Elt) % NumElements)) 5481 return SDValue(); 5482 } 5483 return GS.getNode(DAG, SDLoc(VSN)); 5484 } 5485 5486 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5487 SelectionDAG &DAG) const { 5488 SDLoc DL(Op); 5489 // Just insert the scalar into element 0 of an undefined vector. 5490 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5491 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5492 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5493 } 5494 5495 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5496 SelectionDAG &DAG) const { 5497 // Handle insertions of floating-point values. 5498 SDLoc DL(Op); 5499 SDValue Op0 = Op.getOperand(0); 5500 SDValue Op1 = Op.getOperand(1); 5501 SDValue Op2 = Op.getOperand(2); 5502 EVT VT = Op.getValueType(); 5503 5504 // Insertions into constant indices of a v2f64 can be done using VPDI. 5505 // However, if the inserted value is a bitcast or a constant then it's 5506 // better to use GPRs, as below. 5507 if (VT == MVT::v2f64 && 5508 Op1.getOpcode() != ISD::BITCAST && 5509 Op1.getOpcode() != ISD::ConstantFP && 5510 Op2.getOpcode() == ISD::Constant) { 5511 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5512 unsigned Mask = VT.getVectorNumElements() - 1; 5513 if (Index <= Mask) 5514 return Op; 5515 } 5516 5517 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5518 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5519 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5520 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5521 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5522 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5523 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5524 } 5525 5526 SDValue 5527 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5528 SelectionDAG &DAG) const { 5529 // Handle extractions of floating-point values. 5530 SDLoc DL(Op); 5531 SDValue Op0 = Op.getOperand(0); 5532 SDValue Op1 = Op.getOperand(1); 5533 EVT VT = Op.getValueType(); 5534 EVT VecVT = Op0.getValueType(); 5535 5536 // Extractions of constant indices can be done directly. 5537 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5538 uint64_t Index = CIndexN->getZExtValue(); 5539 unsigned Mask = VecVT.getVectorNumElements() - 1; 5540 if (Index <= Mask) 5541 return Op; 5542 } 5543 5544 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5545 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5546 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5547 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5548 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5549 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5550 } 5551 5552 SDValue SystemZTargetLowering:: 5553 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5554 SDValue PackedOp = Op.getOperand(0); 5555 EVT OutVT = Op.getValueType(); 5556 EVT InVT = PackedOp.getValueType(); 5557 unsigned ToBits = OutVT.getScalarSizeInBits(); 5558 unsigned FromBits = InVT.getScalarSizeInBits(); 5559 do { 5560 FromBits *= 2; 5561 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5562 SystemZ::VectorBits / FromBits); 5563 PackedOp = 5564 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5565 } while (FromBits != ToBits); 5566 return PackedOp; 5567 } 5568 5569 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5570 SDValue SystemZTargetLowering:: 5571 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5572 SDValue PackedOp = Op.getOperand(0); 5573 SDLoc DL(Op); 5574 EVT OutVT = Op.getValueType(); 5575 EVT InVT = PackedOp.getValueType(); 5576 unsigned InNumElts = InVT.getVectorNumElements(); 5577 unsigned OutNumElts = OutVT.getVectorNumElements(); 5578 unsigned NumInPerOut = InNumElts / OutNumElts; 5579 5580 SDValue ZeroVec = 5581 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5582 5583 SmallVector<int, 16> Mask(InNumElts); 5584 unsigned ZeroVecElt = InNumElts; 5585 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5586 unsigned MaskElt = PackedElt * NumInPerOut; 5587 unsigned End = MaskElt + NumInPerOut - 1; 5588 for (; MaskElt < End; MaskElt++) 5589 Mask[MaskElt] = ZeroVecElt++; 5590 Mask[MaskElt] = PackedElt; 5591 } 5592 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5593 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5594 } 5595 5596 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5597 unsigned ByScalar) const { 5598 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5599 SDValue Op0 = Op.getOperand(0); 5600 SDValue Op1 = Op.getOperand(1); 5601 SDLoc DL(Op); 5602 EVT VT = Op.getValueType(); 5603 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5604 5605 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5606 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5607 APInt SplatBits, SplatUndef; 5608 unsigned SplatBitSize; 5609 bool HasAnyUndefs; 5610 // Check for constant splats. Use ElemBitSize as the minimum element 5611 // width and reject splats that need wider elements. 5612 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5613 ElemBitSize, true) && 5614 SplatBitSize == ElemBitSize) { 5615 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5616 DL, MVT::i32); 5617 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5618 } 5619 // Check for variable splats. 5620 BitVector UndefElements; 5621 SDValue Splat = BVN->getSplatValue(&UndefElements); 5622 if (Splat) { 5623 // Since i32 is the smallest legal type, we either need a no-op 5624 // or a truncation. 5625 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5626 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5627 } 5628 } 5629 5630 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5631 // and the shift amount is directly available in a GPR. 5632 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5633 if (VSN->isSplat()) { 5634 SDValue VSNOp0 = VSN->getOperand(0); 5635 unsigned Index = VSN->getSplatIndex(); 5636 assert(Index < VT.getVectorNumElements() && 5637 "Splat index should be defined and in first operand"); 5638 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5639 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5640 // Since i32 is the smallest legal type, we either need a no-op 5641 // or a truncation. 5642 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5643 VSNOp0.getOperand(Index)); 5644 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5645 } 5646 } 5647 } 5648 5649 // Otherwise just treat the current form as legal. 5650 return Op; 5651 } 5652 5653 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 5654 SelectionDAG &DAG) const { 5655 SDLoc DL(Op); 5656 MVT ResultVT = Op.getSimpleValueType(); 5657 SDValue Arg = Op.getOperand(0); 5658 auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); 5659 unsigned Check = CNode->getZExtValue(); 5660 5661 unsigned TDCMask = 0; 5662 if (Check & fcSNan) 5663 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 5664 if (Check & fcQNan) 5665 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 5666 if (Check & fcPosInf) 5667 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 5668 if (Check & fcNegInf) 5669 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 5670 if (Check & fcPosNormal) 5671 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 5672 if (Check & fcNegNormal) 5673 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 5674 if (Check & fcPosSubnormal) 5675 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 5676 if (Check & fcNegSubnormal) 5677 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 5678 if (Check & fcPosZero) 5679 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 5680 if (Check & fcNegZero) 5681 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 5682 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 5683 5684 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 5685 return getCCResult(DAG, Intr); 5686 } 5687 5688 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5689 SelectionDAG &DAG) const { 5690 switch (Op.getOpcode()) { 5691 case ISD::FRAMEADDR: 5692 return lowerFRAMEADDR(Op, DAG); 5693 case ISD::RETURNADDR: 5694 return lowerRETURNADDR(Op, DAG); 5695 case ISD::BR_CC: 5696 return lowerBR_CC(Op, DAG); 5697 case ISD::SELECT_CC: 5698 return lowerSELECT_CC(Op, DAG); 5699 case ISD::SETCC: 5700 return lowerSETCC(Op, DAG); 5701 case ISD::STRICT_FSETCC: 5702 return lowerSTRICT_FSETCC(Op, DAG, false); 5703 case ISD::STRICT_FSETCCS: 5704 return lowerSTRICT_FSETCC(Op, DAG, true); 5705 case ISD::GlobalAddress: 5706 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5707 case ISD::GlobalTLSAddress: 5708 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5709 case ISD::BlockAddress: 5710 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5711 case ISD::JumpTable: 5712 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5713 case ISD::ConstantPool: 5714 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5715 case ISD::BITCAST: 5716 return lowerBITCAST(Op, DAG); 5717 case ISD::VASTART: 5718 return lowerVASTART(Op, DAG); 5719 case ISD::VACOPY: 5720 return lowerVACOPY(Op, DAG); 5721 case ISD::DYNAMIC_STACKALLOC: 5722 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5723 case ISD::GET_DYNAMIC_AREA_OFFSET: 5724 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5725 case ISD::SMUL_LOHI: 5726 return lowerSMUL_LOHI(Op, DAG); 5727 case ISD::UMUL_LOHI: 5728 return lowerUMUL_LOHI(Op, DAG); 5729 case ISD::SDIVREM: 5730 return lowerSDIVREM(Op, DAG); 5731 case ISD::UDIVREM: 5732 return lowerUDIVREM(Op, DAG); 5733 case ISD::SADDO: 5734 case ISD::SSUBO: 5735 case ISD::UADDO: 5736 case ISD::USUBO: 5737 return lowerXALUO(Op, DAG); 5738 case ISD::ADDCARRY: 5739 case ISD::SUBCARRY: 5740 return lowerADDSUBCARRY(Op, DAG); 5741 case ISD::OR: 5742 return lowerOR(Op, DAG); 5743 case ISD::CTPOP: 5744 return lowerCTPOP(Op, DAG); 5745 case ISD::ATOMIC_FENCE: 5746 return lowerATOMIC_FENCE(Op, DAG); 5747 case ISD::ATOMIC_SWAP: 5748 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5749 case ISD::ATOMIC_STORE: 5750 return lowerATOMIC_STORE(Op, DAG); 5751 case ISD::ATOMIC_LOAD: 5752 return lowerATOMIC_LOAD(Op, DAG); 5753 case ISD::ATOMIC_LOAD_ADD: 5754 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5755 case ISD::ATOMIC_LOAD_SUB: 5756 return lowerATOMIC_LOAD_SUB(Op, DAG); 5757 case ISD::ATOMIC_LOAD_AND: 5758 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5759 case ISD::ATOMIC_LOAD_OR: 5760 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5761 case ISD::ATOMIC_LOAD_XOR: 5762 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5763 case ISD::ATOMIC_LOAD_NAND: 5764 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5765 case ISD::ATOMIC_LOAD_MIN: 5766 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5767 case ISD::ATOMIC_LOAD_MAX: 5768 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5769 case ISD::ATOMIC_LOAD_UMIN: 5770 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5771 case ISD::ATOMIC_LOAD_UMAX: 5772 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5773 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5774 return lowerATOMIC_CMP_SWAP(Op, DAG); 5775 case ISD::STACKSAVE: 5776 return lowerSTACKSAVE(Op, DAG); 5777 case ISD::STACKRESTORE: 5778 return lowerSTACKRESTORE(Op, DAG); 5779 case ISD::PREFETCH: 5780 return lowerPREFETCH(Op, DAG); 5781 case ISD::INTRINSIC_W_CHAIN: 5782 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5783 case ISD::INTRINSIC_WO_CHAIN: 5784 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5785 case ISD::BUILD_VECTOR: 5786 return lowerBUILD_VECTOR(Op, DAG); 5787 case ISD::VECTOR_SHUFFLE: 5788 return lowerVECTOR_SHUFFLE(Op, DAG); 5789 case ISD::SCALAR_TO_VECTOR: 5790 return lowerSCALAR_TO_VECTOR(Op, DAG); 5791 case ISD::INSERT_VECTOR_ELT: 5792 return lowerINSERT_VECTOR_ELT(Op, DAG); 5793 case ISD::EXTRACT_VECTOR_ELT: 5794 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5795 case ISD::SIGN_EXTEND_VECTOR_INREG: 5796 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5797 case ISD::ZERO_EXTEND_VECTOR_INREG: 5798 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5799 case ISD::SHL: 5800 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5801 case ISD::SRL: 5802 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5803 case ISD::SRA: 5804 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5805 case ISD::IS_FPCLASS: 5806 return lowerIS_FPCLASS(Op, DAG); 5807 default: 5808 llvm_unreachable("Unexpected node to lower"); 5809 } 5810 } 5811 5812 // Lower operations with invalid operand or result types (currently used 5813 // only for 128-bit integer types). 5814 void 5815 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5816 SmallVectorImpl<SDValue> &Results, 5817 SelectionDAG &DAG) const { 5818 switch (N->getOpcode()) { 5819 case ISD::ATOMIC_LOAD: { 5820 SDLoc DL(N); 5821 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5822 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5823 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5824 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5825 DL, Tys, Ops, MVT::i128, MMO); 5826 Results.push_back(lowerGR128ToI128(DAG, Res)); 5827 Results.push_back(Res.getValue(1)); 5828 break; 5829 } 5830 case ISD::ATOMIC_STORE: { 5831 SDLoc DL(N); 5832 SDVTList Tys = DAG.getVTList(MVT::Other); 5833 SDValue Ops[] = { N->getOperand(0), 5834 lowerI128ToGR128(DAG, N->getOperand(2)), 5835 N->getOperand(1) }; 5836 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5837 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5838 DL, Tys, Ops, MVT::i128, MMO); 5839 // We have to enforce sequential consistency by performing a 5840 // serialization operation after the store. 5841 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5842 AtomicOrdering::SequentiallyConsistent) 5843 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5844 MVT::Other, Res), 0); 5845 Results.push_back(Res); 5846 break; 5847 } 5848 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5849 SDLoc DL(N); 5850 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5851 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5852 lowerI128ToGR128(DAG, N->getOperand(2)), 5853 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5854 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5855 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5856 DL, Tys, Ops, MVT::i128, MMO); 5857 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5858 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5859 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5860 Results.push_back(lowerGR128ToI128(DAG, Res)); 5861 Results.push_back(Success); 5862 Results.push_back(Res.getValue(2)); 5863 break; 5864 } 5865 case ISD::BITCAST: { 5866 SDValue Src = N->getOperand(0); 5867 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5868 !useSoftFloat()) { 5869 SDLoc DL(N); 5870 SDValue Lo, Hi; 5871 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5872 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5873 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5874 DAG.getConstant(1, DL, MVT::i32)); 5875 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5876 DAG.getConstant(0, DL, MVT::i32)); 5877 } else { 5878 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5879 "Unrecognized register class for f128."); 5880 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5881 DL, MVT::f64, Src); 5882 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5883 DL, MVT::f64, Src); 5884 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5885 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5886 } 5887 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5888 } 5889 break; 5890 } 5891 default: 5892 llvm_unreachable("Unexpected node to lower"); 5893 } 5894 } 5895 5896 void 5897 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5898 SmallVectorImpl<SDValue> &Results, 5899 SelectionDAG &DAG) const { 5900 return LowerOperationWrapper(N, Results, DAG); 5901 } 5902 5903 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5904 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5905 switch ((SystemZISD::NodeType)Opcode) { 5906 case SystemZISD::FIRST_NUMBER: break; 5907 OPCODE(RET_FLAG); 5908 OPCODE(CALL); 5909 OPCODE(SIBCALL); 5910 OPCODE(TLS_GDCALL); 5911 OPCODE(TLS_LDCALL); 5912 OPCODE(PCREL_WRAPPER); 5913 OPCODE(PCREL_OFFSET); 5914 OPCODE(ICMP); 5915 OPCODE(FCMP); 5916 OPCODE(STRICT_FCMP); 5917 OPCODE(STRICT_FCMPS); 5918 OPCODE(TM); 5919 OPCODE(BR_CCMASK); 5920 OPCODE(SELECT_CCMASK); 5921 OPCODE(ADJDYNALLOC); 5922 OPCODE(PROBED_ALLOCA); 5923 OPCODE(POPCNT); 5924 OPCODE(SMUL_LOHI); 5925 OPCODE(UMUL_LOHI); 5926 OPCODE(SDIVREM); 5927 OPCODE(UDIVREM); 5928 OPCODE(SADDO); 5929 OPCODE(SSUBO); 5930 OPCODE(UADDO); 5931 OPCODE(USUBO); 5932 OPCODE(ADDCARRY); 5933 OPCODE(SUBCARRY); 5934 OPCODE(GET_CCMASK); 5935 OPCODE(MVC); 5936 OPCODE(NC); 5937 OPCODE(OC); 5938 OPCODE(XC); 5939 OPCODE(CLC); 5940 OPCODE(MEMSET_MVC); 5941 OPCODE(STPCPY); 5942 OPCODE(STRCMP); 5943 OPCODE(SEARCH_STRING); 5944 OPCODE(IPM); 5945 OPCODE(MEMBARRIER); 5946 OPCODE(TBEGIN); 5947 OPCODE(TBEGIN_NOFLOAT); 5948 OPCODE(TEND); 5949 OPCODE(BYTE_MASK); 5950 OPCODE(ROTATE_MASK); 5951 OPCODE(REPLICATE); 5952 OPCODE(JOIN_DWORDS); 5953 OPCODE(SPLAT); 5954 OPCODE(MERGE_HIGH); 5955 OPCODE(MERGE_LOW); 5956 OPCODE(SHL_DOUBLE); 5957 OPCODE(PERMUTE_DWORDS); 5958 OPCODE(PERMUTE); 5959 OPCODE(PACK); 5960 OPCODE(PACKS_CC); 5961 OPCODE(PACKLS_CC); 5962 OPCODE(UNPACK_HIGH); 5963 OPCODE(UNPACKL_HIGH); 5964 OPCODE(UNPACK_LOW); 5965 OPCODE(UNPACKL_LOW); 5966 OPCODE(VSHL_BY_SCALAR); 5967 OPCODE(VSRL_BY_SCALAR); 5968 OPCODE(VSRA_BY_SCALAR); 5969 OPCODE(VSUM); 5970 OPCODE(VICMPE); 5971 OPCODE(VICMPH); 5972 OPCODE(VICMPHL); 5973 OPCODE(VICMPES); 5974 OPCODE(VICMPHS); 5975 OPCODE(VICMPHLS); 5976 OPCODE(VFCMPE); 5977 OPCODE(STRICT_VFCMPE); 5978 OPCODE(STRICT_VFCMPES); 5979 OPCODE(VFCMPH); 5980 OPCODE(STRICT_VFCMPH); 5981 OPCODE(STRICT_VFCMPHS); 5982 OPCODE(VFCMPHE); 5983 OPCODE(STRICT_VFCMPHE); 5984 OPCODE(STRICT_VFCMPHES); 5985 OPCODE(VFCMPES); 5986 OPCODE(VFCMPHS); 5987 OPCODE(VFCMPHES); 5988 OPCODE(VFTCI); 5989 OPCODE(VEXTEND); 5990 OPCODE(STRICT_VEXTEND); 5991 OPCODE(VROUND); 5992 OPCODE(STRICT_VROUND); 5993 OPCODE(VTM); 5994 OPCODE(VFAE_CC); 5995 OPCODE(VFAEZ_CC); 5996 OPCODE(VFEE_CC); 5997 OPCODE(VFEEZ_CC); 5998 OPCODE(VFENE_CC); 5999 OPCODE(VFENEZ_CC); 6000 OPCODE(VISTR_CC); 6001 OPCODE(VSTRC_CC); 6002 OPCODE(VSTRCZ_CC); 6003 OPCODE(VSTRS_CC); 6004 OPCODE(VSTRSZ_CC); 6005 OPCODE(TDC); 6006 OPCODE(ATOMIC_SWAPW); 6007 OPCODE(ATOMIC_LOADW_ADD); 6008 OPCODE(ATOMIC_LOADW_SUB); 6009 OPCODE(ATOMIC_LOADW_AND); 6010 OPCODE(ATOMIC_LOADW_OR); 6011 OPCODE(ATOMIC_LOADW_XOR); 6012 OPCODE(ATOMIC_LOADW_NAND); 6013 OPCODE(ATOMIC_LOADW_MIN); 6014 OPCODE(ATOMIC_LOADW_MAX); 6015 OPCODE(ATOMIC_LOADW_UMIN); 6016 OPCODE(ATOMIC_LOADW_UMAX); 6017 OPCODE(ATOMIC_CMP_SWAPW); 6018 OPCODE(ATOMIC_CMP_SWAP); 6019 OPCODE(ATOMIC_LOAD_128); 6020 OPCODE(ATOMIC_STORE_128); 6021 OPCODE(ATOMIC_CMP_SWAP_128); 6022 OPCODE(LRV); 6023 OPCODE(STRV); 6024 OPCODE(VLER); 6025 OPCODE(VSTER); 6026 OPCODE(PREFETCH); 6027 } 6028 return nullptr; 6029 #undef OPCODE 6030 } 6031 6032 // Return true if VT is a vector whose elements are a whole number of bytes 6033 // in width. Also check for presence of vector support. 6034 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 6035 if (!Subtarget.hasVector()) 6036 return false; 6037 6038 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 6039 } 6040 6041 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 6042 // producing a result of type ResVT. Op is a possibly bitcast version 6043 // of the input vector and Index is the index (based on type VecVT) that 6044 // should be extracted. Return the new extraction if a simplification 6045 // was possible or if Force is true. 6046 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 6047 EVT VecVT, SDValue Op, 6048 unsigned Index, 6049 DAGCombinerInfo &DCI, 6050 bool Force) const { 6051 SelectionDAG &DAG = DCI.DAG; 6052 6053 // The number of bytes being extracted. 6054 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6055 6056 for (;;) { 6057 unsigned Opcode = Op.getOpcode(); 6058 if (Opcode == ISD::BITCAST) 6059 // Look through bitcasts. 6060 Op = Op.getOperand(0); 6061 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 6062 canTreatAsByteVector(Op.getValueType())) { 6063 // Get a VPERM-like permute mask and see whether the bytes covered 6064 // by the extracted element are a contiguous sequence from one 6065 // source operand. 6066 SmallVector<int, SystemZ::VectorBytes> Bytes; 6067 if (!getVPermMask(Op, Bytes)) 6068 break; 6069 int First; 6070 if (!getShuffleInput(Bytes, Index * BytesPerElement, 6071 BytesPerElement, First)) 6072 break; 6073 if (First < 0) 6074 return DAG.getUNDEF(ResVT); 6075 // Make sure the contiguous sequence starts at a multiple of the 6076 // original element size. 6077 unsigned Byte = unsigned(First) % Bytes.size(); 6078 if (Byte % BytesPerElement != 0) 6079 break; 6080 // We can get the extracted value directly from an input. 6081 Index = Byte / BytesPerElement; 6082 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6083 Force = true; 6084 } else if (Opcode == ISD::BUILD_VECTOR && 6085 canTreatAsByteVector(Op.getValueType())) { 6086 // We can only optimize this case if the BUILD_VECTOR elements are 6087 // at least as wide as the extracted value. 6088 EVT OpVT = Op.getValueType(); 6089 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6090 if (OpBytesPerElement < BytesPerElement) 6091 break; 6092 // Make sure that the least-significant bit of the extracted value 6093 // is the least significant bit of an input. 6094 unsigned End = (Index + 1) * BytesPerElement; 6095 if (End % OpBytesPerElement != 0) 6096 break; 6097 // We're extracting the low part of one operand of the BUILD_VECTOR. 6098 Op = Op.getOperand(End / OpBytesPerElement - 1); 6099 if (!Op.getValueType().isInteger()) { 6100 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6101 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6102 DCI.AddToWorklist(Op.getNode()); 6103 } 6104 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6105 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6106 if (VT != ResVT) { 6107 DCI.AddToWorklist(Op.getNode()); 6108 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6109 } 6110 return Op; 6111 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6112 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6113 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6114 canTreatAsByteVector(Op.getValueType()) && 6115 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6116 // Make sure that only the unextended bits are significant. 6117 EVT ExtVT = Op.getValueType(); 6118 EVT OpVT = Op.getOperand(0).getValueType(); 6119 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6120 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6121 unsigned Byte = Index * BytesPerElement; 6122 unsigned SubByte = Byte % ExtBytesPerElement; 6123 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6124 if (SubByte < MinSubByte || 6125 SubByte + BytesPerElement > ExtBytesPerElement) 6126 break; 6127 // Get the byte offset of the unextended element 6128 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6129 // ...then add the byte offset relative to that element. 6130 Byte += SubByte - MinSubByte; 6131 if (Byte % BytesPerElement != 0) 6132 break; 6133 Op = Op.getOperand(0); 6134 Index = Byte / BytesPerElement; 6135 Force = true; 6136 } else 6137 break; 6138 } 6139 if (Force) { 6140 if (Op.getValueType() != VecVT) { 6141 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6142 DCI.AddToWorklist(Op.getNode()); 6143 } 6144 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6145 DAG.getConstant(Index, DL, MVT::i32)); 6146 } 6147 return SDValue(); 6148 } 6149 6150 // Optimize vector operations in scalar value Op on the basis that Op 6151 // is truncated to TruncVT. 6152 SDValue SystemZTargetLowering::combineTruncateExtract( 6153 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6154 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6155 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6156 // of type TruncVT. 6157 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6158 TruncVT.getSizeInBits() % 8 == 0) { 6159 SDValue Vec = Op.getOperand(0); 6160 EVT VecVT = Vec.getValueType(); 6161 if (canTreatAsByteVector(VecVT)) { 6162 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6163 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6164 unsigned TruncBytes = TruncVT.getStoreSize(); 6165 if (BytesPerElement % TruncBytes == 0) { 6166 // Calculate the value of Y' in the above description. We are 6167 // splitting the original elements into Scale equal-sized pieces 6168 // and for truncation purposes want the last (least-significant) 6169 // of these pieces for IndexN. This is easiest to do by calculating 6170 // the start index of the following element and then subtracting 1. 6171 unsigned Scale = BytesPerElement / TruncBytes; 6172 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6173 6174 // Defer the creation of the bitcast from X to combineExtract, 6175 // which might be able to optimize the extraction. 6176 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6177 VecVT.getStoreSize() / TruncBytes); 6178 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6179 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6180 } 6181 } 6182 } 6183 } 6184 return SDValue(); 6185 } 6186 6187 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6188 SDNode *N, DAGCombinerInfo &DCI) const { 6189 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6190 SelectionDAG &DAG = DCI.DAG; 6191 SDValue N0 = N->getOperand(0); 6192 EVT VT = N->getValueType(0); 6193 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6194 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6195 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6196 if (TrueOp && FalseOp) { 6197 SDLoc DL(N0); 6198 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6199 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6200 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6201 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6202 // If N0 has multiple uses, change other uses as well. 6203 if (!N0.hasOneUse()) { 6204 SDValue TruncSelect = 6205 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6206 DCI.CombineTo(N0.getNode(), TruncSelect); 6207 } 6208 return NewSelect; 6209 } 6210 } 6211 return SDValue(); 6212 } 6213 6214 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6215 SDNode *N, DAGCombinerInfo &DCI) const { 6216 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6217 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6218 // into (select_cc LHS, RHS, -1, 0, COND) 6219 SelectionDAG &DAG = DCI.DAG; 6220 SDValue N0 = N->getOperand(0); 6221 EVT VT = N->getValueType(0); 6222 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6223 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6224 N0 = N0.getOperand(0); 6225 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6226 SDLoc DL(N0); 6227 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6228 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6229 N0.getOperand(2) }; 6230 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6231 } 6232 return SDValue(); 6233 } 6234 6235 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6236 SDNode *N, DAGCombinerInfo &DCI) const { 6237 // Convert (sext (ashr (shl X, C1), C2)) to 6238 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6239 // cheap as narrower ones. 6240 SelectionDAG &DAG = DCI.DAG; 6241 SDValue N0 = N->getOperand(0); 6242 EVT VT = N->getValueType(0); 6243 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6244 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6245 SDValue Inner = N0.getOperand(0); 6246 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6247 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6248 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6249 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6250 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6251 EVT ShiftVT = N0.getOperand(1).getValueType(); 6252 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6253 Inner.getOperand(0)); 6254 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6255 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6256 ShiftVT)); 6257 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6258 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6259 } 6260 } 6261 } 6262 return SDValue(); 6263 } 6264 6265 SDValue SystemZTargetLowering::combineMERGE( 6266 SDNode *N, DAGCombinerInfo &DCI) const { 6267 SelectionDAG &DAG = DCI.DAG; 6268 unsigned Opcode = N->getOpcode(); 6269 SDValue Op0 = N->getOperand(0); 6270 SDValue Op1 = N->getOperand(1); 6271 if (Op0.getOpcode() == ISD::BITCAST) 6272 Op0 = Op0.getOperand(0); 6273 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6274 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6275 // for v4f32. 6276 if (Op1 == N->getOperand(0)) 6277 return Op1; 6278 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6279 EVT VT = Op1.getValueType(); 6280 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6281 if (ElemBytes <= 4) { 6282 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6283 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6284 EVT InVT = VT.changeVectorElementTypeToInteger(); 6285 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6286 SystemZ::VectorBytes / ElemBytes / 2); 6287 if (VT != InVT) { 6288 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6289 DCI.AddToWorklist(Op1.getNode()); 6290 } 6291 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6292 DCI.AddToWorklist(Op.getNode()); 6293 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6294 } 6295 } 6296 return SDValue(); 6297 } 6298 6299 SDValue SystemZTargetLowering::combineLOAD( 6300 SDNode *N, DAGCombinerInfo &DCI) const { 6301 SelectionDAG &DAG = DCI.DAG; 6302 EVT LdVT = N->getValueType(0); 6303 if (LdVT.isVector() || LdVT.isInteger()) 6304 return SDValue(); 6305 // Transform a scalar load that is REPLICATEd as well as having other 6306 // use(s) to the form where the other use(s) use the first element of the 6307 // REPLICATE instead of the load. Otherwise instruction selection will not 6308 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6309 // point loads. 6310 6311 SDValue Replicate; 6312 SmallVector<SDNode*, 8> OtherUses; 6313 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6314 UI != UE; ++UI) { 6315 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6316 if (Replicate) 6317 return SDValue(); // Should never happen 6318 Replicate = SDValue(*UI, 0); 6319 } 6320 else if (UI.getUse().getResNo() == 0) 6321 OtherUses.push_back(*UI); 6322 } 6323 if (!Replicate || OtherUses.empty()) 6324 return SDValue(); 6325 6326 SDLoc DL(N); 6327 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6328 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6329 // Update uses of the loaded Value while preserving old chains. 6330 for (SDNode *U : OtherUses) { 6331 SmallVector<SDValue, 8> Ops; 6332 for (SDValue Op : U->ops()) 6333 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6334 DAG.UpdateNodeOperands(U, Ops); 6335 } 6336 return SDValue(N, 0); 6337 } 6338 6339 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6340 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6341 return true; 6342 if (Subtarget.hasVectorEnhancements2()) 6343 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6344 return true; 6345 return false; 6346 } 6347 6348 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6349 if (!VT.isVector() || !VT.isSimple() || 6350 VT.getSizeInBits() != 128 || 6351 VT.getScalarSizeInBits() % 8 != 0) 6352 return false; 6353 6354 unsigned NumElts = VT.getVectorNumElements(); 6355 for (unsigned i = 0; i < NumElts; ++i) { 6356 if (M[i] < 0) continue; // ignore UNDEF indices 6357 if ((unsigned) M[i] != NumElts - 1 - i) 6358 return false; 6359 } 6360 6361 return true; 6362 } 6363 6364 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 6365 for (auto *U : StoredVal->uses()) { 6366 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 6367 EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 6368 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 6369 continue; 6370 } else if (isa<BuildVectorSDNode>(U)) { 6371 SDValue BuildVector = SDValue(U, 0); 6372 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 6373 isOnlyUsedByStores(BuildVector, DAG)) 6374 continue; 6375 } 6376 return false; 6377 } 6378 return true; 6379 } 6380 6381 SDValue SystemZTargetLowering::combineSTORE( 6382 SDNode *N, DAGCombinerInfo &DCI) const { 6383 SelectionDAG &DAG = DCI.DAG; 6384 auto *SN = cast<StoreSDNode>(N); 6385 auto &Op1 = N->getOperand(1); 6386 EVT MemVT = SN->getMemoryVT(); 6387 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6388 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6389 // If X has wider elements then convert it to: 6390 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6391 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6392 if (SDValue Value = 6393 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6394 DCI.AddToWorklist(Value.getNode()); 6395 6396 // Rewrite the store with the new form of stored value. 6397 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6398 SN->getBasePtr(), SN->getMemoryVT(), 6399 SN->getMemOperand()); 6400 } 6401 } 6402 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6403 if (!SN->isTruncatingStore() && 6404 Op1.getOpcode() == ISD::BSWAP && 6405 Op1.getNode()->hasOneUse() && 6406 canLoadStoreByteSwapped(Op1.getValueType())) { 6407 6408 SDValue BSwapOp = Op1.getOperand(0); 6409 6410 if (BSwapOp.getValueType() == MVT::i16) 6411 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6412 6413 SDValue Ops[] = { 6414 N->getOperand(0), BSwapOp, N->getOperand(2) 6415 }; 6416 6417 return 6418 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6419 Ops, MemVT, SN->getMemOperand()); 6420 } 6421 // Combine STORE (element-swap) into VSTER 6422 if (!SN->isTruncatingStore() && 6423 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6424 Op1.getNode()->hasOneUse() && 6425 Subtarget.hasVectorEnhancements2()) { 6426 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6427 ArrayRef<int> ShuffleMask = SVN->getMask(); 6428 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6429 SDValue Ops[] = { 6430 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6431 }; 6432 6433 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6434 DAG.getVTList(MVT::Other), 6435 Ops, MemVT, SN->getMemOperand()); 6436 } 6437 } 6438 6439 // Replicate a reg or immediate with VREP instead of scalar multiply or 6440 // immediate load. It seems best to do this during the first DAGCombine as 6441 // it is straight-forward to handle the zero-extend node in the initial 6442 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 6443 // extracting an i16 element from a v16i8 vector). 6444 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 6445 isOnlyUsedByStores(Op1, DAG)) { 6446 SDValue Word = SDValue(); 6447 EVT WordVT; 6448 6449 // Find a replicated immediate and return it if found in Word and its 6450 // type in WordVT. 6451 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 6452 // Some constants are better handled with a scalar store. 6453 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 6454 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 6455 return; 6456 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 6457 if (VCI.isVectorConstantLegal(Subtarget) && 6458 VCI.Opcode == SystemZISD::REPLICATE) { 6459 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 6460 WordVT = VCI.VecVT.getScalarType(); 6461 } 6462 }; 6463 6464 // Find a replicated register and return it if found in Word and its type 6465 // in WordVT. 6466 auto FindReplicatedReg = [&](SDValue MulOp) { 6467 EVT MulVT = MulOp.getValueType(); 6468 if (MulOp->getOpcode() == ISD::MUL && 6469 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 6470 // Find a zero extended value and its type. 6471 SDValue LHS = MulOp->getOperand(0); 6472 if (LHS->getOpcode() == ISD::ZERO_EXTEND) 6473 WordVT = LHS->getOperand(0).getValueType(); 6474 else if (LHS->getOpcode() == ISD::AssertZext) 6475 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 6476 else 6477 return; 6478 // Find a replicating constant, e.g. 0x00010001. 6479 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 6480 SystemZVectorConstantInfo VCI( 6481 APInt(MulVT.getSizeInBits(), C->getZExtValue())); 6482 if (VCI.isVectorConstantLegal(Subtarget) && 6483 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 6484 WordVT == VCI.VecVT.getScalarType()) 6485 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 6486 } 6487 } 6488 }; 6489 6490 if (isa<BuildVectorSDNode>(Op1) && 6491 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 6492 SDValue SplatVal = Op1->getOperand(0); 6493 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 6494 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 6495 else 6496 FindReplicatedReg(SplatVal); 6497 } else { 6498 if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 6499 FindReplicatedImm(C, MemVT.getStoreSize()); 6500 else 6501 FindReplicatedReg(Op1); 6502 } 6503 6504 if (Word != SDValue()) { 6505 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 6506 "Bad type handling"); 6507 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 6508 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 6509 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 6510 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 6511 SN->getBasePtr(), SN->getMemOperand()); 6512 } 6513 } 6514 6515 return SDValue(); 6516 } 6517 6518 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6519 SDNode *N, DAGCombinerInfo &DCI) const { 6520 SelectionDAG &DAG = DCI.DAG; 6521 // Combine element-swap (LOAD) into VLER 6522 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6523 N->getOperand(0).hasOneUse() && 6524 Subtarget.hasVectorEnhancements2()) { 6525 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6526 ArrayRef<int> ShuffleMask = SVN->getMask(); 6527 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6528 SDValue Load = N->getOperand(0); 6529 LoadSDNode *LD = cast<LoadSDNode>(Load); 6530 6531 // Create the element-swapping load. 6532 SDValue Ops[] = { 6533 LD->getChain(), // Chain 6534 LD->getBasePtr() // Ptr 6535 }; 6536 SDValue ESLoad = 6537 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6538 DAG.getVTList(LD->getValueType(0), MVT::Other), 6539 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6540 6541 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6542 // by the load dead. 6543 DCI.CombineTo(N, ESLoad); 6544 6545 // Next, combine the load away, we give it a bogus result value but a real 6546 // chain result. The result value is dead because the shuffle is dead. 6547 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6548 6549 // Return N so it doesn't get rechecked! 6550 return SDValue(N, 0); 6551 } 6552 } 6553 6554 return SDValue(); 6555 } 6556 6557 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6558 SDNode *N, DAGCombinerInfo &DCI) const { 6559 SelectionDAG &DAG = DCI.DAG; 6560 6561 if (!Subtarget.hasVector()) 6562 return SDValue(); 6563 6564 // Look through bitcasts that retain the number of vector elements. 6565 SDValue Op = N->getOperand(0); 6566 if (Op.getOpcode() == ISD::BITCAST && 6567 Op.getValueType().isVector() && 6568 Op.getOperand(0).getValueType().isVector() && 6569 Op.getValueType().getVectorNumElements() == 6570 Op.getOperand(0).getValueType().getVectorNumElements()) 6571 Op = Op.getOperand(0); 6572 6573 // Pull BSWAP out of a vector extraction. 6574 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6575 EVT VecVT = Op.getValueType(); 6576 EVT EltVT = VecVT.getVectorElementType(); 6577 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6578 Op.getOperand(0), N->getOperand(1)); 6579 DCI.AddToWorklist(Op.getNode()); 6580 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6581 if (EltVT != N->getValueType(0)) { 6582 DCI.AddToWorklist(Op.getNode()); 6583 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6584 } 6585 return Op; 6586 } 6587 6588 // Try to simplify a vector extraction. 6589 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6590 SDValue Op0 = N->getOperand(0); 6591 EVT VecVT = Op0.getValueType(); 6592 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6593 IndexN->getZExtValue(), DCI, false); 6594 } 6595 return SDValue(); 6596 } 6597 6598 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6599 SDNode *N, DAGCombinerInfo &DCI) const { 6600 SelectionDAG &DAG = DCI.DAG; 6601 // (join_dwords X, X) == (replicate X) 6602 if (N->getOperand(0) == N->getOperand(1)) 6603 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6604 N->getOperand(0)); 6605 return SDValue(); 6606 } 6607 6608 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6609 SDValue Chain1 = N1->getOperand(0); 6610 SDValue Chain2 = N2->getOperand(0); 6611 6612 // Trivial case: both nodes take the same chain. 6613 if (Chain1 == Chain2) 6614 return Chain1; 6615 6616 // FIXME - we could handle more complex cases via TokenFactor, 6617 // assuming we can verify that this would not create a cycle. 6618 return SDValue(); 6619 } 6620 6621 SDValue SystemZTargetLowering::combineFP_ROUND( 6622 SDNode *N, DAGCombinerInfo &DCI) const { 6623 6624 if (!Subtarget.hasVector()) 6625 return SDValue(); 6626 6627 // (fpround (extract_vector_elt X 0)) 6628 // (fpround (extract_vector_elt X 1)) -> 6629 // (extract_vector_elt (VROUND X) 0) 6630 // (extract_vector_elt (VROUND X) 2) 6631 // 6632 // This is a special case since the target doesn't really support v2f32s. 6633 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6634 SelectionDAG &DAG = DCI.DAG; 6635 SDValue Op0 = N->getOperand(OpNo); 6636 if (N->getValueType(0) == MVT::f32 && 6637 Op0.hasOneUse() && 6638 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6639 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6640 Op0.getOperand(1).getOpcode() == ISD::Constant && 6641 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6642 SDValue Vec = Op0.getOperand(0); 6643 for (auto *U : Vec->uses()) { 6644 if (U != Op0.getNode() && 6645 U->hasOneUse() && 6646 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6647 U->getOperand(0) == Vec && 6648 U->getOperand(1).getOpcode() == ISD::Constant && 6649 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6650 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6651 if (OtherRound.getOpcode() == N->getOpcode() && 6652 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6653 OtherRound.getValueType() == MVT::f32) { 6654 SDValue VRound, Chain; 6655 if (N->isStrictFPOpcode()) { 6656 Chain = MergeInputChains(N, OtherRound.getNode()); 6657 if (!Chain) 6658 continue; 6659 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6660 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6661 Chain = VRound.getValue(1); 6662 } else 6663 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6664 MVT::v4f32, Vec); 6665 DCI.AddToWorklist(VRound.getNode()); 6666 SDValue Extract1 = 6667 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6668 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6669 DCI.AddToWorklist(Extract1.getNode()); 6670 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6671 if (Chain) 6672 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6673 SDValue Extract0 = 6674 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6675 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6676 if (Chain) 6677 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6678 N->getVTList(), Extract0, Chain); 6679 return Extract0; 6680 } 6681 } 6682 } 6683 } 6684 return SDValue(); 6685 } 6686 6687 SDValue SystemZTargetLowering::combineFP_EXTEND( 6688 SDNode *N, DAGCombinerInfo &DCI) const { 6689 6690 if (!Subtarget.hasVector()) 6691 return SDValue(); 6692 6693 // (fpextend (extract_vector_elt X 0)) 6694 // (fpextend (extract_vector_elt X 2)) -> 6695 // (extract_vector_elt (VEXTEND X) 0) 6696 // (extract_vector_elt (VEXTEND X) 1) 6697 // 6698 // This is a special case since the target doesn't really support v2f32s. 6699 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6700 SelectionDAG &DAG = DCI.DAG; 6701 SDValue Op0 = N->getOperand(OpNo); 6702 if (N->getValueType(0) == MVT::f64 && 6703 Op0.hasOneUse() && 6704 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6705 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6706 Op0.getOperand(1).getOpcode() == ISD::Constant && 6707 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6708 SDValue Vec = Op0.getOperand(0); 6709 for (auto *U : Vec->uses()) { 6710 if (U != Op0.getNode() && 6711 U->hasOneUse() && 6712 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6713 U->getOperand(0) == Vec && 6714 U->getOperand(1).getOpcode() == ISD::Constant && 6715 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6716 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6717 if (OtherExtend.getOpcode() == N->getOpcode() && 6718 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6719 OtherExtend.getValueType() == MVT::f64) { 6720 SDValue VExtend, Chain; 6721 if (N->isStrictFPOpcode()) { 6722 Chain = MergeInputChains(N, OtherExtend.getNode()); 6723 if (!Chain) 6724 continue; 6725 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6726 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6727 Chain = VExtend.getValue(1); 6728 } else 6729 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6730 MVT::v2f64, Vec); 6731 DCI.AddToWorklist(VExtend.getNode()); 6732 SDValue Extract1 = 6733 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6734 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6735 DCI.AddToWorklist(Extract1.getNode()); 6736 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6737 if (Chain) 6738 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6739 SDValue Extract0 = 6740 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6741 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6742 if (Chain) 6743 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6744 N->getVTList(), Extract0, Chain); 6745 return Extract0; 6746 } 6747 } 6748 } 6749 } 6750 return SDValue(); 6751 } 6752 6753 SDValue SystemZTargetLowering::combineINT_TO_FP( 6754 SDNode *N, DAGCombinerInfo &DCI) const { 6755 if (DCI.Level != BeforeLegalizeTypes) 6756 return SDValue(); 6757 SelectionDAG &DAG = DCI.DAG; 6758 LLVMContext &Ctx = *DAG.getContext(); 6759 unsigned Opcode = N->getOpcode(); 6760 EVT OutVT = N->getValueType(0); 6761 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 6762 SDValue Op = N->getOperand(0); 6763 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 6764 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6765 6766 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6767 // v2f64 = uint_to_fp v2i16 6768 // => 6769 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6770 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 6771 OutScalarBits <= 64) { 6772 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 6773 EVT ExtVT = EVT::getVectorVT( 6774 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 6775 unsigned ExtOpcode = 6776 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6777 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6778 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6779 } 6780 return SDValue(); 6781 } 6782 6783 SDValue SystemZTargetLowering::combineBSWAP( 6784 SDNode *N, DAGCombinerInfo &DCI) const { 6785 SelectionDAG &DAG = DCI.DAG; 6786 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6787 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6788 N->getOperand(0).hasOneUse() && 6789 canLoadStoreByteSwapped(N->getValueType(0))) { 6790 SDValue Load = N->getOperand(0); 6791 LoadSDNode *LD = cast<LoadSDNode>(Load); 6792 6793 // Create the byte-swapping load. 6794 SDValue Ops[] = { 6795 LD->getChain(), // Chain 6796 LD->getBasePtr() // Ptr 6797 }; 6798 EVT LoadVT = N->getValueType(0); 6799 if (LoadVT == MVT::i16) 6800 LoadVT = MVT::i32; 6801 SDValue BSLoad = 6802 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6803 DAG.getVTList(LoadVT, MVT::Other), 6804 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6805 6806 // If this is an i16 load, insert the truncate. 6807 SDValue ResVal = BSLoad; 6808 if (N->getValueType(0) == MVT::i16) 6809 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6810 6811 // First, combine the bswap away. This makes the value produced by the 6812 // load dead. 6813 DCI.CombineTo(N, ResVal); 6814 6815 // Next, combine the load away, we give it a bogus result value but a real 6816 // chain result. The result value is dead because the bswap is dead. 6817 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6818 6819 // Return N so it doesn't get rechecked! 6820 return SDValue(N, 0); 6821 } 6822 6823 // Look through bitcasts that retain the number of vector elements. 6824 SDValue Op = N->getOperand(0); 6825 if (Op.getOpcode() == ISD::BITCAST && 6826 Op.getValueType().isVector() && 6827 Op.getOperand(0).getValueType().isVector() && 6828 Op.getValueType().getVectorNumElements() == 6829 Op.getOperand(0).getValueType().getVectorNumElements()) 6830 Op = Op.getOperand(0); 6831 6832 // Push BSWAP into a vector insertion if at least one side then simplifies. 6833 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6834 SDValue Vec = Op.getOperand(0); 6835 SDValue Elt = Op.getOperand(1); 6836 SDValue Idx = Op.getOperand(2); 6837 6838 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6839 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6840 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6841 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6842 (canLoadStoreByteSwapped(N->getValueType(0)) && 6843 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6844 EVT VecVT = N->getValueType(0); 6845 EVT EltVT = N->getValueType(0).getVectorElementType(); 6846 if (VecVT != Vec.getValueType()) { 6847 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6848 DCI.AddToWorklist(Vec.getNode()); 6849 } 6850 if (EltVT != Elt.getValueType()) { 6851 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6852 DCI.AddToWorklist(Elt.getNode()); 6853 } 6854 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6855 DCI.AddToWorklist(Vec.getNode()); 6856 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6857 DCI.AddToWorklist(Elt.getNode()); 6858 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6859 Vec, Elt, Idx); 6860 } 6861 } 6862 6863 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6864 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6865 if (SV && Op.hasOneUse()) { 6866 SDValue Op0 = Op.getOperand(0); 6867 SDValue Op1 = Op.getOperand(1); 6868 6869 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6870 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6871 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6872 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6873 EVT VecVT = N->getValueType(0); 6874 if (VecVT != Op0.getValueType()) { 6875 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6876 DCI.AddToWorklist(Op0.getNode()); 6877 } 6878 if (VecVT != Op1.getValueType()) { 6879 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6880 DCI.AddToWorklist(Op1.getNode()); 6881 } 6882 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6883 DCI.AddToWorklist(Op0.getNode()); 6884 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6885 DCI.AddToWorklist(Op1.getNode()); 6886 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6887 } 6888 } 6889 6890 return SDValue(); 6891 } 6892 6893 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6894 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6895 // set by the CCReg instruction using the CCValid / CCMask masks, 6896 // If the CCReg instruction is itself a ICMP testing the condition 6897 // code set by some other instruction, see whether we can directly 6898 // use that condition code. 6899 6900 // Verify that we have an ICMP against some constant. 6901 if (CCValid != SystemZ::CCMASK_ICMP) 6902 return false; 6903 auto *ICmp = CCReg.getNode(); 6904 if (ICmp->getOpcode() != SystemZISD::ICMP) 6905 return false; 6906 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6907 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6908 if (!CompareRHS) 6909 return false; 6910 6911 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6912 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6913 // Verify that we have an appropriate mask for a EQ or NE comparison. 6914 bool Invert = false; 6915 if (CCMask == SystemZ::CCMASK_CMP_NE) 6916 Invert = !Invert; 6917 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6918 return false; 6919 6920 // Verify that the ICMP compares against one of select values. 6921 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6922 if (!TrueVal) 6923 return false; 6924 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6925 if (!FalseVal) 6926 return false; 6927 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6928 Invert = !Invert; 6929 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6930 return false; 6931 6932 // Compute the effective CC mask for the new branch or select. 6933 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6934 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6935 if (!NewCCValid || !NewCCMask) 6936 return false; 6937 CCValid = NewCCValid->getZExtValue(); 6938 CCMask = NewCCMask->getZExtValue(); 6939 if (Invert) 6940 CCMask ^= CCValid; 6941 6942 // Return the updated CCReg link. 6943 CCReg = CompareLHS->getOperand(4); 6944 return true; 6945 } 6946 6947 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6948 if (CompareLHS->getOpcode() == ISD::SRA) { 6949 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6950 if (!SRACount || SRACount->getZExtValue() != 30) 6951 return false; 6952 auto *SHL = CompareLHS->getOperand(0).getNode(); 6953 if (SHL->getOpcode() != ISD::SHL) 6954 return false; 6955 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6956 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6957 return false; 6958 auto *IPM = SHL->getOperand(0).getNode(); 6959 if (IPM->getOpcode() != SystemZISD::IPM) 6960 return false; 6961 6962 // Avoid introducing CC spills (because SRA would clobber CC). 6963 if (!CompareLHS->hasOneUse()) 6964 return false; 6965 // Verify that the ICMP compares against zero. 6966 if (CompareRHS->getZExtValue() != 0) 6967 return false; 6968 6969 // Compute the effective CC mask for the new branch or select. 6970 CCMask = SystemZ::reverseCCMask(CCMask); 6971 6972 // Return the updated CCReg link. 6973 CCReg = IPM->getOperand(0); 6974 return true; 6975 } 6976 6977 return false; 6978 } 6979 6980 SDValue SystemZTargetLowering::combineBR_CCMASK( 6981 SDNode *N, DAGCombinerInfo &DCI) const { 6982 SelectionDAG &DAG = DCI.DAG; 6983 6984 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6985 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6986 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6987 if (!CCValid || !CCMask) 6988 return SDValue(); 6989 6990 int CCValidVal = CCValid->getZExtValue(); 6991 int CCMaskVal = CCMask->getZExtValue(); 6992 SDValue Chain = N->getOperand(0); 6993 SDValue CCReg = N->getOperand(4); 6994 6995 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6996 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6997 Chain, 6998 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6999 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7000 N->getOperand(3), CCReg); 7001 return SDValue(); 7002 } 7003 7004 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 7005 SDNode *N, DAGCombinerInfo &DCI) const { 7006 SelectionDAG &DAG = DCI.DAG; 7007 7008 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 7009 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7010 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 7011 if (!CCValid || !CCMask) 7012 return SDValue(); 7013 7014 int CCValidVal = CCValid->getZExtValue(); 7015 int CCMaskVal = CCMask->getZExtValue(); 7016 SDValue CCReg = N->getOperand(4); 7017 7018 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7019 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 7020 N->getOperand(0), N->getOperand(1), 7021 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7022 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7023 CCReg); 7024 return SDValue(); 7025 } 7026 7027 7028 SDValue SystemZTargetLowering::combineGET_CCMASK( 7029 SDNode *N, DAGCombinerInfo &DCI) const { 7030 7031 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 7032 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7033 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7034 if (!CCValid || !CCMask) 7035 return SDValue(); 7036 int CCValidVal = CCValid->getZExtValue(); 7037 int CCMaskVal = CCMask->getZExtValue(); 7038 7039 SDValue Select = N->getOperand(0); 7040 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 7041 return SDValue(); 7042 7043 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 7044 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 7045 if (!SelectCCValid || !SelectCCMask) 7046 return SDValue(); 7047 int SelectCCValidVal = SelectCCValid->getZExtValue(); 7048 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 7049 7050 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 7051 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 7052 if (!TrueVal || !FalseVal) 7053 return SDValue(); 7054 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 7055 ; 7056 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 7057 SelectCCMaskVal ^= SelectCCValidVal; 7058 else 7059 return SDValue(); 7060 7061 if (SelectCCValidVal & ~CCValidVal) 7062 return SDValue(); 7063 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 7064 return SDValue(); 7065 7066 return Select->getOperand(4); 7067 } 7068 7069 SDValue SystemZTargetLowering::combineIntDIVREM( 7070 SDNode *N, DAGCombinerInfo &DCI) const { 7071 SelectionDAG &DAG = DCI.DAG; 7072 EVT VT = N->getValueType(0); 7073 // In the case where the divisor is a vector of constants a cheaper 7074 // sequence of instructions can replace the divide. BuildSDIV is called to 7075 // do this during DAG combining, but it only succeeds when it can build a 7076 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 7077 // since it is not Legal but Custom it can only happen before 7078 // legalization. Therefore we must scalarize this early before Combine 7079 // 1. For widened vectors, this is already the result of type legalization. 7080 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 7081 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 7082 return DAG.UnrollVectorOp(N); 7083 return SDValue(); 7084 } 7085 7086 SDValue SystemZTargetLowering::combineINTRINSIC( 7087 SDNode *N, DAGCombinerInfo &DCI) const { 7088 SelectionDAG &DAG = DCI.DAG; 7089 7090 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7091 switch (Id) { 7092 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 7093 // or larger is simply a vector load. 7094 case Intrinsic::s390_vll: 7095 case Intrinsic::s390_vlrl: 7096 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 7097 if (C->getZExtValue() >= 15) 7098 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 7099 N->getOperand(3), MachinePointerInfo()); 7100 break; 7101 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 7102 case Intrinsic::s390_vstl: 7103 case Intrinsic::s390_vstrl: 7104 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 7105 if (C->getZExtValue() >= 15) 7106 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 7107 N->getOperand(4), MachinePointerInfo()); 7108 break; 7109 } 7110 7111 return SDValue(); 7112 } 7113 7114 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 7115 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 7116 return N->getOperand(0); 7117 return N; 7118 } 7119 7120 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 7121 DAGCombinerInfo &DCI) const { 7122 switch(N->getOpcode()) { 7123 default: break; 7124 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 7125 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 7126 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 7127 case SystemZISD::MERGE_HIGH: 7128 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 7129 case ISD::LOAD: return combineLOAD(N, DCI); 7130 case ISD::STORE: return combineSTORE(N, DCI); 7131 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 7132 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 7133 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7134 case ISD::STRICT_FP_ROUND: 7135 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7136 case ISD::STRICT_FP_EXTEND: 7137 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 7138 case ISD::SINT_TO_FP: 7139 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 7140 case ISD::BSWAP: return combineBSWAP(N, DCI); 7141 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 7142 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 7143 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 7144 case ISD::SDIV: 7145 case ISD::UDIV: 7146 case ISD::SREM: 7147 case ISD::UREM: return combineIntDIVREM(N, DCI); 7148 case ISD::INTRINSIC_W_CHAIN: 7149 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 7150 } 7151 7152 return SDValue(); 7153 } 7154 7155 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 7156 // are for Op. 7157 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 7158 unsigned OpNo) { 7159 EVT VT = Op.getValueType(); 7160 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 7161 APInt SrcDemE; 7162 unsigned Opcode = Op.getOpcode(); 7163 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7164 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7165 switch (Id) { 7166 case Intrinsic::s390_vpksh: // PACKS 7167 case Intrinsic::s390_vpksf: 7168 case Intrinsic::s390_vpksg: 7169 case Intrinsic::s390_vpkshs: // PACKS_CC 7170 case Intrinsic::s390_vpksfs: 7171 case Intrinsic::s390_vpksgs: 7172 case Intrinsic::s390_vpklsh: // PACKLS 7173 case Intrinsic::s390_vpklsf: 7174 case Intrinsic::s390_vpklsg: 7175 case Intrinsic::s390_vpklshs: // PACKLS_CC 7176 case Intrinsic::s390_vpklsfs: 7177 case Intrinsic::s390_vpklsgs: 7178 // VECTOR PACK truncates the elements of two source vectors into one. 7179 SrcDemE = DemandedElts; 7180 if (OpNo == 2) 7181 SrcDemE.lshrInPlace(NumElts / 2); 7182 SrcDemE = SrcDemE.trunc(NumElts / 2); 7183 break; 7184 // VECTOR UNPACK extends half the elements of the source vector. 7185 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7186 case Intrinsic::s390_vuphh: 7187 case Intrinsic::s390_vuphf: 7188 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7189 case Intrinsic::s390_vuplhh: 7190 case Intrinsic::s390_vuplhf: 7191 SrcDemE = APInt(NumElts * 2, 0); 7192 SrcDemE.insertBits(DemandedElts, 0); 7193 break; 7194 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7195 case Intrinsic::s390_vuplhw: 7196 case Intrinsic::s390_vuplf: 7197 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7198 case Intrinsic::s390_vupllh: 7199 case Intrinsic::s390_vupllf: 7200 SrcDemE = APInt(NumElts * 2, 0); 7201 SrcDemE.insertBits(DemandedElts, NumElts); 7202 break; 7203 case Intrinsic::s390_vpdi: { 7204 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7205 SrcDemE = APInt(NumElts, 0); 7206 if (!DemandedElts[OpNo - 1]) 7207 break; 7208 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7209 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7210 // Demand input element 0 or 1, given by the mask bit value. 7211 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7212 break; 7213 } 7214 case Intrinsic::s390_vsldb: { 7215 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7216 assert(VT == MVT::v16i8 && "Unexpected type."); 7217 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7218 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7219 unsigned NumSrc0Els = 16 - FirstIdx; 7220 SrcDemE = APInt(NumElts, 0); 7221 if (OpNo == 1) { 7222 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7223 SrcDemE.insertBits(DemEls, FirstIdx); 7224 } else { 7225 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7226 SrcDemE.insertBits(DemEls, 0); 7227 } 7228 break; 7229 } 7230 case Intrinsic::s390_vperm: 7231 SrcDemE = APInt(NumElts, 1); 7232 break; 7233 default: 7234 llvm_unreachable("Unhandled intrinsic."); 7235 break; 7236 } 7237 } else { 7238 switch (Opcode) { 7239 case SystemZISD::JOIN_DWORDS: 7240 // Scalar operand. 7241 SrcDemE = APInt(1, 1); 7242 break; 7243 case SystemZISD::SELECT_CCMASK: 7244 SrcDemE = DemandedElts; 7245 break; 7246 default: 7247 llvm_unreachable("Unhandled opcode."); 7248 break; 7249 } 7250 } 7251 return SrcDemE; 7252 } 7253 7254 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7255 const APInt &DemandedElts, 7256 const SelectionDAG &DAG, unsigned Depth, 7257 unsigned OpNo) { 7258 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7259 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7260 KnownBits LHSKnown = 7261 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7262 KnownBits RHSKnown = 7263 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7264 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 7265 } 7266 7267 void 7268 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7269 KnownBits &Known, 7270 const APInt &DemandedElts, 7271 const SelectionDAG &DAG, 7272 unsigned Depth) const { 7273 Known.resetAll(); 7274 7275 // Intrinsic CC result is returned in the two low bits. 7276 unsigned tmp0, tmp1; // not used 7277 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7278 Known.Zero.setBitsFrom(2); 7279 return; 7280 } 7281 EVT VT = Op.getValueType(); 7282 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7283 return; 7284 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7285 "KnownBits does not match VT in bitwidth"); 7286 assert ((!VT.isVector() || 7287 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7288 "DemandedElts does not match VT number of elements"); 7289 unsigned BitWidth = Known.getBitWidth(); 7290 unsigned Opcode = Op.getOpcode(); 7291 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7292 bool IsLogical = false; 7293 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7294 switch (Id) { 7295 case Intrinsic::s390_vpksh: // PACKS 7296 case Intrinsic::s390_vpksf: 7297 case Intrinsic::s390_vpksg: 7298 case Intrinsic::s390_vpkshs: // PACKS_CC 7299 case Intrinsic::s390_vpksfs: 7300 case Intrinsic::s390_vpksgs: 7301 case Intrinsic::s390_vpklsh: // PACKLS 7302 case Intrinsic::s390_vpklsf: 7303 case Intrinsic::s390_vpklsg: 7304 case Intrinsic::s390_vpklshs: // PACKLS_CC 7305 case Intrinsic::s390_vpklsfs: 7306 case Intrinsic::s390_vpklsgs: 7307 case Intrinsic::s390_vpdi: 7308 case Intrinsic::s390_vsldb: 7309 case Intrinsic::s390_vperm: 7310 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7311 break; 7312 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7313 case Intrinsic::s390_vuplhh: 7314 case Intrinsic::s390_vuplhf: 7315 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7316 case Intrinsic::s390_vupllh: 7317 case Intrinsic::s390_vupllf: 7318 IsLogical = true; 7319 LLVM_FALLTHROUGH; 7320 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7321 case Intrinsic::s390_vuphh: 7322 case Intrinsic::s390_vuphf: 7323 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7324 case Intrinsic::s390_vuplhw: 7325 case Intrinsic::s390_vuplf: { 7326 SDValue SrcOp = Op.getOperand(1); 7327 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7328 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7329 if (IsLogical) { 7330 Known = Known.zext(BitWidth); 7331 } else 7332 Known = Known.sext(BitWidth); 7333 break; 7334 } 7335 default: 7336 break; 7337 } 7338 } else { 7339 switch (Opcode) { 7340 case SystemZISD::JOIN_DWORDS: 7341 case SystemZISD::SELECT_CCMASK: 7342 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7343 break; 7344 case SystemZISD::REPLICATE: { 7345 SDValue SrcOp = Op.getOperand(0); 7346 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7347 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7348 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7349 break; 7350 } 7351 default: 7352 break; 7353 } 7354 } 7355 7356 // Known has the width of the source operand(s). Adjust if needed to match 7357 // the passed bitwidth. 7358 if (Known.getBitWidth() != BitWidth) 7359 Known = Known.anyextOrTrunc(BitWidth); 7360 } 7361 7362 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7363 const SelectionDAG &DAG, unsigned Depth, 7364 unsigned OpNo) { 7365 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7366 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7367 if (LHS == 1) return 1; // Early out. 7368 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7369 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7370 if (RHS == 1) return 1; // Early out. 7371 unsigned Common = std::min(LHS, RHS); 7372 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7373 EVT VT = Op.getValueType(); 7374 unsigned VTBits = VT.getScalarSizeInBits(); 7375 if (SrcBitWidth > VTBits) { // PACK 7376 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7377 if (Common > SrcExtraBits) 7378 return (Common - SrcExtraBits); 7379 return 1; 7380 } 7381 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7382 return Common; 7383 } 7384 7385 unsigned 7386 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7387 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7388 unsigned Depth) const { 7389 if (Op.getResNo() != 0) 7390 return 1; 7391 unsigned Opcode = Op.getOpcode(); 7392 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7393 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7394 switch (Id) { 7395 case Intrinsic::s390_vpksh: // PACKS 7396 case Intrinsic::s390_vpksf: 7397 case Intrinsic::s390_vpksg: 7398 case Intrinsic::s390_vpkshs: // PACKS_CC 7399 case Intrinsic::s390_vpksfs: 7400 case Intrinsic::s390_vpksgs: 7401 case Intrinsic::s390_vpklsh: // PACKLS 7402 case Intrinsic::s390_vpklsf: 7403 case Intrinsic::s390_vpklsg: 7404 case Intrinsic::s390_vpklshs: // PACKLS_CC 7405 case Intrinsic::s390_vpklsfs: 7406 case Intrinsic::s390_vpklsgs: 7407 case Intrinsic::s390_vpdi: 7408 case Intrinsic::s390_vsldb: 7409 case Intrinsic::s390_vperm: 7410 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7411 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7412 case Intrinsic::s390_vuphh: 7413 case Intrinsic::s390_vuphf: 7414 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7415 case Intrinsic::s390_vuplhw: 7416 case Intrinsic::s390_vuplf: { 7417 SDValue PackedOp = Op.getOperand(1); 7418 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7419 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7420 EVT VT = Op.getValueType(); 7421 unsigned VTBits = VT.getScalarSizeInBits(); 7422 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7423 return Tmp; 7424 } 7425 default: 7426 break; 7427 } 7428 } else { 7429 switch (Opcode) { 7430 case SystemZISD::SELECT_CCMASK: 7431 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7432 default: 7433 break; 7434 } 7435 } 7436 7437 return 1; 7438 } 7439 7440 unsigned 7441 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7442 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7443 unsigned StackAlign = TFI->getStackAlignment(); 7444 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7445 "Unexpected stack alignment"); 7446 // The default stack probe size is 4096 if the function has no 7447 // stack-probe-size attribute. 7448 unsigned StackProbeSize = 4096; 7449 const Function &Fn = MF.getFunction(); 7450 if (Fn.hasFnAttribute("stack-probe-size")) 7451 Fn.getFnAttribute("stack-probe-size") 7452 .getValueAsString() 7453 .getAsInteger(0, StackProbeSize); 7454 // Round down to the stack alignment. 7455 StackProbeSize &= ~(StackAlign - 1); 7456 return StackProbeSize ? StackProbeSize : StackAlign; 7457 } 7458 7459 //===----------------------------------------------------------------------===// 7460 // Custom insertion 7461 //===----------------------------------------------------------------------===// 7462 7463 // Force base value Base into a register before MI. Return the register. 7464 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7465 const SystemZInstrInfo *TII) { 7466 MachineBasicBlock *MBB = MI.getParent(); 7467 MachineFunction &MF = *MBB->getParent(); 7468 MachineRegisterInfo &MRI = MF.getRegInfo(); 7469 7470 if (Base.isReg()) { 7471 // Copy Base into a new virtual register to help register coalescing in 7472 // cases with multiple uses. 7473 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7474 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7475 .add(Base); 7476 return Reg; 7477 } 7478 7479 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7480 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7481 .add(Base) 7482 .addImm(0) 7483 .addReg(0); 7484 return Reg; 7485 } 7486 7487 // The CC operand of MI might be missing a kill marker because there 7488 // were multiple uses of CC, and ISel didn't know which to mark. 7489 // Figure out whether MI should have had a kill marker. 7490 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7491 // Scan forward through BB for a use/def of CC. 7492 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7493 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7494 const MachineInstr& mi = *miI; 7495 if (mi.readsRegister(SystemZ::CC)) 7496 return false; 7497 if (mi.definesRegister(SystemZ::CC)) 7498 break; // Should have kill-flag - update below. 7499 } 7500 7501 // If we hit the end of the block, check whether CC is live into a 7502 // successor. 7503 if (miI == MBB->end()) { 7504 for (const MachineBasicBlock *Succ : MBB->successors()) 7505 if (Succ->isLiveIn(SystemZ::CC)) 7506 return false; 7507 } 7508 7509 return true; 7510 } 7511 7512 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7513 // together with other Select pseudo-opcodes into a single basic-block with 7514 // a conditional jump around it. 7515 static bool isSelectPseudo(MachineInstr &MI) { 7516 switch (MI.getOpcode()) { 7517 case SystemZ::Select32: 7518 case SystemZ::Select64: 7519 case SystemZ::SelectF32: 7520 case SystemZ::SelectF64: 7521 case SystemZ::SelectF128: 7522 case SystemZ::SelectVR32: 7523 case SystemZ::SelectVR64: 7524 case SystemZ::SelectVR128: 7525 return true; 7526 7527 default: 7528 return false; 7529 } 7530 } 7531 7532 // Helper function, which inserts PHI functions into SinkMBB: 7533 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7534 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7535 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7536 MachineBasicBlock *TrueMBB, 7537 MachineBasicBlock *FalseMBB, 7538 MachineBasicBlock *SinkMBB) { 7539 MachineFunction *MF = TrueMBB->getParent(); 7540 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7541 7542 MachineInstr *FirstMI = Selects.front(); 7543 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7544 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7545 7546 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7547 7548 // As we are creating the PHIs, we have to be careful if there is more than 7549 // one. Later Selects may reference the results of earlier Selects, but later 7550 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7551 // That also means that PHI construction must work forward from earlier to 7552 // later, and that the code must maintain a mapping from earlier PHI's 7553 // destination registers, and the registers that went into the PHI. 7554 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7555 7556 for (auto MI : Selects) { 7557 Register DestReg = MI->getOperand(0).getReg(); 7558 Register TrueReg = MI->getOperand(1).getReg(); 7559 Register FalseReg = MI->getOperand(2).getReg(); 7560 7561 // If this Select we are generating is the opposite condition from 7562 // the jump we generated, then we have to swap the operands for the 7563 // PHI that is going to be generated. 7564 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7565 std::swap(TrueReg, FalseReg); 7566 7567 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7568 TrueReg = RegRewriteTable[TrueReg].first; 7569 7570 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7571 FalseReg = RegRewriteTable[FalseReg].second; 7572 7573 DebugLoc DL = MI->getDebugLoc(); 7574 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7575 .addReg(TrueReg).addMBB(TrueMBB) 7576 .addReg(FalseReg).addMBB(FalseMBB); 7577 7578 // Add this PHI to the rewrite table. 7579 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7580 } 7581 7582 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7583 } 7584 7585 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7586 MachineBasicBlock * 7587 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7588 MachineBasicBlock *MBB) const { 7589 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7590 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7591 7592 unsigned CCValid = MI.getOperand(3).getImm(); 7593 unsigned CCMask = MI.getOperand(4).getImm(); 7594 7595 // If we have a sequence of Select* pseudo instructions using the 7596 // same condition code value, we want to expand all of them into 7597 // a single pair of basic blocks using the same condition. 7598 SmallVector<MachineInstr*, 8> Selects; 7599 SmallVector<MachineInstr*, 8> DbgValues; 7600 Selects.push_back(&MI); 7601 unsigned Count = 0; 7602 for (MachineBasicBlock::iterator NextMIIt = 7603 std::next(MachineBasicBlock::iterator(MI)); 7604 NextMIIt != MBB->end(); ++NextMIIt) { 7605 if (isSelectPseudo(*NextMIIt)) { 7606 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7607 "Bad CCValid operands since CC was not redefined."); 7608 if (NextMIIt->getOperand(4).getImm() == CCMask || 7609 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7610 Selects.push_back(&*NextMIIt); 7611 continue; 7612 } 7613 break; 7614 } 7615 if (NextMIIt->definesRegister(SystemZ::CC) || 7616 NextMIIt->usesCustomInsertionHook()) 7617 break; 7618 bool User = false; 7619 for (auto SelMI : Selects) 7620 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7621 User = true; 7622 break; 7623 } 7624 if (NextMIIt->isDebugInstr()) { 7625 if (User) { 7626 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7627 DbgValues.push_back(&*NextMIIt); 7628 } 7629 } 7630 else if (User || ++Count > 20) 7631 break; 7632 } 7633 7634 MachineInstr *LastMI = Selects.back(); 7635 bool CCKilled = 7636 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7637 MachineBasicBlock *StartMBB = MBB; 7638 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7639 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7640 7641 // Unless CC was killed in the last Select instruction, mark it as 7642 // live-in to both FalseMBB and JoinMBB. 7643 if (!CCKilled) { 7644 FalseMBB->addLiveIn(SystemZ::CC); 7645 JoinMBB->addLiveIn(SystemZ::CC); 7646 } 7647 7648 // StartMBB: 7649 // BRC CCMask, JoinMBB 7650 // # fallthrough to FalseMBB 7651 MBB = StartMBB; 7652 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7653 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7654 MBB->addSuccessor(JoinMBB); 7655 MBB->addSuccessor(FalseMBB); 7656 7657 // FalseMBB: 7658 // # fallthrough to JoinMBB 7659 MBB = FalseMBB; 7660 MBB->addSuccessor(JoinMBB); 7661 7662 // JoinMBB: 7663 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7664 // ... 7665 MBB = JoinMBB; 7666 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7667 for (auto SelMI : Selects) 7668 SelMI->eraseFromParent(); 7669 7670 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7671 for (auto DbgMI : DbgValues) 7672 MBB->splice(InsertPos, StartMBB, DbgMI); 7673 7674 return JoinMBB; 7675 } 7676 7677 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7678 // StoreOpcode is the store to use and Invert says whether the store should 7679 // happen when the condition is false rather than true. If a STORE ON 7680 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7681 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7682 MachineBasicBlock *MBB, 7683 unsigned StoreOpcode, 7684 unsigned STOCOpcode, 7685 bool Invert) const { 7686 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7687 7688 Register SrcReg = MI.getOperand(0).getReg(); 7689 MachineOperand Base = MI.getOperand(1); 7690 int64_t Disp = MI.getOperand(2).getImm(); 7691 Register IndexReg = MI.getOperand(3).getReg(); 7692 unsigned CCValid = MI.getOperand(4).getImm(); 7693 unsigned CCMask = MI.getOperand(5).getImm(); 7694 DebugLoc DL = MI.getDebugLoc(); 7695 7696 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7697 7698 // ISel pattern matching also adds a load memory operand of the same 7699 // address, so take special care to find the storing memory operand. 7700 MachineMemOperand *MMO = nullptr; 7701 for (auto *I : MI.memoperands()) 7702 if (I->isStore()) { 7703 MMO = I; 7704 break; 7705 } 7706 7707 // Use STOCOpcode if possible. We could use different store patterns in 7708 // order to avoid matching the index register, but the performance trade-offs 7709 // might be more complicated in that case. 7710 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7711 if (Invert) 7712 CCMask ^= CCValid; 7713 7714 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7715 .addReg(SrcReg) 7716 .add(Base) 7717 .addImm(Disp) 7718 .addImm(CCValid) 7719 .addImm(CCMask) 7720 .addMemOperand(MMO); 7721 7722 MI.eraseFromParent(); 7723 return MBB; 7724 } 7725 7726 // Get the condition needed to branch around the store. 7727 if (!Invert) 7728 CCMask ^= CCValid; 7729 7730 MachineBasicBlock *StartMBB = MBB; 7731 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7732 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7733 7734 // Unless CC was killed in the CondStore instruction, mark it as 7735 // live-in to both FalseMBB and JoinMBB. 7736 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7737 FalseMBB->addLiveIn(SystemZ::CC); 7738 JoinMBB->addLiveIn(SystemZ::CC); 7739 } 7740 7741 // StartMBB: 7742 // BRC CCMask, JoinMBB 7743 // # fallthrough to FalseMBB 7744 MBB = StartMBB; 7745 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7746 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7747 MBB->addSuccessor(JoinMBB); 7748 MBB->addSuccessor(FalseMBB); 7749 7750 // FalseMBB: 7751 // store %SrcReg, %Disp(%Index,%Base) 7752 // # fallthrough to JoinMBB 7753 MBB = FalseMBB; 7754 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7755 .addReg(SrcReg) 7756 .add(Base) 7757 .addImm(Disp) 7758 .addReg(IndexReg) 7759 .addMemOperand(MMO); 7760 MBB->addSuccessor(JoinMBB); 7761 7762 MI.eraseFromParent(); 7763 return JoinMBB; 7764 } 7765 7766 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7767 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7768 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7769 // BitSize is the width of the field in bits, or 0 if this is a partword 7770 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7771 // is one of the operands. Invert says whether the field should be 7772 // inverted after performing BinOpcode (e.g. for NAND). 7773 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7774 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7775 unsigned BitSize, bool Invert) const { 7776 MachineFunction &MF = *MBB->getParent(); 7777 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7778 MachineRegisterInfo &MRI = MF.getRegInfo(); 7779 bool IsSubWord = (BitSize < 32); 7780 7781 // Extract the operands. Base can be a register or a frame index. 7782 // Src2 can be a register or immediate. 7783 Register Dest = MI.getOperand(0).getReg(); 7784 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7785 int64_t Disp = MI.getOperand(2).getImm(); 7786 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7787 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7788 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7789 DebugLoc DL = MI.getDebugLoc(); 7790 if (IsSubWord) 7791 BitSize = MI.getOperand(6).getImm(); 7792 7793 // Subword operations use 32-bit registers. 7794 const TargetRegisterClass *RC = (BitSize <= 32 ? 7795 &SystemZ::GR32BitRegClass : 7796 &SystemZ::GR64BitRegClass); 7797 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7798 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7799 7800 // Get the right opcodes for the displacement. 7801 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7802 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7803 assert(LOpcode && CSOpcode && "Displacement out of range"); 7804 7805 // Create virtual registers for temporary results. 7806 Register OrigVal = MRI.createVirtualRegister(RC); 7807 Register OldVal = MRI.createVirtualRegister(RC); 7808 Register NewVal = (BinOpcode || IsSubWord ? 7809 MRI.createVirtualRegister(RC) : Src2.getReg()); 7810 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7811 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7812 7813 // Insert a basic block for the main loop. 7814 MachineBasicBlock *StartMBB = MBB; 7815 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7816 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7817 7818 // StartMBB: 7819 // ... 7820 // %OrigVal = L Disp(%Base) 7821 // # fall through to LoopMBB 7822 MBB = StartMBB; 7823 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7824 MBB->addSuccessor(LoopMBB); 7825 7826 // LoopMBB: 7827 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7828 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7829 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7830 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7831 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7832 // JNE LoopMBB 7833 // # fall through to DoneMBB 7834 MBB = LoopMBB; 7835 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7836 .addReg(OrigVal).addMBB(StartMBB) 7837 .addReg(Dest).addMBB(LoopMBB); 7838 if (IsSubWord) 7839 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7840 .addReg(OldVal).addReg(BitShift).addImm(0); 7841 if (Invert) { 7842 // Perform the operation normally and then invert every bit of the field. 7843 Register Tmp = MRI.createVirtualRegister(RC); 7844 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7845 if (BitSize <= 32) 7846 // XILF with the upper BitSize bits set. 7847 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7848 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7849 else { 7850 // Use LCGR and add -1 to the result, which is more compact than 7851 // an XILF, XILH pair. 7852 Register Tmp2 = MRI.createVirtualRegister(RC); 7853 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7854 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7855 .addReg(Tmp2).addImm(-1); 7856 } 7857 } else if (BinOpcode) 7858 // A simply binary operation. 7859 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7860 .addReg(RotatedOldVal) 7861 .add(Src2); 7862 else if (IsSubWord) 7863 // Use RISBG to rotate Src2 into position and use it to replace the 7864 // field in RotatedOldVal. 7865 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7866 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7867 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7868 if (IsSubWord) 7869 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7870 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7871 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7872 .addReg(OldVal) 7873 .addReg(NewVal) 7874 .add(Base) 7875 .addImm(Disp); 7876 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7877 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7878 MBB->addSuccessor(LoopMBB); 7879 MBB->addSuccessor(DoneMBB); 7880 7881 MI.eraseFromParent(); 7882 return DoneMBB; 7883 } 7884 7885 // Implement EmitInstrWithCustomInserter for pseudo 7886 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7887 // instruction that should be used to compare the current field with the 7888 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7889 // for when the current field should be kept. BitSize is the width of 7890 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7891 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7892 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7893 unsigned KeepOldMask, unsigned BitSize) const { 7894 MachineFunction &MF = *MBB->getParent(); 7895 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7896 MachineRegisterInfo &MRI = MF.getRegInfo(); 7897 bool IsSubWord = (BitSize < 32); 7898 7899 // Extract the operands. Base can be a register or a frame index. 7900 Register Dest = MI.getOperand(0).getReg(); 7901 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7902 int64_t Disp = MI.getOperand(2).getImm(); 7903 Register Src2 = MI.getOperand(3).getReg(); 7904 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7905 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7906 DebugLoc DL = MI.getDebugLoc(); 7907 if (IsSubWord) 7908 BitSize = MI.getOperand(6).getImm(); 7909 7910 // Subword operations use 32-bit registers. 7911 const TargetRegisterClass *RC = (BitSize <= 32 ? 7912 &SystemZ::GR32BitRegClass : 7913 &SystemZ::GR64BitRegClass); 7914 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7915 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7916 7917 // Get the right opcodes for the displacement. 7918 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7919 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7920 assert(LOpcode && CSOpcode && "Displacement out of range"); 7921 7922 // Create virtual registers for temporary results. 7923 Register OrigVal = MRI.createVirtualRegister(RC); 7924 Register OldVal = MRI.createVirtualRegister(RC); 7925 Register NewVal = MRI.createVirtualRegister(RC); 7926 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7927 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7928 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7929 7930 // Insert 3 basic blocks for the loop. 7931 MachineBasicBlock *StartMBB = MBB; 7932 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7933 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7934 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7935 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7936 7937 // StartMBB: 7938 // ... 7939 // %OrigVal = L Disp(%Base) 7940 // # fall through to LoopMBB 7941 MBB = StartMBB; 7942 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7943 MBB->addSuccessor(LoopMBB); 7944 7945 // LoopMBB: 7946 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7947 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7948 // CompareOpcode %RotatedOldVal, %Src2 7949 // BRC KeepOldMask, UpdateMBB 7950 MBB = LoopMBB; 7951 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7952 .addReg(OrigVal).addMBB(StartMBB) 7953 .addReg(Dest).addMBB(UpdateMBB); 7954 if (IsSubWord) 7955 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7956 .addReg(OldVal).addReg(BitShift).addImm(0); 7957 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7958 .addReg(RotatedOldVal).addReg(Src2); 7959 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7960 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7961 MBB->addSuccessor(UpdateMBB); 7962 MBB->addSuccessor(UseAltMBB); 7963 7964 // UseAltMBB: 7965 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7966 // # fall through to UpdateMBB 7967 MBB = UseAltMBB; 7968 if (IsSubWord) 7969 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7970 .addReg(RotatedOldVal).addReg(Src2) 7971 .addImm(32).addImm(31 + BitSize).addImm(0); 7972 MBB->addSuccessor(UpdateMBB); 7973 7974 // UpdateMBB: 7975 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7976 // [ %RotatedAltVal, UseAltMBB ] 7977 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7978 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7979 // JNE LoopMBB 7980 // # fall through to DoneMBB 7981 MBB = UpdateMBB; 7982 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7983 .addReg(RotatedOldVal).addMBB(LoopMBB) 7984 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7985 if (IsSubWord) 7986 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7987 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7988 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7989 .addReg(OldVal) 7990 .addReg(NewVal) 7991 .add(Base) 7992 .addImm(Disp); 7993 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7994 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7995 MBB->addSuccessor(LoopMBB); 7996 MBB->addSuccessor(DoneMBB); 7997 7998 MI.eraseFromParent(); 7999 return DoneMBB; 8000 } 8001 8002 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 8003 // instruction MI. 8004 MachineBasicBlock * 8005 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 8006 MachineBasicBlock *MBB) const { 8007 MachineFunction &MF = *MBB->getParent(); 8008 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8009 MachineRegisterInfo &MRI = MF.getRegInfo(); 8010 8011 // Extract the operands. Base can be a register or a frame index. 8012 Register Dest = MI.getOperand(0).getReg(); 8013 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8014 int64_t Disp = MI.getOperand(2).getImm(); 8015 Register CmpVal = MI.getOperand(3).getReg(); 8016 Register OrigSwapVal = MI.getOperand(4).getReg(); 8017 Register BitShift = MI.getOperand(5).getReg(); 8018 Register NegBitShift = MI.getOperand(6).getReg(); 8019 int64_t BitSize = MI.getOperand(7).getImm(); 8020 DebugLoc DL = MI.getDebugLoc(); 8021 8022 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 8023 8024 // Get the right opcodes for the displacement and zero-extension. 8025 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8026 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8027 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 8028 assert(LOpcode && CSOpcode && "Displacement out of range"); 8029 8030 // Create virtual registers for temporary results. 8031 Register OrigOldVal = MRI.createVirtualRegister(RC); 8032 Register OldVal = MRI.createVirtualRegister(RC); 8033 Register SwapVal = MRI.createVirtualRegister(RC); 8034 Register StoreVal = MRI.createVirtualRegister(RC); 8035 Register OldValRot = MRI.createVirtualRegister(RC); 8036 Register RetryOldVal = MRI.createVirtualRegister(RC); 8037 Register RetrySwapVal = MRI.createVirtualRegister(RC); 8038 8039 // Insert 2 basic blocks for the loop. 8040 MachineBasicBlock *StartMBB = MBB; 8041 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8042 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8043 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 8044 8045 // StartMBB: 8046 // ... 8047 // %OrigOldVal = L Disp(%Base) 8048 // # fall through to LoopMBB 8049 MBB = StartMBB; 8050 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 8051 .add(Base) 8052 .addImm(Disp) 8053 .addReg(0); 8054 MBB->addSuccessor(LoopMBB); 8055 8056 // LoopMBB: 8057 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 8058 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8059 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 8060 // ^^ The low BitSize bits contain the field 8061 // of interest. 8062 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 8063 // ^^ Replace the upper 32-BitSize bits of the 8064 // swap value with those that we loaded and rotated. 8065 // %Dest = LL[CH] %OldValRot 8066 // CR %Dest, %CmpVal 8067 // JNE DoneMBB 8068 // # Fall through to SetMBB 8069 MBB = LoopMBB; 8070 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8071 .addReg(OrigOldVal).addMBB(StartMBB) 8072 .addReg(RetryOldVal).addMBB(SetMBB); 8073 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 8074 .addReg(OrigSwapVal).addMBB(StartMBB) 8075 .addReg(RetrySwapVal).addMBB(SetMBB); 8076 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 8077 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8078 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8079 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8080 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8081 .addReg(OldValRot); 8082 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8083 .addReg(Dest).addReg(CmpVal); 8084 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8085 .addImm(SystemZ::CCMASK_ICMP) 8086 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 8087 MBB->addSuccessor(DoneMBB); 8088 MBB->addSuccessor(SetMBB); 8089 8090 // SetMBB: 8091 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 8092 // ^^ Rotate the new field to its proper position. 8093 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 8094 // JNE LoopMBB 8095 // # fall through to ExitMBB 8096 MBB = SetMBB; 8097 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 8098 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 8099 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 8100 .addReg(OldVal) 8101 .addReg(StoreVal) 8102 .add(Base) 8103 .addImm(Disp); 8104 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8105 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8106 MBB->addSuccessor(LoopMBB); 8107 MBB->addSuccessor(DoneMBB); 8108 8109 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 8110 // to the block after the loop. At this point, CC may have been defined 8111 // either by the CR in LoopMBB or by the CS in SetMBB. 8112 if (!MI.registerDefIsDead(SystemZ::CC)) 8113 DoneMBB->addLiveIn(SystemZ::CC); 8114 8115 MI.eraseFromParent(); 8116 return DoneMBB; 8117 } 8118 8119 // Emit a move from two GR64s to a GR128. 8120 MachineBasicBlock * 8121 SystemZTargetLowering::emitPair128(MachineInstr &MI, 8122 MachineBasicBlock *MBB) const { 8123 MachineFunction &MF = *MBB->getParent(); 8124 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8125 MachineRegisterInfo &MRI = MF.getRegInfo(); 8126 DebugLoc DL = MI.getDebugLoc(); 8127 8128 Register Dest = MI.getOperand(0).getReg(); 8129 Register Hi = MI.getOperand(1).getReg(); 8130 Register Lo = MI.getOperand(2).getReg(); 8131 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8132 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8133 8134 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 8135 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 8136 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 8137 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8138 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 8139 8140 MI.eraseFromParent(); 8141 return MBB; 8142 } 8143 8144 // Emit an extension from a GR64 to a GR128. ClearEven is true 8145 // if the high register of the GR128 value must be cleared or false if 8146 // it's "don't care". 8147 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 8148 MachineBasicBlock *MBB, 8149 bool ClearEven) const { 8150 MachineFunction &MF = *MBB->getParent(); 8151 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8152 MachineRegisterInfo &MRI = MF.getRegInfo(); 8153 DebugLoc DL = MI.getDebugLoc(); 8154 8155 Register Dest = MI.getOperand(0).getReg(); 8156 Register Src = MI.getOperand(1).getReg(); 8157 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8158 8159 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 8160 if (ClearEven) { 8161 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8162 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8163 8164 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8165 .addImm(0); 8166 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8167 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8168 In128 = NewIn128; 8169 } 8170 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8171 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8172 8173 MI.eraseFromParent(); 8174 return MBB; 8175 } 8176 8177 MachineBasicBlock * 8178 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8179 MachineBasicBlock *MBB, 8180 unsigned Opcode, bool IsMemset) const { 8181 MachineFunction &MF = *MBB->getParent(); 8182 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8183 MachineRegisterInfo &MRI = MF.getRegInfo(); 8184 DebugLoc DL = MI.getDebugLoc(); 8185 8186 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8187 uint64_t DestDisp = MI.getOperand(1).getImm(); 8188 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8189 uint64_t SrcDisp; 8190 8191 // Fold the displacement Disp if it is out of range. 8192 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8193 if (!isUInt<12>(Disp)) { 8194 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8195 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8196 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8197 .add(Base).addImm(Disp).addReg(0); 8198 Base = MachineOperand::CreateReg(Reg, false); 8199 Disp = 0; 8200 } 8201 }; 8202 8203 if (!IsMemset) { 8204 SrcBase = earlyUseOperand(MI.getOperand(2)); 8205 SrcDisp = MI.getOperand(3).getImm(); 8206 } else { 8207 SrcBase = DestBase; 8208 SrcDisp = DestDisp++; 8209 foldDisplIfNeeded(DestBase, DestDisp); 8210 } 8211 8212 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8213 bool IsImmForm = LengthMO.isImm(); 8214 bool IsRegForm = !IsImmForm; 8215 8216 // Build and insert one Opcode of Length, with special treatment for memset. 8217 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8218 MachineBasicBlock::iterator InsPos, 8219 MachineOperand DBase, uint64_t DDisp, 8220 MachineOperand SBase, uint64_t SDisp, 8221 unsigned Length) -> void { 8222 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8223 if (IsMemset) { 8224 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8225 if (ByteMO.isImm()) 8226 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8227 .add(SBase).addImm(SDisp).add(ByteMO); 8228 else 8229 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8230 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8231 if (--Length == 0) 8232 return; 8233 } 8234 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8235 .add(DBase).addImm(DDisp).addImm(Length) 8236 .add(SBase).addImm(SDisp) 8237 .setMemRefs(MI.memoperands()); 8238 }; 8239 8240 bool NeedsLoop = false; 8241 uint64_t ImmLength = 0; 8242 Register LenAdjReg = SystemZ::NoRegister; 8243 if (IsImmForm) { 8244 ImmLength = LengthMO.getImm(); 8245 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8246 if (ImmLength == 0) { 8247 MI.eraseFromParent(); 8248 return MBB; 8249 } 8250 if (Opcode == SystemZ::CLC) { 8251 if (ImmLength > 3 * 256) 8252 // A two-CLC sequence is a clear win over a loop, not least because 8253 // it needs only one branch. A three-CLC sequence needs the same 8254 // number of branches as a loop (i.e. 2), but is shorter. That 8255 // brings us to lengths greater than 768 bytes. It seems relatively 8256 // likely that a difference will be found within the first 768 bytes, 8257 // so we just optimize for the smallest number of branch 8258 // instructions, in order to avoid polluting the prediction buffer 8259 // too much. 8260 NeedsLoop = true; 8261 } else if (ImmLength > 6 * 256) 8262 // The heuristic we use is to prefer loops for anything that would 8263 // require 7 or more MVCs. With these kinds of sizes there isn't much 8264 // to choose between straight-line code and looping code, since the 8265 // time will be dominated by the MVCs themselves. 8266 NeedsLoop = true; 8267 } else { 8268 NeedsLoop = true; 8269 LenAdjReg = LengthMO.getReg(); 8270 } 8271 8272 // When generating more than one CLC, all but the last will need to 8273 // branch to the end when a difference is found. 8274 MachineBasicBlock *EndMBB = 8275 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8276 ? SystemZ::splitBlockAfter(MI, MBB) 8277 : nullptr); 8278 8279 if (NeedsLoop) { 8280 Register StartCountReg = 8281 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8282 if (IsImmForm) { 8283 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8284 ImmLength &= 255; 8285 } else { 8286 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8287 .addReg(LenAdjReg) 8288 .addReg(0) 8289 .addImm(8); 8290 } 8291 8292 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8293 auto loadZeroAddress = [&]() -> MachineOperand { 8294 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8295 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8296 return MachineOperand::CreateReg(Reg, false); 8297 }; 8298 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8299 DestBase = loadZeroAddress(); 8300 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8301 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8302 8303 MachineBasicBlock *StartMBB = nullptr; 8304 MachineBasicBlock *LoopMBB = nullptr; 8305 MachineBasicBlock *NextMBB = nullptr; 8306 MachineBasicBlock *DoneMBB = nullptr; 8307 MachineBasicBlock *AllDoneMBB = nullptr; 8308 8309 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8310 Register StartDestReg = 8311 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8312 8313 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8314 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8315 Register ThisDestReg = 8316 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8317 Register NextSrcReg = MRI.createVirtualRegister(RC); 8318 Register NextDestReg = 8319 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8320 RC = &SystemZ::GR64BitRegClass; 8321 Register ThisCountReg = MRI.createVirtualRegister(RC); 8322 Register NextCountReg = MRI.createVirtualRegister(RC); 8323 8324 if (IsRegForm) { 8325 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8326 StartMBB = SystemZ::emitBlockAfter(MBB); 8327 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8328 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8329 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8330 8331 // MBB: 8332 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8333 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8334 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8335 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8336 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8337 .addMBB(AllDoneMBB); 8338 MBB->addSuccessor(AllDoneMBB); 8339 if (!IsMemset) 8340 MBB->addSuccessor(StartMBB); 8341 else { 8342 // MemsetOneCheckMBB: 8343 // # Jump to MemsetOneMBB for a memset of length 1, or 8344 // # fall thru to StartMBB. 8345 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8346 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8347 MBB->addSuccessor(MemsetOneCheckMBB); 8348 MBB = MemsetOneCheckMBB; 8349 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8350 .addReg(LenAdjReg).addImm(-1); 8351 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8352 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8353 .addMBB(MemsetOneMBB); 8354 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8355 MBB->addSuccessor(StartMBB, {90, 100}); 8356 8357 // MemsetOneMBB: 8358 // # Jump back to AllDoneMBB after a single MVI or STC. 8359 MBB = MemsetOneMBB; 8360 insertMemMemOp(MBB, MBB->end(), 8361 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8362 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8363 1); 8364 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8365 MBB->addSuccessor(AllDoneMBB); 8366 } 8367 8368 // StartMBB: 8369 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8370 MBB = StartMBB; 8371 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8372 .addReg(StartCountReg).addImm(0); 8373 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8374 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8375 .addMBB(DoneMBB); 8376 MBB->addSuccessor(DoneMBB); 8377 MBB->addSuccessor(LoopMBB); 8378 } 8379 else { 8380 StartMBB = MBB; 8381 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8382 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8383 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8384 8385 // StartMBB: 8386 // # fall through to LoopMBB 8387 MBB->addSuccessor(LoopMBB); 8388 8389 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8390 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8391 if (EndMBB && !ImmLength) 8392 // If the loop handled the whole CLC range, DoneMBB will be empty with 8393 // CC live-through into EndMBB, so add it as live-in. 8394 DoneMBB->addLiveIn(SystemZ::CC); 8395 } 8396 8397 // LoopMBB: 8398 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8399 // [ %NextDestReg, NextMBB ] 8400 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8401 // [ %NextSrcReg, NextMBB ] 8402 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8403 // [ %NextCountReg, NextMBB ] 8404 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8405 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8406 // ( JLH EndMBB ) 8407 // 8408 // The prefetch is used only for MVC. The JLH is used only for CLC. 8409 MBB = LoopMBB; 8410 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8411 .addReg(StartDestReg).addMBB(StartMBB) 8412 .addReg(NextDestReg).addMBB(NextMBB); 8413 if (!HaveSingleBase) 8414 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8415 .addReg(StartSrcReg).addMBB(StartMBB) 8416 .addReg(NextSrcReg).addMBB(NextMBB); 8417 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8418 .addReg(StartCountReg).addMBB(StartMBB) 8419 .addReg(NextCountReg).addMBB(NextMBB); 8420 if (Opcode == SystemZ::MVC) 8421 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8422 .addImm(SystemZ::PFD_WRITE) 8423 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8424 insertMemMemOp(MBB, MBB->end(), 8425 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8426 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8427 if (EndMBB) { 8428 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8429 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8430 .addMBB(EndMBB); 8431 MBB->addSuccessor(EndMBB); 8432 MBB->addSuccessor(NextMBB); 8433 } 8434 8435 // NextMBB: 8436 // %NextDestReg = LA 256(%ThisDestReg) 8437 // %NextSrcReg = LA 256(%ThisSrcReg) 8438 // %NextCountReg = AGHI %ThisCountReg, -1 8439 // CGHI %NextCountReg, 0 8440 // JLH LoopMBB 8441 // # fall through to DoneMBB 8442 // 8443 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8444 MBB = NextMBB; 8445 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8446 .addReg(ThisDestReg).addImm(256).addReg(0); 8447 if (!HaveSingleBase) 8448 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8449 .addReg(ThisSrcReg).addImm(256).addReg(0); 8450 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8451 .addReg(ThisCountReg).addImm(-1); 8452 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8453 .addReg(NextCountReg).addImm(0); 8454 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8455 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8456 .addMBB(LoopMBB); 8457 MBB->addSuccessor(LoopMBB); 8458 MBB->addSuccessor(DoneMBB); 8459 8460 MBB = DoneMBB; 8461 if (IsRegForm) { 8462 // DoneMBB: 8463 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8464 // # Use EXecute Relative Long for the remainder of the bytes. The target 8465 // instruction of the EXRL will have a length field of 1 since 0 is an 8466 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8467 // 0xff) + 1. 8468 // # Fall through to AllDoneMBB. 8469 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8470 Register RemDestReg = HaveSingleBase ? RemSrcReg 8471 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8472 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8473 .addReg(StartDestReg).addMBB(StartMBB) 8474 .addReg(NextDestReg).addMBB(NextMBB); 8475 if (!HaveSingleBase) 8476 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8477 .addReg(StartSrcReg).addMBB(StartMBB) 8478 .addReg(NextSrcReg).addMBB(NextMBB); 8479 if (IsMemset) 8480 insertMemMemOp(MBB, MBB->end(), 8481 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8482 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8483 MachineInstrBuilder EXRL_MIB = 8484 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8485 .addImm(Opcode) 8486 .addReg(LenAdjReg) 8487 .addReg(RemDestReg).addImm(DestDisp) 8488 .addReg(RemSrcReg).addImm(SrcDisp); 8489 MBB->addSuccessor(AllDoneMBB); 8490 MBB = AllDoneMBB; 8491 if (EndMBB) { 8492 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8493 MBB->addLiveIn(SystemZ::CC); 8494 } 8495 } 8496 } 8497 8498 // Handle any remaining bytes with straight-line code. 8499 while (ImmLength > 0) { 8500 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8501 // The previous iteration might have created out-of-range displacements. 8502 // Apply them using LA/LAY if so. 8503 foldDisplIfNeeded(DestBase, DestDisp); 8504 foldDisplIfNeeded(SrcBase, SrcDisp); 8505 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8506 DestDisp += ThisLength; 8507 SrcDisp += ThisLength; 8508 ImmLength -= ThisLength; 8509 // If there's another CLC to go, branch to the end if a difference 8510 // was found. 8511 if (EndMBB && ImmLength > 0) { 8512 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8513 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8514 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8515 .addMBB(EndMBB); 8516 MBB->addSuccessor(EndMBB); 8517 MBB->addSuccessor(NextMBB); 8518 MBB = NextMBB; 8519 } 8520 } 8521 if (EndMBB) { 8522 MBB->addSuccessor(EndMBB); 8523 MBB = EndMBB; 8524 MBB->addLiveIn(SystemZ::CC); 8525 } 8526 8527 MI.eraseFromParent(); 8528 return MBB; 8529 } 8530 8531 // Decompose string pseudo-instruction MI into a loop that continually performs 8532 // Opcode until CC != 3. 8533 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8534 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8535 MachineFunction &MF = *MBB->getParent(); 8536 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8537 MachineRegisterInfo &MRI = MF.getRegInfo(); 8538 DebugLoc DL = MI.getDebugLoc(); 8539 8540 uint64_t End1Reg = MI.getOperand(0).getReg(); 8541 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8542 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8543 uint64_t CharReg = MI.getOperand(3).getReg(); 8544 8545 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8546 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8547 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8548 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8549 8550 MachineBasicBlock *StartMBB = MBB; 8551 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8552 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8553 8554 // StartMBB: 8555 // # fall through to LoopMBB 8556 MBB->addSuccessor(LoopMBB); 8557 8558 // LoopMBB: 8559 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8560 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8561 // R0L = %CharReg 8562 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8563 // JO LoopMBB 8564 // # fall through to DoneMBB 8565 // 8566 // The load of R0L can be hoisted by post-RA LICM. 8567 MBB = LoopMBB; 8568 8569 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8570 .addReg(Start1Reg).addMBB(StartMBB) 8571 .addReg(End1Reg).addMBB(LoopMBB); 8572 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8573 .addReg(Start2Reg).addMBB(StartMBB) 8574 .addReg(End2Reg).addMBB(LoopMBB); 8575 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8576 BuildMI(MBB, DL, TII->get(Opcode)) 8577 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8578 .addReg(This1Reg).addReg(This2Reg); 8579 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8580 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8581 MBB->addSuccessor(LoopMBB); 8582 MBB->addSuccessor(DoneMBB); 8583 8584 DoneMBB->addLiveIn(SystemZ::CC); 8585 8586 MI.eraseFromParent(); 8587 return DoneMBB; 8588 } 8589 8590 // Update TBEGIN instruction with final opcode and register clobbers. 8591 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8592 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8593 bool NoFloat) const { 8594 MachineFunction &MF = *MBB->getParent(); 8595 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8596 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8597 8598 // Update opcode. 8599 MI.setDesc(TII->get(Opcode)); 8600 8601 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8602 // Make sure to add the corresponding GRSM bits if they are missing. 8603 uint64_t Control = MI.getOperand(2).getImm(); 8604 static const unsigned GPRControlBit[16] = { 8605 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8606 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8607 }; 8608 Control |= GPRControlBit[15]; 8609 if (TFI->hasFP(MF)) 8610 Control |= GPRControlBit[11]; 8611 MI.getOperand(2).setImm(Control); 8612 8613 // Add GPR clobbers. 8614 for (int I = 0; I < 16; I++) { 8615 if ((Control & GPRControlBit[I]) == 0) { 8616 unsigned Reg = SystemZMC::GR64Regs[I]; 8617 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8618 } 8619 } 8620 8621 // Add FPR/VR clobbers. 8622 if (!NoFloat && (Control & 4) != 0) { 8623 if (Subtarget.hasVector()) { 8624 for (unsigned Reg : SystemZMC::VR128Regs) { 8625 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8626 } 8627 } else { 8628 for (unsigned Reg : SystemZMC::FP64Regs) { 8629 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8630 } 8631 } 8632 } 8633 8634 return MBB; 8635 } 8636 8637 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8638 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8639 MachineFunction &MF = *MBB->getParent(); 8640 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8641 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8642 DebugLoc DL = MI.getDebugLoc(); 8643 8644 Register SrcReg = MI.getOperand(0).getReg(); 8645 8646 // Create new virtual register of the same class as source. 8647 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8648 Register DstReg = MRI->createVirtualRegister(RC); 8649 8650 // Replace pseudo with a normal load-and-test that models the def as 8651 // well. 8652 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8653 .addReg(SrcReg) 8654 .setMIFlags(MI.getFlags()); 8655 MI.eraseFromParent(); 8656 8657 return MBB; 8658 } 8659 8660 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8661 MachineInstr &MI, MachineBasicBlock *MBB) const { 8662 MachineFunction &MF = *MBB->getParent(); 8663 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8664 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8665 DebugLoc DL = MI.getDebugLoc(); 8666 const unsigned ProbeSize = getStackProbeSize(MF); 8667 Register DstReg = MI.getOperand(0).getReg(); 8668 Register SizeReg = MI.getOperand(2).getReg(); 8669 8670 MachineBasicBlock *StartMBB = MBB; 8671 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8672 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8673 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8674 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8675 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8676 8677 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8678 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8679 8680 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8681 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8682 8683 // LoopTestMBB 8684 // BRC TailTestMBB 8685 // # fallthrough to LoopBodyMBB 8686 StartMBB->addSuccessor(LoopTestMBB); 8687 MBB = LoopTestMBB; 8688 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8689 .addReg(SizeReg) 8690 .addMBB(StartMBB) 8691 .addReg(IncReg) 8692 .addMBB(LoopBodyMBB); 8693 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8694 .addReg(PHIReg) 8695 .addImm(ProbeSize); 8696 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8697 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8698 .addMBB(TailTestMBB); 8699 MBB->addSuccessor(LoopBodyMBB); 8700 MBB->addSuccessor(TailTestMBB); 8701 8702 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8703 // J LoopTestMBB 8704 MBB = LoopBodyMBB; 8705 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8706 .addReg(PHIReg) 8707 .addImm(ProbeSize); 8708 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8709 .addReg(SystemZ::R15D) 8710 .addImm(ProbeSize); 8711 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8712 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8713 .setMemRefs(VolLdMMO); 8714 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8715 MBB->addSuccessor(LoopTestMBB); 8716 8717 // TailTestMBB 8718 // BRC DoneMBB 8719 // # fallthrough to TailMBB 8720 MBB = TailTestMBB; 8721 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8722 .addReg(PHIReg) 8723 .addImm(0); 8724 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8725 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8726 .addMBB(DoneMBB); 8727 MBB->addSuccessor(TailMBB); 8728 MBB->addSuccessor(DoneMBB); 8729 8730 // TailMBB 8731 // # fallthrough to DoneMBB 8732 MBB = TailMBB; 8733 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8734 .addReg(SystemZ::R15D) 8735 .addReg(PHIReg); 8736 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8737 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8738 .setMemRefs(VolLdMMO); 8739 MBB->addSuccessor(DoneMBB); 8740 8741 // DoneMBB 8742 MBB = DoneMBB; 8743 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8744 .addReg(SystemZ::R15D); 8745 8746 MI.eraseFromParent(); 8747 return DoneMBB; 8748 } 8749 8750 SDValue SystemZTargetLowering:: 8751 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8752 MachineFunction &MF = DAG.getMachineFunction(); 8753 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8754 SDLoc DL(SP); 8755 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8756 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8757 } 8758 8759 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8760 MachineInstr &MI, MachineBasicBlock *MBB) const { 8761 switch (MI.getOpcode()) { 8762 case SystemZ::Select32: 8763 case SystemZ::Select64: 8764 case SystemZ::SelectF32: 8765 case SystemZ::SelectF64: 8766 case SystemZ::SelectF128: 8767 case SystemZ::SelectVR32: 8768 case SystemZ::SelectVR64: 8769 case SystemZ::SelectVR128: 8770 return emitSelect(MI, MBB); 8771 8772 case SystemZ::CondStore8Mux: 8773 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8774 case SystemZ::CondStore8MuxInv: 8775 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8776 case SystemZ::CondStore16Mux: 8777 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8778 case SystemZ::CondStore16MuxInv: 8779 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8780 case SystemZ::CondStore32Mux: 8781 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8782 case SystemZ::CondStore32MuxInv: 8783 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8784 case SystemZ::CondStore8: 8785 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8786 case SystemZ::CondStore8Inv: 8787 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8788 case SystemZ::CondStore16: 8789 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8790 case SystemZ::CondStore16Inv: 8791 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8792 case SystemZ::CondStore32: 8793 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8794 case SystemZ::CondStore32Inv: 8795 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8796 case SystemZ::CondStore64: 8797 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8798 case SystemZ::CondStore64Inv: 8799 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8800 case SystemZ::CondStoreF32: 8801 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8802 case SystemZ::CondStoreF32Inv: 8803 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8804 case SystemZ::CondStoreF64: 8805 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8806 case SystemZ::CondStoreF64Inv: 8807 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8808 8809 case SystemZ::PAIR128: 8810 return emitPair128(MI, MBB); 8811 case SystemZ::AEXT128: 8812 return emitExt128(MI, MBB, false); 8813 case SystemZ::ZEXT128: 8814 return emitExt128(MI, MBB, true); 8815 8816 case SystemZ::ATOMIC_SWAPW: 8817 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8818 case SystemZ::ATOMIC_SWAP_32: 8819 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8820 case SystemZ::ATOMIC_SWAP_64: 8821 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8822 8823 case SystemZ::ATOMIC_LOADW_AR: 8824 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8825 case SystemZ::ATOMIC_LOADW_AFI: 8826 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8827 case SystemZ::ATOMIC_LOAD_AR: 8828 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8829 case SystemZ::ATOMIC_LOAD_AHI: 8830 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8831 case SystemZ::ATOMIC_LOAD_AFI: 8832 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8833 case SystemZ::ATOMIC_LOAD_AGR: 8834 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8835 case SystemZ::ATOMIC_LOAD_AGHI: 8836 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8837 case SystemZ::ATOMIC_LOAD_AGFI: 8838 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8839 8840 case SystemZ::ATOMIC_LOADW_SR: 8841 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8842 case SystemZ::ATOMIC_LOAD_SR: 8843 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8844 case SystemZ::ATOMIC_LOAD_SGR: 8845 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8846 8847 case SystemZ::ATOMIC_LOADW_NR: 8848 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8849 case SystemZ::ATOMIC_LOADW_NILH: 8850 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8851 case SystemZ::ATOMIC_LOAD_NR: 8852 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8853 case SystemZ::ATOMIC_LOAD_NILL: 8854 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8855 case SystemZ::ATOMIC_LOAD_NILH: 8856 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8857 case SystemZ::ATOMIC_LOAD_NILF: 8858 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8859 case SystemZ::ATOMIC_LOAD_NGR: 8860 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8861 case SystemZ::ATOMIC_LOAD_NILL64: 8862 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8863 case SystemZ::ATOMIC_LOAD_NILH64: 8864 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8865 case SystemZ::ATOMIC_LOAD_NIHL64: 8866 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8867 case SystemZ::ATOMIC_LOAD_NIHH64: 8868 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8869 case SystemZ::ATOMIC_LOAD_NILF64: 8870 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8871 case SystemZ::ATOMIC_LOAD_NIHF64: 8872 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8873 8874 case SystemZ::ATOMIC_LOADW_OR: 8875 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8876 case SystemZ::ATOMIC_LOADW_OILH: 8877 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8878 case SystemZ::ATOMIC_LOAD_OR: 8879 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8880 case SystemZ::ATOMIC_LOAD_OILL: 8881 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8882 case SystemZ::ATOMIC_LOAD_OILH: 8883 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8884 case SystemZ::ATOMIC_LOAD_OILF: 8885 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8886 case SystemZ::ATOMIC_LOAD_OGR: 8887 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8888 case SystemZ::ATOMIC_LOAD_OILL64: 8889 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8890 case SystemZ::ATOMIC_LOAD_OILH64: 8891 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8892 case SystemZ::ATOMIC_LOAD_OIHL64: 8893 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8894 case SystemZ::ATOMIC_LOAD_OIHH64: 8895 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8896 case SystemZ::ATOMIC_LOAD_OILF64: 8897 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8898 case SystemZ::ATOMIC_LOAD_OIHF64: 8899 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8900 8901 case SystemZ::ATOMIC_LOADW_XR: 8902 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8903 case SystemZ::ATOMIC_LOADW_XILF: 8904 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8905 case SystemZ::ATOMIC_LOAD_XR: 8906 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8907 case SystemZ::ATOMIC_LOAD_XILF: 8908 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8909 case SystemZ::ATOMIC_LOAD_XGR: 8910 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8911 case SystemZ::ATOMIC_LOAD_XILF64: 8912 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8913 case SystemZ::ATOMIC_LOAD_XIHF64: 8914 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8915 8916 case SystemZ::ATOMIC_LOADW_NRi: 8917 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8918 case SystemZ::ATOMIC_LOADW_NILHi: 8919 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8920 case SystemZ::ATOMIC_LOAD_NRi: 8921 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8922 case SystemZ::ATOMIC_LOAD_NILLi: 8923 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8924 case SystemZ::ATOMIC_LOAD_NILHi: 8925 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8926 case SystemZ::ATOMIC_LOAD_NILFi: 8927 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8928 case SystemZ::ATOMIC_LOAD_NGRi: 8929 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8930 case SystemZ::ATOMIC_LOAD_NILL64i: 8931 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8932 case SystemZ::ATOMIC_LOAD_NILH64i: 8933 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8934 case SystemZ::ATOMIC_LOAD_NIHL64i: 8935 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8936 case SystemZ::ATOMIC_LOAD_NIHH64i: 8937 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8938 case SystemZ::ATOMIC_LOAD_NILF64i: 8939 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8940 case SystemZ::ATOMIC_LOAD_NIHF64i: 8941 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8942 8943 case SystemZ::ATOMIC_LOADW_MIN: 8944 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8945 SystemZ::CCMASK_CMP_LE, 0); 8946 case SystemZ::ATOMIC_LOAD_MIN_32: 8947 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8948 SystemZ::CCMASK_CMP_LE, 32); 8949 case SystemZ::ATOMIC_LOAD_MIN_64: 8950 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8951 SystemZ::CCMASK_CMP_LE, 64); 8952 8953 case SystemZ::ATOMIC_LOADW_MAX: 8954 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8955 SystemZ::CCMASK_CMP_GE, 0); 8956 case SystemZ::ATOMIC_LOAD_MAX_32: 8957 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8958 SystemZ::CCMASK_CMP_GE, 32); 8959 case SystemZ::ATOMIC_LOAD_MAX_64: 8960 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8961 SystemZ::CCMASK_CMP_GE, 64); 8962 8963 case SystemZ::ATOMIC_LOADW_UMIN: 8964 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8965 SystemZ::CCMASK_CMP_LE, 0); 8966 case SystemZ::ATOMIC_LOAD_UMIN_32: 8967 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8968 SystemZ::CCMASK_CMP_LE, 32); 8969 case SystemZ::ATOMIC_LOAD_UMIN_64: 8970 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8971 SystemZ::CCMASK_CMP_LE, 64); 8972 8973 case SystemZ::ATOMIC_LOADW_UMAX: 8974 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8975 SystemZ::CCMASK_CMP_GE, 0); 8976 case SystemZ::ATOMIC_LOAD_UMAX_32: 8977 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8978 SystemZ::CCMASK_CMP_GE, 32); 8979 case SystemZ::ATOMIC_LOAD_UMAX_64: 8980 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8981 SystemZ::CCMASK_CMP_GE, 64); 8982 8983 case SystemZ::ATOMIC_CMP_SWAPW: 8984 return emitAtomicCmpSwapW(MI, MBB); 8985 case SystemZ::MVCImm: 8986 case SystemZ::MVCReg: 8987 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8988 case SystemZ::NCImm: 8989 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8990 case SystemZ::OCImm: 8991 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8992 case SystemZ::XCImm: 8993 case SystemZ::XCReg: 8994 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8995 case SystemZ::CLCImm: 8996 case SystemZ::CLCReg: 8997 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8998 case SystemZ::MemsetImmImm: 8999 case SystemZ::MemsetImmReg: 9000 case SystemZ::MemsetRegImm: 9001 case SystemZ::MemsetRegReg: 9002 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 9003 case SystemZ::CLSTLoop: 9004 return emitStringWrapper(MI, MBB, SystemZ::CLST); 9005 case SystemZ::MVSTLoop: 9006 return emitStringWrapper(MI, MBB, SystemZ::MVST); 9007 case SystemZ::SRSTLoop: 9008 return emitStringWrapper(MI, MBB, SystemZ::SRST); 9009 case SystemZ::TBEGIN: 9010 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 9011 case SystemZ::TBEGIN_nofloat: 9012 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 9013 case SystemZ::TBEGINC: 9014 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 9015 case SystemZ::LTEBRCompare_VecPseudo: 9016 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 9017 case SystemZ::LTDBRCompare_VecPseudo: 9018 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 9019 case SystemZ::LTXBRCompare_VecPseudo: 9020 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 9021 9022 case SystemZ::PROBED_ALLOCA: 9023 return emitProbedAlloca(MI, MBB); 9024 9025 case TargetOpcode::STACKMAP: 9026 case TargetOpcode::PATCHPOINT: 9027 return emitPatchPoint(MI, MBB); 9028 9029 default: 9030 llvm_unreachable("Unexpected instr type to insert"); 9031 } 9032 } 9033 9034 // This is only used by the isel schedulers, and is needed only to prevent 9035 // compiler from crashing when list-ilp is used. 9036 const TargetRegisterClass * 9037 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 9038 if (VT == MVT::Untyped) 9039 return &SystemZ::ADDR128BitRegClass; 9040 return TargetLowering::getRepRegClassFor(VT); 9041 } 9042