1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 #include <optional> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "systemz-lower" 33 34 namespace { 35 // Represents information about a comparison. 36 struct Comparison { 37 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 38 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 39 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 40 41 // The operands to the comparison. 42 SDValue Op0, Op1; 43 44 // Chain if this is a strict floating-point comparison. 45 SDValue Chain; 46 47 // The opcode that should be used to compare Op0 and Op1. 48 unsigned Opcode; 49 50 // A SystemZICMP value. Only used for integer comparisons. 51 unsigned ICmpType; 52 53 // The mask of CC values that Opcode can produce. 54 unsigned CCValid; 55 56 // The mask of CC values for which the original condition is true. 57 unsigned CCMask; 58 }; 59 } // end anonymous namespace 60 61 // Classify VT as either 32 or 64 bit. 62 static bool is32Bit(EVT VT) { 63 switch (VT.getSimpleVT().SimpleTy) { 64 case MVT::i32: 65 return true; 66 case MVT::i64: 67 return false; 68 default: 69 llvm_unreachable("Unsupported type"); 70 } 71 } 72 73 // Return a version of MachineOperand that can be safely used before the 74 // final use. 75 static MachineOperand earlyUseOperand(MachineOperand Op) { 76 if (Op.isReg()) 77 Op.setIsKill(false); 78 return Op; 79 } 80 81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 82 const SystemZSubtarget &STI) 83 : TargetLowering(TM), Subtarget(STI) { 84 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 85 86 auto *Regs = STI.getSpecialRegisters(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 if (!useSoftFloat()) { 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 if (Subtarget.hasVectorEnhancements1()) 103 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 104 else 105 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 106 107 if (Subtarget.hasVector()) { 108 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 114 } 115 116 if (Subtarget.hasVector()) 117 addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass); 118 } 119 120 // Compute derived properties from the register classes 121 computeRegisterProperties(Subtarget.getRegisterInfo()); 122 123 // Set up special registers. 124 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 125 126 // TODO: It may be better to default to latency-oriented scheduling, however 127 // LLVM's current latency-oriented scheduler can't handle physreg definitions 128 // such as SystemZ has with CC, so set this to the register-pressure 129 // scheduler, because it can. 130 setSchedulingPreference(Sched::RegPressure); 131 132 setBooleanContents(ZeroOrOneBooleanContent); 133 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 134 135 setMaxAtomicSizeInBitsSupported(128); 136 137 // Instructions are strings of 2-byte aligned 2-byte values. 138 setMinFunctionAlignment(Align(2)); 139 // For performance reasons we prefer 16-byte alignment. 140 setPrefFunctionAlignment(Align(16)); 141 142 // Handle operations that are handled in a similar way for all types. 143 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 144 I <= MVT::LAST_FP_VALUETYPE; 145 ++I) { 146 MVT VT = MVT::SimpleValueType(I); 147 if (isTypeLegal(VT)) { 148 // Lower SET_CC into an IPM-based sequence. 149 setOperationAction(ISD::SETCC, VT, Custom); 150 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 151 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 152 153 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 154 setOperationAction(ISD::SELECT, VT, Expand); 155 156 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 157 setOperationAction(ISD::SELECT_CC, VT, Custom); 158 setOperationAction(ISD::BR_CC, VT, Custom); 159 } 160 } 161 162 // Expand jump table branches as address arithmetic followed by an 163 // indirect jump. 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 166 // Expand BRCOND into a BR_CC (see above). 167 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 168 169 // Handle integer types except i128. 170 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 171 I <= MVT::LAST_INTEGER_VALUETYPE; 172 ++I) { 173 MVT VT = MVT::SimpleValueType(I); 174 if (isTypeLegal(VT) && VT != MVT::i128) { 175 setOperationAction(ISD::ABS, VT, Legal); 176 177 // Expand individual DIV and REMs into DIVREMs. 178 setOperationAction(ISD::SDIV, VT, Expand); 179 setOperationAction(ISD::UDIV, VT, Expand); 180 setOperationAction(ISD::SREM, VT, Expand); 181 setOperationAction(ISD::UREM, VT, Expand); 182 setOperationAction(ISD::SDIVREM, VT, Custom); 183 setOperationAction(ISD::UDIVREM, VT, Custom); 184 185 // Support addition/subtraction with overflow. 186 setOperationAction(ISD::SADDO, VT, Custom); 187 setOperationAction(ISD::SSUBO, VT, Custom); 188 189 // Support addition/subtraction with carry. 190 setOperationAction(ISD::UADDO, VT, Custom); 191 setOperationAction(ISD::USUBO, VT, Custom); 192 193 // Support carry in as value rather than glue. 194 setOperationAction(ISD::UADDO_CARRY, VT, Custom); 195 setOperationAction(ISD::USUBO_CARRY, VT, Custom); 196 197 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 198 // stores, putting a serialization instruction after the stores. 199 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 200 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 201 202 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 203 // available, or if the operand is constant. 204 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 205 206 // Use POPCNT on z196 and above. 207 if (Subtarget.hasPopulationCount()) 208 setOperationAction(ISD::CTPOP, VT, Custom); 209 else 210 setOperationAction(ISD::CTPOP, VT, Expand); 211 212 // No special instructions for these. 213 setOperationAction(ISD::CTTZ, VT, Expand); 214 setOperationAction(ISD::ROTR, VT, Expand); 215 216 // Use *MUL_LOHI where possible instead of MULH*. 217 setOperationAction(ISD::MULHS, VT, Expand); 218 setOperationAction(ISD::MULHU, VT, Expand); 219 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 220 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 221 222 // Only z196 and above have native support for conversions to unsigned. 223 // On z10, promoting to i64 doesn't generate an inexact condition for 224 // values that are outside the i32 range but in the i64 range, so use 225 // the default expansion. 226 if (!Subtarget.hasFPExtension()) 227 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 228 229 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 230 // default to Expand, so need to be modified to Legal where appropriate. 231 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 232 if (Subtarget.hasFPExtension()) 233 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 234 235 // And similarly for STRICT_[SU]INT_TO_FP. 236 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 237 if (Subtarget.hasFPExtension()) 238 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 239 } 240 } 241 242 // Handle i128 if legal. 243 if (isTypeLegal(MVT::i128)) { 244 // No special instructions for these. 245 setOperationAction(ISD::SDIVREM, MVT::i128, Expand); 246 setOperationAction(ISD::UDIVREM, MVT::i128, Expand); 247 setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand); 248 setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand); 249 setOperationAction(ISD::ROTR, MVT::i128, Expand); 250 setOperationAction(ISD::ROTL, MVT::i128, Expand); 251 setOperationAction(ISD::MUL, MVT::i128, Expand); 252 setOperationAction(ISD::MULHS, MVT::i128, Expand); 253 setOperationAction(ISD::MULHU, MVT::i128, Expand); 254 setOperationAction(ISD::SDIV, MVT::i128, Expand); 255 setOperationAction(ISD::UDIV, MVT::i128, Expand); 256 setOperationAction(ISD::SREM, MVT::i128, Expand); 257 setOperationAction(ISD::UREM, MVT::i128, Expand); 258 setOperationAction(ISD::CTLZ, MVT::i128, Expand); 259 setOperationAction(ISD::CTTZ, MVT::i128, Expand); 260 261 // Support addition/subtraction with carry. 262 setOperationAction(ISD::UADDO, MVT::i128, Custom); 263 setOperationAction(ISD::USUBO, MVT::i128, Custom); 264 setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom); 265 setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom); 266 267 // Use VPOPCT and add up partial results. 268 setOperationAction(ISD::CTPOP, MVT::i128, Custom); 269 270 // We have to use libcalls for these. 271 setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall); 272 setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall); 273 setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall); 274 setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall); 275 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall); 276 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall); 277 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall); 278 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall); 279 } 280 281 // Type legalization will convert 8- and 16-bit atomic operations into 282 // forms that operate on i32s (but still keeping the original memory VT). 283 // Lower them into full i32 operations. 284 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 285 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 286 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 287 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 288 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 289 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 290 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 291 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 292 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 293 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 294 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 295 296 // Whether or not i128 is not a legal type, we need to custom lower 297 // the atomic operations in order to exploit SystemZ instructions. 298 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 299 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 300 301 // We can use the CC result of compare-and-swap to implement 302 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 303 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 304 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 305 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 306 307 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 308 309 // Traps are legal, as we will convert them to "j .+2". 310 setOperationAction(ISD::TRAP, MVT::Other, Legal); 311 312 // z10 has instructions for signed but not unsigned FP conversion. 313 // Handle unsigned 32-bit types as signed 64-bit types. 314 if (!Subtarget.hasFPExtension()) { 315 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 316 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 317 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 318 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 319 } 320 321 // We have native support for a 64-bit CTLZ, via FLOGR. 322 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 324 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 325 326 // On z15 we have native support for a 64-bit CTPOP. 327 if (Subtarget.hasMiscellaneousExtensions3()) { 328 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 329 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 330 } 331 332 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 333 setOperationAction(ISD::OR, MVT::i64, Custom); 334 335 // Expand 128 bit shifts without using a libcall. 336 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 337 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 338 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 339 setLibcallName(RTLIB::SRL_I128, nullptr); 340 setLibcallName(RTLIB::SHL_I128, nullptr); 341 setLibcallName(RTLIB::SRA_I128, nullptr); 342 343 // Handle bitcast from fp128 to i128. 344 if (!isTypeLegal(MVT::i128)) 345 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 346 347 // We have native instructions for i8, i16 and i32 extensions, but not i1. 348 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 349 for (MVT VT : MVT::integer_valuetypes()) { 350 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 351 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 352 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 353 } 354 355 // Handle the various types of symbolic address. 356 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 357 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 358 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 359 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 360 setOperationAction(ISD::JumpTable, PtrVT, Custom); 361 362 // We need to handle dynamic allocations specially because of the 363 // 160-byte area at the bottom of the stack. 364 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 365 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 366 367 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 368 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 369 370 // Handle prefetches with PFD or PFDRL. 371 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 372 373 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 374 // Assume by default that all vector operations need to be expanded. 375 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 376 if (getOperationAction(Opcode, VT) == Legal) 377 setOperationAction(Opcode, VT, Expand); 378 379 // Likewise all truncating stores and extending loads. 380 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 381 setTruncStoreAction(VT, InnerVT, Expand); 382 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 383 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 384 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 385 } 386 387 if (isTypeLegal(VT)) { 388 // These operations are legal for anything that can be stored in a 389 // vector register, even if there is no native support for the format 390 // as such. In particular, we can do these for v4f32 even though there 391 // are no specific instructions for that format. 392 setOperationAction(ISD::LOAD, VT, Legal); 393 setOperationAction(ISD::STORE, VT, Legal); 394 setOperationAction(ISD::VSELECT, VT, Legal); 395 setOperationAction(ISD::BITCAST, VT, Legal); 396 setOperationAction(ISD::UNDEF, VT, Legal); 397 398 // Likewise, except that we need to replace the nodes with something 399 // more specific. 400 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 401 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 402 } 403 } 404 405 // Handle integer vector types. 406 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 407 if (isTypeLegal(VT)) { 408 // These operations have direct equivalents. 409 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 410 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 411 setOperationAction(ISD::ADD, VT, Legal); 412 setOperationAction(ISD::SUB, VT, Legal); 413 if (VT != MVT::v2i64) 414 setOperationAction(ISD::MUL, VT, Legal); 415 setOperationAction(ISD::ABS, VT, Legal); 416 setOperationAction(ISD::AND, VT, Legal); 417 setOperationAction(ISD::OR, VT, Legal); 418 setOperationAction(ISD::XOR, VT, Legal); 419 if (Subtarget.hasVectorEnhancements1()) 420 setOperationAction(ISD::CTPOP, VT, Legal); 421 else 422 setOperationAction(ISD::CTPOP, VT, Custom); 423 setOperationAction(ISD::CTTZ, VT, Legal); 424 setOperationAction(ISD::CTLZ, VT, Legal); 425 426 // Convert a GPR scalar to a vector by inserting it into element 0. 427 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 428 429 // Use a series of unpacks for extensions. 430 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 431 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 432 433 // Detect shifts/rotates by a scalar amount and convert them into 434 // V*_BY_SCALAR. 435 setOperationAction(ISD::SHL, VT, Custom); 436 setOperationAction(ISD::SRA, VT, Custom); 437 setOperationAction(ISD::SRL, VT, Custom); 438 setOperationAction(ISD::ROTL, VT, Custom); 439 440 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 441 // and inverting the result as necessary. 442 setOperationAction(ISD::SETCC, VT, Custom); 443 } 444 } 445 446 if (Subtarget.hasVector()) { 447 // There should be no need to check for float types other than v2f64 448 // since <2 x f32> isn't a legal type. 449 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 450 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 451 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 452 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 453 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 454 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 455 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 456 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 457 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 459 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 461 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 463 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 464 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 465 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 466 } 467 468 if (Subtarget.hasVectorEnhancements2()) { 469 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 470 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 471 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 472 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 473 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 474 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 475 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 476 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 477 478 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 479 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 480 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 481 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 482 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 483 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 484 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 485 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 486 } 487 488 // Handle floating-point types. 489 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 490 I <= MVT::LAST_FP_VALUETYPE; 491 ++I) { 492 MVT VT = MVT::SimpleValueType(I); 493 if (isTypeLegal(VT)) { 494 // We can use FI for FRINT. 495 setOperationAction(ISD::FRINT, VT, Legal); 496 497 // We can use the extended form of FI for other rounding operations. 498 if (Subtarget.hasFPExtension()) { 499 setOperationAction(ISD::FNEARBYINT, VT, Legal); 500 setOperationAction(ISD::FFLOOR, VT, Legal); 501 setOperationAction(ISD::FCEIL, VT, Legal); 502 setOperationAction(ISD::FTRUNC, VT, Legal); 503 setOperationAction(ISD::FROUND, VT, Legal); 504 } 505 506 // No special instructions for these. 507 setOperationAction(ISD::FSIN, VT, Expand); 508 setOperationAction(ISD::FCOS, VT, Expand); 509 setOperationAction(ISD::FSINCOS, VT, Expand); 510 setOperationAction(ISD::FREM, VT, Expand); 511 setOperationAction(ISD::FPOW, VT, Expand); 512 513 // Special treatment. 514 setOperationAction(ISD::IS_FPCLASS, VT, Custom); 515 516 // Handle constrained floating-point operations. 517 setOperationAction(ISD::STRICT_FADD, VT, Legal); 518 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 519 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 520 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 521 setOperationAction(ISD::STRICT_FMA, VT, Legal); 522 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 523 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 524 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 525 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 526 if (Subtarget.hasFPExtension()) { 527 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 528 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 529 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 530 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 531 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 532 } 533 } 534 } 535 536 // Handle floating-point vector types. 537 if (Subtarget.hasVector()) { 538 // Scalar-to-vector conversion is just a subreg. 539 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 540 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 541 542 // Some insertions and extractions can be done directly but others 543 // need to go via integers. 544 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 545 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 546 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 547 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 548 549 // These operations have direct equivalents. 550 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 551 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 552 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 555 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 556 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 557 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 558 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 559 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 560 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 561 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 562 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 563 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 564 565 // Handle constrained floating-point operations. 566 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 567 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 568 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 569 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 570 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 571 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 572 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 573 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 574 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 575 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 576 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 577 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 578 579 setOperationAction(ISD::SETCC, MVT::v2f64, Custom); 580 setOperationAction(ISD::SETCC, MVT::v4f32, Custom); 581 setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom); 582 setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom); 583 if (Subtarget.hasVectorEnhancements1()) { 584 setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom); 585 setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom); 586 } 587 } 588 589 // The vector enhancements facility 1 has instructions for these. 590 if (Subtarget.hasVectorEnhancements1()) { 591 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 592 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 593 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 594 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 595 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 596 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 597 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 598 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 599 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 600 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 601 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 602 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 603 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 604 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 605 606 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 607 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 608 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 609 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 610 611 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 612 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 613 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 614 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 615 616 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 617 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 618 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 619 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 620 621 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 622 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 623 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 624 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 625 626 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 627 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 628 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 629 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 630 631 // Handle constrained floating-point operations. 632 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 633 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 634 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 635 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 636 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 637 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 638 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 639 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 640 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 641 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 642 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 643 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 644 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 645 MVT::v4f32, MVT::v2f64 }) { 646 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 647 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 648 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 649 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 650 } 651 } 652 653 // We only have fused f128 multiply-addition on vector registers. 654 if (!Subtarget.hasVectorEnhancements1()) { 655 setOperationAction(ISD::FMA, MVT::f128, Expand); 656 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 657 } 658 659 // We don't have a copysign instruction on vector registers. 660 if (Subtarget.hasVectorEnhancements1()) 661 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 662 663 // Needed so that we don't try to implement f128 constant loads using 664 // a load-and-extend of a f80 constant (in cases where the constant 665 // would fit in an f80). 666 for (MVT VT : MVT::fp_valuetypes()) 667 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 668 669 // We don't have extending load instruction on vector registers. 670 if (Subtarget.hasVectorEnhancements1()) { 671 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 672 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 673 } 674 675 // Floating-point truncation and stores need to be done separately. 676 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 677 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 678 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 679 680 // We have 64-bit FPR<->GPR moves, but need special handling for 681 // 32-bit forms. 682 if (!Subtarget.hasVector()) { 683 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 684 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 685 } 686 687 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 688 // structure, but VAEND is a no-op. 689 setOperationAction(ISD::VASTART, MVT::Other, Custom); 690 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 691 setOperationAction(ISD::VAEND, MVT::Other, Expand); 692 693 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 694 695 // Codes for which we want to perform some z-specific combinations. 696 setTargetDAGCombine({ISD::ZERO_EXTEND, 697 ISD::SIGN_EXTEND, 698 ISD::SIGN_EXTEND_INREG, 699 ISD::LOAD, 700 ISD::STORE, 701 ISD::VECTOR_SHUFFLE, 702 ISD::EXTRACT_VECTOR_ELT, 703 ISD::FP_ROUND, 704 ISD::STRICT_FP_ROUND, 705 ISD::FP_EXTEND, 706 ISD::SINT_TO_FP, 707 ISD::UINT_TO_FP, 708 ISD::STRICT_FP_EXTEND, 709 ISD::BSWAP, 710 ISD::SDIV, 711 ISD::UDIV, 712 ISD::SREM, 713 ISD::UREM, 714 ISD::INTRINSIC_VOID, 715 ISD::INTRINSIC_W_CHAIN}); 716 717 // Handle intrinsics. 718 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 719 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 720 721 // We want to use MVC in preference to even a single load/store pair. 722 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 723 MaxStoresPerMemcpyOptSize = 0; 724 725 // The main memset sequence is a byte store followed by an MVC. 726 // Two STC or MV..I stores win over that, but the kind of fused stores 727 // generated by target-independent code don't when the byte value is 728 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 729 // than "STC;MVC". Handle the choice in target-specific code instead. 730 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 731 MaxStoresPerMemsetOptSize = 0; 732 733 // Default to having -disable-strictnode-mutation on 734 IsStrictFPEnabled = true; 735 736 if (Subtarget.isTargetzOS()) { 737 struct RTLibCallMapping { 738 RTLIB::Libcall Code; 739 const char *Name; 740 }; 741 static RTLibCallMapping RTLibCallCommon[] = { 742 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name}, 743 #include "ZOSLibcallNames.def" 744 }; 745 for (auto &E : RTLibCallCommon) 746 setLibcallName(E.Code, E.Name); 747 } 748 } 749 750 bool SystemZTargetLowering::useSoftFloat() const { 751 return Subtarget.hasSoftFloat(); 752 } 753 754 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 755 LLVMContext &, EVT VT) const { 756 if (!VT.isVector()) 757 return MVT::i32; 758 return VT.changeVectorElementTypeToInteger(); 759 } 760 761 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 762 const MachineFunction &MF, EVT VT) const { 763 VT = VT.getScalarType(); 764 765 if (!VT.isSimple()) 766 return false; 767 768 switch (VT.getSimpleVT().SimpleTy) { 769 case MVT::f32: 770 case MVT::f64: 771 return true; 772 case MVT::f128: 773 return Subtarget.hasVectorEnhancements1(); 774 default: 775 break; 776 } 777 778 return false; 779 } 780 781 // Return true if the constant can be generated with a vector instruction, 782 // such as VGM, VGMB or VREPI. 783 bool SystemZVectorConstantInfo::isVectorConstantLegal( 784 const SystemZSubtarget &Subtarget) { 785 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 786 if (!Subtarget.hasVector() || 787 (isFP128 && !Subtarget.hasVectorEnhancements1())) 788 return false; 789 790 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 791 // preferred way of creating all-zero and all-one vectors so give it 792 // priority over other methods below. 793 unsigned Mask = 0; 794 unsigned I = 0; 795 for (; I < SystemZ::VectorBytes; ++I) { 796 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 797 if (Byte == 0xff) 798 Mask |= 1ULL << I; 799 else if (Byte != 0) 800 break; 801 } 802 if (I == SystemZ::VectorBytes) { 803 Opcode = SystemZISD::BYTE_MASK; 804 OpVals.push_back(Mask); 805 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 806 return true; 807 } 808 809 if (SplatBitSize > 64) 810 return false; 811 812 auto tryValue = [&](uint64_t Value) -> bool { 813 // Try VECTOR REPLICATE IMMEDIATE 814 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 815 if (isInt<16>(SignedValue)) { 816 OpVals.push_back(((unsigned) SignedValue)); 817 Opcode = SystemZISD::REPLICATE; 818 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 819 SystemZ::VectorBits / SplatBitSize); 820 return true; 821 } 822 // Try VECTOR GENERATE MASK 823 unsigned Start, End; 824 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 825 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 826 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 827 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 828 OpVals.push_back(Start - (64 - SplatBitSize)); 829 OpVals.push_back(End - (64 - SplatBitSize)); 830 Opcode = SystemZISD::ROTATE_MASK; 831 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 832 SystemZ::VectorBits / SplatBitSize); 833 return true; 834 } 835 return false; 836 }; 837 838 // First try assuming that any undefined bits above the highest set bit 839 // and below the lowest set bit are 1s. This increases the likelihood of 840 // being able to use a sign-extended element value in VECTOR REPLICATE 841 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 842 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 843 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 844 unsigned LowerBits = llvm::countr_zero(SplatBitsZ); 845 unsigned UpperBits = llvm::countl_zero(SplatBitsZ); 846 uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits); 847 uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits); 848 if (tryValue(SplatBitsZ | Upper | Lower)) 849 return true; 850 851 // Now try assuming that any undefined bits between the first and 852 // last defined set bits are set. This increases the chances of 853 // using a non-wraparound mask. 854 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 855 return tryValue(SplatBitsZ | Middle); 856 } 857 858 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 859 if (IntImm.isSingleWord()) { 860 IntBits = APInt(128, IntImm.getZExtValue()); 861 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 862 } else 863 IntBits = IntImm; 864 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 865 866 // Find the smallest splat. 867 SplatBits = IntImm; 868 unsigned Width = SplatBits.getBitWidth(); 869 while (Width > 8) { 870 unsigned HalfSize = Width / 2; 871 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 872 APInt LowValue = SplatBits.trunc(HalfSize); 873 874 // If the two halves do not match, stop here. 875 if (HighValue != LowValue || 8 > HalfSize) 876 break; 877 878 SplatBits = HighValue; 879 Width = HalfSize; 880 } 881 SplatUndef = 0; 882 SplatBitSize = Width; 883 } 884 885 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 886 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 887 bool HasAnyUndefs; 888 889 // Get IntBits by finding the 128 bit splat. 890 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 891 true); 892 893 // Get SplatBits by finding the 8 bit or greater splat. 894 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 895 true); 896 } 897 898 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 899 bool ForCodeSize) const { 900 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 901 if (Imm.isZero() || Imm.isNegZero()) 902 return true; 903 904 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 905 } 906 907 /// Returns true if stack probing through inline assembly is requested. 908 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 909 // If the function specifically requests inline stack probes, emit them. 910 if (MF.getFunction().hasFnAttribute("probe-stack")) 911 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 912 "inline-asm"; 913 return false; 914 } 915 916 TargetLowering::AtomicExpansionKind 917 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 918 // Don't expand subword operations as they require special treatment. 919 if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16)) 920 return AtomicExpansionKind::None; 921 922 // Don't expand if there is a target instruction available. 923 if (Subtarget.hasInterlockedAccess1() && 924 (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) && 925 (RMW->getOperation() == AtomicRMWInst::BinOp::Add || 926 RMW->getOperation() == AtomicRMWInst::BinOp::Sub || 927 RMW->getOperation() == AtomicRMWInst::BinOp::And || 928 RMW->getOperation() == AtomicRMWInst::BinOp::Or || 929 RMW->getOperation() == AtomicRMWInst::BinOp::Xor)) 930 return AtomicExpansionKind::None; 931 932 return AtomicExpansionKind::CmpXChg; 933 } 934 935 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 936 // We can use CGFI or CLGFI. 937 return isInt<32>(Imm) || isUInt<32>(Imm); 938 } 939 940 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 941 // We can use ALGFI or SLGFI. 942 return isUInt<32>(Imm) || isUInt<32>(-Imm); 943 } 944 945 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 946 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { 947 // Unaligned accesses should never be slower than the expanded version. 948 // We check specifically for aligned accesses in the few cases where 949 // they are required. 950 if (Fast) 951 *Fast = 1; 952 return true; 953 } 954 955 // Information about the addressing mode for a memory access. 956 struct AddressingMode { 957 // True if a long displacement is supported. 958 bool LongDisplacement; 959 960 // True if use of index register is supported. 961 bool IndexReg; 962 963 AddressingMode(bool LongDispl, bool IdxReg) : 964 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 965 }; 966 967 // Return the desired addressing mode for a Load which has only one use (in 968 // the same block) which is a Store. 969 static AddressingMode getLoadStoreAddrMode(bool HasVector, 970 Type *Ty) { 971 // With vector support a Load->Store combination may be combined to either 972 // an MVC or vector operations and it seems to work best to allow the 973 // vector addressing mode. 974 if (HasVector) 975 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 976 977 // Otherwise only the MVC case is special. 978 bool MVC = Ty->isIntegerTy(8); 979 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 980 } 981 982 // Return the addressing mode which seems most desirable given an LLVM 983 // Instruction pointer. 984 static AddressingMode 985 supportedAddressingMode(Instruction *I, bool HasVector) { 986 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 987 switch (II->getIntrinsicID()) { 988 default: break; 989 case Intrinsic::memset: 990 case Intrinsic::memmove: 991 case Intrinsic::memcpy: 992 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 993 } 994 } 995 996 if (isa<LoadInst>(I) && I->hasOneUse()) { 997 auto *SingleUser = cast<Instruction>(*I->user_begin()); 998 if (SingleUser->getParent() == I->getParent()) { 999 if (isa<ICmpInst>(SingleUser)) { 1000 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 1001 if (C->getBitWidth() <= 64 && 1002 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 1003 // Comparison of memory with 16 bit signed / unsigned immediate 1004 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 1005 } else if (isa<StoreInst>(SingleUser)) 1006 // Load->Store 1007 return getLoadStoreAddrMode(HasVector, I->getType()); 1008 } 1009 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 1010 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 1011 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 1012 // Load->Store 1013 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 1014 } 1015 1016 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 1017 1018 // * Use LDE instead of LE/LEY for z13 to avoid partial register 1019 // dependencies (LDE only supports small offsets). 1020 // * Utilize the vector registers to hold floating point 1021 // values (vector load / store instructions only support small 1022 // offsets). 1023 1024 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 1025 I->getOperand(0)->getType()); 1026 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 1027 bool IsVectorAccess = MemAccessTy->isVectorTy(); 1028 1029 // A store of an extracted vector element will be combined into a VSTE type 1030 // instruction. 1031 if (!IsVectorAccess && isa<StoreInst>(I)) { 1032 Value *DataOp = I->getOperand(0); 1033 if (isa<ExtractElementInst>(DataOp)) 1034 IsVectorAccess = true; 1035 } 1036 1037 // A load which gets inserted into a vector element will be combined into a 1038 // VLE type instruction. 1039 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 1040 User *LoadUser = *I->user_begin(); 1041 if (isa<InsertElementInst>(LoadUser)) 1042 IsVectorAccess = true; 1043 } 1044 1045 if (IsFPAccess || IsVectorAccess) 1046 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 1047 } 1048 1049 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 1050 } 1051 1052 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1053 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 1054 // Punt on globals for now, although they can be used in limited 1055 // RELATIVE LONG cases. 1056 if (AM.BaseGV) 1057 return false; 1058 1059 // Require a 20-bit signed offset. 1060 if (!isInt<20>(AM.BaseOffs)) 1061 return false; 1062 1063 bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); 1064 AddressingMode SupportedAM(!RequireD12, true); 1065 if (I != nullptr) 1066 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 1067 1068 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 1069 return false; 1070 1071 if (!SupportedAM.IndexReg) 1072 // No indexing allowed. 1073 return AM.Scale == 0; 1074 else 1075 // Indexing is OK but no scale factor can be applied. 1076 return AM.Scale == 0 || AM.Scale == 1; 1077 } 1078 1079 bool SystemZTargetLowering::findOptimalMemOpLowering( 1080 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 1081 unsigned SrcAS, const AttributeList &FuncAttributes) const { 1082 const int MVCFastLen = 16; 1083 1084 if (Limit != ~unsigned(0)) { 1085 // Don't expand Op into scalar loads/stores in these cases: 1086 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 1087 return false; // Small memcpy: Use MVC 1088 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 1089 return false; // Small memset (first byte with STC/MVI): Use MVC 1090 if (Op.isZeroMemset()) 1091 return false; // Memset zero: Use XC 1092 } 1093 1094 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 1095 SrcAS, FuncAttributes); 1096 } 1097 1098 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 1099 const AttributeList &FuncAttributes) const { 1100 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 1101 } 1102 1103 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 1104 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 1105 return false; 1106 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); 1107 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); 1108 return FromBits > ToBits; 1109 } 1110 1111 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1112 if (!FromVT.isInteger() || !ToVT.isInteger()) 1113 return false; 1114 unsigned FromBits = FromVT.getFixedSizeInBits(); 1115 unsigned ToBits = ToVT.getFixedSizeInBits(); 1116 return FromBits > ToBits; 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // Inline asm support 1121 //===----------------------------------------------------------------------===// 1122 1123 TargetLowering::ConstraintType 1124 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1125 if (Constraint.size() == 1) { 1126 switch (Constraint[0]) { 1127 case 'a': // Address register 1128 case 'd': // Data register (equivalent to 'r') 1129 case 'f': // Floating-point register 1130 case 'h': // High-part register 1131 case 'r': // General-purpose register 1132 case 'v': // Vector register 1133 return C_RegisterClass; 1134 1135 case 'Q': // Memory with base and unsigned 12-bit displacement 1136 case 'R': // Likewise, plus an index 1137 case 'S': // Memory with base and signed 20-bit displacement 1138 case 'T': // Likewise, plus an index 1139 case 'm': // Equivalent to 'T'. 1140 return C_Memory; 1141 1142 case 'I': // Unsigned 8-bit constant 1143 case 'J': // Unsigned 12-bit constant 1144 case 'K': // Signed 16-bit constant 1145 case 'L': // Signed 20-bit displacement (on all targets we support) 1146 case 'M': // 0x7fffffff 1147 return C_Immediate; 1148 1149 default: 1150 break; 1151 } 1152 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1153 switch (Constraint[1]) { 1154 case 'Q': // Address with base and unsigned 12-bit displacement 1155 case 'R': // Likewise, plus an index 1156 case 'S': // Address with base and signed 20-bit displacement 1157 case 'T': // Likewise, plus an index 1158 return C_Address; 1159 1160 default: 1161 break; 1162 } 1163 } 1164 return TargetLowering::getConstraintType(Constraint); 1165 } 1166 1167 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1168 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1169 const char *constraint) const { 1170 ConstraintWeight weight = CW_Invalid; 1171 Value *CallOperandVal = info.CallOperandVal; 1172 // If we don't have a value, we can't do a match, 1173 // but allow it at the lowest weight. 1174 if (!CallOperandVal) 1175 return CW_Default; 1176 Type *type = CallOperandVal->getType(); 1177 // Look at the constraint type. 1178 switch (*constraint) { 1179 default: 1180 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1181 break; 1182 1183 case 'a': // Address register 1184 case 'd': // Data register (equivalent to 'r') 1185 case 'h': // High-part register 1186 case 'r': // General-purpose register 1187 weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default; 1188 break; 1189 1190 case 'f': // Floating-point register 1191 if (!useSoftFloat()) 1192 weight = type->isFloatingPointTy() ? CW_Register : CW_Default; 1193 break; 1194 1195 case 'v': // Vector register 1196 if (Subtarget.hasVector()) 1197 weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register 1198 : CW_Default; 1199 break; 1200 1201 case 'I': // Unsigned 8-bit constant 1202 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1203 if (isUInt<8>(C->getZExtValue())) 1204 weight = CW_Constant; 1205 break; 1206 1207 case 'J': // Unsigned 12-bit constant 1208 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1209 if (isUInt<12>(C->getZExtValue())) 1210 weight = CW_Constant; 1211 break; 1212 1213 case 'K': // Signed 16-bit constant 1214 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1215 if (isInt<16>(C->getSExtValue())) 1216 weight = CW_Constant; 1217 break; 1218 1219 case 'L': // Signed 20-bit displacement (on all targets we support) 1220 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1221 if (isInt<20>(C->getSExtValue())) 1222 weight = CW_Constant; 1223 break; 1224 1225 case 'M': // 0x7fffffff 1226 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1227 if (C->getZExtValue() == 0x7fffffff) 1228 weight = CW_Constant; 1229 break; 1230 } 1231 return weight; 1232 } 1233 1234 // Parse a "{tNNN}" register constraint for which the register type "t" 1235 // has already been verified. MC is the class associated with "t" and 1236 // Map maps 0-based register numbers to LLVM register numbers. 1237 static std::pair<unsigned, const TargetRegisterClass *> 1238 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1239 const unsigned *Map, unsigned Size) { 1240 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1241 if (isdigit(Constraint[2])) { 1242 unsigned Index; 1243 bool Failed = 1244 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1245 if (!Failed && Index < Size && Map[Index]) 1246 return std::make_pair(Map[Index], RC); 1247 } 1248 return std::make_pair(0U, nullptr); 1249 } 1250 1251 std::pair<unsigned, const TargetRegisterClass *> 1252 SystemZTargetLowering::getRegForInlineAsmConstraint( 1253 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1254 if (Constraint.size() == 1) { 1255 // GCC Constraint Letters 1256 switch (Constraint[0]) { 1257 default: break; 1258 case 'd': // Data register (equivalent to 'r') 1259 case 'r': // General-purpose register 1260 if (VT.getSizeInBits() == 64) 1261 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1262 else if (VT.getSizeInBits() == 128) 1263 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1264 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1265 1266 case 'a': // Address register 1267 if (VT == MVT::i64) 1268 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1269 else if (VT == MVT::i128) 1270 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1271 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1272 1273 case 'h': // High-part register (an LLVM extension) 1274 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1275 1276 case 'f': // Floating-point register 1277 if (!useSoftFloat()) { 1278 if (VT.getSizeInBits() == 64) 1279 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1280 else if (VT.getSizeInBits() == 128) 1281 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1282 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1283 } 1284 break; 1285 1286 case 'v': // Vector register 1287 if (Subtarget.hasVector()) { 1288 if (VT.getSizeInBits() == 32) 1289 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1290 if (VT.getSizeInBits() == 64) 1291 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1292 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1293 } 1294 break; 1295 } 1296 } 1297 if (Constraint.size() > 0 && Constraint[0] == '{') { 1298 1299 // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal 1300 // to check the size on. 1301 auto getVTSizeInBits = [&VT]() { 1302 return VT == MVT::Other ? 0 : VT.getSizeInBits(); 1303 }; 1304 1305 // We need to override the default register parsing for GPRs and FPRs 1306 // because the interpretation depends on VT. The internal names of 1307 // the registers are also different from the external names 1308 // (F0D and F0S instead of F0, etc.). 1309 if (Constraint[1] == 'r') { 1310 if (getVTSizeInBits() == 32) 1311 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1312 SystemZMC::GR32Regs, 16); 1313 if (getVTSizeInBits() == 128) 1314 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1315 SystemZMC::GR128Regs, 16); 1316 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1317 SystemZMC::GR64Regs, 16); 1318 } 1319 if (Constraint[1] == 'f') { 1320 if (useSoftFloat()) 1321 return std::make_pair( 1322 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1323 if (getVTSizeInBits() == 32) 1324 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1325 SystemZMC::FP32Regs, 16); 1326 if (getVTSizeInBits() == 128) 1327 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1328 SystemZMC::FP128Regs, 16); 1329 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1330 SystemZMC::FP64Regs, 16); 1331 } 1332 if (Constraint[1] == 'v') { 1333 if (!Subtarget.hasVector()) 1334 return std::make_pair( 1335 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1336 if (getVTSizeInBits() == 32) 1337 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1338 SystemZMC::VR32Regs, 32); 1339 if (getVTSizeInBits() == 64) 1340 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1341 SystemZMC::VR64Regs, 32); 1342 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1343 SystemZMC::VR128Regs, 32); 1344 } 1345 } 1346 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1347 } 1348 1349 // FIXME? Maybe this could be a TableGen attribute on some registers and 1350 // this table could be generated automatically from RegInfo. 1351 Register 1352 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1353 const MachineFunction &MF) const { 1354 Register Reg = 1355 StringSwitch<Register>(RegName) 1356 .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0) 1357 .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0) 1358 .Default(0); 1359 1360 if (Reg) 1361 return Reg; 1362 report_fatal_error("Invalid register name global variable"); 1363 } 1364 1365 void SystemZTargetLowering::LowerAsmOperandForConstraint( 1366 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 1367 SelectionDAG &DAG) const { 1368 // Only support length 1 constraints for now. 1369 if (Constraint.size() == 1) { 1370 switch (Constraint[0]) { 1371 case 'I': // Unsigned 8-bit constant 1372 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1373 if (isUInt<8>(C->getZExtValue())) 1374 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1375 Op.getValueType())); 1376 return; 1377 1378 case 'J': // Unsigned 12-bit constant 1379 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1380 if (isUInt<12>(C->getZExtValue())) 1381 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1382 Op.getValueType())); 1383 return; 1384 1385 case 'K': // Signed 16-bit constant 1386 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1387 if (isInt<16>(C->getSExtValue())) 1388 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1389 Op.getValueType())); 1390 return; 1391 1392 case 'L': // Signed 20-bit displacement (on all targets we support) 1393 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1394 if (isInt<20>(C->getSExtValue())) 1395 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1396 Op.getValueType())); 1397 return; 1398 1399 case 'M': // 0x7fffffff 1400 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1401 if (C->getZExtValue() == 0x7fffffff) 1402 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1403 Op.getValueType())); 1404 return; 1405 } 1406 } 1407 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1408 } 1409 1410 //===----------------------------------------------------------------------===// 1411 // Calling conventions 1412 //===----------------------------------------------------------------------===// 1413 1414 #include "SystemZGenCallingConv.inc" 1415 1416 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1417 CallingConv::ID) const { 1418 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1419 SystemZ::R14D, 0 }; 1420 return ScratchRegs; 1421 } 1422 1423 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1424 Type *ToType) const { 1425 return isTruncateFree(FromType, ToType); 1426 } 1427 1428 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1429 return CI->isTailCall(); 1430 } 1431 1432 // Value is a value that has been passed to us in the location described by VA 1433 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1434 // any loads onto Chain. 1435 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1436 CCValAssign &VA, SDValue Chain, 1437 SDValue Value) { 1438 // If the argument has been promoted from a smaller type, insert an 1439 // assertion to capture this. 1440 if (VA.getLocInfo() == CCValAssign::SExt) 1441 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1442 DAG.getValueType(VA.getValVT())); 1443 else if (VA.getLocInfo() == CCValAssign::ZExt) 1444 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1445 DAG.getValueType(VA.getValVT())); 1446 1447 if (VA.isExtInLoc()) 1448 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1449 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1450 // If this is a short vector argument loaded from the stack, 1451 // extend from i64 to full vector size and then bitcast. 1452 assert(VA.getLocVT() == MVT::i64); 1453 assert(VA.getValVT().isVector()); 1454 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1455 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1456 } else 1457 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1458 return Value; 1459 } 1460 1461 // Value is a value of type VA.getValVT() that we need to copy into 1462 // the location described by VA. Return a copy of Value converted to 1463 // VA.getValVT(). The caller is responsible for handling indirect values. 1464 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1465 CCValAssign &VA, SDValue Value) { 1466 switch (VA.getLocInfo()) { 1467 case CCValAssign::SExt: 1468 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1469 case CCValAssign::ZExt: 1470 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1471 case CCValAssign::AExt: 1472 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1473 case CCValAssign::BCvt: { 1474 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1475 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1476 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1477 // For an f32 vararg we need to first promote it to an f64 and then 1478 // bitcast it to an i64. 1479 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1480 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1481 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1482 ? MVT::v2i64 1483 : VA.getLocVT(); 1484 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1485 // For ELF, this is a short vector argument to be stored to the stack, 1486 // bitcast to v2i64 and then extract first element. 1487 if (BitCastToType == MVT::v2i64) 1488 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1489 DAG.getConstant(0, DL, MVT::i32)); 1490 return Value; 1491 } 1492 case CCValAssign::Full: 1493 return Value; 1494 default: 1495 llvm_unreachable("Unhandled getLocInfo()"); 1496 } 1497 } 1498 1499 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1500 SDLoc DL(In); 1501 SDValue Lo, Hi; 1502 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1503 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In); 1504 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 1505 DAG.getNode(ISD::SRL, DL, MVT::i128, In, 1506 DAG.getConstant(64, DL, MVT::i32))); 1507 } else { 1508 std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64); 1509 } 1510 1511 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1512 MVT::Untyped, Hi, Lo); 1513 return SDValue(Pair, 0); 1514 } 1515 1516 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1517 SDLoc DL(In); 1518 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1519 DL, MVT::i64, In); 1520 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1521 DL, MVT::i64, In); 1522 1523 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1524 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo); 1525 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi); 1526 Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi, 1527 DAG.getConstant(64, DL, MVT::i32)); 1528 return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi); 1529 } else { 1530 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1531 } 1532 } 1533 1534 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1535 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1536 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 1537 EVT ValueVT = Val.getValueType(); 1538 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1539 // Inline assembly operand. 1540 Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val)); 1541 return true; 1542 } 1543 1544 return false; 1545 } 1546 1547 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1548 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1549 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 1550 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1551 // Inline assembly operand. 1552 SDValue Res = lowerGR128ToI128(DAG, Parts[0]); 1553 return DAG.getBitcast(ValueVT, Res); 1554 } 1555 1556 return SDValue(); 1557 } 1558 1559 SDValue SystemZTargetLowering::LowerFormalArguments( 1560 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1561 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1562 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1563 MachineFunction &MF = DAG.getMachineFunction(); 1564 MachineFrameInfo &MFI = MF.getFrameInfo(); 1565 MachineRegisterInfo &MRI = MF.getRegInfo(); 1566 SystemZMachineFunctionInfo *FuncInfo = 1567 MF.getInfo<SystemZMachineFunctionInfo>(); 1568 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1569 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1570 1571 // Assign locations to all of the incoming arguments. 1572 SmallVector<CCValAssign, 16> ArgLocs; 1573 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1574 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1575 FuncInfo->setSizeOfFnParams(CCInfo.getStackSize()); 1576 1577 unsigned NumFixedGPRs = 0; 1578 unsigned NumFixedFPRs = 0; 1579 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1580 SDValue ArgValue; 1581 CCValAssign &VA = ArgLocs[I]; 1582 EVT LocVT = VA.getLocVT(); 1583 if (VA.isRegLoc()) { 1584 // Arguments passed in registers 1585 const TargetRegisterClass *RC; 1586 switch (LocVT.getSimpleVT().SimpleTy) { 1587 default: 1588 // Integers smaller than i64 should be promoted to i64. 1589 llvm_unreachable("Unexpected argument type"); 1590 case MVT::i32: 1591 NumFixedGPRs += 1; 1592 RC = &SystemZ::GR32BitRegClass; 1593 break; 1594 case MVT::i64: 1595 NumFixedGPRs += 1; 1596 RC = &SystemZ::GR64BitRegClass; 1597 break; 1598 case MVT::f32: 1599 NumFixedFPRs += 1; 1600 RC = &SystemZ::FP32BitRegClass; 1601 break; 1602 case MVT::f64: 1603 NumFixedFPRs += 1; 1604 RC = &SystemZ::FP64BitRegClass; 1605 break; 1606 case MVT::f128: 1607 NumFixedFPRs += 2; 1608 RC = &SystemZ::FP128BitRegClass; 1609 break; 1610 case MVT::v16i8: 1611 case MVT::v8i16: 1612 case MVT::v4i32: 1613 case MVT::v2i64: 1614 case MVT::v4f32: 1615 case MVT::v2f64: 1616 RC = &SystemZ::VR128BitRegClass; 1617 break; 1618 } 1619 1620 Register VReg = MRI.createVirtualRegister(RC); 1621 MRI.addLiveIn(VA.getLocReg(), VReg); 1622 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1623 } else { 1624 assert(VA.isMemLoc() && "Argument not register or memory"); 1625 1626 // Create the frame index object for this incoming parameter. 1627 // FIXME: Pre-include call frame size in the offset, should not 1628 // need to manually add it here. 1629 int64_t ArgSPOffset = VA.getLocMemOffset(); 1630 if (Subtarget.isTargetXPLINK64()) { 1631 auto &XPRegs = 1632 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1633 ArgSPOffset += XPRegs.getCallFrameSize(); 1634 } 1635 int FI = 1636 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1637 1638 // Create the SelectionDAG nodes corresponding to a load 1639 // from this parameter. Unpromoted ints and floats are 1640 // passed as right-justified 8-byte values. 1641 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1642 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1643 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1644 DAG.getIntPtrConstant(4, DL)); 1645 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1646 MachinePointerInfo::getFixedStack(MF, FI)); 1647 } 1648 1649 // Convert the value of the argument register into the value that's 1650 // being passed. 1651 if (VA.getLocInfo() == CCValAssign::Indirect) { 1652 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1653 MachinePointerInfo())); 1654 // If the original argument was split (e.g. i128), we need 1655 // to load all parts of it here (using the same address). 1656 unsigned ArgIndex = Ins[I].OrigArgIndex; 1657 assert (Ins[I].PartOffset == 0); 1658 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1659 CCValAssign &PartVA = ArgLocs[I + 1]; 1660 unsigned PartOffset = Ins[I + 1].PartOffset; 1661 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1662 DAG.getIntPtrConstant(PartOffset, DL)); 1663 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1664 MachinePointerInfo())); 1665 ++I; 1666 } 1667 } else 1668 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1669 } 1670 1671 if (IsVarArg && Subtarget.isTargetXPLINK64()) { 1672 // Save the number of non-varargs registers for later use by va_start, etc. 1673 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1674 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1675 1676 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1677 Subtarget.getSpecialRegisters()); 1678 1679 // Likewise the address (in the form of a frame index) of where the 1680 // first stack vararg would be. The 1-byte size here is arbitrary. 1681 // FIXME: Pre-include call frame size in the offset, should not 1682 // need to manually add it here. 1683 int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize(); 1684 int FI = MFI.CreateFixedObject(1, VarArgOffset, true); 1685 FuncInfo->setVarArgsFrameIndex(FI); 1686 } 1687 1688 if (IsVarArg && Subtarget.isTargetELF()) { 1689 // Save the number of non-varargs registers for later use by va_start, etc. 1690 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1691 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1692 1693 // Likewise the address (in the form of a frame index) of where the 1694 // first stack vararg would be. The 1-byte size here is arbitrary. 1695 int64_t VarArgsOffset = CCInfo.getStackSize(); 1696 FuncInfo->setVarArgsFrameIndex( 1697 MFI.CreateFixedObject(1, VarArgsOffset, true)); 1698 1699 // ...and a similar frame index for the caller-allocated save area 1700 // that will be used to store the incoming registers. 1701 int64_t RegSaveOffset = 1702 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1703 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1704 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1705 1706 // Store the FPR varargs in the reserved frame slots. (We store the 1707 // GPRs as part of the prologue.) 1708 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1709 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1710 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1711 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1712 int FI = 1713 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1714 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1715 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1716 &SystemZ::FP64BitRegClass); 1717 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1718 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1719 MachinePointerInfo::getFixedStack(MF, FI)); 1720 } 1721 // Join the stores, which are independent of one another. 1722 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1723 ArrayRef(&MemOps[NumFixedFPRs], 1724 SystemZ::ELFNumArgFPRs - NumFixedFPRs)); 1725 } 1726 } 1727 1728 if (Subtarget.isTargetXPLINK64()) { 1729 // Create virual register for handling incoming "ADA" special register (R5) 1730 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 1731 Register ADAvReg = MRI.createVirtualRegister(RC); 1732 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1733 Subtarget.getSpecialRegisters()); 1734 MRI.addLiveIn(Regs->getADARegister(), ADAvReg); 1735 FuncInfo->setADAVirtualRegister(ADAvReg); 1736 } 1737 return Chain; 1738 } 1739 1740 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1741 SmallVectorImpl<CCValAssign> &ArgLocs, 1742 SmallVectorImpl<ISD::OutputArg> &Outs) { 1743 // Punt if there are any indirect or stack arguments, or if the call 1744 // needs the callee-saved argument register R6, or if the call uses 1745 // the callee-saved register arguments SwiftSelf and SwiftError. 1746 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1747 CCValAssign &VA = ArgLocs[I]; 1748 if (VA.getLocInfo() == CCValAssign::Indirect) 1749 return false; 1750 if (!VA.isRegLoc()) 1751 return false; 1752 Register Reg = VA.getLocReg(); 1753 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1754 return false; 1755 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL, 1762 unsigned Offset, bool LoadAdr = false) { 1763 MachineFunction &MF = DAG.getMachineFunction(); 1764 SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>(); 1765 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1766 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1767 1768 SDValue Reg = DAG.getRegister(ADAvReg, PtrVT); 1769 SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT); 1770 1771 SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs); 1772 if (!LoadAdr) 1773 Result = DAG.getLoad( 1774 PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8), 1775 MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); 1776 1777 return Result; 1778 } 1779 1780 // ADA access using Global value 1781 // Note: for functions, address of descriptor is returned 1782 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL, 1783 EVT PtrVT) { 1784 unsigned ADAtype; 1785 bool LoadAddr = false; 1786 const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV); 1787 bool IsFunction = 1788 (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject())); 1789 bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage()); 1790 1791 if (IsFunction) { 1792 if (IsInternal) { 1793 ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC; 1794 LoadAddr = true; 1795 } else 1796 ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC; 1797 } else { 1798 ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR; 1799 } 1800 SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype); 1801 1802 return getADAEntry(DAG, Val, DL, 0, LoadAddr); 1803 } 1804 1805 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA, 1806 SDLoc &DL, SDValue &Chain) { 1807 unsigned ADADelta = 0; // ADA offset in desc. 1808 unsigned EPADelta = 8; // EPA offset in desc. 1809 MachineFunction &MF = DAG.getMachineFunction(); 1810 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1811 1812 // XPLink calling convention. 1813 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1814 bool IsInternal = (G->getGlobal()->hasInternalLinkage() || 1815 G->getGlobal()->hasPrivateLinkage()); 1816 if (IsInternal) { 1817 SystemZMachineFunctionInfo *MFI = 1818 MF.getInfo<SystemZMachineFunctionInfo>(); 1819 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1820 ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT); 1821 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1822 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1823 return true; 1824 } else { 1825 SDValue GA = DAG.getTargetGlobalAddress( 1826 G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1827 ADA = getADAEntry(DAG, GA, DL, ADADelta); 1828 Callee = getADAEntry(DAG, GA, DL, EPADelta); 1829 } 1830 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1831 SDValue ES = DAG.getTargetExternalSymbol( 1832 E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1833 ADA = getADAEntry(DAG, ES, DL, ADADelta); 1834 Callee = getADAEntry(DAG, ES, DL, EPADelta); 1835 } else { 1836 // Function pointer case 1837 ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1838 DAG.getConstant(ADADelta, DL, PtrVT)); 1839 ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA, 1840 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1841 Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1842 DAG.getConstant(EPADelta, DL, PtrVT)); 1843 Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee, 1844 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1845 } 1846 return false; 1847 } 1848 1849 SDValue 1850 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1851 SmallVectorImpl<SDValue> &InVals) const { 1852 SelectionDAG &DAG = CLI.DAG; 1853 SDLoc &DL = CLI.DL; 1854 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1855 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1856 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1857 SDValue Chain = CLI.Chain; 1858 SDValue Callee = CLI.Callee; 1859 bool &IsTailCall = CLI.IsTailCall; 1860 CallingConv::ID CallConv = CLI.CallConv; 1861 bool IsVarArg = CLI.IsVarArg; 1862 MachineFunction &MF = DAG.getMachineFunction(); 1863 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1864 LLVMContext &Ctx = *DAG.getContext(); 1865 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1866 1867 // FIXME: z/OS support to be added in later. 1868 if (Subtarget.isTargetXPLINK64()) 1869 IsTailCall = false; 1870 1871 // Analyze the operands of the call, assigning locations to each operand. 1872 SmallVector<CCValAssign, 16> ArgLocs; 1873 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1874 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1875 1876 // We don't support GuaranteedTailCallOpt, only automatically-detected 1877 // sibling calls. 1878 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1879 IsTailCall = false; 1880 1881 // Get a count of how many bytes are to be pushed on the stack. 1882 unsigned NumBytes = ArgCCInfo.getStackSize(); 1883 1884 // Mark the start of the call. 1885 if (!IsTailCall) 1886 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1887 1888 // Copy argument values to their designated locations. 1889 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1890 SmallVector<SDValue, 8> MemOpChains; 1891 SDValue StackPtr; 1892 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1893 CCValAssign &VA = ArgLocs[I]; 1894 SDValue ArgValue = OutVals[I]; 1895 1896 if (VA.getLocInfo() == CCValAssign::Indirect) { 1897 // Store the argument in a stack slot and pass its address. 1898 unsigned ArgIndex = Outs[I].OrigArgIndex; 1899 EVT SlotVT; 1900 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1901 // Allocate the full stack space for a promoted (and split) argument. 1902 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1903 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1904 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1905 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1906 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1907 } else { 1908 SlotVT = Outs[I].ArgVT; 1909 } 1910 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1911 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1912 MemOpChains.push_back( 1913 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1914 MachinePointerInfo::getFixedStack(MF, FI))); 1915 // If the original argument was split (e.g. i128), we need 1916 // to store all parts of it here (and pass just one address). 1917 assert (Outs[I].PartOffset == 0); 1918 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1919 SDValue PartValue = OutVals[I + 1]; 1920 unsigned PartOffset = Outs[I + 1].PartOffset; 1921 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1922 DAG.getIntPtrConstant(PartOffset, DL)); 1923 MemOpChains.push_back( 1924 DAG.getStore(Chain, DL, PartValue, Address, 1925 MachinePointerInfo::getFixedStack(MF, FI))); 1926 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1927 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1928 ++I; 1929 } 1930 ArgValue = SpillSlot; 1931 } else 1932 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1933 1934 if (VA.isRegLoc()) { 1935 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1936 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1937 // and low values. 1938 if (VA.getLocVT() == MVT::i128) 1939 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1940 // Queue up the argument copies and emit them at the end. 1941 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1942 } else { 1943 assert(VA.isMemLoc() && "Argument not register or memory"); 1944 1945 // Work out the address of the stack slot. Unpromoted ints and 1946 // floats are passed as right-justified 8-byte values. 1947 if (!StackPtr.getNode()) 1948 StackPtr = DAG.getCopyFromReg(Chain, DL, 1949 Regs->getStackPointerRegister(), PtrVT); 1950 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1951 VA.getLocMemOffset(); 1952 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1953 Offset += 4; 1954 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1955 DAG.getIntPtrConstant(Offset, DL)); 1956 1957 // Emit the store. 1958 MemOpChains.push_back( 1959 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1960 1961 // Although long doubles or vectors are passed through the stack when 1962 // they are vararg (non-fixed arguments), if a long double or vector 1963 // occupies the third and fourth slot of the argument list GPR3 should 1964 // still shadow the third slot of the argument list. 1965 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1966 SDValue ShadowArgValue = 1967 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1968 DAG.getIntPtrConstant(1, DL)); 1969 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1970 } 1971 } 1972 } 1973 1974 // Join the stores, which are independent of one another. 1975 if (!MemOpChains.empty()) 1976 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1977 1978 // Accept direct calls by converting symbolic call addresses to the 1979 // associated Target* opcodes. Force %r1 to be used for indirect 1980 // tail calls. 1981 SDValue Glue; 1982 1983 if (Subtarget.isTargetXPLINK64()) { 1984 SDValue ADA; 1985 bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain); 1986 if (!IsBRASL) { 1987 unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs) 1988 ->getAddressOfCalleeRegister(); 1989 Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue); 1990 Glue = Chain.getValue(1); 1991 Callee = DAG.getRegister(CalleeReg, Callee.getValueType()); 1992 } 1993 RegsToPass.push_back(std::make_pair( 1994 static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA)); 1995 } else { 1996 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1997 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1998 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1999 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2000 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 2001 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 2002 } else if (IsTailCall) { 2003 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 2004 Glue = Chain.getValue(1); 2005 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 2006 } 2007 } 2008 2009 // Build a sequence of copy-to-reg nodes, chained and glued together. 2010 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 2011 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 2012 RegsToPass[I].second, Glue); 2013 Glue = Chain.getValue(1); 2014 } 2015 2016 // The first call operand is the chain and the second is the target address. 2017 SmallVector<SDValue, 8> Ops; 2018 Ops.push_back(Chain); 2019 Ops.push_back(Callee); 2020 2021 // Add argument registers to the end of the list so that they are 2022 // known live into the call. 2023 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 2024 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 2025 RegsToPass[I].second.getValueType())); 2026 2027 // Add a register mask operand representing the call-preserved registers. 2028 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2029 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2030 assert(Mask && "Missing call preserved mask for calling convention"); 2031 Ops.push_back(DAG.getRegisterMask(Mask)); 2032 2033 // Glue the call to the argument copies, if any. 2034 if (Glue.getNode()) 2035 Ops.push_back(Glue); 2036 2037 // Emit the call. 2038 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2039 if (IsTailCall) { 2040 SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 2041 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); 2042 return Ret; 2043 } 2044 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 2045 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2046 Glue = Chain.getValue(1); 2047 2048 // Mark the end of the call, which is glued to the call itself. 2049 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 2050 Glue = Chain.getValue(1); 2051 2052 // Assign locations to each value returned by this call. 2053 SmallVector<CCValAssign, 16> RetLocs; 2054 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 2055 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 2056 2057 // Copy all of the result registers out of their specified physreg. 2058 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2059 CCValAssign &VA = RetLocs[I]; 2060 2061 // Copy the value out, gluing the copy to the end of the call sequence. 2062 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 2063 VA.getLocVT(), Glue); 2064 Chain = RetValue.getValue(1); 2065 Glue = RetValue.getValue(2); 2066 2067 // Convert the value of the return register into the value that's 2068 // being returned. 2069 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 2070 } 2071 2072 return Chain; 2073 } 2074 2075 // Generate a call taking the given operands as arguments and returning a 2076 // result of type RetVT. 2077 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 2078 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 2079 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 2080 bool DoesNotReturn, bool IsReturnValueUsed) const { 2081 TargetLowering::ArgListTy Args; 2082 Args.reserve(Ops.size()); 2083 2084 TargetLowering::ArgListEntry Entry; 2085 for (SDValue Op : Ops) { 2086 Entry.Node = Op; 2087 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2088 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2089 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2090 Args.push_back(Entry); 2091 } 2092 2093 SDValue Callee = 2094 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 2095 2096 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2097 TargetLowering::CallLoweringInfo CLI(DAG); 2098 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 2099 CLI.setDebugLoc(DL) 2100 .setChain(Chain) 2101 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 2102 .setNoReturn(DoesNotReturn) 2103 .setDiscardResult(!IsReturnValueUsed) 2104 .setSExtResult(SignExtend) 2105 .setZExtResult(!SignExtend); 2106 return LowerCallTo(CLI); 2107 } 2108 2109 bool SystemZTargetLowering:: 2110 CanLowerReturn(CallingConv::ID CallConv, 2111 MachineFunction &MF, bool isVarArg, 2112 const SmallVectorImpl<ISD::OutputArg> &Outs, 2113 LLVMContext &Context) const { 2114 // Special case that we cannot easily detect in RetCC_SystemZ since 2115 // i128 may not be a legal type. 2116 for (auto &Out : Outs) 2117 if (Out.ArgVT == MVT::i128) 2118 return false; 2119 2120 SmallVector<CCValAssign, 16> RetLocs; 2121 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 2122 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 2123 } 2124 2125 SDValue 2126 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2127 bool IsVarArg, 2128 const SmallVectorImpl<ISD::OutputArg> &Outs, 2129 const SmallVectorImpl<SDValue> &OutVals, 2130 const SDLoc &DL, SelectionDAG &DAG) const { 2131 MachineFunction &MF = DAG.getMachineFunction(); 2132 2133 // Assign locations to each returned value. 2134 SmallVector<CCValAssign, 16> RetLocs; 2135 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 2136 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 2137 2138 // Quick exit for void returns 2139 if (RetLocs.empty()) 2140 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain); 2141 2142 if (CallConv == CallingConv::GHC) 2143 report_fatal_error("GHC functions return void only"); 2144 2145 // Copy the result values into the output registers. 2146 SDValue Glue; 2147 SmallVector<SDValue, 4> RetOps; 2148 RetOps.push_back(Chain); 2149 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2150 CCValAssign &VA = RetLocs[I]; 2151 SDValue RetValue = OutVals[I]; 2152 2153 // Make the return register live on exit. 2154 assert(VA.isRegLoc() && "Can only return in registers!"); 2155 2156 // Promote the value as required. 2157 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 2158 2159 // Chain and glue the copies together. 2160 Register Reg = VA.getLocReg(); 2161 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 2162 Glue = Chain.getValue(1); 2163 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 2164 } 2165 2166 // Update chain and glue. 2167 RetOps[0] = Chain; 2168 if (Glue.getNode()) 2169 RetOps.push_back(Glue); 2170 2171 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps); 2172 } 2173 2174 // Return true if Op is an intrinsic node with chain that returns the CC value 2175 // as its only (other) argument. Provide the associated SystemZISD opcode and 2176 // the mask of valid CC values if so. 2177 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 2178 unsigned &CCValid) { 2179 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2180 switch (Id) { 2181 case Intrinsic::s390_tbegin: 2182 Opcode = SystemZISD::TBEGIN; 2183 CCValid = SystemZ::CCMASK_TBEGIN; 2184 return true; 2185 2186 case Intrinsic::s390_tbegin_nofloat: 2187 Opcode = SystemZISD::TBEGIN_NOFLOAT; 2188 CCValid = SystemZ::CCMASK_TBEGIN; 2189 return true; 2190 2191 case Intrinsic::s390_tend: 2192 Opcode = SystemZISD::TEND; 2193 CCValid = SystemZ::CCMASK_TEND; 2194 return true; 2195 2196 default: 2197 return false; 2198 } 2199 } 2200 2201 // Return true if Op is an intrinsic node without chain that returns the 2202 // CC value as its final argument. Provide the associated SystemZISD 2203 // opcode and the mask of valid CC values if so. 2204 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 2205 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2206 switch (Id) { 2207 case Intrinsic::s390_vpkshs: 2208 case Intrinsic::s390_vpksfs: 2209 case Intrinsic::s390_vpksgs: 2210 Opcode = SystemZISD::PACKS_CC; 2211 CCValid = SystemZ::CCMASK_VCMP; 2212 return true; 2213 2214 case Intrinsic::s390_vpklshs: 2215 case Intrinsic::s390_vpklsfs: 2216 case Intrinsic::s390_vpklsgs: 2217 Opcode = SystemZISD::PACKLS_CC; 2218 CCValid = SystemZ::CCMASK_VCMP; 2219 return true; 2220 2221 case Intrinsic::s390_vceqbs: 2222 case Intrinsic::s390_vceqhs: 2223 case Intrinsic::s390_vceqfs: 2224 case Intrinsic::s390_vceqgs: 2225 Opcode = SystemZISD::VICMPES; 2226 CCValid = SystemZ::CCMASK_VCMP; 2227 return true; 2228 2229 case Intrinsic::s390_vchbs: 2230 case Intrinsic::s390_vchhs: 2231 case Intrinsic::s390_vchfs: 2232 case Intrinsic::s390_vchgs: 2233 Opcode = SystemZISD::VICMPHS; 2234 CCValid = SystemZ::CCMASK_VCMP; 2235 return true; 2236 2237 case Intrinsic::s390_vchlbs: 2238 case Intrinsic::s390_vchlhs: 2239 case Intrinsic::s390_vchlfs: 2240 case Intrinsic::s390_vchlgs: 2241 Opcode = SystemZISD::VICMPHLS; 2242 CCValid = SystemZ::CCMASK_VCMP; 2243 return true; 2244 2245 case Intrinsic::s390_vtm: 2246 Opcode = SystemZISD::VTM; 2247 CCValid = SystemZ::CCMASK_VCMP; 2248 return true; 2249 2250 case Intrinsic::s390_vfaebs: 2251 case Intrinsic::s390_vfaehs: 2252 case Intrinsic::s390_vfaefs: 2253 Opcode = SystemZISD::VFAE_CC; 2254 CCValid = SystemZ::CCMASK_ANY; 2255 return true; 2256 2257 case Intrinsic::s390_vfaezbs: 2258 case Intrinsic::s390_vfaezhs: 2259 case Intrinsic::s390_vfaezfs: 2260 Opcode = SystemZISD::VFAEZ_CC; 2261 CCValid = SystemZ::CCMASK_ANY; 2262 return true; 2263 2264 case Intrinsic::s390_vfeebs: 2265 case Intrinsic::s390_vfeehs: 2266 case Intrinsic::s390_vfeefs: 2267 Opcode = SystemZISD::VFEE_CC; 2268 CCValid = SystemZ::CCMASK_ANY; 2269 return true; 2270 2271 case Intrinsic::s390_vfeezbs: 2272 case Intrinsic::s390_vfeezhs: 2273 case Intrinsic::s390_vfeezfs: 2274 Opcode = SystemZISD::VFEEZ_CC; 2275 CCValid = SystemZ::CCMASK_ANY; 2276 return true; 2277 2278 case Intrinsic::s390_vfenebs: 2279 case Intrinsic::s390_vfenehs: 2280 case Intrinsic::s390_vfenefs: 2281 Opcode = SystemZISD::VFENE_CC; 2282 CCValid = SystemZ::CCMASK_ANY; 2283 return true; 2284 2285 case Intrinsic::s390_vfenezbs: 2286 case Intrinsic::s390_vfenezhs: 2287 case Intrinsic::s390_vfenezfs: 2288 Opcode = SystemZISD::VFENEZ_CC; 2289 CCValid = SystemZ::CCMASK_ANY; 2290 return true; 2291 2292 case Intrinsic::s390_vistrbs: 2293 case Intrinsic::s390_vistrhs: 2294 case Intrinsic::s390_vistrfs: 2295 Opcode = SystemZISD::VISTR_CC; 2296 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2297 return true; 2298 2299 case Intrinsic::s390_vstrcbs: 2300 case Intrinsic::s390_vstrchs: 2301 case Intrinsic::s390_vstrcfs: 2302 Opcode = SystemZISD::VSTRC_CC; 2303 CCValid = SystemZ::CCMASK_ANY; 2304 return true; 2305 2306 case Intrinsic::s390_vstrczbs: 2307 case Intrinsic::s390_vstrczhs: 2308 case Intrinsic::s390_vstrczfs: 2309 Opcode = SystemZISD::VSTRCZ_CC; 2310 CCValid = SystemZ::CCMASK_ANY; 2311 return true; 2312 2313 case Intrinsic::s390_vstrsb: 2314 case Intrinsic::s390_vstrsh: 2315 case Intrinsic::s390_vstrsf: 2316 Opcode = SystemZISD::VSTRS_CC; 2317 CCValid = SystemZ::CCMASK_ANY; 2318 return true; 2319 2320 case Intrinsic::s390_vstrszb: 2321 case Intrinsic::s390_vstrszh: 2322 case Intrinsic::s390_vstrszf: 2323 Opcode = SystemZISD::VSTRSZ_CC; 2324 CCValid = SystemZ::CCMASK_ANY; 2325 return true; 2326 2327 case Intrinsic::s390_vfcedbs: 2328 case Intrinsic::s390_vfcesbs: 2329 Opcode = SystemZISD::VFCMPES; 2330 CCValid = SystemZ::CCMASK_VCMP; 2331 return true; 2332 2333 case Intrinsic::s390_vfchdbs: 2334 case Intrinsic::s390_vfchsbs: 2335 Opcode = SystemZISD::VFCMPHS; 2336 CCValid = SystemZ::CCMASK_VCMP; 2337 return true; 2338 2339 case Intrinsic::s390_vfchedbs: 2340 case Intrinsic::s390_vfchesbs: 2341 Opcode = SystemZISD::VFCMPHES; 2342 CCValid = SystemZ::CCMASK_VCMP; 2343 return true; 2344 2345 case Intrinsic::s390_vftcidb: 2346 case Intrinsic::s390_vftcisb: 2347 Opcode = SystemZISD::VFTCI; 2348 CCValid = SystemZ::CCMASK_VCMP; 2349 return true; 2350 2351 case Intrinsic::s390_tdc: 2352 Opcode = SystemZISD::TDC; 2353 CCValid = SystemZ::CCMASK_TDC; 2354 return true; 2355 2356 default: 2357 return false; 2358 } 2359 } 2360 2361 // Emit an intrinsic with chain and an explicit CC register result. 2362 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2363 unsigned Opcode) { 2364 // Copy all operands except the intrinsic ID. 2365 unsigned NumOps = Op.getNumOperands(); 2366 SmallVector<SDValue, 6> Ops; 2367 Ops.reserve(NumOps - 1); 2368 Ops.push_back(Op.getOperand(0)); 2369 for (unsigned I = 2; I < NumOps; ++I) 2370 Ops.push_back(Op.getOperand(I)); 2371 2372 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2373 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2374 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2375 SDValue OldChain = SDValue(Op.getNode(), 1); 2376 SDValue NewChain = SDValue(Intr.getNode(), 1); 2377 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2378 return Intr.getNode(); 2379 } 2380 2381 // Emit an intrinsic with an explicit CC register result. 2382 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2383 unsigned Opcode) { 2384 // Copy all operands except the intrinsic ID. 2385 unsigned NumOps = Op.getNumOperands(); 2386 SmallVector<SDValue, 6> Ops; 2387 Ops.reserve(NumOps - 1); 2388 for (unsigned I = 1; I < NumOps; ++I) 2389 Ops.push_back(Op.getOperand(I)); 2390 2391 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2392 return Intr.getNode(); 2393 } 2394 2395 // CC is a comparison that will be implemented using an integer or 2396 // floating-point comparison. Return the condition code mask for 2397 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2398 // unsigned comparisons and clear for signed ones. In the floating-point 2399 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2400 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2401 #define CONV(X) \ 2402 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2403 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2404 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2405 2406 switch (CC) { 2407 default: 2408 llvm_unreachable("Invalid integer condition!"); 2409 2410 CONV(EQ); 2411 CONV(NE); 2412 CONV(GT); 2413 CONV(GE); 2414 CONV(LT); 2415 CONV(LE); 2416 2417 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2418 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2419 } 2420 #undef CONV 2421 } 2422 2423 // If C can be converted to a comparison against zero, adjust the operands 2424 // as necessary. 2425 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2426 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2427 return; 2428 2429 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2430 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2431 return; 2432 2433 int64_t Value = ConstOp1->getSExtValue(); 2434 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2435 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2436 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2437 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2438 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2439 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2440 } 2441 } 2442 2443 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2444 // adjust the operands as necessary. 2445 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2446 Comparison &C) { 2447 // For us to make any changes, it must a comparison between a single-use 2448 // load and a constant. 2449 if (!C.Op0.hasOneUse() || 2450 C.Op0.getOpcode() != ISD::LOAD || 2451 C.Op1.getOpcode() != ISD::Constant) 2452 return; 2453 2454 // We must have an 8- or 16-bit load. 2455 auto *Load = cast<LoadSDNode>(C.Op0); 2456 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2457 if ((NumBits != 8 && NumBits != 16) || 2458 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2459 return; 2460 2461 // The load must be an extending one and the constant must be within the 2462 // range of the unextended value. 2463 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2464 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2465 return; 2466 uint64_t Value = ConstOp1->getZExtValue(); 2467 uint64_t Mask = (1 << NumBits) - 1; 2468 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2469 // Make sure that ConstOp1 is in range of C.Op0. 2470 int64_t SignedValue = ConstOp1->getSExtValue(); 2471 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2472 return; 2473 if (C.ICmpType != SystemZICMP::SignedOnly) { 2474 // Unsigned comparison between two sign-extended values is equivalent 2475 // to unsigned comparison between two zero-extended values. 2476 Value &= Mask; 2477 } else if (NumBits == 8) { 2478 // Try to treat the comparison as unsigned, so that we can use CLI. 2479 // Adjust CCMask and Value as necessary. 2480 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2481 // Test whether the high bit of the byte is set. 2482 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2483 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2484 // Test whether the high bit of the byte is clear. 2485 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2486 else 2487 // No instruction exists for this combination. 2488 return; 2489 C.ICmpType = SystemZICMP::UnsignedOnly; 2490 } 2491 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2492 if (Value > Mask) 2493 return; 2494 // If the constant is in range, we can use any comparison. 2495 C.ICmpType = SystemZICMP::Any; 2496 } else 2497 return; 2498 2499 // Make sure that the first operand is an i32 of the right extension type. 2500 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2501 ISD::SEXTLOAD : 2502 ISD::ZEXTLOAD); 2503 if (C.Op0.getValueType() != MVT::i32 || 2504 Load->getExtensionType() != ExtType) { 2505 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2506 Load->getBasePtr(), Load->getPointerInfo(), 2507 Load->getMemoryVT(), Load->getAlign(), 2508 Load->getMemOperand()->getFlags()); 2509 // Update the chain uses. 2510 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2511 } 2512 2513 // Make sure that the second operand is an i32 with the right value. 2514 if (C.Op1.getValueType() != MVT::i32 || 2515 Value != ConstOp1->getZExtValue()) 2516 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2517 } 2518 2519 // Return true if Op is either an unextended load, or a load suitable 2520 // for integer register-memory comparisons of type ICmpType. 2521 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2522 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2523 if (Load) { 2524 // There are no instructions to compare a register with a memory byte. 2525 if (Load->getMemoryVT() == MVT::i8) 2526 return false; 2527 // Otherwise decide on extension type. 2528 switch (Load->getExtensionType()) { 2529 case ISD::NON_EXTLOAD: 2530 return true; 2531 case ISD::SEXTLOAD: 2532 return ICmpType != SystemZICMP::UnsignedOnly; 2533 case ISD::ZEXTLOAD: 2534 return ICmpType != SystemZICMP::SignedOnly; 2535 default: 2536 break; 2537 } 2538 } 2539 return false; 2540 } 2541 2542 // Return true if it is better to swap the operands of C. 2543 static bool shouldSwapCmpOperands(const Comparison &C) { 2544 // Leave i128 and f128 comparisons alone, since they have no memory forms. 2545 if (C.Op0.getValueType() == MVT::i128) 2546 return false; 2547 if (C.Op0.getValueType() == MVT::f128) 2548 return false; 2549 2550 // Always keep a floating-point constant second, since comparisons with 2551 // zero can use LOAD TEST and comparisons with other constants make a 2552 // natural memory operand. 2553 if (isa<ConstantFPSDNode>(C.Op1)) 2554 return false; 2555 2556 // Never swap comparisons with zero since there are many ways to optimize 2557 // those later. 2558 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2559 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2560 return false; 2561 2562 // Also keep natural memory operands second if the loaded value is 2563 // only used here. Several comparisons have memory forms. 2564 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2565 return false; 2566 2567 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2568 // In that case we generally prefer the memory to be second. 2569 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2570 // The only exceptions are when the second operand is a constant and 2571 // we can use things like CHHSI. 2572 if (!ConstOp1) 2573 return true; 2574 // The unsigned memory-immediate instructions can handle 16-bit 2575 // unsigned integers. 2576 if (C.ICmpType != SystemZICMP::SignedOnly && 2577 isUInt<16>(ConstOp1->getZExtValue())) 2578 return false; 2579 // The signed memory-immediate instructions can handle 16-bit 2580 // signed integers. 2581 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2582 isInt<16>(ConstOp1->getSExtValue())) 2583 return false; 2584 return true; 2585 } 2586 2587 // Try to promote the use of CGFR and CLGFR. 2588 unsigned Opcode0 = C.Op0.getOpcode(); 2589 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2590 return true; 2591 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2592 return true; 2593 if (C.ICmpType != SystemZICMP::SignedOnly && 2594 Opcode0 == ISD::AND && 2595 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2596 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2597 return true; 2598 2599 return false; 2600 } 2601 2602 // Check whether C tests for equality between X and Y and whether X - Y 2603 // or Y - X is also computed. In that case it's better to compare the 2604 // result of the subtraction against zero. 2605 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2606 Comparison &C) { 2607 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2608 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2609 for (SDNode *N : C.Op0->uses()) { 2610 if (N->getOpcode() == ISD::SUB && 2611 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2612 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2613 // Disable the nsw and nuw flags: the backend needs to handle 2614 // overflow as well during comparison elimination. 2615 SDNodeFlags Flags = N->getFlags(); 2616 Flags.setNoSignedWrap(false); 2617 Flags.setNoUnsignedWrap(false); 2618 N->setFlags(Flags); 2619 C.Op0 = SDValue(N, 0); 2620 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2621 return; 2622 } 2623 } 2624 } 2625 } 2626 2627 // Check whether C compares a floating-point value with zero and if that 2628 // floating-point value is also negated. In this case we can use the 2629 // negation to set CC, so avoiding separate LOAD AND TEST and 2630 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2631 static void adjustForFNeg(Comparison &C) { 2632 // This optimization is invalid for strict comparisons, since FNEG 2633 // does not raise any exceptions. 2634 if (C.Chain) 2635 return; 2636 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2637 if (C1 && C1->isZero()) { 2638 for (SDNode *N : C.Op0->uses()) { 2639 if (N->getOpcode() == ISD::FNEG) { 2640 C.Op0 = SDValue(N, 0); 2641 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2642 return; 2643 } 2644 } 2645 } 2646 } 2647 2648 // Check whether C compares (shl X, 32) with 0 and whether X is 2649 // also sign-extended. In that case it is better to test the result 2650 // of the sign extension using LTGFR. 2651 // 2652 // This case is important because InstCombine transforms a comparison 2653 // with (sext (trunc X)) into a comparison with (shl X, 32). 2654 static void adjustForLTGFR(Comparison &C) { 2655 // Check for a comparison between (shl X, 32) and 0. 2656 if (C.Op0.getOpcode() == ISD::SHL && 2657 C.Op0.getValueType() == MVT::i64 && 2658 C.Op1.getOpcode() == ISD::Constant && 2659 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2660 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2661 if (C1 && C1->getZExtValue() == 32) { 2662 SDValue ShlOp0 = C.Op0.getOperand(0); 2663 // See whether X has any SIGN_EXTEND_INREG uses. 2664 for (SDNode *N : ShlOp0->uses()) { 2665 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2666 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2667 C.Op0 = SDValue(N, 0); 2668 return; 2669 } 2670 } 2671 } 2672 } 2673 } 2674 2675 // If C compares the truncation of an extending load, try to compare 2676 // the untruncated value instead. This exposes more opportunities to 2677 // reuse CC. 2678 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2679 Comparison &C) { 2680 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2681 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2682 C.Op1.getOpcode() == ISD::Constant && 2683 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 2684 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2685 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2686 if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= 2687 C.Op0.getValueSizeInBits().getFixedValue()) { 2688 unsigned Type = L->getExtensionType(); 2689 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2690 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2691 C.Op0 = C.Op0.getOperand(0); 2692 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2693 } 2694 } 2695 } 2696 } 2697 2698 // Return true if shift operation N has an in-range constant shift value. 2699 // Store it in ShiftVal if so. 2700 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2701 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2702 if (!Shift) 2703 return false; 2704 2705 uint64_t Amount = Shift->getZExtValue(); 2706 if (Amount >= N.getValueSizeInBits()) 2707 return false; 2708 2709 ShiftVal = Amount; 2710 return true; 2711 } 2712 2713 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2714 // instruction and whether the CC value is descriptive enough to handle 2715 // a comparison of type Opcode between the AND result and CmpVal. 2716 // CCMask says which comparison result is being tested and BitSize is 2717 // the number of bits in the operands. If TEST UNDER MASK can be used, 2718 // return the corresponding CC mask, otherwise return 0. 2719 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2720 uint64_t Mask, uint64_t CmpVal, 2721 unsigned ICmpType) { 2722 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2723 2724 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2725 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2726 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2727 return 0; 2728 2729 // Work out the masks for the lowest and highest bits. 2730 uint64_t High = llvm::bit_floor(Mask); 2731 uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask); 2732 2733 // Signed ordered comparisons are effectively unsigned if the sign 2734 // bit is dropped. 2735 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2736 2737 // Check for equality comparisons with 0, or the equivalent. 2738 if (CmpVal == 0) { 2739 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2740 return SystemZ::CCMASK_TM_ALL_0; 2741 if (CCMask == SystemZ::CCMASK_CMP_NE) 2742 return SystemZ::CCMASK_TM_SOME_1; 2743 } 2744 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2745 if (CCMask == SystemZ::CCMASK_CMP_LT) 2746 return SystemZ::CCMASK_TM_ALL_0; 2747 if (CCMask == SystemZ::CCMASK_CMP_GE) 2748 return SystemZ::CCMASK_TM_SOME_1; 2749 } 2750 if (EffectivelyUnsigned && CmpVal < Low) { 2751 if (CCMask == SystemZ::CCMASK_CMP_LE) 2752 return SystemZ::CCMASK_TM_ALL_0; 2753 if (CCMask == SystemZ::CCMASK_CMP_GT) 2754 return SystemZ::CCMASK_TM_SOME_1; 2755 } 2756 2757 // Check for equality comparisons with the mask, or the equivalent. 2758 if (CmpVal == Mask) { 2759 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2760 return SystemZ::CCMASK_TM_ALL_1; 2761 if (CCMask == SystemZ::CCMASK_CMP_NE) 2762 return SystemZ::CCMASK_TM_SOME_0; 2763 } 2764 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2765 if (CCMask == SystemZ::CCMASK_CMP_GT) 2766 return SystemZ::CCMASK_TM_ALL_1; 2767 if (CCMask == SystemZ::CCMASK_CMP_LE) 2768 return SystemZ::CCMASK_TM_SOME_0; 2769 } 2770 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2771 if (CCMask == SystemZ::CCMASK_CMP_GE) 2772 return SystemZ::CCMASK_TM_ALL_1; 2773 if (CCMask == SystemZ::CCMASK_CMP_LT) 2774 return SystemZ::CCMASK_TM_SOME_0; 2775 } 2776 2777 // Check for ordered comparisons with the top bit. 2778 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2779 if (CCMask == SystemZ::CCMASK_CMP_LE) 2780 return SystemZ::CCMASK_TM_MSB_0; 2781 if (CCMask == SystemZ::CCMASK_CMP_GT) 2782 return SystemZ::CCMASK_TM_MSB_1; 2783 } 2784 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2785 if (CCMask == SystemZ::CCMASK_CMP_LT) 2786 return SystemZ::CCMASK_TM_MSB_0; 2787 if (CCMask == SystemZ::CCMASK_CMP_GE) 2788 return SystemZ::CCMASK_TM_MSB_1; 2789 } 2790 2791 // If there are just two bits, we can do equality checks for Low and High 2792 // as well. 2793 if (Mask == Low + High) { 2794 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2795 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2796 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2797 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2798 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2799 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2800 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2801 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2802 } 2803 2804 // Looks like we've exhausted our options. 2805 return 0; 2806 } 2807 2808 // See whether C can be implemented as a TEST UNDER MASK instruction. 2809 // Update the arguments with the TM version if so. 2810 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2811 Comparison &C) { 2812 // Use VECTOR TEST UNDER MASK for i128 operations. 2813 if (C.Op0.getValueType() == MVT::i128) { 2814 // We can use VTM for EQ/NE comparisons of x & y against 0. 2815 if (C.Op0.getOpcode() == ISD::AND && 2816 (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2817 C.CCMask == SystemZ::CCMASK_CMP_NE)) { 2818 auto *Mask = dyn_cast<ConstantSDNode>(C.Op1); 2819 if (Mask && Mask->getAPIntValue() == 0) { 2820 C.Opcode = SystemZISD::VTM; 2821 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1)); 2822 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0)); 2823 C.CCValid = SystemZ::CCMASK_VCMP; 2824 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2825 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2826 else 2827 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2828 } 2829 } 2830 return; 2831 } 2832 2833 // Check that we have a comparison with a constant. 2834 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2835 if (!ConstOp1) 2836 return; 2837 uint64_t CmpVal = ConstOp1->getZExtValue(); 2838 2839 // Check whether the nonconstant input is an AND with a constant mask. 2840 Comparison NewC(C); 2841 uint64_t MaskVal; 2842 ConstantSDNode *Mask = nullptr; 2843 if (C.Op0.getOpcode() == ISD::AND) { 2844 NewC.Op0 = C.Op0.getOperand(0); 2845 NewC.Op1 = C.Op0.getOperand(1); 2846 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2847 if (!Mask) 2848 return; 2849 MaskVal = Mask->getZExtValue(); 2850 } else { 2851 // There is no instruction to compare with a 64-bit immediate 2852 // so use TMHH instead if possible. We need an unsigned ordered 2853 // comparison with an i64 immediate. 2854 if (NewC.Op0.getValueType() != MVT::i64 || 2855 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2856 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2857 NewC.ICmpType == SystemZICMP::SignedOnly) 2858 return; 2859 // Convert LE and GT comparisons into LT and GE. 2860 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2861 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2862 if (CmpVal == uint64_t(-1)) 2863 return; 2864 CmpVal += 1; 2865 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2866 } 2867 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2868 // be masked off without changing the result. 2869 MaskVal = -(CmpVal & -CmpVal); 2870 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2871 } 2872 if (!MaskVal) 2873 return; 2874 2875 // Check whether the combination of mask, comparison value and comparison 2876 // type are suitable. 2877 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2878 unsigned NewCCMask, ShiftVal; 2879 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2880 NewC.Op0.getOpcode() == ISD::SHL && 2881 isSimpleShift(NewC.Op0, ShiftVal) && 2882 (MaskVal >> ShiftVal != 0) && 2883 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2884 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2885 MaskVal >> ShiftVal, 2886 CmpVal >> ShiftVal, 2887 SystemZICMP::Any))) { 2888 NewC.Op0 = NewC.Op0.getOperand(0); 2889 MaskVal >>= ShiftVal; 2890 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2891 NewC.Op0.getOpcode() == ISD::SRL && 2892 isSimpleShift(NewC.Op0, ShiftVal) && 2893 (MaskVal << ShiftVal != 0) && 2894 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2895 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2896 MaskVal << ShiftVal, 2897 CmpVal << ShiftVal, 2898 SystemZICMP::UnsignedOnly))) { 2899 NewC.Op0 = NewC.Op0.getOperand(0); 2900 MaskVal <<= ShiftVal; 2901 } else { 2902 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2903 NewC.ICmpType); 2904 if (!NewCCMask) 2905 return; 2906 } 2907 2908 // Go ahead and make the change. 2909 C.Opcode = SystemZISD::TM; 2910 C.Op0 = NewC.Op0; 2911 if (Mask && Mask->getZExtValue() == MaskVal) 2912 C.Op1 = SDValue(Mask, 0); 2913 else 2914 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2915 C.CCValid = SystemZ::CCMASK_TM; 2916 C.CCMask = NewCCMask; 2917 } 2918 2919 // Implement i128 comparison in vector registers. 2920 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL, 2921 Comparison &C) { 2922 if (C.Opcode != SystemZISD::ICMP) 2923 return; 2924 if (C.Op0.getValueType() != MVT::i128) 2925 return; 2926 2927 // (In-)Equality comparisons can be implemented via VCEQGS. 2928 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2929 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2930 C.Opcode = SystemZISD::VICMPES; 2931 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0); 2932 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1); 2933 C.CCValid = SystemZ::CCMASK_VCMP; 2934 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2935 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2936 else 2937 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2938 return; 2939 } 2940 2941 // Normalize other comparisons to GT. 2942 bool Swap = false, Invert = false; 2943 switch (C.CCMask) { 2944 case SystemZ::CCMASK_CMP_GT: break; 2945 case SystemZ::CCMASK_CMP_LT: Swap = true; break; 2946 case SystemZ::CCMASK_CMP_LE: Invert = true; break; 2947 case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break; 2948 default: llvm_unreachable("Invalid integer condition!"); 2949 } 2950 if (Swap) 2951 std::swap(C.Op0, C.Op1); 2952 2953 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2954 C.Opcode = SystemZISD::UCMP128HI; 2955 else 2956 C.Opcode = SystemZISD::SCMP128HI; 2957 C.CCValid = SystemZ::CCMASK_ANY; 2958 C.CCMask = SystemZ::CCMASK_1; 2959 2960 if (Invert) 2961 C.CCMask ^= C.CCValid; 2962 } 2963 2964 // See whether the comparison argument contains a redundant AND 2965 // and remove it if so. This sometimes happens due to the generic 2966 // BRCOND expansion. 2967 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2968 Comparison &C) { 2969 if (C.Op0.getOpcode() != ISD::AND) 2970 return; 2971 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2972 if (!Mask || Mask->getValueSizeInBits(0) > 64) 2973 return; 2974 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2975 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2976 return; 2977 2978 C.Op0 = C.Op0.getOperand(0); 2979 } 2980 2981 // Return a Comparison that tests the condition-code result of intrinsic 2982 // node Call against constant integer CC using comparison code Cond. 2983 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2984 // and CCValid is the set of possible condition-code results. 2985 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2986 SDValue Call, unsigned CCValid, uint64_t CC, 2987 ISD::CondCode Cond) { 2988 Comparison C(Call, SDValue(), SDValue()); 2989 C.Opcode = Opcode; 2990 C.CCValid = CCValid; 2991 if (Cond == ISD::SETEQ) 2992 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2993 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2994 else if (Cond == ISD::SETNE) 2995 // ...and the inverse of that. 2996 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2997 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2998 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2999 // always true for CC>3. 3000 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 3001 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 3002 // ...and the inverse of that. 3003 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 3004 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 3005 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 3006 // always true for CC>3. 3007 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 3008 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 3009 // ...and the inverse of that. 3010 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 3011 else 3012 llvm_unreachable("Unexpected integer comparison type"); 3013 C.CCMask &= CCValid; 3014 return C; 3015 } 3016 3017 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 3018 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 3019 ISD::CondCode Cond, const SDLoc &DL, 3020 SDValue Chain = SDValue(), 3021 bool IsSignaling = false) { 3022 if (CmpOp1.getOpcode() == ISD::Constant) { 3023 assert(!Chain); 3024 unsigned Opcode, CCValid; 3025 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 3026 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 3027 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 3028 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3029 cast<ConstantSDNode>(CmpOp1)->getZExtValue(), Cond); 3030 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 3031 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 3032 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 3033 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3034 cast<ConstantSDNode>(CmpOp1)->getZExtValue(), Cond); 3035 } 3036 Comparison C(CmpOp0, CmpOp1, Chain); 3037 C.CCMask = CCMaskForCondCode(Cond); 3038 if (C.Op0.getValueType().isFloatingPoint()) { 3039 C.CCValid = SystemZ::CCMASK_FCMP; 3040 if (!C.Chain) 3041 C.Opcode = SystemZISD::FCMP; 3042 else if (!IsSignaling) 3043 C.Opcode = SystemZISD::STRICT_FCMP; 3044 else 3045 C.Opcode = SystemZISD::STRICT_FCMPS; 3046 adjustForFNeg(C); 3047 } else { 3048 assert(!C.Chain); 3049 C.CCValid = SystemZ::CCMASK_ICMP; 3050 C.Opcode = SystemZISD::ICMP; 3051 // Choose the type of comparison. Equality and inequality tests can 3052 // use either signed or unsigned comparisons. The choice also doesn't 3053 // matter if both sign bits are known to be clear. In those cases we 3054 // want to give the main isel code the freedom to choose whichever 3055 // form fits best. 3056 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 3057 C.CCMask == SystemZ::CCMASK_CMP_NE || 3058 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 3059 C.ICmpType = SystemZICMP::Any; 3060 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 3061 C.ICmpType = SystemZICMP::UnsignedOnly; 3062 else 3063 C.ICmpType = SystemZICMP::SignedOnly; 3064 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 3065 adjustForRedundantAnd(DAG, DL, C); 3066 adjustZeroCmp(DAG, DL, C); 3067 adjustSubwordCmp(DAG, DL, C); 3068 adjustForSubtraction(DAG, DL, C); 3069 adjustForLTGFR(C); 3070 adjustICmpTruncate(DAG, DL, C); 3071 } 3072 3073 if (shouldSwapCmpOperands(C)) { 3074 std::swap(C.Op0, C.Op1); 3075 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 3076 } 3077 3078 adjustForTestUnderMask(DAG, DL, C); 3079 adjustICmp128(DAG, DL, C); 3080 return C; 3081 } 3082 3083 // Emit the comparison instruction described by C. 3084 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 3085 if (!C.Op1.getNode()) { 3086 SDNode *Node; 3087 switch (C.Op0.getOpcode()) { 3088 case ISD::INTRINSIC_W_CHAIN: 3089 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 3090 return SDValue(Node, 0); 3091 case ISD::INTRINSIC_WO_CHAIN: 3092 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 3093 return SDValue(Node, Node->getNumValues() - 1); 3094 default: 3095 llvm_unreachable("Invalid comparison operands"); 3096 } 3097 } 3098 if (C.Opcode == SystemZISD::ICMP) 3099 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 3100 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 3101 if (C.Opcode == SystemZISD::TM) { 3102 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 3103 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 3104 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 3105 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 3106 } 3107 if (C.Opcode == SystemZISD::VICMPES) { 3108 SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32); 3109 SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1); 3110 return SDValue(Val.getNode(), 1); 3111 } 3112 if (C.Chain) { 3113 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 3114 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 3115 } 3116 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 3117 } 3118 3119 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 3120 // 64 bits. Extend is the extension type to use. Store the high part 3121 // in Hi and the low part in Lo. 3122 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 3123 SDValue Op0, SDValue Op1, SDValue &Hi, 3124 SDValue &Lo) { 3125 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 3126 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 3127 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 3128 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 3129 DAG.getConstant(32, DL, MVT::i64)); 3130 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 3131 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 3132 } 3133 3134 // Lower a binary operation that produces two VT results, one in each 3135 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 3136 // and Opcode performs the GR128 operation. Store the even register result 3137 // in Even and the odd register result in Odd. 3138 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3139 unsigned Opcode, SDValue Op0, SDValue Op1, 3140 SDValue &Even, SDValue &Odd) { 3141 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 3142 bool Is32Bit = is32Bit(VT); 3143 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 3144 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 3145 } 3146 3147 // Return an i32 value that is 1 if the CC value produced by CCReg is 3148 // in the mask CCMask and 0 otherwise. CC is known to have a value 3149 // in CCValid, so other values can be ignored. 3150 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 3151 unsigned CCValid, unsigned CCMask) { 3152 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 3153 DAG.getConstant(0, DL, MVT::i32), 3154 DAG.getTargetConstant(CCValid, DL, MVT::i32), 3155 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 3156 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 3157 } 3158 3159 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 3160 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 3161 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 3162 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 3163 // floating-point comparisons. 3164 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 3165 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 3166 switch (CC) { 3167 case ISD::SETOEQ: 3168 case ISD::SETEQ: 3169 switch (Mode) { 3170 case CmpMode::Int: return SystemZISD::VICMPE; 3171 case CmpMode::FP: return SystemZISD::VFCMPE; 3172 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 3173 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 3174 } 3175 llvm_unreachable("Bad mode"); 3176 3177 case ISD::SETOGE: 3178 case ISD::SETGE: 3179 switch (Mode) { 3180 case CmpMode::Int: return 0; 3181 case CmpMode::FP: return SystemZISD::VFCMPHE; 3182 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 3183 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 3184 } 3185 llvm_unreachable("Bad mode"); 3186 3187 case ISD::SETOGT: 3188 case ISD::SETGT: 3189 switch (Mode) { 3190 case CmpMode::Int: return SystemZISD::VICMPH; 3191 case CmpMode::FP: return SystemZISD::VFCMPH; 3192 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 3193 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 3194 } 3195 llvm_unreachable("Bad mode"); 3196 3197 case ISD::SETUGT: 3198 switch (Mode) { 3199 case CmpMode::Int: return SystemZISD::VICMPHL; 3200 case CmpMode::FP: return 0; 3201 case CmpMode::StrictFP: return 0; 3202 case CmpMode::SignalingFP: return 0; 3203 } 3204 llvm_unreachable("Bad mode"); 3205 3206 default: 3207 return 0; 3208 } 3209 } 3210 3211 // Return the SystemZISD vector comparison operation for CC or its inverse, 3212 // or 0 if neither can be done directly. Indicate in Invert whether the 3213 // result is for the inverse of CC. Mode is as above. 3214 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 3215 bool &Invert) { 3216 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3217 Invert = false; 3218 return Opcode; 3219 } 3220 3221 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 3222 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3223 Invert = true; 3224 return Opcode; 3225 } 3226 3227 return 0; 3228 } 3229 3230 // Return a v2f64 that contains the extended form of elements Start and Start+1 3231 // of v4f32 value Op. If Chain is nonnull, return the strict form. 3232 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 3233 SDValue Op, SDValue Chain) { 3234 int Mask[] = { Start, -1, Start + 1, -1 }; 3235 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 3236 if (Chain) { 3237 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 3238 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 3239 } 3240 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 3241 } 3242 3243 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 3244 // producing a result of type VT. If Chain is nonnull, return the strict form. 3245 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 3246 const SDLoc &DL, EVT VT, 3247 SDValue CmpOp0, 3248 SDValue CmpOp1, 3249 SDValue Chain) const { 3250 // There is no hardware support for v4f32 (unless we have the vector 3251 // enhancements facility 1), so extend the vector into two v2f64s 3252 // and compare those. 3253 if (CmpOp0.getValueType() == MVT::v4f32 && 3254 !Subtarget.hasVectorEnhancements1()) { 3255 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 3256 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 3257 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 3258 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 3259 if (Chain) { 3260 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 3261 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 3262 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 3263 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3264 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 3265 H1.getValue(1), L1.getValue(1), 3266 HRes.getValue(1), LRes.getValue(1) }; 3267 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3268 SDValue Ops[2] = { Res, NewChain }; 3269 return DAG.getMergeValues(Ops, DL); 3270 } 3271 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 3272 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 3273 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3274 } 3275 if (Chain) { 3276 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3277 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3278 } 3279 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 3280 } 3281 3282 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3283 // an integer mask of type VT. If Chain is nonnull, we have a strict 3284 // floating-point comparison. If in addition IsSignaling is true, we have 3285 // a strict signaling floating-point comparison. 3286 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 3287 const SDLoc &DL, EVT VT, 3288 ISD::CondCode CC, 3289 SDValue CmpOp0, 3290 SDValue CmpOp1, 3291 SDValue Chain, 3292 bool IsSignaling) const { 3293 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3294 assert (!Chain || IsFP); 3295 assert (!IsSignaling || Chain); 3296 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3297 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 3298 bool Invert = false; 3299 SDValue Cmp; 3300 switch (CC) { 3301 // Handle tests for order using (or (ogt y x) (oge x y)). 3302 case ISD::SETUO: 3303 Invert = true; 3304 [[fallthrough]]; 3305 case ISD::SETO: { 3306 assert(IsFP && "Unexpected integer comparison"); 3307 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3308 DL, VT, CmpOp1, CmpOp0, Chain); 3309 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3310 DL, VT, CmpOp0, CmpOp1, Chain); 3311 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3312 if (Chain) 3313 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3314 LT.getValue(1), GE.getValue(1)); 3315 break; 3316 } 3317 3318 // Handle <> tests using (or (ogt y x) (ogt x y)). 3319 case ISD::SETUEQ: 3320 Invert = true; 3321 [[fallthrough]]; 3322 case ISD::SETONE: { 3323 assert(IsFP && "Unexpected integer comparison"); 3324 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3325 DL, VT, CmpOp1, CmpOp0, Chain); 3326 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3327 DL, VT, CmpOp0, CmpOp1, Chain); 3328 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3329 if (Chain) 3330 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3331 LT.getValue(1), GT.getValue(1)); 3332 break; 3333 } 3334 3335 // Otherwise a single comparison is enough. It doesn't really 3336 // matter whether we try the inversion or the swap first, since 3337 // there are no cases where both work. 3338 default: 3339 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3340 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3341 else { 3342 CC = ISD::getSetCCSwappedOperands(CC); 3343 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3344 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3345 else 3346 llvm_unreachable("Unhandled comparison"); 3347 } 3348 if (Chain) 3349 Chain = Cmp.getValue(1); 3350 break; 3351 } 3352 if (Invert) { 3353 SDValue Mask = 3354 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3355 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3356 } 3357 if (Chain && Chain.getNode() != Cmp.getNode()) { 3358 SDValue Ops[2] = { Cmp, Chain }; 3359 Cmp = DAG.getMergeValues(Ops, DL); 3360 } 3361 return Cmp; 3362 } 3363 3364 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3365 SelectionDAG &DAG) const { 3366 SDValue CmpOp0 = Op.getOperand(0); 3367 SDValue CmpOp1 = Op.getOperand(1); 3368 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3369 SDLoc DL(Op); 3370 EVT VT = Op.getValueType(); 3371 if (VT.isVector()) 3372 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3373 3374 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3375 SDValue CCReg = emitCmp(DAG, DL, C); 3376 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3377 } 3378 3379 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3380 SelectionDAG &DAG, 3381 bool IsSignaling) const { 3382 SDValue Chain = Op.getOperand(0); 3383 SDValue CmpOp0 = Op.getOperand(1); 3384 SDValue CmpOp1 = Op.getOperand(2); 3385 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3386 SDLoc DL(Op); 3387 EVT VT = Op.getNode()->getValueType(0); 3388 if (VT.isVector()) { 3389 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3390 Chain, IsSignaling); 3391 return Res.getValue(Op.getResNo()); 3392 } 3393 3394 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3395 SDValue CCReg = emitCmp(DAG, DL, C); 3396 CCReg->setFlags(Op->getFlags()); 3397 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3398 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3399 return DAG.getMergeValues(Ops, DL); 3400 } 3401 3402 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3403 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3404 SDValue CmpOp0 = Op.getOperand(2); 3405 SDValue CmpOp1 = Op.getOperand(3); 3406 SDValue Dest = Op.getOperand(4); 3407 SDLoc DL(Op); 3408 3409 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3410 SDValue CCReg = emitCmp(DAG, DL, C); 3411 return DAG.getNode( 3412 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3413 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3414 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3415 } 3416 3417 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3418 // allowing Pos and Neg to be wider than CmpOp. 3419 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3420 return (Neg.getOpcode() == ISD::SUB && 3421 Neg.getOperand(0).getOpcode() == ISD::Constant && 3422 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3423 Neg.getOperand(1) == Pos && 3424 (Pos == CmpOp || 3425 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3426 Pos.getOperand(0) == CmpOp))); 3427 } 3428 3429 // Return the absolute or negative absolute of Op; IsNegative decides which. 3430 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3431 bool IsNegative) { 3432 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3433 if (IsNegative) 3434 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3435 DAG.getConstant(0, DL, Op.getValueType()), Op); 3436 return Op; 3437 } 3438 3439 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3440 SelectionDAG &DAG) const { 3441 SDValue CmpOp0 = Op.getOperand(0); 3442 SDValue CmpOp1 = Op.getOperand(1); 3443 SDValue TrueOp = Op.getOperand(2); 3444 SDValue FalseOp = Op.getOperand(3); 3445 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3446 SDLoc DL(Op); 3447 3448 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3449 3450 // Check for absolute and negative-absolute selections, including those 3451 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3452 // This check supplements the one in DAGCombiner. 3453 if (C.Opcode == SystemZISD::ICMP && 3454 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3455 C.CCMask != SystemZ::CCMASK_CMP_NE && 3456 C.Op1.getOpcode() == ISD::Constant && 3457 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 3458 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3459 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3460 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3461 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3462 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3463 } 3464 3465 SDValue CCReg = emitCmp(DAG, DL, C); 3466 SDValue Ops[] = {TrueOp, FalseOp, 3467 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3468 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3469 3470 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3471 } 3472 3473 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3474 SelectionDAG &DAG) const { 3475 SDLoc DL(Node); 3476 const GlobalValue *GV = Node->getGlobal(); 3477 int64_t Offset = Node->getOffset(); 3478 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3479 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3480 3481 SDValue Result; 3482 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3483 if (isInt<32>(Offset)) { 3484 // Assign anchors at 1<<12 byte boundaries. 3485 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3486 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3487 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3488 3489 // The offset can be folded into the address if it is aligned to a 3490 // halfword. 3491 Offset -= Anchor; 3492 if (Offset != 0 && (Offset & 1) == 0) { 3493 SDValue Full = 3494 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3495 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3496 Offset = 0; 3497 } 3498 } else { 3499 // Conservatively load a constant offset greater than 32 bits into a 3500 // register below. 3501 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3502 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3503 } 3504 } else if (Subtarget.isTargetELF()) { 3505 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3506 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3507 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3508 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3509 } else if (Subtarget.isTargetzOS()) { 3510 Result = getADAEntry(DAG, GV, DL, PtrVT); 3511 } else 3512 llvm_unreachable("Unexpected Subtarget"); 3513 3514 // If there was a non-zero offset that we didn't fold, create an explicit 3515 // addition for it. 3516 if (Offset != 0) 3517 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3518 DAG.getConstant(Offset, DL, PtrVT)); 3519 3520 return Result; 3521 } 3522 3523 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3524 SelectionDAG &DAG, 3525 unsigned Opcode, 3526 SDValue GOTOffset) const { 3527 SDLoc DL(Node); 3528 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3529 SDValue Chain = DAG.getEntryNode(); 3530 SDValue Glue; 3531 3532 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3533 CallingConv::GHC) 3534 report_fatal_error("In GHC calling convention TLS is not supported"); 3535 3536 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3537 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3538 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3539 Glue = Chain.getValue(1); 3540 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3541 Glue = Chain.getValue(1); 3542 3543 // The first call operand is the chain and the second is the TLS symbol. 3544 SmallVector<SDValue, 8> Ops; 3545 Ops.push_back(Chain); 3546 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3547 Node->getValueType(0), 3548 0, 0)); 3549 3550 // Add argument registers to the end of the list so that they are 3551 // known live into the call. 3552 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3553 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3554 3555 // Add a register mask operand representing the call-preserved registers. 3556 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3557 const uint32_t *Mask = 3558 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3559 assert(Mask && "Missing call preserved mask for calling convention"); 3560 Ops.push_back(DAG.getRegisterMask(Mask)); 3561 3562 // Glue the call to the argument copies. 3563 Ops.push_back(Glue); 3564 3565 // Emit the call. 3566 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3567 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3568 Glue = Chain.getValue(1); 3569 3570 // Copy the return value from %r2. 3571 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3572 } 3573 3574 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3575 SelectionDAG &DAG) const { 3576 SDValue Chain = DAG.getEntryNode(); 3577 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3578 3579 // The high part of the thread pointer is in access register 0. 3580 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3581 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3582 3583 // The low part of the thread pointer is in access register 1. 3584 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3585 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3586 3587 // Merge them into a single 64-bit address. 3588 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3589 DAG.getConstant(32, DL, PtrVT)); 3590 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3591 } 3592 3593 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3594 SelectionDAG &DAG) const { 3595 if (DAG.getTarget().useEmulatedTLS()) 3596 return LowerToTLSEmulatedModel(Node, DAG); 3597 SDLoc DL(Node); 3598 const GlobalValue *GV = Node->getGlobal(); 3599 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3600 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3601 3602 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3603 CallingConv::GHC) 3604 report_fatal_error("In GHC calling convention TLS is not supported"); 3605 3606 SDValue TP = lowerThreadPointer(DL, DAG); 3607 3608 // Get the offset of GA from the thread pointer, based on the TLS model. 3609 SDValue Offset; 3610 switch (model) { 3611 case TLSModel::GeneralDynamic: { 3612 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3613 SystemZConstantPoolValue *CPV = 3614 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3615 3616 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3617 Offset = DAG.getLoad( 3618 PtrVT, DL, DAG.getEntryNode(), Offset, 3619 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3620 3621 // Call __tls_get_offset to retrieve the offset. 3622 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3623 break; 3624 } 3625 3626 case TLSModel::LocalDynamic: { 3627 // Load the GOT offset of the module ID. 3628 SystemZConstantPoolValue *CPV = 3629 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3630 3631 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3632 Offset = DAG.getLoad( 3633 PtrVT, DL, DAG.getEntryNode(), Offset, 3634 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3635 3636 // Call __tls_get_offset to retrieve the module base offset. 3637 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3638 3639 // Note: The SystemZLDCleanupPass will remove redundant computations 3640 // of the module base offset. Count total number of local-dynamic 3641 // accesses to trigger execution of that pass. 3642 SystemZMachineFunctionInfo* MFI = 3643 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3644 MFI->incNumLocalDynamicTLSAccesses(); 3645 3646 // Add the per-symbol offset. 3647 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3648 3649 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3650 DTPOffset = DAG.getLoad( 3651 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3652 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3653 3654 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3655 break; 3656 } 3657 3658 case TLSModel::InitialExec: { 3659 // Load the offset from the GOT. 3660 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3661 SystemZII::MO_INDNTPOFF); 3662 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3663 Offset = 3664 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3665 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3666 break; 3667 } 3668 3669 case TLSModel::LocalExec: { 3670 // Force the offset into the constant pool and load it from there. 3671 SystemZConstantPoolValue *CPV = 3672 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3673 3674 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3675 Offset = DAG.getLoad( 3676 PtrVT, DL, DAG.getEntryNode(), Offset, 3677 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3678 break; 3679 } 3680 } 3681 3682 // Add the base and offset together. 3683 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3684 } 3685 3686 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3687 SelectionDAG &DAG) const { 3688 SDLoc DL(Node); 3689 const BlockAddress *BA = Node->getBlockAddress(); 3690 int64_t Offset = Node->getOffset(); 3691 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3692 3693 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3694 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3695 return Result; 3696 } 3697 3698 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3699 SelectionDAG &DAG) const { 3700 SDLoc DL(JT); 3701 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3702 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3703 3704 // Use LARL to load the address of the table. 3705 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3706 } 3707 3708 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3709 SelectionDAG &DAG) const { 3710 SDLoc DL(CP); 3711 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3712 3713 SDValue Result; 3714 if (CP->isMachineConstantPoolEntry()) 3715 Result = 3716 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3717 else 3718 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3719 CP->getOffset()); 3720 3721 // Use LARL to load the address of the constant pool entry. 3722 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3723 } 3724 3725 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3726 SelectionDAG &DAG) const { 3727 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3728 MachineFunction &MF = DAG.getMachineFunction(); 3729 MachineFrameInfo &MFI = MF.getFrameInfo(); 3730 MFI.setFrameAddressIsTaken(true); 3731 3732 SDLoc DL(Op); 3733 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3734 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3735 3736 // By definition, the frame address is the address of the back chain. (In 3737 // the case of packed stack without backchain, return the address where the 3738 // backchain would have been stored. This will either be an unused space or 3739 // contain a saved register). 3740 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3741 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3742 3743 if (Depth > 0) { 3744 // FIXME The frontend should detect this case. 3745 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3746 report_fatal_error("Unsupported stack frame traversal count"); 3747 3748 SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT); 3749 while (Depth--) { 3750 BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain, 3751 MachinePointerInfo()); 3752 BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset); 3753 } 3754 } 3755 3756 return BackChain; 3757 } 3758 3759 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3760 SelectionDAG &DAG) const { 3761 MachineFunction &MF = DAG.getMachineFunction(); 3762 MachineFrameInfo &MFI = MF.getFrameInfo(); 3763 MFI.setReturnAddressIsTaken(true); 3764 3765 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3766 return SDValue(); 3767 3768 SDLoc DL(Op); 3769 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3770 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3771 3772 if (Depth > 0) { 3773 // FIXME The frontend should detect this case. 3774 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3775 report_fatal_error("Unsupported stack frame traversal count"); 3776 3777 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3778 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3779 int Offset = (TFL->usePackedStack(MF) ? -2 : 14) * 3780 getTargetMachine().getPointerSize(0); 3781 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr, 3782 DAG.getConstant(Offset, DL, PtrVT)); 3783 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, 3784 MachinePointerInfo()); 3785 } 3786 3787 // Return R14D, which has the return address. Mark it an implicit live-in. 3788 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3789 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3790 } 3791 3792 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3793 SelectionDAG &DAG) const { 3794 SDLoc DL(Op); 3795 SDValue In = Op.getOperand(0); 3796 EVT InVT = In.getValueType(); 3797 EVT ResVT = Op.getValueType(); 3798 3799 // Convert loads directly. This is normally done by DAGCombiner, 3800 // but we need this case for bitcasts that are created during lowering 3801 // and which are then lowered themselves. 3802 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3803 if (ISD::isNormalLoad(LoadN)) { 3804 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3805 LoadN->getBasePtr(), LoadN->getMemOperand()); 3806 // Update the chain uses. 3807 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3808 return NewLoad; 3809 } 3810 3811 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3812 SDValue In64; 3813 if (Subtarget.hasHighWord()) { 3814 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3815 MVT::i64); 3816 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3817 MVT::i64, SDValue(U64, 0), In); 3818 } else { 3819 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3820 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3821 DAG.getConstant(32, DL, MVT::i64)); 3822 } 3823 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3824 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3825 DL, MVT::f32, Out64); 3826 } 3827 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3828 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3829 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3830 MVT::f64, SDValue(U64, 0), In); 3831 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3832 if (Subtarget.hasHighWord()) 3833 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3834 MVT::i32, Out64); 3835 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3836 DAG.getConstant(32, DL, MVT::i64)); 3837 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3838 } 3839 llvm_unreachable("Unexpected bitcast combination"); 3840 } 3841 3842 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3843 SelectionDAG &DAG) const { 3844 3845 if (Subtarget.isTargetXPLINK64()) 3846 return lowerVASTART_XPLINK(Op, DAG); 3847 else 3848 return lowerVASTART_ELF(Op, DAG); 3849 } 3850 3851 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3852 SelectionDAG &DAG) const { 3853 MachineFunction &MF = DAG.getMachineFunction(); 3854 SystemZMachineFunctionInfo *FuncInfo = 3855 MF.getInfo<SystemZMachineFunctionInfo>(); 3856 3857 SDLoc DL(Op); 3858 3859 // vastart just stores the address of the VarArgsFrameIndex slot into the 3860 // memory location argument. 3861 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3862 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3863 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3864 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3865 MachinePointerInfo(SV)); 3866 } 3867 3868 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3869 SelectionDAG &DAG) const { 3870 MachineFunction &MF = DAG.getMachineFunction(); 3871 SystemZMachineFunctionInfo *FuncInfo = 3872 MF.getInfo<SystemZMachineFunctionInfo>(); 3873 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3874 3875 SDValue Chain = Op.getOperand(0); 3876 SDValue Addr = Op.getOperand(1); 3877 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3878 SDLoc DL(Op); 3879 3880 // The initial values of each field. 3881 const unsigned NumFields = 4; 3882 SDValue Fields[NumFields] = { 3883 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3884 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3885 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3886 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3887 }; 3888 3889 // Store each field into its respective slot. 3890 SDValue MemOps[NumFields]; 3891 unsigned Offset = 0; 3892 for (unsigned I = 0; I < NumFields; ++I) { 3893 SDValue FieldAddr = Addr; 3894 if (Offset != 0) 3895 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3896 DAG.getIntPtrConstant(Offset, DL)); 3897 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3898 MachinePointerInfo(SV, Offset)); 3899 Offset += 8; 3900 } 3901 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3902 } 3903 3904 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3905 SelectionDAG &DAG) const { 3906 SDValue Chain = Op.getOperand(0); 3907 SDValue DstPtr = Op.getOperand(1); 3908 SDValue SrcPtr = Op.getOperand(2); 3909 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3910 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3911 SDLoc DL(Op); 3912 3913 uint32_t Sz = 3914 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3915 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3916 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3917 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3918 MachinePointerInfo(SrcSV)); 3919 } 3920 3921 SDValue 3922 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3923 SelectionDAG &DAG) const { 3924 if (Subtarget.isTargetXPLINK64()) 3925 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3926 else 3927 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3928 } 3929 3930 SDValue 3931 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3932 SelectionDAG &DAG) const { 3933 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3934 MachineFunction &MF = DAG.getMachineFunction(); 3935 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3936 SDValue Chain = Op.getOperand(0); 3937 SDValue Size = Op.getOperand(1); 3938 SDValue Align = Op.getOperand(2); 3939 SDLoc DL(Op); 3940 3941 // If user has set the no alignment function attribute, ignore 3942 // alloca alignments. 3943 uint64_t AlignVal = 3944 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3945 3946 uint64_t StackAlign = TFI->getStackAlignment(); 3947 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3948 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3949 3950 SDValue NeededSpace = Size; 3951 3952 // Add extra space for alignment if needed. 3953 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3954 if (ExtraAlignSpace) 3955 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3956 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3957 3958 bool IsSigned = false; 3959 bool DoesNotReturn = false; 3960 bool IsReturnValueUsed = false; 3961 EVT VT = Op.getValueType(); 3962 SDValue AllocaCall = 3963 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), 3964 CallingConv::C, IsSigned, DL, DoesNotReturn, 3965 IsReturnValueUsed) 3966 .first; 3967 3968 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3969 // to end of call in order to ensure it isn't broken up from the call 3970 // sequence. 3971 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3972 Register SPReg = Regs.getStackPointerRegister(); 3973 Chain = AllocaCall.getValue(1); 3974 SDValue Glue = AllocaCall.getValue(2); 3975 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3976 Chain = NewSPRegNode.getValue(1); 3977 3978 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3979 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3980 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3981 3982 // Dynamically realign if needed. 3983 if (ExtraAlignSpace) { 3984 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3985 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3986 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3987 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3988 } 3989 3990 SDValue Ops[2] = {Result, Chain}; 3991 return DAG.getMergeValues(Ops, DL); 3992 } 3993 3994 SDValue 3995 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3996 SelectionDAG &DAG) const { 3997 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3998 MachineFunction &MF = DAG.getMachineFunction(); 3999 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 4000 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4001 4002 SDValue Chain = Op.getOperand(0); 4003 SDValue Size = Op.getOperand(1); 4004 SDValue Align = Op.getOperand(2); 4005 SDLoc DL(Op); 4006 4007 // If user has set the no alignment function attribute, ignore 4008 // alloca alignments. 4009 uint64_t AlignVal = 4010 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 4011 4012 uint64_t StackAlign = TFI->getStackAlignment(); 4013 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 4014 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 4015 4016 Register SPReg = getStackPointerRegisterToSaveRestore(); 4017 SDValue NeededSpace = Size; 4018 4019 // Get a reference to the stack pointer. 4020 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 4021 4022 // If we need a backchain, save it now. 4023 SDValue Backchain; 4024 if (StoreBackchain) 4025 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4026 MachinePointerInfo()); 4027 4028 // Add extra space for alignment if needed. 4029 if (ExtraAlignSpace) 4030 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 4031 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4032 4033 // Get the new stack pointer value. 4034 SDValue NewSP; 4035 if (hasInlineStackProbe(MF)) { 4036 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 4037 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 4038 Chain = NewSP.getValue(1); 4039 } 4040 else { 4041 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 4042 // Copy the new stack pointer back. 4043 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 4044 } 4045 4046 // The allocated data lives above the 160 bytes allocated for the standard 4047 // frame, plus any outgoing stack arguments. We don't know how much that 4048 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 4049 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4050 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 4051 4052 // Dynamically realign if needed. 4053 if (RequiredAlign > StackAlign) { 4054 Result = 4055 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 4056 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4057 Result = 4058 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 4059 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 4060 } 4061 4062 if (StoreBackchain) 4063 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4064 MachinePointerInfo()); 4065 4066 SDValue Ops[2] = { Result, Chain }; 4067 return DAG.getMergeValues(Ops, DL); 4068 } 4069 4070 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 4071 SDValue Op, SelectionDAG &DAG) const { 4072 SDLoc DL(Op); 4073 4074 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4075 } 4076 4077 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 4078 SelectionDAG &DAG) const { 4079 EVT VT = Op.getValueType(); 4080 SDLoc DL(Op); 4081 SDValue Ops[2]; 4082 if (is32Bit(VT)) 4083 // Just do a normal 64-bit multiplication and extract the results. 4084 // We define this so that it can be used for constant division. 4085 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 4086 Op.getOperand(1), Ops[1], Ops[0]); 4087 else if (Subtarget.hasMiscellaneousExtensions2()) 4088 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 4089 // the high result in the even register. ISD::SMUL_LOHI is defined to 4090 // return the low half first, so the results are in reverse order. 4091 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 4092 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4093 else { 4094 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 4095 // 4096 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 4097 // 4098 // but using the fact that the upper halves are either all zeros 4099 // or all ones: 4100 // 4101 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 4102 // 4103 // and grouping the right terms together since they are quicker than the 4104 // multiplication: 4105 // 4106 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 4107 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 4108 SDValue LL = Op.getOperand(0); 4109 SDValue RL = Op.getOperand(1); 4110 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 4111 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 4112 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4113 // the high result in the even register. ISD::SMUL_LOHI is defined to 4114 // return the low half first, so the results are in reverse order. 4115 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4116 LL, RL, Ops[1], Ops[0]); 4117 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 4118 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 4119 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 4120 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 4121 } 4122 return DAG.getMergeValues(Ops, DL); 4123 } 4124 4125 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 4126 SelectionDAG &DAG) const { 4127 EVT VT = Op.getValueType(); 4128 SDLoc DL(Op); 4129 SDValue Ops[2]; 4130 if (is32Bit(VT)) 4131 // Just do a normal 64-bit multiplication and extract the results. 4132 // We define this so that it can be used for constant division. 4133 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 4134 Op.getOperand(1), Ops[1], Ops[0]); 4135 else 4136 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4137 // the high result in the even register. ISD::UMUL_LOHI is defined to 4138 // return the low half first, so the results are in reverse order. 4139 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4140 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4141 return DAG.getMergeValues(Ops, DL); 4142 } 4143 4144 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 4145 SelectionDAG &DAG) const { 4146 SDValue Op0 = Op.getOperand(0); 4147 SDValue Op1 = Op.getOperand(1); 4148 EVT VT = Op.getValueType(); 4149 SDLoc DL(Op); 4150 4151 // We use DSGF for 32-bit division. This means the first operand must 4152 // always be 64-bit, and the second operand should be 32-bit whenever 4153 // that is possible, to improve performance. 4154 if (is32Bit(VT)) 4155 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 4156 else if (DAG.ComputeNumSignBits(Op1) > 32) 4157 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 4158 4159 // DSG(F) returns the remainder in the even register and the 4160 // quotient in the odd register. 4161 SDValue Ops[2]; 4162 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 4163 return DAG.getMergeValues(Ops, DL); 4164 } 4165 4166 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 4167 SelectionDAG &DAG) const { 4168 EVT VT = Op.getValueType(); 4169 SDLoc DL(Op); 4170 4171 // DL(G) returns the remainder in the even register and the 4172 // quotient in the odd register. 4173 SDValue Ops[2]; 4174 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 4175 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4176 return DAG.getMergeValues(Ops, DL); 4177 } 4178 4179 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 4180 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 4181 4182 // Get the known-zero masks for each operand. 4183 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 4184 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 4185 DAG.computeKnownBits(Ops[1])}; 4186 4187 // See if the upper 32 bits of one operand and the lower 32 bits of the 4188 // other are known zero. They are the low and high operands respectively. 4189 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 4190 Known[1].Zero.getZExtValue() }; 4191 unsigned High, Low; 4192 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 4193 High = 1, Low = 0; 4194 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 4195 High = 0, Low = 1; 4196 else 4197 return Op; 4198 4199 SDValue LowOp = Ops[Low]; 4200 SDValue HighOp = Ops[High]; 4201 4202 // If the high part is a constant, we're better off using IILH. 4203 if (HighOp.getOpcode() == ISD::Constant) 4204 return Op; 4205 4206 // If the low part is a constant that is outside the range of LHI, 4207 // then we're better off using IILF. 4208 if (LowOp.getOpcode() == ISD::Constant) { 4209 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 4210 if (!isInt<16>(Value)) 4211 return Op; 4212 } 4213 4214 // Check whether the high part is an AND that doesn't change the 4215 // high 32 bits and just masks out low bits. We can skip it if so. 4216 if (HighOp.getOpcode() == ISD::AND && 4217 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 4218 SDValue HighOp0 = HighOp.getOperand(0); 4219 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 4220 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 4221 HighOp = HighOp0; 4222 } 4223 4224 // Take advantage of the fact that all GR32 operations only change the 4225 // low 32 bits by truncating Low to an i32 and inserting it directly 4226 // using a subreg. The interesting cases are those where the truncation 4227 // can be folded. 4228 SDLoc DL(Op); 4229 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 4230 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 4231 MVT::i64, HighOp, Low32); 4232 } 4233 4234 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 4235 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 4236 SelectionDAG &DAG) const { 4237 SDNode *N = Op.getNode(); 4238 SDValue LHS = N->getOperand(0); 4239 SDValue RHS = N->getOperand(1); 4240 SDLoc DL(N); 4241 4242 if (N->getValueType(0) == MVT::i128) { 4243 unsigned BaseOp = 0; 4244 unsigned FlagOp = 0; 4245 switch (Op.getOpcode()) { 4246 default: llvm_unreachable("Unknown instruction!"); 4247 case ISD::UADDO: 4248 BaseOp = ISD::ADD; 4249 FlagOp = SystemZISD::VACC; 4250 break; 4251 case ISD::USUBO: 4252 BaseOp = ISD::SUB; 4253 FlagOp = SystemZISD::VSCBI; 4254 break; 4255 } 4256 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS); 4257 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS); 4258 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4259 DAG.getValueType(MVT::i1)); 4260 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4261 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4262 } 4263 4264 unsigned BaseOp = 0; 4265 unsigned CCValid = 0; 4266 unsigned CCMask = 0; 4267 4268 switch (Op.getOpcode()) { 4269 default: llvm_unreachable("Unknown instruction!"); 4270 case ISD::SADDO: 4271 BaseOp = SystemZISD::SADDO; 4272 CCValid = SystemZ::CCMASK_ARITH; 4273 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4274 break; 4275 case ISD::SSUBO: 4276 BaseOp = SystemZISD::SSUBO; 4277 CCValid = SystemZ::CCMASK_ARITH; 4278 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4279 break; 4280 case ISD::UADDO: 4281 BaseOp = SystemZISD::UADDO; 4282 CCValid = SystemZ::CCMASK_LOGICAL; 4283 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4284 break; 4285 case ISD::USUBO: 4286 BaseOp = SystemZISD::USUBO; 4287 CCValid = SystemZ::CCMASK_LOGICAL; 4288 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4289 break; 4290 } 4291 4292 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 4293 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 4294 4295 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4296 if (N->getValueType(1) == MVT::i1) 4297 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4298 4299 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4300 } 4301 4302 static bool isAddCarryChain(SDValue Carry) { 4303 while (Carry.getOpcode() == ISD::UADDO_CARRY) 4304 Carry = Carry.getOperand(2); 4305 return Carry.getOpcode() == ISD::UADDO; 4306 } 4307 4308 static bool isSubBorrowChain(SDValue Carry) { 4309 while (Carry.getOpcode() == ISD::USUBO_CARRY) 4310 Carry = Carry.getOperand(2); 4311 return Carry.getOpcode() == ISD::USUBO; 4312 } 4313 4314 // Lower UADDO_CARRY/USUBO_CARRY nodes. 4315 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op, 4316 SelectionDAG &DAG) const { 4317 4318 SDNode *N = Op.getNode(); 4319 MVT VT = N->getSimpleValueType(0); 4320 4321 // Let legalize expand this if it isn't a legal type yet. 4322 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 4323 return SDValue(); 4324 4325 SDValue LHS = N->getOperand(0); 4326 SDValue RHS = N->getOperand(1); 4327 SDValue Carry = Op.getOperand(2); 4328 SDLoc DL(N); 4329 4330 if (VT == MVT::i128) { 4331 unsigned BaseOp = 0; 4332 unsigned FlagOp = 0; 4333 switch (Op.getOpcode()) { 4334 default: llvm_unreachable("Unknown instruction!"); 4335 case ISD::UADDO_CARRY: 4336 BaseOp = SystemZISD::VAC; 4337 FlagOp = SystemZISD::VACCC; 4338 break; 4339 case ISD::USUBO_CARRY: 4340 BaseOp = SystemZISD::VSBI; 4341 FlagOp = SystemZISD::VSBCBI; 4342 break; 4343 } 4344 Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128); 4345 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry); 4346 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry); 4347 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4348 DAG.getValueType(MVT::i1)); 4349 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4350 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4351 } 4352 4353 unsigned BaseOp = 0; 4354 unsigned CCValid = 0; 4355 unsigned CCMask = 0; 4356 4357 switch (Op.getOpcode()) { 4358 default: llvm_unreachable("Unknown instruction!"); 4359 case ISD::UADDO_CARRY: 4360 if (!isAddCarryChain(Carry)) 4361 return SDValue(); 4362 4363 BaseOp = SystemZISD::ADDCARRY; 4364 CCValid = SystemZ::CCMASK_LOGICAL; 4365 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4366 break; 4367 case ISD::USUBO_CARRY: 4368 if (!isSubBorrowChain(Carry)) 4369 return SDValue(); 4370 4371 BaseOp = SystemZISD::SUBCARRY; 4372 CCValid = SystemZ::CCMASK_LOGICAL; 4373 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4374 break; 4375 } 4376 4377 // Set the condition code from the carry flag. 4378 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4379 DAG.getConstant(CCValid, DL, MVT::i32), 4380 DAG.getConstant(CCMask, DL, MVT::i32)); 4381 4382 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4383 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4384 4385 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4386 if (N->getValueType(1) == MVT::i1) 4387 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4388 4389 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4390 } 4391 4392 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4393 SelectionDAG &DAG) const { 4394 EVT VT = Op.getValueType(); 4395 SDLoc DL(Op); 4396 Op = Op.getOperand(0); 4397 4398 if (VT.getScalarSizeInBits() == 128) { 4399 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op); 4400 Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op); 4401 SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL, 4402 DAG.getConstant(0, DL, MVT::i64)); 4403 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4404 return Op; 4405 } 4406 4407 // Handle vector types via VPOPCT. 4408 if (VT.isVector()) { 4409 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4410 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4411 switch (VT.getScalarSizeInBits()) { 4412 case 8: 4413 break; 4414 case 16: { 4415 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4416 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4417 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4418 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4419 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4420 break; 4421 } 4422 case 32: { 4423 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4424 DAG.getConstant(0, DL, MVT::i32)); 4425 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4426 break; 4427 } 4428 case 64: { 4429 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4430 DAG.getConstant(0, DL, MVT::i32)); 4431 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4432 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4433 break; 4434 } 4435 default: 4436 llvm_unreachable("Unexpected type"); 4437 } 4438 return Op; 4439 } 4440 4441 // Get the known-zero mask for the operand. 4442 KnownBits Known = DAG.computeKnownBits(Op); 4443 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4444 if (NumSignificantBits == 0) 4445 return DAG.getConstant(0, DL, VT); 4446 4447 // Skip known-zero high parts of the operand. 4448 int64_t OrigBitSize = VT.getSizeInBits(); 4449 int64_t BitSize = llvm::bit_ceil(NumSignificantBits); 4450 BitSize = std::min(BitSize, OrigBitSize); 4451 4452 // The POPCNT instruction counts the number of bits in each byte. 4453 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4454 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4455 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4456 4457 // Add up per-byte counts in a binary tree. All bits of Op at 4458 // position larger than BitSize remain zero throughout. 4459 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4460 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4461 if (BitSize != OrigBitSize) 4462 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4463 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4464 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4465 } 4466 4467 // Extract overall result from high byte. 4468 if (BitSize > 8) 4469 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4470 DAG.getConstant(BitSize - 8, DL, VT)); 4471 4472 return Op; 4473 } 4474 4475 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4476 SelectionDAG &DAG) const { 4477 SDLoc DL(Op); 4478 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4479 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4480 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4481 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4482 4483 // The only fence that needs an instruction is a sequentially-consistent 4484 // cross-thread fence. 4485 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4486 FenceSSID == SyncScope::System) { 4487 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4488 Op.getOperand(0)), 4489 0); 4490 } 4491 4492 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4493 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4494 } 4495 4496 // Op is an atomic load. Lower it into a normal volatile load. 4497 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4498 SelectionDAG &DAG) const { 4499 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4500 if (Node->getMemoryVT() == MVT::i128) { 4501 // Use same code to handle both legal and non-legal i128 types. 4502 SmallVector<SDValue, 2> Results; 4503 LowerOperationWrapper(Node, Results, DAG); 4504 return DAG.getMergeValues(Results, SDLoc(Op)); 4505 } 4506 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4507 Node->getChain(), Node->getBasePtr(), 4508 Node->getMemoryVT(), Node->getMemOperand()); 4509 } 4510 4511 // Op is an atomic store. Lower it into a normal volatile store. 4512 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4513 SelectionDAG &DAG) const { 4514 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4515 if (Node->getMemoryVT() == MVT::i128) { 4516 // Use same code to handle both legal and non-legal i128 types. 4517 SmallVector<SDValue, 1> Results; 4518 LowerOperationWrapper(Node, Results, DAG); 4519 return DAG.getMergeValues(Results, SDLoc(Op)); 4520 } 4521 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4522 Node->getBasePtr(), Node->getMemoryVT(), 4523 Node->getMemOperand()); 4524 // We have to enforce sequential consistency by performing a 4525 // serialization operation after the store. 4526 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4527 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4528 MVT::Other, Chain), 0); 4529 return Chain; 4530 } 4531 4532 // Prepare for a Compare And Swap for a subword operation. This needs to be 4533 // done in memory with 4 bytes at natural alignment. 4534 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL, 4535 SDValue &AlignedAddr, SDValue &BitShift, 4536 SDValue &NegBitShift) { 4537 EVT PtrVT = Addr.getValueType(); 4538 EVT WideVT = MVT::i32; 4539 4540 // Get the address of the containing word. 4541 AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4542 DAG.getConstant(-4, DL, PtrVT)); 4543 4544 // Get the number of bits that the word must be rotated left in order 4545 // to bring the field to the top bits of a GR32. 4546 BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4547 DAG.getConstant(3, DL, PtrVT)); 4548 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4549 4550 // Get the complementing shift amount, for rotating a field in the top 4551 // bits back to its proper position. 4552 NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4553 DAG.getConstant(0, DL, WideVT), BitShift); 4554 4555 } 4556 4557 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4558 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4559 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4560 SelectionDAG &DAG, 4561 unsigned Opcode) const { 4562 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4563 4564 // 32-bit operations need no special handling. 4565 EVT NarrowVT = Node->getMemoryVT(); 4566 EVT WideVT = MVT::i32; 4567 if (NarrowVT == WideVT) 4568 return Op; 4569 4570 int64_t BitSize = NarrowVT.getSizeInBits(); 4571 SDValue ChainIn = Node->getChain(); 4572 SDValue Addr = Node->getBasePtr(); 4573 SDValue Src2 = Node->getVal(); 4574 MachineMemOperand *MMO = Node->getMemOperand(); 4575 SDLoc DL(Node); 4576 4577 // Convert atomic subtracts of constants into additions. 4578 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4579 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4580 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4581 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4582 } 4583 4584 SDValue AlignedAddr, BitShift, NegBitShift; 4585 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4586 4587 // Extend the source operand to 32 bits and prepare it for the inner loop. 4588 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4589 // operations require the source to be shifted in advance. (This shift 4590 // can be folded if the source is constant.) For AND and NAND, the lower 4591 // bits must be set, while for other opcodes they should be left clear. 4592 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4593 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4594 DAG.getConstant(32 - BitSize, DL, WideVT)); 4595 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4596 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4597 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4598 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4599 4600 // Construct the ATOMIC_LOADW_* node. 4601 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4602 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4603 DAG.getConstant(BitSize, DL, WideVT) }; 4604 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4605 NarrowVT, MMO); 4606 4607 // Rotate the result of the final CS so that the field is in the lower 4608 // bits of a GR32, then truncate it. 4609 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4610 DAG.getConstant(BitSize, DL, WideVT)); 4611 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4612 4613 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4614 return DAG.getMergeValues(RetOps, DL); 4615 } 4616 4617 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into 4618 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions. 4619 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4620 SelectionDAG &DAG) const { 4621 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4622 EVT MemVT = Node->getMemoryVT(); 4623 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4624 // A full-width operation: negate and use LAA(G). 4625 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4626 assert(Subtarget.hasInterlockedAccess1() && 4627 "Should have been expanded by AtomicExpand pass."); 4628 SDValue Src2 = Node->getVal(); 4629 SDLoc DL(Src2); 4630 SDValue NegSrc2 = 4631 DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2); 4632 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4633 Node->getChain(), Node->getBasePtr(), NegSrc2, 4634 Node->getMemOperand()); 4635 } 4636 4637 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4638 } 4639 4640 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4641 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4642 SelectionDAG &DAG) const { 4643 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4644 SDValue ChainIn = Node->getOperand(0); 4645 SDValue Addr = Node->getOperand(1); 4646 SDValue CmpVal = Node->getOperand(2); 4647 SDValue SwapVal = Node->getOperand(3); 4648 MachineMemOperand *MMO = Node->getMemOperand(); 4649 SDLoc DL(Node); 4650 4651 if (Node->getMemoryVT() == MVT::i128) { 4652 // Use same code to handle both legal and non-legal i128 types. 4653 SmallVector<SDValue, 3> Results; 4654 LowerOperationWrapper(Node, Results, DAG); 4655 return DAG.getMergeValues(Results, DL); 4656 } 4657 4658 // We have native support for 32-bit and 64-bit compare and swap, but we 4659 // still need to expand extracting the "success" result from the CC. 4660 EVT NarrowVT = Node->getMemoryVT(); 4661 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4662 if (NarrowVT == WideVT) { 4663 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4664 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4665 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4666 DL, Tys, Ops, NarrowVT, MMO); 4667 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4668 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4669 4670 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4671 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4672 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4673 return SDValue(); 4674 } 4675 4676 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4677 // via a fullword ATOMIC_CMP_SWAPW operation. 4678 int64_t BitSize = NarrowVT.getSizeInBits(); 4679 4680 SDValue AlignedAddr, BitShift, NegBitShift; 4681 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4682 4683 // Construct the ATOMIC_CMP_SWAPW node. 4684 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4685 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4686 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4687 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4688 VTList, Ops, NarrowVT, MMO); 4689 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4690 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4691 4692 // emitAtomicCmpSwapW() will zero extend the result (original value). 4693 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4694 DAG.getValueType(NarrowVT)); 4695 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4696 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4697 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4698 return SDValue(); 4699 } 4700 4701 MachineMemOperand::Flags 4702 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4703 // Because of how we convert atomic_load and atomic_store to normal loads and 4704 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4705 // since DAGCombine hasn't been updated to account for atomic, but non 4706 // volatile loads. (See D57601) 4707 if (auto *SI = dyn_cast<StoreInst>(&I)) 4708 if (SI->isAtomic()) 4709 return MachineMemOperand::MOVolatile; 4710 if (auto *LI = dyn_cast<LoadInst>(&I)) 4711 if (LI->isAtomic()) 4712 return MachineMemOperand::MOVolatile; 4713 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4714 if (AI->isAtomic()) 4715 return MachineMemOperand::MOVolatile; 4716 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4717 if (AI->isAtomic()) 4718 return MachineMemOperand::MOVolatile; 4719 return MachineMemOperand::MONone; 4720 } 4721 4722 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4723 SelectionDAG &DAG) const { 4724 MachineFunction &MF = DAG.getMachineFunction(); 4725 auto *Regs = Subtarget.getSpecialRegisters(); 4726 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4727 report_fatal_error("Variable-sized stack allocations are not supported " 4728 "in GHC calling convention"); 4729 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4730 Regs->getStackPointerRegister(), Op.getValueType()); 4731 } 4732 4733 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4734 SelectionDAG &DAG) const { 4735 MachineFunction &MF = DAG.getMachineFunction(); 4736 auto *Regs = Subtarget.getSpecialRegisters(); 4737 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4738 4739 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4740 report_fatal_error("Variable-sized stack allocations are not supported " 4741 "in GHC calling convention"); 4742 4743 SDValue Chain = Op.getOperand(0); 4744 SDValue NewSP = Op.getOperand(1); 4745 SDValue Backchain; 4746 SDLoc DL(Op); 4747 4748 if (StoreBackchain) { 4749 SDValue OldSP = DAG.getCopyFromReg( 4750 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4751 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4752 MachinePointerInfo()); 4753 } 4754 4755 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4756 4757 if (StoreBackchain) 4758 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4759 MachinePointerInfo()); 4760 4761 return Chain; 4762 } 4763 4764 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4765 SelectionDAG &DAG) const { 4766 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4767 if (!IsData) 4768 // Just preserve the chain. 4769 return Op.getOperand(0); 4770 4771 SDLoc DL(Op); 4772 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4773 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4774 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4775 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4776 Op.getOperand(1)}; 4777 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4778 Node->getVTList(), Ops, 4779 Node->getMemoryVT(), Node->getMemOperand()); 4780 } 4781 4782 // Convert condition code in CCReg to an i32 value. 4783 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4784 SDLoc DL(CCReg); 4785 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4786 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4787 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4788 } 4789 4790 SDValue 4791 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4792 SelectionDAG &DAG) const { 4793 unsigned Opcode, CCValid; 4794 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4795 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4796 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4797 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4798 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4799 return SDValue(); 4800 } 4801 4802 return SDValue(); 4803 } 4804 4805 SDValue 4806 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4807 SelectionDAG &DAG) const { 4808 unsigned Opcode, CCValid; 4809 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4810 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4811 if (Op->getNumValues() == 1) 4812 return getCCResult(DAG, SDValue(Node, 0)); 4813 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4814 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4815 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4816 } 4817 4818 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4819 switch (Id) { 4820 case Intrinsic::thread_pointer: 4821 return lowerThreadPointer(SDLoc(Op), DAG); 4822 4823 case Intrinsic::s390_vpdi: 4824 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4825 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4826 4827 case Intrinsic::s390_vperm: 4828 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4829 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4830 4831 case Intrinsic::s390_vuphb: 4832 case Intrinsic::s390_vuphh: 4833 case Intrinsic::s390_vuphf: 4834 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4835 Op.getOperand(1)); 4836 4837 case Intrinsic::s390_vuplhb: 4838 case Intrinsic::s390_vuplhh: 4839 case Intrinsic::s390_vuplhf: 4840 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4841 Op.getOperand(1)); 4842 4843 case Intrinsic::s390_vuplb: 4844 case Intrinsic::s390_vuplhw: 4845 case Intrinsic::s390_vuplf: 4846 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4847 Op.getOperand(1)); 4848 4849 case Intrinsic::s390_vupllb: 4850 case Intrinsic::s390_vupllh: 4851 case Intrinsic::s390_vupllf: 4852 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4853 Op.getOperand(1)); 4854 4855 case Intrinsic::s390_vsumb: 4856 case Intrinsic::s390_vsumh: 4857 case Intrinsic::s390_vsumgh: 4858 case Intrinsic::s390_vsumgf: 4859 case Intrinsic::s390_vsumqf: 4860 case Intrinsic::s390_vsumqg: 4861 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4862 Op.getOperand(1), Op.getOperand(2)); 4863 4864 case Intrinsic::s390_vaq: 4865 return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), 4866 Op.getOperand(1), Op.getOperand(2)); 4867 case Intrinsic::s390_vaccb: 4868 case Intrinsic::s390_vacch: 4869 case Intrinsic::s390_vaccf: 4870 case Intrinsic::s390_vaccg: 4871 case Intrinsic::s390_vaccq: 4872 return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(), 4873 Op.getOperand(1), Op.getOperand(2)); 4874 case Intrinsic::s390_vacq: 4875 return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(), 4876 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4877 case Intrinsic::s390_vacccq: 4878 return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(), 4879 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4880 4881 case Intrinsic::s390_vsq: 4882 return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), 4883 Op.getOperand(1), Op.getOperand(2)); 4884 case Intrinsic::s390_vscbib: 4885 case Intrinsic::s390_vscbih: 4886 case Intrinsic::s390_vscbif: 4887 case Intrinsic::s390_vscbig: 4888 case Intrinsic::s390_vscbiq: 4889 return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(), 4890 Op.getOperand(1), Op.getOperand(2)); 4891 case Intrinsic::s390_vsbiq: 4892 return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(), 4893 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4894 case Intrinsic::s390_vsbcbiq: 4895 return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(), 4896 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4897 } 4898 4899 return SDValue(); 4900 } 4901 4902 namespace { 4903 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4904 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4905 // Operand is the constant third operand, otherwise it is the number of 4906 // bytes in each element of the result. 4907 struct Permute { 4908 unsigned Opcode; 4909 unsigned Operand; 4910 unsigned char Bytes[SystemZ::VectorBytes]; 4911 }; 4912 } 4913 4914 static const Permute PermuteForms[] = { 4915 // VMRHG 4916 { SystemZISD::MERGE_HIGH, 8, 4917 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4918 // VMRHF 4919 { SystemZISD::MERGE_HIGH, 4, 4920 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4921 // VMRHH 4922 { SystemZISD::MERGE_HIGH, 2, 4923 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4924 // VMRHB 4925 { SystemZISD::MERGE_HIGH, 1, 4926 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4927 // VMRLG 4928 { SystemZISD::MERGE_LOW, 8, 4929 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4930 // VMRLF 4931 { SystemZISD::MERGE_LOW, 4, 4932 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4933 // VMRLH 4934 { SystemZISD::MERGE_LOW, 2, 4935 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4936 // VMRLB 4937 { SystemZISD::MERGE_LOW, 1, 4938 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4939 // VPKG 4940 { SystemZISD::PACK, 4, 4941 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4942 // VPKF 4943 { SystemZISD::PACK, 2, 4944 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4945 // VPKH 4946 { SystemZISD::PACK, 1, 4947 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4948 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4949 { SystemZISD::PERMUTE_DWORDS, 4, 4950 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4951 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4952 { SystemZISD::PERMUTE_DWORDS, 1, 4953 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4954 }; 4955 4956 // Called after matching a vector shuffle against a particular pattern. 4957 // Both the original shuffle and the pattern have two vector operands. 4958 // OpNos[0] is the operand of the original shuffle that should be used for 4959 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4960 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4961 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4962 // for operands 0 and 1 of the pattern. 4963 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4964 if (OpNos[0] < 0) { 4965 if (OpNos[1] < 0) 4966 return false; 4967 OpNo0 = OpNo1 = OpNos[1]; 4968 } else if (OpNos[1] < 0) { 4969 OpNo0 = OpNo1 = OpNos[0]; 4970 } else { 4971 OpNo0 = OpNos[0]; 4972 OpNo1 = OpNos[1]; 4973 } 4974 return true; 4975 } 4976 4977 // Bytes is a VPERM-like permute vector, except that -1 is used for 4978 // undefined bytes. Return true if the VPERM can be implemented using P. 4979 // When returning true set OpNo0 to the VPERM operand that should be 4980 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4981 // 4982 // For example, if swapping the VPERM operands allows P to match, OpNo0 4983 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4984 // operand, but rewriting it to use two duplicated operands allows it to 4985 // match P, then OpNo0 and OpNo1 will be the same. 4986 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4987 unsigned &OpNo0, unsigned &OpNo1) { 4988 int OpNos[] = { -1, -1 }; 4989 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4990 int Elt = Bytes[I]; 4991 if (Elt >= 0) { 4992 // Make sure that the two permute vectors use the same suboperand 4993 // byte number. Only the operand numbers (the high bits) are 4994 // allowed to differ. 4995 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4996 return false; 4997 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4998 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4999 // Make sure that the operand mappings are consistent with previous 5000 // elements. 5001 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5002 return false; 5003 OpNos[ModelOpNo] = RealOpNo; 5004 } 5005 } 5006 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5007 } 5008 5009 // As above, but search for a matching permute. 5010 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 5011 unsigned &OpNo0, unsigned &OpNo1) { 5012 for (auto &P : PermuteForms) 5013 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 5014 return &P; 5015 return nullptr; 5016 } 5017 5018 // Bytes is a VPERM-like permute vector, except that -1 is used for 5019 // undefined bytes. This permute is an operand of an outer permute. 5020 // See whether redistributing the -1 bytes gives a shuffle that can be 5021 // implemented using P. If so, set Transform to a VPERM-like permute vector 5022 // that, when applied to the result of P, gives the original permute in Bytes. 5023 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5024 const Permute &P, 5025 SmallVectorImpl<int> &Transform) { 5026 unsigned To = 0; 5027 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 5028 int Elt = Bytes[From]; 5029 if (Elt < 0) 5030 // Byte number From of the result is undefined. 5031 Transform[From] = -1; 5032 else { 5033 while (P.Bytes[To] != Elt) { 5034 To += 1; 5035 if (To == SystemZ::VectorBytes) 5036 return false; 5037 } 5038 Transform[From] = To; 5039 } 5040 } 5041 return true; 5042 } 5043 5044 // As above, but search for a matching permute. 5045 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5046 SmallVectorImpl<int> &Transform) { 5047 for (auto &P : PermuteForms) 5048 if (matchDoublePermute(Bytes, P, Transform)) 5049 return &P; 5050 return nullptr; 5051 } 5052 5053 // Convert the mask of the given shuffle op into a byte-level mask, 5054 // as if it had type vNi8. 5055 static bool getVPermMask(SDValue ShuffleOp, 5056 SmallVectorImpl<int> &Bytes) { 5057 EVT VT = ShuffleOp.getValueType(); 5058 unsigned NumElements = VT.getVectorNumElements(); 5059 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5060 5061 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 5062 Bytes.resize(NumElements * BytesPerElement, -1); 5063 for (unsigned I = 0; I < NumElements; ++I) { 5064 int Index = VSN->getMaskElt(I); 5065 if (Index >= 0) 5066 for (unsigned J = 0; J < BytesPerElement; ++J) 5067 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5068 } 5069 return true; 5070 } 5071 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 5072 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 5073 unsigned Index = ShuffleOp.getConstantOperandVal(1); 5074 Bytes.resize(NumElements * BytesPerElement, -1); 5075 for (unsigned I = 0; I < NumElements; ++I) 5076 for (unsigned J = 0; J < BytesPerElement; ++J) 5077 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5078 return true; 5079 } 5080 return false; 5081 } 5082 5083 // Bytes is a VPERM-like permute vector, except that -1 is used for 5084 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 5085 // the result come from a contiguous sequence of bytes from one input. 5086 // Set Base to the selector for the first byte if so. 5087 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 5088 unsigned BytesPerElement, int &Base) { 5089 Base = -1; 5090 for (unsigned I = 0; I < BytesPerElement; ++I) { 5091 if (Bytes[Start + I] >= 0) { 5092 unsigned Elem = Bytes[Start + I]; 5093 if (Base < 0) { 5094 Base = Elem - I; 5095 // Make sure the bytes would come from one input operand. 5096 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 5097 return false; 5098 } else if (unsigned(Base) != Elem - I) 5099 return false; 5100 } 5101 } 5102 return true; 5103 } 5104 5105 // Bytes is a VPERM-like permute vector, except that -1 is used for 5106 // undefined bytes. Return true if it can be performed using VSLDB. 5107 // When returning true, set StartIndex to the shift amount and OpNo0 5108 // and OpNo1 to the VPERM operands that should be used as the first 5109 // and second shift operand respectively. 5110 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 5111 unsigned &StartIndex, unsigned &OpNo0, 5112 unsigned &OpNo1) { 5113 int OpNos[] = { -1, -1 }; 5114 int Shift = -1; 5115 for (unsigned I = 0; I < 16; ++I) { 5116 int Index = Bytes[I]; 5117 if (Index >= 0) { 5118 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 5119 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 5120 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 5121 if (Shift < 0) 5122 Shift = ExpectedShift; 5123 else if (Shift != ExpectedShift) 5124 return false; 5125 // Make sure that the operand mappings are consistent with previous 5126 // elements. 5127 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5128 return false; 5129 OpNos[ModelOpNo] = RealOpNo; 5130 } 5131 } 5132 StartIndex = Shift; 5133 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5134 } 5135 5136 // Create a node that performs P on operands Op0 and Op1, casting the 5137 // operands to the appropriate type. The type of the result is determined by P. 5138 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5139 const Permute &P, SDValue Op0, SDValue Op1) { 5140 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 5141 // elements of a PACK are twice as wide as the outputs. 5142 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 5143 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 5144 P.Operand); 5145 // Cast both operands to the appropriate type. 5146 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 5147 SystemZ::VectorBytes / InBytes); 5148 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 5149 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 5150 SDValue Op; 5151 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 5152 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 5153 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 5154 } else if (P.Opcode == SystemZISD::PACK) { 5155 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 5156 SystemZ::VectorBytes / P.Operand); 5157 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 5158 } else { 5159 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 5160 } 5161 return Op; 5162 } 5163 5164 static bool isZeroVector(SDValue N) { 5165 if (N->getOpcode() == ISD::BITCAST) 5166 N = N->getOperand(0); 5167 if (N->getOpcode() == ISD::SPLAT_VECTOR) 5168 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 5169 return Op->getZExtValue() == 0; 5170 return ISD::isBuildVectorAllZeros(N.getNode()); 5171 } 5172 5173 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 5174 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 5175 for (unsigned I = 0; I < Num ; I++) 5176 if (isZeroVector(Ops[I])) 5177 return I; 5178 return UINT32_MAX; 5179 } 5180 5181 // Bytes is a VPERM-like permute vector, except that -1 is used for 5182 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 5183 // VSLDB or VPERM. 5184 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5185 SDValue *Ops, 5186 const SmallVectorImpl<int> &Bytes) { 5187 for (unsigned I = 0; I < 2; ++I) 5188 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 5189 5190 // First see whether VSLDB can be used. 5191 unsigned StartIndex, OpNo0, OpNo1; 5192 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 5193 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 5194 Ops[OpNo1], 5195 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 5196 5197 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 5198 // eliminate a zero vector by reusing any zero index in the permute vector. 5199 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 5200 if (ZeroVecIdx != UINT32_MAX) { 5201 bool MaskFirst = true; 5202 int ZeroIdx = -1; 5203 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5204 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5205 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5206 if (OpNo == ZeroVecIdx && I == 0) { 5207 // If the first byte is zero, use mask as first operand. 5208 ZeroIdx = 0; 5209 break; 5210 } 5211 if (OpNo != ZeroVecIdx && Byte == 0) { 5212 // If mask contains a zero, use it by placing that vector first. 5213 ZeroIdx = I + SystemZ::VectorBytes; 5214 MaskFirst = false; 5215 break; 5216 } 5217 } 5218 if (ZeroIdx != -1) { 5219 SDValue IndexNodes[SystemZ::VectorBytes]; 5220 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5221 if (Bytes[I] >= 0) { 5222 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5223 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5224 if (OpNo == ZeroVecIdx) 5225 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 5226 else { 5227 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 5228 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 5229 } 5230 } else 5231 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5232 } 5233 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5234 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 5235 if (MaskFirst) 5236 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 5237 Mask); 5238 else 5239 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 5240 Mask); 5241 } 5242 } 5243 5244 SDValue IndexNodes[SystemZ::VectorBytes]; 5245 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5246 if (Bytes[I] >= 0) 5247 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 5248 else 5249 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5250 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5251 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 5252 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 5253 } 5254 5255 namespace { 5256 // Describes a general N-operand vector shuffle. 5257 struct GeneralShuffle { 5258 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 5259 void addUndef(); 5260 bool add(SDValue, unsigned); 5261 SDValue getNode(SelectionDAG &, const SDLoc &); 5262 void tryPrepareForUnpack(); 5263 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 5264 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 5265 5266 // The operands of the shuffle. 5267 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 5268 5269 // Index I is -1 if byte I of the result is undefined. Otherwise the 5270 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 5271 // Bytes[I] / SystemZ::VectorBytes. 5272 SmallVector<int, SystemZ::VectorBytes> Bytes; 5273 5274 // The type of the shuffle result. 5275 EVT VT; 5276 5277 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 5278 unsigned UnpackFromEltSize; 5279 }; 5280 } 5281 5282 // Add an extra undefined element to the shuffle. 5283 void GeneralShuffle::addUndef() { 5284 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5285 for (unsigned I = 0; I < BytesPerElement; ++I) 5286 Bytes.push_back(-1); 5287 } 5288 5289 // Add an extra element to the shuffle, taking it from element Elem of Op. 5290 // A null Op indicates a vector input whose value will be calculated later; 5291 // there is at most one such input per shuffle and it always has the same 5292 // type as the result. Aborts and returns false if the source vector elements 5293 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 5294 // LLVM they become implicitly extended, but this is rare and not optimized. 5295 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 5296 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5297 5298 // The source vector can have wider elements than the result, 5299 // either through an explicit TRUNCATE or because of type legalization. 5300 // We want the least significant part. 5301 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 5302 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 5303 5304 // Return false if the source elements are smaller than their destination 5305 // elements. 5306 if (FromBytesPerElement < BytesPerElement) 5307 return false; 5308 5309 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 5310 (FromBytesPerElement - BytesPerElement)); 5311 5312 // Look through things like shuffles and bitcasts. 5313 while (Op.getNode()) { 5314 if (Op.getOpcode() == ISD::BITCAST) 5315 Op = Op.getOperand(0); 5316 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 5317 // See whether the bytes we need come from a contiguous part of one 5318 // operand. 5319 SmallVector<int, SystemZ::VectorBytes> OpBytes; 5320 if (!getVPermMask(Op, OpBytes)) 5321 break; 5322 int NewByte; 5323 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 5324 break; 5325 if (NewByte < 0) { 5326 addUndef(); 5327 return true; 5328 } 5329 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 5330 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 5331 } else if (Op.isUndef()) { 5332 addUndef(); 5333 return true; 5334 } else 5335 break; 5336 } 5337 5338 // Make sure that the source of the extraction is in Ops. 5339 unsigned OpNo = 0; 5340 for (; OpNo < Ops.size(); ++OpNo) 5341 if (Ops[OpNo] == Op) 5342 break; 5343 if (OpNo == Ops.size()) 5344 Ops.push_back(Op); 5345 5346 // Add the element to Bytes. 5347 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 5348 for (unsigned I = 0; I < BytesPerElement; ++I) 5349 Bytes.push_back(Base + I); 5350 5351 return true; 5352 } 5353 5354 // Return SDNodes for the completed shuffle. 5355 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 5356 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 5357 5358 if (Ops.size() == 0) 5359 return DAG.getUNDEF(VT); 5360 5361 // Use a single unpack if possible as the last operation. 5362 tryPrepareForUnpack(); 5363 5364 // Make sure that there are at least two shuffle operands. 5365 if (Ops.size() == 1) 5366 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 5367 5368 // Create a tree of shuffles, deferring root node until after the loop. 5369 // Try to redistribute the undefined elements of non-root nodes so that 5370 // the non-root shuffles match something like a pack or merge, then adjust 5371 // the parent node's permute vector to compensate for the new order. 5372 // Among other things, this copes with vectors like <2 x i16> that were 5373 // padded with undefined elements during type legalization. 5374 // 5375 // In the best case this redistribution will lead to the whole tree 5376 // using packs and merges. It should rarely be a loss in other cases. 5377 unsigned Stride = 1; 5378 for (; Stride * 2 < Ops.size(); Stride *= 2) { 5379 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 5380 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 5381 5382 // Create a mask for just these two operands. 5383 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 5384 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5385 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 5386 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 5387 if (OpNo == I) 5388 NewBytes[J] = Byte; 5389 else if (OpNo == I + Stride) 5390 NewBytes[J] = SystemZ::VectorBytes + Byte; 5391 else 5392 NewBytes[J] = -1; 5393 } 5394 // See if it would be better to reorganize NewMask to avoid using VPERM. 5395 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 5396 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 5397 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 5398 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 5399 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5400 if (NewBytes[J] >= 0) { 5401 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 5402 "Invalid double permute"); 5403 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 5404 } else 5405 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 5406 } 5407 } else { 5408 // Just use NewBytes on the operands. 5409 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 5410 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 5411 if (NewBytes[J] >= 0) 5412 Bytes[J] = I * SystemZ::VectorBytes + J; 5413 } 5414 } 5415 } 5416 5417 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5418 if (Stride > 1) { 5419 Ops[1] = Ops[Stride]; 5420 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5421 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5422 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5423 } 5424 5425 // Look for an instruction that can do the permute without resorting 5426 // to VPERM. 5427 unsigned OpNo0, OpNo1; 5428 SDValue Op; 5429 if (unpackWasPrepared() && Ops[1].isUndef()) 5430 Op = Ops[0]; 5431 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5432 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5433 else 5434 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5435 5436 Op = insertUnpackIfPrepared(DAG, DL, Op); 5437 5438 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5439 } 5440 5441 #ifndef NDEBUG 5442 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5443 dbgs() << Msg.c_str() << " { "; 5444 for (unsigned i = 0; i < Bytes.size(); i++) 5445 dbgs() << Bytes[i] << " "; 5446 dbgs() << "}\n"; 5447 } 5448 #endif 5449 5450 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5451 // after all else by removing the zero vector and the effect of the unpack on 5452 // Bytes. 5453 void GeneralShuffle::tryPrepareForUnpack() { 5454 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5455 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5456 return; 5457 5458 // Only do this if removing the zero vector reduces the depth, otherwise 5459 // the critical path will increase with the final unpack. 5460 if (Ops.size() > 2 && 5461 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5462 return; 5463 5464 // Find an unpack that would allow removing the zero vector from Ops. 5465 UnpackFromEltSize = 1; 5466 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5467 bool MatchUnpack = true; 5468 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5469 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5470 unsigned ToEltSize = UnpackFromEltSize * 2; 5471 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5472 if (!IsZextByte) 5473 SrcBytes.push_back(Bytes[Elt]); 5474 if (Bytes[Elt] != -1) { 5475 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5476 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5477 MatchUnpack = false; 5478 break; 5479 } 5480 } 5481 } 5482 if (MatchUnpack) { 5483 if (Ops.size() == 2) { 5484 // Don't use unpack if a single source operand needs rearrangement. 5485 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5486 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5487 UnpackFromEltSize = UINT_MAX; 5488 return; 5489 } 5490 } 5491 break; 5492 } 5493 } 5494 if (UnpackFromEltSize > 4) 5495 return; 5496 5497 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5498 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5499 << ".\n"; 5500 dumpBytes(Bytes, "Original Bytes vector:");); 5501 5502 // Apply the unpack in reverse to the Bytes array. 5503 unsigned B = 0; 5504 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5505 Elt += UnpackFromEltSize; 5506 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5507 Bytes[B] = Bytes[Elt]; 5508 } 5509 while (B < SystemZ::VectorBytes) 5510 Bytes[B++] = -1; 5511 5512 // Remove the zero vector from Ops 5513 Ops.erase(&Ops[ZeroVecOpNo]); 5514 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5515 if (Bytes[I] >= 0) { 5516 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5517 if (OpNo > ZeroVecOpNo) 5518 Bytes[I] -= SystemZ::VectorBytes; 5519 } 5520 5521 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5522 dbgs() << "\n";); 5523 } 5524 5525 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5526 const SDLoc &DL, 5527 SDValue Op) { 5528 if (!unpackWasPrepared()) 5529 return Op; 5530 unsigned InBits = UnpackFromEltSize * 8; 5531 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5532 SystemZ::VectorBits / InBits); 5533 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5534 unsigned OutBits = InBits * 2; 5535 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5536 SystemZ::VectorBits / OutBits); 5537 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5538 } 5539 5540 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5541 static bool isScalarToVector(SDValue Op) { 5542 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5543 if (!Op.getOperand(I).isUndef()) 5544 return false; 5545 return true; 5546 } 5547 5548 // Return a vector of type VT that contains Value in the first element. 5549 // The other elements don't matter. 5550 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5551 SDValue Value) { 5552 // If we have a constant, replicate it to all elements and let the 5553 // BUILD_VECTOR lowering take care of it. 5554 if (Value.getOpcode() == ISD::Constant || 5555 Value.getOpcode() == ISD::ConstantFP) { 5556 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5557 return DAG.getBuildVector(VT, DL, Ops); 5558 } 5559 if (Value.isUndef()) 5560 return DAG.getUNDEF(VT); 5561 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5562 } 5563 5564 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5565 // element 1. Used for cases in which replication is cheap. 5566 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5567 SDValue Op0, SDValue Op1) { 5568 if (Op0.isUndef()) { 5569 if (Op1.isUndef()) 5570 return DAG.getUNDEF(VT); 5571 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5572 } 5573 if (Op1.isUndef()) 5574 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5575 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5576 buildScalarToVector(DAG, DL, VT, Op0), 5577 buildScalarToVector(DAG, DL, VT, Op1)); 5578 } 5579 5580 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5581 // vector for them. 5582 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5583 SDValue Op1) { 5584 if (Op0.isUndef() && Op1.isUndef()) 5585 return DAG.getUNDEF(MVT::v2i64); 5586 // If one of the two inputs is undefined then replicate the other one, 5587 // in order to avoid using another register unnecessarily. 5588 if (Op0.isUndef()) 5589 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5590 else if (Op1.isUndef()) 5591 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5592 else { 5593 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5594 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5595 } 5596 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5597 } 5598 5599 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5600 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5601 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5602 // would benefit from this representation and return it if so. 5603 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5604 BuildVectorSDNode *BVN) { 5605 EVT VT = BVN->getValueType(0); 5606 unsigned NumElements = VT.getVectorNumElements(); 5607 5608 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5609 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5610 // need a BUILD_VECTOR, add an additional placeholder operand for that 5611 // BUILD_VECTOR and store its operands in ResidueOps. 5612 GeneralShuffle GS(VT); 5613 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5614 bool FoundOne = false; 5615 for (unsigned I = 0; I < NumElements; ++I) { 5616 SDValue Op = BVN->getOperand(I); 5617 if (Op.getOpcode() == ISD::TRUNCATE) 5618 Op = Op.getOperand(0); 5619 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5620 Op.getOperand(1).getOpcode() == ISD::Constant) { 5621 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5622 if (!GS.add(Op.getOperand(0), Elem)) 5623 return SDValue(); 5624 FoundOne = true; 5625 } else if (Op.isUndef()) { 5626 GS.addUndef(); 5627 } else { 5628 if (!GS.add(SDValue(), ResidueOps.size())) 5629 return SDValue(); 5630 ResidueOps.push_back(BVN->getOperand(I)); 5631 } 5632 } 5633 5634 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5635 if (!FoundOne) 5636 return SDValue(); 5637 5638 // Create the BUILD_VECTOR for the remaining elements, if any. 5639 if (!ResidueOps.empty()) { 5640 while (ResidueOps.size() < NumElements) 5641 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5642 for (auto &Op : GS.Ops) { 5643 if (!Op.getNode()) { 5644 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5645 break; 5646 } 5647 } 5648 } 5649 return GS.getNode(DAG, SDLoc(BVN)); 5650 } 5651 5652 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5653 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5654 return true; 5655 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5656 return true; 5657 return false; 5658 } 5659 5660 // Combine GPR scalar values Elems into a vector of type VT. 5661 SDValue 5662 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5663 SmallVectorImpl<SDValue> &Elems) const { 5664 // See whether there is a single replicated value. 5665 SDValue Single; 5666 unsigned int NumElements = Elems.size(); 5667 unsigned int Count = 0; 5668 for (auto Elem : Elems) { 5669 if (!Elem.isUndef()) { 5670 if (!Single.getNode()) 5671 Single = Elem; 5672 else if (Elem != Single) { 5673 Single = SDValue(); 5674 break; 5675 } 5676 Count += 1; 5677 } 5678 } 5679 // There are three cases here: 5680 // 5681 // - if the only defined element is a loaded one, the best sequence 5682 // is a replicating load. 5683 // 5684 // - otherwise, if the only defined element is an i64 value, we will 5685 // end up with the same VLVGP sequence regardless of whether we short-cut 5686 // for replication or fall through to the later code. 5687 // 5688 // - otherwise, if the only defined element is an i32 or smaller value, 5689 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5690 // This is only a win if the single defined element is used more than once. 5691 // In other cases we're better off using a single VLVGx. 5692 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5693 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5694 5695 // If all elements are loads, use VLREP/VLEs (below). 5696 bool AllLoads = true; 5697 for (auto Elem : Elems) 5698 if (!isVectorElementLoad(Elem)) { 5699 AllLoads = false; 5700 break; 5701 } 5702 5703 // The best way of building a v2i64 from two i64s is to use VLVGP. 5704 if (VT == MVT::v2i64 && !AllLoads) 5705 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5706 5707 // Use a 64-bit merge high to combine two doubles. 5708 if (VT == MVT::v2f64 && !AllLoads) 5709 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5710 5711 // Build v4f32 values directly from the FPRs: 5712 // 5713 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5714 // V V VMRHF 5715 // <ABxx> <CDxx> 5716 // V VMRHG 5717 // <ABCD> 5718 if (VT == MVT::v4f32 && !AllLoads) { 5719 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5720 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5721 // Avoid unnecessary undefs by reusing the other operand. 5722 if (Op01.isUndef()) 5723 Op01 = Op23; 5724 else if (Op23.isUndef()) 5725 Op23 = Op01; 5726 // Merging identical replications is a no-op. 5727 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5728 return Op01; 5729 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5730 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5731 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5732 DL, MVT::v2i64, Op01, Op23); 5733 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5734 } 5735 5736 // Collect the constant terms. 5737 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5738 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5739 5740 unsigned NumConstants = 0; 5741 for (unsigned I = 0; I < NumElements; ++I) { 5742 SDValue Elem = Elems[I]; 5743 if (Elem.getOpcode() == ISD::Constant || 5744 Elem.getOpcode() == ISD::ConstantFP) { 5745 NumConstants += 1; 5746 Constants[I] = Elem; 5747 Done[I] = true; 5748 } 5749 } 5750 // If there was at least one constant, fill in the other elements of 5751 // Constants with undefs to get a full vector constant and use that 5752 // as the starting point. 5753 SDValue Result; 5754 SDValue ReplicatedVal; 5755 if (NumConstants > 0) { 5756 for (unsigned I = 0; I < NumElements; ++I) 5757 if (!Constants[I].getNode()) 5758 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5759 Result = DAG.getBuildVector(VT, DL, Constants); 5760 } else { 5761 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5762 // avoid a false dependency on any previous contents of the vector 5763 // register. 5764 5765 // Use a VLREP if at least one element is a load. Make sure to replicate 5766 // the load with the most elements having its value. 5767 std::map<const SDNode*, unsigned> UseCounts; 5768 SDNode *LoadMaxUses = nullptr; 5769 for (unsigned I = 0; I < NumElements; ++I) 5770 if (isVectorElementLoad(Elems[I])) { 5771 SDNode *Ld = Elems[I].getNode(); 5772 UseCounts[Ld]++; 5773 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5774 LoadMaxUses = Ld; 5775 } 5776 if (LoadMaxUses != nullptr) { 5777 ReplicatedVal = SDValue(LoadMaxUses, 0); 5778 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5779 } else { 5780 // Try to use VLVGP. 5781 unsigned I1 = NumElements / 2 - 1; 5782 unsigned I2 = NumElements - 1; 5783 bool Def1 = !Elems[I1].isUndef(); 5784 bool Def2 = !Elems[I2].isUndef(); 5785 if (Def1 || Def2) { 5786 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5787 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5788 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5789 joinDwords(DAG, DL, Elem1, Elem2)); 5790 Done[I1] = true; 5791 Done[I2] = true; 5792 } else 5793 Result = DAG.getUNDEF(VT); 5794 } 5795 } 5796 5797 // Use VLVGx to insert the other elements. 5798 for (unsigned I = 0; I < NumElements; ++I) 5799 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5800 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5801 DAG.getConstant(I, DL, MVT::i32)); 5802 return Result; 5803 } 5804 5805 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5806 SelectionDAG &DAG) const { 5807 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5808 SDLoc DL(Op); 5809 EVT VT = Op.getValueType(); 5810 5811 if (BVN->isConstant()) { 5812 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5813 return Op; 5814 5815 // Fall back to loading it from memory. 5816 return SDValue(); 5817 } 5818 5819 // See if we should use shuffles to construct the vector from other vectors. 5820 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5821 return Res; 5822 5823 // Detect SCALAR_TO_VECTOR conversions. 5824 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5825 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5826 5827 // Otherwise use buildVector to build the vector up from GPRs. 5828 unsigned NumElements = Op.getNumOperands(); 5829 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5830 for (unsigned I = 0; I < NumElements; ++I) 5831 Ops[I] = Op.getOperand(I); 5832 return buildVector(DAG, DL, VT, Ops); 5833 } 5834 5835 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5836 SelectionDAG &DAG) const { 5837 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5838 SDLoc DL(Op); 5839 EVT VT = Op.getValueType(); 5840 unsigned NumElements = VT.getVectorNumElements(); 5841 5842 if (VSN->isSplat()) { 5843 SDValue Op0 = Op.getOperand(0); 5844 unsigned Index = VSN->getSplatIndex(); 5845 assert(Index < VT.getVectorNumElements() && 5846 "Splat index should be defined and in first operand"); 5847 // See whether the value we're splatting is directly available as a scalar. 5848 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5849 Op0.getOpcode() == ISD::BUILD_VECTOR) 5850 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5851 // Otherwise keep it as a vector-to-vector operation. 5852 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5853 DAG.getTargetConstant(Index, DL, MVT::i32)); 5854 } 5855 5856 GeneralShuffle GS(VT); 5857 for (unsigned I = 0; I < NumElements; ++I) { 5858 int Elt = VSN->getMaskElt(I); 5859 if (Elt < 0) 5860 GS.addUndef(); 5861 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5862 unsigned(Elt) % NumElements)) 5863 return SDValue(); 5864 } 5865 return GS.getNode(DAG, SDLoc(VSN)); 5866 } 5867 5868 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5869 SelectionDAG &DAG) const { 5870 SDLoc DL(Op); 5871 // Just insert the scalar into element 0 of an undefined vector. 5872 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5873 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5874 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5875 } 5876 5877 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5878 SelectionDAG &DAG) const { 5879 // Handle insertions of floating-point values. 5880 SDLoc DL(Op); 5881 SDValue Op0 = Op.getOperand(0); 5882 SDValue Op1 = Op.getOperand(1); 5883 SDValue Op2 = Op.getOperand(2); 5884 EVT VT = Op.getValueType(); 5885 5886 // Insertions into constant indices of a v2f64 can be done using VPDI. 5887 // However, if the inserted value is a bitcast or a constant then it's 5888 // better to use GPRs, as below. 5889 if (VT == MVT::v2f64 && 5890 Op1.getOpcode() != ISD::BITCAST && 5891 Op1.getOpcode() != ISD::ConstantFP && 5892 Op2.getOpcode() == ISD::Constant) { 5893 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5894 unsigned Mask = VT.getVectorNumElements() - 1; 5895 if (Index <= Mask) 5896 return Op; 5897 } 5898 5899 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5900 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5901 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5902 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5903 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5904 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5905 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5906 } 5907 5908 SDValue 5909 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5910 SelectionDAG &DAG) const { 5911 // Handle extractions of floating-point values. 5912 SDLoc DL(Op); 5913 SDValue Op0 = Op.getOperand(0); 5914 SDValue Op1 = Op.getOperand(1); 5915 EVT VT = Op.getValueType(); 5916 EVT VecVT = Op0.getValueType(); 5917 5918 // Extractions of constant indices can be done directly. 5919 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5920 uint64_t Index = CIndexN->getZExtValue(); 5921 unsigned Mask = VecVT.getVectorNumElements() - 1; 5922 if (Index <= Mask) 5923 return Op; 5924 } 5925 5926 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5927 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5928 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5929 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5930 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5931 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5932 } 5933 5934 SDValue SystemZTargetLowering:: 5935 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5936 SDValue PackedOp = Op.getOperand(0); 5937 EVT OutVT = Op.getValueType(); 5938 EVT InVT = PackedOp.getValueType(); 5939 unsigned ToBits = OutVT.getScalarSizeInBits(); 5940 unsigned FromBits = InVT.getScalarSizeInBits(); 5941 do { 5942 FromBits *= 2; 5943 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5944 SystemZ::VectorBits / FromBits); 5945 PackedOp = 5946 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5947 } while (FromBits != ToBits); 5948 return PackedOp; 5949 } 5950 5951 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5952 SDValue SystemZTargetLowering:: 5953 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5954 SDValue PackedOp = Op.getOperand(0); 5955 SDLoc DL(Op); 5956 EVT OutVT = Op.getValueType(); 5957 EVT InVT = PackedOp.getValueType(); 5958 unsigned InNumElts = InVT.getVectorNumElements(); 5959 unsigned OutNumElts = OutVT.getVectorNumElements(); 5960 unsigned NumInPerOut = InNumElts / OutNumElts; 5961 5962 SDValue ZeroVec = 5963 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5964 5965 SmallVector<int, 16> Mask(InNumElts); 5966 unsigned ZeroVecElt = InNumElts; 5967 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5968 unsigned MaskElt = PackedElt * NumInPerOut; 5969 unsigned End = MaskElt + NumInPerOut - 1; 5970 for (; MaskElt < End; MaskElt++) 5971 Mask[MaskElt] = ZeroVecElt++; 5972 Mask[MaskElt] = PackedElt; 5973 } 5974 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5975 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5976 } 5977 5978 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5979 unsigned ByScalar) const { 5980 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5981 SDValue Op0 = Op.getOperand(0); 5982 SDValue Op1 = Op.getOperand(1); 5983 SDLoc DL(Op); 5984 EVT VT = Op.getValueType(); 5985 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5986 5987 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5988 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5989 APInt SplatBits, SplatUndef; 5990 unsigned SplatBitSize; 5991 bool HasAnyUndefs; 5992 // Check for constant splats. Use ElemBitSize as the minimum element 5993 // width and reject splats that need wider elements. 5994 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5995 ElemBitSize, true) && 5996 SplatBitSize == ElemBitSize) { 5997 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5998 DL, MVT::i32); 5999 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6000 } 6001 // Check for variable splats. 6002 BitVector UndefElements; 6003 SDValue Splat = BVN->getSplatValue(&UndefElements); 6004 if (Splat) { 6005 // Since i32 is the smallest legal type, we either need a no-op 6006 // or a truncation. 6007 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 6008 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6009 } 6010 } 6011 6012 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 6013 // and the shift amount is directly available in a GPR. 6014 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 6015 if (VSN->isSplat()) { 6016 SDValue VSNOp0 = VSN->getOperand(0); 6017 unsigned Index = VSN->getSplatIndex(); 6018 assert(Index < VT.getVectorNumElements() && 6019 "Splat index should be defined and in first operand"); 6020 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 6021 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 6022 // Since i32 is the smallest legal type, we either need a no-op 6023 // or a truncation. 6024 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 6025 VSNOp0.getOperand(Index)); 6026 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6027 } 6028 } 6029 } 6030 6031 // Otherwise just treat the current form as legal. 6032 return Op; 6033 } 6034 6035 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 6036 SelectionDAG &DAG) const { 6037 SDLoc DL(Op); 6038 MVT ResultVT = Op.getSimpleValueType(); 6039 SDValue Arg = Op.getOperand(0); 6040 auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); 6041 unsigned Check = CNode->getZExtValue(); 6042 6043 unsigned TDCMask = 0; 6044 if (Check & fcSNan) 6045 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 6046 if (Check & fcQNan) 6047 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 6048 if (Check & fcPosInf) 6049 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 6050 if (Check & fcNegInf) 6051 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 6052 if (Check & fcPosNormal) 6053 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 6054 if (Check & fcNegNormal) 6055 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 6056 if (Check & fcPosSubnormal) 6057 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 6058 if (Check & fcNegSubnormal) 6059 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 6060 if (Check & fcPosZero) 6061 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 6062 if (Check & fcNegZero) 6063 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 6064 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 6065 6066 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 6067 return getCCResult(DAG, Intr); 6068 } 6069 6070 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 6071 SelectionDAG &DAG) const { 6072 switch (Op.getOpcode()) { 6073 case ISD::FRAMEADDR: 6074 return lowerFRAMEADDR(Op, DAG); 6075 case ISD::RETURNADDR: 6076 return lowerRETURNADDR(Op, DAG); 6077 case ISD::BR_CC: 6078 return lowerBR_CC(Op, DAG); 6079 case ISD::SELECT_CC: 6080 return lowerSELECT_CC(Op, DAG); 6081 case ISD::SETCC: 6082 return lowerSETCC(Op, DAG); 6083 case ISD::STRICT_FSETCC: 6084 return lowerSTRICT_FSETCC(Op, DAG, false); 6085 case ISD::STRICT_FSETCCS: 6086 return lowerSTRICT_FSETCC(Op, DAG, true); 6087 case ISD::GlobalAddress: 6088 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 6089 case ISD::GlobalTLSAddress: 6090 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 6091 case ISD::BlockAddress: 6092 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 6093 case ISD::JumpTable: 6094 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 6095 case ISD::ConstantPool: 6096 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 6097 case ISD::BITCAST: 6098 return lowerBITCAST(Op, DAG); 6099 case ISD::VASTART: 6100 return lowerVASTART(Op, DAG); 6101 case ISD::VACOPY: 6102 return lowerVACOPY(Op, DAG); 6103 case ISD::DYNAMIC_STACKALLOC: 6104 return lowerDYNAMIC_STACKALLOC(Op, DAG); 6105 case ISD::GET_DYNAMIC_AREA_OFFSET: 6106 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 6107 case ISD::SMUL_LOHI: 6108 return lowerSMUL_LOHI(Op, DAG); 6109 case ISD::UMUL_LOHI: 6110 return lowerUMUL_LOHI(Op, DAG); 6111 case ISD::SDIVREM: 6112 return lowerSDIVREM(Op, DAG); 6113 case ISD::UDIVREM: 6114 return lowerUDIVREM(Op, DAG); 6115 case ISD::SADDO: 6116 case ISD::SSUBO: 6117 case ISD::UADDO: 6118 case ISD::USUBO: 6119 return lowerXALUO(Op, DAG); 6120 case ISD::UADDO_CARRY: 6121 case ISD::USUBO_CARRY: 6122 return lowerUADDSUBO_CARRY(Op, DAG); 6123 case ISD::OR: 6124 return lowerOR(Op, DAG); 6125 case ISD::CTPOP: 6126 return lowerCTPOP(Op, DAG); 6127 case ISD::ATOMIC_FENCE: 6128 return lowerATOMIC_FENCE(Op, DAG); 6129 case ISD::ATOMIC_SWAP: 6130 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 6131 case ISD::ATOMIC_STORE: 6132 return lowerATOMIC_STORE(Op, DAG); 6133 case ISD::ATOMIC_LOAD: 6134 return lowerATOMIC_LOAD(Op, DAG); 6135 case ISD::ATOMIC_LOAD_ADD: 6136 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 6137 case ISD::ATOMIC_LOAD_SUB: 6138 return lowerATOMIC_LOAD_SUB(Op, DAG); 6139 case ISD::ATOMIC_LOAD_AND: 6140 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 6141 case ISD::ATOMIC_LOAD_OR: 6142 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 6143 case ISD::ATOMIC_LOAD_XOR: 6144 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 6145 case ISD::ATOMIC_LOAD_NAND: 6146 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 6147 case ISD::ATOMIC_LOAD_MIN: 6148 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 6149 case ISD::ATOMIC_LOAD_MAX: 6150 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 6151 case ISD::ATOMIC_LOAD_UMIN: 6152 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 6153 case ISD::ATOMIC_LOAD_UMAX: 6154 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 6155 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 6156 return lowerATOMIC_CMP_SWAP(Op, DAG); 6157 case ISD::STACKSAVE: 6158 return lowerSTACKSAVE(Op, DAG); 6159 case ISD::STACKRESTORE: 6160 return lowerSTACKRESTORE(Op, DAG); 6161 case ISD::PREFETCH: 6162 return lowerPREFETCH(Op, DAG); 6163 case ISD::INTRINSIC_W_CHAIN: 6164 return lowerINTRINSIC_W_CHAIN(Op, DAG); 6165 case ISD::INTRINSIC_WO_CHAIN: 6166 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 6167 case ISD::BUILD_VECTOR: 6168 return lowerBUILD_VECTOR(Op, DAG); 6169 case ISD::VECTOR_SHUFFLE: 6170 return lowerVECTOR_SHUFFLE(Op, DAG); 6171 case ISD::SCALAR_TO_VECTOR: 6172 return lowerSCALAR_TO_VECTOR(Op, DAG); 6173 case ISD::INSERT_VECTOR_ELT: 6174 return lowerINSERT_VECTOR_ELT(Op, DAG); 6175 case ISD::EXTRACT_VECTOR_ELT: 6176 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 6177 case ISD::SIGN_EXTEND_VECTOR_INREG: 6178 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 6179 case ISD::ZERO_EXTEND_VECTOR_INREG: 6180 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 6181 case ISD::SHL: 6182 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 6183 case ISD::SRL: 6184 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 6185 case ISD::SRA: 6186 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 6187 case ISD::ROTL: 6188 return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR); 6189 case ISD::IS_FPCLASS: 6190 return lowerIS_FPCLASS(Op, DAG); 6191 case ISD::GET_ROUNDING: 6192 return lowerGET_ROUNDING(Op, DAG); 6193 default: 6194 llvm_unreachable("Unexpected node to lower"); 6195 } 6196 } 6197 6198 // Lower operations with invalid operand or result types (currently used 6199 // only for 128-bit integer types). 6200 void 6201 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 6202 SmallVectorImpl<SDValue> &Results, 6203 SelectionDAG &DAG) const { 6204 switch (N->getOpcode()) { 6205 case ISD::ATOMIC_LOAD: { 6206 SDLoc DL(N); 6207 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 6208 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 6209 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6210 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 6211 DL, Tys, Ops, MVT::i128, MMO); 6212 Results.push_back(lowerGR128ToI128(DAG, Res)); 6213 Results.push_back(Res.getValue(1)); 6214 break; 6215 } 6216 case ISD::ATOMIC_STORE: { 6217 SDLoc DL(N); 6218 SDVTList Tys = DAG.getVTList(MVT::Other); 6219 SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)), 6220 N->getOperand(2)}; 6221 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6222 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 6223 DL, Tys, Ops, MVT::i128, MMO); 6224 // We have to enforce sequential consistency by performing a 6225 // serialization operation after the store. 6226 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 6227 AtomicOrdering::SequentiallyConsistent) 6228 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 6229 MVT::Other, Res), 0); 6230 Results.push_back(Res); 6231 break; 6232 } 6233 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 6234 SDLoc DL(N); 6235 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 6236 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 6237 lowerI128ToGR128(DAG, N->getOperand(2)), 6238 lowerI128ToGR128(DAG, N->getOperand(3)) }; 6239 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6240 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 6241 DL, Tys, Ops, MVT::i128, MMO); 6242 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 6243 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 6244 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 6245 Results.push_back(lowerGR128ToI128(DAG, Res)); 6246 Results.push_back(Success); 6247 Results.push_back(Res.getValue(2)); 6248 break; 6249 } 6250 case ISD::BITCAST: { 6251 SDValue Src = N->getOperand(0); 6252 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 6253 !useSoftFloat()) { 6254 SDLoc DL(N); 6255 SDValue Lo, Hi; 6256 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 6257 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 6258 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6259 DAG.getConstant(1, DL, MVT::i32)); 6260 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6261 DAG.getConstant(0, DL, MVT::i32)); 6262 } else { 6263 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 6264 "Unrecognized register class for f128."); 6265 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 6266 DL, MVT::f64, Src); 6267 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 6268 DL, MVT::f64, Src); 6269 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 6270 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 6271 } 6272 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 6273 } 6274 break; 6275 } 6276 default: 6277 llvm_unreachable("Unexpected node to lower"); 6278 } 6279 } 6280 6281 void 6282 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 6283 SmallVectorImpl<SDValue> &Results, 6284 SelectionDAG &DAG) const { 6285 return LowerOperationWrapper(N, Results, DAG); 6286 } 6287 6288 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 6289 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 6290 switch ((SystemZISD::NodeType)Opcode) { 6291 case SystemZISD::FIRST_NUMBER: break; 6292 OPCODE(RET_GLUE); 6293 OPCODE(CALL); 6294 OPCODE(SIBCALL); 6295 OPCODE(TLS_GDCALL); 6296 OPCODE(TLS_LDCALL); 6297 OPCODE(PCREL_WRAPPER); 6298 OPCODE(PCREL_OFFSET); 6299 OPCODE(ICMP); 6300 OPCODE(FCMP); 6301 OPCODE(STRICT_FCMP); 6302 OPCODE(STRICT_FCMPS); 6303 OPCODE(TM); 6304 OPCODE(BR_CCMASK); 6305 OPCODE(SELECT_CCMASK); 6306 OPCODE(ADJDYNALLOC); 6307 OPCODE(PROBED_ALLOCA); 6308 OPCODE(POPCNT); 6309 OPCODE(SMUL_LOHI); 6310 OPCODE(UMUL_LOHI); 6311 OPCODE(SDIVREM); 6312 OPCODE(UDIVREM); 6313 OPCODE(SADDO); 6314 OPCODE(SSUBO); 6315 OPCODE(UADDO); 6316 OPCODE(USUBO); 6317 OPCODE(ADDCARRY); 6318 OPCODE(SUBCARRY); 6319 OPCODE(GET_CCMASK); 6320 OPCODE(MVC); 6321 OPCODE(NC); 6322 OPCODE(OC); 6323 OPCODE(XC); 6324 OPCODE(CLC); 6325 OPCODE(MEMSET_MVC); 6326 OPCODE(STPCPY); 6327 OPCODE(STRCMP); 6328 OPCODE(SEARCH_STRING); 6329 OPCODE(IPM); 6330 OPCODE(TBEGIN); 6331 OPCODE(TBEGIN_NOFLOAT); 6332 OPCODE(TEND); 6333 OPCODE(BYTE_MASK); 6334 OPCODE(ROTATE_MASK); 6335 OPCODE(REPLICATE); 6336 OPCODE(JOIN_DWORDS); 6337 OPCODE(SPLAT); 6338 OPCODE(MERGE_HIGH); 6339 OPCODE(MERGE_LOW); 6340 OPCODE(SHL_DOUBLE); 6341 OPCODE(PERMUTE_DWORDS); 6342 OPCODE(PERMUTE); 6343 OPCODE(PACK); 6344 OPCODE(PACKS_CC); 6345 OPCODE(PACKLS_CC); 6346 OPCODE(UNPACK_HIGH); 6347 OPCODE(UNPACKL_HIGH); 6348 OPCODE(UNPACK_LOW); 6349 OPCODE(UNPACKL_LOW); 6350 OPCODE(VSHL_BY_SCALAR); 6351 OPCODE(VSRL_BY_SCALAR); 6352 OPCODE(VSRA_BY_SCALAR); 6353 OPCODE(VROTL_BY_SCALAR); 6354 OPCODE(VSUM); 6355 OPCODE(VACC); 6356 OPCODE(VSCBI); 6357 OPCODE(VAC); 6358 OPCODE(VSBI); 6359 OPCODE(VACCC); 6360 OPCODE(VSBCBI); 6361 OPCODE(VICMPE); 6362 OPCODE(VICMPH); 6363 OPCODE(VICMPHL); 6364 OPCODE(VICMPES); 6365 OPCODE(VICMPHS); 6366 OPCODE(VICMPHLS); 6367 OPCODE(VFCMPE); 6368 OPCODE(STRICT_VFCMPE); 6369 OPCODE(STRICT_VFCMPES); 6370 OPCODE(VFCMPH); 6371 OPCODE(STRICT_VFCMPH); 6372 OPCODE(STRICT_VFCMPHS); 6373 OPCODE(VFCMPHE); 6374 OPCODE(STRICT_VFCMPHE); 6375 OPCODE(STRICT_VFCMPHES); 6376 OPCODE(VFCMPES); 6377 OPCODE(VFCMPHS); 6378 OPCODE(VFCMPHES); 6379 OPCODE(VFTCI); 6380 OPCODE(VEXTEND); 6381 OPCODE(STRICT_VEXTEND); 6382 OPCODE(VROUND); 6383 OPCODE(STRICT_VROUND); 6384 OPCODE(VTM); 6385 OPCODE(SCMP128HI); 6386 OPCODE(UCMP128HI); 6387 OPCODE(VFAE_CC); 6388 OPCODE(VFAEZ_CC); 6389 OPCODE(VFEE_CC); 6390 OPCODE(VFEEZ_CC); 6391 OPCODE(VFENE_CC); 6392 OPCODE(VFENEZ_CC); 6393 OPCODE(VISTR_CC); 6394 OPCODE(VSTRC_CC); 6395 OPCODE(VSTRCZ_CC); 6396 OPCODE(VSTRS_CC); 6397 OPCODE(VSTRSZ_CC); 6398 OPCODE(TDC); 6399 OPCODE(ATOMIC_SWAPW); 6400 OPCODE(ATOMIC_LOADW_ADD); 6401 OPCODE(ATOMIC_LOADW_SUB); 6402 OPCODE(ATOMIC_LOADW_AND); 6403 OPCODE(ATOMIC_LOADW_OR); 6404 OPCODE(ATOMIC_LOADW_XOR); 6405 OPCODE(ATOMIC_LOADW_NAND); 6406 OPCODE(ATOMIC_LOADW_MIN); 6407 OPCODE(ATOMIC_LOADW_MAX); 6408 OPCODE(ATOMIC_LOADW_UMIN); 6409 OPCODE(ATOMIC_LOADW_UMAX); 6410 OPCODE(ATOMIC_CMP_SWAPW); 6411 OPCODE(ATOMIC_CMP_SWAP); 6412 OPCODE(ATOMIC_LOAD_128); 6413 OPCODE(ATOMIC_STORE_128); 6414 OPCODE(ATOMIC_CMP_SWAP_128); 6415 OPCODE(LRV); 6416 OPCODE(STRV); 6417 OPCODE(VLER); 6418 OPCODE(VSTER); 6419 OPCODE(PREFETCH); 6420 OPCODE(ADA_ENTRY); 6421 } 6422 return nullptr; 6423 #undef OPCODE 6424 } 6425 6426 // Return true if VT is a vector whose elements are a whole number of bytes 6427 // in width. Also check for presence of vector support. 6428 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 6429 if (!Subtarget.hasVector()) 6430 return false; 6431 6432 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 6433 } 6434 6435 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 6436 // producing a result of type ResVT. Op is a possibly bitcast version 6437 // of the input vector and Index is the index (based on type VecVT) that 6438 // should be extracted. Return the new extraction if a simplification 6439 // was possible or if Force is true. 6440 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 6441 EVT VecVT, SDValue Op, 6442 unsigned Index, 6443 DAGCombinerInfo &DCI, 6444 bool Force) const { 6445 SelectionDAG &DAG = DCI.DAG; 6446 6447 // The number of bytes being extracted. 6448 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6449 6450 for (;;) { 6451 unsigned Opcode = Op.getOpcode(); 6452 if (Opcode == ISD::BITCAST) 6453 // Look through bitcasts. 6454 Op = Op.getOperand(0); 6455 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 6456 canTreatAsByteVector(Op.getValueType())) { 6457 // Get a VPERM-like permute mask and see whether the bytes covered 6458 // by the extracted element are a contiguous sequence from one 6459 // source operand. 6460 SmallVector<int, SystemZ::VectorBytes> Bytes; 6461 if (!getVPermMask(Op, Bytes)) 6462 break; 6463 int First; 6464 if (!getShuffleInput(Bytes, Index * BytesPerElement, 6465 BytesPerElement, First)) 6466 break; 6467 if (First < 0) 6468 return DAG.getUNDEF(ResVT); 6469 // Make sure the contiguous sequence starts at a multiple of the 6470 // original element size. 6471 unsigned Byte = unsigned(First) % Bytes.size(); 6472 if (Byte % BytesPerElement != 0) 6473 break; 6474 // We can get the extracted value directly from an input. 6475 Index = Byte / BytesPerElement; 6476 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6477 Force = true; 6478 } else if (Opcode == ISD::BUILD_VECTOR && 6479 canTreatAsByteVector(Op.getValueType())) { 6480 // We can only optimize this case if the BUILD_VECTOR elements are 6481 // at least as wide as the extracted value. 6482 EVT OpVT = Op.getValueType(); 6483 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6484 if (OpBytesPerElement < BytesPerElement) 6485 break; 6486 // Make sure that the least-significant bit of the extracted value 6487 // is the least significant bit of an input. 6488 unsigned End = (Index + 1) * BytesPerElement; 6489 if (End % OpBytesPerElement != 0) 6490 break; 6491 // We're extracting the low part of one operand of the BUILD_VECTOR. 6492 Op = Op.getOperand(End / OpBytesPerElement - 1); 6493 if (!Op.getValueType().isInteger()) { 6494 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6495 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6496 DCI.AddToWorklist(Op.getNode()); 6497 } 6498 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6499 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6500 if (VT != ResVT) { 6501 DCI.AddToWorklist(Op.getNode()); 6502 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6503 } 6504 return Op; 6505 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6506 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6507 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6508 canTreatAsByteVector(Op.getValueType()) && 6509 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6510 // Make sure that only the unextended bits are significant. 6511 EVT ExtVT = Op.getValueType(); 6512 EVT OpVT = Op.getOperand(0).getValueType(); 6513 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6514 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6515 unsigned Byte = Index * BytesPerElement; 6516 unsigned SubByte = Byte % ExtBytesPerElement; 6517 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6518 if (SubByte < MinSubByte || 6519 SubByte + BytesPerElement > ExtBytesPerElement) 6520 break; 6521 // Get the byte offset of the unextended element 6522 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6523 // ...then add the byte offset relative to that element. 6524 Byte += SubByte - MinSubByte; 6525 if (Byte % BytesPerElement != 0) 6526 break; 6527 Op = Op.getOperand(0); 6528 Index = Byte / BytesPerElement; 6529 Force = true; 6530 } else 6531 break; 6532 } 6533 if (Force) { 6534 if (Op.getValueType() != VecVT) { 6535 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6536 DCI.AddToWorklist(Op.getNode()); 6537 } 6538 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6539 DAG.getConstant(Index, DL, MVT::i32)); 6540 } 6541 return SDValue(); 6542 } 6543 6544 // Optimize vector operations in scalar value Op on the basis that Op 6545 // is truncated to TruncVT. 6546 SDValue SystemZTargetLowering::combineTruncateExtract( 6547 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6548 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6549 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6550 // of type TruncVT. 6551 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6552 TruncVT.getSizeInBits() % 8 == 0) { 6553 SDValue Vec = Op.getOperand(0); 6554 EVT VecVT = Vec.getValueType(); 6555 if (canTreatAsByteVector(VecVT)) { 6556 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6557 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6558 unsigned TruncBytes = TruncVT.getStoreSize(); 6559 if (BytesPerElement % TruncBytes == 0) { 6560 // Calculate the value of Y' in the above description. We are 6561 // splitting the original elements into Scale equal-sized pieces 6562 // and for truncation purposes want the last (least-significant) 6563 // of these pieces for IndexN. This is easiest to do by calculating 6564 // the start index of the following element and then subtracting 1. 6565 unsigned Scale = BytesPerElement / TruncBytes; 6566 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6567 6568 // Defer the creation of the bitcast from X to combineExtract, 6569 // which might be able to optimize the extraction. 6570 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6571 VecVT.getStoreSize() / TruncBytes); 6572 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6573 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6574 } 6575 } 6576 } 6577 } 6578 return SDValue(); 6579 } 6580 6581 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6582 SDNode *N, DAGCombinerInfo &DCI) const { 6583 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6584 SelectionDAG &DAG = DCI.DAG; 6585 SDValue N0 = N->getOperand(0); 6586 EVT VT = N->getValueType(0); 6587 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6588 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6589 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6590 if (TrueOp && FalseOp) { 6591 SDLoc DL(N0); 6592 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6593 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6594 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6595 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6596 // If N0 has multiple uses, change other uses as well. 6597 if (!N0.hasOneUse()) { 6598 SDValue TruncSelect = 6599 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6600 DCI.CombineTo(N0.getNode(), TruncSelect); 6601 } 6602 return NewSelect; 6603 } 6604 } 6605 return SDValue(); 6606 } 6607 6608 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6609 SDNode *N, DAGCombinerInfo &DCI) const { 6610 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6611 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6612 // into (select_cc LHS, RHS, -1, 0, COND) 6613 SelectionDAG &DAG = DCI.DAG; 6614 SDValue N0 = N->getOperand(0); 6615 EVT VT = N->getValueType(0); 6616 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6617 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6618 N0 = N0.getOperand(0); 6619 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6620 SDLoc DL(N0); 6621 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6622 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6623 N0.getOperand(2) }; 6624 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6625 } 6626 return SDValue(); 6627 } 6628 6629 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6630 SDNode *N, DAGCombinerInfo &DCI) const { 6631 // Convert (sext (ashr (shl X, C1), C2)) to 6632 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6633 // cheap as narrower ones. 6634 SelectionDAG &DAG = DCI.DAG; 6635 SDValue N0 = N->getOperand(0); 6636 EVT VT = N->getValueType(0); 6637 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6638 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6639 SDValue Inner = N0.getOperand(0); 6640 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6641 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6642 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6643 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6644 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6645 EVT ShiftVT = N0.getOperand(1).getValueType(); 6646 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6647 Inner.getOperand(0)); 6648 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6649 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6650 ShiftVT)); 6651 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6652 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6653 } 6654 } 6655 } 6656 return SDValue(); 6657 } 6658 6659 SDValue SystemZTargetLowering::combineMERGE( 6660 SDNode *N, DAGCombinerInfo &DCI) const { 6661 SelectionDAG &DAG = DCI.DAG; 6662 unsigned Opcode = N->getOpcode(); 6663 SDValue Op0 = N->getOperand(0); 6664 SDValue Op1 = N->getOperand(1); 6665 if (Op0.getOpcode() == ISD::BITCAST) 6666 Op0 = Op0.getOperand(0); 6667 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6668 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6669 // for v4f32. 6670 if (Op1 == N->getOperand(0)) 6671 return Op1; 6672 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6673 EVT VT = Op1.getValueType(); 6674 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6675 if (ElemBytes <= 4) { 6676 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6677 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6678 EVT InVT = VT.changeVectorElementTypeToInteger(); 6679 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6680 SystemZ::VectorBytes / ElemBytes / 2); 6681 if (VT != InVT) { 6682 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6683 DCI.AddToWorklist(Op1.getNode()); 6684 } 6685 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6686 DCI.AddToWorklist(Op.getNode()); 6687 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6688 } 6689 } 6690 return SDValue(); 6691 } 6692 6693 SDValue SystemZTargetLowering::combineLOAD( 6694 SDNode *N, DAGCombinerInfo &DCI) const { 6695 SelectionDAG &DAG = DCI.DAG; 6696 EVT LdVT = N->getValueType(0); 6697 SDLoc DL(N); 6698 6699 // Replace an i128 load that is used solely to move its value into GPRs 6700 // by separate loads of both halves. 6701 if (LdVT == MVT::i128) { 6702 LoadSDNode *LD = cast<LoadSDNode>(N); 6703 if (!LD->isSimple() || !ISD::isNormalLoad(LD)) 6704 return SDValue(); 6705 6706 // Scan through all users. 6707 SmallVector<std::pair<SDNode *, int>, 2> Users; 6708 int UsedElements = 0; 6709 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 6710 UI != UIEnd; ++UI) { 6711 // Skip the uses of the chain. 6712 if (UI.getUse().getResNo() != 0) 6713 continue; 6714 6715 // Verify every user is a TRUNCATE to i64 of the low or high half ... 6716 SDNode *User = *UI; 6717 int Index = 1; 6718 if (User->getOpcode() == ISD::SRL && 6719 User->getOperand(1).getOpcode() == ISD::Constant && 6720 cast<ConstantSDNode>(User->getOperand(1))->getZExtValue() == 64 && 6721 User->hasOneUse()) { 6722 User = *User->use_begin(); 6723 Index = 0; 6724 } 6725 if (User->getOpcode() != ISD::TRUNCATE || 6726 User->getValueType(0) != MVT::i64) 6727 return SDValue(); 6728 6729 // ... and no half is extracted twice. 6730 if (UsedElements & (1 << Index)) 6731 return SDValue(); 6732 6733 UsedElements |= 1 << Index; 6734 Users.push_back(std::make_pair(User, Index)); 6735 } 6736 6737 // Rewrite each extraction as an independent load. 6738 SmallVector<SDValue, 2> ArgChains; 6739 for (auto UserAndIndex : Users) { 6740 SDNode *User = UserAndIndex.first; 6741 unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second; 6742 SDValue Ptr = 6743 DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL); 6744 SDValue EltLoad = 6745 DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr, 6746 LD->getPointerInfo().getWithOffset(Offset), 6747 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 6748 LD->getAAInfo()); 6749 6750 DCI.CombineTo(User, EltLoad, true); 6751 ArgChains.push_back(EltLoad.getValue(1)); 6752 } 6753 6754 // Collect all chains via TokenFactor. 6755 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 6756 ArgChains); 6757 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 6758 DCI.AddToWorklist(Chain.getNode()); 6759 return SDValue(N, 0); 6760 } 6761 6762 if (LdVT.isVector() || LdVT.isInteger()) 6763 return SDValue(); 6764 // Transform a scalar load that is REPLICATEd as well as having other 6765 // use(s) to the form where the other use(s) use the first element of the 6766 // REPLICATE instead of the load. Otherwise instruction selection will not 6767 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6768 // point loads. 6769 6770 SDValue Replicate; 6771 SmallVector<SDNode*, 8> OtherUses; 6772 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6773 UI != UE; ++UI) { 6774 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6775 if (Replicate) 6776 return SDValue(); // Should never happen 6777 Replicate = SDValue(*UI, 0); 6778 } 6779 else if (UI.getUse().getResNo() == 0) 6780 OtherUses.push_back(*UI); 6781 } 6782 if (!Replicate || OtherUses.empty()) 6783 return SDValue(); 6784 6785 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6786 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6787 // Update uses of the loaded Value while preserving old chains. 6788 for (SDNode *U : OtherUses) { 6789 SmallVector<SDValue, 8> Ops; 6790 for (SDValue Op : U->ops()) 6791 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6792 DAG.UpdateNodeOperands(U, Ops); 6793 } 6794 return SDValue(N, 0); 6795 } 6796 6797 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6798 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6799 return true; 6800 if (Subtarget.hasVectorEnhancements2()) 6801 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128) 6802 return true; 6803 return false; 6804 } 6805 6806 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6807 if (!VT.isVector() || !VT.isSimple() || 6808 VT.getSizeInBits() != 128 || 6809 VT.getScalarSizeInBits() % 8 != 0) 6810 return false; 6811 6812 unsigned NumElts = VT.getVectorNumElements(); 6813 for (unsigned i = 0; i < NumElts; ++i) { 6814 if (M[i] < 0) continue; // ignore UNDEF indices 6815 if ((unsigned) M[i] != NumElts - 1 - i) 6816 return false; 6817 } 6818 6819 return true; 6820 } 6821 6822 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 6823 for (auto *U : StoredVal->uses()) { 6824 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 6825 EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 6826 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 6827 continue; 6828 } else if (isa<BuildVectorSDNode>(U)) { 6829 SDValue BuildVector = SDValue(U, 0); 6830 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 6831 isOnlyUsedByStores(BuildVector, DAG)) 6832 continue; 6833 } 6834 return false; 6835 } 6836 return true; 6837 } 6838 6839 static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) { 6840 if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse()) 6841 return false; 6842 6843 SDValue Op0 = Val.getOperand(0); 6844 SDValue Op1 = Val.getOperand(1); 6845 6846 if (Op0.getOpcode() == ISD::SHL) 6847 std::swap(Op0, Op1); 6848 if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() || 6849 Op1.getOperand(1).getOpcode() != ISD::Constant || 6850 cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue() != 64) 6851 return false; 6852 Op1 = Op1.getOperand(0); 6853 6854 if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() || 6855 Op0.getOperand(0).getValueType() != MVT::i64) 6856 return false; 6857 if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() || 6858 Op1.getOperand(0).getValueType() != MVT::i64) 6859 return false; 6860 6861 LoPart = Op0.getOperand(0); 6862 HiPart = Op1.getOperand(0); 6863 return true; 6864 } 6865 6866 SDValue SystemZTargetLowering::combineSTORE( 6867 SDNode *N, DAGCombinerInfo &DCI) const { 6868 SelectionDAG &DAG = DCI.DAG; 6869 auto *SN = cast<StoreSDNode>(N); 6870 auto &Op1 = N->getOperand(1); 6871 EVT MemVT = SN->getMemoryVT(); 6872 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6873 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6874 // If X has wider elements then convert it to: 6875 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6876 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6877 if (SDValue Value = 6878 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6879 DCI.AddToWorklist(Value.getNode()); 6880 6881 // Rewrite the store with the new form of stored value. 6882 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6883 SN->getBasePtr(), SN->getMemoryVT(), 6884 SN->getMemOperand()); 6885 } 6886 } 6887 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6888 if (!SN->isTruncatingStore() && 6889 Op1.getOpcode() == ISD::BSWAP && 6890 Op1.getNode()->hasOneUse() && 6891 canLoadStoreByteSwapped(Op1.getValueType())) { 6892 6893 SDValue BSwapOp = Op1.getOperand(0); 6894 6895 if (BSwapOp.getValueType() == MVT::i16) 6896 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6897 6898 SDValue Ops[] = { 6899 N->getOperand(0), BSwapOp, N->getOperand(2) 6900 }; 6901 6902 return 6903 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6904 Ops, MemVT, SN->getMemOperand()); 6905 } 6906 // Combine STORE (element-swap) into VSTER 6907 if (!SN->isTruncatingStore() && 6908 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6909 Op1.getNode()->hasOneUse() && 6910 Subtarget.hasVectorEnhancements2()) { 6911 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6912 ArrayRef<int> ShuffleMask = SVN->getMask(); 6913 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6914 SDValue Ops[] = { 6915 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6916 }; 6917 6918 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6919 DAG.getVTList(MVT::Other), 6920 Ops, MemVT, SN->getMemOperand()); 6921 } 6922 } 6923 6924 // Transform a store of an i128 moved from GPRs into two separate stores. 6925 if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) { 6926 SDValue LoPart, HiPart; 6927 if (isMovedFromParts(Op1, LoPart, HiPart)) { 6928 SDLoc DL(SN); 6929 SDValue Chain0 = 6930 DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(), 6931 SN->getPointerInfo(), SN->getOriginalAlign(), 6932 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6933 SDValue Chain1 = 6934 DAG.getStore(SN->getChain(), DL, LoPart, 6935 DAG.getObjectPtrOffset(DL, SN->getBasePtr(), 6936 TypeSize::getFixed(8)), 6937 SN->getPointerInfo().getWithOffset(8), 6938 SN->getOriginalAlign(), 6939 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6940 6941 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1); 6942 } 6943 } 6944 6945 // Replicate a reg or immediate with VREP instead of scalar multiply or 6946 // immediate load. It seems best to do this during the first DAGCombine as 6947 // it is straight-forward to handle the zero-extend node in the initial 6948 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 6949 // extracting an i16 element from a v16i8 vector). 6950 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 6951 isOnlyUsedByStores(Op1, DAG)) { 6952 SDValue Word = SDValue(); 6953 EVT WordVT; 6954 6955 // Find a replicated immediate and return it if found in Word and its 6956 // type in WordVT. 6957 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 6958 // Some constants are better handled with a scalar store. 6959 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 6960 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 6961 return; 6962 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 6963 if (VCI.isVectorConstantLegal(Subtarget) && 6964 VCI.Opcode == SystemZISD::REPLICATE) { 6965 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 6966 WordVT = VCI.VecVT.getScalarType(); 6967 } 6968 }; 6969 6970 // Find a replicated register and return it if found in Word and its type 6971 // in WordVT. 6972 auto FindReplicatedReg = [&](SDValue MulOp) { 6973 EVT MulVT = MulOp.getValueType(); 6974 if (MulOp->getOpcode() == ISD::MUL && 6975 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 6976 // Find a zero extended value and its type. 6977 SDValue LHS = MulOp->getOperand(0); 6978 if (LHS->getOpcode() == ISD::ZERO_EXTEND) 6979 WordVT = LHS->getOperand(0).getValueType(); 6980 else if (LHS->getOpcode() == ISD::AssertZext) 6981 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 6982 else 6983 return; 6984 // Find a replicating constant, e.g. 0x00010001. 6985 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 6986 SystemZVectorConstantInfo VCI( 6987 APInt(MulVT.getSizeInBits(), C->getZExtValue())); 6988 if (VCI.isVectorConstantLegal(Subtarget) && 6989 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 6990 WordVT == VCI.VecVT.getScalarType()) 6991 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 6992 } 6993 } 6994 }; 6995 6996 if (isa<BuildVectorSDNode>(Op1) && 6997 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 6998 SDValue SplatVal = Op1->getOperand(0); 6999 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 7000 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 7001 else 7002 FindReplicatedReg(SplatVal); 7003 } else { 7004 if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 7005 FindReplicatedImm(C, MemVT.getStoreSize()); 7006 else 7007 FindReplicatedReg(Op1); 7008 } 7009 7010 if (Word != SDValue()) { 7011 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 7012 "Bad type handling"); 7013 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 7014 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 7015 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 7016 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 7017 SN->getBasePtr(), SN->getMemOperand()); 7018 } 7019 } 7020 7021 return SDValue(); 7022 } 7023 7024 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 7025 SDNode *N, DAGCombinerInfo &DCI) const { 7026 SelectionDAG &DAG = DCI.DAG; 7027 // Combine element-swap (LOAD) into VLER 7028 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7029 N->getOperand(0).hasOneUse() && 7030 Subtarget.hasVectorEnhancements2()) { 7031 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 7032 ArrayRef<int> ShuffleMask = SVN->getMask(); 7033 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 7034 SDValue Load = N->getOperand(0); 7035 LoadSDNode *LD = cast<LoadSDNode>(Load); 7036 7037 // Create the element-swapping load. 7038 SDValue Ops[] = { 7039 LD->getChain(), // Chain 7040 LD->getBasePtr() // Ptr 7041 }; 7042 SDValue ESLoad = 7043 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 7044 DAG.getVTList(LD->getValueType(0), MVT::Other), 7045 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7046 7047 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 7048 // by the load dead. 7049 DCI.CombineTo(N, ESLoad); 7050 7051 // Next, combine the load away, we give it a bogus result value but a real 7052 // chain result. The result value is dead because the shuffle is dead. 7053 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 7054 7055 // Return N so it doesn't get rechecked! 7056 return SDValue(N, 0); 7057 } 7058 } 7059 7060 return SDValue(); 7061 } 7062 7063 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 7064 SDNode *N, DAGCombinerInfo &DCI) const { 7065 SelectionDAG &DAG = DCI.DAG; 7066 7067 if (!Subtarget.hasVector()) 7068 return SDValue(); 7069 7070 // Look through bitcasts that retain the number of vector elements. 7071 SDValue Op = N->getOperand(0); 7072 if (Op.getOpcode() == ISD::BITCAST && 7073 Op.getValueType().isVector() && 7074 Op.getOperand(0).getValueType().isVector() && 7075 Op.getValueType().getVectorNumElements() == 7076 Op.getOperand(0).getValueType().getVectorNumElements()) 7077 Op = Op.getOperand(0); 7078 7079 // Pull BSWAP out of a vector extraction. 7080 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 7081 EVT VecVT = Op.getValueType(); 7082 EVT EltVT = VecVT.getVectorElementType(); 7083 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 7084 Op.getOperand(0), N->getOperand(1)); 7085 DCI.AddToWorklist(Op.getNode()); 7086 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 7087 if (EltVT != N->getValueType(0)) { 7088 DCI.AddToWorklist(Op.getNode()); 7089 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 7090 } 7091 return Op; 7092 } 7093 7094 // Try to simplify a vector extraction. 7095 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 7096 SDValue Op0 = N->getOperand(0); 7097 EVT VecVT = Op0.getValueType(); 7098 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 7099 IndexN->getZExtValue(), DCI, false); 7100 } 7101 return SDValue(); 7102 } 7103 7104 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 7105 SDNode *N, DAGCombinerInfo &DCI) const { 7106 SelectionDAG &DAG = DCI.DAG; 7107 // (join_dwords X, X) == (replicate X) 7108 if (N->getOperand(0) == N->getOperand(1)) 7109 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 7110 N->getOperand(0)); 7111 return SDValue(); 7112 } 7113 7114 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 7115 SDValue Chain1 = N1->getOperand(0); 7116 SDValue Chain2 = N2->getOperand(0); 7117 7118 // Trivial case: both nodes take the same chain. 7119 if (Chain1 == Chain2) 7120 return Chain1; 7121 7122 // FIXME - we could handle more complex cases via TokenFactor, 7123 // assuming we can verify that this would not create a cycle. 7124 return SDValue(); 7125 } 7126 7127 SDValue SystemZTargetLowering::combineFP_ROUND( 7128 SDNode *N, DAGCombinerInfo &DCI) const { 7129 7130 if (!Subtarget.hasVector()) 7131 return SDValue(); 7132 7133 // (fpround (extract_vector_elt X 0)) 7134 // (fpround (extract_vector_elt X 1)) -> 7135 // (extract_vector_elt (VROUND X) 0) 7136 // (extract_vector_elt (VROUND X) 2) 7137 // 7138 // This is a special case since the target doesn't really support v2f32s. 7139 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7140 SelectionDAG &DAG = DCI.DAG; 7141 SDValue Op0 = N->getOperand(OpNo); 7142 if (N->getValueType(0) == MVT::f32 && 7143 Op0.hasOneUse() && 7144 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7145 Op0.getOperand(0).getValueType() == MVT::v2f64 && 7146 Op0.getOperand(1).getOpcode() == ISD::Constant && 7147 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 7148 SDValue Vec = Op0.getOperand(0); 7149 for (auto *U : Vec->uses()) { 7150 if (U != Op0.getNode() && 7151 U->hasOneUse() && 7152 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7153 U->getOperand(0) == Vec && 7154 U->getOperand(1).getOpcode() == ISD::Constant && 7155 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 7156 SDValue OtherRound = SDValue(*U->use_begin(), 0); 7157 if (OtherRound.getOpcode() == N->getOpcode() && 7158 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 7159 OtherRound.getValueType() == MVT::f32) { 7160 SDValue VRound, Chain; 7161 if (N->isStrictFPOpcode()) { 7162 Chain = MergeInputChains(N, OtherRound.getNode()); 7163 if (!Chain) 7164 continue; 7165 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 7166 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 7167 Chain = VRound.getValue(1); 7168 } else 7169 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 7170 MVT::v4f32, Vec); 7171 DCI.AddToWorklist(VRound.getNode()); 7172 SDValue Extract1 = 7173 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 7174 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 7175 DCI.AddToWorklist(Extract1.getNode()); 7176 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 7177 if (Chain) 7178 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 7179 SDValue Extract0 = 7180 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 7181 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7182 if (Chain) 7183 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7184 N->getVTList(), Extract0, Chain); 7185 return Extract0; 7186 } 7187 } 7188 } 7189 } 7190 return SDValue(); 7191 } 7192 7193 SDValue SystemZTargetLowering::combineFP_EXTEND( 7194 SDNode *N, DAGCombinerInfo &DCI) const { 7195 7196 if (!Subtarget.hasVector()) 7197 return SDValue(); 7198 7199 // (fpextend (extract_vector_elt X 0)) 7200 // (fpextend (extract_vector_elt X 2)) -> 7201 // (extract_vector_elt (VEXTEND X) 0) 7202 // (extract_vector_elt (VEXTEND X) 1) 7203 // 7204 // This is a special case since the target doesn't really support v2f32s. 7205 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7206 SelectionDAG &DAG = DCI.DAG; 7207 SDValue Op0 = N->getOperand(OpNo); 7208 if (N->getValueType(0) == MVT::f64 && 7209 Op0.hasOneUse() && 7210 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7211 Op0.getOperand(0).getValueType() == MVT::v4f32 && 7212 Op0.getOperand(1).getOpcode() == ISD::Constant && 7213 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 7214 SDValue Vec = Op0.getOperand(0); 7215 for (auto *U : Vec->uses()) { 7216 if (U != Op0.getNode() && 7217 U->hasOneUse() && 7218 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7219 U->getOperand(0) == Vec && 7220 U->getOperand(1).getOpcode() == ISD::Constant && 7221 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 7222 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 7223 if (OtherExtend.getOpcode() == N->getOpcode() && 7224 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 7225 OtherExtend.getValueType() == MVT::f64) { 7226 SDValue VExtend, Chain; 7227 if (N->isStrictFPOpcode()) { 7228 Chain = MergeInputChains(N, OtherExtend.getNode()); 7229 if (!Chain) 7230 continue; 7231 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 7232 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 7233 Chain = VExtend.getValue(1); 7234 } else 7235 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 7236 MVT::v2f64, Vec); 7237 DCI.AddToWorklist(VExtend.getNode()); 7238 SDValue Extract1 = 7239 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 7240 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 7241 DCI.AddToWorklist(Extract1.getNode()); 7242 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 7243 if (Chain) 7244 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 7245 SDValue Extract0 = 7246 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 7247 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7248 if (Chain) 7249 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7250 N->getVTList(), Extract0, Chain); 7251 return Extract0; 7252 } 7253 } 7254 } 7255 } 7256 return SDValue(); 7257 } 7258 7259 SDValue SystemZTargetLowering::combineINT_TO_FP( 7260 SDNode *N, DAGCombinerInfo &DCI) const { 7261 if (DCI.Level != BeforeLegalizeTypes) 7262 return SDValue(); 7263 SelectionDAG &DAG = DCI.DAG; 7264 LLVMContext &Ctx = *DAG.getContext(); 7265 unsigned Opcode = N->getOpcode(); 7266 EVT OutVT = N->getValueType(0); 7267 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 7268 SDValue Op = N->getOperand(0); 7269 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 7270 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 7271 7272 // Insert an extension before type-legalization to avoid scalarization, e.g.: 7273 // v2f64 = uint_to_fp v2i16 7274 // => 7275 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 7276 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 7277 OutScalarBits <= 64) { 7278 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 7279 EVT ExtVT = EVT::getVectorVT( 7280 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 7281 unsigned ExtOpcode = 7282 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 7283 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 7284 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 7285 } 7286 return SDValue(); 7287 } 7288 7289 SDValue SystemZTargetLowering::combineBSWAP( 7290 SDNode *N, DAGCombinerInfo &DCI) const { 7291 SelectionDAG &DAG = DCI.DAG; 7292 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 7293 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7294 N->getOperand(0).hasOneUse() && 7295 canLoadStoreByteSwapped(N->getValueType(0))) { 7296 SDValue Load = N->getOperand(0); 7297 LoadSDNode *LD = cast<LoadSDNode>(Load); 7298 7299 // Create the byte-swapping load. 7300 SDValue Ops[] = { 7301 LD->getChain(), // Chain 7302 LD->getBasePtr() // Ptr 7303 }; 7304 EVT LoadVT = N->getValueType(0); 7305 if (LoadVT == MVT::i16) 7306 LoadVT = MVT::i32; 7307 SDValue BSLoad = 7308 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 7309 DAG.getVTList(LoadVT, MVT::Other), 7310 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7311 7312 // If this is an i16 load, insert the truncate. 7313 SDValue ResVal = BSLoad; 7314 if (N->getValueType(0) == MVT::i16) 7315 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 7316 7317 // First, combine the bswap away. This makes the value produced by the 7318 // load dead. 7319 DCI.CombineTo(N, ResVal); 7320 7321 // Next, combine the load away, we give it a bogus result value but a real 7322 // chain result. The result value is dead because the bswap is dead. 7323 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 7324 7325 // Return N so it doesn't get rechecked! 7326 return SDValue(N, 0); 7327 } 7328 7329 // Look through bitcasts that retain the number of vector elements. 7330 SDValue Op = N->getOperand(0); 7331 if (Op.getOpcode() == ISD::BITCAST && 7332 Op.getValueType().isVector() && 7333 Op.getOperand(0).getValueType().isVector() && 7334 Op.getValueType().getVectorNumElements() == 7335 Op.getOperand(0).getValueType().getVectorNumElements()) 7336 Op = Op.getOperand(0); 7337 7338 // Push BSWAP into a vector insertion if at least one side then simplifies. 7339 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 7340 SDValue Vec = Op.getOperand(0); 7341 SDValue Elt = Op.getOperand(1); 7342 SDValue Idx = Op.getOperand(2); 7343 7344 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 7345 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 7346 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 7347 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 7348 (canLoadStoreByteSwapped(N->getValueType(0)) && 7349 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 7350 EVT VecVT = N->getValueType(0); 7351 EVT EltVT = N->getValueType(0).getVectorElementType(); 7352 if (VecVT != Vec.getValueType()) { 7353 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 7354 DCI.AddToWorklist(Vec.getNode()); 7355 } 7356 if (EltVT != Elt.getValueType()) { 7357 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 7358 DCI.AddToWorklist(Elt.getNode()); 7359 } 7360 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 7361 DCI.AddToWorklist(Vec.getNode()); 7362 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 7363 DCI.AddToWorklist(Elt.getNode()); 7364 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 7365 Vec, Elt, Idx); 7366 } 7367 } 7368 7369 // Push BSWAP into a vector shuffle if at least one side then simplifies. 7370 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 7371 if (SV && Op.hasOneUse()) { 7372 SDValue Op0 = Op.getOperand(0); 7373 SDValue Op1 = Op.getOperand(1); 7374 7375 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 7376 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 7377 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 7378 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 7379 EVT VecVT = N->getValueType(0); 7380 if (VecVT != Op0.getValueType()) { 7381 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 7382 DCI.AddToWorklist(Op0.getNode()); 7383 } 7384 if (VecVT != Op1.getValueType()) { 7385 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 7386 DCI.AddToWorklist(Op1.getNode()); 7387 } 7388 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 7389 DCI.AddToWorklist(Op0.getNode()); 7390 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 7391 DCI.AddToWorklist(Op1.getNode()); 7392 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 7393 } 7394 } 7395 7396 return SDValue(); 7397 } 7398 7399 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 7400 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 7401 // set by the CCReg instruction using the CCValid / CCMask masks, 7402 // If the CCReg instruction is itself a ICMP testing the condition 7403 // code set by some other instruction, see whether we can directly 7404 // use that condition code. 7405 7406 // Verify that we have an ICMP against some constant. 7407 if (CCValid != SystemZ::CCMASK_ICMP) 7408 return false; 7409 auto *ICmp = CCReg.getNode(); 7410 if (ICmp->getOpcode() != SystemZISD::ICMP) 7411 return false; 7412 auto *CompareLHS = ICmp->getOperand(0).getNode(); 7413 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 7414 if (!CompareRHS) 7415 return false; 7416 7417 // Optimize the case where CompareLHS is a SELECT_CCMASK. 7418 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 7419 // Verify that we have an appropriate mask for a EQ or NE comparison. 7420 bool Invert = false; 7421 if (CCMask == SystemZ::CCMASK_CMP_NE) 7422 Invert = !Invert; 7423 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 7424 return false; 7425 7426 // Verify that the ICMP compares against one of select values. 7427 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 7428 if (!TrueVal) 7429 return false; 7430 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7431 if (!FalseVal) 7432 return false; 7433 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 7434 Invert = !Invert; 7435 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 7436 return false; 7437 7438 // Compute the effective CC mask for the new branch or select. 7439 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 7440 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 7441 if (!NewCCValid || !NewCCMask) 7442 return false; 7443 CCValid = NewCCValid->getZExtValue(); 7444 CCMask = NewCCMask->getZExtValue(); 7445 if (Invert) 7446 CCMask ^= CCValid; 7447 7448 // Return the updated CCReg link. 7449 CCReg = CompareLHS->getOperand(4); 7450 return true; 7451 } 7452 7453 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 7454 if (CompareLHS->getOpcode() == ISD::SRA) { 7455 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7456 if (!SRACount || SRACount->getZExtValue() != 30) 7457 return false; 7458 auto *SHL = CompareLHS->getOperand(0).getNode(); 7459 if (SHL->getOpcode() != ISD::SHL) 7460 return false; 7461 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 7462 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 7463 return false; 7464 auto *IPM = SHL->getOperand(0).getNode(); 7465 if (IPM->getOpcode() != SystemZISD::IPM) 7466 return false; 7467 7468 // Avoid introducing CC spills (because SRA would clobber CC). 7469 if (!CompareLHS->hasOneUse()) 7470 return false; 7471 // Verify that the ICMP compares against zero. 7472 if (CompareRHS->getZExtValue() != 0) 7473 return false; 7474 7475 // Compute the effective CC mask for the new branch or select. 7476 CCMask = SystemZ::reverseCCMask(CCMask); 7477 7478 // Return the updated CCReg link. 7479 CCReg = IPM->getOperand(0); 7480 return true; 7481 } 7482 7483 return false; 7484 } 7485 7486 SDValue SystemZTargetLowering::combineBR_CCMASK( 7487 SDNode *N, DAGCombinerInfo &DCI) const { 7488 SelectionDAG &DAG = DCI.DAG; 7489 7490 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 7491 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7492 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7493 if (!CCValid || !CCMask) 7494 return SDValue(); 7495 7496 int CCValidVal = CCValid->getZExtValue(); 7497 int CCMaskVal = CCMask->getZExtValue(); 7498 SDValue Chain = N->getOperand(0); 7499 SDValue CCReg = N->getOperand(4); 7500 7501 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7502 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 7503 Chain, 7504 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7505 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7506 N->getOperand(3), CCReg); 7507 return SDValue(); 7508 } 7509 7510 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 7511 SDNode *N, DAGCombinerInfo &DCI) const { 7512 SelectionDAG &DAG = DCI.DAG; 7513 7514 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 7515 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7516 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 7517 if (!CCValid || !CCMask) 7518 return SDValue(); 7519 7520 int CCValidVal = CCValid->getZExtValue(); 7521 int CCMaskVal = CCMask->getZExtValue(); 7522 SDValue CCReg = N->getOperand(4); 7523 7524 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7525 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 7526 N->getOperand(0), N->getOperand(1), 7527 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7528 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7529 CCReg); 7530 return SDValue(); 7531 } 7532 7533 7534 SDValue SystemZTargetLowering::combineGET_CCMASK( 7535 SDNode *N, DAGCombinerInfo &DCI) const { 7536 7537 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 7538 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7539 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7540 if (!CCValid || !CCMask) 7541 return SDValue(); 7542 int CCValidVal = CCValid->getZExtValue(); 7543 int CCMaskVal = CCMask->getZExtValue(); 7544 7545 SDValue Select = N->getOperand(0); 7546 if (Select->getOpcode() == ISD::TRUNCATE) 7547 Select = Select->getOperand(0); 7548 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 7549 return SDValue(); 7550 7551 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 7552 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 7553 if (!SelectCCValid || !SelectCCMask) 7554 return SDValue(); 7555 int SelectCCValidVal = SelectCCValid->getZExtValue(); 7556 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 7557 7558 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 7559 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 7560 if (!TrueVal || !FalseVal) 7561 return SDValue(); 7562 if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) 7563 ; 7564 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) 7565 SelectCCMaskVal ^= SelectCCValidVal; 7566 else 7567 return SDValue(); 7568 7569 if (SelectCCValidVal & ~CCValidVal) 7570 return SDValue(); 7571 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 7572 return SDValue(); 7573 7574 return Select->getOperand(4); 7575 } 7576 7577 SDValue SystemZTargetLowering::combineIntDIVREM( 7578 SDNode *N, DAGCombinerInfo &DCI) const { 7579 SelectionDAG &DAG = DCI.DAG; 7580 EVT VT = N->getValueType(0); 7581 // In the case where the divisor is a vector of constants a cheaper 7582 // sequence of instructions can replace the divide. BuildSDIV is called to 7583 // do this during DAG combining, but it only succeeds when it can build a 7584 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 7585 // since it is not Legal but Custom it can only happen before 7586 // legalization. Therefore we must scalarize this early before Combine 7587 // 1. For widened vectors, this is already the result of type legalization. 7588 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 7589 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 7590 return DAG.UnrollVectorOp(N); 7591 return SDValue(); 7592 } 7593 7594 SDValue SystemZTargetLowering::combineINTRINSIC( 7595 SDNode *N, DAGCombinerInfo &DCI) const { 7596 SelectionDAG &DAG = DCI.DAG; 7597 7598 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7599 switch (Id) { 7600 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 7601 // or larger is simply a vector load. 7602 case Intrinsic::s390_vll: 7603 case Intrinsic::s390_vlrl: 7604 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 7605 if (C->getZExtValue() >= 15) 7606 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 7607 N->getOperand(3), MachinePointerInfo()); 7608 break; 7609 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 7610 case Intrinsic::s390_vstl: 7611 case Intrinsic::s390_vstrl: 7612 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 7613 if (C->getZExtValue() >= 15) 7614 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 7615 N->getOperand(4), MachinePointerInfo()); 7616 break; 7617 } 7618 7619 return SDValue(); 7620 } 7621 7622 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 7623 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 7624 return N->getOperand(0); 7625 return N; 7626 } 7627 7628 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 7629 DAGCombinerInfo &DCI) const { 7630 switch(N->getOpcode()) { 7631 default: break; 7632 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 7633 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 7634 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 7635 case SystemZISD::MERGE_HIGH: 7636 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 7637 case ISD::LOAD: return combineLOAD(N, DCI); 7638 case ISD::STORE: return combineSTORE(N, DCI); 7639 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 7640 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 7641 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7642 case ISD::STRICT_FP_ROUND: 7643 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7644 case ISD::STRICT_FP_EXTEND: 7645 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 7646 case ISD::SINT_TO_FP: 7647 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 7648 case ISD::BSWAP: return combineBSWAP(N, DCI); 7649 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 7650 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 7651 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 7652 case ISD::SDIV: 7653 case ISD::UDIV: 7654 case ISD::SREM: 7655 case ISD::UREM: return combineIntDIVREM(N, DCI); 7656 case ISD::INTRINSIC_W_CHAIN: 7657 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 7658 } 7659 7660 return SDValue(); 7661 } 7662 7663 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 7664 // are for Op. 7665 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 7666 unsigned OpNo) { 7667 EVT VT = Op.getValueType(); 7668 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 7669 APInt SrcDemE; 7670 unsigned Opcode = Op.getOpcode(); 7671 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7672 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7673 switch (Id) { 7674 case Intrinsic::s390_vpksh: // PACKS 7675 case Intrinsic::s390_vpksf: 7676 case Intrinsic::s390_vpksg: 7677 case Intrinsic::s390_vpkshs: // PACKS_CC 7678 case Intrinsic::s390_vpksfs: 7679 case Intrinsic::s390_vpksgs: 7680 case Intrinsic::s390_vpklsh: // PACKLS 7681 case Intrinsic::s390_vpklsf: 7682 case Intrinsic::s390_vpklsg: 7683 case Intrinsic::s390_vpklshs: // PACKLS_CC 7684 case Intrinsic::s390_vpklsfs: 7685 case Intrinsic::s390_vpklsgs: 7686 // VECTOR PACK truncates the elements of two source vectors into one. 7687 SrcDemE = DemandedElts; 7688 if (OpNo == 2) 7689 SrcDemE.lshrInPlace(NumElts / 2); 7690 SrcDemE = SrcDemE.trunc(NumElts / 2); 7691 break; 7692 // VECTOR UNPACK extends half the elements of the source vector. 7693 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7694 case Intrinsic::s390_vuphh: 7695 case Intrinsic::s390_vuphf: 7696 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7697 case Intrinsic::s390_vuplhh: 7698 case Intrinsic::s390_vuplhf: 7699 SrcDemE = APInt(NumElts * 2, 0); 7700 SrcDemE.insertBits(DemandedElts, 0); 7701 break; 7702 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7703 case Intrinsic::s390_vuplhw: 7704 case Intrinsic::s390_vuplf: 7705 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7706 case Intrinsic::s390_vupllh: 7707 case Intrinsic::s390_vupllf: 7708 SrcDemE = APInt(NumElts * 2, 0); 7709 SrcDemE.insertBits(DemandedElts, NumElts); 7710 break; 7711 case Intrinsic::s390_vpdi: { 7712 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7713 SrcDemE = APInt(NumElts, 0); 7714 if (!DemandedElts[OpNo - 1]) 7715 break; 7716 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7717 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7718 // Demand input element 0 or 1, given by the mask bit value. 7719 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7720 break; 7721 } 7722 case Intrinsic::s390_vsldb: { 7723 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7724 assert(VT == MVT::v16i8 && "Unexpected type."); 7725 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7726 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7727 unsigned NumSrc0Els = 16 - FirstIdx; 7728 SrcDemE = APInt(NumElts, 0); 7729 if (OpNo == 1) { 7730 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7731 SrcDemE.insertBits(DemEls, FirstIdx); 7732 } else { 7733 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7734 SrcDemE.insertBits(DemEls, 0); 7735 } 7736 break; 7737 } 7738 case Intrinsic::s390_vperm: 7739 SrcDemE = APInt(NumElts, 1); 7740 break; 7741 default: 7742 llvm_unreachable("Unhandled intrinsic."); 7743 break; 7744 } 7745 } else { 7746 switch (Opcode) { 7747 case SystemZISD::JOIN_DWORDS: 7748 // Scalar operand. 7749 SrcDemE = APInt(1, 1); 7750 break; 7751 case SystemZISD::SELECT_CCMASK: 7752 SrcDemE = DemandedElts; 7753 break; 7754 default: 7755 llvm_unreachable("Unhandled opcode."); 7756 break; 7757 } 7758 } 7759 return SrcDemE; 7760 } 7761 7762 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7763 const APInt &DemandedElts, 7764 const SelectionDAG &DAG, unsigned Depth, 7765 unsigned OpNo) { 7766 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7767 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7768 KnownBits LHSKnown = 7769 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7770 KnownBits RHSKnown = 7771 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7772 Known = LHSKnown.intersectWith(RHSKnown); 7773 } 7774 7775 void 7776 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7777 KnownBits &Known, 7778 const APInt &DemandedElts, 7779 const SelectionDAG &DAG, 7780 unsigned Depth) const { 7781 Known.resetAll(); 7782 7783 // Intrinsic CC result is returned in the two low bits. 7784 unsigned tmp0, tmp1; // not used 7785 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7786 Known.Zero.setBitsFrom(2); 7787 return; 7788 } 7789 EVT VT = Op.getValueType(); 7790 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7791 return; 7792 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7793 "KnownBits does not match VT in bitwidth"); 7794 assert ((!VT.isVector() || 7795 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7796 "DemandedElts does not match VT number of elements"); 7797 unsigned BitWidth = Known.getBitWidth(); 7798 unsigned Opcode = Op.getOpcode(); 7799 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7800 bool IsLogical = false; 7801 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7802 switch (Id) { 7803 case Intrinsic::s390_vpksh: // PACKS 7804 case Intrinsic::s390_vpksf: 7805 case Intrinsic::s390_vpksg: 7806 case Intrinsic::s390_vpkshs: // PACKS_CC 7807 case Intrinsic::s390_vpksfs: 7808 case Intrinsic::s390_vpksgs: 7809 case Intrinsic::s390_vpklsh: // PACKLS 7810 case Intrinsic::s390_vpklsf: 7811 case Intrinsic::s390_vpklsg: 7812 case Intrinsic::s390_vpklshs: // PACKLS_CC 7813 case Intrinsic::s390_vpklsfs: 7814 case Intrinsic::s390_vpklsgs: 7815 case Intrinsic::s390_vpdi: 7816 case Intrinsic::s390_vsldb: 7817 case Intrinsic::s390_vperm: 7818 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7819 break; 7820 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7821 case Intrinsic::s390_vuplhh: 7822 case Intrinsic::s390_vuplhf: 7823 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7824 case Intrinsic::s390_vupllh: 7825 case Intrinsic::s390_vupllf: 7826 IsLogical = true; 7827 [[fallthrough]]; 7828 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7829 case Intrinsic::s390_vuphh: 7830 case Intrinsic::s390_vuphf: 7831 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7832 case Intrinsic::s390_vuplhw: 7833 case Intrinsic::s390_vuplf: { 7834 SDValue SrcOp = Op.getOperand(1); 7835 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7836 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7837 if (IsLogical) { 7838 Known = Known.zext(BitWidth); 7839 } else 7840 Known = Known.sext(BitWidth); 7841 break; 7842 } 7843 default: 7844 break; 7845 } 7846 } else { 7847 switch (Opcode) { 7848 case SystemZISD::JOIN_DWORDS: 7849 case SystemZISD::SELECT_CCMASK: 7850 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7851 break; 7852 case SystemZISD::REPLICATE: { 7853 SDValue SrcOp = Op.getOperand(0); 7854 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7855 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7856 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7857 break; 7858 } 7859 default: 7860 break; 7861 } 7862 } 7863 7864 // Known has the width of the source operand(s). Adjust if needed to match 7865 // the passed bitwidth. 7866 if (Known.getBitWidth() != BitWidth) 7867 Known = Known.anyextOrTrunc(BitWidth); 7868 } 7869 7870 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7871 const SelectionDAG &DAG, unsigned Depth, 7872 unsigned OpNo) { 7873 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7874 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7875 if (LHS == 1) return 1; // Early out. 7876 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7877 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7878 if (RHS == 1) return 1; // Early out. 7879 unsigned Common = std::min(LHS, RHS); 7880 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7881 EVT VT = Op.getValueType(); 7882 unsigned VTBits = VT.getScalarSizeInBits(); 7883 if (SrcBitWidth > VTBits) { // PACK 7884 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7885 if (Common > SrcExtraBits) 7886 return (Common - SrcExtraBits); 7887 return 1; 7888 } 7889 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7890 return Common; 7891 } 7892 7893 unsigned 7894 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7895 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7896 unsigned Depth) const { 7897 if (Op.getResNo() != 0) 7898 return 1; 7899 unsigned Opcode = Op.getOpcode(); 7900 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7901 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7902 switch (Id) { 7903 case Intrinsic::s390_vpksh: // PACKS 7904 case Intrinsic::s390_vpksf: 7905 case Intrinsic::s390_vpksg: 7906 case Intrinsic::s390_vpkshs: // PACKS_CC 7907 case Intrinsic::s390_vpksfs: 7908 case Intrinsic::s390_vpksgs: 7909 case Intrinsic::s390_vpklsh: // PACKLS 7910 case Intrinsic::s390_vpklsf: 7911 case Intrinsic::s390_vpklsg: 7912 case Intrinsic::s390_vpklshs: // PACKLS_CC 7913 case Intrinsic::s390_vpklsfs: 7914 case Intrinsic::s390_vpklsgs: 7915 case Intrinsic::s390_vpdi: 7916 case Intrinsic::s390_vsldb: 7917 case Intrinsic::s390_vperm: 7918 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7919 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7920 case Intrinsic::s390_vuphh: 7921 case Intrinsic::s390_vuphf: 7922 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7923 case Intrinsic::s390_vuplhw: 7924 case Intrinsic::s390_vuplf: { 7925 SDValue PackedOp = Op.getOperand(1); 7926 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7927 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7928 EVT VT = Op.getValueType(); 7929 unsigned VTBits = VT.getScalarSizeInBits(); 7930 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7931 return Tmp; 7932 } 7933 default: 7934 break; 7935 } 7936 } else { 7937 switch (Opcode) { 7938 case SystemZISD::SELECT_CCMASK: 7939 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7940 default: 7941 break; 7942 } 7943 } 7944 7945 return 1; 7946 } 7947 7948 bool SystemZTargetLowering:: 7949 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, 7950 const APInt &DemandedElts, const SelectionDAG &DAG, 7951 bool PoisonOnly, unsigned Depth) const { 7952 switch (Op->getOpcode()) { 7953 case SystemZISD::PCREL_WRAPPER: 7954 case SystemZISD::PCREL_OFFSET: 7955 return true; 7956 } 7957 return false; 7958 } 7959 7960 unsigned 7961 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 7962 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7963 unsigned StackAlign = TFI->getStackAlignment(); 7964 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7965 "Unexpected stack alignment"); 7966 // The default stack probe size is 4096 if the function has no 7967 // stack-probe-size attribute. 7968 unsigned StackProbeSize = 7969 MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); 7970 // Round down to the stack alignment. 7971 StackProbeSize &= ~(StackAlign - 1); 7972 return StackProbeSize ? StackProbeSize : StackAlign; 7973 } 7974 7975 //===----------------------------------------------------------------------===// 7976 // Custom insertion 7977 //===----------------------------------------------------------------------===// 7978 7979 // Force base value Base into a register before MI. Return the register. 7980 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7981 const SystemZInstrInfo *TII) { 7982 MachineBasicBlock *MBB = MI.getParent(); 7983 MachineFunction &MF = *MBB->getParent(); 7984 MachineRegisterInfo &MRI = MF.getRegInfo(); 7985 7986 if (Base.isReg()) { 7987 // Copy Base into a new virtual register to help register coalescing in 7988 // cases with multiple uses. 7989 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7990 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7991 .add(Base); 7992 return Reg; 7993 } 7994 7995 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7996 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7997 .add(Base) 7998 .addImm(0) 7999 .addReg(0); 8000 return Reg; 8001 } 8002 8003 // The CC operand of MI might be missing a kill marker because there 8004 // were multiple uses of CC, and ISel didn't know which to mark. 8005 // Figure out whether MI should have had a kill marker. 8006 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 8007 // Scan forward through BB for a use/def of CC. 8008 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 8009 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 8010 const MachineInstr& mi = *miI; 8011 if (mi.readsRegister(SystemZ::CC)) 8012 return false; 8013 if (mi.definesRegister(SystemZ::CC)) 8014 break; // Should have kill-flag - update below. 8015 } 8016 8017 // If we hit the end of the block, check whether CC is live into a 8018 // successor. 8019 if (miI == MBB->end()) { 8020 for (const MachineBasicBlock *Succ : MBB->successors()) 8021 if (Succ->isLiveIn(SystemZ::CC)) 8022 return false; 8023 } 8024 8025 return true; 8026 } 8027 8028 // Return true if it is OK for this Select pseudo-opcode to be cascaded 8029 // together with other Select pseudo-opcodes into a single basic-block with 8030 // a conditional jump around it. 8031 static bool isSelectPseudo(MachineInstr &MI) { 8032 switch (MI.getOpcode()) { 8033 case SystemZ::Select32: 8034 case SystemZ::Select64: 8035 case SystemZ::Select128: 8036 case SystemZ::SelectF32: 8037 case SystemZ::SelectF64: 8038 case SystemZ::SelectF128: 8039 case SystemZ::SelectVR32: 8040 case SystemZ::SelectVR64: 8041 case SystemZ::SelectVR128: 8042 return true; 8043 8044 default: 8045 return false; 8046 } 8047 } 8048 8049 // Helper function, which inserts PHI functions into SinkMBB: 8050 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 8051 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 8052 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 8053 MachineBasicBlock *TrueMBB, 8054 MachineBasicBlock *FalseMBB, 8055 MachineBasicBlock *SinkMBB) { 8056 MachineFunction *MF = TrueMBB->getParent(); 8057 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 8058 8059 MachineInstr *FirstMI = Selects.front(); 8060 unsigned CCValid = FirstMI->getOperand(3).getImm(); 8061 unsigned CCMask = FirstMI->getOperand(4).getImm(); 8062 8063 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 8064 8065 // As we are creating the PHIs, we have to be careful if there is more than 8066 // one. Later Selects may reference the results of earlier Selects, but later 8067 // PHIs have to reference the individual true/false inputs from earlier PHIs. 8068 // That also means that PHI construction must work forward from earlier to 8069 // later, and that the code must maintain a mapping from earlier PHI's 8070 // destination registers, and the registers that went into the PHI. 8071 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 8072 8073 for (auto *MI : Selects) { 8074 Register DestReg = MI->getOperand(0).getReg(); 8075 Register TrueReg = MI->getOperand(1).getReg(); 8076 Register FalseReg = MI->getOperand(2).getReg(); 8077 8078 // If this Select we are generating is the opposite condition from 8079 // the jump we generated, then we have to swap the operands for the 8080 // PHI that is going to be generated. 8081 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 8082 std::swap(TrueReg, FalseReg); 8083 8084 if (RegRewriteTable.contains(TrueReg)) 8085 TrueReg = RegRewriteTable[TrueReg].first; 8086 8087 if (RegRewriteTable.contains(FalseReg)) 8088 FalseReg = RegRewriteTable[FalseReg].second; 8089 8090 DebugLoc DL = MI->getDebugLoc(); 8091 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 8092 .addReg(TrueReg).addMBB(TrueMBB) 8093 .addReg(FalseReg).addMBB(FalseMBB); 8094 8095 // Add this PHI to the rewrite table. 8096 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 8097 } 8098 8099 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8100 } 8101 8102 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 8103 MachineBasicBlock * 8104 SystemZTargetLowering::emitSelect(MachineInstr &MI, 8105 MachineBasicBlock *MBB) const { 8106 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 8107 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8108 8109 unsigned CCValid = MI.getOperand(3).getImm(); 8110 unsigned CCMask = MI.getOperand(4).getImm(); 8111 8112 // If we have a sequence of Select* pseudo instructions using the 8113 // same condition code value, we want to expand all of them into 8114 // a single pair of basic blocks using the same condition. 8115 SmallVector<MachineInstr*, 8> Selects; 8116 SmallVector<MachineInstr*, 8> DbgValues; 8117 Selects.push_back(&MI); 8118 unsigned Count = 0; 8119 for (MachineInstr &NextMI : llvm::make_range( 8120 std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { 8121 if (isSelectPseudo(NextMI)) { 8122 assert(NextMI.getOperand(3).getImm() == CCValid && 8123 "Bad CCValid operands since CC was not redefined."); 8124 if (NextMI.getOperand(4).getImm() == CCMask || 8125 NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { 8126 Selects.push_back(&NextMI); 8127 continue; 8128 } 8129 break; 8130 } 8131 if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) 8132 break; 8133 bool User = false; 8134 for (auto *SelMI : Selects) 8135 if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { 8136 User = true; 8137 break; 8138 } 8139 if (NextMI.isDebugInstr()) { 8140 if (User) { 8141 assert(NextMI.isDebugValue() && "Unhandled debug opcode."); 8142 DbgValues.push_back(&NextMI); 8143 } 8144 } else if (User || ++Count > 20) 8145 break; 8146 } 8147 8148 MachineInstr *LastMI = Selects.back(); 8149 bool CCKilled = 8150 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 8151 MachineBasicBlock *StartMBB = MBB; 8152 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 8153 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8154 8155 // Unless CC was killed in the last Select instruction, mark it as 8156 // live-in to both FalseMBB and JoinMBB. 8157 if (!CCKilled) { 8158 FalseMBB->addLiveIn(SystemZ::CC); 8159 JoinMBB->addLiveIn(SystemZ::CC); 8160 } 8161 8162 // StartMBB: 8163 // BRC CCMask, JoinMBB 8164 // # fallthrough to FalseMBB 8165 MBB = StartMBB; 8166 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8167 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8168 MBB->addSuccessor(JoinMBB); 8169 MBB->addSuccessor(FalseMBB); 8170 8171 // FalseMBB: 8172 // # fallthrough to JoinMBB 8173 MBB = FalseMBB; 8174 MBB->addSuccessor(JoinMBB); 8175 8176 // JoinMBB: 8177 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 8178 // ... 8179 MBB = JoinMBB; 8180 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 8181 for (auto *SelMI : Selects) 8182 SelMI->eraseFromParent(); 8183 8184 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 8185 for (auto *DbgMI : DbgValues) 8186 MBB->splice(InsertPos, StartMBB, DbgMI); 8187 8188 return JoinMBB; 8189 } 8190 8191 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 8192 // StoreOpcode is the store to use and Invert says whether the store should 8193 // happen when the condition is false rather than true. If a STORE ON 8194 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 8195 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 8196 MachineBasicBlock *MBB, 8197 unsigned StoreOpcode, 8198 unsigned STOCOpcode, 8199 bool Invert) const { 8200 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8201 8202 Register SrcReg = MI.getOperand(0).getReg(); 8203 MachineOperand Base = MI.getOperand(1); 8204 int64_t Disp = MI.getOperand(2).getImm(); 8205 Register IndexReg = MI.getOperand(3).getReg(); 8206 unsigned CCValid = MI.getOperand(4).getImm(); 8207 unsigned CCMask = MI.getOperand(5).getImm(); 8208 DebugLoc DL = MI.getDebugLoc(); 8209 8210 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 8211 8212 // ISel pattern matching also adds a load memory operand of the same 8213 // address, so take special care to find the storing memory operand. 8214 MachineMemOperand *MMO = nullptr; 8215 for (auto *I : MI.memoperands()) 8216 if (I->isStore()) { 8217 MMO = I; 8218 break; 8219 } 8220 8221 // Use STOCOpcode if possible. We could use different store patterns in 8222 // order to avoid matching the index register, but the performance trade-offs 8223 // might be more complicated in that case. 8224 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 8225 if (Invert) 8226 CCMask ^= CCValid; 8227 8228 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 8229 .addReg(SrcReg) 8230 .add(Base) 8231 .addImm(Disp) 8232 .addImm(CCValid) 8233 .addImm(CCMask) 8234 .addMemOperand(MMO); 8235 8236 MI.eraseFromParent(); 8237 return MBB; 8238 } 8239 8240 // Get the condition needed to branch around the store. 8241 if (!Invert) 8242 CCMask ^= CCValid; 8243 8244 MachineBasicBlock *StartMBB = MBB; 8245 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 8246 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8247 8248 // Unless CC was killed in the CondStore instruction, mark it as 8249 // live-in to both FalseMBB and JoinMBB. 8250 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 8251 FalseMBB->addLiveIn(SystemZ::CC); 8252 JoinMBB->addLiveIn(SystemZ::CC); 8253 } 8254 8255 // StartMBB: 8256 // BRC CCMask, JoinMBB 8257 // # fallthrough to FalseMBB 8258 MBB = StartMBB; 8259 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8260 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8261 MBB->addSuccessor(JoinMBB); 8262 MBB->addSuccessor(FalseMBB); 8263 8264 // FalseMBB: 8265 // store %SrcReg, %Disp(%Index,%Base) 8266 // # fallthrough to JoinMBB 8267 MBB = FalseMBB; 8268 BuildMI(MBB, DL, TII->get(StoreOpcode)) 8269 .addReg(SrcReg) 8270 .add(Base) 8271 .addImm(Disp) 8272 .addReg(IndexReg) 8273 .addMemOperand(MMO); 8274 MBB->addSuccessor(JoinMBB); 8275 8276 MI.eraseFromParent(); 8277 return JoinMBB; 8278 } 8279 8280 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI. 8281 MachineBasicBlock * 8282 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI, 8283 MachineBasicBlock *MBB, 8284 bool Unsigned) const { 8285 MachineFunction &MF = *MBB->getParent(); 8286 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8287 MachineRegisterInfo &MRI = MF.getRegInfo(); 8288 8289 // Synthetic instruction to compare 128-bit values. 8290 // Sets CC 1 if Op0 > Op1, sets a different CC otherwise. 8291 Register Op0 = MI.getOperand(0).getReg(); 8292 Register Op1 = MI.getOperand(1).getReg(); 8293 8294 MachineBasicBlock *StartMBB = MBB; 8295 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB); 8296 MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB); 8297 8298 // StartMBB: 8299 // 8300 // Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts. 8301 // Swap the inputs to get: 8302 // CC 1 if high(Op0) > high(Op1) 8303 // CC 2 if high(Op0) < high(Op1) 8304 // CC 0 if high(Op0) == high(Op1) 8305 // 8306 // If CC != 0, we'd done, so jump over the next instruction. 8307 // 8308 // VEC[L]G Op1, Op0 8309 // JNE JoinMBB 8310 // # fallthrough to HiEqMBB 8311 MBB = StartMBB; 8312 int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG; 8313 BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode)) 8314 .addReg(Op1).addReg(Op0); 8315 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8316 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB); 8317 MBB->addSuccessor(JoinMBB); 8318 MBB->addSuccessor(HiEqMBB); 8319 8320 // HiEqMBB: 8321 // 8322 // Otherwise, use VECTOR COMPARE HIGH LOGICAL. 8323 // Since we already know the high parts are equal, the CC 8324 // result will only depend on the low parts: 8325 // CC 1 if low(Op0) > low(Op1) 8326 // CC 3 if low(Op0) <= low(Op1) 8327 // 8328 // VCHLGS Tmp, Op0, Op1 8329 // # fallthrough to JoinMBB 8330 MBB = HiEqMBB; 8331 Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass); 8332 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp) 8333 .addReg(Op0).addReg(Op1); 8334 MBB->addSuccessor(JoinMBB); 8335 8336 // Mark CC as live-in to JoinMBB. 8337 JoinMBB->addLiveIn(SystemZ::CC); 8338 8339 MI.eraseFromParent(); 8340 return JoinMBB; 8341 } 8342 8343 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or 8344 // ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs 8345 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says 8346 // whether the field should be inverted after performing BinOpcode (e.g. for 8347 // NAND). 8348 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 8349 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 8350 bool Invert) const { 8351 MachineFunction &MF = *MBB->getParent(); 8352 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8353 MachineRegisterInfo &MRI = MF.getRegInfo(); 8354 8355 // Extract the operands. Base can be a register or a frame index. 8356 // Src2 can be a register or immediate. 8357 Register Dest = MI.getOperand(0).getReg(); 8358 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8359 int64_t Disp = MI.getOperand(2).getImm(); 8360 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 8361 Register BitShift = MI.getOperand(4).getReg(); 8362 Register NegBitShift = MI.getOperand(5).getReg(); 8363 unsigned BitSize = MI.getOperand(6).getImm(); 8364 DebugLoc DL = MI.getDebugLoc(); 8365 8366 // Get the right opcodes for the displacement. 8367 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8368 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8369 assert(LOpcode && CSOpcode && "Displacement out of range"); 8370 8371 // Create virtual registers for temporary results. 8372 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8373 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8374 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8375 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8376 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8377 8378 // Insert a basic block for the main loop. 8379 MachineBasicBlock *StartMBB = MBB; 8380 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8381 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8382 8383 // StartMBB: 8384 // ... 8385 // %OrigVal = L Disp(%Base) 8386 // # fall through to LoopMBB 8387 MBB = StartMBB; 8388 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8389 MBB->addSuccessor(LoopMBB); 8390 8391 // LoopMBB: 8392 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 8393 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8394 // %RotatedNewVal = OP %RotatedOldVal, %Src2 8395 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8396 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8397 // JNE LoopMBB 8398 // # fall through to DoneMBB 8399 MBB = LoopMBB; 8400 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8401 .addReg(OrigVal).addMBB(StartMBB) 8402 .addReg(Dest).addMBB(LoopMBB); 8403 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8404 .addReg(OldVal).addReg(BitShift).addImm(0); 8405 if (Invert) { 8406 // Perform the operation normally and then invert every bit of the field. 8407 Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8408 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 8409 // XILF with the upper BitSize bits set. 8410 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 8411 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 8412 } else if (BinOpcode) 8413 // A simply binary operation. 8414 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 8415 .addReg(RotatedOldVal) 8416 .add(Src2); 8417 else 8418 // Use RISBG to rotate Src2 into position and use it to replace the 8419 // field in RotatedOldVal. 8420 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 8421 .addReg(RotatedOldVal).addReg(Src2.getReg()) 8422 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 8423 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8424 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8425 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8426 .addReg(OldVal) 8427 .addReg(NewVal) 8428 .add(Base) 8429 .addImm(Disp); 8430 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8431 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8432 MBB->addSuccessor(LoopMBB); 8433 MBB->addSuccessor(DoneMBB); 8434 8435 MI.eraseFromParent(); 8436 return DoneMBB; 8437 } 8438 8439 // Implement EmitInstrWithCustomInserter for subword pseudo 8440 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 8441 // instruction that should be used to compare the current field with the 8442 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 8443 // for when the current field should be kept. 8444 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 8445 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 8446 unsigned KeepOldMask) const { 8447 MachineFunction &MF = *MBB->getParent(); 8448 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8449 MachineRegisterInfo &MRI = MF.getRegInfo(); 8450 8451 // Extract the operands. Base can be a register or a frame index. 8452 Register Dest = MI.getOperand(0).getReg(); 8453 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8454 int64_t Disp = MI.getOperand(2).getImm(); 8455 Register Src2 = MI.getOperand(3).getReg(); 8456 Register BitShift = MI.getOperand(4).getReg(); 8457 Register NegBitShift = MI.getOperand(5).getReg(); 8458 unsigned BitSize = MI.getOperand(6).getImm(); 8459 DebugLoc DL = MI.getDebugLoc(); 8460 8461 // Get the right opcodes for the displacement. 8462 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8463 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8464 assert(LOpcode && CSOpcode && "Displacement out of range"); 8465 8466 // Create virtual registers for temporary results. 8467 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8468 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8469 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8470 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8471 Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8472 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8473 8474 // Insert 3 basic blocks for the loop. 8475 MachineBasicBlock *StartMBB = MBB; 8476 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8477 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8478 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 8479 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 8480 8481 // StartMBB: 8482 // ... 8483 // %OrigVal = L Disp(%Base) 8484 // # fall through to LoopMBB 8485 MBB = StartMBB; 8486 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8487 MBB->addSuccessor(LoopMBB); 8488 8489 // LoopMBB: 8490 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 8491 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8492 // CompareOpcode %RotatedOldVal, %Src2 8493 // BRC KeepOldMask, UpdateMBB 8494 MBB = LoopMBB; 8495 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8496 .addReg(OrigVal).addMBB(StartMBB) 8497 .addReg(Dest).addMBB(UpdateMBB); 8498 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8499 .addReg(OldVal).addReg(BitShift).addImm(0); 8500 BuildMI(MBB, DL, TII->get(CompareOpcode)) 8501 .addReg(RotatedOldVal).addReg(Src2); 8502 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8503 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 8504 MBB->addSuccessor(UpdateMBB); 8505 MBB->addSuccessor(UseAltMBB); 8506 8507 // UseAltMBB: 8508 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 8509 // # fall through to UpdateMBB 8510 MBB = UseAltMBB; 8511 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 8512 .addReg(RotatedOldVal).addReg(Src2) 8513 .addImm(32).addImm(31 + BitSize).addImm(0); 8514 MBB->addSuccessor(UpdateMBB); 8515 8516 // UpdateMBB: 8517 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 8518 // [ %RotatedAltVal, UseAltMBB ] 8519 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8520 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8521 // JNE LoopMBB 8522 // # fall through to DoneMBB 8523 MBB = UpdateMBB; 8524 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 8525 .addReg(RotatedOldVal).addMBB(LoopMBB) 8526 .addReg(RotatedAltVal).addMBB(UseAltMBB); 8527 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8528 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8529 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8530 .addReg(OldVal) 8531 .addReg(NewVal) 8532 .add(Base) 8533 .addImm(Disp); 8534 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8535 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8536 MBB->addSuccessor(LoopMBB); 8537 MBB->addSuccessor(DoneMBB); 8538 8539 MI.eraseFromParent(); 8540 return DoneMBB; 8541 } 8542 8543 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW 8544 // instruction MI. 8545 MachineBasicBlock * 8546 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 8547 MachineBasicBlock *MBB) const { 8548 MachineFunction &MF = *MBB->getParent(); 8549 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8550 MachineRegisterInfo &MRI = MF.getRegInfo(); 8551 8552 // Extract the operands. Base can be a register or a frame index. 8553 Register Dest = MI.getOperand(0).getReg(); 8554 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8555 int64_t Disp = MI.getOperand(2).getImm(); 8556 Register CmpVal = MI.getOperand(3).getReg(); 8557 Register OrigSwapVal = MI.getOperand(4).getReg(); 8558 Register BitShift = MI.getOperand(5).getReg(); 8559 Register NegBitShift = MI.getOperand(6).getReg(); 8560 int64_t BitSize = MI.getOperand(7).getImm(); 8561 DebugLoc DL = MI.getDebugLoc(); 8562 8563 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 8564 8565 // Get the right opcodes for the displacement and zero-extension. 8566 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8567 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8568 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 8569 assert(LOpcode && CSOpcode && "Displacement out of range"); 8570 8571 // Create virtual registers for temporary results. 8572 Register OrigOldVal = MRI.createVirtualRegister(RC); 8573 Register OldVal = MRI.createVirtualRegister(RC); 8574 Register SwapVal = MRI.createVirtualRegister(RC); 8575 Register StoreVal = MRI.createVirtualRegister(RC); 8576 Register OldValRot = MRI.createVirtualRegister(RC); 8577 Register RetryOldVal = MRI.createVirtualRegister(RC); 8578 Register RetrySwapVal = MRI.createVirtualRegister(RC); 8579 8580 // Insert 2 basic blocks for the loop. 8581 MachineBasicBlock *StartMBB = MBB; 8582 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8583 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8584 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 8585 8586 // StartMBB: 8587 // ... 8588 // %OrigOldVal = L Disp(%Base) 8589 // # fall through to LoopMBB 8590 MBB = StartMBB; 8591 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 8592 .add(Base) 8593 .addImm(Disp) 8594 .addReg(0); 8595 MBB->addSuccessor(LoopMBB); 8596 8597 // LoopMBB: 8598 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 8599 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8600 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 8601 // ^^ The low BitSize bits contain the field 8602 // of interest. 8603 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 8604 // ^^ Replace the upper 32-BitSize bits of the 8605 // swap value with those that we loaded and rotated. 8606 // %Dest = LL[CH] %OldValRot 8607 // CR %Dest, %CmpVal 8608 // JNE DoneMBB 8609 // # Fall through to SetMBB 8610 MBB = LoopMBB; 8611 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8612 .addReg(OrigOldVal).addMBB(StartMBB) 8613 .addReg(RetryOldVal).addMBB(SetMBB); 8614 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 8615 .addReg(OrigSwapVal).addMBB(StartMBB) 8616 .addReg(RetrySwapVal).addMBB(SetMBB); 8617 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 8618 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8619 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8620 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8621 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8622 .addReg(OldValRot); 8623 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8624 .addReg(Dest).addReg(CmpVal); 8625 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8626 .addImm(SystemZ::CCMASK_ICMP) 8627 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 8628 MBB->addSuccessor(DoneMBB); 8629 MBB->addSuccessor(SetMBB); 8630 8631 // SetMBB: 8632 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 8633 // ^^ Rotate the new field to its proper position. 8634 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 8635 // JNE LoopMBB 8636 // # fall through to ExitMBB 8637 MBB = SetMBB; 8638 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 8639 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 8640 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 8641 .addReg(OldVal) 8642 .addReg(StoreVal) 8643 .add(Base) 8644 .addImm(Disp); 8645 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8646 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8647 MBB->addSuccessor(LoopMBB); 8648 MBB->addSuccessor(DoneMBB); 8649 8650 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 8651 // to the block after the loop. At this point, CC may have been defined 8652 // either by the CR in LoopMBB or by the CS in SetMBB. 8653 if (!MI.registerDefIsDead(SystemZ::CC)) 8654 DoneMBB->addLiveIn(SystemZ::CC); 8655 8656 MI.eraseFromParent(); 8657 return DoneMBB; 8658 } 8659 8660 // Emit a move from two GR64s to a GR128. 8661 MachineBasicBlock * 8662 SystemZTargetLowering::emitPair128(MachineInstr &MI, 8663 MachineBasicBlock *MBB) const { 8664 MachineFunction &MF = *MBB->getParent(); 8665 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8666 MachineRegisterInfo &MRI = MF.getRegInfo(); 8667 DebugLoc DL = MI.getDebugLoc(); 8668 8669 Register Dest = MI.getOperand(0).getReg(); 8670 Register Hi = MI.getOperand(1).getReg(); 8671 Register Lo = MI.getOperand(2).getReg(); 8672 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8673 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8674 8675 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 8676 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 8677 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 8678 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8679 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 8680 8681 MI.eraseFromParent(); 8682 return MBB; 8683 } 8684 8685 // Emit an extension from a GR64 to a GR128. ClearEven is true 8686 // if the high register of the GR128 value must be cleared or false if 8687 // it's "don't care". 8688 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 8689 MachineBasicBlock *MBB, 8690 bool ClearEven) const { 8691 MachineFunction &MF = *MBB->getParent(); 8692 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8693 MachineRegisterInfo &MRI = MF.getRegInfo(); 8694 DebugLoc DL = MI.getDebugLoc(); 8695 8696 Register Dest = MI.getOperand(0).getReg(); 8697 Register Src = MI.getOperand(1).getReg(); 8698 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8699 8700 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 8701 if (ClearEven) { 8702 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8703 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8704 8705 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8706 .addImm(0); 8707 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8708 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8709 In128 = NewIn128; 8710 } 8711 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8712 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8713 8714 MI.eraseFromParent(); 8715 return MBB; 8716 } 8717 8718 MachineBasicBlock * 8719 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8720 MachineBasicBlock *MBB, 8721 unsigned Opcode, bool IsMemset) const { 8722 MachineFunction &MF = *MBB->getParent(); 8723 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8724 MachineRegisterInfo &MRI = MF.getRegInfo(); 8725 DebugLoc DL = MI.getDebugLoc(); 8726 8727 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8728 uint64_t DestDisp = MI.getOperand(1).getImm(); 8729 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8730 uint64_t SrcDisp; 8731 8732 // Fold the displacement Disp if it is out of range. 8733 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8734 if (!isUInt<12>(Disp)) { 8735 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8736 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8737 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8738 .add(Base).addImm(Disp).addReg(0); 8739 Base = MachineOperand::CreateReg(Reg, false); 8740 Disp = 0; 8741 } 8742 }; 8743 8744 if (!IsMemset) { 8745 SrcBase = earlyUseOperand(MI.getOperand(2)); 8746 SrcDisp = MI.getOperand(3).getImm(); 8747 } else { 8748 SrcBase = DestBase; 8749 SrcDisp = DestDisp++; 8750 foldDisplIfNeeded(DestBase, DestDisp); 8751 } 8752 8753 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8754 bool IsImmForm = LengthMO.isImm(); 8755 bool IsRegForm = !IsImmForm; 8756 8757 // Build and insert one Opcode of Length, with special treatment for memset. 8758 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8759 MachineBasicBlock::iterator InsPos, 8760 MachineOperand DBase, uint64_t DDisp, 8761 MachineOperand SBase, uint64_t SDisp, 8762 unsigned Length) -> void { 8763 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8764 if (IsMemset) { 8765 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8766 if (ByteMO.isImm()) 8767 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8768 .add(SBase).addImm(SDisp).add(ByteMO); 8769 else 8770 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8771 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8772 if (--Length == 0) 8773 return; 8774 } 8775 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8776 .add(DBase).addImm(DDisp).addImm(Length) 8777 .add(SBase).addImm(SDisp) 8778 .setMemRefs(MI.memoperands()); 8779 }; 8780 8781 bool NeedsLoop = false; 8782 uint64_t ImmLength = 0; 8783 Register LenAdjReg = SystemZ::NoRegister; 8784 if (IsImmForm) { 8785 ImmLength = LengthMO.getImm(); 8786 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8787 if (ImmLength == 0) { 8788 MI.eraseFromParent(); 8789 return MBB; 8790 } 8791 if (Opcode == SystemZ::CLC) { 8792 if (ImmLength > 3 * 256) 8793 // A two-CLC sequence is a clear win over a loop, not least because 8794 // it needs only one branch. A three-CLC sequence needs the same 8795 // number of branches as a loop (i.e. 2), but is shorter. That 8796 // brings us to lengths greater than 768 bytes. It seems relatively 8797 // likely that a difference will be found within the first 768 bytes, 8798 // so we just optimize for the smallest number of branch 8799 // instructions, in order to avoid polluting the prediction buffer 8800 // too much. 8801 NeedsLoop = true; 8802 } else if (ImmLength > 6 * 256) 8803 // The heuristic we use is to prefer loops for anything that would 8804 // require 7 or more MVCs. With these kinds of sizes there isn't much 8805 // to choose between straight-line code and looping code, since the 8806 // time will be dominated by the MVCs themselves. 8807 NeedsLoop = true; 8808 } else { 8809 NeedsLoop = true; 8810 LenAdjReg = LengthMO.getReg(); 8811 } 8812 8813 // When generating more than one CLC, all but the last will need to 8814 // branch to the end when a difference is found. 8815 MachineBasicBlock *EndMBB = 8816 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8817 ? SystemZ::splitBlockAfter(MI, MBB) 8818 : nullptr); 8819 8820 if (NeedsLoop) { 8821 Register StartCountReg = 8822 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8823 if (IsImmForm) { 8824 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8825 ImmLength &= 255; 8826 } else { 8827 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8828 .addReg(LenAdjReg) 8829 .addReg(0) 8830 .addImm(8); 8831 } 8832 8833 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8834 auto loadZeroAddress = [&]() -> MachineOperand { 8835 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8836 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8837 return MachineOperand::CreateReg(Reg, false); 8838 }; 8839 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8840 DestBase = loadZeroAddress(); 8841 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8842 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8843 8844 MachineBasicBlock *StartMBB = nullptr; 8845 MachineBasicBlock *LoopMBB = nullptr; 8846 MachineBasicBlock *NextMBB = nullptr; 8847 MachineBasicBlock *DoneMBB = nullptr; 8848 MachineBasicBlock *AllDoneMBB = nullptr; 8849 8850 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8851 Register StartDestReg = 8852 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8853 8854 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8855 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8856 Register ThisDestReg = 8857 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8858 Register NextSrcReg = MRI.createVirtualRegister(RC); 8859 Register NextDestReg = 8860 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8861 RC = &SystemZ::GR64BitRegClass; 8862 Register ThisCountReg = MRI.createVirtualRegister(RC); 8863 Register NextCountReg = MRI.createVirtualRegister(RC); 8864 8865 if (IsRegForm) { 8866 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8867 StartMBB = SystemZ::emitBlockAfter(MBB); 8868 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8869 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8870 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8871 8872 // MBB: 8873 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8874 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8875 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8876 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8877 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8878 .addMBB(AllDoneMBB); 8879 MBB->addSuccessor(AllDoneMBB); 8880 if (!IsMemset) 8881 MBB->addSuccessor(StartMBB); 8882 else { 8883 // MemsetOneCheckMBB: 8884 // # Jump to MemsetOneMBB for a memset of length 1, or 8885 // # fall thru to StartMBB. 8886 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8887 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8888 MBB->addSuccessor(MemsetOneCheckMBB); 8889 MBB = MemsetOneCheckMBB; 8890 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8891 .addReg(LenAdjReg).addImm(-1); 8892 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8893 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8894 .addMBB(MemsetOneMBB); 8895 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8896 MBB->addSuccessor(StartMBB, {90, 100}); 8897 8898 // MemsetOneMBB: 8899 // # Jump back to AllDoneMBB after a single MVI or STC. 8900 MBB = MemsetOneMBB; 8901 insertMemMemOp(MBB, MBB->end(), 8902 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8903 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8904 1); 8905 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8906 MBB->addSuccessor(AllDoneMBB); 8907 } 8908 8909 // StartMBB: 8910 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8911 MBB = StartMBB; 8912 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8913 .addReg(StartCountReg).addImm(0); 8914 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8915 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8916 .addMBB(DoneMBB); 8917 MBB->addSuccessor(DoneMBB); 8918 MBB->addSuccessor(LoopMBB); 8919 } 8920 else { 8921 StartMBB = MBB; 8922 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8923 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8924 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8925 8926 // StartMBB: 8927 // # fall through to LoopMBB 8928 MBB->addSuccessor(LoopMBB); 8929 8930 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8931 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8932 if (EndMBB && !ImmLength) 8933 // If the loop handled the whole CLC range, DoneMBB will be empty with 8934 // CC live-through into EndMBB, so add it as live-in. 8935 DoneMBB->addLiveIn(SystemZ::CC); 8936 } 8937 8938 // LoopMBB: 8939 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8940 // [ %NextDestReg, NextMBB ] 8941 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8942 // [ %NextSrcReg, NextMBB ] 8943 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8944 // [ %NextCountReg, NextMBB ] 8945 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8946 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8947 // ( JLH EndMBB ) 8948 // 8949 // The prefetch is used only for MVC. The JLH is used only for CLC. 8950 MBB = LoopMBB; 8951 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8952 .addReg(StartDestReg).addMBB(StartMBB) 8953 .addReg(NextDestReg).addMBB(NextMBB); 8954 if (!HaveSingleBase) 8955 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8956 .addReg(StartSrcReg).addMBB(StartMBB) 8957 .addReg(NextSrcReg).addMBB(NextMBB); 8958 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8959 .addReg(StartCountReg).addMBB(StartMBB) 8960 .addReg(NextCountReg).addMBB(NextMBB); 8961 if (Opcode == SystemZ::MVC) 8962 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8963 .addImm(SystemZ::PFD_WRITE) 8964 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8965 insertMemMemOp(MBB, MBB->end(), 8966 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8967 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8968 if (EndMBB) { 8969 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8970 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8971 .addMBB(EndMBB); 8972 MBB->addSuccessor(EndMBB); 8973 MBB->addSuccessor(NextMBB); 8974 } 8975 8976 // NextMBB: 8977 // %NextDestReg = LA 256(%ThisDestReg) 8978 // %NextSrcReg = LA 256(%ThisSrcReg) 8979 // %NextCountReg = AGHI %ThisCountReg, -1 8980 // CGHI %NextCountReg, 0 8981 // JLH LoopMBB 8982 // # fall through to DoneMBB 8983 // 8984 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8985 MBB = NextMBB; 8986 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8987 .addReg(ThisDestReg).addImm(256).addReg(0); 8988 if (!HaveSingleBase) 8989 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8990 .addReg(ThisSrcReg).addImm(256).addReg(0); 8991 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8992 .addReg(ThisCountReg).addImm(-1); 8993 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8994 .addReg(NextCountReg).addImm(0); 8995 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8996 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8997 .addMBB(LoopMBB); 8998 MBB->addSuccessor(LoopMBB); 8999 MBB->addSuccessor(DoneMBB); 9000 9001 MBB = DoneMBB; 9002 if (IsRegForm) { 9003 // DoneMBB: 9004 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 9005 // # Use EXecute Relative Long for the remainder of the bytes. The target 9006 // instruction of the EXRL will have a length field of 1 since 0 is an 9007 // illegal value. The number of bytes processed becomes (%LenAdjReg & 9008 // 0xff) + 1. 9009 // # Fall through to AllDoneMBB. 9010 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9011 Register RemDestReg = HaveSingleBase ? RemSrcReg 9012 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9013 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 9014 .addReg(StartDestReg).addMBB(StartMBB) 9015 .addReg(NextDestReg).addMBB(NextMBB); 9016 if (!HaveSingleBase) 9017 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 9018 .addReg(StartSrcReg).addMBB(StartMBB) 9019 .addReg(NextSrcReg).addMBB(NextMBB); 9020 if (IsMemset) 9021 insertMemMemOp(MBB, MBB->end(), 9022 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 9023 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 9024 MachineInstrBuilder EXRL_MIB = 9025 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 9026 .addImm(Opcode) 9027 .addReg(LenAdjReg) 9028 .addReg(RemDestReg).addImm(DestDisp) 9029 .addReg(RemSrcReg).addImm(SrcDisp); 9030 MBB->addSuccessor(AllDoneMBB); 9031 MBB = AllDoneMBB; 9032 if (Opcode != SystemZ::MVC) { 9033 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 9034 if (EndMBB) 9035 MBB->addLiveIn(SystemZ::CC); 9036 } 9037 } 9038 MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9039 } 9040 9041 // Handle any remaining bytes with straight-line code. 9042 while (ImmLength > 0) { 9043 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 9044 // The previous iteration might have created out-of-range displacements. 9045 // Apply them using LA/LAY if so. 9046 foldDisplIfNeeded(DestBase, DestDisp); 9047 foldDisplIfNeeded(SrcBase, SrcDisp); 9048 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 9049 DestDisp += ThisLength; 9050 SrcDisp += ThisLength; 9051 ImmLength -= ThisLength; 9052 // If there's another CLC to go, branch to the end if a difference 9053 // was found. 9054 if (EndMBB && ImmLength > 0) { 9055 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 9056 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9057 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9058 .addMBB(EndMBB); 9059 MBB->addSuccessor(EndMBB); 9060 MBB->addSuccessor(NextMBB); 9061 MBB = NextMBB; 9062 } 9063 } 9064 if (EndMBB) { 9065 MBB->addSuccessor(EndMBB); 9066 MBB = EndMBB; 9067 MBB->addLiveIn(SystemZ::CC); 9068 } 9069 9070 MI.eraseFromParent(); 9071 return MBB; 9072 } 9073 9074 // Decompose string pseudo-instruction MI into a loop that continually performs 9075 // Opcode until CC != 3. 9076 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 9077 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9078 MachineFunction &MF = *MBB->getParent(); 9079 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9080 MachineRegisterInfo &MRI = MF.getRegInfo(); 9081 DebugLoc DL = MI.getDebugLoc(); 9082 9083 uint64_t End1Reg = MI.getOperand(0).getReg(); 9084 uint64_t Start1Reg = MI.getOperand(1).getReg(); 9085 uint64_t Start2Reg = MI.getOperand(2).getReg(); 9086 uint64_t CharReg = MI.getOperand(3).getReg(); 9087 9088 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 9089 uint64_t This1Reg = MRI.createVirtualRegister(RC); 9090 uint64_t This2Reg = MRI.createVirtualRegister(RC); 9091 uint64_t End2Reg = MRI.createVirtualRegister(RC); 9092 9093 MachineBasicBlock *StartMBB = MBB; 9094 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 9095 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 9096 9097 // StartMBB: 9098 // # fall through to LoopMBB 9099 MBB->addSuccessor(LoopMBB); 9100 9101 // LoopMBB: 9102 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 9103 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 9104 // R0L = %CharReg 9105 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 9106 // JO LoopMBB 9107 // # fall through to DoneMBB 9108 // 9109 // The load of R0L can be hoisted by post-RA LICM. 9110 MBB = LoopMBB; 9111 9112 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 9113 .addReg(Start1Reg).addMBB(StartMBB) 9114 .addReg(End1Reg).addMBB(LoopMBB); 9115 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 9116 .addReg(Start2Reg).addMBB(StartMBB) 9117 .addReg(End2Reg).addMBB(LoopMBB); 9118 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 9119 BuildMI(MBB, DL, TII->get(Opcode)) 9120 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 9121 .addReg(This1Reg).addReg(This2Reg); 9122 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9123 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 9124 MBB->addSuccessor(LoopMBB); 9125 MBB->addSuccessor(DoneMBB); 9126 9127 DoneMBB->addLiveIn(SystemZ::CC); 9128 9129 MI.eraseFromParent(); 9130 return DoneMBB; 9131 } 9132 9133 // Update TBEGIN instruction with final opcode and register clobbers. 9134 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 9135 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 9136 bool NoFloat) const { 9137 MachineFunction &MF = *MBB->getParent(); 9138 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 9139 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9140 9141 // Update opcode. 9142 MI.setDesc(TII->get(Opcode)); 9143 9144 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 9145 // Make sure to add the corresponding GRSM bits if they are missing. 9146 uint64_t Control = MI.getOperand(2).getImm(); 9147 static const unsigned GPRControlBit[16] = { 9148 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 9149 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 9150 }; 9151 Control |= GPRControlBit[15]; 9152 if (TFI->hasFP(MF)) 9153 Control |= GPRControlBit[11]; 9154 MI.getOperand(2).setImm(Control); 9155 9156 // Add GPR clobbers. 9157 for (int I = 0; I < 16; I++) { 9158 if ((Control & GPRControlBit[I]) == 0) { 9159 unsigned Reg = SystemZMC::GR64Regs[I]; 9160 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9161 } 9162 } 9163 9164 // Add FPR/VR clobbers. 9165 if (!NoFloat && (Control & 4) != 0) { 9166 if (Subtarget.hasVector()) { 9167 for (unsigned Reg : SystemZMC::VR128Regs) { 9168 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9169 } 9170 } else { 9171 for (unsigned Reg : SystemZMC::FP64Regs) { 9172 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9173 } 9174 } 9175 } 9176 9177 return MBB; 9178 } 9179 9180 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 9181 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9182 MachineFunction &MF = *MBB->getParent(); 9183 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9184 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9185 DebugLoc DL = MI.getDebugLoc(); 9186 9187 Register SrcReg = MI.getOperand(0).getReg(); 9188 9189 // Create new virtual register of the same class as source. 9190 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 9191 Register DstReg = MRI->createVirtualRegister(RC); 9192 9193 // Replace pseudo with a normal load-and-test that models the def as 9194 // well. 9195 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 9196 .addReg(SrcReg) 9197 .setMIFlags(MI.getFlags()); 9198 MI.eraseFromParent(); 9199 9200 return MBB; 9201 } 9202 9203 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 9204 MachineInstr &MI, MachineBasicBlock *MBB) const { 9205 MachineFunction &MF = *MBB->getParent(); 9206 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9207 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9208 DebugLoc DL = MI.getDebugLoc(); 9209 const unsigned ProbeSize = getStackProbeSize(MF); 9210 Register DstReg = MI.getOperand(0).getReg(); 9211 Register SizeReg = MI.getOperand(2).getReg(); 9212 9213 MachineBasicBlock *StartMBB = MBB; 9214 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 9215 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 9216 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 9217 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 9218 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 9219 9220 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 9221 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 9222 9223 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9224 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9225 9226 // LoopTestMBB 9227 // BRC TailTestMBB 9228 // # fallthrough to LoopBodyMBB 9229 StartMBB->addSuccessor(LoopTestMBB); 9230 MBB = LoopTestMBB; 9231 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 9232 .addReg(SizeReg) 9233 .addMBB(StartMBB) 9234 .addReg(IncReg) 9235 .addMBB(LoopBodyMBB); 9236 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 9237 .addReg(PHIReg) 9238 .addImm(ProbeSize); 9239 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9240 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 9241 .addMBB(TailTestMBB); 9242 MBB->addSuccessor(LoopBodyMBB); 9243 MBB->addSuccessor(TailTestMBB); 9244 9245 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 9246 // J LoopTestMBB 9247 MBB = LoopBodyMBB; 9248 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 9249 .addReg(PHIReg) 9250 .addImm(ProbeSize); 9251 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 9252 .addReg(SystemZ::R15D) 9253 .addImm(ProbeSize); 9254 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9255 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 9256 .setMemRefs(VolLdMMO); 9257 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 9258 MBB->addSuccessor(LoopTestMBB); 9259 9260 // TailTestMBB 9261 // BRC DoneMBB 9262 // # fallthrough to TailMBB 9263 MBB = TailTestMBB; 9264 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 9265 .addReg(PHIReg) 9266 .addImm(0); 9267 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9268 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 9269 .addMBB(DoneMBB); 9270 MBB->addSuccessor(TailMBB); 9271 MBB->addSuccessor(DoneMBB); 9272 9273 // TailMBB 9274 // # fallthrough to DoneMBB 9275 MBB = TailMBB; 9276 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 9277 .addReg(SystemZ::R15D) 9278 .addReg(PHIReg); 9279 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9280 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 9281 .setMemRefs(VolLdMMO); 9282 MBB->addSuccessor(DoneMBB); 9283 9284 // DoneMBB 9285 MBB = DoneMBB; 9286 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 9287 .addReg(SystemZ::R15D); 9288 9289 MI.eraseFromParent(); 9290 return DoneMBB; 9291 } 9292 9293 SDValue SystemZTargetLowering:: 9294 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 9295 MachineFunction &MF = DAG.getMachineFunction(); 9296 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 9297 SDLoc DL(SP); 9298 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 9299 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 9300 } 9301 9302 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 9303 MachineInstr &MI, MachineBasicBlock *MBB) const { 9304 switch (MI.getOpcode()) { 9305 case SystemZ::Select32: 9306 case SystemZ::Select64: 9307 case SystemZ::Select128: 9308 case SystemZ::SelectF32: 9309 case SystemZ::SelectF64: 9310 case SystemZ::SelectF128: 9311 case SystemZ::SelectVR32: 9312 case SystemZ::SelectVR64: 9313 case SystemZ::SelectVR128: 9314 return emitSelect(MI, MBB); 9315 9316 case SystemZ::CondStore8Mux: 9317 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 9318 case SystemZ::CondStore8MuxInv: 9319 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 9320 case SystemZ::CondStore16Mux: 9321 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 9322 case SystemZ::CondStore16MuxInv: 9323 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 9324 case SystemZ::CondStore32Mux: 9325 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 9326 case SystemZ::CondStore32MuxInv: 9327 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 9328 case SystemZ::CondStore8: 9329 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 9330 case SystemZ::CondStore8Inv: 9331 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 9332 case SystemZ::CondStore16: 9333 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 9334 case SystemZ::CondStore16Inv: 9335 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 9336 case SystemZ::CondStore32: 9337 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 9338 case SystemZ::CondStore32Inv: 9339 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 9340 case SystemZ::CondStore64: 9341 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 9342 case SystemZ::CondStore64Inv: 9343 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 9344 case SystemZ::CondStoreF32: 9345 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 9346 case SystemZ::CondStoreF32Inv: 9347 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 9348 case SystemZ::CondStoreF64: 9349 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 9350 case SystemZ::CondStoreF64Inv: 9351 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 9352 9353 case SystemZ::SCmp128Hi: 9354 return emitICmp128Hi(MI, MBB, false); 9355 case SystemZ::UCmp128Hi: 9356 return emitICmp128Hi(MI, MBB, true); 9357 9358 case SystemZ::PAIR128: 9359 return emitPair128(MI, MBB); 9360 case SystemZ::AEXT128: 9361 return emitExt128(MI, MBB, false); 9362 case SystemZ::ZEXT128: 9363 return emitExt128(MI, MBB, true); 9364 9365 case SystemZ::ATOMIC_SWAPW: 9366 return emitAtomicLoadBinary(MI, MBB, 0); 9367 9368 case SystemZ::ATOMIC_LOADW_AR: 9369 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR); 9370 case SystemZ::ATOMIC_LOADW_AFI: 9371 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI); 9372 9373 case SystemZ::ATOMIC_LOADW_SR: 9374 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR); 9375 9376 case SystemZ::ATOMIC_LOADW_NR: 9377 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR); 9378 case SystemZ::ATOMIC_LOADW_NILH: 9379 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH); 9380 9381 case SystemZ::ATOMIC_LOADW_OR: 9382 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR); 9383 case SystemZ::ATOMIC_LOADW_OILH: 9384 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH); 9385 9386 case SystemZ::ATOMIC_LOADW_XR: 9387 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR); 9388 case SystemZ::ATOMIC_LOADW_XILF: 9389 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF); 9390 9391 case SystemZ::ATOMIC_LOADW_NRi: 9392 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true); 9393 case SystemZ::ATOMIC_LOADW_NILHi: 9394 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true); 9395 9396 case SystemZ::ATOMIC_LOADW_MIN: 9397 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE); 9398 case SystemZ::ATOMIC_LOADW_MAX: 9399 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE); 9400 case SystemZ::ATOMIC_LOADW_UMIN: 9401 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE); 9402 case SystemZ::ATOMIC_LOADW_UMAX: 9403 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE); 9404 9405 case SystemZ::ATOMIC_CMP_SWAPW: 9406 return emitAtomicCmpSwapW(MI, MBB); 9407 case SystemZ::MVCImm: 9408 case SystemZ::MVCReg: 9409 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 9410 case SystemZ::NCImm: 9411 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 9412 case SystemZ::OCImm: 9413 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 9414 case SystemZ::XCImm: 9415 case SystemZ::XCReg: 9416 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 9417 case SystemZ::CLCImm: 9418 case SystemZ::CLCReg: 9419 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 9420 case SystemZ::MemsetImmImm: 9421 case SystemZ::MemsetImmReg: 9422 case SystemZ::MemsetRegImm: 9423 case SystemZ::MemsetRegReg: 9424 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 9425 case SystemZ::CLSTLoop: 9426 return emitStringWrapper(MI, MBB, SystemZ::CLST); 9427 case SystemZ::MVSTLoop: 9428 return emitStringWrapper(MI, MBB, SystemZ::MVST); 9429 case SystemZ::SRSTLoop: 9430 return emitStringWrapper(MI, MBB, SystemZ::SRST); 9431 case SystemZ::TBEGIN: 9432 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 9433 case SystemZ::TBEGIN_nofloat: 9434 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 9435 case SystemZ::TBEGINC: 9436 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 9437 case SystemZ::LTEBRCompare_VecPseudo: 9438 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 9439 case SystemZ::LTDBRCompare_VecPseudo: 9440 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 9441 case SystemZ::LTXBRCompare_VecPseudo: 9442 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 9443 9444 case SystemZ::PROBED_ALLOCA: 9445 return emitProbedAlloca(MI, MBB); 9446 9447 case TargetOpcode::STACKMAP: 9448 case TargetOpcode::PATCHPOINT: 9449 return emitPatchPoint(MI, MBB); 9450 9451 default: 9452 llvm_unreachable("Unexpected instr type to insert"); 9453 } 9454 } 9455 9456 // This is only used by the isel schedulers, and is needed only to prevent 9457 // compiler from crashing when list-ilp is used. 9458 const TargetRegisterClass * 9459 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 9460 if (VT == MVT::Untyped) 9461 return &SystemZ::ADDR128BitRegClass; 9462 return TargetLowering::getRepRegClassFor(VT); 9463 } 9464 9465 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, 9466 SelectionDAG &DAG) const { 9467 SDLoc dl(Op); 9468 /* 9469 The rounding method is in FPC Byte 3 bits 6-7, and has the following 9470 settings: 9471 00 Round to nearest 9472 01 Round to 0 9473 10 Round to +inf 9474 11 Round to -inf 9475 9476 FLT_ROUNDS, on the other hand, expects the following: 9477 -1 Undefined 9478 0 Round to 0 9479 1 Round to nearest 9480 2 Round to +inf 9481 3 Round to -inf 9482 */ 9483 9484 // Save FPC to register. 9485 SDValue Chain = Op.getOperand(0); 9486 SDValue EFPC( 9487 DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); 9488 Chain = EFPC.getValue(1); 9489 9490 // Transform as necessary 9491 SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, 9492 DAG.getConstant(3, dl, MVT::i32)); 9493 // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 9494 SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, 9495 DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, 9496 DAG.getConstant(1, dl, MVT::i32))); 9497 9498 SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, 9499 DAG.getConstant(1, dl, MVT::i32)); 9500 RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); 9501 9502 return DAG.getMergeValues({RetVal, Chain}, dl); 9503 } 9504