1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 #include <optional> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "systemz-lower" 33 34 namespace { 35 // Represents information about a comparison. 36 struct Comparison { 37 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 38 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 39 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 40 41 // The operands to the comparison. 42 SDValue Op0, Op1; 43 44 // Chain if this is a strict floating-point comparison. 45 SDValue Chain; 46 47 // The opcode that should be used to compare Op0 and Op1. 48 unsigned Opcode; 49 50 // A SystemZICMP value. Only used for integer comparisons. 51 unsigned ICmpType; 52 53 // The mask of CC values that Opcode can produce. 54 unsigned CCValid; 55 56 // The mask of CC values for which the original condition is true. 57 unsigned CCMask; 58 }; 59 } // end anonymous namespace 60 61 // Classify VT as either 32 or 64 bit. 62 static bool is32Bit(EVT VT) { 63 switch (VT.getSimpleVT().SimpleTy) { 64 case MVT::i32: 65 return true; 66 case MVT::i64: 67 return false; 68 default: 69 llvm_unreachable("Unsupported type"); 70 } 71 } 72 73 // Return a version of MachineOperand that can be safely used before the 74 // final use. 75 static MachineOperand earlyUseOperand(MachineOperand Op) { 76 if (Op.isReg()) 77 Op.setIsKill(false); 78 return Op; 79 } 80 81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 82 const SystemZSubtarget &STI) 83 : TargetLowering(TM), Subtarget(STI) { 84 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 85 86 auto *Regs = STI.getSpecialRegisters(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 if (!useSoftFloat()) { 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 if (Subtarget.hasVectorEnhancements1()) 103 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 104 else 105 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 106 107 if (Subtarget.hasVector()) { 108 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 114 } 115 116 if (Subtarget.hasVector()) 117 addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass); 118 } 119 120 // Compute derived properties from the register classes 121 computeRegisterProperties(Subtarget.getRegisterInfo()); 122 123 // Set up special registers. 124 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 125 126 // TODO: It may be better to default to latency-oriented scheduling, however 127 // LLVM's current latency-oriented scheduler can't handle physreg definitions 128 // such as SystemZ has with CC, so set this to the register-pressure 129 // scheduler, because it can. 130 setSchedulingPreference(Sched::RegPressure); 131 132 setBooleanContents(ZeroOrOneBooleanContent); 133 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 134 135 setMaxAtomicSizeInBitsSupported(128); 136 137 // Instructions are strings of 2-byte aligned 2-byte values. 138 setMinFunctionAlignment(Align(2)); 139 // For performance reasons we prefer 16-byte alignment. 140 setPrefFunctionAlignment(Align(16)); 141 142 // Handle operations that are handled in a similar way for all types. 143 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 144 I <= MVT::LAST_FP_VALUETYPE; 145 ++I) { 146 MVT VT = MVT::SimpleValueType(I); 147 if (isTypeLegal(VT)) { 148 // Lower SET_CC into an IPM-based sequence. 149 setOperationAction(ISD::SETCC, VT, Custom); 150 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 151 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 152 153 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 154 setOperationAction(ISD::SELECT, VT, Expand); 155 156 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 157 setOperationAction(ISD::SELECT_CC, VT, Custom); 158 setOperationAction(ISD::BR_CC, VT, Custom); 159 } 160 } 161 162 // Expand jump table branches as address arithmetic followed by an 163 // indirect jump. 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 166 // Expand BRCOND into a BR_CC (see above). 167 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 168 169 // Handle integer types except i128. 170 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 171 I <= MVT::LAST_INTEGER_VALUETYPE; 172 ++I) { 173 MVT VT = MVT::SimpleValueType(I); 174 if (isTypeLegal(VT) && VT != MVT::i128) { 175 setOperationAction(ISD::ABS, VT, Legal); 176 177 // Expand individual DIV and REMs into DIVREMs. 178 setOperationAction(ISD::SDIV, VT, Expand); 179 setOperationAction(ISD::UDIV, VT, Expand); 180 setOperationAction(ISD::SREM, VT, Expand); 181 setOperationAction(ISD::UREM, VT, Expand); 182 setOperationAction(ISD::SDIVREM, VT, Custom); 183 setOperationAction(ISD::UDIVREM, VT, Custom); 184 185 // Support addition/subtraction with overflow. 186 setOperationAction(ISD::SADDO, VT, Custom); 187 setOperationAction(ISD::SSUBO, VT, Custom); 188 189 // Support addition/subtraction with carry. 190 setOperationAction(ISD::UADDO, VT, Custom); 191 setOperationAction(ISD::USUBO, VT, Custom); 192 193 // Support carry in as value rather than glue. 194 setOperationAction(ISD::UADDO_CARRY, VT, Custom); 195 setOperationAction(ISD::USUBO_CARRY, VT, Custom); 196 197 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 198 // stores, putting a serialization instruction after the stores. 199 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 200 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 201 202 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 203 // available, or if the operand is constant. 204 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 205 206 // Use POPCNT on z196 and above. 207 if (Subtarget.hasPopulationCount()) 208 setOperationAction(ISD::CTPOP, VT, Custom); 209 else 210 setOperationAction(ISD::CTPOP, VT, Expand); 211 212 // No special instructions for these. 213 setOperationAction(ISD::CTTZ, VT, Expand); 214 setOperationAction(ISD::ROTR, VT, Expand); 215 216 // Use *MUL_LOHI where possible instead of MULH*. 217 setOperationAction(ISD::MULHS, VT, Expand); 218 setOperationAction(ISD::MULHU, VT, Expand); 219 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 220 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 221 222 // Only z196 and above have native support for conversions to unsigned. 223 // On z10, promoting to i64 doesn't generate an inexact condition for 224 // values that are outside the i32 range but in the i64 range, so use 225 // the default expansion. 226 if (!Subtarget.hasFPExtension()) 227 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 228 229 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 230 // default to Expand, so need to be modified to Legal where appropriate. 231 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 232 if (Subtarget.hasFPExtension()) 233 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 234 235 // And similarly for STRICT_[SU]INT_TO_FP. 236 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 237 if (Subtarget.hasFPExtension()) 238 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 239 } 240 } 241 242 // Handle i128 if legal. 243 if (isTypeLegal(MVT::i128)) { 244 // No special instructions for these. 245 setOperationAction(ISD::SDIVREM, MVT::i128, Expand); 246 setOperationAction(ISD::UDIVREM, MVT::i128, Expand); 247 setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand); 248 setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand); 249 setOperationAction(ISD::ROTR, MVT::i128, Expand); 250 setOperationAction(ISD::ROTL, MVT::i128, Expand); 251 setOperationAction(ISD::MUL, MVT::i128, Expand); 252 setOperationAction(ISD::MULHS, MVT::i128, Expand); 253 setOperationAction(ISD::MULHU, MVT::i128, Expand); 254 setOperationAction(ISD::SDIV, MVT::i128, Expand); 255 setOperationAction(ISD::UDIV, MVT::i128, Expand); 256 setOperationAction(ISD::SREM, MVT::i128, Expand); 257 setOperationAction(ISD::UREM, MVT::i128, Expand); 258 setOperationAction(ISD::CTLZ, MVT::i128, Expand); 259 setOperationAction(ISD::CTTZ, MVT::i128, Expand); 260 261 // Support addition/subtraction with carry. 262 setOperationAction(ISD::UADDO, MVT::i128, Custom); 263 setOperationAction(ISD::USUBO, MVT::i128, Custom); 264 setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom); 265 setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom); 266 267 // Use VPOPCT and add up partial results. 268 setOperationAction(ISD::CTPOP, MVT::i128, Custom); 269 270 // We have to use libcalls for these. 271 setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall); 272 setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall); 273 setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall); 274 setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall); 275 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall); 276 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall); 277 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall); 278 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall); 279 } 280 281 // Type legalization will convert 8- and 16-bit atomic operations into 282 // forms that operate on i32s (but still keeping the original memory VT). 283 // Lower them into full i32 operations. 284 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 285 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 286 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 287 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 288 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 289 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 290 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 291 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 292 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 293 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 294 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 295 296 // Whether or not i128 is not a legal type, we need to custom lower 297 // the atomic operations in order to exploit SystemZ instructions. 298 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 299 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 300 301 // We can use the CC result of compare-and-swap to implement 302 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 303 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 304 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 305 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 306 307 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 308 309 // Traps are legal, as we will convert them to "j .+2". 310 setOperationAction(ISD::TRAP, MVT::Other, Legal); 311 312 // z10 has instructions for signed but not unsigned FP conversion. 313 // Handle unsigned 32-bit types as signed 64-bit types. 314 if (!Subtarget.hasFPExtension()) { 315 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 316 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 317 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 318 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 319 } 320 321 // We have native support for a 64-bit CTLZ, via FLOGR. 322 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 324 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 325 326 // On z15 we have native support for a 64-bit CTPOP. 327 if (Subtarget.hasMiscellaneousExtensions3()) { 328 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 329 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 330 } 331 332 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 333 setOperationAction(ISD::OR, MVT::i64, Custom); 334 335 // Expand 128 bit shifts without using a libcall. 336 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 337 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 338 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 339 setLibcallName(RTLIB::SRL_I128, nullptr); 340 setLibcallName(RTLIB::SHL_I128, nullptr); 341 setLibcallName(RTLIB::SRA_I128, nullptr); 342 343 // Also expand 256 bit shifts if i128 is a legal type. 344 if (isTypeLegal(MVT::i128)) { 345 setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand); 346 setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand); 347 setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand); 348 } 349 350 // Handle bitcast from fp128 to i128. 351 if (!isTypeLegal(MVT::i128)) 352 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 353 354 // We have native instructions for i8, i16 and i32 extensions, but not i1. 355 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 356 for (MVT VT : MVT::integer_valuetypes()) { 357 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 358 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 359 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 360 } 361 362 // Handle the various types of symbolic address. 363 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 364 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 365 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 366 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 367 setOperationAction(ISD::JumpTable, PtrVT, Custom); 368 369 // We need to handle dynamic allocations specially because of the 370 // 160-byte area at the bottom of the stack. 371 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 372 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 373 374 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 375 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 376 377 // Handle prefetches with PFD or PFDRL. 378 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 379 380 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 381 // Assume by default that all vector operations need to be expanded. 382 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 383 if (getOperationAction(Opcode, VT) == Legal) 384 setOperationAction(Opcode, VT, Expand); 385 386 // Likewise all truncating stores and extending loads. 387 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 388 setTruncStoreAction(VT, InnerVT, Expand); 389 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 390 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 391 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 392 } 393 394 if (isTypeLegal(VT)) { 395 // These operations are legal for anything that can be stored in a 396 // vector register, even if there is no native support for the format 397 // as such. In particular, we can do these for v4f32 even though there 398 // are no specific instructions for that format. 399 setOperationAction(ISD::LOAD, VT, Legal); 400 setOperationAction(ISD::STORE, VT, Legal); 401 setOperationAction(ISD::VSELECT, VT, Legal); 402 setOperationAction(ISD::BITCAST, VT, Legal); 403 setOperationAction(ISD::UNDEF, VT, Legal); 404 405 // Likewise, except that we need to replace the nodes with something 406 // more specific. 407 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 408 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 409 } 410 } 411 412 // Handle integer vector types. 413 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 414 if (isTypeLegal(VT)) { 415 // These operations have direct equivalents. 416 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 417 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 418 setOperationAction(ISD::ADD, VT, Legal); 419 setOperationAction(ISD::SUB, VT, Legal); 420 if (VT != MVT::v2i64) 421 setOperationAction(ISD::MUL, VT, Legal); 422 setOperationAction(ISD::ABS, VT, Legal); 423 setOperationAction(ISD::AND, VT, Legal); 424 setOperationAction(ISD::OR, VT, Legal); 425 setOperationAction(ISD::XOR, VT, Legal); 426 if (Subtarget.hasVectorEnhancements1()) 427 setOperationAction(ISD::CTPOP, VT, Legal); 428 else 429 setOperationAction(ISD::CTPOP, VT, Custom); 430 setOperationAction(ISD::CTTZ, VT, Legal); 431 setOperationAction(ISD::CTLZ, VT, Legal); 432 433 // Convert a GPR scalar to a vector by inserting it into element 0. 434 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 435 436 // Use a series of unpacks for extensions. 437 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 438 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 439 440 // Detect shifts/rotates by a scalar amount and convert them into 441 // V*_BY_SCALAR. 442 setOperationAction(ISD::SHL, VT, Custom); 443 setOperationAction(ISD::SRA, VT, Custom); 444 setOperationAction(ISD::SRL, VT, Custom); 445 setOperationAction(ISD::ROTL, VT, Custom); 446 447 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 448 // and inverting the result as necessary. 449 setOperationAction(ISD::SETCC, VT, Custom); 450 } 451 } 452 453 if (Subtarget.hasVector()) { 454 // There should be no need to check for float types other than v2f64 455 // since <2 x f32> isn't a legal type. 456 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 457 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 458 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 459 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 460 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 461 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 462 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 464 465 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 467 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 468 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 469 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 472 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 473 } 474 475 if (Subtarget.hasVectorEnhancements2()) { 476 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 478 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 479 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 480 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 481 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 482 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 483 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 484 485 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 486 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 487 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 488 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 490 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 491 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 492 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 493 } 494 495 // Handle floating-point types. 496 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 497 I <= MVT::LAST_FP_VALUETYPE; 498 ++I) { 499 MVT VT = MVT::SimpleValueType(I); 500 if (isTypeLegal(VT)) { 501 // We can use FI for FRINT. 502 setOperationAction(ISD::FRINT, VT, Legal); 503 504 // We can use the extended form of FI for other rounding operations. 505 if (Subtarget.hasFPExtension()) { 506 setOperationAction(ISD::FNEARBYINT, VT, Legal); 507 setOperationAction(ISD::FFLOOR, VT, Legal); 508 setOperationAction(ISD::FCEIL, VT, Legal); 509 setOperationAction(ISD::FTRUNC, VT, Legal); 510 setOperationAction(ISD::FROUND, VT, Legal); 511 } 512 513 // No special instructions for these. 514 setOperationAction(ISD::FSIN, VT, Expand); 515 setOperationAction(ISD::FCOS, VT, Expand); 516 setOperationAction(ISD::FSINCOS, VT, Expand); 517 setOperationAction(ISD::FREM, VT, Expand); 518 setOperationAction(ISD::FPOW, VT, Expand); 519 520 // Special treatment. 521 setOperationAction(ISD::IS_FPCLASS, VT, Custom); 522 523 // Handle constrained floating-point operations. 524 setOperationAction(ISD::STRICT_FADD, VT, Legal); 525 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 526 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 527 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 528 setOperationAction(ISD::STRICT_FMA, VT, Legal); 529 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 530 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 531 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 532 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 533 if (Subtarget.hasFPExtension()) { 534 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 535 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 536 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 537 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 538 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 539 } 540 } 541 } 542 543 // Handle floating-point vector types. 544 if (Subtarget.hasVector()) { 545 // Scalar-to-vector conversion is just a subreg. 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 547 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 548 549 // Some insertions and extractions can be done directly but others 550 // need to go via integers. 551 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 552 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 553 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 554 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 555 556 // These operations have direct equivalents. 557 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 558 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 559 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 560 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 561 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 562 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 563 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 564 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 565 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 566 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 567 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 568 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 569 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 570 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 571 572 // Handle constrained floating-point operations. 573 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 574 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 575 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 576 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 577 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 578 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 579 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 580 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 581 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 582 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 584 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 585 586 setOperationAction(ISD::SETCC, MVT::v2f64, Custom); 587 setOperationAction(ISD::SETCC, MVT::v4f32, Custom); 588 setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom); 589 setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom); 590 if (Subtarget.hasVectorEnhancements1()) { 591 setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom); 592 setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom); 593 } 594 } 595 596 // The vector enhancements facility 1 has instructions for these. 597 if (Subtarget.hasVectorEnhancements1()) { 598 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 599 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 600 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 601 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 602 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 603 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 604 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 605 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 606 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 607 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 608 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 609 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 610 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 611 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 612 613 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 614 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 615 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 616 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 617 618 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 619 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 620 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 621 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 622 623 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 624 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 625 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 626 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 627 628 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 629 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 630 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 631 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 632 633 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 634 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 635 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 636 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 637 638 // Handle constrained floating-point operations. 639 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 640 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 641 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 642 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 643 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 644 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 645 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 646 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 647 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 648 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 649 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 650 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 651 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 652 MVT::v4f32, MVT::v2f64 }) { 653 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 654 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 655 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 656 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 657 } 658 } 659 660 // We only have fused f128 multiply-addition on vector registers. 661 if (!Subtarget.hasVectorEnhancements1()) { 662 setOperationAction(ISD::FMA, MVT::f128, Expand); 663 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 664 } 665 666 // We don't have a copysign instruction on vector registers. 667 if (Subtarget.hasVectorEnhancements1()) 668 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 669 670 // Needed so that we don't try to implement f128 constant loads using 671 // a load-and-extend of a f80 constant (in cases where the constant 672 // would fit in an f80). 673 for (MVT VT : MVT::fp_valuetypes()) 674 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 675 676 // We don't have extending load instruction on vector registers. 677 if (Subtarget.hasVectorEnhancements1()) { 678 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 679 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 680 } 681 682 // Floating-point truncation and stores need to be done separately. 683 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 684 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 685 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 686 687 // We have 64-bit FPR<->GPR moves, but need special handling for 688 // 32-bit forms. 689 if (!Subtarget.hasVector()) { 690 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 691 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 692 } 693 694 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 695 // structure, but VAEND is a no-op. 696 setOperationAction(ISD::VASTART, MVT::Other, Custom); 697 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 698 setOperationAction(ISD::VAEND, MVT::Other, Expand); 699 700 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 701 702 // Codes for which we want to perform some z-specific combinations. 703 setTargetDAGCombine({ISD::ZERO_EXTEND, 704 ISD::SIGN_EXTEND, 705 ISD::SIGN_EXTEND_INREG, 706 ISD::LOAD, 707 ISD::STORE, 708 ISD::VECTOR_SHUFFLE, 709 ISD::EXTRACT_VECTOR_ELT, 710 ISD::FP_ROUND, 711 ISD::STRICT_FP_ROUND, 712 ISD::FP_EXTEND, 713 ISD::SINT_TO_FP, 714 ISD::UINT_TO_FP, 715 ISD::STRICT_FP_EXTEND, 716 ISD::BSWAP, 717 ISD::SDIV, 718 ISD::UDIV, 719 ISD::SREM, 720 ISD::UREM, 721 ISD::INTRINSIC_VOID, 722 ISD::INTRINSIC_W_CHAIN}); 723 724 // Handle intrinsics. 725 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 726 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 727 728 // We want to use MVC in preference to even a single load/store pair. 729 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 730 MaxStoresPerMemcpyOptSize = 0; 731 732 // The main memset sequence is a byte store followed by an MVC. 733 // Two STC or MV..I stores win over that, but the kind of fused stores 734 // generated by target-independent code don't when the byte value is 735 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 736 // than "STC;MVC". Handle the choice in target-specific code instead. 737 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 738 MaxStoresPerMemsetOptSize = 0; 739 740 // Default to having -disable-strictnode-mutation on 741 IsStrictFPEnabled = true; 742 743 if (Subtarget.isTargetzOS()) { 744 struct RTLibCallMapping { 745 RTLIB::Libcall Code; 746 const char *Name; 747 }; 748 static RTLibCallMapping RTLibCallCommon[] = { 749 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name}, 750 #include "ZOSLibcallNames.def" 751 }; 752 for (auto &E : RTLibCallCommon) 753 setLibcallName(E.Code, E.Name); 754 } 755 } 756 757 bool SystemZTargetLowering::useSoftFloat() const { 758 return Subtarget.hasSoftFloat(); 759 } 760 761 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 762 LLVMContext &, EVT VT) const { 763 if (!VT.isVector()) 764 return MVT::i32; 765 return VT.changeVectorElementTypeToInteger(); 766 } 767 768 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 769 const MachineFunction &MF, EVT VT) const { 770 VT = VT.getScalarType(); 771 772 if (!VT.isSimple()) 773 return false; 774 775 switch (VT.getSimpleVT().SimpleTy) { 776 case MVT::f32: 777 case MVT::f64: 778 return true; 779 case MVT::f128: 780 return Subtarget.hasVectorEnhancements1(); 781 default: 782 break; 783 } 784 785 return false; 786 } 787 788 // Return true if the constant can be generated with a vector instruction, 789 // such as VGM, VGMB or VREPI. 790 bool SystemZVectorConstantInfo::isVectorConstantLegal( 791 const SystemZSubtarget &Subtarget) { 792 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 793 if (!Subtarget.hasVector() || 794 (isFP128 && !Subtarget.hasVectorEnhancements1())) 795 return false; 796 797 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 798 // preferred way of creating all-zero and all-one vectors so give it 799 // priority over other methods below. 800 unsigned Mask = 0; 801 unsigned I = 0; 802 for (; I < SystemZ::VectorBytes; ++I) { 803 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 804 if (Byte == 0xff) 805 Mask |= 1ULL << I; 806 else if (Byte != 0) 807 break; 808 } 809 if (I == SystemZ::VectorBytes) { 810 Opcode = SystemZISD::BYTE_MASK; 811 OpVals.push_back(Mask); 812 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 813 return true; 814 } 815 816 if (SplatBitSize > 64) 817 return false; 818 819 auto tryValue = [&](uint64_t Value) -> bool { 820 // Try VECTOR REPLICATE IMMEDIATE 821 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 822 if (isInt<16>(SignedValue)) { 823 OpVals.push_back(((unsigned) SignedValue)); 824 Opcode = SystemZISD::REPLICATE; 825 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 826 SystemZ::VectorBits / SplatBitSize); 827 return true; 828 } 829 // Try VECTOR GENERATE MASK 830 unsigned Start, End; 831 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 832 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 833 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 834 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 835 OpVals.push_back(Start - (64 - SplatBitSize)); 836 OpVals.push_back(End - (64 - SplatBitSize)); 837 Opcode = SystemZISD::ROTATE_MASK; 838 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 839 SystemZ::VectorBits / SplatBitSize); 840 return true; 841 } 842 return false; 843 }; 844 845 // First try assuming that any undefined bits above the highest set bit 846 // and below the lowest set bit are 1s. This increases the likelihood of 847 // being able to use a sign-extended element value in VECTOR REPLICATE 848 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 849 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 850 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 851 unsigned LowerBits = llvm::countr_zero(SplatBitsZ); 852 unsigned UpperBits = llvm::countl_zero(SplatBitsZ); 853 uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits); 854 uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits); 855 if (tryValue(SplatBitsZ | Upper | Lower)) 856 return true; 857 858 // Now try assuming that any undefined bits between the first and 859 // last defined set bits are set. This increases the chances of 860 // using a non-wraparound mask. 861 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 862 return tryValue(SplatBitsZ | Middle); 863 } 864 865 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 866 if (IntImm.isSingleWord()) { 867 IntBits = APInt(128, IntImm.getZExtValue()); 868 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 869 } else 870 IntBits = IntImm; 871 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 872 873 // Find the smallest splat. 874 SplatBits = IntImm; 875 unsigned Width = SplatBits.getBitWidth(); 876 while (Width > 8) { 877 unsigned HalfSize = Width / 2; 878 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 879 APInt LowValue = SplatBits.trunc(HalfSize); 880 881 // If the two halves do not match, stop here. 882 if (HighValue != LowValue || 8 > HalfSize) 883 break; 884 885 SplatBits = HighValue; 886 Width = HalfSize; 887 } 888 SplatUndef = 0; 889 SplatBitSize = Width; 890 } 891 892 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 893 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 894 bool HasAnyUndefs; 895 896 // Get IntBits by finding the 128 bit splat. 897 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 898 true); 899 900 // Get SplatBits by finding the 8 bit or greater splat. 901 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 902 true); 903 } 904 905 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 906 bool ForCodeSize) const { 907 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 908 if (Imm.isZero() || Imm.isNegZero()) 909 return true; 910 911 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 912 } 913 914 /// Returns true if stack probing through inline assembly is requested. 915 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 916 // If the function specifically requests inline stack probes, emit them. 917 if (MF.getFunction().hasFnAttribute("probe-stack")) 918 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 919 "inline-asm"; 920 return false; 921 } 922 923 TargetLowering::AtomicExpansionKind 924 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 925 // Don't expand subword operations as they require special treatment. 926 if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16)) 927 return AtomicExpansionKind::None; 928 929 // Don't expand if there is a target instruction available. 930 if (Subtarget.hasInterlockedAccess1() && 931 (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) && 932 (RMW->getOperation() == AtomicRMWInst::BinOp::Add || 933 RMW->getOperation() == AtomicRMWInst::BinOp::Sub || 934 RMW->getOperation() == AtomicRMWInst::BinOp::And || 935 RMW->getOperation() == AtomicRMWInst::BinOp::Or || 936 RMW->getOperation() == AtomicRMWInst::BinOp::Xor)) 937 return AtomicExpansionKind::None; 938 939 return AtomicExpansionKind::CmpXChg; 940 } 941 942 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 943 // We can use CGFI or CLGFI. 944 return isInt<32>(Imm) || isUInt<32>(Imm); 945 } 946 947 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 948 // We can use ALGFI or SLGFI. 949 return isUInt<32>(Imm) || isUInt<32>(-Imm); 950 } 951 952 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 953 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { 954 // Unaligned accesses should never be slower than the expanded version. 955 // We check specifically for aligned accesses in the few cases where 956 // they are required. 957 if (Fast) 958 *Fast = 1; 959 return true; 960 } 961 962 // Information about the addressing mode for a memory access. 963 struct AddressingMode { 964 // True if a long displacement is supported. 965 bool LongDisplacement; 966 967 // True if use of index register is supported. 968 bool IndexReg; 969 970 AddressingMode(bool LongDispl, bool IdxReg) : 971 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 972 }; 973 974 // Return the desired addressing mode for a Load which has only one use (in 975 // the same block) which is a Store. 976 static AddressingMode getLoadStoreAddrMode(bool HasVector, 977 Type *Ty) { 978 // With vector support a Load->Store combination may be combined to either 979 // an MVC or vector operations and it seems to work best to allow the 980 // vector addressing mode. 981 if (HasVector) 982 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 983 984 // Otherwise only the MVC case is special. 985 bool MVC = Ty->isIntegerTy(8); 986 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 987 } 988 989 // Return the addressing mode which seems most desirable given an LLVM 990 // Instruction pointer. 991 static AddressingMode 992 supportedAddressingMode(Instruction *I, bool HasVector) { 993 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 994 switch (II->getIntrinsicID()) { 995 default: break; 996 case Intrinsic::memset: 997 case Intrinsic::memmove: 998 case Intrinsic::memcpy: 999 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 1000 } 1001 } 1002 1003 if (isa<LoadInst>(I) && I->hasOneUse()) { 1004 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1005 if (SingleUser->getParent() == I->getParent()) { 1006 if (isa<ICmpInst>(SingleUser)) { 1007 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 1008 if (C->getBitWidth() <= 64 && 1009 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 1010 // Comparison of memory with 16 bit signed / unsigned immediate 1011 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 1012 } else if (isa<StoreInst>(SingleUser)) 1013 // Load->Store 1014 return getLoadStoreAddrMode(HasVector, I->getType()); 1015 } 1016 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 1017 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 1018 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 1019 // Load->Store 1020 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 1021 } 1022 1023 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 1024 1025 // * Use LDE instead of LE/LEY for z13 to avoid partial register 1026 // dependencies (LDE only supports small offsets). 1027 // * Utilize the vector registers to hold floating point 1028 // values (vector load / store instructions only support small 1029 // offsets). 1030 1031 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 1032 I->getOperand(0)->getType()); 1033 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 1034 bool IsVectorAccess = MemAccessTy->isVectorTy(); 1035 1036 // A store of an extracted vector element will be combined into a VSTE type 1037 // instruction. 1038 if (!IsVectorAccess && isa<StoreInst>(I)) { 1039 Value *DataOp = I->getOperand(0); 1040 if (isa<ExtractElementInst>(DataOp)) 1041 IsVectorAccess = true; 1042 } 1043 1044 // A load which gets inserted into a vector element will be combined into a 1045 // VLE type instruction. 1046 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 1047 User *LoadUser = *I->user_begin(); 1048 if (isa<InsertElementInst>(LoadUser)) 1049 IsVectorAccess = true; 1050 } 1051 1052 if (IsFPAccess || IsVectorAccess) 1053 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 1054 } 1055 1056 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 1057 } 1058 1059 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1060 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 1061 // Punt on globals for now, although they can be used in limited 1062 // RELATIVE LONG cases. 1063 if (AM.BaseGV) 1064 return false; 1065 1066 // Require a 20-bit signed offset. 1067 if (!isInt<20>(AM.BaseOffs)) 1068 return false; 1069 1070 bool RequireD12 = 1071 Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128)); 1072 AddressingMode SupportedAM(!RequireD12, true); 1073 if (I != nullptr) 1074 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 1075 1076 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 1077 return false; 1078 1079 if (!SupportedAM.IndexReg) 1080 // No indexing allowed. 1081 return AM.Scale == 0; 1082 else 1083 // Indexing is OK but no scale factor can be applied. 1084 return AM.Scale == 0 || AM.Scale == 1; 1085 } 1086 1087 bool SystemZTargetLowering::findOptimalMemOpLowering( 1088 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 1089 unsigned SrcAS, const AttributeList &FuncAttributes) const { 1090 const int MVCFastLen = 16; 1091 1092 if (Limit != ~unsigned(0)) { 1093 // Don't expand Op into scalar loads/stores in these cases: 1094 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 1095 return false; // Small memcpy: Use MVC 1096 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 1097 return false; // Small memset (first byte with STC/MVI): Use MVC 1098 if (Op.isZeroMemset()) 1099 return false; // Memset zero: Use XC 1100 } 1101 1102 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 1103 SrcAS, FuncAttributes); 1104 } 1105 1106 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 1107 const AttributeList &FuncAttributes) const { 1108 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 1109 } 1110 1111 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 1112 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 1113 return false; 1114 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); 1115 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); 1116 return FromBits > ToBits; 1117 } 1118 1119 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1120 if (!FromVT.isInteger() || !ToVT.isInteger()) 1121 return false; 1122 unsigned FromBits = FromVT.getFixedSizeInBits(); 1123 unsigned ToBits = ToVT.getFixedSizeInBits(); 1124 return FromBits > ToBits; 1125 } 1126 1127 //===----------------------------------------------------------------------===// 1128 // Inline asm support 1129 //===----------------------------------------------------------------------===// 1130 1131 TargetLowering::ConstraintType 1132 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1133 if (Constraint.size() == 1) { 1134 switch (Constraint[0]) { 1135 case 'a': // Address register 1136 case 'd': // Data register (equivalent to 'r') 1137 case 'f': // Floating-point register 1138 case 'h': // High-part register 1139 case 'r': // General-purpose register 1140 case 'v': // Vector register 1141 return C_RegisterClass; 1142 1143 case 'Q': // Memory with base and unsigned 12-bit displacement 1144 case 'R': // Likewise, plus an index 1145 case 'S': // Memory with base and signed 20-bit displacement 1146 case 'T': // Likewise, plus an index 1147 case 'm': // Equivalent to 'T'. 1148 return C_Memory; 1149 1150 case 'I': // Unsigned 8-bit constant 1151 case 'J': // Unsigned 12-bit constant 1152 case 'K': // Signed 16-bit constant 1153 case 'L': // Signed 20-bit displacement (on all targets we support) 1154 case 'M': // 0x7fffffff 1155 return C_Immediate; 1156 1157 default: 1158 break; 1159 } 1160 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1161 switch (Constraint[1]) { 1162 case 'Q': // Address with base and unsigned 12-bit displacement 1163 case 'R': // Likewise, plus an index 1164 case 'S': // Address with base and signed 20-bit displacement 1165 case 'T': // Likewise, plus an index 1166 return C_Address; 1167 1168 default: 1169 break; 1170 } 1171 } 1172 return TargetLowering::getConstraintType(Constraint); 1173 } 1174 1175 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1176 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1177 const char *constraint) const { 1178 ConstraintWeight weight = CW_Invalid; 1179 Value *CallOperandVal = info.CallOperandVal; 1180 // If we don't have a value, we can't do a match, 1181 // but allow it at the lowest weight. 1182 if (!CallOperandVal) 1183 return CW_Default; 1184 Type *type = CallOperandVal->getType(); 1185 // Look at the constraint type. 1186 switch (*constraint) { 1187 default: 1188 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1189 break; 1190 1191 case 'a': // Address register 1192 case 'd': // Data register (equivalent to 'r') 1193 case 'h': // High-part register 1194 case 'r': // General-purpose register 1195 weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default; 1196 break; 1197 1198 case 'f': // Floating-point register 1199 if (!useSoftFloat()) 1200 weight = type->isFloatingPointTy() ? CW_Register : CW_Default; 1201 break; 1202 1203 case 'v': // Vector register 1204 if (Subtarget.hasVector()) 1205 weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register 1206 : CW_Default; 1207 break; 1208 1209 case 'I': // Unsigned 8-bit constant 1210 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1211 if (isUInt<8>(C->getZExtValue())) 1212 weight = CW_Constant; 1213 break; 1214 1215 case 'J': // Unsigned 12-bit constant 1216 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1217 if (isUInt<12>(C->getZExtValue())) 1218 weight = CW_Constant; 1219 break; 1220 1221 case 'K': // Signed 16-bit constant 1222 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1223 if (isInt<16>(C->getSExtValue())) 1224 weight = CW_Constant; 1225 break; 1226 1227 case 'L': // Signed 20-bit displacement (on all targets we support) 1228 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1229 if (isInt<20>(C->getSExtValue())) 1230 weight = CW_Constant; 1231 break; 1232 1233 case 'M': // 0x7fffffff 1234 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1235 if (C->getZExtValue() == 0x7fffffff) 1236 weight = CW_Constant; 1237 break; 1238 } 1239 return weight; 1240 } 1241 1242 // Parse a "{tNNN}" register constraint for which the register type "t" 1243 // has already been verified. MC is the class associated with "t" and 1244 // Map maps 0-based register numbers to LLVM register numbers. 1245 static std::pair<unsigned, const TargetRegisterClass *> 1246 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1247 const unsigned *Map, unsigned Size) { 1248 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1249 if (isdigit(Constraint[2])) { 1250 unsigned Index; 1251 bool Failed = 1252 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1253 if (!Failed && Index < Size && Map[Index]) 1254 return std::make_pair(Map[Index], RC); 1255 } 1256 return std::make_pair(0U, nullptr); 1257 } 1258 1259 std::pair<unsigned, const TargetRegisterClass *> 1260 SystemZTargetLowering::getRegForInlineAsmConstraint( 1261 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1262 if (Constraint.size() == 1) { 1263 // GCC Constraint Letters 1264 switch (Constraint[0]) { 1265 default: break; 1266 case 'd': // Data register (equivalent to 'r') 1267 case 'r': // General-purpose register 1268 if (VT.getSizeInBits() == 64) 1269 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1270 else if (VT.getSizeInBits() == 128) 1271 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1272 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1273 1274 case 'a': // Address register 1275 if (VT == MVT::i64) 1276 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1277 else if (VT == MVT::i128) 1278 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1279 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1280 1281 case 'h': // High-part register (an LLVM extension) 1282 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1283 1284 case 'f': // Floating-point register 1285 if (!useSoftFloat()) { 1286 if (VT.getSizeInBits() == 64) 1287 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1288 else if (VT.getSizeInBits() == 128) 1289 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1290 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1291 } 1292 break; 1293 1294 case 'v': // Vector register 1295 if (Subtarget.hasVector()) { 1296 if (VT.getSizeInBits() == 32) 1297 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1298 if (VT.getSizeInBits() == 64) 1299 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1300 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1301 } 1302 break; 1303 } 1304 } 1305 if (Constraint.size() > 0 && Constraint[0] == '{') { 1306 1307 // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal 1308 // to check the size on. 1309 auto getVTSizeInBits = [&VT]() { 1310 return VT == MVT::Other ? 0 : VT.getSizeInBits(); 1311 }; 1312 1313 // We need to override the default register parsing for GPRs and FPRs 1314 // because the interpretation depends on VT. The internal names of 1315 // the registers are also different from the external names 1316 // (F0D and F0S instead of F0, etc.). 1317 if (Constraint[1] == 'r') { 1318 if (getVTSizeInBits() == 32) 1319 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1320 SystemZMC::GR32Regs, 16); 1321 if (getVTSizeInBits() == 128) 1322 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1323 SystemZMC::GR128Regs, 16); 1324 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1325 SystemZMC::GR64Regs, 16); 1326 } 1327 if (Constraint[1] == 'f') { 1328 if (useSoftFloat()) 1329 return std::make_pair( 1330 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1331 if (getVTSizeInBits() == 32) 1332 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1333 SystemZMC::FP32Regs, 16); 1334 if (getVTSizeInBits() == 128) 1335 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1336 SystemZMC::FP128Regs, 16); 1337 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1338 SystemZMC::FP64Regs, 16); 1339 } 1340 if (Constraint[1] == 'v') { 1341 if (!Subtarget.hasVector()) 1342 return std::make_pair( 1343 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1344 if (getVTSizeInBits() == 32) 1345 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1346 SystemZMC::VR32Regs, 32); 1347 if (getVTSizeInBits() == 64) 1348 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1349 SystemZMC::VR64Regs, 32); 1350 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1351 SystemZMC::VR128Regs, 32); 1352 } 1353 } 1354 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1355 } 1356 1357 // FIXME? Maybe this could be a TableGen attribute on some registers and 1358 // this table could be generated automatically from RegInfo. 1359 Register 1360 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1361 const MachineFunction &MF) const { 1362 Register Reg = 1363 StringSwitch<Register>(RegName) 1364 .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0) 1365 .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0) 1366 .Default(0); 1367 1368 if (Reg) 1369 return Reg; 1370 report_fatal_error("Invalid register name global variable"); 1371 } 1372 1373 Register SystemZTargetLowering::getExceptionPointerRegister( 1374 const Constant *PersonalityFn) const { 1375 return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D; 1376 } 1377 1378 Register SystemZTargetLowering::getExceptionSelectorRegister( 1379 const Constant *PersonalityFn) const { 1380 return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D; 1381 } 1382 1383 void SystemZTargetLowering::LowerAsmOperandForConstraint( 1384 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 1385 SelectionDAG &DAG) const { 1386 // Only support length 1 constraints for now. 1387 if (Constraint.size() == 1) { 1388 switch (Constraint[0]) { 1389 case 'I': // Unsigned 8-bit constant 1390 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1391 if (isUInt<8>(C->getZExtValue())) 1392 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1393 Op.getValueType())); 1394 return; 1395 1396 case 'J': // Unsigned 12-bit constant 1397 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1398 if (isUInt<12>(C->getZExtValue())) 1399 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1400 Op.getValueType())); 1401 return; 1402 1403 case 'K': // Signed 16-bit constant 1404 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1405 if (isInt<16>(C->getSExtValue())) 1406 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1407 Op.getValueType())); 1408 return; 1409 1410 case 'L': // Signed 20-bit displacement (on all targets we support) 1411 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1412 if (isInt<20>(C->getSExtValue())) 1413 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1414 Op.getValueType())); 1415 return; 1416 1417 case 'M': // 0x7fffffff 1418 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1419 if (C->getZExtValue() == 0x7fffffff) 1420 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1421 Op.getValueType())); 1422 return; 1423 } 1424 } 1425 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1426 } 1427 1428 //===----------------------------------------------------------------------===// 1429 // Calling conventions 1430 //===----------------------------------------------------------------------===// 1431 1432 #include "SystemZGenCallingConv.inc" 1433 1434 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1435 CallingConv::ID) const { 1436 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1437 SystemZ::R14D, 0 }; 1438 return ScratchRegs; 1439 } 1440 1441 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1442 Type *ToType) const { 1443 return isTruncateFree(FromType, ToType); 1444 } 1445 1446 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1447 return CI->isTailCall(); 1448 } 1449 1450 // Value is a value that has been passed to us in the location described by VA 1451 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1452 // any loads onto Chain. 1453 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1454 CCValAssign &VA, SDValue Chain, 1455 SDValue Value) { 1456 // If the argument has been promoted from a smaller type, insert an 1457 // assertion to capture this. 1458 if (VA.getLocInfo() == CCValAssign::SExt) 1459 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1460 DAG.getValueType(VA.getValVT())); 1461 else if (VA.getLocInfo() == CCValAssign::ZExt) 1462 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1463 DAG.getValueType(VA.getValVT())); 1464 1465 if (VA.isExtInLoc()) 1466 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1467 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1468 // If this is a short vector argument loaded from the stack, 1469 // extend from i64 to full vector size and then bitcast. 1470 assert(VA.getLocVT() == MVT::i64); 1471 assert(VA.getValVT().isVector()); 1472 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1473 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1474 } else 1475 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1476 return Value; 1477 } 1478 1479 // Value is a value of type VA.getValVT() that we need to copy into 1480 // the location described by VA. Return a copy of Value converted to 1481 // VA.getValVT(). The caller is responsible for handling indirect values. 1482 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1483 CCValAssign &VA, SDValue Value) { 1484 switch (VA.getLocInfo()) { 1485 case CCValAssign::SExt: 1486 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1487 case CCValAssign::ZExt: 1488 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1489 case CCValAssign::AExt: 1490 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1491 case CCValAssign::BCvt: { 1492 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1493 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1494 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1495 // For an f32 vararg we need to first promote it to an f64 and then 1496 // bitcast it to an i64. 1497 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1498 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1499 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1500 ? MVT::v2i64 1501 : VA.getLocVT(); 1502 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1503 // For ELF, this is a short vector argument to be stored to the stack, 1504 // bitcast to v2i64 and then extract first element. 1505 if (BitCastToType == MVT::v2i64) 1506 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1507 DAG.getConstant(0, DL, MVT::i32)); 1508 return Value; 1509 } 1510 case CCValAssign::Full: 1511 return Value; 1512 default: 1513 llvm_unreachable("Unhandled getLocInfo()"); 1514 } 1515 } 1516 1517 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1518 SDLoc DL(In); 1519 SDValue Lo, Hi; 1520 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1521 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In); 1522 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 1523 DAG.getNode(ISD::SRL, DL, MVT::i128, In, 1524 DAG.getConstant(64, DL, MVT::i32))); 1525 } else { 1526 std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64); 1527 } 1528 1529 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1530 MVT::Untyped, Hi, Lo); 1531 return SDValue(Pair, 0); 1532 } 1533 1534 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1535 SDLoc DL(In); 1536 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1537 DL, MVT::i64, In); 1538 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1539 DL, MVT::i64, In); 1540 1541 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1542 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo); 1543 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi); 1544 Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi, 1545 DAG.getConstant(64, DL, MVT::i32)); 1546 return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi); 1547 } else { 1548 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1549 } 1550 } 1551 1552 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1553 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1554 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 1555 EVT ValueVT = Val.getValueType(); 1556 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1557 // Inline assembly operand. 1558 Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val)); 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1566 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1567 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 1568 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1569 // Inline assembly operand. 1570 SDValue Res = lowerGR128ToI128(DAG, Parts[0]); 1571 return DAG.getBitcast(ValueVT, Res); 1572 } 1573 1574 return SDValue(); 1575 } 1576 1577 SDValue SystemZTargetLowering::LowerFormalArguments( 1578 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1579 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1580 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineFrameInfo &MFI = MF.getFrameInfo(); 1583 MachineRegisterInfo &MRI = MF.getRegInfo(); 1584 SystemZMachineFunctionInfo *FuncInfo = 1585 MF.getInfo<SystemZMachineFunctionInfo>(); 1586 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1587 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1588 1589 // Assign locations to all of the incoming arguments. 1590 SmallVector<CCValAssign, 16> ArgLocs; 1591 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1592 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1593 FuncInfo->setSizeOfFnParams(CCInfo.getStackSize()); 1594 1595 unsigned NumFixedGPRs = 0; 1596 unsigned NumFixedFPRs = 0; 1597 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1598 SDValue ArgValue; 1599 CCValAssign &VA = ArgLocs[I]; 1600 EVT LocVT = VA.getLocVT(); 1601 if (VA.isRegLoc()) { 1602 // Arguments passed in registers 1603 const TargetRegisterClass *RC; 1604 switch (LocVT.getSimpleVT().SimpleTy) { 1605 default: 1606 // Integers smaller than i64 should be promoted to i64. 1607 llvm_unreachable("Unexpected argument type"); 1608 case MVT::i32: 1609 NumFixedGPRs += 1; 1610 RC = &SystemZ::GR32BitRegClass; 1611 break; 1612 case MVT::i64: 1613 NumFixedGPRs += 1; 1614 RC = &SystemZ::GR64BitRegClass; 1615 break; 1616 case MVT::f32: 1617 NumFixedFPRs += 1; 1618 RC = &SystemZ::FP32BitRegClass; 1619 break; 1620 case MVT::f64: 1621 NumFixedFPRs += 1; 1622 RC = &SystemZ::FP64BitRegClass; 1623 break; 1624 case MVT::f128: 1625 NumFixedFPRs += 2; 1626 RC = &SystemZ::FP128BitRegClass; 1627 break; 1628 case MVT::v16i8: 1629 case MVT::v8i16: 1630 case MVT::v4i32: 1631 case MVT::v2i64: 1632 case MVT::v4f32: 1633 case MVT::v2f64: 1634 RC = &SystemZ::VR128BitRegClass; 1635 break; 1636 } 1637 1638 Register VReg = MRI.createVirtualRegister(RC); 1639 MRI.addLiveIn(VA.getLocReg(), VReg); 1640 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1641 } else { 1642 assert(VA.isMemLoc() && "Argument not register or memory"); 1643 1644 // Create the frame index object for this incoming parameter. 1645 // FIXME: Pre-include call frame size in the offset, should not 1646 // need to manually add it here. 1647 int64_t ArgSPOffset = VA.getLocMemOffset(); 1648 if (Subtarget.isTargetXPLINK64()) { 1649 auto &XPRegs = 1650 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1651 ArgSPOffset += XPRegs.getCallFrameSize(); 1652 } 1653 int FI = 1654 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1655 1656 // Create the SelectionDAG nodes corresponding to a load 1657 // from this parameter. Unpromoted ints and floats are 1658 // passed as right-justified 8-byte values. 1659 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1660 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1661 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1662 DAG.getIntPtrConstant(4, DL)); 1663 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1664 MachinePointerInfo::getFixedStack(MF, FI)); 1665 } 1666 1667 // Convert the value of the argument register into the value that's 1668 // being passed. 1669 if (VA.getLocInfo() == CCValAssign::Indirect) { 1670 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1671 MachinePointerInfo())); 1672 // If the original argument was split (e.g. i128), we need 1673 // to load all parts of it here (using the same address). 1674 unsigned ArgIndex = Ins[I].OrigArgIndex; 1675 assert (Ins[I].PartOffset == 0); 1676 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1677 CCValAssign &PartVA = ArgLocs[I + 1]; 1678 unsigned PartOffset = Ins[I + 1].PartOffset; 1679 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1680 DAG.getIntPtrConstant(PartOffset, DL)); 1681 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1682 MachinePointerInfo())); 1683 ++I; 1684 } 1685 } else 1686 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1687 } 1688 1689 if (IsVarArg && Subtarget.isTargetXPLINK64()) { 1690 // Save the number of non-varargs registers for later use by va_start, etc. 1691 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1692 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1693 1694 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1695 Subtarget.getSpecialRegisters()); 1696 1697 // Likewise the address (in the form of a frame index) of where the 1698 // first stack vararg would be. The 1-byte size here is arbitrary. 1699 // FIXME: Pre-include call frame size in the offset, should not 1700 // need to manually add it here. 1701 int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize(); 1702 int FI = MFI.CreateFixedObject(1, VarArgOffset, true); 1703 FuncInfo->setVarArgsFrameIndex(FI); 1704 } 1705 1706 if (IsVarArg && Subtarget.isTargetELF()) { 1707 // Save the number of non-varargs registers for later use by va_start, etc. 1708 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1709 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1710 1711 // Likewise the address (in the form of a frame index) of where the 1712 // first stack vararg would be. The 1-byte size here is arbitrary. 1713 int64_t VarArgsOffset = CCInfo.getStackSize(); 1714 FuncInfo->setVarArgsFrameIndex( 1715 MFI.CreateFixedObject(1, VarArgsOffset, true)); 1716 1717 // ...and a similar frame index for the caller-allocated save area 1718 // that will be used to store the incoming registers. 1719 int64_t RegSaveOffset = 1720 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1721 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1722 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1723 1724 // Store the FPR varargs in the reserved frame slots. (We store the 1725 // GPRs as part of the prologue.) 1726 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1727 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1728 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1729 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1730 int FI = 1731 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1732 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1733 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1734 &SystemZ::FP64BitRegClass); 1735 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1736 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1737 MachinePointerInfo::getFixedStack(MF, FI)); 1738 } 1739 // Join the stores, which are independent of one another. 1740 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1741 ArrayRef(&MemOps[NumFixedFPRs], 1742 SystemZ::ELFNumArgFPRs - NumFixedFPRs)); 1743 } 1744 } 1745 1746 if (Subtarget.isTargetXPLINK64()) { 1747 // Create virual register for handling incoming "ADA" special register (R5) 1748 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 1749 Register ADAvReg = MRI.createVirtualRegister(RC); 1750 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1751 Subtarget.getSpecialRegisters()); 1752 MRI.addLiveIn(Regs->getADARegister(), ADAvReg); 1753 FuncInfo->setADAVirtualRegister(ADAvReg); 1754 } 1755 return Chain; 1756 } 1757 1758 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1759 SmallVectorImpl<CCValAssign> &ArgLocs, 1760 SmallVectorImpl<ISD::OutputArg> &Outs) { 1761 // Punt if there are any indirect or stack arguments, or if the call 1762 // needs the callee-saved argument register R6, or if the call uses 1763 // the callee-saved register arguments SwiftSelf and SwiftError. 1764 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1765 CCValAssign &VA = ArgLocs[I]; 1766 if (VA.getLocInfo() == CCValAssign::Indirect) 1767 return false; 1768 if (!VA.isRegLoc()) 1769 return false; 1770 Register Reg = VA.getLocReg(); 1771 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1772 return false; 1773 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1774 return false; 1775 } 1776 return true; 1777 } 1778 1779 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL, 1780 unsigned Offset, bool LoadAdr = false) { 1781 MachineFunction &MF = DAG.getMachineFunction(); 1782 SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>(); 1783 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1784 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1785 1786 SDValue Reg = DAG.getRegister(ADAvReg, PtrVT); 1787 SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT); 1788 1789 SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs); 1790 if (!LoadAdr) 1791 Result = DAG.getLoad( 1792 PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8), 1793 MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); 1794 1795 return Result; 1796 } 1797 1798 // ADA access using Global value 1799 // Note: for functions, address of descriptor is returned 1800 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL, 1801 EVT PtrVT) { 1802 unsigned ADAtype; 1803 bool LoadAddr = false; 1804 const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV); 1805 bool IsFunction = 1806 (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject())); 1807 bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage()); 1808 1809 if (IsFunction) { 1810 if (IsInternal) { 1811 ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC; 1812 LoadAddr = true; 1813 } else 1814 ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC; 1815 } else { 1816 ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR; 1817 } 1818 SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype); 1819 1820 return getADAEntry(DAG, Val, DL, 0, LoadAddr); 1821 } 1822 1823 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA, 1824 SDLoc &DL, SDValue &Chain) { 1825 unsigned ADADelta = 0; // ADA offset in desc. 1826 unsigned EPADelta = 8; // EPA offset in desc. 1827 MachineFunction &MF = DAG.getMachineFunction(); 1828 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1829 1830 // XPLink calling convention. 1831 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1832 bool IsInternal = (G->getGlobal()->hasInternalLinkage() || 1833 G->getGlobal()->hasPrivateLinkage()); 1834 if (IsInternal) { 1835 SystemZMachineFunctionInfo *MFI = 1836 MF.getInfo<SystemZMachineFunctionInfo>(); 1837 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1838 ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT); 1839 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1840 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1841 return true; 1842 } else { 1843 SDValue GA = DAG.getTargetGlobalAddress( 1844 G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1845 ADA = getADAEntry(DAG, GA, DL, ADADelta); 1846 Callee = getADAEntry(DAG, GA, DL, EPADelta); 1847 } 1848 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1849 SDValue ES = DAG.getTargetExternalSymbol( 1850 E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1851 ADA = getADAEntry(DAG, ES, DL, ADADelta); 1852 Callee = getADAEntry(DAG, ES, DL, EPADelta); 1853 } else { 1854 // Function pointer case 1855 ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1856 DAG.getConstant(ADADelta, DL, PtrVT)); 1857 ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA, 1858 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1859 Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1860 DAG.getConstant(EPADelta, DL, PtrVT)); 1861 Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee, 1862 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1863 } 1864 return false; 1865 } 1866 1867 SDValue 1868 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1869 SmallVectorImpl<SDValue> &InVals) const { 1870 SelectionDAG &DAG = CLI.DAG; 1871 SDLoc &DL = CLI.DL; 1872 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1873 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1874 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1875 SDValue Chain = CLI.Chain; 1876 SDValue Callee = CLI.Callee; 1877 bool &IsTailCall = CLI.IsTailCall; 1878 CallingConv::ID CallConv = CLI.CallConv; 1879 bool IsVarArg = CLI.IsVarArg; 1880 MachineFunction &MF = DAG.getMachineFunction(); 1881 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1882 LLVMContext &Ctx = *DAG.getContext(); 1883 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1884 1885 // FIXME: z/OS support to be added in later. 1886 if (Subtarget.isTargetXPLINK64()) 1887 IsTailCall = false; 1888 1889 // Analyze the operands of the call, assigning locations to each operand. 1890 SmallVector<CCValAssign, 16> ArgLocs; 1891 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1892 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1893 1894 // We don't support GuaranteedTailCallOpt, only automatically-detected 1895 // sibling calls. 1896 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1897 IsTailCall = false; 1898 1899 // Get a count of how many bytes are to be pushed on the stack. 1900 unsigned NumBytes = ArgCCInfo.getStackSize(); 1901 1902 // Mark the start of the call. 1903 if (!IsTailCall) 1904 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1905 1906 // Copy argument values to their designated locations. 1907 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1908 SmallVector<SDValue, 8> MemOpChains; 1909 SDValue StackPtr; 1910 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1911 CCValAssign &VA = ArgLocs[I]; 1912 SDValue ArgValue = OutVals[I]; 1913 1914 if (VA.getLocInfo() == CCValAssign::Indirect) { 1915 // Store the argument in a stack slot and pass its address. 1916 unsigned ArgIndex = Outs[I].OrigArgIndex; 1917 EVT SlotVT; 1918 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1919 // Allocate the full stack space for a promoted (and split) argument. 1920 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1921 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1922 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1923 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1924 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1925 } else { 1926 SlotVT = Outs[I].VT; 1927 } 1928 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1929 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1930 MemOpChains.push_back( 1931 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1932 MachinePointerInfo::getFixedStack(MF, FI))); 1933 // If the original argument was split (e.g. i128), we need 1934 // to store all parts of it here (and pass just one address). 1935 assert (Outs[I].PartOffset == 0); 1936 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1937 SDValue PartValue = OutVals[I + 1]; 1938 unsigned PartOffset = Outs[I + 1].PartOffset; 1939 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1940 DAG.getIntPtrConstant(PartOffset, DL)); 1941 MemOpChains.push_back( 1942 DAG.getStore(Chain, DL, PartValue, Address, 1943 MachinePointerInfo::getFixedStack(MF, FI))); 1944 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1945 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1946 ++I; 1947 } 1948 ArgValue = SpillSlot; 1949 } else 1950 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1951 1952 if (VA.isRegLoc()) { 1953 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1954 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1955 // and low values. 1956 if (VA.getLocVT() == MVT::i128) 1957 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1958 // Queue up the argument copies and emit them at the end. 1959 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1960 } else { 1961 assert(VA.isMemLoc() && "Argument not register or memory"); 1962 1963 // Work out the address of the stack slot. Unpromoted ints and 1964 // floats are passed as right-justified 8-byte values. 1965 if (!StackPtr.getNode()) 1966 StackPtr = DAG.getCopyFromReg(Chain, DL, 1967 Regs->getStackPointerRegister(), PtrVT); 1968 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1969 VA.getLocMemOffset(); 1970 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1971 Offset += 4; 1972 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1973 DAG.getIntPtrConstant(Offset, DL)); 1974 1975 // Emit the store. 1976 MemOpChains.push_back( 1977 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1978 1979 // Although long doubles or vectors are passed through the stack when 1980 // they are vararg (non-fixed arguments), if a long double or vector 1981 // occupies the third and fourth slot of the argument list GPR3 should 1982 // still shadow the third slot of the argument list. 1983 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1984 SDValue ShadowArgValue = 1985 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1986 DAG.getIntPtrConstant(1, DL)); 1987 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1988 } 1989 } 1990 } 1991 1992 // Join the stores, which are independent of one another. 1993 if (!MemOpChains.empty()) 1994 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1995 1996 // Accept direct calls by converting symbolic call addresses to the 1997 // associated Target* opcodes. Force %r1 to be used for indirect 1998 // tail calls. 1999 SDValue Glue; 2000 2001 if (Subtarget.isTargetXPLINK64()) { 2002 SDValue ADA; 2003 bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain); 2004 if (!IsBRASL) { 2005 unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs) 2006 ->getAddressOfCalleeRegister(); 2007 Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue); 2008 Glue = Chain.getValue(1); 2009 Callee = DAG.getRegister(CalleeReg, Callee.getValueType()); 2010 } 2011 RegsToPass.push_back(std::make_pair( 2012 static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA)); 2013 } else { 2014 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2015 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 2016 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 2017 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2018 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 2019 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 2020 } else if (IsTailCall) { 2021 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 2022 Glue = Chain.getValue(1); 2023 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 2024 } 2025 } 2026 2027 // Build a sequence of copy-to-reg nodes, chained and glued together. 2028 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 2029 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 2030 RegsToPass[I].second, Glue); 2031 Glue = Chain.getValue(1); 2032 } 2033 2034 // The first call operand is the chain and the second is the target address. 2035 SmallVector<SDValue, 8> Ops; 2036 Ops.push_back(Chain); 2037 Ops.push_back(Callee); 2038 2039 // Add argument registers to the end of the list so that they are 2040 // known live into the call. 2041 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 2042 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 2043 RegsToPass[I].second.getValueType())); 2044 2045 // Add a register mask operand representing the call-preserved registers. 2046 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2047 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2048 assert(Mask && "Missing call preserved mask for calling convention"); 2049 Ops.push_back(DAG.getRegisterMask(Mask)); 2050 2051 // Glue the call to the argument copies, if any. 2052 if (Glue.getNode()) 2053 Ops.push_back(Glue); 2054 2055 // Emit the call. 2056 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2057 if (IsTailCall) { 2058 SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 2059 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); 2060 return Ret; 2061 } 2062 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 2063 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2064 Glue = Chain.getValue(1); 2065 2066 // Mark the end of the call, which is glued to the call itself. 2067 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 2068 Glue = Chain.getValue(1); 2069 2070 // Assign locations to each value returned by this call. 2071 SmallVector<CCValAssign, 16> RetLocs; 2072 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 2073 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 2074 2075 // Copy all of the result registers out of their specified physreg. 2076 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2077 CCValAssign &VA = RetLocs[I]; 2078 2079 // Copy the value out, gluing the copy to the end of the call sequence. 2080 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 2081 VA.getLocVT(), Glue); 2082 Chain = RetValue.getValue(1); 2083 Glue = RetValue.getValue(2); 2084 2085 // Convert the value of the return register into the value that's 2086 // being returned. 2087 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 2088 } 2089 2090 return Chain; 2091 } 2092 2093 // Generate a call taking the given operands as arguments and returning a 2094 // result of type RetVT. 2095 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 2096 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 2097 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 2098 bool DoesNotReturn, bool IsReturnValueUsed) const { 2099 TargetLowering::ArgListTy Args; 2100 Args.reserve(Ops.size()); 2101 2102 TargetLowering::ArgListEntry Entry; 2103 for (SDValue Op : Ops) { 2104 Entry.Node = Op; 2105 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2106 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2107 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2108 Args.push_back(Entry); 2109 } 2110 2111 SDValue Callee = 2112 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 2113 2114 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2115 TargetLowering::CallLoweringInfo CLI(DAG); 2116 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 2117 CLI.setDebugLoc(DL) 2118 .setChain(Chain) 2119 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 2120 .setNoReturn(DoesNotReturn) 2121 .setDiscardResult(!IsReturnValueUsed) 2122 .setSExtResult(SignExtend) 2123 .setZExtResult(!SignExtend); 2124 return LowerCallTo(CLI); 2125 } 2126 2127 bool SystemZTargetLowering:: 2128 CanLowerReturn(CallingConv::ID CallConv, 2129 MachineFunction &MF, bool isVarArg, 2130 const SmallVectorImpl<ISD::OutputArg> &Outs, 2131 LLVMContext &Context) const { 2132 // Special case that we cannot easily detect in RetCC_SystemZ since 2133 // i128 may not be a legal type. 2134 for (auto &Out : Outs) 2135 if (Out.ArgVT == MVT::i128) 2136 return false; 2137 2138 SmallVector<CCValAssign, 16> RetLocs; 2139 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 2140 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 2141 } 2142 2143 SDValue 2144 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2145 bool IsVarArg, 2146 const SmallVectorImpl<ISD::OutputArg> &Outs, 2147 const SmallVectorImpl<SDValue> &OutVals, 2148 const SDLoc &DL, SelectionDAG &DAG) const { 2149 MachineFunction &MF = DAG.getMachineFunction(); 2150 2151 // Assign locations to each returned value. 2152 SmallVector<CCValAssign, 16> RetLocs; 2153 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 2154 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 2155 2156 // Quick exit for void returns 2157 if (RetLocs.empty()) 2158 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain); 2159 2160 if (CallConv == CallingConv::GHC) 2161 report_fatal_error("GHC functions return void only"); 2162 2163 // Copy the result values into the output registers. 2164 SDValue Glue; 2165 SmallVector<SDValue, 4> RetOps; 2166 RetOps.push_back(Chain); 2167 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2168 CCValAssign &VA = RetLocs[I]; 2169 SDValue RetValue = OutVals[I]; 2170 2171 // Make the return register live on exit. 2172 assert(VA.isRegLoc() && "Can only return in registers!"); 2173 2174 // Promote the value as required. 2175 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 2176 2177 // Chain and glue the copies together. 2178 Register Reg = VA.getLocReg(); 2179 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 2180 Glue = Chain.getValue(1); 2181 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 2182 } 2183 2184 // Update chain and glue. 2185 RetOps[0] = Chain; 2186 if (Glue.getNode()) 2187 RetOps.push_back(Glue); 2188 2189 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps); 2190 } 2191 2192 // Return true if Op is an intrinsic node with chain that returns the CC value 2193 // as its only (other) argument. Provide the associated SystemZISD opcode and 2194 // the mask of valid CC values if so. 2195 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 2196 unsigned &CCValid) { 2197 unsigned Id = Op.getConstantOperandVal(1); 2198 switch (Id) { 2199 case Intrinsic::s390_tbegin: 2200 Opcode = SystemZISD::TBEGIN; 2201 CCValid = SystemZ::CCMASK_TBEGIN; 2202 return true; 2203 2204 case Intrinsic::s390_tbegin_nofloat: 2205 Opcode = SystemZISD::TBEGIN_NOFLOAT; 2206 CCValid = SystemZ::CCMASK_TBEGIN; 2207 return true; 2208 2209 case Intrinsic::s390_tend: 2210 Opcode = SystemZISD::TEND; 2211 CCValid = SystemZ::CCMASK_TEND; 2212 return true; 2213 2214 default: 2215 return false; 2216 } 2217 } 2218 2219 // Return true if Op is an intrinsic node without chain that returns the 2220 // CC value as its final argument. Provide the associated SystemZISD 2221 // opcode and the mask of valid CC values if so. 2222 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 2223 unsigned Id = Op.getConstantOperandVal(0); 2224 switch (Id) { 2225 case Intrinsic::s390_vpkshs: 2226 case Intrinsic::s390_vpksfs: 2227 case Intrinsic::s390_vpksgs: 2228 Opcode = SystemZISD::PACKS_CC; 2229 CCValid = SystemZ::CCMASK_VCMP; 2230 return true; 2231 2232 case Intrinsic::s390_vpklshs: 2233 case Intrinsic::s390_vpklsfs: 2234 case Intrinsic::s390_vpklsgs: 2235 Opcode = SystemZISD::PACKLS_CC; 2236 CCValid = SystemZ::CCMASK_VCMP; 2237 return true; 2238 2239 case Intrinsic::s390_vceqbs: 2240 case Intrinsic::s390_vceqhs: 2241 case Intrinsic::s390_vceqfs: 2242 case Intrinsic::s390_vceqgs: 2243 Opcode = SystemZISD::VICMPES; 2244 CCValid = SystemZ::CCMASK_VCMP; 2245 return true; 2246 2247 case Intrinsic::s390_vchbs: 2248 case Intrinsic::s390_vchhs: 2249 case Intrinsic::s390_vchfs: 2250 case Intrinsic::s390_vchgs: 2251 Opcode = SystemZISD::VICMPHS; 2252 CCValid = SystemZ::CCMASK_VCMP; 2253 return true; 2254 2255 case Intrinsic::s390_vchlbs: 2256 case Intrinsic::s390_vchlhs: 2257 case Intrinsic::s390_vchlfs: 2258 case Intrinsic::s390_vchlgs: 2259 Opcode = SystemZISD::VICMPHLS; 2260 CCValid = SystemZ::CCMASK_VCMP; 2261 return true; 2262 2263 case Intrinsic::s390_vtm: 2264 Opcode = SystemZISD::VTM; 2265 CCValid = SystemZ::CCMASK_VCMP; 2266 return true; 2267 2268 case Intrinsic::s390_vfaebs: 2269 case Intrinsic::s390_vfaehs: 2270 case Intrinsic::s390_vfaefs: 2271 Opcode = SystemZISD::VFAE_CC; 2272 CCValid = SystemZ::CCMASK_ANY; 2273 return true; 2274 2275 case Intrinsic::s390_vfaezbs: 2276 case Intrinsic::s390_vfaezhs: 2277 case Intrinsic::s390_vfaezfs: 2278 Opcode = SystemZISD::VFAEZ_CC; 2279 CCValid = SystemZ::CCMASK_ANY; 2280 return true; 2281 2282 case Intrinsic::s390_vfeebs: 2283 case Intrinsic::s390_vfeehs: 2284 case Intrinsic::s390_vfeefs: 2285 Opcode = SystemZISD::VFEE_CC; 2286 CCValid = SystemZ::CCMASK_ANY; 2287 return true; 2288 2289 case Intrinsic::s390_vfeezbs: 2290 case Intrinsic::s390_vfeezhs: 2291 case Intrinsic::s390_vfeezfs: 2292 Opcode = SystemZISD::VFEEZ_CC; 2293 CCValid = SystemZ::CCMASK_ANY; 2294 return true; 2295 2296 case Intrinsic::s390_vfenebs: 2297 case Intrinsic::s390_vfenehs: 2298 case Intrinsic::s390_vfenefs: 2299 Opcode = SystemZISD::VFENE_CC; 2300 CCValid = SystemZ::CCMASK_ANY; 2301 return true; 2302 2303 case Intrinsic::s390_vfenezbs: 2304 case Intrinsic::s390_vfenezhs: 2305 case Intrinsic::s390_vfenezfs: 2306 Opcode = SystemZISD::VFENEZ_CC; 2307 CCValid = SystemZ::CCMASK_ANY; 2308 return true; 2309 2310 case Intrinsic::s390_vistrbs: 2311 case Intrinsic::s390_vistrhs: 2312 case Intrinsic::s390_vistrfs: 2313 Opcode = SystemZISD::VISTR_CC; 2314 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2315 return true; 2316 2317 case Intrinsic::s390_vstrcbs: 2318 case Intrinsic::s390_vstrchs: 2319 case Intrinsic::s390_vstrcfs: 2320 Opcode = SystemZISD::VSTRC_CC; 2321 CCValid = SystemZ::CCMASK_ANY; 2322 return true; 2323 2324 case Intrinsic::s390_vstrczbs: 2325 case Intrinsic::s390_vstrczhs: 2326 case Intrinsic::s390_vstrczfs: 2327 Opcode = SystemZISD::VSTRCZ_CC; 2328 CCValid = SystemZ::CCMASK_ANY; 2329 return true; 2330 2331 case Intrinsic::s390_vstrsb: 2332 case Intrinsic::s390_vstrsh: 2333 case Intrinsic::s390_vstrsf: 2334 Opcode = SystemZISD::VSTRS_CC; 2335 CCValid = SystemZ::CCMASK_ANY; 2336 return true; 2337 2338 case Intrinsic::s390_vstrszb: 2339 case Intrinsic::s390_vstrszh: 2340 case Intrinsic::s390_vstrszf: 2341 Opcode = SystemZISD::VSTRSZ_CC; 2342 CCValid = SystemZ::CCMASK_ANY; 2343 return true; 2344 2345 case Intrinsic::s390_vfcedbs: 2346 case Intrinsic::s390_vfcesbs: 2347 Opcode = SystemZISD::VFCMPES; 2348 CCValid = SystemZ::CCMASK_VCMP; 2349 return true; 2350 2351 case Intrinsic::s390_vfchdbs: 2352 case Intrinsic::s390_vfchsbs: 2353 Opcode = SystemZISD::VFCMPHS; 2354 CCValid = SystemZ::CCMASK_VCMP; 2355 return true; 2356 2357 case Intrinsic::s390_vfchedbs: 2358 case Intrinsic::s390_vfchesbs: 2359 Opcode = SystemZISD::VFCMPHES; 2360 CCValid = SystemZ::CCMASK_VCMP; 2361 return true; 2362 2363 case Intrinsic::s390_vftcidb: 2364 case Intrinsic::s390_vftcisb: 2365 Opcode = SystemZISD::VFTCI; 2366 CCValid = SystemZ::CCMASK_VCMP; 2367 return true; 2368 2369 case Intrinsic::s390_tdc: 2370 Opcode = SystemZISD::TDC; 2371 CCValid = SystemZ::CCMASK_TDC; 2372 return true; 2373 2374 default: 2375 return false; 2376 } 2377 } 2378 2379 // Emit an intrinsic with chain and an explicit CC register result. 2380 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2381 unsigned Opcode) { 2382 // Copy all operands except the intrinsic ID. 2383 unsigned NumOps = Op.getNumOperands(); 2384 SmallVector<SDValue, 6> Ops; 2385 Ops.reserve(NumOps - 1); 2386 Ops.push_back(Op.getOperand(0)); 2387 for (unsigned I = 2; I < NumOps; ++I) 2388 Ops.push_back(Op.getOperand(I)); 2389 2390 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2391 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2392 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2393 SDValue OldChain = SDValue(Op.getNode(), 1); 2394 SDValue NewChain = SDValue(Intr.getNode(), 1); 2395 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2396 return Intr.getNode(); 2397 } 2398 2399 // Emit an intrinsic with an explicit CC register result. 2400 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2401 unsigned Opcode) { 2402 // Copy all operands except the intrinsic ID. 2403 unsigned NumOps = Op.getNumOperands(); 2404 SmallVector<SDValue, 6> Ops; 2405 Ops.reserve(NumOps - 1); 2406 for (unsigned I = 1; I < NumOps; ++I) 2407 Ops.push_back(Op.getOperand(I)); 2408 2409 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2410 return Intr.getNode(); 2411 } 2412 2413 // CC is a comparison that will be implemented using an integer or 2414 // floating-point comparison. Return the condition code mask for 2415 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2416 // unsigned comparisons and clear for signed ones. In the floating-point 2417 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2418 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2419 #define CONV(X) \ 2420 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2421 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2422 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2423 2424 switch (CC) { 2425 default: 2426 llvm_unreachable("Invalid integer condition!"); 2427 2428 CONV(EQ); 2429 CONV(NE); 2430 CONV(GT); 2431 CONV(GE); 2432 CONV(LT); 2433 CONV(LE); 2434 2435 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2436 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2437 } 2438 #undef CONV 2439 } 2440 2441 // If C can be converted to a comparison against zero, adjust the operands 2442 // as necessary. 2443 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2444 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2445 return; 2446 2447 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2448 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2449 return; 2450 2451 int64_t Value = ConstOp1->getSExtValue(); 2452 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2453 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2454 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2455 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2456 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2457 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2458 } 2459 } 2460 2461 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2462 // adjust the operands as necessary. 2463 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2464 Comparison &C) { 2465 // For us to make any changes, it must a comparison between a single-use 2466 // load and a constant. 2467 if (!C.Op0.hasOneUse() || 2468 C.Op0.getOpcode() != ISD::LOAD || 2469 C.Op1.getOpcode() != ISD::Constant) 2470 return; 2471 2472 // We must have an 8- or 16-bit load. 2473 auto *Load = cast<LoadSDNode>(C.Op0); 2474 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2475 if ((NumBits != 8 && NumBits != 16) || 2476 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2477 return; 2478 2479 // The load must be an extending one and the constant must be within the 2480 // range of the unextended value. 2481 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2482 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2483 return; 2484 uint64_t Value = ConstOp1->getZExtValue(); 2485 uint64_t Mask = (1 << NumBits) - 1; 2486 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2487 // Make sure that ConstOp1 is in range of C.Op0. 2488 int64_t SignedValue = ConstOp1->getSExtValue(); 2489 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2490 return; 2491 if (C.ICmpType != SystemZICMP::SignedOnly) { 2492 // Unsigned comparison between two sign-extended values is equivalent 2493 // to unsigned comparison between two zero-extended values. 2494 Value &= Mask; 2495 } else if (NumBits == 8) { 2496 // Try to treat the comparison as unsigned, so that we can use CLI. 2497 // Adjust CCMask and Value as necessary. 2498 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2499 // Test whether the high bit of the byte is set. 2500 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2501 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2502 // Test whether the high bit of the byte is clear. 2503 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2504 else 2505 // No instruction exists for this combination. 2506 return; 2507 C.ICmpType = SystemZICMP::UnsignedOnly; 2508 } 2509 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2510 if (Value > Mask) 2511 return; 2512 // If the constant is in range, we can use any comparison. 2513 C.ICmpType = SystemZICMP::Any; 2514 } else 2515 return; 2516 2517 // Make sure that the first operand is an i32 of the right extension type. 2518 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2519 ISD::SEXTLOAD : 2520 ISD::ZEXTLOAD); 2521 if (C.Op0.getValueType() != MVT::i32 || 2522 Load->getExtensionType() != ExtType) { 2523 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2524 Load->getBasePtr(), Load->getPointerInfo(), 2525 Load->getMemoryVT(), Load->getAlign(), 2526 Load->getMemOperand()->getFlags()); 2527 // Update the chain uses. 2528 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2529 } 2530 2531 // Make sure that the second operand is an i32 with the right value. 2532 if (C.Op1.getValueType() != MVT::i32 || 2533 Value != ConstOp1->getZExtValue()) 2534 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2535 } 2536 2537 // Return true if Op is either an unextended load, or a load suitable 2538 // for integer register-memory comparisons of type ICmpType. 2539 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2540 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2541 if (Load) { 2542 // There are no instructions to compare a register with a memory byte. 2543 if (Load->getMemoryVT() == MVT::i8) 2544 return false; 2545 // Otherwise decide on extension type. 2546 switch (Load->getExtensionType()) { 2547 case ISD::NON_EXTLOAD: 2548 return true; 2549 case ISD::SEXTLOAD: 2550 return ICmpType != SystemZICMP::UnsignedOnly; 2551 case ISD::ZEXTLOAD: 2552 return ICmpType != SystemZICMP::SignedOnly; 2553 default: 2554 break; 2555 } 2556 } 2557 return false; 2558 } 2559 2560 // Return true if it is better to swap the operands of C. 2561 static bool shouldSwapCmpOperands(const Comparison &C) { 2562 // Leave i128 and f128 comparisons alone, since they have no memory forms. 2563 if (C.Op0.getValueType() == MVT::i128) 2564 return false; 2565 if (C.Op0.getValueType() == MVT::f128) 2566 return false; 2567 2568 // Always keep a floating-point constant second, since comparisons with 2569 // zero can use LOAD TEST and comparisons with other constants make a 2570 // natural memory operand. 2571 if (isa<ConstantFPSDNode>(C.Op1)) 2572 return false; 2573 2574 // Never swap comparisons with zero since there are many ways to optimize 2575 // those later. 2576 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2577 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2578 return false; 2579 2580 // Also keep natural memory operands second if the loaded value is 2581 // only used here. Several comparisons have memory forms. 2582 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2583 return false; 2584 2585 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2586 // In that case we generally prefer the memory to be second. 2587 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2588 // The only exceptions are when the second operand is a constant and 2589 // we can use things like CHHSI. 2590 if (!ConstOp1) 2591 return true; 2592 // The unsigned memory-immediate instructions can handle 16-bit 2593 // unsigned integers. 2594 if (C.ICmpType != SystemZICMP::SignedOnly && 2595 isUInt<16>(ConstOp1->getZExtValue())) 2596 return false; 2597 // The signed memory-immediate instructions can handle 16-bit 2598 // signed integers. 2599 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2600 isInt<16>(ConstOp1->getSExtValue())) 2601 return false; 2602 return true; 2603 } 2604 2605 // Try to promote the use of CGFR and CLGFR. 2606 unsigned Opcode0 = C.Op0.getOpcode(); 2607 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2608 return true; 2609 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2610 return true; 2611 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND && 2612 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2613 C.Op0.getConstantOperandVal(1) == 0xffffffff) 2614 return true; 2615 2616 return false; 2617 } 2618 2619 // Check whether C tests for equality between X and Y and whether X - Y 2620 // or Y - X is also computed. In that case it's better to compare the 2621 // result of the subtraction against zero. 2622 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2623 Comparison &C) { 2624 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2625 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2626 for (SDNode *N : C.Op0->uses()) { 2627 if (N->getOpcode() == ISD::SUB && 2628 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2629 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2630 // Disable the nsw and nuw flags: the backend needs to handle 2631 // overflow as well during comparison elimination. 2632 SDNodeFlags Flags = N->getFlags(); 2633 Flags.setNoSignedWrap(false); 2634 Flags.setNoUnsignedWrap(false); 2635 N->setFlags(Flags); 2636 C.Op0 = SDValue(N, 0); 2637 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2638 return; 2639 } 2640 } 2641 } 2642 } 2643 2644 // Check whether C compares a floating-point value with zero and if that 2645 // floating-point value is also negated. In this case we can use the 2646 // negation to set CC, so avoiding separate LOAD AND TEST and 2647 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2648 static void adjustForFNeg(Comparison &C) { 2649 // This optimization is invalid for strict comparisons, since FNEG 2650 // does not raise any exceptions. 2651 if (C.Chain) 2652 return; 2653 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2654 if (C1 && C1->isZero()) { 2655 for (SDNode *N : C.Op0->uses()) { 2656 if (N->getOpcode() == ISD::FNEG) { 2657 C.Op0 = SDValue(N, 0); 2658 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2659 return; 2660 } 2661 } 2662 } 2663 } 2664 2665 // Check whether C compares (shl X, 32) with 0 and whether X is 2666 // also sign-extended. In that case it is better to test the result 2667 // of the sign extension using LTGFR. 2668 // 2669 // This case is important because InstCombine transforms a comparison 2670 // with (sext (trunc X)) into a comparison with (shl X, 32). 2671 static void adjustForLTGFR(Comparison &C) { 2672 // Check for a comparison between (shl X, 32) and 0. 2673 if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 && 2674 C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) { 2675 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2676 if (C1 && C1->getZExtValue() == 32) { 2677 SDValue ShlOp0 = C.Op0.getOperand(0); 2678 // See whether X has any SIGN_EXTEND_INREG uses. 2679 for (SDNode *N : ShlOp0->uses()) { 2680 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2681 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2682 C.Op0 = SDValue(N, 0); 2683 return; 2684 } 2685 } 2686 } 2687 } 2688 } 2689 2690 // If C compares the truncation of an extending load, try to compare 2691 // the untruncated value instead. This exposes more opportunities to 2692 // reuse CC. 2693 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2694 Comparison &C) { 2695 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2696 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2697 C.Op1.getOpcode() == ISD::Constant && 2698 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 2699 C.Op1->getAsZExtVal() == 0) { 2700 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2701 if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= 2702 C.Op0.getValueSizeInBits().getFixedValue()) { 2703 unsigned Type = L->getExtensionType(); 2704 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2705 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2706 C.Op0 = C.Op0.getOperand(0); 2707 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2708 } 2709 } 2710 } 2711 } 2712 2713 // Return true if shift operation N has an in-range constant shift value. 2714 // Store it in ShiftVal if so. 2715 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2716 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2717 if (!Shift) 2718 return false; 2719 2720 uint64_t Amount = Shift->getZExtValue(); 2721 if (Amount >= N.getValueSizeInBits()) 2722 return false; 2723 2724 ShiftVal = Amount; 2725 return true; 2726 } 2727 2728 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2729 // instruction and whether the CC value is descriptive enough to handle 2730 // a comparison of type Opcode between the AND result and CmpVal. 2731 // CCMask says which comparison result is being tested and BitSize is 2732 // the number of bits in the operands. If TEST UNDER MASK can be used, 2733 // return the corresponding CC mask, otherwise return 0. 2734 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2735 uint64_t Mask, uint64_t CmpVal, 2736 unsigned ICmpType) { 2737 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2738 2739 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2740 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2741 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2742 return 0; 2743 2744 // Work out the masks for the lowest and highest bits. 2745 uint64_t High = llvm::bit_floor(Mask); 2746 uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask); 2747 2748 // Signed ordered comparisons are effectively unsigned if the sign 2749 // bit is dropped. 2750 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2751 2752 // Check for equality comparisons with 0, or the equivalent. 2753 if (CmpVal == 0) { 2754 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2755 return SystemZ::CCMASK_TM_ALL_0; 2756 if (CCMask == SystemZ::CCMASK_CMP_NE) 2757 return SystemZ::CCMASK_TM_SOME_1; 2758 } 2759 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2760 if (CCMask == SystemZ::CCMASK_CMP_LT) 2761 return SystemZ::CCMASK_TM_ALL_0; 2762 if (CCMask == SystemZ::CCMASK_CMP_GE) 2763 return SystemZ::CCMASK_TM_SOME_1; 2764 } 2765 if (EffectivelyUnsigned && CmpVal < Low) { 2766 if (CCMask == SystemZ::CCMASK_CMP_LE) 2767 return SystemZ::CCMASK_TM_ALL_0; 2768 if (CCMask == SystemZ::CCMASK_CMP_GT) 2769 return SystemZ::CCMASK_TM_SOME_1; 2770 } 2771 2772 // Check for equality comparisons with the mask, or the equivalent. 2773 if (CmpVal == Mask) { 2774 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2775 return SystemZ::CCMASK_TM_ALL_1; 2776 if (CCMask == SystemZ::CCMASK_CMP_NE) 2777 return SystemZ::CCMASK_TM_SOME_0; 2778 } 2779 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2780 if (CCMask == SystemZ::CCMASK_CMP_GT) 2781 return SystemZ::CCMASK_TM_ALL_1; 2782 if (CCMask == SystemZ::CCMASK_CMP_LE) 2783 return SystemZ::CCMASK_TM_SOME_0; 2784 } 2785 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2786 if (CCMask == SystemZ::CCMASK_CMP_GE) 2787 return SystemZ::CCMASK_TM_ALL_1; 2788 if (CCMask == SystemZ::CCMASK_CMP_LT) 2789 return SystemZ::CCMASK_TM_SOME_0; 2790 } 2791 2792 // Check for ordered comparisons with the top bit. 2793 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2794 if (CCMask == SystemZ::CCMASK_CMP_LE) 2795 return SystemZ::CCMASK_TM_MSB_0; 2796 if (CCMask == SystemZ::CCMASK_CMP_GT) 2797 return SystemZ::CCMASK_TM_MSB_1; 2798 } 2799 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2800 if (CCMask == SystemZ::CCMASK_CMP_LT) 2801 return SystemZ::CCMASK_TM_MSB_0; 2802 if (CCMask == SystemZ::CCMASK_CMP_GE) 2803 return SystemZ::CCMASK_TM_MSB_1; 2804 } 2805 2806 // If there are just two bits, we can do equality checks for Low and High 2807 // as well. 2808 if (Mask == Low + High) { 2809 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2810 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2811 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2812 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2813 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2814 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2815 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2816 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2817 } 2818 2819 // Looks like we've exhausted our options. 2820 return 0; 2821 } 2822 2823 // See whether C can be implemented as a TEST UNDER MASK instruction. 2824 // Update the arguments with the TM version if so. 2825 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2826 Comparison &C) { 2827 // Use VECTOR TEST UNDER MASK for i128 operations. 2828 if (C.Op0.getValueType() == MVT::i128) { 2829 // We can use VTM for EQ/NE comparisons of x & y against 0. 2830 if (C.Op0.getOpcode() == ISD::AND && 2831 (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2832 C.CCMask == SystemZ::CCMASK_CMP_NE)) { 2833 auto *Mask = dyn_cast<ConstantSDNode>(C.Op1); 2834 if (Mask && Mask->getAPIntValue() == 0) { 2835 C.Opcode = SystemZISD::VTM; 2836 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1)); 2837 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0)); 2838 C.CCValid = SystemZ::CCMASK_VCMP; 2839 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2840 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2841 else 2842 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2843 } 2844 } 2845 return; 2846 } 2847 2848 // Check that we have a comparison with a constant. 2849 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2850 if (!ConstOp1) 2851 return; 2852 uint64_t CmpVal = ConstOp1->getZExtValue(); 2853 2854 // Check whether the nonconstant input is an AND with a constant mask. 2855 Comparison NewC(C); 2856 uint64_t MaskVal; 2857 ConstantSDNode *Mask = nullptr; 2858 if (C.Op0.getOpcode() == ISD::AND) { 2859 NewC.Op0 = C.Op0.getOperand(0); 2860 NewC.Op1 = C.Op0.getOperand(1); 2861 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2862 if (!Mask) 2863 return; 2864 MaskVal = Mask->getZExtValue(); 2865 } else { 2866 // There is no instruction to compare with a 64-bit immediate 2867 // so use TMHH instead if possible. We need an unsigned ordered 2868 // comparison with an i64 immediate. 2869 if (NewC.Op0.getValueType() != MVT::i64 || 2870 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2871 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2872 NewC.ICmpType == SystemZICMP::SignedOnly) 2873 return; 2874 // Convert LE and GT comparisons into LT and GE. 2875 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2876 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2877 if (CmpVal == uint64_t(-1)) 2878 return; 2879 CmpVal += 1; 2880 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2881 } 2882 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2883 // be masked off without changing the result. 2884 MaskVal = -(CmpVal & -CmpVal); 2885 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2886 } 2887 if (!MaskVal) 2888 return; 2889 2890 // Check whether the combination of mask, comparison value and comparison 2891 // type are suitable. 2892 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2893 unsigned NewCCMask, ShiftVal; 2894 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2895 NewC.Op0.getOpcode() == ISD::SHL && 2896 isSimpleShift(NewC.Op0, ShiftVal) && 2897 (MaskVal >> ShiftVal != 0) && 2898 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2899 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2900 MaskVal >> ShiftVal, 2901 CmpVal >> ShiftVal, 2902 SystemZICMP::Any))) { 2903 NewC.Op0 = NewC.Op0.getOperand(0); 2904 MaskVal >>= ShiftVal; 2905 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2906 NewC.Op0.getOpcode() == ISD::SRL && 2907 isSimpleShift(NewC.Op0, ShiftVal) && 2908 (MaskVal << ShiftVal != 0) && 2909 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2910 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2911 MaskVal << ShiftVal, 2912 CmpVal << ShiftVal, 2913 SystemZICMP::UnsignedOnly))) { 2914 NewC.Op0 = NewC.Op0.getOperand(0); 2915 MaskVal <<= ShiftVal; 2916 } else { 2917 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2918 NewC.ICmpType); 2919 if (!NewCCMask) 2920 return; 2921 } 2922 2923 // Go ahead and make the change. 2924 C.Opcode = SystemZISD::TM; 2925 C.Op0 = NewC.Op0; 2926 if (Mask && Mask->getZExtValue() == MaskVal) 2927 C.Op1 = SDValue(Mask, 0); 2928 else 2929 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2930 C.CCValid = SystemZ::CCMASK_TM; 2931 C.CCMask = NewCCMask; 2932 } 2933 2934 // Implement i128 comparison in vector registers. 2935 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL, 2936 Comparison &C) { 2937 if (C.Opcode != SystemZISD::ICMP) 2938 return; 2939 if (C.Op0.getValueType() != MVT::i128) 2940 return; 2941 2942 // (In-)Equality comparisons can be implemented via VCEQGS. 2943 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2944 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2945 C.Opcode = SystemZISD::VICMPES; 2946 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0); 2947 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1); 2948 C.CCValid = SystemZ::CCMASK_VCMP; 2949 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2950 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2951 else 2952 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2953 return; 2954 } 2955 2956 // Normalize other comparisons to GT. 2957 bool Swap = false, Invert = false; 2958 switch (C.CCMask) { 2959 case SystemZ::CCMASK_CMP_GT: break; 2960 case SystemZ::CCMASK_CMP_LT: Swap = true; break; 2961 case SystemZ::CCMASK_CMP_LE: Invert = true; break; 2962 case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break; 2963 default: llvm_unreachable("Invalid integer condition!"); 2964 } 2965 if (Swap) 2966 std::swap(C.Op0, C.Op1); 2967 2968 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2969 C.Opcode = SystemZISD::UCMP128HI; 2970 else 2971 C.Opcode = SystemZISD::SCMP128HI; 2972 C.CCValid = SystemZ::CCMASK_ANY; 2973 C.CCMask = SystemZ::CCMASK_1; 2974 2975 if (Invert) 2976 C.CCMask ^= C.CCValid; 2977 } 2978 2979 // See whether the comparison argument contains a redundant AND 2980 // and remove it if so. This sometimes happens due to the generic 2981 // BRCOND expansion. 2982 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2983 Comparison &C) { 2984 if (C.Op0.getOpcode() != ISD::AND) 2985 return; 2986 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2987 if (!Mask || Mask->getValueSizeInBits(0) > 64) 2988 return; 2989 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2990 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2991 return; 2992 2993 C.Op0 = C.Op0.getOperand(0); 2994 } 2995 2996 // Return a Comparison that tests the condition-code result of intrinsic 2997 // node Call against constant integer CC using comparison code Cond. 2998 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2999 // and CCValid is the set of possible condition-code results. 3000 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 3001 SDValue Call, unsigned CCValid, uint64_t CC, 3002 ISD::CondCode Cond) { 3003 Comparison C(Call, SDValue(), SDValue()); 3004 C.Opcode = Opcode; 3005 C.CCValid = CCValid; 3006 if (Cond == ISD::SETEQ) 3007 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 3008 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 3009 else if (Cond == ISD::SETNE) 3010 // ...and the inverse of that. 3011 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 3012 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 3013 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 3014 // always true for CC>3. 3015 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 3016 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 3017 // ...and the inverse of that. 3018 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 3019 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 3020 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 3021 // always true for CC>3. 3022 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 3023 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 3024 // ...and the inverse of that. 3025 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 3026 else 3027 llvm_unreachable("Unexpected integer comparison type"); 3028 C.CCMask &= CCValid; 3029 return C; 3030 } 3031 3032 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 3033 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 3034 ISD::CondCode Cond, const SDLoc &DL, 3035 SDValue Chain = SDValue(), 3036 bool IsSignaling = false) { 3037 if (CmpOp1.getOpcode() == ISD::Constant) { 3038 assert(!Chain); 3039 unsigned Opcode, CCValid; 3040 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 3041 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 3042 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 3043 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3044 CmpOp1->getAsZExtVal(), Cond); 3045 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 3046 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 3047 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 3048 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3049 CmpOp1->getAsZExtVal(), Cond); 3050 } 3051 Comparison C(CmpOp0, CmpOp1, Chain); 3052 C.CCMask = CCMaskForCondCode(Cond); 3053 if (C.Op0.getValueType().isFloatingPoint()) { 3054 C.CCValid = SystemZ::CCMASK_FCMP; 3055 if (!C.Chain) 3056 C.Opcode = SystemZISD::FCMP; 3057 else if (!IsSignaling) 3058 C.Opcode = SystemZISD::STRICT_FCMP; 3059 else 3060 C.Opcode = SystemZISD::STRICT_FCMPS; 3061 adjustForFNeg(C); 3062 } else { 3063 assert(!C.Chain); 3064 C.CCValid = SystemZ::CCMASK_ICMP; 3065 C.Opcode = SystemZISD::ICMP; 3066 // Choose the type of comparison. Equality and inequality tests can 3067 // use either signed or unsigned comparisons. The choice also doesn't 3068 // matter if both sign bits are known to be clear. In those cases we 3069 // want to give the main isel code the freedom to choose whichever 3070 // form fits best. 3071 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 3072 C.CCMask == SystemZ::CCMASK_CMP_NE || 3073 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 3074 C.ICmpType = SystemZICMP::Any; 3075 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 3076 C.ICmpType = SystemZICMP::UnsignedOnly; 3077 else 3078 C.ICmpType = SystemZICMP::SignedOnly; 3079 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 3080 adjustForRedundantAnd(DAG, DL, C); 3081 adjustZeroCmp(DAG, DL, C); 3082 adjustSubwordCmp(DAG, DL, C); 3083 adjustForSubtraction(DAG, DL, C); 3084 adjustForLTGFR(C); 3085 adjustICmpTruncate(DAG, DL, C); 3086 } 3087 3088 if (shouldSwapCmpOperands(C)) { 3089 std::swap(C.Op0, C.Op1); 3090 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 3091 } 3092 3093 adjustForTestUnderMask(DAG, DL, C); 3094 adjustICmp128(DAG, DL, C); 3095 return C; 3096 } 3097 3098 // Emit the comparison instruction described by C. 3099 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 3100 if (!C.Op1.getNode()) { 3101 SDNode *Node; 3102 switch (C.Op0.getOpcode()) { 3103 case ISD::INTRINSIC_W_CHAIN: 3104 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 3105 return SDValue(Node, 0); 3106 case ISD::INTRINSIC_WO_CHAIN: 3107 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 3108 return SDValue(Node, Node->getNumValues() - 1); 3109 default: 3110 llvm_unreachable("Invalid comparison operands"); 3111 } 3112 } 3113 if (C.Opcode == SystemZISD::ICMP) 3114 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 3115 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 3116 if (C.Opcode == SystemZISD::TM) { 3117 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 3118 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 3119 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 3120 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 3121 } 3122 if (C.Opcode == SystemZISD::VICMPES) { 3123 SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32); 3124 SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1); 3125 return SDValue(Val.getNode(), 1); 3126 } 3127 if (C.Chain) { 3128 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 3129 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 3130 } 3131 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 3132 } 3133 3134 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 3135 // 64 bits. Extend is the extension type to use. Store the high part 3136 // in Hi and the low part in Lo. 3137 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 3138 SDValue Op0, SDValue Op1, SDValue &Hi, 3139 SDValue &Lo) { 3140 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 3141 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 3142 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 3143 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 3144 DAG.getConstant(32, DL, MVT::i64)); 3145 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 3146 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 3147 } 3148 3149 // Lower a binary operation that produces two VT results, one in each 3150 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 3151 // and Opcode performs the GR128 operation. Store the even register result 3152 // in Even and the odd register result in Odd. 3153 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3154 unsigned Opcode, SDValue Op0, SDValue Op1, 3155 SDValue &Even, SDValue &Odd) { 3156 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 3157 bool Is32Bit = is32Bit(VT); 3158 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 3159 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 3160 } 3161 3162 // Return an i32 value that is 1 if the CC value produced by CCReg is 3163 // in the mask CCMask and 0 otherwise. CC is known to have a value 3164 // in CCValid, so other values can be ignored. 3165 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 3166 unsigned CCValid, unsigned CCMask) { 3167 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 3168 DAG.getConstant(0, DL, MVT::i32), 3169 DAG.getTargetConstant(CCValid, DL, MVT::i32), 3170 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 3171 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 3172 } 3173 3174 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 3175 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 3176 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 3177 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 3178 // floating-point comparisons. 3179 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 3180 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 3181 switch (CC) { 3182 case ISD::SETOEQ: 3183 case ISD::SETEQ: 3184 switch (Mode) { 3185 case CmpMode::Int: return SystemZISD::VICMPE; 3186 case CmpMode::FP: return SystemZISD::VFCMPE; 3187 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 3188 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 3189 } 3190 llvm_unreachable("Bad mode"); 3191 3192 case ISD::SETOGE: 3193 case ISD::SETGE: 3194 switch (Mode) { 3195 case CmpMode::Int: return 0; 3196 case CmpMode::FP: return SystemZISD::VFCMPHE; 3197 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 3198 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 3199 } 3200 llvm_unreachable("Bad mode"); 3201 3202 case ISD::SETOGT: 3203 case ISD::SETGT: 3204 switch (Mode) { 3205 case CmpMode::Int: return SystemZISD::VICMPH; 3206 case CmpMode::FP: return SystemZISD::VFCMPH; 3207 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 3208 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 3209 } 3210 llvm_unreachable("Bad mode"); 3211 3212 case ISD::SETUGT: 3213 switch (Mode) { 3214 case CmpMode::Int: return SystemZISD::VICMPHL; 3215 case CmpMode::FP: return 0; 3216 case CmpMode::StrictFP: return 0; 3217 case CmpMode::SignalingFP: return 0; 3218 } 3219 llvm_unreachable("Bad mode"); 3220 3221 default: 3222 return 0; 3223 } 3224 } 3225 3226 // Return the SystemZISD vector comparison operation for CC or its inverse, 3227 // or 0 if neither can be done directly. Indicate in Invert whether the 3228 // result is for the inverse of CC. Mode is as above. 3229 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 3230 bool &Invert) { 3231 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3232 Invert = false; 3233 return Opcode; 3234 } 3235 3236 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 3237 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3238 Invert = true; 3239 return Opcode; 3240 } 3241 3242 return 0; 3243 } 3244 3245 // Return a v2f64 that contains the extended form of elements Start and Start+1 3246 // of v4f32 value Op. If Chain is nonnull, return the strict form. 3247 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 3248 SDValue Op, SDValue Chain) { 3249 int Mask[] = { Start, -1, Start + 1, -1 }; 3250 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 3251 if (Chain) { 3252 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 3253 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 3254 } 3255 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 3256 } 3257 3258 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 3259 // producing a result of type VT. If Chain is nonnull, return the strict form. 3260 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 3261 const SDLoc &DL, EVT VT, 3262 SDValue CmpOp0, 3263 SDValue CmpOp1, 3264 SDValue Chain) const { 3265 // There is no hardware support for v4f32 (unless we have the vector 3266 // enhancements facility 1), so extend the vector into two v2f64s 3267 // and compare those. 3268 if (CmpOp0.getValueType() == MVT::v4f32 && 3269 !Subtarget.hasVectorEnhancements1()) { 3270 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 3271 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 3272 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 3273 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 3274 if (Chain) { 3275 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 3276 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 3277 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 3278 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3279 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 3280 H1.getValue(1), L1.getValue(1), 3281 HRes.getValue(1), LRes.getValue(1) }; 3282 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3283 SDValue Ops[2] = { Res, NewChain }; 3284 return DAG.getMergeValues(Ops, DL); 3285 } 3286 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 3287 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 3288 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3289 } 3290 if (Chain) { 3291 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3292 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3293 } 3294 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 3295 } 3296 3297 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3298 // an integer mask of type VT. If Chain is nonnull, we have a strict 3299 // floating-point comparison. If in addition IsSignaling is true, we have 3300 // a strict signaling floating-point comparison. 3301 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 3302 const SDLoc &DL, EVT VT, 3303 ISD::CondCode CC, 3304 SDValue CmpOp0, 3305 SDValue CmpOp1, 3306 SDValue Chain, 3307 bool IsSignaling) const { 3308 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3309 assert (!Chain || IsFP); 3310 assert (!IsSignaling || Chain); 3311 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3312 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 3313 bool Invert = false; 3314 SDValue Cmp; 3315 switch (CC) { 3316 // Handle tests for order using (or (ogt y x) (oge x y)). 3317 case ISD::SETUO: 3318 Invert = true; 3319 [[fallthrough]]; 3320 case ISD::SETO: { 3321 assert(IsFP && "Unexpected integer comparison"); 3322 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3323 DL, VT, CmpOp1, CmpOp0, Chain); 3324 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3325 DL, VT, CmpOp0, CmpOp1, Chain); 3326 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3327 if (Chain) 3328 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3329 LT.getValue(1), GE.getValue(1)); 3330 break; 3331 } 3332 3333 // Handle <> tests using (or (ogt y x) (ogt x y)). 3334 case ISD::SETUEQ: 3335 Invert = true; 3336 [[fallthrough]]; 3337 case ISD::SETONE: { 3338 assert(IsFP && "Unexpected integer comparison"); 3339 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3340 DL, VT, CmpOp1, CmpOp0, Chain); 3341 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3342 DL, VT, CmpOp0, CmpOp1, Chain); 3343 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3344 if (Chain) 3345 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3346 LT.getValue(1), GT.getValue(1)); 3347 break; 3348 } 3349 3350 // Otherwise a single comparison is enough. It doesn't really 3351 // matter whether we try the inversion or the swap first, since 3352 // there are no cases where both work. 3353 default: 3354 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3355 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3356 else { 3357 CC = ISD::getSetCCSwappedOperands(CC); 3358 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3359 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3360 else 3361 llvm_unreachable("Unhandled comparison"); 3362 } 3363 if (Chain) 3364 Chain = Cmp.getValue(1); 3365 break; 3366 } 3367 if (Invert) { 3368 SDValue Mask = 3369 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3370 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3371 } 3372 if (Chain && Chain.getNode() != Cmp.getNode()) { 3373 SDValue Ops[2] = { Cmp, Chain }; 3374 Cmp = DAG.getMergeValues(Ops, DL); 3375 } 3376 return Cmp; 3377 } 3378 3379 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3380 SelectionDAG &DAG) const { 3381 SDValue CmpOp0 = Op.getOperand(0); 3382 SDValue CmpOp1 = Op.getOperand(1); 3383 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3384 SDLoc DL(Op); 3385 EVT VT = Op.getValueType(); 3386 if (VT.isVector()) 3387 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3388 3389 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3390 SDValue CCReg = emitCmp(DAG, DL, C); 3391 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3392 } 3393 3394 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3395 SelectionDAG &DAG, 3396 bool IsSignaling) const { 3397 SDValue Chain = Op.getOperand(0); 3398 SDValue CmpOp0 = Op.getOperand(1); 3399 SDValue CmpOp1 = Op.getOperand(2); 3400 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3401 SDLoc DL(Op); 3402 EVT VT = Op.getNode()->getValueType(0); 3403 if (VT.isVector()) { 3404 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3405 Chain, IsSignaling); 3406 return Res.getValue(Op.getResNo()); 3407 } 3408 3409 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3410 SDValue CCReg = emitCmp(DAG, DL, C); 3411 CCReg->setFlags(Op->getFlags()); 3412 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3413 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3414 return DAG.getMergeValues(Ops, DL); 3415 } 3416 3417 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3418 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3419 SDValue CmpOp0 = Op.getOperand(2); 3420 SDValue CmpOp1 = Op.getOperand(3); 3421 SDValue Dest = Op.getOperand(4); 3422 SDLoc DL(Op); 3423 3424 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3425 SDValue CCReg = emitCmp(DAG, DL, C); 3426 return DAG.getNode( 3427 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3428 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3429 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3430 } 3431 3432 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3433 // allowing Pos and Neg to be wider than CmpOp. 3434 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3435 return (Neg.getOpcode() == ISD::SUB && 3436 Neg.getOperand(0).getOpcode() == ISD::Constant && 3437 Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos && 3438 (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND && 3439 Pos.getOperand(0) == CmpOp))); 3440 } 3441 3442 // Return the absolute or negative absolute of Op; IsNegative decides which. 3443 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3444 bool IsNegative) { 3445 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3446 if (IsNegative) 3447 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3448 DAG.getConstant(0, DL, Op.getValueType()), Op); 3449 return Op; 3450 } 3451 3452 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3453 SelectionDAG &DAG) const { 3454 SDValue CmpOp0 = Op.getOperand(0); 3455 SDValue CmpOp1 = Op.getOperand(1); 3456 SDValue TrueOp = Op.getOperand(2); 3457 SDValue FalseOp = Op.getOperand(3); 3458 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3459 SDLoc DL(Op); 3460 3461 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3462 3463 // Check for absolute and negative-absolute selections, including those 3464 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3465 // This check supplements the one in DAGCombiner. 3466 if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ && 3467 C.CCMask != SystemZ::CCMASK_CMP_NE && 3468 C.Op1.getOpcode() == ISD::Constant && 3469 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 3470 C.Op1->getAsZExtVal() == 0) { 3471 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3472 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3473 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3474 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3475 } 3476 3477 SDValue CCReg = emitCmp(DAG, DL, C); 3478 SDValue Ops[] = {TrueOp, FalseOp, 3479 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3480 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3481 3482 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3483 } 3484 3485 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3486 SelectionDAG &DAG) const { 3487 SDLoc DL(Node); 3488 const GlobalValue *GV = Node->getGlobal(); 3489 int64_t Offset = Node->getOffset(); 3490 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3491 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3492 3493 SDValue Result; 3494 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3495 if (isInt<32>(Offset)) { 3496 // Assign anchors at 1<<12 byte boundaries. 3497 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3498 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3499 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3500 3501 // The offset can be folded into the address if it is aligned to a 3502 // halfword. 3503 Offset -= Anchor; 3504 if (Offset != 0 && (Offset & 1) == 0) { 3505 SDValue Full = 3506 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3507 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3508 Offset = 0; 3509 } 3510 } else { 3511 // Conservatively load a constant offset greater than 32 bits into a 3512 // register below. 3513 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3514 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3515 } 3516 } else if (Subtarget.isTargetELF()) { 3517 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3518 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3519 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3520 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3521 } else if (Subtarget.isTargetzOS()) { 3522 Result = getADAEntry(DAG, GV, DL, PtrVT); 3523 } else 3524 llvm_unreachable("Unexpected Subtarget"); 3525 3526 // If there was a non-zero offset that we didn't fold, create an explicit 3527 // addition for it. 3528 if (Offset != 0) 3529 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3530 DAG.getConstant(Offset, DL, PtrVT)); 3531 3532 return Result; 3533 } 3534 3535 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3536 SelectionDAG &DAG, 3537 unsigned Opcode, 3538 SDValue GOTOffset) const { 3539 SDLoc DL(Node); 3540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3541 SDValue Chain = DAG.getEntryNode(); 3542 SDValue Glue; 3543 3544 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3545 CallingConv::GHC) 3546 report_fatal_error("In GHC calling convention TLS is not supported"); 3547 3548 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3549 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3550 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3551 Glue = Chain.getValue(1); 3552 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3553 Glue = Chain.getValue(1); 3554 3555 // The first call operand is the chain and the second is the TLS symbol. 3556 SmallVector<SDValue, 8> Ops; 3557 Ops.push_back(Chain); 3558 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3559 Node->getValueType(0), 3560 0, 0)); 3561 3562 // Add argument registers to the end of the list so that they are 3563 // known live into the call. 3564 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3565 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3566 3567 // Add a register mask operand representing the call-preserved registers. 3568 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3569 const uint32_t *Mask = 3570 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3571 assert(Mask && "Missing call preserved mask for calling convention"); 3572 Ops.push_back(DAG.getRegisterMask(Mask)); 3573 3574 // Glue the call to the argument copies. 3575 Ops.push_back(Glue); 3576 3577 // Emit the call. 3578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3579 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3580 Glue = Chain.getValue(1); 3581 3582 // Copy the return value from %r2. 3583 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3584 } 3585 3586 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3587 SelectionDAG &DAG) const { 3588 SDValue Chain = DAG.getEntryNode(); 3589 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3590 3591 // The high part of the thread pointer is in access register 0. 3592 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3593 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3594 3595 // The low part of the thread pointer is in access register 1. 3596 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3597 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3598 3599 // Merge them into a single 64-bit address. 3600 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3601 DAG.getConstant(32, DL, PtrVT)); 3602 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3603 } 3604 3605 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3606 SelectionDAG &DAG) const { 3607 if (DAG.getTarget().useEmulatedTLS()) 3608 return LowerToTLSEmulatedModel(Node, DAG); 3609 SDLoc DL(Node); 3610 const GlobalValue *GV = Node->getGlobal(); 3611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3612 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3613 3614 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3615 CallingConv::GHC) 3616 report_fatal_error("In GHC calling convention TLS is not supported"); 3617 3618 SDValue TP = lowerThreadPointer(DL, DAG); 3619 3620 // Get the offset of GA from the thread pointer, based on the TLS model. 3621 SDValue Offset; 3622 switch (model) { 3623 case TLSModel::GeneralDynamic: { 3624 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3625 SystemZConstantPoolValue *CPV = 3626 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3627 3628 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3629 Offset = DAG.getLoad( 3630 PtrVT, DL, DAG.getEntryNode(), Offset, 3631 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3632 3633 // Call __tls_get_offset to retrieve the offset. 3634 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3635 break; 3636 } 3637 3638 case TLSModel::LocalDynamic: { 3639 // Load the GOT offset of the module ID. 3640 SystemZConstantPoolValue *CPV = 3641 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3642 3643 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3644 Offset = DAG.getLoad( 3645 PtrVT, DL, DAG.getEntryNode(), Offset, 3646 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3647 3648 // Call __tls_get_offset to retrieve the module base offset. 3649 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3650 3651 // Note: The SystemZLDCleanupPass will remove redundant computations 3652 // of the module base offset. Count total number of local-dynamic 3653 // accesses to trigger execution of that pass. 3654 SystemZMachineFunctionInfo* MFI = 3655 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3656 MFI->incNumLocalDynamicTLSAccesses(); 3657 3658 // Add the per-symbol offset. 3659 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3660 3661 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3662 DTPOffset = DAG.getLoad( 3663 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3664 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3665 3666 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3667 break; 3668 } 3669 3670 case TLSModel::InitialExec: { 3671 // Load the offset from the GOT. 3672 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3673 SystemZII::MO_INDNTPOFF); 3674 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3675 Offset = 3676 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3677 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3678 break; 3679 } 3680 3681 case TLSModel::LocalExec: { 3682 // Force the offset into the constant pool and load it from there. 3683 SystemZConstantPoolValue *CPV = 3684 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3685 3686 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3687 Offset = DAG.getLoad( 3688 PtrVT, DL, DAG.getEntryNode(), Offset, 3689 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3690 break; 3691 } 3692 } 3693 3694 // Add the base and offset together. 3695 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3696 } 3697 3698 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3699 SelectionDAG &DAG) const { 3700 SDLoc DL(Node); 3701 const BlockAddress *BA = Node->getBlockAddress(); 3702 int64_t Offset = Node->getOffset(); 3703 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3704 3705 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3706 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3707 return Result; 3708 } 3709 3710 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3711 SelectionDAG &DAG) const { 3712 SDLoc DL(JT); 3713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3714 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3715 3716 // Use LARL to load the address of the table. 3717 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3718 } 3719 3720 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3721 SelectionDAG &DAG) const { 3722 SDLoc DL(CP); 3723 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3724 3725 SDValue Result; 3726 if (CP->isMachineConstantPoolEntry()) 3727 Result = 3728 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3729 else 3730 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3731 CP->getOffset()); 3732 3733 // Use LARL to load the address of the constant pool entry. 3734 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3735 } 3736 3737 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3738 SelectionDAG &DAG) const { 3739 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3740 MachineFunction &MF = DAG.getMachineFunction(); 3741 MachineFrameInfo &MFI = MF.getFrameInfo(); 3742 MFI.setFrameAddressIsTaken(true); 3743 3744 SDLoc DL(Op); 3745 unsigned Depth = Op.getConstantOperandVal(0); 3746 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3747 3748 // By definition, the frame address is the address of the back chain. (In 3749 // the case of packed stack without backchain, return the address where the 3750 // backchain would have been stored. This will either be an unused space or 3751 // contain a saved register). 3752 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3753 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3754 3755 if (Depth > 0) { 3756 // FIXME The frontend should detect this case. 3757 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3758 report_fatal_error("Unsupported stack frame traversal count"); 3759 3760 SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT); 3761 while (Depth--) { 3762 BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain, 3763 MachinePointerInfo()); 3764 BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset); 3765 } 3766 } 3767 3768 return BackChain; 3769 } 3770 3771 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3772 SelectionDAG &DAG) const { 3773 MachineFunction &MF = DAG.getMachineFunction(); 3774 MachineFrameInfo &MFI = MF.getFrameInfo(); 3775 MFI.setReturnAddressIsTaken(true); 3776 3777 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3778 return SDValue(); 3779 3780 SDLoc DL(Op); 3781 unsigned Depth = Op.getConstantOperandVal(0); 3782 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3783 3784 if (Depth > 0) { 3785 // FIXME The frontend should detect this case. 3786 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3787 report_fatal_error("Unsupported stack frame traversal count"); 3788 3789 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3790 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3791 int Offset = (TFL->usePackedStack(MF) ? -2 : 14) * 3792 getTargetMachine().getPointerSize(0); 3793 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr, 3794 DAG.getConstant(Offset, DL, PtrVT)); 3795 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, 3796 MachinePointerInfo()); 3797 } 3798 3799 // Return R14D, which has the return address. Mark it an implicit live-in. 3800 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3801 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3802 } 3803 3804 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3805 SelectionDAG &DAG) const { 3806 SDLoc DL(Op); 3807 SDValue In = Op.getOperand(0); 3808 EVT InVT = In.getValueType(); 3809 EVT ResVT = Op.getValueType(); 3810 3811 // Convert loads directly. This is normally done by DAGCombiner, 3812 // but we need this case for bitcasts that are created during lowering 3813 // and which are then lowered themselves. 3814 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3815 if (ISD::isNormalLoad(LoadN)) { 3816 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3817 LoadN->getBasePtr(), LoadN->getMemOperand()); 3818 // Update the chain uses. 3819 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3820 return NewLoad; 3821 } 3822 3823 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3824 SDValue In64; 3825 if (Subtarget.hasHighWord()) { 3826 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3827 MVT::i64); 3828 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3829 MVT::i64, SDValue(U64, 0), In); 3830 } else { 3831 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3832 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3833 DAG.getConstant(32, DL, MVT::i64)); 3834 } 3835 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3836 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3837 DL, MVT::f32, Out64); 3838 } 3839 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3840 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3841 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3842 MVT::f64, SDValue(U64, 0), In); 3843 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3844 if (Subtarget.hasHighWord()) 3845 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3846 MVT::i32, Out64); 3847 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3848 DAG.getConstant(32, DL, MVT::i64)); 3849 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3850 } 3851 llvm_unreachable("Unexpected bitcast combination"); 3852 } 3853 3854 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 3857 if (Subtarget.isTargetXPLINK64()) 3858 return lowerVASTART_XPLINK(Op, DAG); 3859 else 3860 return lowerVASTART_ELF(Op, DAG); 3861 } 3862 3863 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3864 SelectionDAG &DAG) const { 3865 MachineFunction &MF = DAG.getMachineFunction(); 3866 SystemZMachineFunctionInfo *FuncInfo = 3867 MF.getInfo<SystemZMachineFunctionInfo>(); 3868 3869 SDLoc DL(Op); 3870 3871 // vastart just stores the address of the VarArgsFrameIndex slot into the 3872 // memory location argument. 3873 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3874 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3875 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3876 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3877 MachinePointerInfo(SV)); 3878 } 3879 3880 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 MachineFunction &MF = DAG.getMachineFunction(); 3883 SystemZMachineFunctionInfo *FuncInfo = 3884 MF.getInfo<SystemZMachineFunctionInfo>(); 3885 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3886 3887 SDValue Chain = Op.getOperand(0); 3888 SDValue Addr = Op.getOperand(1); 3889 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3890 SDLoc DL(Op); 3891 3892 // The initial values of each field. 3893 const unsigned NumFields = 4; 3894 SDValue Fields[NumFields] = { 3895 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3896 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3897 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3898 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3899 }; 3900 3901 // Store each field into its respective slot. 3902 SDValue MemOps[NumFields]; 3903 unsigned Offset = 0; 3904 for (unsigned I = 0; I < NumFields; ++I) { 3905 SDValue FieldAddr = Addr; 3906 if (Offset != 0) 3907 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3908 DAG.getIntPtrConstant(Offset, DL)); 3909 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3910 MachinePointerInfo(SV, Offset)); 3911 Offset += 8; 3912 } 3913 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3914 } 3915 3916 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 SDValue Chain = Op.getOperand(0); 3919 SDValue DstPtr = Op.getOperand(1); 3920 SDValue SrcPtr = Op.getOperand(2); 3921 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3922 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3923 SDLoc DL(Op); 3924 3925 uint32_t Sz = 3926 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3927 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3928 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3929 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3930 MachinePointerInfo(SrcSV)); 3931 } 3932 3933 SDValue 3934 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3935 SelectionDAG &DAG) const { 3936 if (Subtarget.isTargetXPLINK64()) 3937 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3938 else 3939 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3940 } 3941 3942 SDValue 3943 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3944 SelectionDAG &DAG) const { 3945 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3946 MachineFunction &MF = DAG.getMachineFunction(); 3947 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3948 SDValue Chain = Op.getOperand(0); 3949 SDValue Size = Op.getOperand(1); 3950 SDValue Align = Op.getOperand(2); 3951 SDLoc DL(Op); 3952 3953 // If user has set the no alignment function attribute, ignore 3954 // alloca alignments. 3955 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); 3956 3957 uint64_t StackAlign = TFI->getStackAlignment(); 3958 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3959 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3960 3961 SDValue NeededSpace = Size; 3962 3963 // Add extra space for alignment if needed. 3964 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3965 if (ExtraAlignSpace) 3966 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3967 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3968 3969 bool IsSigned = false; 3970 bool DoesNotReturn = false; 3971 bool IsReturnValueUsed = false; 3972 EVT VT = Op.getValueType(); 3973 SDValue AllocaCall = 3974 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), 3975 CallingConv::C, IsSigned, DL, DoesNotReturn, 3976 IsReturnValueUsed) 3977 .first; 3978 3979 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3980 // to end of call in order to ensure it isn't broken up from the call 3981 // sequence. 3982 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3983 Register SPReg = Regs.getStackPointerRegister(); 3984 Chain = AllocaCall.getValue(1); 3985 SDValue Glue = AllocaCall.getValue(2); 3986 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3987 Chain = NewSPRegNode.getValue(1); 3988 3989 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3990 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3991 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3992 3993 // Dynamically realign if needed. 3994 if (ExtraAlignSpace) { 3995 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3996 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3997 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3998 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3999 } 4000 4001 SDValue Ops[2] = {Result, Chain}; 4002 return DAG.getMergeValues(Ops, DL); 4003 } 4004 4005 SDValue 4006 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 4009 MachineFunction &MF = DAG.getMachineFunction(); 4010 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 4011 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4012 4013 SDValue Chain = Op.getOperand(0); 4014 SDValue Size = Op.getOperand(1); 4015 SDValue Align = Op.getOperand(2); 4016 SDLoc DL(Op); 4017 4018 // If user has set the no alignment function attribute, ignore 4019 // alloca alignments. 4020 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); 4021 4022 uint64_t StackAlign = TFI->getStackAlignment(); 4023 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 4024 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 4025 4026 Register SPReg = getStackPointerRegisterToSaveRestore(); 4027 SDValue NeededSpace = Size; 4028 4029 // Get a reference to the stack pointer. 4030 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 4031 4032 // If we need a backchain, save it now. 4033 SDValue Backchain; 4034 if (StoreBackchain) 4035 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4036 MachinePointerInfo()); 4037 4038 // Add extra space for alignment if needed. 4039 if (ExtraAlignSpace) 4040 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 4041 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4042 4043 // Get the new stack pointer value. 4044 SDValue NewSP; 4045 if (hasInlineStackProbe(MF)) { 4046 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 4047 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 4048 Chain = NewSP.getValue(1); 4049 } 4050 else { 4051 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 4052 // Copy the new stack pointer back. 4053 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 4054 } 4055 4056 // The allocated data lives above the 160 bytes allocated for the standard 4057 // frame, plus any outgoing stack arguments. We don't know how much that 4058 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 4059 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4060 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 4061 4062 // Dynamically realign if needed. 4063 if (RequiredAlign > StackAlign) { 4064 Result = 4065 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 4066 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4067 Result = 4068 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 4069 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 4070 } 4071 4072 if (StoreBackchain) 4073 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4074 MachinePointerInfo()); 4075 4076 SDValue Ops[2] = { Result, Chain }; 4077 return DAG.getMergeValues(Ops, DL); 4078 } 4079 4080 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 4081 SDValue Op, SelectionDAG &DAG) const { 4082 SDLoc DL(Op); 4083 4084 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4085 } 4086 4087 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 4088 SelectionDAG &DAG) const { 4089 EVT VT = Op.getValueType(); 4090 SDLoc DL(Op); 4091 SDValue Ops[2]; 4092 if (is32Bit(VT)) 4093 // Just do a normal 64-bit multiplication and extract the results. 4094 // We define this so that it can be used for constant division. 4095 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 4096 Op.getOperand(1), Ops[1], Ops[0]); 4097 else if (Subtarget.hasMiscellaneousExtensions2()) 4098 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 4099 // the high result in the even register. ISD::SMUL_LOHI is defined to 4100 // return the low half first, so the results are in reverse order. 4101 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 4102 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4103 else { 4104 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 4105 // 4106 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 4107 // 4108 // but using the fact that the upper halves are either all zeros 4109 // or all ones: 4110 // 4111 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 4112 // 4113 // and grouping the right terms together since they are quicker than the 4114 // multiplication: 4115 // 4116 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 4117 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 4118 SDValue LL = Op.getOperand(0); 4119 SDValue RL = Op.getOperand(1); 4120 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 4121 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 4122 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4123 // the high result in the even register. ISD::SMUL_LOHI is defined to 4124 // return the low half first, so the results are in reverse order. 4125 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4126 LL, RL, Ops[1], Ops[0]); 4127 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 4128 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 4129 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 4130 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 4131 } 4132 return DAG.getMergeValues(Ops, DL); 4133 } 4134 4135 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 4136 SelectionDAG &DAG) const { 4137 EVT VT = Op.getValueType(); 4138 SDLoc DL(Op); 4139 SDValue Ops[2]; 4140 if (is32Bit(VT)) 4141 // Just do a normal 64-bit multiplication and extract the results. 4142 // We define this so that it can be used for constant division. 4143 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 4144 Op.getOperand(1), Ops[1], Ops[0]); 4145 else 4146 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4147 // the high result in the even register. ISD::UMUL_LOHI is defined to 4148 // return the low half first, so the results are in reverse order. 4149 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4150 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4151 return DAG.getMergeValues(Ops, DL); 4152 } 4153 4154 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 4155 SelectionDAG &DAG) const { 4156 SDValue Op0 = Op.getOperand(0); 4157 SDValue Op1 = Op.getOperand(1); 4158 EVT VT = Op.getValueType(); 4159 SDLoc DL(Op); 4160 4161 // We use DSGF for 32-bit division. This means the first operand must 4162 // always be 64-bit, and the second operand should be 32-bit whenever 4163 // that is possible, to improve performance. 4164 if (is32Bit(VT)) 4165 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 4166 else if (DAG.ComputeNumSignBits(Op1) > 32) 4167 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 4168 4169 // DSG(F) returns the remainder in the even register and the 4170 // quotient in the odd register. 4171 SDValue Ops[2]; 4172 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 4173 return DAG.getMergeValues(Ops, DL); 4174 } 4175 4176 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 4177 SelectionDAG &DAG) const { 4178 EVT VT = Op.getValueType(); 4179 SDLoc DL(Op); 4180 4181 // DL(G) returns the remainder in the even register and the 4182 // quotient in the odd register. 4183 SDValue Ops[2]; 4184 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 4185 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4186 return DAG.getMergeValues(Ops, DL); 4187 } 4188 4189 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 4190 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 4191 4192 // Get the known-zero masks for each operand. 4193 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 4194 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 4195 DAG.computeKnownBits(Ops[1])}; 4196 4197 // See if the upper 32 bits of one operand and the lower 32 bits of the 4198 // other are known zero. They are the low and high operands respectively. 4199 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 4200 Known[1].Zero.getZExtValue() }; 4201 unsigned High, Low; 4202 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 4203 High = 1, Low = 0; 4204 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 4205 High = 0, Low = 1; 4206 else 4207 return Op; 4208 4209 SDValue LowOp = Ops[Low]; 4210 SDValue HighOp = Ops[High]; 4211 4212 // If the high part is a constant, we're better off using IILH. 4213 if (HighOp.getOpcode() == ISD::Constant) 4214 return Op; 4215 4216 // If the low part is a constant that is outside the range of LHI, 4217 // then we're better off using IILF. 4218 if (LowOp.getOpcode() == ISD::Constant) { 4219 int64_t Value = int32_t(LowOp->getAsZExtVal()); 4220 if (!isInt<16>(Value)) 4221 return Op; 4222 } 4223 4224 // Check whether the high part is an AND that doesn't change the 4225 // high 32 bits and just masks out low bits. We can skip it if so. 4226 if (HighOp.getOpcode() == ISD::AND && 4227 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 4228 SDValue HighOp0 = HighOp.getOperand(0); 4229 uint64_t Mask = HighOp.getConstantOperandVal(1); 4230 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 4231 HighOp = HighOp0; 4232 } 4233 4234 // Take advantage of the fact that all GR32 operations only change the 4235 // low 32 bits by truncating Low to an i32 and inserting it directly 4236 // using a subreg. The interesting cases are those where the truncation 4237 // can be folded. 4238 SDLoc DL(Op); 4239 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 4240 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 4241 MVT::i64, HighOp, Low32); 4242 } 4243 4244 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 4245 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 4246 SelectionDAG &DAG) const { 4247 SDNode *N = Op.getNode(); 4248 SDValue LHS = N->getOperand(0); 4249 SDValue RHS = N->getOperand(1); 4250 SDLoc DL(N); 4251 4252 if (N->getValueType(0) == MVT::i128) { 4253 unsigned BaseOp = 0; 4254 unsigned FlagOp = 0; 4255 switch (Op.getOpcode()) { 4256 default: llvm_unreachable("Unknown instruction!"); 4257 case ISD::UADDO: 4258 BaseOp = ISD::ADD; 4259 FlagOp = SystemZISD::VACC; 4260 break; 4261 case ISD::USUBO: 4262 BaseOp = ISD::SUB; 4263 FlagOp = SystemZISD::VSCBI; 4264 break; 4265 } 4266 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS); 4267 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS); 4268 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4269 DAG.getValueType(MVT::i1)); 4270 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4271 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4272 } 4273 4274 unsigned BaseOp = 0; 4275 unsigned CCValid = 0; 4276 unsigned CCMask = 0; 4277 4278 switch (Op.getOpcode()) { 4279 default: llvm_unreachable("Unknown instruction!"); 4280 case ISD::SADDO: 4281 BaseOp = SystemZISD::SADDO; 4282 CCValid = SystemZ::CCMASK_ARITH; 4283 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4284 break; 4285 case ISD::SSUBO: 4286 BaseOp = SystemZISD::SSUBO; 4287 CCValid = SystemZ::CCMASK_ARITH; 4288 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4289 break; 4290 case ISD::UADDO: 4291 BaseOp = SystemZISD::UADDO; 4292 CCValid = SystemZ::CCMASK_LOGICAL; 4293 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4294 break; 4295 case ISD::USUBO: 4296 BaseOp = SystemZISD::USUBO; 4297 CCValid = SystemZ::CCMASK_LOGICAL; 4298 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4299 break; 4300 } 4301 4302 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 4303 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 4304 4305 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4306 if (N->getValueType(1) == MVT::i1) 4307 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4308 4309 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4310 } 4311 4312 static bool isAddCarryChain(SDValue Carry) { 4313 while (Carry.getOpcode() == ISD::UADDO_CARRY) 4314 Carry = Carry.getOperand(2); 4315 return Carry.getOpcode() == ISD::UADDO; 4316 } 4317 4318 static bool isSubBorrowChain(SDValue Carry) { 4319 while (Carry.getOpcode() == ISD::USUBO_CARRY) 4320 Carry = Carry.getOperand(2); 4321 return Carry.getOpcode() == ISD::USUBO; 4322 } 4323 4324 // Lower UADDO_CARRY/USUBO_CARRY nodes. 4325 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op, 4326 SelectionDAG &DAG) const { 4327 4328 SDNode *N = Op.getNode(); 4329 MVT VT = N->getSimpleValueType(0); 4330 4331 // Let legalize expand this if it isn't a legal type yet. 4332 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 4333 return SDValue(); 4334 4335 SDValue LHS = N->getOperand(0); 4336 SDValue RHS = N->getOperand(1); 4337 SDValue Carry = Op.getOperand(2); 4338 SDLoc DL(N); 4339 4340 if (VT == MVT::i128) { 4341 unsigned BaseOp = 0; 4342 unsigned FlagOp = 0; 4343 switch (Op.getOpcode()) { 4344 default: llvm_unreachable("Unknown instruction!"); 4345 case ISD::UADDO_CARRY: 4346 BaseOp = SystemZISD::VAC; 4347 FlagOp = SystemZISD::VACCC; 4348 break; 4349 case ISD::USUBO_CARRY: 4350 BaseOp = SystemZISD::VSBI; 4351 FlagOp = SystemZISD::VSBCBI; 4352 break; 4353 } 4354 Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128); 4355 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry); 4356 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry); 4357 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4358 DAG.getValueType(MVT::i1)); 4359 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4360 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4361 } 4362 4363 unsigned BaseOp = 0; 4364 unsigned CCValid = 0; 4365 unsigned CCMask = 0; 4366 4367 switch (Op.getOpcode()) { 4368 default: llvm_unreachable("Unknown instruction!"); 4369 case ISD::UADDO_CARRY: 4370 if (!isAddCarryChain(Carry)) 4371 return SDValue(); 4372 4373 BaseOp = SystemZISD::ADDCARRY; 4374 CCValid = SystemZ::CCMASK_LOGICAL; 4375 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4376 break; 4377 case ISD::USUBO_CARRY: 4378 if (!isSubBorrowChain(Carry)) 4379 return SDValue(); 4380 4381 BaseOp = SystemZISD::SUBCARRY; 4382 CCValid = SystemZ::CCMASK_LOGICAL; 4383 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4384 break; 4385 } 4386 4387 // Set the condition code from the carry flag. 4388 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4389 DAG.getConstant(CCValid, DL, MVT::i32), 4390 DAG.getConstant(CCMask, DL, MVT::i32)); 4391 4392 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4393 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4394 4395 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4396 if (N->getValueType(1) == MVT::i1) 4397 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4398 4399 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4400 } 4401 4402 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4403 SelectionDAG &DAG) const { 4404 EVT VT = Op.getValueType(); 4405 SDLoc DL(Op); 4406 Op = Op.getOperand(0); 4407 4408 if (VT.getScalarSizeInBits() == 128) { 4409 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op); 4410 Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op); 4411 SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL, 4412 DAG.getConstant(0, DL, MVT::i64)); 4413 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4414 return Op; 4415 } 4416 4417 // Handle vector types via VPOPCT. 4418 if (VT.isVector()) { 4419 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4420 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4421 switch (VT.getScalarSizeInBits()) { 4422 case 8: 4423 break; 4424 case 16: { 4425 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4426 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4427 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4428 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4429 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4430 break; 4431 } 4432 case 32: { 4433 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4434 DAG.getConstant(0, DL, MVT::i32)); 4435 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4436 break; 4437 } 4438 case 64: { 4439 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4440 DAG.getConstant(0, DL, MVT::i32)); 4441 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4442 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4443 break; 4444 } 4445 default: 4446 llvm_unreachable("Unexpected type"); 4447 } 4448 return Op; 4449 } 4450 4451 // Get the known-zero mask for the operand. 4452 KnownBits Known = DAG.computeKnownBits(Op); 4453 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4454 if (NumSignificantBits == 0) 4455 return DAG.getConstant(0, DL, VT); 4456 4457 // Skip known-zero high parts of the operand. 4458 int64_t OrigBitSize = VT.getSizeInBits(); 4459 int64_t BitSize = llvm::bit_ceil(NumSignificantBits); 4460 BitSize = std::min(BitSize, OrigBitSize); 4461 4462 // The POPCNT instruction counts the number of bits in each byte. 4463 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4464 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4465 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4466 4467 // Add up per-byte counts in a binary tree. All bits of Op at 4468 // position larger than BitSize remain zero throughout. 4469 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4470 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4471 if (BitSize != OrigBitSize) 4472 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4473 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4474 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4475 } 4476 4477 // Extract overall result from high byte. 4478 if (BitSize > 8) 4479 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4480 DAG.getConstant(BitSize - 8, DL, VT)); 4481 4482 return Op; 4483 } 4484 4485 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4486 SelectionDAG &DAG) const { 4487 SDLoc DL(Op); 4488 AtomicOrdering FenceOrdering = 4489 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 4490 SyncScope::ID FenceSSID = 4491 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 4492 4493 // The only fence that needs an instruction is a sequentially-consistent 4494 // cross-thread fence. 4495 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4496 FenceSSID == SyncScope::System) { 4497 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4498 Op.getOperand(0)), 4499 0); 4500 } 4501 4502 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4503 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4504 } 4505 4506 // Op is an atomic load. Lower it into a normal volatile load. 4507 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4508 SelectionDAG &DAG) const { 4509 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4510 if (Node->getMemoryVT() == MVT::i128) { 4511 // Use same code to handle both legal and non-legal i128 types. 4512 SmallVector<SDValue, 2> Results; 4513 LowerOperationWrapper(Node, Results, DAG); 4514 return DAG.getMergeValues(Results, SDLoc(Op)); 4515 } 4516 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4517 Node->getChain(), Node->getBasePtr(), 4518 Node->getMemoryVT(), Node->getMemOperand()); 4519 } 4520 4521 // Op is an atomic store. Lower it into a normal volatile store. 4522 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4523 SelectionDAG &DAG) const { 4524 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4525 if (Node->getMemoryVT() == MVT::i128) { 4526 // Use same code to handle both legal and non-legal i128 types. 4527 SmallVector<SDValue, 1> Results; 4528 LowerOperationWrapper(Node, Results, DAG); 4529 return DAG.getMergeValues(Results, SDLoc(Op)); 4530 } 4531 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4532 Node->getBasePtr(), Node->getMemoryVT(), 4533 Node->getMemOperand()); 4534 // We have to enforce sequential consistency by performing a 4535 // serialization operation after the store. 4536 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4537 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4538 MVT::Other, Chain), 0); 4539 return Chain; 4540 } 4541 4542 // Prepare for a Compare And Swap for a subword operation. This needs to be 4543 // done in memory with 4 bytes at natural alignment. 4544 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL, 4545 SDValue &AlignedAddr, SDValue &BitShift, 4546 SDValue &NegBitShift) { 4547 EVT PtrVT = Addr.getValueType(); 4548 EVT WideVT = MVT::i32; 4549 4550 // Get the address of the containing word. 4551 AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4552 DAG.getConstant(-4, DL, PtrVT)); 4553 4554 // Get the number of bits that the word must be rotated left in order 4555 // to bring the field to the top bits of a GR32. 4556 BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4557 DAG.getConstant(3, DL, PtrVT)); 4558 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4559 4560 // Get the complementing shift amount, for rotating a field in the top 4561 // bits back to its proper position. 4562 NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4563 DAG.getConstant(0, DL, WideVT), BitShift); 4564 4565 } 4566 4567 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4568 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4569 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4570 SelectionDAG &DAG, 4571 unsigned Opcode) const { 4572 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4573 4574 // 32-bit operations need no special handling. 4575 EVT NarrowVT = Node->getMemoryVT(); 4576 EVT WideVT = MVT::i32; 4577 if (NarrowVT == WideVT) 4578 return Op; 4579 4580 int64_t BitSize = NarrowVT.getSizeInBits(); 4581 SDValue ChainIn = Node->getChain(); 4582 SDValue Addr = Node->getBasePtr(); 4583 SDValue Src2 = Node->getVal(); 4584 MachineMemOperand *MMO = Node->getMemOperand(); 4585 SDLoc DL(Node); 4586 4587 // Convert atomic subtracts of constants into additions. 4588 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4589 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4590 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4591 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4592 } 4593 4594 SDValue AlignedAddr, BitShift, NegBitShift; 4595 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4596 4597 // Extend the source operand to 32 bits and prepare it for the inner loop. 4598 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4599 // operations require the source to be shifted in advance. (This shift 4600 // can be folded if the source is constant.) For AND and NAND, the lower 4601 // bits must be set, while for other opcodes they should be left clear. 4602 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4603 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4604 DAG.getConstant(32 - BitSize, DL, WideVT)); 4605 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4606 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4607 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4608 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4609 4610 // Construct the ATOMIC_LOADW_* node. 4611 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4612 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4613 DAG.getConstant(BitSize, DL, WideVT) }; 4614 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4615 NarrowVT, MMO); 4616 4617 // Rotate the result of the final CS so that the field is in the lower 4618 // bits of a GR32, then truncate it. 4619 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4620 DAG.getConstant(BitSize, DL, WideVT)); 4621 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4622 4623 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4624 return DAG.getMergeValues(RetOps, DL); 4625 } 4626 4627 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into 4628 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions. 4629 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4630 SelectionDAG &DAG) const { 4631 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4632 EVT MemVT = Node->getMemoryVT(); 4633 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4634 // A full-width operation: negate and use LAA(G). 4635 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4636 assert(Subtarget.hasInterlockedAccess1() && 4637 "Should have been expanded by AtomicExpand pass."); 4638 SDValue Src2 = Node->getVal(); 4639 SDLoc DL(Src2); 4640 SDValue NegSrc2 = 4641 DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2); 4642 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4643 Node->getChain(), Node->getBasePtr(), NegSrc2, 4644 Node->getMemOperand()); 4645 } 4646 4647 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4648 } 4649 4650 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4651 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4652 SelectionDAG &DAG) const { 4653 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4654 SDValue ChainIn = Node->getOperand(0); 4655 SDValue Addr = Node->getOperand(1); 4656 SDValue CmpVal = Node->getOperand(2); 4657 SDValue SwapVal = Node->getOperand(3); 4658 MachineMemOperand *MMO = Node->getMemOperand(); 4659 SDLoc DL(Node); 4660 4661 if (Node->getMemoryVT() == MVT::i128) { 4662 // Use same code to handle both legal and non-legal i128 types. 4663 SmallVector<SDValue, 3> Results; 4664 LowerOperationWrapper(Node, Results, DAG); 4665 return DAG.getMergeValues(Results, DL); 4666 } 4667 4668 // We have native support for 32-bit and 64-bit compare and swap, but we 4669 // still need to expand extracting the "success" result from the CC. 4670 EVT NarrowVT = Node->getMemoryVT(); 4671 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4672 if (NarrowVT == WideVT) { 4673 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4674 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4675 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4676 DL, Tys, Ops, NarrowVT, MMO); 4677 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4678 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4679 4680 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4681 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4682 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4683 return SDValue(); 4684 } 4685 4686 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4687 // via a fullword ATOMIC_CMP_SWAPW operation. 4688 int64_t BitSize = NarrowVT.getSizeInBits(); 4689 4690 SDValue AlignedAddr, BitShift, NegBitShift; 4691 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4692 4693 // Construct the ATOMIC_CMP_SWAPW node. 4694 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4695 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4696 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4697 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4698 VTList, Ops, NarrowVT, MMO); 4699 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4700 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4701 4702 // emitAtomicCmpSwapW() will zero extend the result (original value). 4703 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4704 DAG.getValueType(NarrowVT)); 4705 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4706 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4707 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4708 return SDValue(); 4709 } 4710 4711 MachineMemOperand::Flags 4712 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4713 // Because of how we convert atomic_load and atomic_store to normal loads and 4714 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4715 // since DAGCombine hasn't been updated to account for atomic, but non 4716 // volatile loads. (See D57601) 4717 if (auto *SI = dyn_cast<StoreInst>(&I)) 4718 if (SI->isAtomic()) 4719 return MachineMemOperand::MOVolatile; 4720 if (auto *LI = dyn_cast<LoadInst>(&I)) 4721 if (LI->isAtomic()) 4722 return MachineMemOperand::MOVolatile; 4723 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4724 if (AI->isAtomic()) 4725 return MachineMemOperand::MOVolatile; 4726 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4727 if (AI->isAtomic()) 4728 return MachineMemOperand::MOVolatile; 4729 return MachineMemOperand::MONone; 4730 } 4731 4732 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4733 SelectionDAG &DAG) const { 4734 MachineFunction &MF = DAG.getMachineFunction(); 4735 auto *Regs = Subtarget.getSpecialRegisters(); 4736 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4737 report_fatal_error("Variable-sized stack allocations are not supported " 4738 "in GHC calling convention"); 4739 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4740 Regs->getStackPointerRegister(), Op.getValueType()); 4741 } 4742 4743 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4744 SelectionDAG &DAG) const { 4745 MachineFunction &MF = DAG.getMachineFunction(); 4746 auto *Regs = Subtarget.getSpecialRegisters(); 4747 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4748 4749 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4750 report_fatal_error("Variable-sized stack allocations are not supported " 4751 "in GHC calling convention"); 4752 4753 SDValue Chain = Op.getOperand(0); 4754 SDValue NewSP = Op.getOperand(1); 4755 SDValue Backchain; 4756 SDLoc DL(Op); 4757 4758 if (StoreBackchain) { 4759 SDValue OldSP = DAG.getCopyFromReg( 4760 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4761 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4762 MachinePointerInfo()); 4763 } 4764 4765 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4766 4767 if (StoreBackchain) 4768 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4769 MachinePointerInfo()); 4770 4771 return Chain; 4772 } 4773 4774 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4775 SelectionDAG &DAG) const { 4776 bool IsData = Op.getConstantOperandVal(4); 4777 if (!IsData) 4778 // Just preserve the chain. 4779 return Op.getOperand(0); 4780 4781 SDLoc DL(Op); 4782 bool IsWrite = Op.getConstantOperandVal(2); 4783 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4784 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4785 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4786 Op.getOperand(1)}; 4787 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4788 Node->getVTList(), Ops, 4789 Node->getMemoryVT(), Node->getMemOperand()); 4790 } 4791 4792 // Convert condition code in CCReg to an i32 value. 4793 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4794 SDLoc DL(CCReg); 4795 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4796 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4797 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4798 } 4799 4800 SDValue 4801 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4802 SelectionDAG &DAG) const { 4803 unsigned Opcode, CCValid; 4804 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4805 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4806 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4807 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4808 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4809 return SDValue(); 4810 } 4811 4812 return SDValue(); 4813 } 4814 4815 SDValue 4816 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4817 SelectionDAG &DAG) const { 4818 unsigned Opcode, CCValid; 4819 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4820 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4821 if (Op->getNumValues() == 1) 4822 return getCCResult(DAG, SDValue(Node, 0)); 4823 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4824 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4825 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4826 } 4827 4828 unsigned Id = Op.getConstantOperandVal(0); 4829 switch (Id) { 4830 case Intrinsic::thread_pointer: 4831 return lowerThreadPointer(SDLoc(Op), DAG); 4832 4833 case Intrinsic::s390_vpdi: 4834 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4835 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4836 4837 case Intrinsic::s390_vperm: 4838 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4839 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4840 4841 case Intrinsic::s390_vuphb: 4842 case Intrinsic::s390_vuphh: 4843 case Intrinsic::s390_vuphf: 4844 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4845 Op.getOperand(1)); 4846 4847 case Intrinsic::s390_vuplhb: 4848 case Intrinsic::s390_vuplhh: 4849 case Intrinsic::s390_vuplhf: 4850 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4851 Op.getOperand(1)); 4852 4853 case Intrinsic::s390_vuplb: 4854 case Intrinsic::s390_vuplhw: 4855 case Intrinsic::s390_vuplf: 4856 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4857 Op.getOperand(1)); 4858 4859 case Intrinsic::s390_vupllb: 4860 case Intrinsic::s390_vupllh: 4861 case Intrinsic::s390_vupllf: 4862 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4863 Op.getOperand(1)); 4864 4865 case Intrinsic::s390_vsumb: 4866 case Intrinsic::s390_vsumh: 4867 case Intrinsic::s390_vsumgh: 4868 case Intrinsic::s390_vsumgf: 4869 case Intrinsic::s390_vsumqf: 4870 case Intrinsic::s390_vsumqg: 4871 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4872 Op.getOperand(1), Op.getOperand(2)); 4873 4874 case Intrinsic::s390_vaq: 4875 return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), 4876 Op.getOperand(1), Op.getOperand(2)); 4877 case Intrinsic::s390_vaccb: 4878 case Intrinsic::s390_vacch: 4879 case Intrinsic::s390_vaccf: 4880 case Intrinsic::s390_vaccg: 4881 case Intrinsic::s390_vaccq: 4882 return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(), 4883 Op.getOperand(1), Op.getOperand(2)); 4884 case Intrinsic::s390_vacq: 4885 return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(), 4886 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4887 case Intrinsic::s390_vacccq: 4888 return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(), 4889 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4890 4891 case Intrinsic::s390_vsq: 4892 return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), 4893 Op.getOperand(1), Op.getOperand(2)); 4894 case Intrinsic::s390_vscbib: 4895 case Intrinsic::s390_vscbih: 4896 case Intrinsic::s390_vscbif: 4897 case Intrinsic::s390_vscbig: 4898 case Intrinsic::s390_vscbiq: 4899 return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(), 4900 Op.getOperand(1), Op.getOperand(2)); 4901 case Intrinsic::s390_vsbiq: 4902 return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(), 4903 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4904 case Intrinsic::s390_vsbcbiq: 4905 return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(), 4906 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4907 } 4908 4909 return SDValue(); 4910 } 4911 4912 namespace { 4913 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4914 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4915 // Operand is the constant third operand, otherwise it is the number of 4916 // bytes in each element of the result. 4917 struct Permute { 4918 unsigned Opcode; 4919 unsigned Operand; 4920 unsigned char Bytes[SystemZ::VectorBytes]; 4921 }; 4922 } 4923 4924 static const Permute PermuteForms[] = { 4925 // VMRHG 4926 { SystemZISD::MERGE_HIGH, 8, 4927 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4928 // VMRHF 4929 { SystemZISD::MERGE_HIGH, 4, 4930 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4931 // VMRHH 4932 { SystemZISD::MERGE_HIGH, 2, 4933 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4934 // VMRHB 4935 { SystemZISD::MERGE_HIGH, 1, 4936 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4937 // VMRLG 4938 { SystemZISD::MERGE_LOW, 8, 4939 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4940 // VMRLF 4941 { SystemZISD::MERGE_LOW, 4, 4942 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4943 // VMRLH 4944 { SystemZISD::MERGE_LOW, 2, 4945 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4946 // VMRLB 4947 { SystemZISD::MERGE_LOW, 1, 4948 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4949 // VPKG 4950 { SystemZISD::PACK, 4, 4951 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4952 // VPKF 4953 { SystemZISD::PACK, 2, 4954 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4955 // VPKH 4956 { SystemZISD::PACK, 1, 4957 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4958 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4959 { SystemZISD::PERMUTE_DWORDS, 4, 4960 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4961 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4962 { SystemZISD::PERMUTE_DWORDS, 1, 4963 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4964 }; 4965 4966 // Called after matching a vector shuffle against a particular pattern. 4967 // Both the original shuffle and the pattern have two vector operands. 4968 // OpNos[0] is the operand of the original shuffle that should be used for 4969 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4970 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4971 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4972 // for operands 0 and 1 of the pattern. 4973 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4974 if (OpNos[0] < 0) { 4975 if (OpNos[1] < 0) 4976 return false; 4977 OpNo0 = OpNo1 = OpNos[1]; 4978 } else if (OpNos[1] < 0) { 4979 OpNo0 = OpNo1 = OpNos[0]; 4980 } else { 4981 OpNo0 = OpNos[0]; 4982 OpNo1 = OpNos[1]; 4983 } 4984 return true; 4985 } 4986 4987 // Bytes is a VPERM-like permute vector, except that -1 is used for 4988 // undefined bytes. Return true if the VPERM can be implemented using P. 4989 // When returning true set OpNo0 to the VPERM operand that should be 4990 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4991 // 4992 // For example, if swapping the VPERM operands allows P to match, OpNo0 4993 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4994 // operand, but rewriting it to use two duplicated operands allows it to 4995 // match P, then OpNo0 and OpNo1 will be the same. 4996 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4997 unsigned &OpNo0, unsigned &OpNo1) { 4998 int OpNos[] = { -1, -1 }; 4999 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5000 int Elt = Bytes[I]; 5001 if (Elt >= 0) { 5002 // Make sure that the two permute vectors use the same suboperand 5003 // byte number. Only the operand numbers (the high bits) are 5004 // allowed to differ. 5005 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 5006 return false; 5007 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 5008 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 5009 // Make sure that the operand mappings are consistent with previous 5010 // elements. 5011 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5012 return false; 5013 OpNos[ModelOpNo] = RealOpNo; 5014 } 5015 } 5016 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5017 } 5018 5019 // As above, but search for a matching permute. 5020 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 5021 unsigned &OpNo0, unsigned &OpNo1) { 5022 for (auto &P : PermuteForms) 5023 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 5024 return &P; 5025 return nullptr; 5026 } 5027 5028 // Bytes is a VPERM-like permute vector, except that -1 is used for 5029 // undefined bytes. This permute is an operand of an outer permute. 5030 // See whether redistributing the -1 bytes gives a shuffle that can be 5031 // implemented using P. If so, set Transform to a VPERM-like permute vector 5032 // that, when applied to the result of P, gives the original permute in Bytes. 5033 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5034 const Permute &P, 5035 SmallVectorImpl<int> &Transform) { 5036 unsigned To = 0; 5037 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 5038 int Elt = Bytes[From]; 5039 if (Elt < 0) 5040 // Byte number From of the result is undefined. 5041 Transform[From] = -1; 5042 else { 5043 while (P.Bytes[To] != Elt) { 5044 To += 1; 5045 if (To == SystemZ::VectorBytes) 5046 return false; 5047 } 5048 Transform[From] = To; 5049 } 5050 } 5051 return true; 5052 } 5053 5054 // As above, but search for a matching permute. 5055 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5056 SmallVectorImpl<int> &Transform) { 5057 for (auto &P : PermuteForms) 5058 if (matchDoublePermute(Bytes, P, Transform)) 5059 return &P; 5060 return nullptr; 5061 } 5062 5063 // Convert the mask of the given shuffle op into a byte-level mask, 5064 // as if it had type vNi8. 5065 static bool getVPermMask(SDValue ShuffleOp, 5066 SmallVectorImpl<int> &Bytes) { 5067 EVT VT = ShuffleOp.getValueType(); 5068 unsigned NumElements = VT.getVectorNumElements(); 5069 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5070 5071 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 5072 Bytes.resize(NumElements * BytesPerElement, -1); 5073 for (unsigned I = 0; I < NumElements; ++I) { 5074 int Index = VSN->getMaskElt(I); 5075 if (Index >= 0) 5076 for (unsigned J = 0; J < BytesPerElement; ++J) 5077 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5078 } 5079 return true; 5080 } 5081 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 5082 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 5083 unsigned Index = ShuffleOp.getConstantOperandVal(1); 5084 Bytes.resize(NumElements * BytesPerElement, -1); 5085 for (unsigned I = 0; I < NumElements; ++I) 5086 for (unsigned J = 0; J < BytesPerElement; ++J) 5087 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5088 return true; 5089 } 5090 return false; 5091 } 5092 5093 // Bytes is a VPERM-like permute vector, except that -1 is used for 5094 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 5095 // the result come from a contiguous sequence of bytes from one input. 5096 // Set Base to the selector for the first byte if so. 5097 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 5098 unsigned BytesPerElement, int &Base) { 5099 Base = -1; 5100 for (unsigned I = 0; I < BytesPerElement; ++I) { 5101 if (Bytes[Start + I] >= 0) { 5102 unsigned Elem = Bytes[Start + I]; 5103 if (Base < 0) { 5104 Base = Elem - I; 5105 // Make sure the bytes would come from one input operand. 5106 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 5107 return false; 5108 } else if (unsigned(Base) != Elem - I) 5109 return false; 5110 } 5111 } 5112 return true; 5113 } 5114 5115 // Bytes is a VPERM-like permute vector, except that -1 is used for 5116 // undefined bytes. Return true if it can be performed using VSLDB. 5117 // When returning true, set StartIndex to the shift amount and OpNo0 5118 // and OpNo1 to the VPERM operands that should be used as the first 5119 // and second shift operand respectively. 5120 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 5121 unsigned &StartIndex, unsigned &OpNo0, 5122 unsigned &OpNo1) { 5123 int OpNos[] = { -1, -1 }; 5124 int Shift = -1; 5125 for (unsigned I = 0; I < 16; ++I) { 5126 int Index = Bytes[I]; 5127 if (Index >= 0) { 5128 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 5129 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 5130 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 5131 if (Shift < 0) 5132 Shift = ExpectedShift; 5133 else if (Shift != ExpectedShift) 5134 return false; 5135 // Make sure that the operand mappings are consistent with previous 5136 // elements. 5137 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5138 return false; 5139 OpNos[ModelOpNo] = RealOpNo; 5140 } 5141 } 5142 StartIndex = Shift; 5143 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5144 } 5145 5146 // Create a node that performs P on operands Op0 and Op1, casting the 5147 // operands to the appropriate type. The type of the result is determined by P. 5148 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5149 const Permute &P, SDValue Op0, SDValue Op1) { 5150 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 5151 // elements of a PACK are twice as wide as the outputs. 5152 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 5153 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 5154 P.Operand); 5155 // Cast both operands to the appropriate type. 5156 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 5157 SystemZ::VectorBytes / InBytes); 5158 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 5159 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 5160 SDValue Op; 5161 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 5162 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 5163 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 5164 } else if (P.Opcode == SystemZISD::PACK) { 5165 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 5166 SystemZ::VectorBytes / P.Operand); 5167 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 5168 } else { 5169 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 5170 } 5171 return Op; 5172 } 5173 5174 static bool isZeroVector(SDValue N) { 5175 if (N->getOpcode() == ISD::BITCAST) 5176 N = N->getOperand(0); 5177 if (N->getOpcode() == ISD::SPLAT_VECTOR) 5178 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 5179 return Op->getZExtValue() == 0; 5180 return ISD::isBuildVectorAllZeros(N.getNode()); 5181 } 5182 5183 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 5184 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 5185 for (unsigned I = 0; I < Num ; I++) 5186 if (isZeroVector(Ops[I])) 5187 return I; 5188 return UINT32_MAX; 5189 } 5190 5191 // Bytes is a VPERM-like permute vector, except that -1 is used for 5192 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 5193 // VSLDB or VPERM. 5194 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5195 SDValue *Ops, 5196 const SmallVectorImpl<int> &Bytes) { 5197 for (unsigned I = 0; I < 2; ++I) 5198 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 5199 5200 // First see whether VSLDB can be used. 5201 unsigned StartIndex, OpNo0, OpNo1; 5202 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 5203 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 5204 Ops[OpNo1], 5205 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 5206 5207 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 5208 // eliminate a zero vector by reusing any zero index in the permute vector. 5209 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 5210 if (ZeroVecIdx != UINT32_MAX) { 5211 bool MaskFirst = true; 5212 int ZeroIdx = -1; 5213 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5214 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5215 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5216 if (OpNo == ZeroVecIdx && I == 0) { 5217 // If the first byte is zero, use mask as first operand. 5218 ZeroIdx = 0; 5219 break; 5220 } 5221 if (OpNo != ZeroVecIdx && Byte == 0) { 5222 // If mask contains a zero, use it by placing that vector first. 5223 ZeroIdx = I + SystemZ::VectorBytes; 5224 MaskFirst = false; 5225 break; 5226 } 5227 } 5228 if (ZeroIdx != -1) { 5229 SDValue IndexNodes[SystemZ::VectorBytes]; 5230 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5231 if (Bytes[I] >= 0) { 5232 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5233 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5234 if (OpNo == ZeroVecIdx) 5235 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 5236 else { 5237 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 5238 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 5239 } 5240 } else 5241 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5242 } 5243 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5244 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 5245 if (MaskFirst) 5246 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 5247 Mask); 5248 else 5249 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 5250 Mask); 5251 } 5252 } 5253 5254 SDValue IndexNodes[SystemZ::VectorBytes]; 5255 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5256 if (Bytes[I] >= 0) 5257 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 5258 else 5259 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5260 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5261 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 5262 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 5263 } 5264 5265 namespace { 5266 // Describes a general N-operand vector shuffle. 5267 struct GeneralShuffle { 5268 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 5269 void addUndef(); 5270 bool add(SDValue, unsigned); 5271 SDValue getNode(SelectionDAG &, const SDLoc &); 5272 void tryPrepareForUnpack(); 5273 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 5274 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 5275 5276 // The operands of the shuffle. 5277 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 5278 5279 // Index I is -1 if byte I of the result is undefined. Otherwise the 5280 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 5281 // Bytes[I] / SystemZ::VectorBytes. 5282 SmallVector<int, SystemZ::VectorBytes> Bytes; 5283 5284 // The type of the shuffle result. 5285 EVT VT; 5286 5287 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 5288 unsigned UnpackFromEltSize; 5289 }; 5290 } 5291 5292 // Add an extra undefined element to the shuffle. 5293 void GeneralShuffle::addUndef() { 5294 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5295 for (unsigned I = 0; I < BytesPerElement; ++I) 5296 Bytes.push_back(-1); 5297 } 5298 5299 // Add an extra element to the shuffle, taking it from element Elem of Op. 5300 // A null Op indicates a vector input whose value will be calculated later; 5301 // there is at most one such input per shuffle and it always has the same 5302 // type as the result. Aborts and returns false if the source vector elements 5303 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 5304 // LLVM they become implicitly extended, but this is rare and not optimized. 5305 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 5306 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5307 5308 // The source vector can have wider elements than the result, 5309 // either through an explicit TRUNCATE or because of type legalization. 5310 // We want the least significant part. 5311 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 5312 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 5313 5314 // Return false if the source elements are smaller than their destination 5315 // elements. 5316 if (FromBytesPerElement < BytesPerElement) 5317 return false; 5318 5319 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 5320 (FromBytesPerElement - BytesPerElement)); 5321 5322 // Look through things like shuffles and bitcasts. 5323 while (Op.getNode()) { 5324 if (Op.getOpcode() == ISD::BITCAST) 5325 Op = Op.getOperand(0); 5326 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 5327 // See whether the bytes we need come from a contiguous part of one 5328 // operand. 5329 SmallVector<int, SystemZ::VectorBytes> OpBytes; 5330 if (!getVPermMask(Op, OpBytes)) 5331 break; 5332 int NewByte; 5333 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 5334 break; 5335 if (NewByte < 0) { 5336 addUndef(); 5337 return true; 5338 } 5339 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 5340 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 5341 } else if (Op.isUndef()) { 5342 addUndef(); 5343 return true; 5344 } else 5345 break; 5346 } 5347 5348 // Make sure that the source of the extraction is in Ops. 5349 unsigned OpNo = 0; 5350 for (; OpNo < Ops.size(); ++OpNo) 5351 if (Ops[OpNo] == Op) 5352 break; 5353 if (OpNo == Ops.size()) 5354 Ops.push_back(Op); 5355 5356 // Add the element to Bytes. 5357 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 5358 for (unsigned I = 0; I < BytesPerElement; ++I) 5359 Bytes.push_back(Base + I); 5360 5361 return true; 5362 } 5363 5364 // Return SDNodes for the completed shuffle. 5365 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 5366 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 5367 5368 if (Ops.size() == 0) 5369 return DAG.getUNDEF(VT); 5370 5371 // Use a single unpack if possible as the last operation. 5372 tryPrepareForUnpack(); 5373 5374 // Make sure that there are at least two shuffle operands. 5375 if (Ops.size() == 1) 5376 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 5377 5378 // Create a tree of shuffles, deferring root node until after the loop. 5379 // Try to redistribute the undefined elements of non-root nodes so that 5380 // the non-root shuffles match something like a pack or merge, then adjust 5381 // the parent node's permute vector to compensate for the new order. 5382 // Among other things, this copes with vectors like <2 x i16> that were 5383 // padded with undefined elements during type legalization. 5384 // 5385 // In the best case this redistribution will lead to the whole tree 5386 // using packs and merges. It should rarely be a loss in other cases. 5387 unsigned Stride = 1; 5388 for (; Stride * 2 < Ops.size(); Stride *= 2) { 5389 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 5390 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 5391 5392 // Create a mask for just these two operands. 5393 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 5394 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5395 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 5396 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 5397 if (OpNo == I) 5398 NewBytes[J] = Byte; 5399 else if (OpNo == I + Stride) 5400 NewBytes[J] = SystemZ::VectorBytes + Byte; 5401 else 5402 NewBytes[J] = -1; 5403 } 5404 // See if it would be better to reorganize NewMask to avoid using VPERM. 5405 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 5406 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 5407 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 5408 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 5409 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5410 if (NewBytes[J] >= 0) { 5411 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 5412 "Invalid double permute"); 5413 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 5414 } else 5415 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 5416 } 5417 } else { 5418 // Just use NewBytes on the operands. 5419 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 5420 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 5421 if (NewBytes[J] >= 0) 5422 Bytes[J] = I * SystemZ::VectorBytes + J; 5423 } 5424 } 5425 } 5426 5427 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5428 if (Stride > 1) { 5429 Ops[1] = Ops[Stride]; 5430 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5431 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5432 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5433 } 5434 5435 // Look for an instruction that can do the permute without resorting 5436 // to VPERM. 5437 unsigned OpNo0, OpNo1; 5438 SDValue Op; 5439 if (unpackWasPrepared() && Ops[1].isUndef()) 5440 Op = Ops[0]; 5441 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5442 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5443 else 5444 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5445 5446 Op = insertUnpackIfPrepared(DAG, DL, Op); 5447 5448 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5449 } 5450 5451 #ifndef NDEBUG 5452 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5453 dbgs() << Msg.c_str() << " { "; 5454 for (unsigned i = 0; i < Bytes.size(); i++) 5455 dbgs() << Bytes[i] << " "; 5456 dbgs() << "}\n"; 5457 } 5458 #endif 5459 5460 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5461 // after all else by removing the zero vector and the effect of the unpack on 5462 // Bytes. 5463 void GeneralShuffle::tryPrepareForUnpack() { 5464 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5465 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5466 return; 5467 5468 // Only do this if removing the zero vector reduces the depth, otherwise 5469 // the critical path will increase with the final unpack. 5470 if (Ops.size() > 2 && 5471 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5472 return; 5473 5474 // Find an unpack that would allow removing the zero vector from Ops. 5475 UnpackFromEltSize = 1; 5476 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5477 bool MatchUnpack = true; 5478 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5479 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5480 unsigned ToEltSize = UnpackFromEltSize * 2; 5481 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5482 if (!IsZextByte) 5483 SrcBytes.push_back(Bytes[Elt]); 5484 if (Bytes[Elt] != -1) { 5485 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5486 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5487 MatchUnpack = false; 5488 break; 5489 } 5490 } 5491 } 5492 if (MatchUnpack) { 5493 if (Ops.size() == 2) { 5494 // Don't use unpack if a single source operand needs rearrangement. 5495 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5496 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5497 UnpackFromEltSize = UINT_MAX; 5498 return; 5499 } 5500 } 5501 break; 5502 } 5503 } 5504 if (UnpackFromEltSize > 4) 5505 return; 5506 5507 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5508 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5509 << ".\n"; 5510 dumpBytes(Bytes, "Original Bytes vector:");); 5511 5512 // Apply the unpack in reverse to the Bytes array. 5513 unsigned B = 0; 5514 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5515 Elt += UnpackFromEltSize; 5516 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5517 Bytes[B] = Bytes[Elt]; 5518 } 5519 while (B < SystemZ::VectorBytes) 5520 Bytes[B++] = -1; 5521 5522 // Remove the zero vector from Ops 5523 Ops.erase(&Ops[ZeroVecOpNo]); 5524 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5525 if (Bytes[I] >= 0) { 5526 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5527 if (OpNo > ZeroVecOpNo) 5528 Bytes[I] -= SystemZ::VectorBytes; 5529 } 5530 5531 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5532 dbgs() << "\n";); 5533 } 5534 5535 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5536 const SDLoc &DL, 5537 SDValue Op) { 5538 if (!unpackWasPrepared()) 5539 return Op; 5540 unsigned InBits = UnpackFromEltSize * 8; 5541 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5542 SystemZ::VectorBits / InBits); 5543 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5544 unsigned OutBits = InBits * 2; 5545 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5546 SystemZ::VectorBits / OutBits); 5547 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5548 } 5549 5550 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5551 static bool isScalarToVector(SDValue Op) { 5552 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5553 if (!Op.getOperand(I).isUndef()) 5554 return false; 5555 return true; 5556 } 5557 5558 // Return a vector of type VT that contains Value in the first element. 5559 // The other elements don't matter. 5560 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5561 SDValue Value) { 5562 // If we have a constant, replicate it to all elements and let the 5563 // BUILD_VECTOR lowering take care of it. 5564 if (Value.getOpcode() == ISD::Constant || 5565 Value.getOpcode() == ISD::ConstantFP) { 5566 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5567 return DAG.getBuildVector(VT, DL, Ops); 5568 } 5569 if (Value.isUndef()) 5570 return DAG.getUNDEF(VT); 5571 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5572 } 5573 5574 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5575 // element 1. Used for cases in which replication is cheap. 5576 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5577 SDValue Op0, SDValue Op1) { 5578 if (Op0.isUndef()) { 5579 if (Op1.isUndef()) 5580 return DAG.getUNDEF(VT); 5581 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5582 } 5583 if (Op1.isUndef()) 5584 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5585 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5586 buildScalarToVector(DAG, DL, VT, Op0), 5587 buildScalarToVector(DAG, DL, VT, Op1)); 5588 } 5589 5590 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5591 // vector for them. 5592 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5593 SDValue Op1) { 5594 if (Op0.isUndef() && Op1.isUndef()) 5595 return DAG.getUNDEF(MVT::v2i64); 5596 // If one of the two inputs is undefined then replicate the other one, 5597 // in order to avoid using another register unnecessarily. 5598 if (Op0.isUndef()) 5599 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5600 else if (Op1.isUndef()) 5601 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5602 else { 5603 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5604 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5605 } 5606 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5607 } 5608 5609 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5610 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5611 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5612 // would benefit from this representation and return it if so. 5613 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5614 BuildVectorSDNode *BVN) { 5615 EVT VT = BVN->getValueType(0); 5616 unsigned NumElements = VT.getVectorNumElements(); 5617 5618 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5619 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5620 // need a BUILD_VECTOR, add an additional placeholder operand for that 5621 // BUILD_VECTOR and store its operands in ResidueOps. 5622 GeneralShuffle GS(VT); 5623 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5624 bool FoundOne = false; 5625 for (unsigned I = 0; I < NumElements; ++I) { 5626 SDValue Op = BVN->getOperand(I); 5627 if (Op.getOpcode() == ISD::TRUNCATE) 5628 Op = Op.getOperand(0); 5629 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5630 Op.getOperand(1).getOpcode() == ISD::Constant) { 5631 unsigned Elem = Op.getConstantOperandVal(1); 5632 if (!GS.add(Op.getOperand(0), Elem)) 5633 return SDValue(); 5634 FoundOne = true; 5635 } else if (Op.isUndef()) { 5636 GS.addUndef(); 5637 } else { 5638 if (!GS.add(SDValue(), ResidueOps.size())) 5639 return SDValue(); 5640 ResidueOps.push_back(BVN->getOperand(I)); 5641 } 5642 } 5643 5644 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5645 if (!FoundOne) 5646 return SDValue(); 5647 5648 // Create the BUILD_VECTOR for the remaining elements, if any. 5649 if (!ResidueOps.empty()) { 5650 while (ResidueOps.size() < NumElements) 5651 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5652 for (auto &Op : GS.Ops) { 5653 if (!Op.getNode()) { 5654 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5655 break; 5656 } 5657 } 5658 } 5659 return GS.getNode(DAG, SDLoc(BVN)); 5660 } 5661 5662 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5663 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5664 return true; 5665 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5666 return true; 5667 return false; 5668 } 5669 5670 // Combine GPR scalar values Elems into a vector of type VT. 5671 SDValue 5672 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5673 SmallVectorImpl<SDValue> &Elems) const { 5674 // See whether there is a single replicated value. 5675 SDValue Single; 5676 unsigned int NumElements = Elems.size(); 5677 unsigned int Count = 0; 5678 for (auto Elem : Elems) { 5679 if (!Elem.isUndef()) { 5680 if (!Single.getNode()) 5681 Single = Elem; 5682 else if (Elem != Single) { 5683 Single = SDValue(); 5684 break; 5685 } 5686 Count += 1; 5687 } 5688 } 5689 // There are three cases here: 5690 // 5691 // - if the only defined element is a loaded one, the best sequence 5692 // is a replicating load. 5693 // 5694 // - otherwise, if the only defined element is an i64 value, we will 5695 // end up with the same VLVGP sequence regardless of whether we short-cut 5696 // for replication or fall through to the later code. 5697 // 5698 // - otherwise, if the only defined element is an i32 or smaller value, 5699 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5700 // This is only a win if the single defined element is used more than once. 5701 // In other cases we're better off using a single VLVGx. 5702 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5703 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5704 5705 // If all elements are loads, use VLREP/VLEs (below). 5706 bool AllLoads = true; 5707 for (auto Elem : Elems) 5708 if (!isVectorElementLoad(Elem)) { 5709 AllLoads = false; 5710 break; 5711 } 5712 5713 // The best way of building a v2i64 from two i64s is to use VLVGP. 5714 if (VT == MVT::v2i64 && !AllLoads) 5715 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5716 5717 // Use a 64-bit merge high to combine two doubles. 5718 if (VT == MVT::v2f64 && !AllLoads) 5719 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5720 5721 // Build v4f32 values directly from the FPRs: 5722 // 5723 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5724 // V V VMRHF 5725 // <ABxx> <CDxx> 5726 // V VMRHG 5727 // <ABCD> 5728 if (VT == MVT::v4f32 && !AllLoads) { 5729 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5730 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5731 // Avoid unnecessary undefs by reusing the other operand. 5732 if (Op01.isUndef()) 5733 Op01 = Op23; 5734 else if (Op23.isUndef()) 5735 Op23 = Op01; 5736 // Merging identical replications is a no-op. 5737 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5738 return Op01; 5739 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5740 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5741 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5742 DL, MVT::v2i64, Op01, Op23); 5743 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5744 } 5745 5746 // Collect the constant terms. 5747 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5748 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5749 5750 unsigned NumConstants = 0; 5751 for (unsigned I = 0; I < NumElements; ++I) { 5752 SDValue Elem = Elems[I]; 5753 if (Elem.getOpcode() == ISD::Constant || 5754 Elem.getOpcode() == ISD::ConstantFP) { 5755 NumConstants += 1; 5756 Constants[I] = Elem; 5757 Done[I] = true; 5758 } 5759 } 5760 // If there was at least one constant, fill in the other elements of 5761 // Constants with undefs to get a full vector constant and use that 5762 // as the starting point. 5763 SDValue Result; 5764 SDValue ReplicatedVal; 5765 if (NumConstants > 0) { 5766 for (unsigned I = 0; I < NumElements; ++I) 5767 if (!Constants[I].getNode()) 5768 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5769 Result = DAG.getBuildVector(VT, DL, Constants); 5770 } else { 5771 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5772 // avoid a false dependency on any previous contents of the vector 5773 // register. 5774 5775 // Use a VLREP if at least one element is a load. Make sure to replicate 5776 // the load with the most elements having its value. 5777 std::map<const SDNode*, unsigned> UseCounts; 5778 SDNode *LoadMaxUses = nullptr; 5779 for (unsigned I = 0; I < NumElements; ++I) 5780 if (isVectorElementLoad(Elems[I])) { 5781 SDNode *Ld = Elems[I].getNode(); 5782 UseCounts[Ld]++; 5783 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5784 LoadMaxUses = Ld; 5785 } 5786 if (LoadMaxUses != nullptr) { 5787 ReplicatedVal = SDValue(LoadMaxUses, 0); 5788 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5789 } else { 5790 // Try to use VLVGP. 5791 unsigned I1 = NumElements / 2 - 1; 5792 unsigned I2 = NumElements - 1; 5793 bool Def1 = !Elems[I1].isUndef(); 5794 bool Def2 = !Elems[I2].isUndef(); 5795 if (Def1 || Def2) { 5796 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5797 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5798 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5799 joinDwords(DAG, DL, Elem1, Elem2)); 5800 Done[I1] = true; 5801 Done[I2] = true; 5802 } else 5803 Result = DAG.getUNDEF(VT); 5804 } 5805 } 5806 5807 // Use VLVGx to insert the other elements. 5808 for (unsigned I = 0; I < NumElements; ++I) 5809 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5810 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5811 DAG.getConstant(I, DL, MVT::i32)); 5812 return Result; 5813 } 5814 5815 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5816 SelectionDAG &DAG) const { 5817 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5818 SDLoc DL(Op); 5819 EVT VT = Op.getValueType(); 5820 5821 if (BVN->isConstant()) { 5822 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5823 return Op; 5824 5825 // Fall back to loading it from memory. 5826 return SDValue(); 5827 } 5828 5829 // See if we should use shuffles to construct the vector from other vectors. 5830 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5831 return Res; 5832 5833 // Detect SCALAR_TO_VECTOR conversions. 5834 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5835 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5836 5837 // Otherwise use buildVector to build the vector up from GPRs. 5838 unsigned NumElements = Op.getNumOperands(); 5839 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5840 for (unsigned I = 0; I < NumElements; ++I) 5841 Ops[I] = Op.getOperand(I); 5842 return buildVector(DAG, DL, VT, Ops); 5843 } 5844 5845 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5846 SelectionDAG &DAG) const { 5847 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5848 SDLoc DL(Op); 5849 EVT VT = Op.getValueType(); 5850 unsigned NumElements = VT.getVectorNumElements(); 5851 5852 if (VSN->isSplat()) { 5853 SDValue Op0 = Op.getOperand(0); 5854 unsigned Index = VSN->getSplatIndex(); 5855 assert(Index < VT.getVectorNumElements() && 5856 "Splat index should be defined and in first operand"); 5857 // See whether the value we're splatting is directly available as a scalar. 5858 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5859 Op0.getOpcode() == ISD::BUILD_VECTOR) 5860 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5861 // Otherwise keep it as a vector-to-vector operation. 5862 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5863 DAG.getTargetConstant(Index, DL, MVT::i32)); 5864 } 5865 5866 GeneralShuffle GS(VT); 5867 for (unsigned I = 0; I < NumElements; ++I) { 5868 int Elt = VSN->getMaskElt(I); 5869 if (Elt < 0) 5870 GS.addUndef(); 5871 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5872 unsigned(Elt) % NumElements)) 5873 return SDValue(); 5874 } 5875 return GS.getNode(DAG, SDLoc(VSN)); 5876 } 5877 5878 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5879 SelectionDAG &DAG) const { 5880 SDLoc DL(Op); 5881 // Just insert the scalar into element 0 of an undefined vector. 5882 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5883 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5884 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5885 } 5886 5887 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5888 SelectionDAG &DAG) const { 5889 // Handle insertions of floating-point values. 5890 SDLoc DL(Op); 5891 SDValue Op0 = Op.getOperand(0); 5892 SDValue Op1 = Op.getOperand(1); 5893 SDValue Op2 = Op.getOperand(2); 5894 EVT VT = Op.getValueType(); 5895 5896 // Insertions into constant indices of a v2f64 can be done using VPDI. 5897 // However, if the inserted value is a bitcast or a constant then it's 5898 // better to use GPRs, as below. 5899 if (VT == MVT::v2f64 && 5900 Op1.getOpcode() != ISD::BITCAST && 5901 Op1.getOpcode() != ISD::ConstantFP && 5902 Op2.getOpcode() == ISD::Constant) { 5903 uint64_t Index = Op2->getAsZExtVal(); 5904 unsigned Mask = VT.getVectorNumElements() - 1; 5905 if (Index <= Mask) 5906 return Op; 5907 } 5908 5909 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5910 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5911 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5912 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5913 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5914 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5915 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5916 } 5917 5918 SDValue 5919 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5920 SelectionDAG &DAG) const { 5921 // Handle extractions of floating-point values. 5922 SDLoc DL(Op); 5923 SDValue Op0 = Op.getOperand(0); 5924 SDValue Op1 = Op.getOperand(1); 5925 EVT VT = Op.getValueType(); 5926 EVT VecVT = Op0.getValueType(); 5927 5928 // Extractions of constant indices can be done directly. 5929 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5930 uint64_t Index = CIndexN->getZExtValue(); 5931 unsigned Mask = VecVT.getVectorNumElements() - 1; 5932 if (Index <= Mask) 5933 return Op; 5934 } 5935 5936 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5937 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5938 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5939 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5940 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5941 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5942 } 5943 5944 SDValue SystemZTargetLowering:: 5945 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5946 SDValue PackedOp = Op.getOperand(0); 5947 EVT OutVT = Op.getValueType(); 5948 EVT InVT = PackedOp.getValueType(); 5949 unsigned ToBits = OutVT.getScalarSizeInBits(); 5950 unsigned FromBits = InVT.getScalarSizeInBits(); 5951 do { 5952 FromBits *= 2; 5953 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5954 SystemZ::VectorBits / FromBits); 5955 PackedOp = 5956 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5957 } while (FromBits != ToBits); 5958 return PackedOp; 5959 } 5960 5961 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5962 SDValue SystemZTargetLowering:: 5963 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5964 SDValue PackedOp = Op.getOperand(0); 5965 SDLoc DL(Op); 5966 EVT OutVT = Op.getValueType(); 5967 EVT InVT = PackedOp.getValueType(); 5968 unsigned InNumElts = InVT.getVectorNumElements(); 5969 unsigned OutNumElts = OutVT.getVectorNumElements(); 5970 unsigned NumInPerOut = InNumElts / OutNumElts; 5971 5972 SDValue ZeroVec = 5973 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5974 5975 SmallVector<int, 16> Mask(InNumElts); 5976 unsigned ZeroVecElt = InNumElts; 5977 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5978 unsigned MaskElt = PackedElt * NumInPerOut; 5979 unsigned End = MaskElt + NumInPerOut - 1; 5980 for (; MaskElt < End; MaskElt++) 5981 Mask[MaskElt] = ZeroVecElt++; 5982 Mask[MaskElt] = PackedElt; 5983 } 5984 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5985 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5986 } 5987 5988 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5989 unsigned ByScalar) const { 5990 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5991 SDValue Op0 = Op.getOperand(0); 5992 SDValue Op1 = Op.getOperand(1); 5993 SDLoc DL(Op); 5994 EVT VT = Op.getValueType(); 5995 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5996 5997 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5998 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5999 APInt SplatBits, SplatUndef; 6000 unsigned SplatBitSize; 6001 bool HasAnyUndefs; 6002 // Check for constant splats. Use ElemBitSize as the minimum element 6003 // width and reject splats that need wider elements. 6004 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 6005 ElemBitSize, true) && 6006 SplatBitSize == ElemBitSize) { 6007 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 6008 DL, MVT::i32); 6009 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6010 } 6011 // Check for variable splats. 6012 BitVector UndefElements; 6013 SDValue Splat = BVN->getSplatValue(&UndefElements); 6014 if (Splat) { 6015 // Since i32 is the smallest legal type, we either need a no-op 6016 // or a truncation. 6017 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 6018 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6019 } 6020 } 6021 6022 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 6023 // and the shift amount is directly available in a GPR. 6024 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 6025 if (VSN->isSplat()) { 6026 SDValue VSNOp0 = VSN->getOperand(0); 6027 unsigned Index = VSN->getSplatIndex(); 6028 assert(Index < VT.getVectorNumElements() && 6029 "Splat index should be defined and in first operand"); 6030 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 6031 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 6032 // Since i32 is the smallest legal type, we either need a no-op 6033 // or a truncation. 6034 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 6035 VSNOp0.getOperand(Index)); 6036 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6037 } 6038 } 6039 } 6040 6041 // Otherwise just treat the current form as legal. 6042 return Op; 6043 } 6044 6045 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 6046 SelectionDAG &DAG) const { 6047 SDLoc DL(Op); 6048 MVT ResultVT = Op.getSimpleValueType(); 6049 SDValue Arg = Op.getOperand(0); 6050 unsigned Check = Op.getConstantOperandVal(1); 6051 6052 unsigned TDCMask = 0; 6053 if (Check & fcSNan) 6054 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 6055 if (Check & fcQNan) 6056 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 6057 if (Check & fcPosInf) 6058 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 6059 if (Check & fcNegInf) 6060 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 6061 if (Check & fcPosNormal) 6062 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 6063 if (Check & fcNegNormal) 6064 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 6065 if (Check & fcPosSubnormal) 6066 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 6067 if (Check & fcNegSubnormal) 6068 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 6069 if (Check & fcPosZero) 6070 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 6071 if (Check & fcNegZero) 6072 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 6073 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 6074 6075 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 6076 return getCCResult(DAG, Intr); 6077 } 6078 6079 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 6080 SelectionDAG &DAG) const { 6081 switch (Op.getOpcode()) { 6082 case ISD::FRAMEADDR: 6083 return lowerFRAMEADDR(Op, DAG); 6084 case ISD::RETURNADDR: 6085 return lowerRETURNADDR(Op, DAG); 6086 case ISD::BR_CC: 6087 return lowerBR_CC(Op, DAG); 6088 case ISD::SELECT_CC: 6089 return lowerSELECT_CC(Op, DAG); 6090 case ISD::SETCC: 6091 return lowerSETCC(Op, DAG); 6092 case ISD::STRICT_FSETCC: 6093 return lowerSTRICT_FSETCC(Op, DAG, false); 6094 case ISD::STRICT_FSETCCS: 6095 return lowerSTRICT_FSETCC(Op, DAG, true); 6096 case ISD::GlobalAddress: 6097 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 6098 case ISD::GlobalTLSAddress: 6099 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 6100 case ISD::BlockAddress: 6101 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 6102 case ISD::JumpTable: 6103 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 6104 case ISD::ConstantPool: 6105 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 6106 case ISD::BITCAST: 6107 return lowerBITCAST(Op, DAG); 6108 case ISD::VASTART: 6109 return lowerVASTART(Op, DAG); 6110 case ISD::VACOPY: 6111 return lowerVACOPY(Op, DAG); 6112 case ISD::DYNAMIC_STACKALLOC: 6113 return lowerDYNAMIC_STACKALLOC(Op, DAG); 6114 case ISD::GET_DYNAMIC_AREA_OFFSET: 6115 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 6116 case ISD::SMUL_LOHI: 6117 return lowerSMUL_LOHI(Op, DAG); 6118 case ISD::UMUL_LOHI: 6119 return lowerUMUL_LOHI(Op, DAG); 6120 case ISD::SDIVREM: 6121 return lowerSDIVREM(Op, DAG); 6122 case ISD::UDIVREM: 6123 return lowerUDIVREM(Op, DAG); 6124 case ISD::SADDO: 6125 case ISD::SSUBO: 6126 case ISD::UADDO: 6127 case ISD::USUBO: 6128 return lowerXALUO(Op, DAG); 6129 case ISD::UADDO_CARRY: 6130 case ISD::USUBO_CARRY: 6131 return lowerUADDSUBO_CARRY(Op, DAG); 6132 case ISD::OR: 6133 return lowerOR(Op, DAG); 6134 case ISD::CTPOP: 6135 return lowerCTPOP(Op, DAG); 6136 case ISD::ATOMIC_FENCE: 6137 return lowerATOMIC_FENCE(Op, DAG); 6138 case ISD::ATOMIC_SWAP: 6139 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 6140 case ISD::ATOMIC_STORE: 6141 return lowerATOMIC_STORE(Op, DAG); 6142 case ISD::ATOMIC_LOAD: 6143 return lowerATOMIC_LOAD(Op, DAG); 6144 case ISD::ATOMIC_LOAD_ADD: 6145 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 6146 case ISD::ATOMIC_LOAD_SUB: 6147 return lowerATOMIC_LOAD_SUB(Op, DAG); 6148 case ISD::ATOMIC_LOAD_AND: 6149 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 6150 case ISD::ATOMIC_LOAD_OR: 6151 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 6152 case ISD::ATOMIC_LOAD_XOR: 6153 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 6154 case ISD::ATOMIC_LOAD_NAND: 6155 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 6156 case ISD::ATOMIC_LOAD_MIN: 6157 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 6158 case ISD::ATOMIC_LOAD_MAX: 6159 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 6160 case ISD::ATOMIC_LOAD_UMIN: 6161 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 6162 case ISD::ATOMIC_LOAD_UMAX: 6163 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 6164 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 6165 return lowerATOMIC_CMP_SWAP(Op, DAG); 6166 case ISD::STACKSAVE: 6167 return lowerSTACKSAVE(Op, DAG); 6168 case ISD::STACKRESTORE: 6169 return lowerSTACKRESTORE(Op, DAG); 6170 case ISD::PREFETCH: 6171 return lowerPREFETCH(Op, DAG); 6172 case ISD::INTRINSIC_W_CHAIN: 6173 return lowerINTRINSIC_W_CHAIN(Op, DAG); 6174 case ISD::INTRINSIC_WO_CHAIN: 6175 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 6176 case ISD::BUILD_VECTOR: 6177 return lowerBUILD_VECTOR(Op, DAG); 6178 case ISD::VECTOR_SHUFFLE: 6179 return lowerVECTOR_SHUFFLE(Op, DAG); 6180 case ISD::SCALAR_TO_VECTOR: 6181 return lowerSCALAR_TO_VECTOR(Op, DAG); 6182 case ISD::INSERT_VECTOR_ELT: 6183 return lowerINSERT_VECTOR_ELT(Op, DAG); 6184 case ISD::EXTRACT_VECTOR_ELT: 6185 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 6186 case ISD::SIGN_EXTEND_VECTOR_INREG: 6187 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 6188 case ISD::ZERO_EXTEND_VECTOR_INREG: 6189 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 6190 case ISD::SHL: 6191 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 6192 case ISD::SRL: 6193 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 6194 case ISD::SRA: 6195 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 6196 case ISD::ROTL: 6197 return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR); 6198 case ISD::IS_FPCLASS: 6199 return lowerIS_FPCLASS(Op, DAG); 6200 case ISD::GET_ROUNDING: 6201 return lowerGET_ROUNDING(Op, DAG); 6202 default: 6203 llvm_unreachable("Unexpected node to lower"); 6204 } 6205 } 6206 6207 // Lower operations with invalid operand or result types (currently used 6208 // only for 128-bit integer types). 6209 void 6210 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 6211 SmallVectorImpl<SDValue> &Results, 6212 SelectionDAG &DAG) const { 6213 switch (N->getOpcode()) { 6214 case ISD::ATOMIC_LOAD: { 6215 SDLoc DL(N); 6216 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 6217 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 6218 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6219 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 6220 DL, Tys, Ops, MVT::i128, MMO); 6221 Results.push_back(lowerGR128ToI128(DAG, Res)); 6222 Results.push_back(Res.getValue(1)); 6223 break; 6224 } 6225 case ISD::ATOMIC_STORE: { 6226 SDLoc DL(N); 6227 SDVTList Tys = DAG.getVTList(MVT::Other); 6228 SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)), 6229 N->getOperand(2)}; 6230 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6231 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 6232 DL, Tys, Ops, MVT::i128, MMO); 6233 // We have to enforce sequential consistency by performing a 6234 // serialization operation after the store. 6235 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 6236 AtomicOrdering::SequentiallyConsistent) 6237 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 6238 MVT::Other, Res), 0); 6239 Results.push_back(Res); 6240 break; 6241 } 6242 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 6243 SDLoc DL(N); 6244 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 6245 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 6246 lowerI128ToGR128(DAG, N->getOperand(2)), 6247 lowerI128ToGR128(DAG, N->getOperand(3)) }; 6248 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6249 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 6250 DL, Tys, Ops, MVT::i128, MMO); 6251 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 6252 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 6253 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 6254 Results.push_back(lowerGR128ToI128(DAG, Res)); 6255 Results.push_back(Success); 6256 Results.push_back(Res.getValue(2)); 6257 break; 6258 } 6259 case ISD::BITCAST: { 6260 SDValue Src = N->getOperand(0); 6261 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 6262 !useSoftFloat()) { 6263 SDLoc DL(N); 6264 SDValue Lo, Hi; 6265 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 6266 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 6267 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6268 DAG.getConstant(1, DL, MVT::i32)); 6269 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6270 DAG.getConstant(0, DL, MVT::i32)); 6271 } else { 6272 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 6273 "Unrecognized register class for f128."); 6274 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 6275 DL, MVT::f64, Src); 6276 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 6277 DL, MVT::f64, Src); 6278 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 6279 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 6280 } 6281 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 6282 } 6283 break; 6284 } 6285 default: 6286 llvm_unreachable("Unexpected node to lower"); 6287 } 6288 } 6289 6290 void 6291 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 6292 SmallVectorImpl<SDValue> &Results, 6293 SelectionDAG &DAG) const { 6294 return LowerOperationWrapper(N, Results, DAG); 6295 } 6296 6297 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 6298 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 6299 switch ((SystemZISD::NodeType)Opcode) { 6300 case SystemZISD::FIRST_NUMBER: break; 6301 OPCODE(RET_GLUE); 6302 OPCODE(CALL); 6303 OPCODE(SIBCALL); 6304 OPCODE(TLS_GDCALL); 6305 OPCODE(TLS_LDCALL); 6306 OPCODE(PCREL_WRAPPER); 6307 OPCODE(PCREL_OFFSET); 6308 OPCODE(ICMP); 6309 OPCODE(FCMP); 6310 OPCODE(STRICT_FCMP); 6311 OPCODE(STRICT_FCMPS); 6312 OPCODE(TM); 6313 OPCODE(BR_CCMASK); 6314 OPCODE(SELECT_CCMASK); 6315 OPCODE(ADJDYNALLOC); 6316 OPCODE(PROBED_ALLOCA); 6317 OPCODE(POPCNT); 6318 OPCODE(SMUL_LOHI); 6319 OPCODE(UMUL_LOHI); 6320 OPCODE(SDIVREM); 6321 OPCODE(UDIVREM); 6322 OPCODE(SADDO); 6323 OPCODE(SSUBO); 6324 OPCODE(UADDO); 6325 OPCODE(USUBO); 6326 OPCODE(ADDCARRY); 6327 OPCODE(SUBCARRY); 6328 OPCODE(GET_CCMASK); 6329 OPCODE(MVC); 6330 OPCODE(NC); 6331 OPCODE(OC); 6332 OPCODE(XC); 6333 OPCODE(CLC); 6334 OPCODE(MEMSET_MVC); 6335 OPCODE(STPCPY); 6336 OPCODE(STRCMP); 6337 OPCODE(SEARCH_STRING); 6338 OPCODE(IPM); 6339 OPCODE(TBEGIN); 6340 OPCODE(TBEGIN_NOFLOAT); 6341 OPCODE(TEND); 6342 OPCODE(BYTE_MASK); 6343 OPCODE(ROTATE_MASK); 6344 OPCODE(REPLICATE); 6345 OPCODE(JOIN_DWORDS); 6346 OPCODE(SPLAT); 6347 OPCODE(MERGE_HIGH); 6348 OPCODE(MERGE_LOW); 6349 OPCODE(SHL_DOUBLE); 6350 OPCODE(PERMUTE_DWORDS); 6351 OPCODE(PERMUTE); 6352 OPCODE(PACK); 6353 OPCODE(PACKS_CC); 6354 OPCODE(PACKLS_CC); 6355 OPCODE(UNPACK_HIGH); 6356 OPCODE(UNPACKL_HIGH); 6357 OPCODE(UNPACK_LOW); 6358 OPCODE(UNPACKL_LOW); 6359 OPCODE(VSHL_BY_SCALAR); 6360 OPCODE(VSRL_BY_SCALAR); 6361 OPCODE(VSRA_BY_SCALAR); 6362 OPCODE(VROTL_BY_SCALAR); 6363 OPCODE(VSUM); 6364 OPCODE(VACC); 6365 OPCODE(VSCBI); 6366 OPCODE(VAC); 6367 OPCODE(VSBI); 6368 OPCODE(VACCC); 6369 OPCODE(VSBCBI); 6370 OPCODE(VICMPE); 6371 OPCODE(VICMPH); 6372 OPCODE(VICMPHL); 6373 OPCODE(VICMPES); 6374 OPCODE(VICMPHS); 6375 OPCODE(VICMPHLS); 6376 OPCODE(VFCMPE); 6377 OPCODE(STRICT_VFCMPE); 6378 OPCODE(STRICT_VFCMPES); 6379 OPCODE(VFCMPH); 6380 OPCODE(STRICT_VFCMPH); 6381 OPCODE(STRICT_VFCMPHS); 6382 OPCODE(VFCMPHE); 6383 OPCODE(STRICT_VFCMPHE); 6384 OPCODE(STRICT_VFCMPHES); 6385 OPCODE(VFCMPES); 6386 OPCODE(VFCMPHS); 6387 OPCODE(VFCMPHES); 6388 OPCODE(VFTCI); 6389 OPCODE(VEXTEND); 6390 OPCODE(STRICT_VEXTEND); 6391 OPCODE(VROUND); 6392 OPCODE(STRICT_VROUND); 6393 OPCODE(VTM); 6394 OPCODE(SCMP128HI); 6395 OPCODE(UCMP128HI); 6396 OPCODE(VFAE_CC); 6397 OPCODE(VFAEZ_CC); 6398 OPCODE(VFEE_CC); 6399 OPCODE(VFEEZ_CC); 6400 OPCODE(VFENE_CC); 6401 OPCODE(VFENEZ_CC); 6402 OPCODE(VISTR_CC); 6403 OPCODE(VSTRC_CC); 6404 OPCODE(VSTRCZ_CC); 6405 OPCODE(VSTRS_CC); 6406 OPCODE(VSTRSZ_CC); 6407 OPCODE(TDC); 6408 OPCODE(ATOMIC_SWAPW); 6409 OPCODE(ATOMIC_LOADW_ADD); 6410 OPCODE(ATOMIC_LOADW_SUB); 6411 OPCODE(ATOMIC_LOADW_AND); 6412 OPCODE(ATOMIC_LOADW_OR); 6413 OPCODE(ATOMIC_LOADW_XOR); 6414 OPCODE(ATOMIC_LOADW_NAND); 6415 OPCODE(ATOMIC_LOADW_MIN); 6416 OPCODE(ATOMIC_LOADW_MAX); 6417 OPCODE(ATOMIC_LOADW_UMIN); 6418 OPCODE(ATOMIC_LOADW_UMAX); 6419 OPCODE(ATOMIC_CMP_SWAPW); 6420 OPCODE(ATOMIC_CMP_SWAP); 6421 OPCODE(ATOMIC_LOAD_128); 6422 OPCODE(ATOMIC_STORE_128); 6423 OPCODE(ATOMIC_CMP_SWAP_128); 6424 OPCODE(LRV); 6425 OPCODE(STRV); 6426 OPCODE(VLER); 6427 OPCODE(VSTER); 6428 OPCODE(PREFETCH); 6429 OPCODE(ADA_ENTRY); 6430 } 6431 return nullptr; 6432 #undef OPCODE 6433 } 6434 6435 // Return true if VT is a vector whose elements are a whole number of bytes 6436 // in width. Also check for presence of vector support. 6437 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 6438 if (!Subtarget.hasVector()) 6439 return false; 6440 6441 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 6442 } 6443 6444 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 6445 // producing a result of type ResVT. Op is a possibly bitcast version 6446 // of the input vector and Index is the index (based on type VecVT) that 6447 // should be extracted. Return the new extraction if a simplification 6448 // was possible or if Force is true. 6449 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 6450 EVT VecVT, SDValue Op, 6451 unsigned Index, 6452 DAGCombinerInfo &DCI, 6453 bool Force) const { 6454 SelectionDAG &DAG = DCI.DAG; 6455 6456 // The number of bytes being extracted. 6457 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6458 6459 for (;;) { 6460 unsigned Opcode = Op.getOpcode(); 6461 if (Opcode == ISD::BITCAST) 6462 // Look through bitcasts. 6463 Op = Op.getOperand(0); 6464 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 6465 canTreatAsByteVector(Op.getValueType())) { 6466 // Get a VPERM-like permute mask and see whether the bytes covered 6467 // by the extracted element are a contiguous sequence from one 6468 // source operand. 6469 SmallVector<int, SystemZ::VectorBytes> Bytes; 6470 if (!getVPermMask(Op, Bytes)) 6471 break; 6472 int First; 6473 if (!getShuffleInput(Bytes, Index * BytesPerElement, 6474 BytesPerElement, First)) 6475 break; 6476 if (First < 0) 6477 return DAG.getUNDEF(ResVT); 6478 // Make sure the contiguous sequence starts at a multiple of the 6479 // original element size. 6480 unsigned Byte = unsigned(First) % Bytes.size(); 6481 if (Byte % BytesPerElement != 0) 6482 break; 6483 // We can get the extracted value directly from an input. 6484 Index = Byte / BytesPerElement; 6485 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6486 Force = true; 6487 } else if (Opcode == ISD::BUILD_VECTOR && 6488 canTreatAsByteVector(Op.getValueType())) { 6489 // We can only optimize this case if the BUILD_VECTOR elements are 6490 // at least as wide as the extracted value. 6491 EVT OpVT = Op.getValueType(); 6492 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6493 if (OpBytesPerElement < BytesPerElement) 6494 break; 6495 // Make sure that the least-significant bit of the extracted value 6496 // is the least significant bit of an input. 6497 unsigned End = (Index + 1) * BytesPerElement; 6498 if (End % OpBytesPerElement != 0) 6499 break; 6500 // We're extracting the low part of one operand of the BUILD_VECTOR. 6501 Op = Op.getOperand(End / OpBytesPerElement - 1); 6502 if (!Op.getValueType().isInteger()) { 6503 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6504 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6505 DCI.AddToWorklist(Op.getNode()); 6506 } 6507 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6508 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6509 if (VT != ResVT) { 6510 DCI.AddToWorklist(Op.getNode()); 6511 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6512 } 6513 return Op; 6514 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6515 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6516 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6517 canTreatAsByteVector(Op.getValueType()) && 6518 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6519 // Make sure that only the unextended bits are significant. 6520 EVT ExtVT = Op.getValueType(); 6521 EVT OpVT = Op.getOperand(0).getValueType(); 6522 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6523 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6524 unsigned Byte = Index * BytesPerElement; 6525 unsigned SubByte = Byte % ExtBytesPerElement; 6526 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6527 if (SubByte < MinSubByte || 6528 SubByte + BytesPerElement > ExtBytesPerElement) 6529 break; 6530 // Get the byte offset of the unextended element 6531 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6532 // ...then add the byte offset relative to that element. 6533 Byte += SubByte - MinSubByte; 6534 if (Byte % BytesPerElement != 0) 6535 break; 6536 Op = Op.getOperand(0); 6537 Index = Byte / BytesPerElement; 6538 Force = true; 6539 } else 6540 break; 6541 } 6542 if (Force) { 6543 if (Op.getValueType() != VecVT) { 6544 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6545 DCI.AddToWorklist(Op.getNode()); 6546 } 6547 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6548 DAG.getConstant(Index, DL, MVT::i32)); 6549 } 6550 return SDValue(); 6551 } 6552 6553 // Optimize vector operations in scalar value Op on the basis that Op 6554 // is truncated to TruncVT. 6555 SDValue SystemZTargetLowering::combineTruncateExtract( 6556 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6557 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6558 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6559 // of type TruncVT. 6560 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6561 TruncVT.getSizeInBits() % 8 == 0) { 6562 SDValue Vec = Op.getOperand(0); 6563 EVT VecVT = Vec.getValueType(); 6564 if (canTreatAsByteVector(VecVT)) { 6565 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6566 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6567 unsigned TruncBytes = TruncVT.getStoreSize(); 6568 if (BytesPerElement % TruncBytes == 0) { 6569 // Calculate the value of Y' in the above description. We are 6570 // splitting the original elements into Scale equal-sized pieces 6571 // and for truncation purposes want the last (least-significant) 6572 // of these pieces for IndexN. This is easiest to do by calculating 6573 // the start index of the following element and then subtracting 1. 6574 unsigned Scale = BytesPerElement / TruncBytes; 6575 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6576 6577 // Defer the creation of the bitcast from X to combineExtract, 6578 // which might be able to optimize the extraction. 6579 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6580 VecVT.getStoreSize() / TruncBytes); 6581 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6582 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6583 } 6584 } 6585 } 6586 } 6587 return SDValue(); 6588 } 6589 6590 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6591 SDNode *N, DAGCombinerInfo &DCI) const { 6592 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6593 SelectionDAG &DAG = DCI.DAG; 6594 SDValue N0 = N->getOperand(0); 6595 EVT VT = N->getValueType(0); 6596 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6597 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6598 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6599 if (TrueOp && FalseOp) { 6600 SDLoc DL(N0); 6601 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6602 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6603 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6604 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6605 // If N0 has multiple uses, change other uses as well. 6606 if (!N0.hasOneUse()) { 6607 SDValue TruncSelect = 6608 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6609 DCI.CombineTo(N0.getNode(), TruncSelect); 6610 } 6611 return NewSelect; 6612 } 6613 } 6614 return SDValue(); 6615 } 6616 6617 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6618 SDNode *N, DAGCombinerInfo &DCI) const { 6619 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6620 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6621 // into (select_cc LHS, RHS, -1, 0, COND) 6622 SelectionDAG &DAG = DCI.DAG; 6623 SDValue N0 = N->getOperand(0); 6624 EVT VT = N->getValueType(0); 6625 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6626 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6627 N0 = N0.getOperand(0); 6628 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6629 SDLoc DL(N0); 6630 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6631 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6632 N0.getOperand(2) }; 6633 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6634 } 6635 return SDValue(); 6636 } 6637 6638 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6639 SDNode *N, DAGCombinerInfo &DCI) const { 6640 // Convert (sext (ashr (shl X, C1), C2)) to 6641 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6642 // cheap as narrower ones. 6643 SelectionDAG &DAG = DCI.DAG; 6644 SDValue N0 = N->getOperand(0); 6645 EVT VT = N->getValueType(0); 6646 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6647 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6648 SDValue Inner = N0.getOperand(0); 6649 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6650 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6651 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6652 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6653 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6654 EVT ShiftVT = N0.getOperand(1).getValueType(); 6655 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6656 Inner.getOperand(0)); 6657 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6658 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6659 ShiftVT)); 6660 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6661 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6662 } 6663 } 6664 } 6665 return SDValue(); 6666 } 6667 6668 SDValue SystemZTargetLowering::combineMERGE( 6669 SDNode *N, DAGCombinerInfo &DCI) const { 6670 SelectionDAG &DAG = DCI.DAG; 6671 unsigned Opcode = N->getOpcode(); 6672 SDValue Op0 = N->getOperand(0); 6673 SDValue Op1 = N->getOperand(1); 6674 if (Op0.getOpcode() == ISD::BITCAST) 6675 Op0 = Op0.getOperand(0); 6676 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6677 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6678 // for v4f32. 6679 if (Op1 == N->getOperand(0)) 6680 return Op1; 6681 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6682 EVT VT = Op1.getValueType(); 6683 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6684 if (ElemBytes <= 4) { 6685 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6686 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6687 EVT InVT = VT.changeVectorElementTypeToInteger(); 6688 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6689 SystemZ::VectorBytes / ElemBytes / 2); 6690 if (VT != InVT) { 6691 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6692 DCI.AddToWorklist(Op1.getNode()); 6693 } 6694 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6695 DCI.AddToWorklist(Op.getNode()); 6696 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6697 } 6698 } 6699 return SDValue(); 6700 } 6701 6702 SDValue SystemZTargetLowering::combineLOAD( 6703 SDNode *N, DAGCombinerInfo &DCI) const { 6704 SelectionDAG &DAG = DCI.DAG; 6705 EVT LdVT = N->getValueType(0); 6706 SDLoc DL(N); 6707 6708 // Replace an i128 load that is used solely to move its value into GPRs 6709 // by separate loads of both halves. 6710 if (LdVT == MVT::i128) { 6711 LoadSDNode *LD = cast<LoadSDNode>(N); 6712 if (!LD->isSimple() || !ISD::isNormalLoad(LD)) 6713 return SDValue(); 6714 6715 // Scan through all users. 6716 SmallVector<std::pair<SDNode *, int>, 2> Users; 6717 int UsedElements = 0; 6718 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 6719 UI != UIEnd; ++UI) { 6720 // Skip the uses of the chain. 6721 if (UI.getUse().getResNo() != 0) 6722 continue; 6723 6724 // Verify every user is a TRUNCATE to i64 of the low or high half ... 6725 SDNode *User = *UI; 6726 int Index = 1; 6727 if (User->getOpcode() == ISD::SRL && 6728 User->getOperand(1).getOpcode() == ISD::Constant && 6729 User->getConstantOperandVal(1) == 64 && User->hasOneUse()) { 6730 User = *User->use_begin(); 6731 Index = 0; 6732 } 6733 if (User->getOpcode() != ISD::TRUNCATE || 6734 User->getValueType(0) != MVT::i64) 6735 return SDValue(); 6736 6737 // ... and no half is extracted twice. 6738 if (UsedElements & (1 << Index)) 6739 return SDValue(); 6740 6741 UsedElements |= 1 << Index; 6742 Users.push_back(std::make_pair(User, Index)); 6743 } 6744 6745 // Rewrite each extraction as an independent load. 6746 SmallVector<SDValue, 2> ArgChains; 6747 for (auto UserAndIndex : Users) { 6748 SDNode *User = UserAndIndex.first; 6749 unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second; 6750 SDValue Ptr = 6751 DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL); 6752 SDValue EltLoad = 6753 DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr, 6754 LD->getPointerInfo().getWithOffset(Offset), 6755 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 6756 LD->getAAInfo()); 6757 6758 DCI.CombineTo(User, EltLoad, true); 6759 ArgChains.push_back(EltLoad.getValue(1)); 6760 } 6761 6762 // Collect all chains via TokenFactor. 6763 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 6764 ArgChains); 6765 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 6766 DCI.AddToWorklist(Chain.getNode()); 6767 return SDValue(N, 0); 6768 } 6769 6770 if (LdVT.isVector() || LdVT.isInteger()) 6771 return SDValue(); 6772 // Transform a scalar load that is REPLICATEd as well as having other 6773 // use(s) to the form where the other use(s) use the first element of the 6774 // REPLICATE instead of the load. Otherwise instruction selection will not 6775 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6776 // point loads. 6777 6778 SDValue Replicate; 6779 SmallVector<SDNode*, 8> OtherUses; 6780 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6781 UI != UE; ++UI) { 6782 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6783 if (Replicate) 6784 return SDValue(); // Should never happen 6785 Replicate = SDValue(*UI, 0); 6786 } 6787 else if (UI.getUse().getResNo() == 0) 6788 OtherUses.push_back(*UI); 6789 } 6790 if (!Replicate || OtherUses.empty()) 6791 return SDValue(); 6792 6793 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6794 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6795 // Update uses of the loaded Value while preserving old chains. 6796 for (SDNode *U : OtherUses) { 6797 SmallVector<SDValue, 8> Ops; 6798 for (SDValue Op : U->ops()) 6799 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6800 DAG.UpdateNodeOperands(U, Ops); 6801 } 6802 return SDValue(N, 0); 6803 } 6804 6805 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6806 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6807 return true; 6808 if (Subtarget.hasVectorEnhancements2()) 6809 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128) 6810 return true; 6811 return false; 6812 } 6813 6814 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6815 if (!VT.isVector() || !VT.isSimple() || 6816 VT.getSizeInBits() != 128 || 6817 VT.getScalarSizeInBits() % 8 != 0) 6818 return false; 6819 6820 unsigned NumElts = VT.getVectorNumElements(); 6821 for (unsigned i = 0; i < NumElts; ++i) { 6822 if (M[i] < 0) continue; // ignore UNDEF indices 6823 if ((unsigned) M[i] != NumElts - 1 - i) 6824 return false; 6825 } 6826 6827 return true; 6828 } 6829 6830 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 6831 for (auto *U : StoredVal->uses()) { 6832 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 6833 EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 6834 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 6835 continue; 6836 } else if (isa<BuildVectorSDNode>(U)) { 6837 SDValue BuildVector = SDValue(U, 0); 6838 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 6839 isOnlyUsedByStores(BuildVector, DAG)) 6840 continue; 6841 } 6842 return false; 6843 } 6844 return true; 6845 } 6846 6847 static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) { 6848 if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse()) 6849 return false; 6850 6851 SDValue Op0 = Val.getOperand(0); 6852 SDValue Op1 = Val.getOperand(1); 6853 6854 if (Op0.getOpcode() == ISD::SHL) 6855 std::swap(Op0, Op1); 6856 if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() || 6857 Op1.getOperand(1).getOpcode() != ISD::Constant || 6858 Op1.getConstantOperandVal(1) != 64) 6859 return false; 6860 Op1 = Op1.getOperand(0); 6861 6862 if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() || 6863 Op0.getOperand(0).getValueType() != MVT::i64) 6864 return false; 6865 if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() || 6866 Op1.getOperand(0).getValueType() != MVT::i64) 6867 return false; 6868 6869 LoPart = Op0.getOperand(0); 6870 HiPart = Op1.getOperand(0); 6871 return true; 6872 } 6873 6874 SDValue SystemZTargetLowering::combineSTORE( 6875 SDNode *N, DAGCombinerInfo &DCI) const { 6876 SelectionDAG &DAG = DCI.DAG; 6877 auto *SN = cast<StoreSDNode>(N); 6878 auto &Op1 = N->getOperand(1); 6879 EVT MemVT = SN->getMemoryVT(); 6880 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6881 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6882 // If X has wider elements then convert it to: 6883 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6884 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6885 if (SDValue Value = 6886 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6887 DCI.AddToWorklist(Value.getNode()); 6888 6889 // Rewrite the store with the new form of stored value. 6890 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6891 SN->getBasePtr(), SN->getMemoryVT(), 6892 SN->getMemOperand()); 6893 } 6894 } 6895 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6896 if (!SN->isTruncatingStore() && 6897 Op1.getOpcode() == ISD::BSWAP && 6898 Op1.getNode()->hasOneUse() && 6899 canLoadStoreByteSwapped(Op1.getValueType())) { 6900 6901 SDValue BSwapOp = Op1.getOperand(0); 6902 6903 if (BSwapOp.getValueType() == MVT::i16) 6904 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6905 6906 SDValue Ops[] = { 6907 N->getOperand(0), BSwapOp, N->getOperand(2) 6908 }; 6909 6910 return 6911 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6912 Ops, MemVT, SN->getMemOperand()); 6913 } 6914 // Combine STORE (element-swap) into VSTER 6915 if (!SN->isTruncatingStore() && 6916 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6917 Op1.getNode()->hasOneUse() && 6918 Subtarget.hasVectorEnhancements2()) { 6919 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6920 ArrayRef<int> ShuffleMask = SVN->getMask(); 6921 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6922 SDValue Ops[] = { 6923 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6924 }; 6925 6926 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6927 DAG.getVTList(MVT::Other), 6928 Ops, MemVT, SN->getMemOperand()); 6929 } 6930 } 6931 6932 // Transform a store of an i128 moved from GPRs into two separate stores. 6933 if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) { 6934 SDValue LoPart, HiPart; 6935 if (isMovedFromParts(Op1, LoPart, HiPart)) { 6936 SDLoc DL(SN); 6937 SDValue Chain0 = 6938 DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(), 6939 SN->getPointerInfo(), SN->getOriginalAlign(), 6940 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6941 SDValue Chain1 = 6942 DAG.getStore(SN->getChain(), DL, LoPart, 6943 DAG.getObjectPtrOffset(DL, SN->getBasePtr(), 6944 TypeSize::getFixed(8)), 6945 SN->getPointerInfo().getWithOffset(8), 6946 SN->getOriginalAlign(), 6947 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6948 6949 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1); 6950 } 6951 } 6952 6953 // Replicate a reg or immediate with VREP instead of scalar multiply or 6954 // immediate load. It seems best to do this during the first DAGCombine as 6955 // it is straight-forward to handle the zero-extend node in the initial 6956 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 6957 // extracting an i16 element from a v16i8 vector). 6958 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 6959 isOnlyUsedByStores(Op1, DAG)) { 6960 SDValue Word = SDValue(); 6961 EVT WordVT; 6962 6963 // Find a replicated immediate and return it if found in Word and its 6964 // type in WordVT. 6965 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 6966 // Some constants are better handled with a scalar store. 6967 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 6968 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 6969 return; 6970 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 6971 if (VCI.isVectorConstantLegal(Subtarget) && 6972 VCI.Opcode == SystemZISD::REPLICATE) { 6973 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 6974 WordVT = VCI.VecVT.getScalarType(); 6975 } 6976 }; 6977 6978 // Find a replicated register and return it if found in Word and its type 6979 // in WordVT. 6980 auto FindReplicatedReg = [&](SDValue MulOp) { 6981 EVT MulVT = MulOp.getValueType(); 6982 if (MulOp->getOpcode() == ISD::MUL && 6983 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 6984 // Find a zero extended value and its type. 6985 SDValue LHS = MulOp->getOperand(0); 6986 if (LHS->getOpcode() == ISD::ZERO_EXTEND) 6987 WordVT = LHS->getOperand(0).getValueType(); 6988 else if (LHS->getOpcode() == ISD::AssertZext) 6989 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 6990 else 6991 return; 6992 // Find a replicating constant, e.g. 0x00010001. 6993 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 6994 SystemZVectorConstantInfo VCI( 6995 APInt(MulVT.getSizeInBits(), C->getZExtValue())); 6996 if (VCI.isVectorConstantLegal(Subtarget) && 6997 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 6998 WordVT == VCI.VecVT.getScalarType()) 6999 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 7000 } 7001 } 7002 }; 7003 7004 if (isa<BuildVectorSDNode>(Op1) && 7005 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 7006 SDValue SplatVal = Op1->getOperand(0); 7007 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 7008 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 7009 else 7010 FindReplicatedReg(SplatVal); 7011 } else { 7012 if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 7013 FindReplicatedImm(C, MemVT.getStoreSize()); 7014 else 7015 FindReplicatedReg(Op1); 7016 } 7017 7018 if (Word != SDValue()) { 7019 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 7020 "Bad type handling"); 7021 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 7022 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 7023 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 7024 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 7025 SN->getBasePtr(), SN->getMemOperand()); 7026 } 7027 } 7028 7029 return SDValue(); 7030 } 7031 7032 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 7033 SDNode *N, DAGCombinerInfo &DCI) const { 7034 SelectionDAG &DAG = DCI.DAG; 7035 // Combine element-swap (LOAD) into VLER 7036 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7037 N->getOperand(0).hasOneUse() && 7038 Subtarget.hasVectorEnhancements2()) { 7039 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 7040 ArrayRef<int> ShuffleMask = SVN->getMask(); 7041 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 7042 SDValue Load = N->getOperand(0); 7043 LoadSDNode *LD = cast<LoadSDNode>(Load); 7044 7045 // Create the element-swapping load. 7046 SDValue Ops[] = { 7047 LD->getChain(), // Chain 7048 LD->getBasePtr() // Ptr 7049 }; 7050 SDValue ESLoad = 7051 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 7052 DAG.getVTList(LD->getValueType(0), MVT::Other), 7053 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7054 7055 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 7056 // by the load dead. 7057 DCI.CombineTo(N, ESLoad); 7058 7059 // Next, combine the load away, we give it a bogus result value but a real 7060 // chain result. The result value is dead because the shuffle is dead. 7061 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 7062 7063 // Return N so it doesn't get rechecked! 7064 return SDValue(N, 0); 7065 } 7066 } 7067 7068 return SDValue(); 7069 } 7070 7071 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 7072 SDNode *N, DAGCombinerInfo &DCI) const { 7073 SelectionDAG &DAG = DCI.DAG; 7074 7075 if (!Subtarget.hasVector()) 7076 return SDValue(); 7077 7078 // Look through bitcasts that retain the number of vector elements. 7079 SDValue Op = N->getOperand(0); 7080 if (Op.getOpcode() == ISD::BITCAST && 7081 Op.getValueType().isVector() && 7082 Op.getOperand(0).getValueType().isVector() && 7083 Op.getValueType().getVectorNumElements() == 7084 Op.getOperand(0).getValueType().getVectorNumElements()) 7085 Op = Op.getOperand(0); 7086 7087 // Pull BSWAP out of a vector extraction. 7088 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 7089 EVT VecVT = Op.getValueType(); 7090 EVT EltVT = VecVT.getVectorElementType(); 7091 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 7092 Op.getOperand(0), N->getOperand(1)); 7093 DCI.AddToWorklist(Op.getNode()); 7094 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 7095 if (EltVT != N->getValueType(0)) { 7096 DCI.AddToWorklist(Op.getNode()); 7097 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 7098 } 7099 return Op; 7100 } 7101 7102 // Try to simplify a vector extraction. 7103 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 7104 SDValue Op0 = N->getOperand(0); 7105 EVT VecVT = Op0.getValueType(); 7106 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 7107 IndexN->getZExtValue(), DCI, false); 7108 } 7109 return SDValue(); 7110 } 7111 7112 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 7113 SDNode *N, DAGCombinerInfo &DCI) const { 7114 SelectionDAG &DAG = DCI.DAG; 7115 // (join_dwords X, X) == (replicate X) 7116 if (N->getOperand(0) == N->getOperand(1)) 7117 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 7118 N->getOperand(0)); 7119 return SDValue(); 7120 } 7121 7122 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 7123 SDValue Chain1 = N1->getOperand(0); 7124 SDValue Chain2 = N2->getOperand(0); 7125 7126 // Trivial case: both nodes take the same chain. 7127 if (Chain1 == Chain2) 7128 return Chain1; 7129 7130 // FIXME - we could handle more complex cases via TokenFactor, 7131 // assuming we can verify that this would not create a cycle. 7132 return SDValue(); 7133 } 7134 7135 SDValue SystemZTargetLowering::combineFP_ROUND( 7136 SDNode *N, DAGCombinerInfo &DCI) const { 7137 7138 if (!Subtarget.hasVector()) 7139 return SDValue(); 7140 7141 // (fpround (extract_vector_elt X 0)) 7142 // (fpround (extract_vector_elt X 1)) -> 7143 // (extract_vector_elt (VROUND X) 0) 7144 // (extract_vector_elt (VROUND X) 2) 7145 // 7146 // This is a special case since the target doesn't really support v2f32s. 7147 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7148 SelectionDAG &DAG = DCI.DAG; 7149 SDValue Op0 = N->getOperand(OpNo); 7150 if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() && 7151 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7152 Op0.getOperand(0).getValueType() == MVT::v2f64 && 7153 Op0.getOperand(1).getOpcode() == ISD::Constant && 7154 Op0.getConstantOperandVal(1) == 0) { 7155 SDValue Vec = Op0.getOperand(0); 7156 for (auto *U : Vec->uses()) { 7157 if (U != Op0.getNode() && U->hasOneUse() && 7158 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7159 U->getOperand(0) == Vec && 7160 U->getOperand(1).getOpcode() == ISD::Constant && 7161 U->getConstantOperandVal(1) == 1) { 7162 SDValue OtherRound = SDValue(*U->use_begin(), 0); 7163 if (OtherRound.getOpcode() == N->getOpcode() && 7164 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 7165 OtherRound.getValueType() == MVT::f32) { 7166 SDValue VRound, Chain; 7167 if (N->isStrictFPOpcode()) { 7168 Chain = MergeInputChains(N, OtherRound.getNode()); 7169 if (!Chain) 7170 continue; 7171 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 7172 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 7173 Chain = VRound.getValue(1); 7174 } else 7175 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 7176 MVT::v4f32, Vec); 7177 DCI.AddToWorklist(VRound.getNode()); 7178 SDValue Extract1 = 7179 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 7180 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 7181 DCI.AddToWorklist(Extract1.getNode()); 7182 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 7183 if (Chain) 7184 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 7185 SDValue Extract0 = 7186 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 7187 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7188 if (Chain) 7189 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7190 N->getVTList(), Extract0, Chain); 7191 return Extract0; 7192 } 7193 } 7194 } 7195 } 7196 return SDValue(); 7197 } 7198 7199 SDValue SystemZTargetLowering::combineFP_EXTEND( 7200 SDNode *N, DAGCombinerInfo &DCI) const { 7201 7202 if (!Subtarget.hasVector()) 7203 return SDValue(); 7204 7205 // (fpextend (extract_vector_elt X 0)) 7206 // (fpextend (extract_vector_elt X 2)) -> 7207 // (extract_vector_elt (VEXTEND X) 0) 7208 // (extract_vector_elt (VEXTEND X) 1) 7209 // 7210 // This is a special case since the target doesn't really support v2f32s. 7211 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7212 SelectionDAG &DAG = DCI.DAG; 7213 SDValue Op0 = N->getOperand(OpNo); 7214 if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() && 7215 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7216 Op0.getOperand(0).getValueType() == MVT::v4f32 && 7217 Op0.getOperand(1).getOpcode() == ISD::Constant && 7218 Op0.getConstantOperandVal(1) == 0) { 7219 SDValue Vec = Op0.getOperand(0); 7220 for (auto *U : Vec->uses()) { 7221 if (U != Op0.getNode() && U->hasOneUse() && 7222 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7223 U->getOperand(0) == Vec && 7224 U->getOperand(1).getOpcode() == ISD::Constant && 7225 U->getConstantOperandVal(1) == 2) { 7226 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 7227 if (OtherExtend.getOpcode() == N->getOpcode() && 7228 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 7229 OtherExtend.getValueType() == MVT::f64) { 7230 SDValue VExtend, Chain; 7231 if (N->isStrictFPOpcode()) { 7232 Chain = MergeInputChains(N, OtherExtend.getNode()); 7233 if (!Chain) 7234 continue; 7235 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 7236 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 7237 Chain = VExtend.getValue(1); 7238 } else 7239 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 7240 MVT::v2f64, Vec); 7241 DCI.AddToWorklist(VExtend.getNode()); 7242 SDValue Extract1 = 7243 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 7244 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 7245 DCI.AddToWorklist(Extract1.getNode()); 7246 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 7247 if (Chain) 7248 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 7249 SDValue Extract0 = 7250 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 7251 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7252 if (Chain) 7253 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7254 N->getVTList(), Extract0, Chain); 7255 return Extract0; 7256 } 7257 } 7258 } 7259 } 7260 return SDValue(); 7261 } 7262 7263 SDValue SystemZTargetLowering::combineINT_TO_FP( 7264 SDNode *N, DAGCombinerInfo &DCI) const { 7265 if (DCI.Level != BeforeLegalizeTypes) 7266 return SDValue(); 7267 SelectionDAG &DAG = DCI.DAG; 7268 LLVMContext &Ctx = *DAG.getContext(); 7269 unsigned Opcode = N->getOpcode(); 7270 EVT OutVT = N->getValueType(0); 7271 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 7272 SDValue Op = N->getOperand(0); 7273 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 7274 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 7275 7276 // Insert an extension before type-legalization to avoid scalarization, e.g.: 7277 // v2f64 = uint_to_fp v2i16 7278 // => 7279 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 7280 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 7281 OutScalarBits <= 64) { 7282 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 7283 EVT ExtVT = EVT::getVectorVT( 7284 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 7285 unsigned ExtOpcode = 7286 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 7287 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 7288 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 7289 } 7290 return SDValue(); 7291 } 7292 7293 SDValue SystemZTargetLowering::combineBSWAP( 7294 SDNode *N, DAGCombinerInfo &DCI) const { 7295 SelectionDAG &DAG = DCI.DAG; 7296 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 7297 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7298 N->getOperand(0).hasOneUse() && 7299 canLoadStoreByteSwapped(N->getValueType(0))) { 7300 SDValue Load = N->getOperand(0); 7301 LoadSDNode *LD = cast<LoadSDNode>(Load); 7302 7303 // Create the byte-swapping load. 7304 SDValue Ops[] = { 7305 LD->getChain(), // Chain 7306 LD->getBasePtr() // Ptr 7307 }; 7308 EVT LoadVT = N->getValueType(0); 7309 if (LoadVT == MVT::i16) 7310 LoadVT = MVT::i32; 7311 SDValue BSLoad = 7312 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 7313 DAG.getVTList(LoadVT, MVT::Other), 7314 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7315 7316 // If this is an i16 load, insert the truncate. 7317 SDValue ResVal = BSLoad; 7318 if (N->getValueType(0) == MVT::i16) 7319 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 7320 7321 // First, combine the bswap away. This makes the value produced by the 7322 // load dead. 7323 DCI.CombineTo(N, ResVal); 7324 7325 // Next, combine the load away, we give it a bogus result value but a real 7326 // chain result. The result value is dead because the bswap is dead. 7327 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 7328 7329 // Return N so it doesn't get rechecked! 7330 return SDValue(N, 0); 7331 } 7332 7333 // Look through bitcasts that retain the number of vector elements. 7334 SDValue Op = N->getOperand(0); 7335 if (Op.getOpcode() == ISD::BITCAST && 7336 Op.getValueType().isVector() && 7337 Op.getOperand(0).getValueType().isVector() && 7338 Op.getValueType().getVectorNumElements() == 7339 Op.getOperand(0).getValueType().getVectorNumElements()) 7340 Op = Op.getOperand(0); 7341 7342 // Push BSWAP into a vector insertion if at least one side then simplifies. 7343 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 7344 SDValue Vec = Op.getOperand(0); 7345 SDValue Elt = Op.getOperand(1); 7346 SDValue Idx = Op.getOperand(2); 7347 7348 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 7349 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 7350 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 7351 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 7352 (canLoadStoreByteSwapped(N->getValueType(0)) && 7353 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 7354 EVT VecVT = N->getValueType(0); 7355 EVT EltVT = N->getValueType(0).getVectorElementType(); 7356 if (VecVT != Vec.getValueType()) { 7357 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 7358 DCI.AddToWorklist(Vec.getNode()); 7359 } 7360 if (EltVT != Elt.getValueType()) { 7361 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 7362 DCI.AddToWorklist(Elt.getNode()); 7363 } 7364 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 7365 DCI.AddToWorklist(Vec.getNode()); 7366 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 7367 DCI.AddToWorklist(Elt.getNode()); 7368 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 7369 Vec, Elt, Idx); 7370 } 7371 } 7372 7373 // Push BSWAP into a vector shuffle if at least one side then simplifies. 7374 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 7375 if (SV && Op.hasOneUse()) { 7376 SDValue Op0 = Op.getOperand(0); 7377 SDValue Op1 = Op.getOperand(1); 7378 7379 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 7380 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 7381 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 7382 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 7383 EVT VecVT = N->getValueType(0); 7384 if (VecVT != Op0.getValueType()) { 7385 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 7386 DCI.AddToWorklist(Op0.getNode()); 7387 } 7388 if (VecVT != Op1.getValueType()) { 7389 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 7390 DCI.AddToWorklist(Op1.getNode()); 7391 } 7392 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 7393 DCI.AddToWorklist(Op0.getNode()); 7394 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 7395 DCI.AddToWorklist(Op1.getNode()); 7396 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 7397 } 7398 } 7399 7400 return SDValue(); 7401 } 7402 7403 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 7404 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 7405 // set by the CCReg instruction using the CCValid / CCMask masks, 7406 // If the CCReg instruction is itself a ICMP testing the condition 7407 // code set by some other instruction, see whether we can directly 7408 // use that condition code. 7409 7410 // Verify that we have an ICMP against some constant. 7411 if (CCValid != SystemZ::CCMASK_ICMP) 7412 return false; 7413 auto *ICmp = CCReg.getNode(); 7414 if (ICmp->getOpcode() != SystemZISD::ICMP) 7415 return false; 7416 auto *CompareLHS = ICmp->getOperand(0).getNode(); 7417 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 7418 if (!CompareRHS) 7419 return false; 7420 7421 // Optimize the case where CompareLHS is a SELECT_CCMASK. 7422 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 7423 // Verify that we have an appropriate mask for a EQ or NE comparison. 7424 bool Invert = false; 7425 if (CCMask == SystemZ::CCMASK_CMP_NE) 7426 Invert = !Invert; 7427 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 7428 return false; 7429 7430 // Verify that the ICMP compares against one of select values. 7431 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 7432 if (!TrueVal) 7433 return false; 7434 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7435 if (!FalseVal) 7436 return false; 7437 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 7438 Invert = !Invert; 7439 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 7440 return false; 7441 7442 // Compute the effective CC mask for the new branch or select. 7443 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 7444 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 7445 if (!NewCCValid || !NewCCMask) 7446 return false; 7447 CCValid = NewCCValid->getZExtValue(); 7448 CCMask = NewCCMask->getZExtValue(); 7449 if (Invert) 7450 CCMask ^= CCValid; 7451 7452 // Return the updated CCReg link. 7453 CCReg = CompareLHS->getOperand(4); 7454 return true; 7455 } 7456 7457 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 7458 if (CompareLHS->getOpcode() == ISD::SRA) { 7459 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7460 if (!SRACount || SRACount->getZExtValue() != 30) 7461 return false; 7462 auto *SHL = CompareLHS->getOperand(0).getNode(); 7463 if (SHL->getOpcode() != ISD::SHL) 7464 return false; 7465 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 7466 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 7467 return false; 7468 auto *IPM = SHL->getOperand(0).getNode(); 7469 if (IPM->getOpcode() != SystemZISD::IPM) 7470 return false; 7471 7472 // Avoid introducing CC spills (because SRA would clobber CC). 7473 if (!CompareLHS->hasOneUse()) 7474 return false; 7475 // Verify that the ICMP compares against zero. 7476 if (CompareRHS->getZExtValue() != 0) 7477 return false; 7478 7479 // Compute the effective CC mask for the new branch or select. 7480 CCMask = SystemZ::reverseCCMask(CCMask); 7481 7482 // Return the updated CCReg link. 7483 CCReg = IPM->getOperand(0); 7484 return true; 7485 } 7486 7487 return false; 7488 } 7489 7490 SDValue SystemZTargetLowering::combineBR_CCMASK( 7491 SDNode *N, DAGCombinerInfo &DCI) const { 7492 SelectionDAG &DAG = DCI.DAG; 7493 7494 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 7495 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7496 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7497 if (!CCValid || !CCMask) 7498 return SDValue(); 7499 7500 int CCValidVal = CCValid->getZExtValue(); 7501 int CCMaskVal = CCMask->getZExtValue(); 7502 SDValue Chain = N->getOperand(0); 7503 SDValue CCReg = N->getOperand(4); 7504 7505 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7506 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 7507 Chain, 7508 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7509 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7510 N->getOperand(3), CCReg); 7511 return SDValue(); 7512 } 7513 7514 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 7515 SDNode *N, DAGCombinerInfo &DCI) const { 7516 SelectionDAG &DAG = DCI.DAG; 7517 7518 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 7519 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7520 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 7521 if (!CCValid || !CCMask) 7522 return SDValue(); 7523 7524 int CCValidVal = CCValid->getZExtValue(); 7525 int CCMaskVal = CCMask->getZExtValue(); 7526 SDValue CCReg = N->getOperand(4); 7527 7528 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7529 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 7530 N->getOperand(0), N->getOperand(1), 7531 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7532 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7533 CCReg); 7534 return SDValue(); 7535 } 7536 7537 7538 SDValue SystemZTargetLowering::combineGET_CCMASK( 7539 SDNode *N, DAGCombinerInfo &DCI) const { 7540 7541 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 7542 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7543 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7544 if (!CCValid || !CCMask) 7545 return SDValue(); 7546 int CCValidVal = CCValid->getZExtValue(); 7547 int CCMaskVal = CCMask->getZExtValue(); 7548 7549 SDValue Select = N->getOperand(0); 7550 if (Select->getOpcode() == ISD::TRUNCATE) 7551 Select = Select->getOperand(0); 7552 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 7553 return SDValue(); 7554 7555 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 7556 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 7557 if (!SelectCCValid || !SelectCCMask) 7558 return SDValue(); 7559 int SelectCCValidVal = SelectCCValid->getZExtValue(); 7560 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 7561 7562 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 7563 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 7564 if (!TrueVal || !FalseVal) 7565 return SDValue(); 7566 if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) 7567 ; 7568 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) 7569 SelectCCMaskVal ^= SelectCCValidVal; 7570 else 7571 return SDValue(); 7572 7573 if (SelectCCValidVal & ~CCValidVal) 7574 return SDValue(); 7575 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 7576 return SDValue(); 7577 7578 return Select->getOperand(4); 7579 } 7580 7581 SDValue SystemZTargetLowering::combineIntDIVREM( 7582 SDNode *N, DAGCombinerInfo &DCI) const { 7583 SelectionDAG &DAG = DCI.DAG; 7584 EVT VT = N->getValueType(0); 7585 // In the case where the divisor is a vector of constants a cheaper 7586 // sequence of instructions can replace the divide. BuildSDIV is called to 7587 // do this during DAG combining, but it only succeeds when it can build a 7588 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 7589 // since it is not Legal but Custom it can only happen before 7590 // legalization. Therefore we must scalarize this early before Combine 7591 // 1. For widened vectors, this is already the result of type legalization. 7592 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 7593 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 7594 return DAG.UnrollVectorOp(N); 7595 return SDValue(); 7596 } 7597 7598 SDValue SystemZTargetLowering::combineINTRINSIC( 7599 SDNode *N, DAGCombinerInfo &DCI) const { 7600 SelectionDAG &DAG = DCI.DAG; 7601 7602 unsigned Id = N->getConstantOperandVal(1); 7603 switch (Id) { 7604 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 7605 // or larger is simply a vector load. 7606 case Intrinsic::s390_vll: 7607 case Intrinsic::s390_vlrl: 7608 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 7609 if (C->getZExtValue() >= 15) 7610 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 7611 N->getOperand(3), MachinePointerInfo()); 7612 break; 7613 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 7614 case Intrinsic::s390_vstl: 7615 case Intrinsic::s390_vstrl: 7616 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 7617 if (C->getZExtValue() >= 15) 7618 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 7619 N->getOperand(4), MachinePointerInfo()); 7620 break; 7621 } 7622 7623 return SDValue(); 7624 } 7625 7626 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 7627 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 7628 return N->getOperand(0); 7629 return N; 7630 } 7631 7632 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 7633 DAGCombinerInfo &DCI) const { 7634 switch(N->getOpcode()) { 7635 default: break; 7636 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 7637 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 7638 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 7639 case SystemZISD::MERGE_HIGH: 7640 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 7641 case ISD::LOAD: return combineLOAD(N, DCI); 7642 case ISD::STORE: return combineSTORE(N, DCI); 7643 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 7644 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 7645 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7646 case ISD::STRICT_FP_ROUND: 7647 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7648 case ISD::STRICT_FP_EXTEND: 7649 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 7650 case ISD::SINT_TO_FP: 7651 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 7652 case ISD::BSWAP: return combineBSWAP(N, DCI); 7653 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 7654 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 7655 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 7656 case ISD::SDIV: 7657 case ISD::UDIV: 7658 case ISD::SREM: 7659 case ISD::UREM: return combineIntDIVREM(N, DCI); 7660 case ISD::INTRINSIC_W_CHAIN: 7661 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 7662 } 7663 7664 return SDValue(); 7665 } 7666 7667 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 7668 // are for Op. 7669 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 7670 unsigned OpNo) { 7671 EVT VT = Op.getValueType(); 7672 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 7673 APInt SrcDemE; 7674 unsigned Opcode = Op.getOpcode(); 7675 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7676 unsigned Id = Op.getConstantOperandVal(0); 7677 switch (Id) { 7678 case Intrinsic::s390_vpksh: // PACKS 7679 case Intrinsic::s390_vpksf: 7680 case Intrinsic::s390_vpksg: 7681 case Intrinsic::s390_vpkshs: // PACKS_CC 7682 case Intrinsic::s390_vpksfs: 7683 case Intrinsic::s390_vpksgs: 7684 case Intrinsic::s390_vpklsh: // PACKLS 7685 case Intrinsic::s390_vpklsf: 7686 case Intrinsic::s390_vpklsg: 7687 case Intrinsic::s390_vpklshs: // PACKLS_CC 7688 case Intrinsic::s390_vpklsfs: 7689 case Intrinsic::s390_vpklsgs: 7690 // VECTOR PACK truncates the elements of two source vectors into one. 7691 SrcDemE = DemandedElts; 7692 if (OpNo == 2) 7693 SrcDemE.lshrInPlace(NumElts / 2); 7694 SrcDemE = SrcDemE.trunc(NumElts / 2); 7695 break; 7696 // VECTOR UNPACK extends half the elements of the source vector. 7697 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7698 case Intrinsic::s390_vuphh: 7699 case Intrinsic::s390_vuphf: 7700 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7701 case Intrinsic::s390_vuplhh: 7702 case Intrinsic::s390_vuplhf: 7703 SrcDemE = APInt(NumElts * 2, 0); 7704 SrcDemE.insertBits(DemandedElts, 0); 7705 break; 7706 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7707 case Intrinsic::s390_vuplhw: 7708 case Intrinsic::s390_vuplf: 7709 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7710 case Intrinsic::s390_vupllh: 7711 case Intrinsic::s390_vupllf: 7712 SrcDemE = APInt(NumElts * 2, 0); 7713 SrcDemE.insertBits(DemandedElts, NumElts); 7714 break; 7715 case Intrinsic::s390_vpdi: { 7716 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7717 SrcDemE = APInt(NumElts, 0); 7718 if (!DemandedElts[OpNo - 1]) 7719 break; 7720 unsigned Mask = Op.getConstantOperandVal(3); 7721 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7722 // Demand input element 0 or 1, given by the mask bit value. 7723 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7724 break; 7725 } 7726 case Intrinsic::s390_vsldb: { 7727 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7728 assert(VT == MVT::v16i8 && "Unexpected type."); 7729 unsigned FirstIdx = Op.getConstantOperandVal(3); 7730 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7731 unsigned NumSrc0Els = 16 - FirstIdx; 7732 SrcDemE = APInt(NumElts, 0); 7733 if (OpNo == 1) { 7734 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7735 SrcDemE.insertBits(DemEls, FirstIdx); 7736 } else { 7737 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7738 SrcDemE.insertBits(DemEls, 0); 7739 } 7740 break; 7741 } 7742 case Intrinsic::s390_vperm: 7743 SrcDemE = APInt(NumElts, 1); 7744 break; 7745 default: 7746 llvm_unreachable("Unhandled intrinsic."); 7747 break; 7748 } 7749 } else { 7750 switch (Opcode) { 7751 case SystemZISD::JOIN_DWORDS: 7752 // Scalar operand. 7753 SrcDemE = APInt(1, 1); 7754 break; 7755 case SystemZISD::SELECT_CCMASK: 7756 SrcDemE = DemandedElts; 7757 break; 7758 default: 7759 llvm_unreachable("Unhandled opcode."); 7760 break; 7761 } 7762 } 7763 return SrcDemE; 7764 } 7765 7766 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7767 const APInt &DemandedElts, 7768 const SelectionDAG &DAG, unsigned Depth, 7769 unsigned OpNo) { 7770 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7771 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7772 KnownBits LHSKnown = 7773 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7774 KnownBits RHSKnown = 7775 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7776 Known = LHSKnown.intersectWith(RHSKnown); 7777 } 7778 7779 void 7780 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7781 KnownBits &Known, 7782 const APInt &DemandedElts, 7783 const SelectionDAG &DAG, 7784 unsigned Depth) const { 7785 Known.resetAll(); 7786 7787 // Intrinsic CC result is returned in the two low bits. 7788 unsigned tmp0, tmp1; // not used 7789 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7790 Known.Zero.setBitsFrom(2); 7791 return; 7792 } 7793 EVT VT = Op.getValueType(); 7794 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7795 return; 7796 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7797 "KnownBits does not match VT in bitwidth"); 7798 assert ((!VT.isVector() || 7799 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7800 "DemandedElts does not match VT number of elements"); 7801 unsigned BitWidth = Known.getBitWidth(); 7802 unsigned Opcode = Op.getOpcode(); 7803 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7804 bool IsLogical = false; 7805 unsigned Id = Op.getConstantOperandVal(0); 7806 switch (Id) { 7807 case Intrinsic::s390_vpksh: // PACKS 7808 case Intrinsic::s390_vpksf: 7809 case Intrinsic::s390_vpksg: 7810 case Intrinsic::s390_vpkshs: // PACKS_CC 7811 case Intrinsic::s390_vpksfs: 7812 case Intrinsic::s390_vpksgs: 7813 case Intrinsic::s390_vpklsh: // PACKLS 7814 case Intrinsic::s390_vpklsf: 7815 case Intrinsic::s390_vpklsg: 7816 case Intrinsic::s390_vpklshs: // PACKLS_CC 7817 case Intrinsic::s390_vpklsfs: 7818 case Intrinsic::s390_vpklsgs: 7819 case Intrinsic::s390_vpdi: 7820 case Intrinsic::s390_vsldb: 7821 case Intrinsic::s390_vperm: 7822 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7823 break; 7824 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7825 case Intrinsic::s390_vuplhh: 7826 case Intrinsic::s390_vuplhf: 7827 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7828 case Intrinsic::s390_vupllh: 7829 case Intrinsic::s390_vupllf: 7830 IsLogical = true; 7831 [[fallthrough]]; 7832 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7833 case Intrinsic::s390_vuphh: 7834 case Intrinsic::s390_vuphf: 7835 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7836 case Intrinsic::s390_vuplhw: 7837 case Intrinsic::s390_vuplf: { 7838 SDValue SrcOp = Op.getOperand(1); 7839 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7840 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7841 if (IsLogical) { 7842 Known = Known.zext(BitWidth); 7843 } else 7844 Known = Known.sext(BitWidth); 7845 break; 7846 } 7847 default: 7848 break; 7849 } 7850 } else { 7851 switch (Opcode) { 7852 case SystemZISD::JOIN_DWORDS: 7853 case SystemZISD::SELECT_CCMASK: 7854 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7855 break; 7856 case SystemZISD::REPLICATE: { 7857 SDValue SrcOp = Op.getOperand(0); 7858 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7859 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7860 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7861 break; 7862 } 7863 default: 7864 break; 7865 } 7866 } 7867 7868 // Known has the width of the source operand(s). Adjust if needed to match 7869 // the passed bitwidth. 7870 if (Known.getBitWidth() != BitWidth) 7871 Known = Known.anyextOrTrunc(BitWidth); 7872 } 7873 7874 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7875 const SelectionDAG &DAG, unsigned Depth, 7876 unsigned OpNo) { 7877 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7878 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7879 if (LHS == 1) return 1; // Early out. 7880 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7881 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7882 if (RHS == 1) return 1; // Early out. 7883 unsigned Common = std::min(LHS, RHS); 7884 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7885 EVT VT = Op.getValueType(); 7886 unsigned VTBits = VT.getScalarSizeInBits(); 7887 if (SrcBitWidth > VTBits) { // PACK 7888 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7889 if (Common > SrcExtraBits) 7890 return (Common - SrcExtraBits); 7891 return 1; 7892 } 7893 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7894 return Common; 7895 } 7896 7897 unsigned 7898 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7899 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7900 unsigned Depth) const { 7901 if (Op.getResNo() != 0) 7902 return 1; 7903 unsigned Opcode = Op.getOpcode(); 7904 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7905 unsigned Id = Op.getConstantOperandVal(0); 7906 switch (Id) { 7907 case Intrinsic::s390_vpksh: // PACKS 7908 case Intrinsic::s390_vpksf: 7909 case Intrinsic::s390_vpksg: 7910 case Intrinsic::s390_vpkshs: // PACKS_CC 7911 case Intrinsic::s390_vpksfs: 7912 case Intrinsic::s390_vpksgs: 7913 case Intrinsic::s390_vpklsh: // PACKLS 7914 case Intrinsic::s390_vpklsf: 7915 case Intrinsic::s390_vpklsg: 7916 case Intrinsic::s390_vpklshs: // PACKLS_CC 7917 case Intrinsic::s390_vpklsfs: 7918 case Intrinsic::s390_vpklsgs: 7919 case Intrinsic::s390_vpdi: 7920 case Intrinsic::s390_vsldb: 7921 case Intrinsic::s390_vperm: 7922 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7923 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7924 case Intrinsic::s390_vuphh: 7925 case Intrinsic::s390_vuphf: 7926 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7927 case Intrinsic::s390_vuplhw: 7928 case Intrinsic::s390_vuplf: { 7929 SDValue PackedOp = Op.getOperand(1); 7930 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7931 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7932 EVT VT = Op.getValueType(); 7933 unsigned VTBits = VT.getScalarSizeInBits(); 7934 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7935 return Tmp; 7936 } 7937 default: 7938 break; 7939 } 7940 } else { 7941 switch (Opcode) { 7942 case SystemZISD::SELECT_CCMASK: 7943 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7944 default: 7945 break; 7946 } 7947 } 7948 7949 return 1; 7950 } 7951 7952 bool SystemZTargetLowering:: 7953 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, 7954 const APInt &DemandedElts, const SelectionDAG &DAG, 7955 bool PoisonOnly, unsigned Depth) const { 7956 switch (Op->getOpcode()) { 7957 case SystemZISD::PCREL_WRAPPER: 7958 case SystemZISD::PCREL_OFFSET: 7959 return true; 7960 } 7961 return false; 7962 } 7963 7964 unsigned 7965 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 7966 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7967 unsigned StackAlign = TFI->getStackAlignment(); 7968 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7969 "Unexpected stack alignment"); 7970 // The default stack probe size is 4096 if the function has no 7971 // stack-probe-size attribute. 7972 unsigned StackProbeSize = 7973 MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); 7974 // Round down to the stack alignment. 7975 StackProbeSize &= ~(StackAlign - 1); 7976 return StackProbeSize ? StackProbeSize : StackAlign; 7977 } 7978 7979 //===----------------------------------------------------------------------===// 7980 // Custom insertion 7981 //===----------------------------------------------------------------------===// 7982 7983 // Force base value Base into a register before MI. Return the register. 7984 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7985 const SystemZInstrInfo *TII) { 7986 MachineBasicBlock *MBB = MI.getParent(); 7987 MachineFunction &MF = *MBB->getParent(); 7988 MachineRegisterInfo &MRI = MF.getRegInfo(); 7989 7990 if (Base.isReg()) { 7991 // Copy Base into a new virtual register to help register coalescing in 7992 // cases with multiple uses. 7993 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7994 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7995 .add(Base); 7996 return Reg; 7997 } 7998 7999 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8000 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 8001 .add(Base) 8002 .addImm(0) 8003 .addReg(0); 8004 return Reg; 8005 } 8006 8007 // The CC operand of MI might be missing a kill marker because there 8008 // were multiple uses of CC, and ISel didn't know which to mark. 8009 // Figure out whether MI should have had a kill marker. 8010 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 8011 // Scan forward through BB for a use/def of CC. 8012 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 8013 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 8014 const MachineInstr& mi = *miI; 8015 if (mi.readsRegister(SystemZ::CC)) 8016 return false; 8017 if (mi.definesRegister(SystemZ::CC)) 8018 break; // Should have kill-flag - update below. 8019 } 8020 8021 // If we hit the end of the block, check whether CC is live into a 8022 // successor. 8023 if (miI == MBB->end()) { 8024 for (const MachineBasicBlock *Succ : MBB->successors()) 8025 if (Succ->isLiveIn(SystemZ::CC)) 8026 return false; 8027 } 8028 8029 return true; 8030 } 8031 8032 // Return true if it is OK for this Select pseudo-opcode to be cascaded 8033 // together with other Select pseudo-opcodes into a single basic-block with 8034 // a conditional jump around it. 8035 static bool isSelectPseudo(MachineInstr &MI) { 8036 switch (MI.getOpcode()) { 8037 case SystemZ::Select32: 8038 case SystemZ::Select64: 8039 case SystemZ::Select128: 8040 case SystemZ::SelectF32: 8041 case SystemZ::SelectF64: 8042 case SystemZ::SelectF128: 8043 case SystemZ::SelectVR32: 8044 case SystemZ::SelectVR64: 8045 case SystemZ::SelectVR128: 8046 return true; 8047 8048 default: 8049 return false; 8050 } 8051 } 8052 8053 // Helper function, which inserts PHI functions into SinkMBB: 8054 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 8055 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 8056 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 8057 MachineBasicBlock *TrueMBB, 8058 MachineBasicBlock *FalseMBB, 8059 MachineBasicBlock *SinkMBB) { 8060 MachineFunction *MF = TrueMBB->getParent(); 8061 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 8062 8063 MachineInstr *FirstMI = Selects.front(); 8064 unsigned CCValid = FirstMI->getOperand(3).getImm(); 8065 unsigned CCMask = FirstMI->getOperand(4).getImm(); 8066 8067 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 8068 8069 // As we are creating the PHIs, we have to be careful if there is more than 8070 // one. Later Selects may reference the results of earlier Selects, but later 8071 // PHIs have to reference the individual true/false inputs from earlier PHIs. 8072 // That also means that PHI construction must work forward from earlier to 8073 // later, and that the code must maintain a mapping from earlier PHI's 8074 // destination registers, and the registers that went into the PHI. 8075 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 8076 8077 for (auto *MI : Selects) { 8078 Register DestReg = MI->getOperand(0).getReg(); 8079 Register TrueReg = MI->getOperand(1).getReg(); 8080 Register FalseReg = MI->getOperand(2).getReg(); 8081 8082 // If this Select we are generating is the opposite condition from 8083 // the jump we generated, then we have to swap the operands for the 8084 // PHI that is going to be generated. 8085 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 8086 std::swap(TrueReg, FalseReg); 8087 8088 if (RegRewriteTable.contains(TrueReg)) 8089 TrueReg = RegRewriteTable[TrueReg].first; 8090 8091 if (RegRewriteTable.contains(FalseReg)) 8092 FalseReg = RegRewriteTable[FalseReg].second; 8093 8094 DebugLoc DL = MI->getDebugLoc(); 8095 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 8096 .addReg(TrueReg).addMBB(TrueMBB) 8097 .addReg(FalseReg).addMBB(FalseMBB); 8098 8099 // Add this PHI to the rewrite table. 8100 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 8101 } 8102 8103 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8104 } 8105 8106 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 8107 MachineBasicBlock * 8108 SystemZTargetLowering::emitSelect(MachineInstr &MI, 8109 MachineBasicBlock *MBB) const { 8110 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 8111 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8112 8113 unsigned CCValid = MI.getOperand(3).getImm(); 8114 unsigned CCMask = MI.getOperand(4).getImm(); 8115 8116 // If we have a sequence of Select* pseudo instructions using the 8117 // same condition code value, we want to expand all of them into 8118 // a single pair of basic blocks using the same condition. 8119 SmallVector<MachineInstr*, 8> Selects; 8120 SmallVector<MachineInstr*, 8> DbgValues; 8121 Selects.push_back(&MI); 8122 unsigned Count = 0; 8123 for (MachineInstr &NextMI : llvm::make_range( 8124 std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { 8125 if (isSelectPseudo(NextMI)) { 8126 assert(NextMI.getOperand(3).getImm() == CCValid && 8127 "Bad CCValid operands since CC was not redefined."); 8128 if (NextMI.getOperand(4).getImm() == CCMask || 8129 NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { 8130 Selects.push_back(&NextMI); 8131 continue; 8132 } 8133 break; 8134 } 8135 if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) 8136 break; 8137 bool User = false; 8138 for (auto *SelMI : Selects) 8139 if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { 8140 User = true; 8141 break; 8142 } 8143 if (NextMI.isDebugInstr()) { 8144 if (User) { 8145 assert(NextMI.isDebugValue() && "Unhandled debug opcode."); 8146 DbgValues.push_back(&NextMI); 8147 } 8148 } else if (User || ++Count > 20) 8149 break; 8150 } 8151 8152 MachineInstr *LastMI = Selects.back(); 8153 bool CCKilled = 8154 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 8155 MachineBasicBlock *StartMBB = MBB; 8156 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 8157 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8158 8159 // Unless CC was killed in the last Select instruction, mark it as 8160 // live-in to both FalseMBB and JoinMBB. 8161 if (!CCKilled) { 8162 FalseMBB->addLiveIn(SystemZ::CC); 8163 JoinMBB->addLiveIn(SystemZ::CC); 8164 } 8165 8166 // StartMBB: 8167 // BRC CCMask, JoinMBB 8168 // # fallthrough to FalseMBB 8169 MBB = StartMBB; 8170 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8171 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8172 MBB->addSuccessor(JoinMBB); 8173 MBB->addSuccessor(FalseMBB); 8174 8175 // FalseMBB: 8176 // # fallthrough to JoinMBB 8177 MBB = FalseMBB; 8178 MBB->addSuccessor(JoinMBB); 8179 8180 // JoinMBB: 8181 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 8182 // ... 8183 MBB = JoinMBB; 8184 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 8185 for (auto *SelMI : Selects) 8186 SelMI->eraseFromParent(); 8187 8188 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 8189 for (auto *DbgMI : DbgValues) 8190 MBB->splice(InsertPos, StartMBB, DbgMI); 8191 8192 return JoinMBB; 8193 } 8194 8195 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 8196 // StoreOpcode is the store to use and Invert says whether the store should 8197 // happen when the condition is false rather than true. If a STORE ON 8198 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 8199 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 8200 MachineBasicBlock *MBB, 8201 unsigned StoreOpcode, 8202 unsigned STOCOpcode, 8203 bool Invert) const { 8204 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8205 8206 Register SrcReg = MI.getOperand(0).getReg(); 8207 MachineOperand Base = MI.getOperand(1); 8208 int64_t Disp = MI.getOperand(2).getImm(); 8209 Register IndexReg = MI.getOperand(3).getReg(); 8210 unsigned CCValid = MI.getOperand(4).getImm(); 8211 unsigned CCMask = MI.getOperand(5).getImm(); 8212 DebugLoc DL = MI.getDebugLoc(); 8213 8214 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 8215 8216 // ISel pattern matching also adds a load memory operand of the same 8217 // address, so take special care to find the storing memory operand. 8218 MachineMemOperand *MMO = nullptr; 8219 for (auto *I : MI.memoperands()) 8220 if (I->isStore()) { 8221 MMO = I; 8222 break; 8223 } 8224 8225 // Use STOCOpcode if possible. We could use different store patterns in 8226 // order to avoid matching the index register, but the performance trade-offs 8227 // might be more complicated in that case. 8228 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 8229 if (Invert) 8230 CCMask ^= CCValid; 8231 8232 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 8233 .addReg(SrcReg) 8234 .add(Base) 8235 .addImm(Disp) 8236 .addImm(CCValid) 8237 .addImm(CCMask) 8238 .addMemOperand(MMO); 8239 8240 MI.eraseFromParent(); 8241 return MBB; 8242 } 8243 8244 // Get the condition needed to branch around the store. 8245 if (!Invert) 8246 CCMask ^= CCValid; 8247 8248 MachineBasicBlock *StartMBB = MBB; 8249 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 8250 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8251 8252 // Unless CC was killed in the CondStore instruction, mark it as 8253 // live-in to both FalseMBB and JoinMBB. 8254 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 8255 FalseMBB->addLiveIn(SystemZ::CC); 8256 JoinMBB->addLiveIn(SystemZ::CC); 8257 } 8258 8259 // StartMBB: 8260 // BRC CCMask, JoinMBB 8261 // # fallthrough to FalseMBB 8262 MBB = StartMBB; 8263 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8264 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8265 MBB->addSuccessor(JoinMBB); 8266 MBB->addSuccessor(FalseMBB); 8267 8268 // FalseMBB: 8269 // store %SrcReg, %Disp(%Index,%Base) 8270 // # fallthrough to JoinMBB 8271 MBB = FalseMBB; 8272 BuildMI(MBB, DL, TII->get(StoreOpcode)) 8273 .addReg(SrcReg) 8274 .add(Base) 8275 .addImm(Disp) 8276 .addReg(IndexReg) 8277 .addMemOperand(MMO); 8278 MBB->addSuccessor(JoinMBB); 8279 8280 MI.eraseFromParent(); 8281 return JoinMBB; 8282 } 8283 8284 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI. 8285 MachineBasicBlock * 8286 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI, 8287 MachineBasicBlock *MBB, 8288 bool Unsigned) const { 8289 MachineFunction &MF = *MBB->getParent(); 8290 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8291 MachineRegisterInfo &MRI = MF.getRegInfo(); 8292 8293 // Synthetic instruction to compare 128-bit values. 8294 // Sets CC 1 if Op0 > Op1, sets a different CC otherwise. 8295 Register Op0 = MI.getOperand(0).getReg(); 8296 Register Op1 = MI.getOperand(1).getReg(); 8297 8298 MachineBasicBlock *StartMBB = MBB; 8299 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB); 8300 MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB); 8301 8302 // StartMBB: 8303 // 8304 // Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts. 8305 // Swap the inputs to get: 8306 // CC 1 if high(Op0) > high(Op1) 8307 // CC 2 if high(Op0) < high(Op1) 8308 // CC 0 if high(Op0) == high(Op1) 8309 // 8310 // If CC != 0, we'd done, so jump over the next instruction. 8311 // 8312 // VEC[L]G Op1, Op0 8313 // JNE JoinMBB 8314 // # fallthrough to HiEqMBB 8315 MBB = StartMBB; 8316 int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG; 8317 BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode)) 8318 .addReg(Op1).addReg(Op0); 8319 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8320 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB); 8321 MBB->addSuccessor(JoinMBB); 8322 MBB->addSuccessor(HiEqMBB); 8323 8324 // HiEqMBB: 8325 // 8326 // Otherwise, use VECTOR COMPARE HIGH LOGICAL. 8327 // Since we already know the high parts are equal, the CC 8328 // result will only depend on the low parts: 8329 // CC 1 if low(Op0) > low(Op1) 8330 // CC 3 if low(Op0) <= low(Op1) 8331 // 8332 // VCHLGS Tmp, Op0, Op1 8333 // # fallthrough to JoinMBB 8334 MBB = HiEqMBB; 8335 Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass); 8336 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp) 8337 .addReg(Op0).addReg(Op1); 8338 MBB->addSuccessor(JoinMBB); 8339 8340 // Mark CC as live-in to JoinMBB. 8341 JoinMBB->addLiveIn(SystemZ::CC); 8342 8343 MI.eraseFromParent(); 8344 return JoinMBB; 8345 } 8346 8347 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or 8348 // ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs 8349 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says 8350 // whether the field should be inverted after performing BinOpcode (e.g. for 8351 // NAND). 8352 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 8353 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 8354 bool Invert) const { 8355 MachineFunction &MF = *MBB->getParent(); 8356 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8357 MachineRegisterInfo &MRI = MF.getRegInfo(); 8358 8359 // Extract the operands. Base can be a register or a frame index. 8360 // Src2 can be a register or immediate. 8361 Register Dest = MI.getOperand(0).getReg(); 8362 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8363 int64_t Disp = MI.getOperand(2).getImm(); 8364 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 8365 Register BitShift = MI.getOperand(4).getReg(); 8366 Register NegBitShift = MI.getOperand(5).getReg(); 8367 unsigned BitSize = MI.getOperand(6).getImm(); 8368 DebugLoc DL = MI.getDebugLoc(); 8369 8370 // Get the right opcodes for the displacement. 8371 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8372 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8373 assert(LOpcode && CSOpcode && "Displacement out of range"); 8374 8375 // Create virtual registers for temporary results. 8376 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8377 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8378 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8379 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8380 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8381 8382 // Insert a basic block for the main loop. 8383 MachineBasicBlock *StartMBB = MBB; 8384 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8385 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8386 8387 // StartMBB: 8388 // ... 8389 // %OrigVal = L Disp(%Base) 8390 // # fall through to LoopMBB 8391 MBB = StartMBB; 8392 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8393 MBB->addSuccessor(LoopMBB); 8394 8395 // LoopMBB: 8396 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 8397 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8398 // %RotatedNewVal = OP %RotatedOldVal, %Src2 8399 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8400 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8401 // JNE LoopMBB 8402 // # fall through to DoneMBB 8403 MBB = LoopMBB; 8404 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8405 .addReg(OrigVal).addMBB(StartMBB) 8406 .addReg(Dest).addMBB(LoopMBB); 8407 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8408 .addReg(OldVal).addReg(BitShift).addImm(0); 8409 if (Invert) { 8410 // Perform the operation normally and then invert every bit of the field. 8411 Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8412 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 8413 // XILF with the upper BitSize bits set. 8414 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 8415 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 8416 } else if (BinOpcode) 8417 // A simply binary operation. 8418 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 8419 .addReg(RotatedOldVal) 8420 .add(Src2); 8421 else 8422 // Use RISBG to rotate Src2 into position and use it to replace the 8423 // field in RotatedOldVal. 8424 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 8425 .addReg(RotatedOldVal).addReg(Src2.getReg()) 8426 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 8427 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8428 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8429 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8430 .addReg(OldVal) 8431 .addReg(NewVal) 8432 .add(Base) 8433 .addImm(Disp); 8434 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8435 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8436 MBB->addSuccessor(LoopMBB); 8437 MBB->addSuccessor(DoneMBB); 8438 8439 MI.eraseFromParent(); 8440 return DoneMBB; 8441 } 8442 8443 // Implement EmitInstrWithCustomInserter for subword pseudo 8444 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 8445 // instruction that should be used to compare the current field with the 8446 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 8447 // for when the current field should be kept. 8448 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 8449 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 8450 unsigned KeepOldMask) const { 8451 MachineFunction &MF = *MBB->getParent(); 8452 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8453 MachineRegisterInfo &MRI = MF.getRegInfo(); 8454 8455 // Extract the operands. Base can be a register or a frame index. 8456 Register Dest = MI.getOperand(0).getReg(); 8457 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8458 int64_t Disp = MI.getOperand(2).getImm(); 8459 Register Src2 = MI.getOperand(3).getReg(); 8460 Register BitShift = MI.getOperand(4).getReg(); 8461 Register NegBitShift = MI.getOperand(5).getReg(); 8462 unsigned BitSize = MI.getOperand(6).getImm(); 8463 DebugLoc DL = MI.getDebugLoc(); 8464 8465 // Get the right opcodes for the displacement. 8466 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8467 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8468 assert(LOpcode && CSOpcode && "Displacement out of range"); 8469 8470 // Create virtual registers for temporary results. 8471 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8472 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8473 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8474 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8475 Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8476 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8477 8478 // Insert 3 basic blocks for the loop. 8479 MachineBasicBlock *StartMBB = MBB; 8480 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8481 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8482 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 8483 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 8484 8485 // StartMBB: 8486 // ... 8487 // %OrigVal = L Disp(%Base) 8488 // # fall through to LoopMBB 8489 MBB = StartMBB; 8490 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8491 MBB->addSuccessor(LoopMBB); 8492 8493 // LoopMBB: 8494 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 8495 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8496 // CompareOpcode %RotatedOldVal, %Src2 8497 // BRC KeepOldMask, UpdateMBB 8498 MBB = LoopMBB; 8499 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8500 .addReg(OrigVal).addMBB(StartMBB) 8501 .addReg(Dest).addMBB(UpdateMBB); 8502 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8503 .addReg(OldVal).addReg(BitShift).addImm(0); 8504 BuildMI(MBB, DL, TII->get(CompareOpcode)) 8505 .addReg(RotatedOldVal).addReg(Src2); 8506 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8507 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 8508 MBB->addSuccessor(UpdateMBB); 8509 MBB->addSuccessor(UseAltMBB); 8510 8511 // UseAltMBB: 8512 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 8513 // # fall through to UpdateMBB 8514 MBB = UseAltMBB; 8515 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 8516 .addReg(RotatedOldVal).addReg(Src2) 8517 .addImm(32).addImm(31 + BitSize).addImm(0); 8518 MBB->addSuccessor(UpdateMBB); 8519 8520 // UpdateMBB: 8521 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 8522 // [ %RotatedAltVal, UseAltMBB ] 8523 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8524 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8525 // JNE LoopMBB 8526 // # fall through to DoneMBB 8527 MBB = UpdateMBB; 8528 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 8529 .addReg(RotatedOldVal).addMBB(LoopMBB) 8530 .addReg(RotatedAltVal).addMBB(UseAltMBB); 8531 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8532 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8533 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8534 .addReg(OldVal) 8535 .addReg(NewVal) 8536 .add(Base) 8537 .addImm(Disp); 8538 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8539 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8540 MBB->addSuccessor(LoopMBB); 8541 MBB->addSuccessor(DoneMBB); 8542 8543 MI.eraseFromParent(); 8544 return DoneMBB; 8545 } 8546 8547 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW 8548 // instruction MI. 8549 MachineBasicBlock * 8550 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 8551 MachineBasicBlock *MBB) const { 8552 MachineFunction &MF = *MBB->getParent(); 8553 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8554 MachineRegisterInfo &MRI = MF.getRegInfo(); 8555 8556 // Extract the operands. Base can be a register or a frame index. 8557 Register Dest = MI.getOperand(0).getReg(); 8558 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8559 int64_t Disp = MI.getOperand(2).getImm(); 8560 Register CmpVal = MI.getOperand(3).getReg(); 8561 Register OrigSwapVal = MI.getOperand(4).getReg(); 8562 Register BitShift = MI.getOperand(5).getReg(); 8563 Register NegBitShift = MI.getOperand(6).getReg(); 8564 int64_t BitSize = MI.getOperand(7).getImm(); 8565 DebugLoc DL = MI.getDebugLoc(); 8566 8567 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 8568 8569 // Get the right opcodes for the displacement and zero-extension. 8570 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8571 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8572 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 8573 assert(LOpcode && CSOpcode && "Displacement out of range"); 8574 8575 // Create virtual registers for temporary results. 8576 Register OrigOldVal = MRI.createVirtualRegister(RC); 8577 Register OldVal = MRI.createVirtualRegister(RC); 8578 Register SwapVal = MRI.createVirtualRegister(RC); 8579 Register StoreVal = MRI.createVirtualRegister(RC); 8580 Register OldValRot = MRI.createVirtualRegister(RC); 8581 Register RetryOldVal = MRI.createVirtualRegister(RC); 8582 Register RetrySwapVal = MRI.createVirtualRegister(RC); 8583 8584 // Insert 2 basic blocks for the loop. 8585 MachineBasicBlock *StartMBB = MBB; 8586 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8587 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8588 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 8589 8590 // StartMBB: 8591 // ... 8592 // %OrigOldVal = L Disp(%Base) 8593 // # fall through to LoopMBB 8594 MBB = StartMBB; 8595 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 8596 .add(Base) 8597 .addImm(Disp) 8598 .addReg(0); 8599 MBB->addSuccessor(LoopMBB); 8600 8601 // LoopMBB: 8602 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 8603 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8604 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 8605 // ^^ The low BitSize bits contain the field 8606 // of interest. 8607 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 8608 // ^^ Replace the upper 32-BitSize bits of the 8609 // swap value with those that we loaded and rotated. 8610 // %Dest = LL[CH] %OldValRot 8611 // CR %Dest, %CmpVal 8612 // JNE DoneMBB 8613 // # Fall through to SetMBB 8614 MBB = LoopMBB; 8615 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8616 .addReg(OrigOldVal).addMBB(StartMBB) 8617 .addReg(RetryOldVal).addMBB(SetMBB); 8618 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 8619 .addReg(OrigSwapVal).addMBB(StartMBB) 8620 .addReg(RetrySwapVal).addMBB(SetMBB); 8621 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 8622 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8623 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8624 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8625 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8626 .addReg(OldValRot); 8627 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8628 .addReg(Dest).addReg(CmpVal); 8629 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8630 .addImm(SystemZ::CCMASK_ICMP) 8631 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 8632 MBB->addSuccessor(DoneMBB); 8633 MBB->addSuccessor(SetMBB); 8634 8635 // SetMBB: 8636 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 8637 // ^^ Rotate the new field to its proper position. 8638 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 8639 // JNE LoopMBB 8640 // # fall through to ExitMBB 8641 MBB = SetMBB; 8642 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 8643 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 8644 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 8645 .addReg(OldVal) 8646 .addReg(StoreVal) 8647 .add(Base) 8648 .addImm(Disp); 8649 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8650 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8651 MBB->addSuccessor(LoopMBB); 8652 MBB->addSuccessor(DoneMBB); 8653 8654 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 8655 // to the block after the loop. At this point, CC may have been defined 8656 // either by the CR in LoopMBB or by the CS in SetMBB. 8657 if (!MI.registerDefIsDead(SystemZ::CC)) 8658 DoneMBB->addLiveIn(SystemZ::CC); 8659 8660 MI.eraseFromParent(); 8661 return DoneMBB; 8662 } 8663 8664 // Emit a move from two GR64s to a GR128. 8665 MachineBasicBlock * 8666 SystemZTargetLowering::emitPair128(MachineInstr &MI, 8667 MachineBasicBlock *MBB) const { 8668 MachineFunction &MF = *MBB->getParent(); 8669 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8670 MachineRegisterInfo &MRI = MF.getRegInfo(); 8671 DebugLoc DL = MI.getDebugLoc(); 8672 8673 Register Dest = MI.getOperand(0).getReg(); 8674 Register Hi = MI.getOperand(1).getReg(); 8675 Register Lo = MI.getOperand(2).getReg(); 8676 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8677 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8678 8679 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 8680 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 8681 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 8682 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8683 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 8684 8685 MI.eraseFromParent(); 8686 return MBB; 8687 } 8688 8689 // Emit an extension from a GR64 to a GR128. ClearEven is true 8690 // if the high register of the GR128 value must be cleared or false if 8691 // it's "don't care". 8692 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 8693 MachineBasicBlock *MBB, 8694 bool ClearEven) const { 8695 MachineFunction &MF = *MBB->getParent(); 8696 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8697 MachineRegisterInfo &MRI = MF.getRegInfo(); 8698 DebugLoc DL = MI.getDebugLoc(); 8699 8700 Register Dest = MI.getOperand(0).getReg(); 8701 Register Src = MI.getOperand(1).getReg(); 8702 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8703 8704 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 8705 if (ClearEven) { 8706 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8707 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8708 8709 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8710 .addImm(0); 8711 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8712 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8713 In128 = NewIn128; 8714 } 8715 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8716 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8717 8718 MI.eraseFromParent(); 8719 return MBB; 8720 } 8721 8722 MachineBasicBlock * 8723 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8724 MachineBasicBlock *MBB, 8725 unsigned Opcode, bool IsMemset) const { 8726 MachineFunction &MF = *MBB->getParent(); 8727 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8728 MachineRegisterInfo &MRI = MF.getRegInfo(); 8729 DebugLoc DL = MI.getDebugLoc(); 8730 8731 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8732 uint64_t DestDisp = MI.getOperand(1).getImm(); 8733 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8734 uint64_t SrcDisp; 8735 8736 // Fold the displacement Disp if it is out of range. 8737 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8738 if (!isUInt<12>(Disp)) { 8739 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8740 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8741 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8742 .add(Base).addImm(Disp).addReg(0); 8743 Base = MachineOperand::CreateReg(Reg, false); 8744 Disp = 0; 8745 } 8746 }; 8747 8748 if (!IsMemset) { 8749 SrcBase = earlyUseOperand(MI.getOperand(2)); 8750 SrcDisp = MI.getOperand(3).getImm(); 8751 } else { 8752 SrcBase = DestBase; 8753 SrcDisp = DestDisp++; 8754 foldDisplIfNeeded(DestBase, DestDisp); 8755 } 8756 8757 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8758 bool IsImmForm = LengthMO.isImm(); 8759 bool IsRegForm = !IsImmForm; 8760 8761 // Build and insert one Opcode of Length, with special treatment for memset. 8762 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8763 MachineBasicBlock::iterator InsPos, 8764 MachineOperand DBase, uint64_t DDisp, 8765 MachineOperand SBase, uint64_t SDisp, 8766 unsigned Length) -> void { 8767 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8768 if (IsMemset) { 8769 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8770 if (ByteMO.isImm()) 8771 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8772 .add(SBase).addImm(SDisp).add(ByteMO); 8773 else 8774 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8775 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8776 if (--Length == 0) 8777 return; 8778 } 8779 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8780 .add(DBase).addImm(DDisp).addImm(Length) 8781 .add(SBase).addImm(SDisp) 8782 .setMemRefs(MI.memoperands()); 8783 }; 8784 8785 bool NeedsLoop = false; 8786 uint64_t ImmLength = 0; 8787 Register LenAdjReg = SystemZ::NoRegister; 8788 if (IsImmForm) { 8789 ImmLength = LengthMO.getImm(); 8790 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8791 if (ImmLength == 0) { 8792 MI.eraseFromParent(); 8793 return MBB; 8794 } 8795 if (Opcode == SystemZ::CLC) { 8796 if (ImmLength > 3 * 256) 8797 // A two-CLC sequence is a clear win over a loop, not least because 8798 // it needs only one branch. A three-CLC sequence needs the same 8799 // number of branches as a loop (i.e. 2), but is shorter. That 8800 // brings us to lengths greater than 768 bytes. It seems relatively 8801 // likely that a difference will be found within the first 768 bytes, 8802 // so we just optimize for the smallest number of branch 8803 // instructions, in order to avoid polluting the prediction buffer 8804 // too much. 8805 NeedsLoop = true; 8806 } else if (ImmLength > 6 * 256) 8807 // The heuristic we use is to prefer loops for anything that would 8808 // require 7 or more MVCs. With these kinds of sizes there isn't much 8809 // to choose between straight-line code and looping code, since the 8810 // time will be dominated by the MVCs themselves. 8811 NeedsLoop = true; 8812 } else { 8813 NeedsLoop = true; 8814 LenAdjReg = LengthMO.getReg(); 8815 } 8816 8817 // When generating more than one CLC, all but the last will need to 8818 // branch to the end when a difference is found. 8819 MachineBasicBlock *EndMBB = 8820 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8821 ? SystemZ::splitBlockAfter(MI, MBB) 8822 : nullptr); 8823 8824 if (NeedsLoop) { 8825 Register StartCountReg = 8826 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8827 if (IsImmForm) { 8828 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8829 ImmLength &= 255; 8830 } else { 8831 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8832 .addReg(LenAdjReg) 8833 .addReg(0) 8834 .addImm(8); 8835 } 8836 8837 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8838 auto loadZeroAddress = [&]() -> MachineOperand { 8839 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8840 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8841 return MachineOperand::CreateReg(Reg, false); 8842 }; 8843 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8844 DestBase = loadZeroAddress(); 8845 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8846 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8847 8848 MachineBasicBlock *StartMBB = nullptr; 8849 MachineBasicBlock *LoopMBB = nullptr; 8850 MachineBasicBlock *NextMBB = nullptr; 8851 MachineBasicBlock *DoneMBB = nullptr; 8852 MachineBasicBlock *AllDoneMBB = nullptr; 8853 8854 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8855 Register StartDestReg = 8856 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8857 8858 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8859 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8860 Register ThisDestReg = 8861 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8862 Register NextSrcReg = MRI.createVirtualRegister(RC); 8863 Register NextDestReg = 8864 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8865 RC = &SystemZ::GR64BitRegClass; 8866 Register ThisCountReg = MRI.createVirtualRegister(RC); 8867 Register NextCountReg = MRI.createVirtualRegister(RC); 8868 8869 if (IsRegForm) { 8870 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8871 StartMBB = SystemZ::emitBlockAfter(MBB); 8872 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8873 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8874 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8875 8876 // MBB: 8877 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8878 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8879 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8880 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8881 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8882 .addMBB(AllDoneMBB); 8883 MBB->addSuccessor(AllDoneMBB); 8884 if (!IsMemset) 8885 MBB->addSuccessor(StartMBB); 8886 else { 8887 // MemsetOneCheckMBB: 8888 // # Jump to MemsetOneMBB for a memset of length 1, or 8889 // # fall thru to StartMBB. 8890 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8891 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8892 MBB->addSuccessor(MemsetOneCheckMBB); 8893 MBB = MemsetOneCheckMBB; 8894 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8895 .addReg(LenAdjReg).addImm(-1); 8896 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8897 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8898 .addMBB(MemsetOneMBB); 8899 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8900 MBB->addSuccessor(StartMBB, {90, 100}); 8901 8902 // MemsetOneMBB: 8903 // # Jump back to AllDoneMBB after a single MVI or STC. 8904 MBB = MemsetOneMBB; 8905 insertMemMemOp(MBB, MBB->end(), 8906 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8907 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8908 1); 8909 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8910 MBB->addSuccessor(AllDoneMBB); 8911 } 8912 8913 // StartMBB: 8914 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8915 MBB = StartMBB; 8916 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8917 .addReg(StartCountReg).addImm(0); 8918 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8919 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8920 .addMBB(DoneMBB); 8921 MBB->addSuccessor(DoneMBB); 8922 MBB->addSuccessor(LoopMBB); 8923 } 8924 else { 8925 StartMBB = MBB; 8926 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8927 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8928 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8929 8930 // StartMBB: 8931 // # fall through to LoopMBB 8932 MBB->addSuccessor(LoopMBB); 8933 8934 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8935 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8936 if (EndMBB && !ImmLength) 8937 // If the loop handled the whole CLC range, DoneMBB will be empty with 8938 // CC live-through into EndMBB, so add it as live-in. 8939 DoneMBB->addLiveIn(SystemZ::CC); 8940 } 8941 8942 // LoopMBB: 8943 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8944 // [ %NextDestReg, NextMBB ] 8945 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8946 // [ %NextSrcReg, NextMBB ] 8947 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8948 // [ %NextCountReg, NextMBB ] 8949 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8950 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8951 // ( JLH EndMBB ) 8952 // 8953 // The prefetch is used only for MVC. The JLH is used only for CLC. 8954 MBB = LoopMBB; 8955 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8956 .addReg(StartDestReg).addMBB(StartMBB) 8957 .addReg(NextDestReg).addMBB(NextMBB); 8958 if (!HaveSingleBase) 8959 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8960 .addReg(StartSrcReg).addMBB(StartMBB) 8961 .addReg(NextSrcReg).addMBB(NextMBB); 8962 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8963 .addReg(StartCountReg).addMBB(StartMBB) 8964 .addReg(NextCountReg).addMBB(NextMBB); 8965 if (Opcode == SystemZ::MVC) 8966 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8967 .addImm(SystemZ::PFD_WRITE) 8968 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8969 insertMemMemOp(MBB, MBB->end(), 8970 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8971 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8972 if (EndMBB) { 8973 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8974 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8975 .addMBB(EndMBB); 8976 MBB->addSuccessor(EndMBB); 8977 MBB->addSuccessor(NextMBB); 8978 } 8979 8980 // NextMBB: 8981 // %NextDestReg = LA 256(%ThisDestReg) 8982 // %NextSrcReg = LA 256(%ThisSrcReg) 8983 // %NextCountReg = AGHI %ThisCountReg, -1 8984 // CGHI %NextCountReg, 0 8985 // JLH LoopMBB 8986 // # fall through to DoneMBB 8987 // 8988 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8989 MBB = NextMBB; 8990 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8991 .addReg(ThisDestReg).addImm(256).addReg(0); 8992 if (!HaveSingleBase) 8993 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8994 .addReg(ThisSrcReg).addImm(256).addReg(0); 8995 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8996 .addReg(ThisCountReg).addImm(-1); 8997 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8998 .addReg(NextCountReg).addImm(0); 8999 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9000 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9001 .addMBB(LoopMBB); 9002 MBB->addSuccessor(LoopMBB); 9003 MBB->addSuccessor(DoneMBB); 9004 9005 MBB = DoneMBB; 9006 if (IsRegForm) { 9007 // DoneMBB: 9008 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 9009 // # Use EXecute Relative Long for the remainder of the bytes. The target 9010 // instruction of the EXRL will have a length field of 1 since 0 is an 9011 // illegal value. The number of bytes processed becomes (%LenAdjReg & 9012 // 0xff) + 1. 9013 // # Fall through to AllDoneMBB. 9014 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9015 Register RemDestReg = HaveSingleBase ? RemSrcReg 9016 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9017 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 9018 .addReg(StartDestReg).addMBB(StartMBB) 9019 .addReg(NextDestReg).addMBB(NextMBB); 9020 if (!HaveSingleBase) 9021 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 9022 .addReg(StartSrcReg).addMBB(StartMBB) 9023 .addReg(NextSrcReg).addMBB(NextMBB); 9024 if (IsMemset) 9025 insertMemMemOp(MBB, MBB->end(), 9026 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 9027 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 9028 MachineInstrBuilder EXRL_MIB = 9029 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 9030 .addImm(Opcode) 9031 .addReg(LenAdjReg) 9032 .addReg(RemDestReg).addImm(DestDisp) 9033 .addReg(RemSrcReg).addImm(SrcDisp); 9034 MBB->addSuccessor(AllDoneMBB); 9035 MBB = AllDoneMBB; 9036 if (Opcode != SystemZ::MVC) { 9037 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 9038 if (EndMBB) 9039 MBB->addLiveIn(SystemZ::CC); 9040 } 9041 } 9042 MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9043 } 9044 9045 // Handle any remaining bytes with straight-line code. 9046 while (ImmLength > 0) { 9047 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 9048 // The previous iteration might have created out-of-range displacements. 9049 // Apply them using LA/LAY if so. 9050 foldDisplIfNeeded(DestBase, DestDisp); 9051 foldDisplIfNeeded(SrcBase, SrcDisp); 9052 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 9053 DestDisp += ThisLength; 9054 SrcDisp += ThisLength; 9055 ImmLength -= ThisLength; 9056 // If there's another CLC to go, branch to the end if a difference 9057 // was found. 9058 if (EndMBB && ImmLength > 0) { 9059 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 9060 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9061 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9062 .addMBB(EndMBB); 9063 MBB->addSuccessor(EndMBB); 9064 MBB->addSuccessor(NextMBB); 9065 MBB = NextMBB; 9066 } 9067 } 9068 if (EndMBB) { 9069 MBB->addSuccessor(EndMBB); 9070 MBB = EndMBB; 9071 MBB->addLiveIn(SystemZ::CC); 9072 } 9073 9074 MI.eraseFromParent(); 9075 return MBB; 9076 } 9077 9078 // Decompose string pseudo-instruction MI into a loop that continually performs 9079 // Opcode until CC != 3. 9080 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 9081 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9082 MachineFunction &MF = *MBB->getParent(); 9083 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9084 MachineRegisterInfo &MRI = MF.getRegInfo(); 9085 DebugLoc DL = MI.getDebugLoc(); 9086 9087 uint64_t End1Reg = MI.getOperand(0).getReg(); 9088 uint64_t Start1Reg = MI.getOperand(1).getReg(); 9089 uint64_t Start2Reg = MI.getOperand(2).getReg(); 9090 uint64_t CharReg = MI.getOperand(3).getReg(); 9091 9092 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 9093 uint64_t This1Reg = MRI.createVirtualRegister(RC); 9094 uint64_t This2Reg = MRI.createVirtualRegister(RC); 9095 uint64_t End2Reg = MRI.createVirtualRegister(RC); 9096 9097 MachineBasicBlock *StartMBB = MBB; 9098 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 9099 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 9100 9101 // StartMBB: 9102 // # fall through to LoopMBB 9103 MBB->addSuccessor(LoopMBB); 9104 9105 // LoopMBB: 9106 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 9107 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 9108 // R0L = %CharReg 9109 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 9110 // JO LoopMBB 9111 // # fall through to DoneMBB 9112 // 9113 // The load of R0L can be hoisted by post-RA LICM. 9114 MBB = LoopMBB; 9115 9116 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 9117 .addReg(Start1Reg).addMBB(StartMBB) 9118 .addReg(End1Reg).addMBB(LoopMBB); 9119 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 9120 .addReg(Start2Reg).addMBB(StartMBB) 9121 .addReg(End2Reg).addMBB(LoopMBB); 9122 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 9123 BuildMI(MBB, DL, TII->get(Opcode)) 9124 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 9125 .addReg(This1Reg).addReg(This2Reg); 9126 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9127 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 9128 MBB->addSuccessor(LoopMBB); 9129 MBB->addSuccessor(DoneMBB); 9130 9131 DoneMBB->addLiveIn(SystemZ::CC); 9132 9133 MI.eraseFromParent(); 9134 return DoneMBB; 9135 } 9136 9137 // Update TBEGIN instruction with final opcode and register clobbers. 9138 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 9139 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 9140 bool NoFloat) const { 9141 MachineFunction &MF = *MBB->getParent(); 9142 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 9143 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9144 9145 // Update opcode. 9146 MI.setDesc(TII->get(Opcode)); 9147 9148 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 9149 // Make sure to add the corresponding GRSM bits if they are missing. 9150 uint64_t Control = MI.getOperand(2).getImm(); 9151 static const unsigned GPRControlBit[16] = { 9152 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 9153 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 9154 }; 9155 Control |= GPRControlBit[15]; 9156 if (TFI->hasFP(MF)) 9157 Control |= GPRControlBit[11]; 9158 MI.getOperand(2).setImm(Control); 9159 9160 // Add GPR clobbers. 9161 for (int I = 0; I < 16; I++) { 9162 if ((Control & GPRControlBit[I]) == 0) { 9163 unsigned Reg = SystemZMC::GR64Regs[I]; 9164 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9165 } 9166 } 9167 9168 // Add FPR/VR clobbers. 9169 if (!NoFloat && (Control & 4) != 0) { 9170 if (Subtarget.hasVector()) { 9171 for (unsigned Reg : SystemZMC::VR128Regs) { 9172 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9173 } 9174 } else { 9175 for (unsigned Reg : SystemZMC::FP64Regs) { 9176 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9177 } 9178 } 9179 } 9180 9181 return MBB; 9182 } 9183 9184 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 9185 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9186 MachineFunction &MF = *MBB->getParent(); 9187 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9188 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9189 DebugLoc DL = MI.getDebugLoc(); 9190 9191 Register SrcReg = MI.getOperand(0).getReg(); 9192 9193 // Create new virtual register of the same class as source. 9194 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 9195 Register DstReg = MRI->createVirtualRegister(RC); 9196 9197 // Replace pseudo with a normal load-and-test that models the def as 9198 // well. 9199 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 9200 .addReg(SrcReg) 9201 .setMIFlags(MI.getFlags()); 9202 MI.eraseFromParent(); 9203 9204 return MBB; 9205 } 9206 9207 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 9208 MachineInstr &MI, MachineBasicBlock *MBB) const { 9209 MachineFunction &MF = *MBB->getParent(); 9210 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9211 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9212 DebugLoc DL = MI.getDebugLoc(); 9213 const unsigned ProbeSize = getStackProbeSize(MF); 9214 Register DstReg = MI.getOperand(0).getReg(); 9215 Register SizeReg = MI.getOperand(2).getReg(); 9216 9217 MachineBasicBlock *StartMBB = MBB; 9218 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 9219 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 9220 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 9221 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 9222 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 9223 9224 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 9225 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 9226 9227 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9228 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9229 9230 // LoopTestMBB 9231 // BRC TailTestMBB 9232 // # fallthrough to LoopBodyMBB 9233 StartMBB->addSuccessor(LoopTestMBB); 9234 MBB = LoopTestMBB; 9235 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 9236 .addReg(SizeReg) 9237 .addMBB(StartMBB) 9238 .addReg(IncReg) 9239 .addMBB(LoopBodyMBB); 9240 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 9241 .addReg(PHIReg) 9242 .addImm(ProbeSize); 9243 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9244 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 9245 .addMBB(TailTestMBB); 9246 MBB->addSuccessor(LoopBodyMBB); 9247 MBB->addSuccessor(TailTestMBB); 9248 9249 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 9250 // J LoopTestMBB 9251 MBB = LoopBodyMBB; 9252 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 9253 .addReg(PHIReg) 9254 .addImm(ProbeSize); 9255 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 9256 .addReg(SystemZ::R15D) 9257 .addImm(ProbeSize); 9258 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9259 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 9260 .setMemRefs(VolLdMMO); 9261 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 9262 MBB->addSuccessor(LoopTestMBB); 9263 9264 // TailTestMBB 9265 // BRC DoneMBB 9266 // # fallthrough to TailMBB 9267 MBB = TailTestMBB; 9268 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 9269 .addReg(PHIReg) 9270 .addImm(0); 9271 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9272 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 9273 .addMBB(DoneMBB); 9274 MBB->addSuccessor(TailMBB); 9275 MBB->addSuccessor(DoneMBB); 9276 9277 // TailMBB 9278 // # fallthrough to DoneMBB 9279 MBB = TailMBB; 9280 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 9281 .addReg(SystemZ::R15D) 9282 .addReg(PHIReg); 9283 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9284 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 9285 .setMemRefs(VolLdMMO); 9286 MBB->addSuccessor(DoneMBB); 9287 9288 // DoneMBB 9289 MBB = DoneMBB; 9290 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 9291 .addReg(SystemZ::R15D); 9292 9293 MI.eraseFromParent(); 9294 return DoneMBB; 9295 } 9296 9297 SDValue SystemZTargetLowering:: 9298 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 9299 MachineFunction &MF = DAG.getMachineFunction(); 9300 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 9301 SDLoc DL(SP); 9302 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 9303 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 9304 } 9305 9306 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 9307 MachineInstr &MI, MachineBasicBlock *MBB) const { 9308 switch (MI.getOpcode()) { 9309 case SystemZ::Select32: 9310 case SystemZ::Select64: 9311 case SystemZ::Select128: 9312 case SystemZ::SelectF32: 9313 case SystemZ::SelectF64: 9314 case SystemZ::SelectF128: 9315 case SystemZ::SelectVR32: 9316 case SystemZ::SelectVR64: 9317 case SystemZ::SelectVR128: 9318 return emitSelect(MI, MBB); 9319 9320 case SystemZ::CondStore8Mux: 9321 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 9322 case SystemZ::CondStore8MuxInv: 9323 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 9324 case SystemZ::CondStore16Mux: 9325 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 9326 case SystemZ::CondStore16MuxInv: 9327 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 9328 case SystemZ::CondStore32Mux: 9329 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 9330 case SystemZ::CondStore32MuxInv: 9331 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 9332 case SystemZ::CondStore8: 9333 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 9334 case SystemZ::CondStore8Inv: 9335 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 9336 case SystemZ::CondStore16: 9337 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 9338 case SystemZ::CondStore16Inv: 9339 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 9340 case SystemZ::CondStore32: 9341 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 9342 case SystemZ::CondStore32Inv: 9343 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 9344 case SystemZ::CondStore64: 9345 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 9346 case SystemZ::CondStore64Inv: 9347 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 9348 case SystemZ::CondStoreF32: 9349 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 9350 case SystemZ::CondStoreF32Inv: 9351 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 9352 case SystemZ::CondStoreF64: 9353 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 9354 case SystemZ::CondStoreF64Inv: 9355 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 9356 9357 case SystemZ::SCmp128Hi: 9358 return emitICmp128Hi(MI, MBB, false); 9359 case SystemZ::UCmp128Hi: 9360 return emitICmp128Hi(MI, MBB, true); 9361 9362 case SystemZ::PAIR128: 9363 return emitPair128(MI, MBB); 9364 case SystemZ::AEXT128: 9365 return emitExt128(MI, MBB, false); 9366 case SystemZ::ZEXT128: 9367 return emitExt128(MI, MBB, true); 9368 9369 case SystemZ::ATOMIC_SWAPW: 9370 return emitAtomicLoadBinary(MI, MBB, 0); 9371 9372 case SystemZ::ATOMIC_LOADW_AR: 9373 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR); 9374 case SystemZ::ATOMIC_LOADW_AFI: 9375 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI); 9376 9377 case SystemZ::ATOMIC_LOADW_SR: 9378 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR); 9379 9380 case SystemZ::ATOMIC_LOADW_NR: 9381 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR); 9382 case SystemZ::ATOMIC_LOADW_NILH: 9383 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH); 9384 9385 case SystemZ::ATOMIC_LOADW_OR: 9386 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR); 9387 case SystemZ::ATOMIC_LOADW_OILH: 9388 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH); 9389 9390 case SystemZ::ATOMIC_LOADW_XR: 9391 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR); 9392 case SystemZ::ATOMIC_LOADW_XILF: 9393 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF); 9394 9395 case SystemZ::ATOMIC_LOADW_NRi: 9396 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true); 9397 case SystemZ::ATOMIC_LOADW_NILHi: 9398 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true); 9399 9400 case SystemZ::ATOMIC_LOADW_MIN: 9401 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE); 9402 case SystemZ::ATOMIC_LOADW_MAX: 9403 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE); 9404 case SystemZ::ATOMIC_LOADW_UMIN: 9405 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE); 9406 case SystemZ::ATOMIC_LOADW_UMAX: 9407 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE); 9408 9409 case SystemZ::ATOMIC_CMP_SWAPW: 9410 return emitAtomicCmpSwapW(MI, MBB); 9411 case SystemZ::MVCImm: 9412 case SystemZ::MVCReg: 9413 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 9414 case SystemZ::NCImm: 9415 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 9416 case SystemZ::OCImm: 9417 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 9418 case SystemZ::XCImm: 9419 case SystemZ::XCReg: 9420 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 9421 case SystemZ::CLCImm: 9422 case SystemZ::CLCReg: 9423 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 9424 case SystemZ::MemsetImmImm: 9425 case SystemZ::MemsetImmReg: 9426 case SystemZ::MemsetRegImm: 9427 case SystemZ::MemsetRegReg: 9428 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 9429 case SystemZ::CLSTLoop: 9430 return emitStringWrapper(MI, MBB, SystemZ::CLST); 9431 case SystemZ::MVSTLoop: 9432 return emitStringWrapper(MI, MBB, SystemZ::MVST); 9433 case SystemZ::SRSTLoop: 9434 return emitStringWrapper(MI, MBB, SystemZ::SRST); 9435 case SystemZ::TBEGIN: 9436 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 9437 case SystemZ::TBEGIN_nofloat: 9438 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 9439 case SystemZ::TBEGINC: 9440 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 9441 case SystemZ::LTEBRCompare_Pseudo: 9442 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 9443 case SystemZ::LTDBRCompare_Pseudo: 9444 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 9445 case SystemZ::LTXBRCompare_Pseudo: 9446 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 9447 9448 case SystemZ::PROBED_ALLOCA: 9449 return emitProbedAlloca(MI, MBB); 9450 9451 case TargetOpcode::STACKMAP: 9452 case TargetOpcode::PATCHPOINT: 9453 return emitPatchPoint(MI, MBB); 9454 9455 default: 9456 llvm_unreachable("Unexpected instr type to insert"); 9457 } 9458 } 9459 9460 // This is only used by the isel schedulers, and is needed only to prevent 9461 // compiler from crashing when list-ilp is used. 9462 const TargetRegisterClass * 9463 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 9464 if (VT == MVT::Untyped) 9465 return &SystemZ::ADDR128BitRegClass; 9466 return TargetLowering::getRepRegClassFor(VT); 9467 } 9468 9469 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, 9470 SelectionDAG &DAG) const { 9471 SDLoc dl(Op); 9472 /* 9473 The rounding method is in FPC Byte 3 bits 6-7, and has the following 9474 settings: 9475 00 Round to nearest 9476 01 Round to 0 9477 10 Round to +inf 9478 11 Round to -inf 9479 9480 FLT_ROUNDS, on the other hand, expects the following: 9481 -1 Undefined 9482 0 Round to 0 9483 1 Round to nearest 9484 2 Round to +inf 9485 3 Round to -inf 9486 */ 9487 9488 // Save FPC to register. 9489 SDValue Chain = Op.getOperand(0); 9490 SDValue EFPC( 9491 DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); 9492 Chain = EFPC.getValue(1); 9493 9494 // Transform as necessary 9495 SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, 9496 DAG.getConstant(3, dl, MVT::i32)); 9497 // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 9498 SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, 9499 DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, 9500 DAG.getConstant(1, dl, MVT::i32))); 9501 9502 SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, 9503 DAG.getConstant(1, dl, MVT::i32)); 9504 RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); 9505 9506 return DAG.getMergeValues({RetVal, Chain}, dl); 9507 } 9508