xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 2eb4d8dc723da3cf7d735a3226ae49da4c8c5dbc)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // Expand 128 bit shifts without using a libcall.
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292   setLibcallName(RTLIB::SRL_I128, nullptr);
293   setLibcallName(RTLIB::SHL_I128, nullptr);
294   setLibcallName(RTLIB::SRA_I128, nullptr);
295 
296   // We have native instructions for i8, i16 and i32 extensions, but not i1.
297   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
298   for (MVT VT : MVT::integer_valuetypes()) {
299     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
300     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
301     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
302   }
303 
304   // Handle the various types of symbolic address.
305   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
306   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
307   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
308   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
309   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
310 
311   // We need to handle dynamic allocations specially because of the
312   // 160-byte area at the bottom of the stack.
313   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
314   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
315 
316   // Use custom expanders so that we can force the function to use
317   // a frame pointer.
318   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
319   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
320 
321   // Handle prefetches with PFD or PFDRL.
322   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
323 
324   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
325     // Assume by default that all vector operations need to be expanded.
326     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
327       if (getOperationAction(Opcode, VT) == Legal)
328         setOperationAction(Opcode, VT, Expand);
329 
330     // Likewise all truncating stores and extending loads.
331     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
332       setTruncStoreAction(VT, InnerVT, Expand);
333       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
334       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
335       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
336     }
337 
338     if (isTypeLegal(VT)) {
339       // These operations are legal for anything that can be stored in a
340       // vector register, even if there is no native support for the format
341       // as such.  In particular, we can do these for v4f32 even though there
342       // are no specific instructions for that format.
343       setOperationAction(ISD::LOAD, VT, Legal);
344       setOperationAction(ISD::STORE, VT, Legal);
345       setOperationAction(ISD::VSELECT, VT, Legal);
346       setOperationAction(ISD::BITCAST, VT, Legal);
347       setOperationAction(ISD::UNDEF, VT, Legal);
348 
349       // Likewise, except that we need to replace the nodes with something
350       // more specific.
351       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
352       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
353     }
354   }
355 
356   // Handle integer vector types.
357   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
358     if (isTypeLegal(VT)) {
359       // These operations have direct equivalents.
360       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
361       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
362       setOperationAction(ISD::ADD, VT, Legal);
363       setOperationAction(ISD::SUB, VT, Legal);
364       if (VT != MVT::v2i64)
365         setOperationAction(ISD::MUL, VT, Legal);
366       setOperationAction(ISD::ABS, VT, Legal);
367       setOperationAction(ISD::AND, VT, Legal);
368       setOperationAction(ISD::OR, VT, Legal);
369       setOperationAction(ISD::XOR, VT, Legal);
370       if (Subtarget.hasVectorEnhancements1())
371         setOperationAction(ISD::CTPOP, VT, Legal);
372       else
373         setOperationAction(ISD::CTPOP, VT, Custom);
374       setOperationAction(ISD::CTTZ, VT, Legal);
375       setOperationAction(ISD::CTLZ, VT, Legal);
376 
377       // Convert a GPR scalar to a vector by inserting it into element 0.
378       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
379 
380       // Use a series of unpacks for extensions.
381       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
382       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
383 
384       // Detect shifts by a scalar amount and convert them into
385       // V*_BY_SCALAR.
386       setOperationAction(ISD::SHL, VT, Custom);
387       setOperationAction(ISD::SRA, VT, Custom);
388       setOperationAction(ISD::SRL, VT, Custom);
389 
390       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
391       // converted into ROTL.
392       setOperationAction(ISD::ROTL, VT, Expand);
393       setOperationAction(ISD::ROTR, VT, Expand);
394 
395       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
396       // and inverting the result as necessary.
397       setOperationAction(ISD::SETCC, VT, Custom);
398       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
399       if (Subtarget.hasVectorEnhancements1())
400         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
401     }
402   }
403 
404   if (Subtarget.hasVector()) {
405     // There should be no need to check for float types other than v2f64
406     // since <2 x f32> isn't a legal type.
407     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
408     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
409     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
410     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
411     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
412     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
413     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
414     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
415 
416     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
418     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
419     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
420     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
421     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
422     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
423     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
424   }
425 
426   if (Subtarget.hasVectorEnhancements2()) {
427     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
428     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
429     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
430     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
431     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
432     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
433     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
434     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
435 
436     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
438     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
439     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
440     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
441     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
442     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
443     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
444   }
445 
446   // Handle floating-point types.
447   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
448        I <= MVT::LAST_FP_VALUETYPE;
449        ++I) {
450     MVT VT = MVT::SimpleValueType(I);
451     if (isTypeLegal(VT)) {
452       // We can use FI for FRINT.
453       setOperationAction(ISD::FRINT, VT, Legal);
454 
455       // We can use the extended form of FI for other rounding operations.
456       if (Subtarget.hasFPExtension()) {
457         setOperationAction(ISD::FNEARBYINT, VT, Legal);
458         setOperationAction(ISD::FFLOOR, VT, Legal);
459         setOperationAction(ISD::FCEIL, VT, Legal);
460         setOperationAction(ISD::FTRUNC, VT, Legal);
461         setOperationAction(ISD::FROUND, VT, Legal);
462       }
463 
464       // No special instructions for these.
465       setOperationAction(ISD::FSIN, VT, Expand);
466       setOperationAction(ISD::FCOS, VT, Expand);
467       setOperationAction(ISD::FSINCOS, VT, Expand);
468       setOperationAction(ISD::FREM, VT, Expand);
469       setOperationAction(ISD::FPOW, VT, Expand);
470 
471       // Handle constrained floating-point operations.
472       setOperationAction(ISD::STRICT_FADD, VT, Legal);
473       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
474       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
475       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
476       setOperationAction(ISD::STRICT_FMA, VT, Legal);
477       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
478       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
479       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
480       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
481       if (Subtarget.hasFPExtension()) {
482         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
483         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
484         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
485         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
486         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
487       }
488     }
489   }
490 
491   // Handle floating-point vector types.
492   if (Subtarget.hasVector()) {
493     // Scalar-to-vector conversion is just a subreg.
494     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
495     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
496 
497     // Some insertions and extractions can be done directly but others
498     // need to go via integers.
499     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
500     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
501     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
502     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
503 
504     // These operations have direct equivalents.
505     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
506     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
507     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
508     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
509     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
510     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
511     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
512     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
513     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
514     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
515     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
516     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
517     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
518     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
519 
520     // Handle constrained floating-point operations.
521     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
533   }
534 
535   // The vector enhancements facility 1 has instructions for these.
536   if (Subtarget.hasVectorEnhancements1()) {
537     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
538     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
539     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
540     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
541     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
542     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
543     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
544     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
545     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
546     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
547     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
548     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
549     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
550     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
551 
552     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
553     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
554     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
555     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
556 
557     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
558     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
559     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
560     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
561 
562     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
563     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
564     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
565     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
566 
567     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
568     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
569     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
570     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
571 
572     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
573     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
574     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
575     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
576 
577     // Handle constrained floating-point operations.
578     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
590     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
591                      MVT::v4f32, MVT::v2f64 }) {
592       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
593       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
594       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
595       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
596     }
597   }
598 
599   // We only have fused f128 multiply-addition on vector registers.
600   if (!Subtarget.hasVectorEnhancements1()) {
601     setOperationAction(ISD::FMA, MVT::f128, Expand);
602     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
603   }
604 
605   // We don't have a copysign instruction on vector registers.
606   if (Subtarget.hasVectorEnhancements1())
607     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
608 
609   // Needed so that we don't try to implement f128 constant loads using
610   // a load-and-extend of a f80 constant (in cases where the constant
611   // would fit in an f80).
612   for (MVT VT : MVT::fp_valuetypes())
613     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
614 
615   // We don't have extending load instruction on vector registers.
616   if (Subtarget.hasVectorEnhancements1()) {
617     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
618     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
619   }
620 
621   // Floating-point truncation and stores need to be done separately.
622   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
623   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
624   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
625 
626   // We have 64-bit FPR<->GPR moves, but need special handling for
627   // 32-bit forms.
628   if (!Subtarget.hasVector()) {
629     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
630     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
631   }
632 
633   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
634   // structure, but VAEND is a no-op.
635   setOperationAction(ISD::VASTART, MVT::Other, Custom);
636   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
637   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
638 
639   // Codes for which we want to perform some z-specific combinations.
640   setTargetDAGCombine(ISD::ZERO_EXTEND);
641   setTargetDAGCombine(ISD::SIGN_EXTEND);
642   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
643   setTargetDAGCombine(ISD::LOAD);
644   setTargetDAGCombine(ISD::STORE);
645   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
646   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
647   setTargetDAGCombine(ISD::FP_ROUND);
648   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
649   setTargetDAGCombine(ISD::FP_EXTEND);
650   setTargetDAGCombine(ISD::SINT_TO_FP);
651   setTargetDAGCombine(ISD::UINT_TO_FP);
652   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
653   setTargetDAGCombine(ISD::BSWAP);
654   setTargetDAGCombine(ISD::SDIV);
655   setTargetDAGCombine(ISD::UDIV);
656   setTargetDAGCombine(ISD::SREM);
657   setTargetDAGCombine(ISD::UREM);
658   setTargetDAGCombine(ISD::INTRINSIC_VOID);
659   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
660 
661   // Handle intrinsics.
662   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
663   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
664 
665   // We want to use MVC in preference to even a single load/store pair.
666   MaxStoresPerMemcpy = 0;
667   MaxStoresPerMemcpyOptSize = 0;
668 
669   // The main memset sequence is a byte store followed by an MVC.
670   // Two STC or MV..I stores win over that, but the kind of fused stores
671   // generated by target-independent code don't when the byte value is
672   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
673   // than "STC;MVC".  Handle the choice in target-specific code instead.
674   MaxStoresPerMemset = 0;
675   MaxStoresPerMemsetOptSize = 0;
676 
677   // Default to having -disable-strictnode-mutation on
678   IsStrictFPEnabled = true;
679 }
680 
681 bool SystemZTargetLowering::useSoftFloat() const {
682   return Subtarget.hasSoftFloat();
683 }
684 
685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
686                                               LLVMContext &, EVT VT) const {
687   if (!VT.isVector())
688     return MVT::i32;
689   return VT.changeVectorElementTypeToInteger();
690 }
691 
692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
693     const MachineFunction &MF, EVT VT) const {
694   VT = VT.getScalarType();
695 
696   if (!VT.isSimple())
697     return false;
698 
699   switch (VT.getSimpleVT().SimpleTy) {
700   case MVT::f32:
701   case MVT::f64:
702     return true;
703   case MVT::f128:
704     return Subtarget.hasVectorEnhancements1();
705   default:
706     break;
707   }
708 
709   return false;
710 }
711 
712 // Return true if the constant can be generated with a vector instruction,
713 // such as VGM, VGMB or VREPI.
714 bool SystemZVectorConstantInfo::isVectorConstantLegal(
715     const SystemZSubtarget &Subtarget) {
716   const SystemZInstrInfo *TII =
717       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
718   if (!Subtarget.hasVector() ||
719       (isFP128 && !Subtarget.hasVectorEnhancements1()))
720     return false;
721 
722   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
723   // preferred way of creating all-zero and all-one vectors so give it
724   // priority over other methods below.
725   unsigned Mask = 0;
726   unsigned I = 0;
727   for (; I < SystemZ::VectorBytes; ++I) {
728     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
729     if (Byte == 0xff)
730       Mask |= 1ULL << I;
731     else if (Byte != 0)
732       break;
733   }
734   if (I == SystemZ::VectorBytes) {
735     Opcode = SystemZISD::BYTE_MASK;
736     OpVals.push_back(Mask);
737     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
738     return true;
739   }
740 
741   if (SplatBitSize > 64)
742     return false;
743 
744   auto tryValue = [&](uint64_t Value) -> bool {
745     // Try VECTOR REPLICATE IMMEDIATE
746     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
747     if (isInt<16>(SignedValue)) {
748       OpVals.push_back(((unsigned) SignedValue));
749       Opcode = SystemZISD::REPLICATE;
750       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
751                                SystemZ::VectorBits / SplatBitSize);
752       return true;
753     }
754     // Try VECTOR GENERATE MASK
755     unsigned Start, End;
756     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
757       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
758       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
759       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
760       OpVals.push_back(Start - (64 - SplatBitSize));
761       OpVals.push_back(End - (64 - SplatBitSize));
762       Opcode = SystemZISD::ROTATE_MASK;
763       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
764                                SystemZ::VectorBits / SplatBitSize);
765       return true;
766     }
767     return false;
768   };
769 
770   // First try assuming that any undefined bits above the highest set bit
771   // and below the lowest set bit are 1s.  This increases the likelihood of
772   // being able to use a sign-extended element value in VECTOR REPLICATE
773   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
774   uint64_t SplatBitsZ = SplatBits.getZExtValue();
775   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
776   uint64_t Lower =
777       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
778   uint64_t Upper =
779       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
780   if (tryValue(SplatBitsZ | Upper | Lower))
781     return true;
782 
783   // Now try assuming that any undefined bits between the first and
784   // last defined set bits are set.  This increases the chances of
785   // using a non-wraparound mask.
786   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
787   return tryValue(SplatBitsZ | Middle);
788 }
789 
790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
791   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
792   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
793   SplatBits = FPImm.bitcastToAPInt();
794   unsigned Width = SplatBits.getBitWidth();
795   IntBits <<= (SystemZ::VectorBits - Width);
796 
797   // Find the smallest splat.
798   while (Width > 8) {
799     unsigned HalfSize = Width / 2;
800     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
801     APInt LowValue = SplatBits.trunc(HalfSize);
802 
803     // If the two halves do not match, stop here.
804     if (HighValue != LowValue || 8 > HalfSize)
805       break;
806 
807     SplatBits = HighValue;
808     Width = HalfSize;
809   }
810   SplatUndef = 0;
811   SplatBitSize = Width;
812 }
813 
814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
815   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
816   bool HasAnyUndefs;
817 
818   // Get IntBits by finding the 128 bit splat.
819   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
820                        true);
821 
822   // Get SplatBits by finding the 8 bit or greater splat.
823   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
824                        true);
825 }
826 
827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
828                                          bool ForCodeSize) const {
829   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
830   if (Imm.isZero() || Imm.isNegZero())
831     return true;
832 
833   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
834 }
835 
836 /// Returns true if stack probing through inline assembly is requested.
837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
838   // If the function specifically requests inline stack probes, emit them.
839   if (MF.getFunction().hasFnAttribute("probe-stack"))
840     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
841            "inline-asm";
842   return false;
843 }
844 
845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
846   // We can use CGFI or CLGFI.
847   return isInt<32>(Imm) || isUInt<32>(Imm);
848 }
849 
850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
851   // We can use ALGFI or SLGFI.
852   return isUInt<32>(Imm) || isUInt<32>(-Imm);
853 }
854 
855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
856     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
857   // Unaligned accesses should never be slower than the expanded version.
858   // We check specifically for aligned accesses in the few cases where
859   // they are required.
860   if (Fast)
861     *Fast = true;
862   return true;
863 }
864 
865 // Information about the addressing mode for a memory access.
866 struct AddressingMode {
867   // True if a long displacement is supported.
868   bool LongDisplacement;
869 
870   // True if use of index register is supported.
871   bool IndexReg;
872 
873   AddressingMode(bool LongDispl, bool IdxReg) :
874     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
875 };
876 
877 // Return the desired addressing mode for a Load which has only one use (in
878 // the same block) which is a Store.
879 static AddressingMode getLoadStoreAddrMode(bool HasVector,
880                                           Type *Ty) {
881   // With vector support a Load->Store combination may be combined to either
882   // an MVC or vector operations and it seems to work best to allow the
883   // vector addressing mode.
884   if (HasVector)
885     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
886 
887   // Otherwise only the MVC case is special.
888   bool MVC = Ty->isIntegerTy(8);
889   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
890 }
891 
892 // Return the addressing mode which seems most desirable given an LLVM
893 // Instruction pointer.
894 static AddressingMode
895 supportedAddressingMode(Instruction *I, bool HasVector) {
896   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
897     switch (II->getIntrinsicID()) {
898     default: break;
899     case Intrinsic::memset:
900     case Intrinsic::memmove:
901     case Intrinsic::memcpy:
902       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
903     }
904   }
905 
906   if (isa<LoadInst>(I) && I->hasOneUse()) {
907     auto *SingleUser = cast<Instruction>(*I->user_begin());
908     if (SingleUser->getParent() == I->getParent()) {
909       if (isa<ICmpInst>(SingleUser)) {
910         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
911           if (C->getBitWidth() <= 64 &&
912               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
913             // Comparison of memory with 16 bit signed / unsigned immediate
914             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
915       } else if (isa<StoreInst>(SingleUser))
916         // Load->Store
917         return getLoadStoreAddrMode(HasVector, I->getType());
918     }
919   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
920     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
921       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
922         // Load->Store
923         return getLoadStoreAddrMode(HasVector, LoadI->getType());
924   }
925 
926   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
927 
928     // * Use LDE instead of LE/LEY for z13 to avoid partial register
929     //   dependencies (LDE only supports small offsets).
930     // * Utilize the vector registers to hold floating point
931     //   values (vector load / store instructions only support small
932     //   offsets).
933 
934     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
935                          I->getOperand(0)->getType());
936     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
937     bool IsVectorAccess = MemAccessTy->isVectorTy();
938 
939     // A store of an extracted vector element will be combined into a VSTE type
940     // instruction.
941     if (!IsVectorAccess && isa<StoreInst>(I)) {
942       Value *DataOp = I->getOperand(0);
943       if (isa<ExtractElementInst>(DataOp))
944         IsVectorAccess = true;
945     }
946 
947     // A load which gets inserted into a vector element will be combined into a
948     // VLE type instruction.
949     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
950       User *LoadUser = *I->user_begin();
951       if (isa<InsertElementInst>(LoadUser))
952         IsVectorAccess = true;
953     }
954 
955     if (IsFPAccess || IsVectorAccess)
956       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
957   }
958 
959   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
960 }
961 
962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
963        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
964   // Punt on globals for now, although they can be used in limited
965   // RELATIVE LONG cases.
966   if (AM.BaseGV)
967     return false;
968 
969   // Require a 20-bit signed offset.
970   if (!isInt<20>(AM.BaseOffs))
971     return false;
972 
973   AddressingMode SupportedAM(true, true);
974   if (I != nullptr)
975     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
976 
977   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
978     return false;
979 
980   if (!SupportedAM.IndexReg)
981     // No indexing allowed.
982     return AM.Scale == 0;
983   else
984     // Indexing is OK but no scale factor can be applied.
985     return AM.Scale == 0 || AM.Scale == 1;
986 }
987 
988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
989   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
990     return false;
991   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
992   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
993   return FromBits > ToBits;
994 }
995 
996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
997   if (!FromVT.isInteger() || !ToVT.isInteger())
998     return false;
999   unsigned FromBits = FromVT.getFixedSizeInBits();
1000   unsigned ToBits = ToVT.getFixedSizeInBits();
1001   return FromBits > ToBits;
1002 }
1003 
1004 //===----------------------------------------------------------------------===//
1005 // Inline asm support
1006 //===----------------------------------------------------------------------===//
1007 
1008 TargetLowering::ConstraintType
1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1010   if (Constraint.size() == 1) {
1011     switch (Constraint[0]) {
1012     case 'a': // Address register
1013     case 'd': // Data register (equivalent to 'r')
1014     case 'f': // Floating-point register
1015     case 'h': // High-part register
1016     case 'r': // General-purpose register
1017     case 'v': // Vector register
1018       return C_RegisterClass;
1019 
1020     case 'Q': // Memory with base and unsigned 12-bit displacement
1021     case 'R': // Likewise, plus an index
1022     case 'S': // Memory with base and signed 20-bit displacement
1023     case 'T': // Likewise, plus an index
1024     case 'm': // Equivalent to 'T'.
1025       return C_Memory;
1026 
1027     case 'I': // Unsigned 8-bit constant
1028     case 'J': // Unsigned 12-bit constant
1029     case 'K': // Signed 16-bit constant
1030     case 'L': // Signed 20-bit displacement (on all targets we support)
1031     case 'M': // 0x7fffffff
1032       return C_Immediate;
1033 
1034     default:
1035       break;
1036     }
1037   }
1038   return TargetLowering::getConstraintType(Constraint);
1039 }
1040 
1041 TargetLowering::ConstraintWeight SystemZTargetLowering::
1042 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1043                                const char *constraint) const {
1044   ConstraintWeight weight = CW_Invalid;
1045   Value *CallOperandVal = info.CallOperandVal;
1046   // If we don't have a value, we can't do a match,
1047   // but allow it at the lowest weight.
1048   if (!CallOperandVal)
1049     return CW_Default;
1050   Type *type = CallOperandVal->getType();
1051   // Look at the constraint type.
1052   switch (*constraint) {
1053   default:
1054     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1055     break;
1056 
1057   case 'a': // Address register
1058   case 'd': // Data register (equivalent to 'r')
1059   case 'h': // High-part register
1060   case 'r': // General-purpose register
1061     if (CallOperandVal->getType()->isIntegerTy())
1062       weight = CW_Register;
1063     break;
1064 
1065   case 'f': // Floating-point register
1066     if (type->isFloatingPointTy())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'v': // Vector register
1071     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1072         Subtarget.hasVector())
1073       weight = CW_Register;
1074     break;
1075 
1076   case 'I': // Unsigned 8-bit constant
1077     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078       if (isUInt<8>(C->getZExtValue()))
1079         weight = CW_Constant;
1080     break;
1081 
1082   case 'J': // Unsigned 12-bit constant
1083     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084       if (isUInt<12>(C->getZExtValue()))
1085         weight = CW_Constant;
1086     break;
1087 
1088   case 'K': // Signed 16-bit constant
1089     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090       if (isInt<16>(C->getSExtValue()))
1091         weight = CW_Constant;
1092     break;
1093 
1094   case 'L': // Signed 20-bit displacement (on all targets we support)
1095     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096       if (isInt<20>(C->getSExtValue()))
1097         weight = CW_Constant;
1098     break;
1099 
1100   case 'M': // 0x7fffffff
1101     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1102       if (C->getZExtValue() == 0x7fffffff)
1103         weight = CW_Constant;
1104     break;
1105   }
1106   return weight;
1107 }
1108 
1109 // Parse a "{tNNN}" register constraint for which the register type "t"
1110 // has already been verified.  MC is the class associated with "t" and
1111 // Map maps 0-based register numbers to LLVM register numbers.
1112 static std::pair<unsigned, const TargetRegisterClass *>
1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1114                     const unsigned *Map, unsigned Size) {
1115   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1116   if (isdigit(Constraint[2])) {
1117     unsigned Index;
1118     bool Failed =
1119         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1120     if (!Failed && Index < Size && Map[Index])
1121       return std::make_pair(Map[Index], RC);
1122   }
1123   return std::make_pair(0U, nullptr);
1124 }
1125 
1126 std::pair<unsigned, const TargetRegisterClass *>
1127 SystemZTargetLowering::getRegForInlineAsmConstraint(
1128     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1129   if (Constraint.size() == 1) {
1130     // GCC Constraint Letters
1131     switch (Constraint[0]) {
1132     default: break;
1133     case 'd': // Data register (equivalent to 'r')
1134     case 'r': // General-purpose register
1135       if (VT == MVT::i64)
1136         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1137       else if (VT == MVT::i128)
1138         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1139       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1140 
1141     case 'a': // Address register
1142       if (VT == MVT::i64)
1143         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1144       else if (VT == MVT::i128)
1145         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1146       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1147 
1148     case 'h': // High-part register (an LLVM extension)
1149       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1150 
1151     case 'f': // Floating-point register
1152       if (!useSoftFloat()) {
1153         if (VT == MVT::f64)
1154           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1155         else if (VT == MVT::f128)
1156           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1157         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1158       }
1159       break;
1160     case 'v': // Vector register
1161       if (Subtarget.hasVector()) {
1162         if (VT == MVT::f32)
1163           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1164         if (VT == MVT::f64)
1165           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1166         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1167       }
1168       break;
1169     }
1170   }
1171   if (Constraint.size() > 0 && Constraint[0] == '{') {
1172     // We need to override the default register parsing for GPRs and FPRs
1173     // because the interpretation depends on VT.  The internal names of
1174     // the registers are also different from the external names
1175     // (F0D and F0S instead of F0, etc.).
1176     if (Constraint[1] == 'r') {
1177       if (VT == MVT::i32)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1179                                    SystemZMC::GR32Regs, 16);
1180       if (VT == MVT::i128)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1182                                    SystemZMC::GR128Regs, 16);
1183       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1184                                  SystemZMC::GR64Regs, 16);
1185     }
1186     if (Constraint[1] == 'f') {
1187       if (useSoftFloat())
1188         return std::make_pair(
1189             0u, static_cast<const TargetRegisterClass *>(nullptr));
1190       if (VT == MVT::f32)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1192                                    SystemZMC::FP32Regs, 16);
1193       if (VT == MVT::f128)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1195                                    SystemZMC::FP128Regs, 16);
1196       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1197                                  SystemZMC::FP64Regs, 16);
1198     }
1199     if (Constraint[1] == 'v') {
1200       if (!Subtarget.hasVector())
1201         return std::make_pair(
1202             0u, static_cast<const TargetRegisterClass *>(nullptr));
1203       if (VT == MVT::f32)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1205                                    SystemZMC::VR32Regs, 32);
1206       if (VT == MVT::f64)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1208                                    SystemZMC::VR64Regs, 32);
1209       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1210                                  SystemZMC::VR128Regs, 32);
1211     }
1212   }
1213   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1214 }
1215 
1216 // FIXME? Maybe this could be a TableGen attribute on some registers and
1217 // this table could be generated automatically from RegInfo.
1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1219                                                   const MachineFunction &MF) const {
1220 
1221   Register Reg = StringSwitch<Register>(RegName)
1222                    .Case("r15", SystemZ::R15D)
1223                    .Default(0);
1224   if (Reg)
1225     return Reg;
1226   report_fatal_error("Invalid register name global variable");
1227 }
1228 
1229 void SystemZTargetLowering::
1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1231                              std::vector<SDValue> &Ops,
1232                              SelectionDAG &DAG) const {
1233   // Only support length 1 constraints for now.
1234   if (Constraint.length() == 1) {
1235     switch (Constraint[0]) {
1236     case 'I': // Unsigned 8-bit constant
1237       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238         if (isUInt<8>(C->getZExtValue()))
1239           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240                                               Op.getValueType()));
1241       return;
1242 
1243     case 'J': // Unsigned 12-bit constant
1244       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245         if (isUInt<12>(C->getZExtValue()))
1246           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1247                                               Op.getValueType()));
1248       return;
1249 
1250     case 'K': // Signed 16-bit constant
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isInt<16>(C->getSExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256 
1257     case 'L': // Signed 20-bit displacement (on all targets we support)
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (isInt<20>(C->getSExtValue()))
1260           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263 
1264     case 'M': // 0x7fffffff
1265       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1266         if (C->getZExtValue() == 0x7fffffff)
1267           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1268                                               Op.getValueType()));
1269       return;
1270     }
1271   }
1272   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 // Calling conventions
1277 //===----------------------------------------------------------------------===//
1278 
1279 #include "SystemZGenCallingConv.inc"
1280 
1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1282   CallingConv::ID) const {
1283   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1284                                            SystemZ::R14D, 0 };
1285   return ScratchRegs;
1286 }
1287 
1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1289                                                      Type *ToType) const {
1290   return isTruncateFree(FromType, ToType);
1291 }
1292 
1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1294   return CI->isTailCall();
1295 }
1296 
1297 // We do not yet support 128-bit single-element vector types.  If the user
1298 // attempts to use such types as function argument or return type, prefer
1299 // to error out instead of emitting code violating the ABI.
1300 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1301   if (ArgVT.isVector() && !VT.isVector())
1302     report_fatal_error("Unsupported vector argument or return type");
1303 }
1304 
1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1306   for (unsigned i = 0; i < Ins.size(); ++i)
1307     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1308 }
1309 
1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1311   for (unsigned i = 0; i < Outs.size(); ++i)
1312     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1313 }
1314 
1315 // Value is a value that has been passed to us in the location described by VA
1316 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1317 // any loads onto Chain.
1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1319                                    CCValAssign &VA, SDValue Chain,
1320                                    SDValue Value) {
1321   // If the argument has been promoted from a smaller type, insert an
1322   // assertion to capture this.
1323   if (VA.getLocInfo() == CCValAssign::SExt)
1324     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326   else if (VA.getLocInfo() == CCValAssign::ZExt)
1327     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329 
1330   if (VA.isExtInLoc())
1331     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1332   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1333     // If this is a short vector argument loaded from the stack,
1334     // extend from i64 to full vector size and then bitcast.
1335     assert(VA.getLocVT() == MVT::i64);
1336     assert(VA.getValVT().isVector());
1337     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1338     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1339   } else
1340     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1341   return Value;
1342 }
1343 
1344 // Value is a value of type VA.getValVT() that we need to copy into
1345 // the location described by VA.  Return a copy of Value converted to
1346 // VA.getValVT().  The caller is responsible for handling indirect values.
1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1348                                    CCValAssign &VA, SDValue Value) {
1349   switch (VA.getLocInfo()) {
1350   case CCValAssign::SExt:
1351     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1352   case CCValAssign::ZExt:
1353     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1354   case CCValAssign::AExt:
1355     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1356   case CCValAssign::BCvt:
1357     // If this is a short vector argument to be stored to the stack,
1358     // bitcast to v2i64 and then extract first element.
1359     assert(VA.getLocVT() == MVT::i64);
1360     assert(VA.getValVT().isVector());
1361     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1362     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1363                        DAG.getConstant(0, DL, MVT::i32));
1364   case CCValAssign::Full:
1365     return Value;
1366   default:
1367     llvm_unreachable("Unhandled getLocInfo()");
1368   }
1369 }
1370 
1371 SDValue SystemZTargetLowering::LowerFormalArguments(
1372     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1373     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1374     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1375   MachineFunction &MF = DAG.getMachineFunction();
1376   MachineFrameInfo &MFI = MF.getFrameInfo();
1377   MachineRegisterInfo &MRI = MF.getRegInfo();
1378   SystemZMachineFunctionInfo *FuncInfo =
1379       MF.getInfo<SystemZMachineFunctionInfo>();
1380   auto *TFL =
1381       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1382   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1383 
1384   // Detect unsupported vector argument types.
1385   if (Subtarget.hasVector())
1386     VerifyVectorTypes(Ins);
1387 
1388   // Assign locations to all of the incoming arguments.
1389   SmallVector<CCValAssign, 16> ArgLocs;
1390   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1391   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1392 
1393   unsigned NumFixedGPRs = 0;
1394   unsigned NumFixedFPRs = 0;
1395   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1396     SDValue ArgValue;
1397     CCValAssign &VA = ArgLocs[I];
1398     EVT LocVT = VA.getLocVT();
1399     if (VA.isRegLoc()) {
1400       // Arguments passed in registers
1401       const TargetRegisterClass *RC;
1402       switch (LocVT.getSimpleVT().SimpleTy) {
1403       default:
1404         // Integers smaller than i64 should be promoted to i64.
1405         llvm_unreachable("Unexpected argument type");
1406       case MVT::i32:
1407         NumFixedGPRs += 1;
1408         RC = &SystemZ::GR32BitRegClass;
1409         break;
1410       case MVT::i64:
1411         NumFixedGPRs += 1;
1412         RC = &SystemZ::GR64BitRegClass;
1413         break;
1414       case MVT::f32:
1415         NumFixedFPRs += 1;
1416         RC = &SystemZ::FP32BitRegClass;
1417         break;
1418       case MVT::f64:
1419         NumFixedFPRs += 1;
1420         RC = &SystemZ::FP64BitRegClass;
1421         break;
1422       case MVT::v16i8:
1423       case MVT::v8i16:
1424       case MVT::v4i32:
1425       case MVT::v2i64:
1426       case MVT::v4f32:
1427       case MVT::v2f64:
1428         RC = &SystemZ::VR128BitRegClass;
1429         break;
1430       }
1431 
1432       Register VReg = MRI.createVirtualRegister(RC);
1433       MRI.addLiveIn(VA.getLocReg(), VReg);
1434       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1435     } else {
1436       assert(VA.isMemLoc() && "Argument not register or memory");
1437 
1438       // Create the frame index object for this incoming parameter.
1439       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1440                                      VA.getLocMemOffset(), true);
1441 
1442       // Create the SelectionDAG nodes corresponding to a load
1443       // from this parameter.  Unpromoted ints and floats are
1444       // passed as right-justified 8-byte values.
1445       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1446       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1447         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1448                           DAG.getIntPtrConstant(4, DL));
1449       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1450                              MachinePointerInfo::getFixedStack(MF, FI));
1451     }
1452 
1453     // Convert the value of the argument register into the value that's
1454     // being passed.
1455     if (VA.getLocInfo() == CCValAssign::Indirect) {
1456       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1457                                    MachinePointerInfo()));
1458       // If the original argument was split (e.g. i128), we need
1459       // to load all parts of it here (using the same address).
1460       unsigned ArgIndex = Ins[I].OrigArgIndex;
1461       assert (Ins[I].PartOffset == 0);
1462       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1463         CCValAssign &PartVA = ArgLocs[I + 1];
1464         unsigned PartOffset = Ins[I + 1].PartOffset;
1465         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1466                                       DAG.getIntPtrConstant(PartOffset, DL));
1467         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1468                                      MachinePointerInfo()));
1469         ++I;
1470       }
1471     } else
1472       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1473   }
1474 
1475   if (IsVarArg) {
1476     // Save the number of non-varargs registers for later use by va_start, etc.
1477     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1478     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1479 
1480     // Likewise the address (in the form of a frame index) of where the
1481     // first stack vararg would be.  The 1-byte size here is arbitrary.
1482     int64_t StackSize = CCInfo.getNextStackOffset();
1483     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1484 
1485     // ...and a similar frame index for the caller-allocated save area
1486     // that will be used to store the incoming registers.
1487     int64_t RegSaveOffset =
1488       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1489     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1490     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1491 
1492     // Store the FPR varargs in the reserved frame slots.  (We store the
1493     // GPRs as part of the prologue.)
1494     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1495       SDValue MemOps[SystemZ::NumArgFPRs];
1496       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1497         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1498         int FI =
1499           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1500         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1501         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1502                                      &SystemZ::FP64BitRegClass);
1503         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1504         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1505                                  MachinePointerInfo::getFixedStack(MF, FI));
1506       }
1507       // Join the stores, which are independent of one another.
1508       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1509                           makeArrayRef(&MemOps[NumFixedFPRs],
1510                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1511     }
1512   }
1513 
1514   return Chain;
1515 }
1516 
1517 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1518                               SmallVectorImpl<CCValAssign> &ArgLocs,
1519                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1520   // Punt if there are any indirect or stack arguments, or if the call
1521   // needs the callee-saved argument register R6, or if the call uses
1522   // the callee-saved register arguments SwiftSelf and SwiftError.
1523   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1524     CCValAssign &VA = ArgLocs[I];
1525     if (VA.getLocInfo() == CCValAssign::Indirect)
1526       return false;
1527     if (!VA.isRegLoc())
1528       return false;
1529     Register Reg = VA.getLocReg();
1530     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1531       return false;
1532     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1533       return false;
1534   }
1535   return true;
1536 }
1537 
1538 SDValue
1539 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1540                                  SmallVectorImpl<SDValue> &InVals) const {
1541   SelectionDAG &DAG = CLI.DAG;
1542   SDLoc &DL = CLI.DL;
1543   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1544   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1545   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1546   SDValue Chain = CLI.Chain;
1547   SDValue Callee = CLI.Callee;
1548   bool &IsTailCall = CLI.IsTailCall;
1549   CallingConv::ID CallConv = CLI.CallConv;
1550   bool IsVarArg = CLI.IsVarArg;
1551   MachineFunction &MF = DAG.getMachineFunction();
1552   EVT PtrVT = getPointerTy(MF.getDataLayout());
1553 
1554   // Detect unsupported vector argument and return types.
1555   if (Subtarget.hasVector()) {
1556     VerifyVectorTypes(Outs);
1557     VerifyVectorTypes(Ins);
1558   }
1559 
1560   // Analyze the operands of the call, assigning locations to each operand.
1561   SmallVector<CCValAssign, 16> ArgLocs;
1562   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1563   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1564 
1565   // We don't support GuaranteedTailCallOpt, only automatically-detected
1566   // sibling calls.
1567   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1568     IsTailCall = false;
1569 
1570   // Get a count of how many bytes are to be pushed on the stack.
1571   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1572 
1573   // Mark the start of the call.
1574   if (!IsTailCall)
1575     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1576 
1577   // Copy argument values to their designated locations.
1578   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1579   SmallVector<SDValue, 8> MemOpChains;
1580   SDValue StackPtr;
1581   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1582     CCValAssign &VA = ArgLocs[I];
1583     SDValue ArgValue = OutVals[I];
1584 
1585     if (VA.getLocInfo() == CCValAssign::Indirect) {
1586       // Store the argument in a stack slot and pass its address.
1587       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1588       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1589       MemOpChains.push_back(
1590           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1591                        MachinePointerInfo::getFixedStack(MF, FI)));
1592       // If the original argument was split (e.g. i128), we need
1593       // to store all parts of it here (and pass just one address).
1594       unsigned ArgIndex = Outs[I].OrigArgIndex;
1595       assert (Outs[I].PartOffset == 0);
1596       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1597         SDValue PartValue = OutVals[I + 1];
1598         unsigned PartOffset = Outs[I + 1].PartOffset;
1599         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1600                                       DAG.getIntPtrConstant(PartOffset, DL));
1601         MemOpChains.push_back(
1602             DAG.getStore(Chain, DL, PartValue, Address,
1603                          MachinePointerInfo::getFixedStack(MF, FI)));
1604         ++I;
1605       }
1606       ArgValue = SpillSlot;
1607     } else
1608       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1609 
1610     if (VA.isRegLoc())
1611       // Queue up the argument copies and emit them at the end.
1612       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1613     else {
1614       assert(VA.isMemLoc() && "Argument not register or memory");
1615 
1616       // Work out the address of the stack slot.  Unpromoted ints and
1617       // floats are passed as right-justified 8-byte values.
1618       if (!StackPtr.getNode())
1619         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1620       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1621       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1622         Offset += 4;
1623       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1624                                     DAG.getIntPtrConstant(Offset, DL));
1625 
1626       // Emit the store.
1627       MemOpChains.push_back(
1628           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1629     }
1630   }
1631 
1632   // Join the stores, which are independent of one another.
1633   if (!MemOpChains.empty())
1634     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1635 
1636   // Accept direct calls by converting symbolic call addresses to the
1637   // associated Target* opcodes.  Force %r1 to be used for indirect
1638   // tail calls.
1639   SDValue Glue;
1640   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1641     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1642     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1643   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1644     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1645     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1646   } else if (IsTailCall) {
1647     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1648     Glue = Chain.getValue(1);
1649     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1650   }
1651 
1652   // Build a sequence of copy-to-reg nodes, chained and glued together.
1653   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1654     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1655                              RegsToPass[I].second, Glue);
1656     Glue = Chain.getValue(1);
1657   }
1658 
1659   // The first call operand is the chain and the second is the target address.
1660   SmallVector<SDValue, 8> Ops;
1661   Ops.push_back(Chain);
1662   Ops.push_back(Callee);
1663 
1664   // Add argument registers to the end of the list so that they are
1665   // known live into the call.
1666   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1667     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1668                                   RegsToPass[I].second.getValueType()));
1669 
1670   // Add a register mask operand representing the call-preserved registers.
1671   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1672   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1673   assert(Mask && "Missing call preserved mask for calling convention");
1674   Ops.push_back(DAG.getRegisterMask(Mask));
1675 
1676   // Glue the call to the argument copies, if any.
1677   if (Glue.getNode())
1678     Ops.push_back(Glue);
1679 
1680   // Emit the call.
1681   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1682   if (IsTailCall)
1683     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1684   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1685   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1686   Glue = Chain.getValue(1);
1687 
1688   // Mark the end of the call, which is glued to the call itself.
1689   Chain = DAG.getCALLSEQ_END(Chain,
1690                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1691                              DAG.getConstant(0, DL, PtrVT, true),
1692                              Glue, DL);
1693   Glue = Chain.getValue(1);
1694 
1695   // Assign locations to each value returned by this call.
1696   SmallVector<CCValAssign, 16> RetLocs;
1697   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1698   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1699 
1700   // Copy all of the result registers out of their specified physreg.
1701   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1702     CCValAssign &VA = RetLocs[I];
1703 
1704     // Copy the value out, gluing the copy to the end of the call sequence.
1705     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1706                                           VA.getLocVT(), Glue);
1707     Chain = RetValue.getValue(1);
1708     Glue = RetValue.getValue(2);
1709 
1710     // Convert the value of the return register into the value that's
1711     // being returned.
1712     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1713   }
1714 
1715   return Chain;
1716 }
1717 
1718 bool SystemZTargetLowering::
1719 CanLowerReturn(CallingConv::ID CallConv,
1720                MachineFunction &MF, bool isVarArg,
1721                const SmallVectorImpl<ISD::OutputArg> &Outs,
1722                LLVMContext &Context) const {
1723   // Detect unsupported vector return types.
1724   if (Subtarget.hasVector())
1725     VerifyVectorTypes(Outs);
1726 
1727   // Special case that we cannot easily detect in RetCC_SystemZ since
1728   // i128 is not a legal type.
1729   for (auto &Out : Outs)
1730     if (Out.ArgVT == MVT::i128)
1731       return false;
1732 
1733   SmallVector<CCValAssign, 16> RetLocs;
1734   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1735   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1736 }
1737 
1738 SDValue
1739 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1740                                    bool IsVarArg,
1741                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1742                                    const SmallVectorImpl<SDValue> &OutVals,
1743                                    const SDLoc &DL, SelectionDAG &DAG) const {
1744   MachineFunction &MF = DAG.getMachineFunction();
1745 
1746   // Detect unsupported vector return types.
1747   if (Subtarget.hasVector())
1748     VerifyVectorTypes(Outs);
1749 
1750   // Assign locations to each returned value.
1751   SmallVector<CCValAssign, 16> RetLocs;
1752   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1753   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1754 
1755   // Quick exit for void returns
1756   if (RetLocs.empty())
1757     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1758 
1759   if (CallConv == CallingConv::GHC)
1760     report_fatal_error("GHC functions return void only");
1761 
1762   // Copy the result values into the output registers.
1763   SDValue Glue;
1764   SmallVector<SDValue, 4> RetOps;
1765   RetOps.push_back(Chain);
1766   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1767     CCValAssign &VA = RetLocs[I];
1768     SDValue RetValue = OutVals[I];
1769 
1770     // Make the return register live on exit.
1771     assert(VA.isRegLoc() && "Can only return in registers!");
1772 
1773     // Promote the value as required.
1774     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1775 
1776     // Chain and glue the copies together.
1777     Register Reg = VA.getLocReg();
1778     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1779     Glue = Chain.getValue(1);
1780     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1781   }
1782 
1783   // Update chain and glue.
1784   RetOps[0] = Chain;
1785   if (Glue.getNode())
1786     RetOps.push_back(Glue);
1787 
1788   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1789 }
1790 
1791 // Return true if Op is an intrinsic node with chain that returns the CC value
1792 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1793 // the mask of valid CC values if so.
1794 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1795                                       unsigned &CCValid) {
1796   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1797   switch (Id) {
1798   case Intrinsic::s390_tbegin:
1799     Opcode = SystemZISD::TBEGIN;
1800     CCValid = SystemZ::CCMASK_TBEGIN;
1801     return true;
1802 
1803   case Intrinsic::s390_tbegin_nofloat:
1804     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1805     CCValid = SystemZ::CCMASK_TBEGIN;
1806     return true;
1807 
1808   case Intrinsic::s390_tend:
1809     Opcode = SystemZISD::TEND;
1810     CCValid = SystemZ::CCMASK_TEND;
1811     return true;
1812 
1813   default:
1814     return false;
1815   }
1816 }
1817 
1818 // Return true if Op is an intrinsic node without chain that returns the
1819 // CC value as its final argument.  Provide the associated SystemZISD
1820 // opcode and the mask of valid CC values if so.
1821 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1822   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1823   switch (Id) {
1824   case Intrinsic::s390_vpkshs:
1825   case Intrinsic::s390_vpksfs:
1826   case Intrinsic::s390_vpksgs:
1827     Opcode = SystemZISD::PACKS_CC;
1828     CCValid = SystemZ::CCMASK_VCMP;
1829     return true;
1830 
1831   case Intrinsic::s390_vpklshs:
1832   case Intrinsic::s390_vpklsfs:
1833   case Intrinsic::s390_vpklsgs:
1834     Opcode = SystemZISD::PACKLS_CC;
1835     CCValid = SystemZ::CCMASK_VCMP;
1836     return true;
1837 
1838   case Intrinsic::s390_vceqbs:
1839   case Intrinsic::s390_vceqhs:
1840   case Intrinsic::s390_vceqfs:
1841   case Intrinsic::s390_vceqgs:
1842     Opcode = SystemZISD::VICMPES;
1843     CCValid = SystemZ::CCMASK_VCMP;
1844     return true;
1845 
1846   case Intrinsic::s390_vchbs:
1847   case Intrinsic::s390_vchhs:
1848   case Intrinsic::s390_vchfs:
1849   case Intrinsic::s390_vchgs:
1850     Opcode = SystemZISD::VICMPHS;
1851     CCValid = SystemZ::CCMASK_VCMP;
1852     return true;
1853 
1854   case Intrinsic::s390_vchlbs:
1855   case Intrinsic::s390_vchlhs:
1856   case Intrinsic::s390_vchlfs:
1857   case Intrinsic::s390_vchlgs:
1858     Opcode = SystemZISD::VICMPHLS;
1859     CCValid = SystemZ::CCMASK_VCMP;
1860     return true;
1861 
1862   case Intrinsic::s390_vtm:
1863     Opcode = SystemZISD::VTM;
1864     CCValid = SystemZ::CCMASK_VCMP;
1865     return true;
1866 
1867   case Intrinsic::s390_vfaebs:
1868   case Intrinsic::s390_vfaehs:
1869   case Intrinsic::s390_vfaefs:
1870     Opcode = SystemZISD::VFAE_CC;
1871     CCValid = SystemZ::CCMASK_ANY;
1872     return true;
1873 
1874   case Intrinsic::s390_vfaezbs:
1875   case Intrinsic::s390_vfaezhs:
1876   case Intrinsic::s390_vfaezfs:
1877     Opcode = SystemZISD::VFAEZ_CC;
1878     CCValid = SystemZ::CCMASK_ANY;
1879     return true;
1880 
1881   case Intrinsic::s390_vfeebs:
1882   case Intrinsic::s390_vfeehs:
1883   case Intrinsic::s390_vfeefs:
1884     Opcode = SystemZISD::VFEE_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887 
1888   case Intrinsic::s390_vfeezbs:
1889   case Intrinsic::s390_vfeezhs:
1890   case Intrinsic::s390_vfeezfs:
1891     Opcode = SystemZISD::VFEEZ_CC;
1892     CCValid = SystemZ::CCMASK_ANY;
1893     return true;
1894 
1895   case Intrinsic::s390_vfenebs:
1896   case Intrinsic::s390_vfenehs:
1897   case Intrinsic::s390_vfenefs:
1898     Opcode = SystemZISD::VFENE_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901 
1902   case Intrinsic::s390_vfenezbs:
1903   case Intrinsic::s390_vfenezhs:
1904   case Intrinsic::s390_vfenezfs:
1905     Opcode = SystemZISD::VFENEZ_CC;
1906     CCValid = SystemZ::CCMASK_ANY;
1907     return true;
1908 
1909   case Intrinsic::s390_vistrbs:
1910   case Intrinsic::s390_vistrhs:
1911   case Intrinsic::s390_vistrfs:
1912     Opcode = SystemZISD::VISTR_CC;
1913     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1914     return true;
1915 
1916   case Intrinsic::s390_vstrcbs:
1917   case Intrinsic::s390_vstrchs:
1918   case Intrinsic::s390_vstrcfs:
1919     Opcode = SystemZISD::VSTRC_CC;
1920     CCValid = SystemZ::CCMASK_ANY;
1921     return true;
1922 
1923   case Intrinsic::s390_vstrczbs:
1924   case Intrinsic::s390_vstrczhs:
1925   case Intrinsic::s390_vstrczfs:
1926     Opcode = SystemZISD::VSTRCZ_CC;
1927     CCValid = SystemZ::CCMASK_ANY;
1928     return true;
1929 
1930   case Intrinsic::s390_vstrsb:
1931   case Intrinsic::s390_vstrsh:
1932   case Intrinsic::s390_vstrsf:
1933     Opcode = SystemZISD::VSTRS_CC;
1934     CCValid = SystemZ::CCMASK_ANY;
1935     return true;
1936 
1937   case Intrinsic::s390_vstrszb:
1938   case Intrinsic::s390_vstrszh:
1939   case Intrinsic::s390_vstrszf:
1940     Opcode = SystemZISD::VSTRSZ_CC;
1941     CCValid = SystemZ::CCMASK_ANY;
1942     return true;
1943 
1944   case Intrinsic::s390_vfcedbs:
1945   case Intrinsic::s390_vfcesbs:
1946     Opcode = SystemZISD::VFCMPES;
1947     CCValid = SystemZ::CCMASK_VCMP;
1948     return true;
1949 
1950   case Intrinsic::s390_vfchdbs:
1951   case Intrinsic::s390_vfchsbs:
1952     Opcode = SystemZISD::VFCMPHS;
1953     CCValid = SystemZ::CCMASK_VCMP;
1954     return true;
1955 
1956   case Intrinsic::s390_vfchedbs:
1957   case Intrinsic::s390_vfchesbs:
1958     Opcode = SystemZISD::VFCMPHES;
1959     CCValid = SystemZ::CCMASK_VCMP;
1960     return true;
1961 
1962   case Intrinsic::s390_vftcidb:
1963   case Intrinsic::s390_vftcisb:
1964     Opcode = SystemZISD::VFTCI;
1965     CCValid = SystemZ::CCMASK_VCMP;
1966     return true;
1967 
1968   case Intrinsic::s390_tdc:
1969     Opcode = SystemZISD::TDC;
1970     CCValid = SystemZ::CCMASK_TDC;
1971     return true;
1972 
1973   default:
1974     return false;
1975   }
1976 }
1977 
1978 // Emit an intrinsic with chain and an explicit CC register result.
1979 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1980                                            unsigned Opcode) {
1981   // Copy all operands except the intrinsic ID.
1982   unsigned NumOps = Op.getNumOperands();
1983   SmallVector<SDValue, 6> Ops;
1984   Ops.reserve(NumOps - 1);
1985   Ops.push_back(Op.getOperand(0));
1986   for (unsigned I = 2; I < NumOps; ++I)
1987     Ops.push_back(Op.getOperand(I));
1988 
1989   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1990   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1991   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1992   SDValue OldChain = SDValue(Op.getNode(), 1);
1993   SDValue NewChain = SDValue(Intr.getNode(), 1);
1994   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1995   return Intr.getNode();
1996 }
1997 
1998 // Emit an intrinsic with an explicit CC register result.
1999 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2000                                    unsigned Opcode) {
2001   // Copy all operands except the intrinsic ID.
2002   unsigned NumOps = Op.getNumOperands();
2003   SmallVector<SDValue, 6> Ops;
2004   Ops.reserve(NumOps - 1);
2005   for (unsigned I = 1; I < NumOps; ++I)
2006     Ops.push_back(Op.getOperand(I));
2007 
2008   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2009   return Intr.getNode();
2010 }
2011 
2012 // CC is a comparison that will be implemented using an integer or
2013 // floating-point comparison.  Return the condition code mask for
2014 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2015 // unsigned comparisons and clear for signed ones.  In the floating-point
2016 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2017 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2018 #define CONV(X) \
2019   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2020   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2021   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2022 
2023   switch (CC) {
2024   default:
2025     llvm_unreachable("Invalid integer condition!");
2026 
2027   CONV(EQ);
2028   CONV(NE);
2029   CONV(GT);
2030   CONV(GE);
2031   CONV(LT);
2032   CONV(LE);
2033 
2034   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2035   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2036   }
2037 #undef CONV
2038 }
2039 
2040 // If C can be converted to a comparison against zero, adjust the operands
2041 // as necessary.
2042 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2043   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2044     return;
2045 
2046   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2047   if (!ConstOp1)
2048     return;
2049 
2050   int64_t Value = ConstOp1->getSExtValue();
2051   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2052       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2053       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2054       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2055     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2056     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2057   }
2058 }
2059 
2060 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2061 // adjust the operands as necessary.
2062 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2063                              Comparison &C) {
2064   // For us to make any changes, it must a comparison between a single-use
2065   // load and a constant.
2066   if (!C.Op0.hasOneUse() ||
2067       C.Op0.getOpcode() != ISD::LOAD ||
2068       C.Op1.getOpcode() != ISD::Constant)
2069     return;
2070 
2071   // We must have an 8- or 16-bit load.
2072   auto *Load = cast<LoadSDNode>(C.Op0);
2073   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2074   if ((NumBits != 8 && NumBits != 16) ||
2075       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2076     return;
2077 
2078   // The load must be an extending one and the constant must be within the
2079   // range of the unextended value.
2080   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2081   uint64_t Value = ConstOp1->getZExtValue();
2082   uint64_t Mask = (1 << NumBits) - 1;
2083   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2084     // Make sure that ConstOp1 is in range of C.Op0.
2085     int64_t SignedValue = ConstOp1->getSExtValue();
2086     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2087       return;
2088     if (C.ICmpType != SystemZICMP::SignedOnly) {
2089       // Unsigned comparison between two sign-extended values is equivalent
2090       // to unsigned comparison between two zero-extended values.
2091       Value &= Mask;
2092     } else if (NumBits == 8) {
2093       // Try to treat the comparison as unsigned, so that we can use CLI.
2094       // Adjust CCMask and Value as necessary.
2095       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2096         // Test whether the high bit of the byte is set.
2097         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2098       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2099         // Test whether the high bit of the byte is clear.
2100         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2101       else
2102         // No instruction exists for this combination.
2103         return;
2104       C.ICmpType = SystemZICMP::UnsignedOnly;
2105     }
2106   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2107     if (Value > Mask)
2108       return;
2109     // If the constant is in range, we can use any comparison.
2110     C.ICmpType = SystemZICMP::Any;
2111   } else
2112     return;
2113 
2114   // Make sure that the first operand is an i32 of the right extension type.
2115   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2116                               ISD::SEXTLOAD :
2117                               ISD::ZEXTLOAD);
2118   if (C.Op0.getValueType() != MVT::i32 ||
2119       Load->getExtensionType() != ExtType) {
2120     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2121                            Load->getBasePtr(), Load->getPointerInfo(),
2122                            Load->getMemoryVT(), Load->getAlignment(),
2123                            Load->getMemOperand()->getFlags());
2124     // Update the chain uses.
2125     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2126   }
2127 
2128   // Make sure that the second operand is an i32 with the right value.
2129   if (C.Op1.getValueType() != MVT::i32 ||
2130       Value != ConstOp1->getZExtValue())
2131     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2132 }
2133 
2134 // Return true if Op is either an unextended load, or a load suitable
2135 // for integer register-memory comparisons of type ICmpType.
2136 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2137   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2138   if (Load) {
2139     // There are no instructions to compare a register with a memory byte.
2140     if (Load->getMemoryVT() == MVT::i8)
2141       return false;
2142     // Otherwise decide on extension type.
2143     switch (Load->getExtensionType()) {
2144     case ISD::NON_EXTLOAD:
2145       return true;
2146     case ISD::SEXTLOAD:
2147       return ICmpType != SystemZICMP::UnsignedOnly;
2148     case ISD::ZEXTLOAD:
2149       return ICmpType != SystemZICMP::SignedOnly;
2150     default:
2151       break;
2152     }
2153   }
2154   return false;
2155 }
2156 
2157 // Return true if it is better to swap the operands of C.
2158 static bool shouldSwapCmpOperands(const Comparison &C) {
2159   // Leave f128 comparisons alone, since they have no memory forms.
2160   if (C.Op0.getValueType() == MVT::f128)
2161     return false;
2162 
2163   // Always keep a floating-point constant second, since comparisons with
2164   // zero can use LOAD TEST and comparisons with other constants make a
2165   // natural memory operand.
2166   if (isa<ConstantFPSDNode>(C.Op1))
2167     return false;
2168 
2169   // Never swap comparisons with zero since there are many ways to optimize
2170   // those later.
2171   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2172   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2173     return false;
2174 
2175   // Also keep natural memory operands second if the loaded value is
2176   // only used here.  Several comparisons have memory forms.
2177   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2178     return false;
2179 
2180   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2181   // In that case we generally prefer the memory to be second.
2182   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2183     // The only exceptions are when the second operand is a constant and
2184     // we can use things like CHHSI.
2185     if (!ConstOp1)
2186       return true;
2187     // The unsigned memory-immediate instructions can handle 16-bit
2188     // unsigned integers.
2189     if (C.ICmpType != SystemZICMP::SignedOnly &&
2190         isUInt<16>(ConstOp1->getZExtValue()))
2191       return false;
2192     // The signed memory-immediate instructions can handle 16-bit
2193     // signed integers.
2194     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2195         isInt<16>(ConstOp1->getSExtValue()))
2196       return false;
2197     return true;
2198   }
2199 
2200   // Try to promote the use of CGFR and CLGFR.
2201   unsigned Opcode0 = C.Op0.getOpcode();
2202   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2203     return true;
2204   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2205     return true;
2206   if (C.ICmpType != SystemZICMP::SignedOnly &&
2207       Opcode0 == ISD::AND &&
2208       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2209       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2210     return true;
2211 
2212   return false;
2213 }
2214 
2215 // Check whether C tests for equality between X and Y and whether X - Y
2216 // or Y - X is also computed.  In that case it's better to compare the
2217 // result of the subtraction against zero.
2218 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2219                                  Comparison &C) {
2220   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2221       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2222     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2223       SDNode *N = *I;
2224       if (N->getOpcode() == ISD::SUB &&
2225           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2226            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2227         C.Op0 = SDValue(N, 0);
2228         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2229         return;
2230       }
2231     }
2232   }
2233 }
2234 
2235 // Check whether C compares a floating-point value with zero and if that
2236 // floating-point value is also negated.  In this case we can use the
2237 // negation to set CC, so avoiding separate LOAD AND TEST and
2238 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2239 static void adjustForFNeg(Comparison &C) {
2240   // This optimization is invalid for strict comparisons, since FNEG
2241   // does not raise any exceptions.
2242   if (C.Chain)
2243     return;
2244   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2245   if (C1 && C1->isZero()) {
2246     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2247       SDNode *N = *I;
2248       if (N->getOpcode() == ISD::FNEG) {
2249         C.Op0 = SDValue(N, 0);
2250         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2251         return;
2252       }
2253     }
2254   }
2255 }
2256 
2257 // Check whether C compares (shl X, 32) with 0 and whether X is
2258 // also sign-extended.  In that case it is better to test the result
2259 // of the sign extension using LTGFR.
2260 //
2261 // This case is important because InstCombine transforms a comparison
2262 // with (sext (trunc X)) into a comparison with (shl X, 32).
2263 static void adjustForLTGFR(Comparison &C) {
2264   // Check for a comparison between (shl X, 32) and 0.
2265   if (C.Op0.getOpcode() == ISD::SHL &&
2266       C.Op0.getValueType() == MVT::i64 &&
2267       C.Op1.getOpcode() == ISD::Constant &&
2268       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2269     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2270     if (C1 && C1->getZExtValue() == 32) {
2271       SDValue ShlOp0 = C.Op0.getOperand(0);
2272       // See whether X has any SIGN_EXTEND_INREG uses.
2273       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2274         SDNode *N = *I;
2275         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2276             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2277           C.Op0 = SDValue(N, 0);
2278           return;
2279         }
2280       }
2281     }
2282   }
2283 }
2284 
2285 // If C compares the truncation of an extending load, try to compare
2286 // the untruncated value instead.  This exposes more opportunities to
2287 // reuse CC.
2288 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2289                                Comparison &C) {
2290   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2291       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2292       C.Op1.getOpcode() == ISD::Constant &&
2293       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2294     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2295     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2296         C.Op0.getValueSizeInBits().getFixedSize()) {
2297       unsigned Type = L->getExtensionType();
2298       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2299           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2300         C.Op0 = C.Op0.getOperand(0);
2301         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2302       }
2303     }
2304   }
2305 }
2306 
2307 // Return true if shift operation N has an in-range constant shift value.
2308 // Store it in ShiftVal if so.
2309 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2310   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2311   if (!Shift)
2312     return false;
2313 
2314   uint64_t Amount = Shift->getZExtValue();
2315   if (Amount >= N.getValueSizeInBits())
2316     return false;
2317 
2318   ShiftVal = Amount;
2319   return true;
2320 }
2321 
2322 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2323 // instruction and whether the CC value is descriptive enough to handle
2324 // a comparison of type Opcode between the AND result and CmpVal.
2325 // CCMask says which comparison result is being tested and BitSize is
2326 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2327 // return the corresponding CC mask, otherwise return 0.
2328 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2329                                      uint64_t Mask, uint64_t CmpVal,
2330                                      unsigned ICmpType) {
2331   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2332 
2333   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2334   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2335       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2336     return 0;
2337 
2338   // Work out the masks for the lowest and highest bits.
2339   unsigned HighShift = 63 - countLeadingZeros(Mask);
2340   uint64_t High = uint64_t(1) << HighShift;
2341   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2342 
2343   // Signed ordered comparisons are effectively unsigned if the sign
2344   // bit is dropped.
2345   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2346 
2347   // Check for equality comparisons with 0, or the equivalent.
2348   if (CmpVal == 0) {
2349     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2350       return SystemZ::CCMASK_TM_ALL_0;
2351     if (CCMask == SystemZ::CCMASK_CMP_NE)
2352       return SystemZ::CCMASK_TM_SOME_1;
2353   }
2354   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2355     if (CCMask == SystemZ::CCMASK_CMP_LT)
2356       return SystemZ::CCMASK_TM_ALL_0;
2357     if (CCMask == SystemZ::CCMASK_CMP_GE)
2358       return SystemZ::CCMASK_TM_SOME_1;
2359   }
2360   if (EffectivelyUnsigned && CmpVal < Low) {
2361     if (CCMask == SystemZ::CCMASK_CMP_LE)
2362       return SystemZ::CCMASK_TM_ALL_0;
2363     if (CCMask == SystemZ::CCMASK_CMP_GT)
2364       return SystemZ::CCMASK_TM_SOME_1;
2365   }
2366 
2367   // Check for equality comparisons with the mask, or the equivalent.
2368   if (CmpVal == Mask) {
2369     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2370       return SystemZ::CCMASK_TM_ALL_1;
2371     if (CCMask == SystemZ::CCMASK_CMP_NE)
2372       return SystemZ::CCMASK_TM_SOME_0;
2373   }
2374   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2375     if (CCMask == SystemZ::CCMASK_CMP_GT)
2376       return SystemZ::CCMASK_TM_ALL_1;
2377     if (CCMask == SystemZ::CCMASK_CMP_LE)
2378       return SystemZ::CCMASK_TM_SOME_0;
2379   }
2380   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2381     if (CCMask == SystemZ::CCMASK_CMP_GE)
2382       return SystemZ::CCMASK_TM_ALL_1;
2383     if (CCMask == SystemZ::CCMASK_CMP_LT)
2384       return SystemZ::CCMASK_TM_SOME_0;
2385   }
2386 
2387   // Check for ordered comparisons with the top bit.
2388   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2389     if (CCMask == SystemZ::CCMASK_CMP_LE)
2390       return SystemZ::CCMASK_TM_MSB_0;
2391     if (CCMask == SystemZ::CCMASK_CMP_GT)
2392       return SystemZ::CCMASK_TM_MSB_1;
2393   }
2394   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2395     if (CCMask == SystemZ::CCMASK_CMP_LT)
2396       return SystemZ::CCMASK_TM_MSB_0;
2397     if (CCMask == SystemZ::CCMASK_CMP_GE)
2398       return SystemZ::CCMASK_TM_MSB_1;
2399   }
2400 
2401   // If there are just two bits, we can do equality checks for Low and High
2402   // as well.
2403   if (Mask == Low + High) {
2404     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2405       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2406     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2407       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2408     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2409       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2410     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2411       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2412   }
2413 
2414   // Looks like we've exhausted our options.
2415   return 0;
2416 }
2417 
2418 // See whether C can be implemented as a TEST UNDER MASK instruction.
2419 // Update the arguments with the TM version if so.
2420 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2421                                    Comparison &C) {
2422   // Check that we have a comparison with a constant.
2423   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2424   if (!ConstOp1)
2425     return;
2426   uint64_t CmpVal = ConstOp1->getZExtValue();
2427 
2428   // Check whether the nonconstant input is an AND with a constant mask.
2429   Comparison NewC(C);
2430   uint64_t MaskVal;
2431   ConstantSDNode *Mask = nullptr;
2432   if (C.Op0.getOpcode() == ISD::AND) {
2433     NewC.Op0 = C.Op0.getOperand(0);
2434     NewC.Op1 = C.Op0.getOperand(1);
2435     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2436     if (!Mask)
2437       return;
2438     MaskVal = Mask->getZExtValue();
2439   } else {
2440     // There is no instruction to compare with a 64-bit immediate
2441     // so use TMHH instead if possible.  We need an unsigned ordered
2442     // comparison with an i64 immediate.
2443     if (NewC.Op0.getValueType() != MVT::i64 ||
2444         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2445         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2446         NewC.ICmpType == SystemZICMP::SignedOnly)
2447       return;
2448     // Convert LE and GT comparisons into LT and GE.
2449     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2450         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2451       if (CmpVal == uint64_t(-1))
2452         return;
2453       CmpVal += 1;
2454       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2455     }
2456     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2457     // be masked off without changing the result.
2458     MaskVal = -(CmpVal & -CmpVal);
2459     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2460   }
2461   if (!MaskVal)
2462     return;
2463 
2464   // Check whether the combination of mask, comparison value and comparison
2465   // type are suitable.
2466   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2467   unsigned NewCCMask, ShiftVal;
2468   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2469       NewC.Op0.getOpcode() == ISD::SHL &&
2470       isSimpleShift(NewC.Op0, ShiftVal) &&
2471       (MaskVal >> ShiftVal != 0) &&
2472       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2473       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2474                                         MaskVal >> ShiftVal,
2475                                         CmpVal >> ShiftVal,
2476                                         SystemZICMP::Any))) {
2477     NewC.Op0 = NewC.Op0.getOperand(0);
2478     MaskVal >>= ShiftVal;
2479   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2480              NewC.Op0.getOpcode() == ISD::SRL &&
2481              isSimpleShift(NewC.Op0, ShiftVal) &&
2482              (MaskVal << ShiftVal != 0) &&
2483              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2484              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2485                                                MaskVal << ShiftVal,
2486                                                CmpVal << ShiftVal,
2487                                                SystemZICMP::UnsignedOnly))) {
2488     NewC.Op0 = NewC.Op0.getOperand(0);
2489     MaskVal <<= ShiftVal;
2490   } else {
2491     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2492                                      NewC.ICmpType);
2493     if (!NewCCMask)
2494       return;
2495   }
2496 
2497   // Go ahead and make the change.
2498   C.Opcode = SystemZISD::TM;
2499   C.Op0 = NewC.Op0;
2500   if (Mask && Mask->getZExtValue() == MaskVal)
2501     C.Op1 = SDValue(Mask, 0);
2502   else
2503     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2504   C.CCValid = SystemZ::CCMASK_TM;
2505   C.CCMask = NewCCMask;
2506 }
2507 
2508 // See whether the comparison argument contains a redundant AND
2509 // and remove it if so.  This sometimes happens due to the generic
2510 // BRCOND expansion.
2511 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2512                                   Comparison &C) {
2513   if (C.Op0.getOpcode() != ISD::AND)
2514     return;
2515   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2516   if (!Mask)
2517     return;
2518   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2519   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2520     return;
2521 
2522   C.Op0 = C.Op0.getOperand(0);
2523 }
2524 
2525 // Return a Comparison that tests the condition-code result of intrinsic
2526 // node Call against constant integer CC using comparison code Cond.
2527 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2528 // and CCValid is the set of possible condition-code results.
2529 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2530                                   SDValue Call, unsigned CCValid, uint64_t CC,
2531                                   ISD::CondCode Cond) {
2532   Comparison C(Call, SDValue(), SDValue());
2533   C.Opcode = Opcode;
2534   C.CCValid = CCValid;
2535   if (Cond == ISD::SETEQ)
2536     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2537     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2538   else if (Cond == ISD::SETNE)
2539     // ...and the inverse of that.
2540     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2541   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2542     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2543     // always true for CC>3.
2544     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2545   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2546     // ...and the inverse of that.
2547     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2548   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2549     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2550     // always true for CC>3.
2551     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2552   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2553     // ...and the inverse of that.
2554     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2555   else
2556     llvm_unreachable("Unexpected integer comparison type");
2557   C.CCMask &= CCValid;
2558   return C;
2559 }
2560 
2561 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2562 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2563                          ISD::CondCode Cond, const SDLoc &DL,
2564                          SDValue Chain = SDValue(),
2565                          bool IsSignaling = false) {
2566   if (CmpOp1.getOpcode() == ISD::Constant) {
2567     assert(!Chain);
2568     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2569     unsigned Opcode, CCValid;
2570     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2571         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2572         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2573       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2574     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2575         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2576         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2577       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2578   }
2579   Comparison C(CmpOp0, CmpOp1, Chain);
2580   C.CCMask = CCMaskForCondCode(Cond);
2581   if (C.Op0.getValueType().isFloatingPoint()) {
2582     C.CCValid = SystemZ::CCMASK_FCMP;
2583     if (!C.Chain)
2584       C.Opcode = SystemZISD::FCMP;
2585     else if (!IsSignaling)
2586       C.Opcode = SystemZISD::STRICT_FCMP;
2587     else
2588       C.Opcode = SystemZISD::STRICT_FCMPS;
2589     adjustForFNeg(C);
2590   } else {
2591     assert(!C.Chain);
2592     C.CCValid = SystemZ::CCMASK_ICMP;
2593     C.Opcode = SystemZISD::ICMP;
2594     // Choose the type of comparison.  Equality and inequality tests can
2595     // use either signed or unsigned comparisons.  The choice also doesn't
2596     // matter if both sign bits are known to be clear.  In those cases we
2597     // want to give the main isel code the freedom to choose whichever
2598     // form fits best.
2599     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2600         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2601         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2602       C.ICmpType = SystemZICMP::Any;
2603     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2604       C.ICmpType = SystemZICMP::UnsignedOnly;
2605     else
2606       C.ICmpType = SystemZICMP::SignedOnly;
2607     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2608     adjustForRedundantAnd(DAG, DL, C);
2609     adjustZeroCmp(DAG, DL, C);
2610     adjustSubwordCmp(DAG, DL, C);
2611     adjustForSubtraction(DAG, DL, C);
2612     adjustForLTGFR(C);
2613     adjustICmpTruncate(DAG, DL, C);
2614   }
2615 
2616   if (shouldSwapCmpOperands(C)) {
2617     std::swap(C.Op0, C.Op1);
2618     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2619   }
2620 
2621   adjustForTestUnderMask(DAG, DL, C);
2622   return C;
2623 }
2624 
2625 // Emit the comparison instruction described by C.
2626 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2627   if (!C.Op1.getNode()) {
2628     SDNode *Node;
2629     switch (C.Op0.getOpcode()) {
2630     case ISD::INTRINSIC_W_CHAIN:
2631       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2632       return SDValue(Node, 0);
2633     case ISD::INTRINSIC_WO_CHAIN:
2634       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2635       return SDValue(Node, Node->getNumValues() - 1);
2636     default:
2637       llvm_unreachable("Invalid comparison operands");
2638     }
2639   }
2640   if (C.Opcode == SystemZISD::ICMP)
2641     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2642                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2643   if (C.Opcode == SystemZISD::TM) {
2644     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2645                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2646     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2647                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2648   }
2649   if (C.Chain) {
2650     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2651     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2652   }
2653   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2654 }
2655 
2656 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2657 // 64 bits.  Extend is the extension type to use.  Store the high part
2658 // in Hi and the low part in Lo.
2659 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2660                             SDValue Op0, SDValue Op1, SDValue &Hi,
2661                             SDValue &Lo) {
2662   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2663   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2664   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2665   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2666                    DAG.getConstant(32, DL, MVT::i64));
2667   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2668   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2669 }
2670 
2671 // Lower a binary operation that produces two VT results, one in each
2672 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2673 // and Opcode performs the GR128 operation.  Store the even register result
2674 // in Even and the odd register result in Odd.
2675 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2676                              unsigned Opcode, SDValue Op0, SDValue Op1,
2677                              SDValue &Even, SDValue &Odd) {
2678   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2679   bool Is32Bit = is32Bit(VT);
2680   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2681   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2682 }
2683 
2684 // Return an i32 value that is 1 if the CC value produced by CCReg is
2685 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2686 // in CCValid, so other values can be ignored.
2687 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2688                          unsigned CCValid, unsigned CCMask) {
2689   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2690                    DAG.getConstant(0, DL, MVT::i32),
2691                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2692                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2693   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2694 }
2695 
2696 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2697 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2698 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2699 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2700 // floating-point comparisons.
2701 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2702 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2703   switch (CC) {
2704   case ISD::SETOEQ:
2705   case ISD::SETEQ:
2706     switch (Mode) {
2707     case CmpMode::Int:         return SystemZISD::VICMPE;
2708     case CmpMode::FP:          return SystemZISD::VFCMPE;
2709     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2710     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2711     }
2712     llvm_unreachable("Bad mode");
2713 
2714   case ISD::SETOGE:
2715   case ISD::SETGE:
2716     switch (Mode) {
2717     case CmpMode::Int:         return 0;
2718     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2719     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2720     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2721     }
2722     llvm_unreachable("Bad mode");
2723 
2724   case ISD::SETOGT:
2725   case ISD::SETGT:
2726     switch (Mode) {
2727     case CmpMode::Int:         return SystemZISD::VICMPH;
2728     case CmpMode::FP:          return SystemZISD::VFCMPH;
2729     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2730     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2731     }
2732     llvm_unreachable("Bad mode");
2733 
2734   case ISD::SETUGT:
2735     switch (Mode) {
2736     case CmpMode::Int:         return SystemZISD::VICMPHL;
2737     case CmpMode::FP:          return 0;
2738     case CmpMode::StrictFP:    return 0;
2739     case CmpMode::SignalingFP: return 0;
2740     }
2741     llvm_unreachable("Bad mode");
2742 
2743   default:
2744     return 0;
2745   }
2746 }
2747 
2748 // Return the SystemZISD vector comparison operation for CC or its inverse,
2749 // or 0 if neither can be done directly.  Indicate in Invert whether the
2750 // result is for the inverse of CC.  Mode is as above.
2751 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2752                                             bool &Invert) {
2753   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2754     Invert = false;
2755     return Opcode;
2756   }
2757 
2758   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2759   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2760     Invert = true;
2761     return Opcode;
2762   }
2763 
2764   return 0;
2765 }
2766 
2767 // Return a v2f64 that contains the extended form of elements Start and Start+1
2768 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2769 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2770                                   SDValue Op, SDValue Chain) {
2771   int Mask[] = { Start, -1, Start + 1, -1 };
2772   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2773   if (Chain) {
2774     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2775     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2776   }
2777   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2778 }
2779 
2780 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2781 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2782 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2783                                             const SDLoc &DL, EVT VT,
2784                                             SDValue CmpOp0,
2785                                             SDValue CmpOp1,
2786                                             SDValue Chain) const {
2787   // There is no hardware support for v4f32 (unless we have the vector
2788   // enhancements facility 1), so extend the vector into two v2f64s
2789   // and compare those.
2790   if (CmpOp0.getValueType() == MVT::v4f32 &&
2791       !Subtarget.hasVectorEnhancements1()) {
2792     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2793     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2794     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2795     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2796     if (Chain) {
2797       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2798       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2799       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2800       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2801       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2802                             H1.getValue(1), L1.getValue(1),
2803                             HRes.getValue(1), LRes.getValue(1) };
2804       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2805       SDValue Ops[2] = { Res, NewChain };
2806       return DAG.getMergeValues(Ops, DL);
2807     }
2808     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2809     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2810     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2811   }
2812   if (Chain) {
2813     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2814     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2815   }
2816   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2817 }
2818 
2819 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2820 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2821 // floating-point comparison.  If in addition IsSignaling is true, we have
2822 // a strict signaling floating-point comparison.
2823 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2824                                                 const SDLoc &DL, EVT VT,
2825                                                 ISD::CondCode CC,
2826                                                 SDValue CmpOp0,
2827                                                 SDValue CmpOp1,
2828                                                 SDValue Chain,
2829                                                 bool IsSignaling) const {
2830   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2831   assert (!Chain || IsFP);
2832   assert (!IsSignaling || Chain);
2833   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2834                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2835   bool Invert = false;
2836   SDValue Cmp;
2837   switch (CC) {
2838     // Handle tests for order using (or (ogt y x) (oge x y)).
2839   case ISD::SETUO:
2840     Invert = true;
2841     LLVM_FALLTHROUGH;
2842   case ISD::SETO: {
2843     assert(IsFP && "Unexpected integer comparison");
2844     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2845                               DL, VT, CmpOp1, CmpOp0, Chain);
2846     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2847                               DL, VT, CmpOp0, CmpOp1, Chain);
2848     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2849     if (Chain)
2850       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2851                           LT.getValue(1), GE.getValue(1));
2852     break;
2853   }
2854 
2855     // Handle <> tests using (or (ogt y x) (ogt x y)).
2856   case ISD::SETUEQ:
2857     Invert = true;
2858     LLVM_FALLTHROUGH;
2859   case ISD::SETONE: {
2860     assert(IsFP && "Unexpected integer comparison");
2861     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2862                               DL, VT, CmpOp1, CmpOp0, Chain);
2863     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2864                               DL, VT, CmpOp0, CmpOp1, Chain);
2865     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2866     if (Chain)
2867       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2868                           LT.getValue(1), GT.getValue(1));
2869     break;
2870   }
2871 
2872     // Otherwise a single comparison is enough.  It doesn't really
2873     // matter whether we try the inversion or the swap first, since
2874     // there are no cases where both work.
2875   default:
2876     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2877       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2878     else {
2879       CC = ISD::getSetCCSwappedOperands(CC);
2880       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2881         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2882       else
2883         llvm_unreachable("Unhandled comparison");
2884     }
2885     if (Chain)
2886       Chain = Cmp.getValue(1);
2887     break;
2888   }
2889   if (Invert) {
2890     SDValue Mask =
2891       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2892     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2893   }
2894   if (Chain && Chain.getNode() != Cmp.getNode()) {
2895     SDValue Ops[2] = { Cmp, Chain };
2896     Cmp = DAG.getMergeValues(Ops, DL);
2897   }
2898   return Cmp;
2899 }
2900 
2901 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2902                                           SelectionDAG &DAG) const {
2903   SDValue CmpOp0   = Op.getOperand(0);
2904   SDValue CmpOp1   = Op.getOperand(1);
2905   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2906   SDLoc DL(Op);
2907   EVT VT = Op.getValueType();
2908   if (VT.isVector())
2909     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2910 
2911   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2912   SDValue CCReg = emitCmp(DAG, DL, C);
2913   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2914 }
2915 
2916 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2917                                                   SelectionDAG &DAG,
2918                                                   bool IsSignaling) const {
2919   SDValue Chain    = Op.getOperand(0);
2920   SDValue CmpOp0   = Op.getOperand(1);
2921   SDValue CmpOp1   = Op.getOperand(2);
2922   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2923   SDLoc DL(Op);
2924   EVT VT = Op.getNode()->getValueType(0);
2925   if (VT.isVector()) {
2926     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2927                                    Chain, IsSignaling);
2928     return Res.getValue(Op.getResNo());
2929   }
2930 
2931   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2932   SDValue CCReg = emitCmp(DAG, DL, C);
2933   CCReg->setFlags(Op->getFlags());
2934   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2935   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2936   return DAG.getMergeValues(Ops, DL);
2937 }
2938 
2939 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2940   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2941   SDValue CmpOp0   = Op.getOperand(2);
2942   SDValue CmpOp1   = Op.getOperand(3);
2943   SDValue Dest     = Op.getOperand(4);
2944   SDLoc DL(Op);
2945 
2946   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2947   SDValue CCReg = emitCmp(DAG, DL, C);
2948   return DAG.getNode(
2949       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2950       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2951       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2952 }
2953 
2954 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2955 // allowing Pos and Neg to be wider than CmpOp.
2956 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2957   return (Neg.getOpcode() == ISD::SUB &&
2958           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2959           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2960           Neg.getOperand(1) == Pos &&
2961           (Pos == CmpOp ||
2962            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2963             Pos.getOperand(0) == CmpOp)));
2964 }
2965 
2966 // Return the absolute or negative absolute of Op; IsNegative decides which.
2967 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2968                            bool IsNegative) {
2969   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2970   if (IsNegative)
2971     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2972                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2973   return Op;
2974 }
2975 
2976 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2977                                               SelectionDAG &DAG) const {
2978   SDValue CmpOp0   = Op.getOperand(0);
2979   SDValue CmpOp1   = Op.getOperand(1);
2980   SDValue TrueOp   = Op.getOperand(2);
2981   SDValue FalseOp  = Op.getOperand(3);
2982   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2983   SDLoc DL(Op);
2984 
2985   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2986 
2987   // Check for absolute and negative-absolute selections, including those
2988   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2989   // This check supplements the one in DAGCombiner.
2990   if (C.Opcode == SystemZISD::ICMP &&
2991       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2992       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2993       C.Op1.getOpcode() == ISD::Constant &&
2994       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2995     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2996       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2997     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2998       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2999   }
3000 
3001   SDValue CCReg = emitCmp(DAG, DL, C);
3002   SDValue Ops[] = {TrueOp, FalseOp,
3003                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3004                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3005 
3006   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3007 }
3008 
3009 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3010                                                   SelectionDAG &DAG) const {
3011   SDLoc DL(Node);
3012   const GlobalValue *GV = Node->getGlobal();
3013   int64_t Offset = Node->getOffset();
3014   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3015   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3016 
3017   SDValue Result;
3018   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3019     if (isInt<32>(Offset)) {
3020       // Assign anchors at 1<<12 byte boundaries.
3021       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3022       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3023       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3024 
3025       // The offset can be folded into the address if it is aligned to a
3026       // halfword.
3027       Offset -= Anchor;
3028       if (Offset != 0 && (Offset & 1) == 0) {
3029         SDValue Full =
3030           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3031         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3032         Offset = 0;
3033       }
3034     } else {
3035       // Conservatively load a constant offset greater than 32 bits into a
3036       // register below.
3037       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3038       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3039     }
3040   } else {
3041     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3042     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3043     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3044                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3045   }
3046 
3047   // If there was a non-zero offset that we didn't fold, create an explicit
3048   // addition for it.
3049   if (Offset != 0)
3050     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3051                          DAG.getConstant(Offset, DL, PtrVT));
3052 
3053   return Result;
3054 }
3055 
3056 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3057                                                  SelectionDAG &DAG,
3058                                                  unsigned Opcode,
3059                                                  SDValue GOTOffset) const {
3060   SDLoc DL(Node);
3061   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3062   SDValue Chain = DAG.getEntryNode();
3063   SDValue Glue;
3064 
3065   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3066       CallingConv::GHC)
3067     report_fatal_error("In GHC calling convention TLS is not supported");
3068 
3069   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3070   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3071   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3072   Glue = Chain.getValue(1);
3073   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3074   Glue = Chain.getValue(1);
3075 
3076   // The first call operand is the chain and the second is the TLS symbol.
3077   SmallVector<SDValue, 8> Ops;
3078   Ops.push_back(Chain);
3079   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3080                                            Node->getValueType(0),
3081                                            0, 0));
3082 
3083   // Add argument registers to the end of the list so that they are
3084   // known live into the call.
3085   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3086   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3087 
3088   // Add a register mask operand representing the call-preserved registers.
3089   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3090   const uint32_t *Mask =
3091       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3092   assert(Mask && "Missing call preserved mask for calling convention");
3093   Ops.push_back(DAG.getRegisterMask(Mask));
3094 
3095   // Glue the call to the argument copies.
3096   Ops.push_back(Glue);
3097 
3098   // Emit the call.
3099   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3100   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3101   Glue = Chain.getValue(1);
3102 
3103   // Copy the return value from %r2.
3104   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3105 }
3106 
3107 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3108                                                   SelectionDAG &DAG) const {
3109   SDValue Chain = DAG.getEntryNode();
3110   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3111 
3112   // The high part of the thread pointer is in access register 0.
3113   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3114   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3115 
3116   // The low part of the thread pointer is in access register 1.
3117   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3118   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3119 
3120   // Merge them into a single 64-bit address.
3121   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3122                                     DAG.getConstant(32, DL, PtrVT));
3123   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3124 }
3125 
3126 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3127                                                      SelectionDAG &DAG) const {
3128   if (DAG.getTarget().useEmulatedTLS())
3129     return LowerToTLSEmulatedModel(Node, DAG);
3130   SDLoc DL(Node);
3131   const GlobalValue *GV = Node->getGlobal();
3132   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3133   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3134 
3135   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3136       CallingConv::GHC)
3137     report_fatal_error("In GHC calling convention TLS is not supported");
3138 
3139   SDValue TP = lowerThreadPointer(DL, DAG);
3140 
3141   // Get the offset of GA from the thread pointer, based on the TLS model.
3142   SDValue Offset;
3143   switch (model) {
3144     case TLSModel::GeneralDynamic: {
3145       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3146       SystemZConstantPoolValue *CPV =
3147         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3148 
3149       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3150       Offset = DAG.getLoad(
3151           PtrVT, DL, DAG.getEntryNode(), Offset,
3152           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3153 
3154       // Call __tls_get_offset to retrieve the offset.
3155       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3156       break;
3157     }
3158 
3159     case TLSModel::LocalDynamic: {
3160       // Load the GOT offset of the module ID.
3161       SystemZConstantPoolValue *CPV =
3162         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3163 
3164       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3165       Offset = DAG.getLoad(
3166           PtrVT, DL, DAG.getEntryNode(), Offset,
3167           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3168 
3169       // Call __tls_get_offset to retrieve the module base offset.
3170       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3171 
3172       // Note: The SystemZLDCleanupPass will remove redundant computations
3173       // of the module base offset.  Count total number of local-dynamic
3174       // accesses to trigger execution of that pass.
3175       SystemZMachineFunctionInfo* MFI =
3176         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3177       MFI->incNumLocalDynamicTLSAccesses();
3178 
3179       // Add the per-symbol offset.
3180       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3181 
3182       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3183       DTPOffset = DAG.getLoad(
3184           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3185           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3186 
3187       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3188       break;
3189     }
3190 
3191     case TLSModel::InitialExec: {
3192       // Load the offset from the GOT.
3193       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3194                                           SystemZII::MO_INDNTPOFF);
3195       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3196       Offset =
3197           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3198                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3199       break;
3200     }
3201 
3202     case TLSModel::LocalExec: {
3203       // Force the offset into the constant pool and load it from there.
3204       SystemZConstantPoolValue *CPV =
3205         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3206 
3207       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3208       Offset = DAG.getLoad(
3209           PtrVT, DL, DAG.getEntryNode(), Offset,
3210           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3211       break;
3212     }
3213   }
3214 
3215   // Add the base and offset together.
3216   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3217 }
3218 
3219 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3220                                                  SelectionDAG &DAG) const {
3221   SDLoc DL(Node);
3222   const BlockAddress *BA = Node->getBlockAddress();
3223   int64_t Offset = Node->getOffset();
3224   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3225 
3226   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3227   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3228   return Result;
3229 }
3230 
3231 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3232                                               SelectionDAG &DAG) const {
3233   SDLoc DL(JT);
3234   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3235   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3236 
3237   // Use LARL to load the address of the table.
3238   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3239 }
3240 
3241 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3242                                                  SelectionDAG &DAG) const {
3243   SDLoc DL(CP);
3244   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3245 
3246   SDValue Result;
3247   if (CP->isMachineConstantPoolEntry())
3248     Result =
3249         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3250   else
3251     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3252                                        CP->getOffset());
3253 
3254   // Use LARL to load the address of the constant pool entry.
3255   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3256 }
3257 
3258 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3259                                               SelectionDAG &DAG) const {
3260   auto *TFL =
3261       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3262   MachineFunction &MF = DAG.getMachineFunction();
3263   MachineFrameInfo &MFI = MF.getFrameInfo();
3264   MFI.setFrameAddressIsTaken(true);
3265 
3266   SDLoc DL(Op);
3267   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3268   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3269 
3270   // Return null if the back chain is not present.
3271   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3272   if (TFL->usePackedStack(MF) && !HasBackChain)
3273     return DAG.getConstant(0, DL, PtrVT);
3274 
3275   // By definition, the frame address is the address of the back chain.
3276   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3277   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3278 
3279   // FIXME The frontend should detect this case.
3280   if (Depth > 0) {
3281     report_fatal_error("Unsupported stack frame traversal count");
3282   }
3283 
3284   return BackChain;
3285 }
3286 
3287 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3288                                                SelectionDAG &DAG) const {
3289   MachineFunction &MF = DAG.getMachineFunction();
3290   MachineFrameInfo &MFI = MF.getFrameInfo();
3291   MFI.setReturnAddressIsTaken(true);
3292 
3293   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3294     return SDValue();
3295 
3296   SDLoc DL(Op);
3297   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3298   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3299 
3300   // FIXME The frontend should detect this case.
3301   if (Depth > 0) {
3302     report_fatal_error("Unsupported stack frame traversal count");
3303   }
3304 
3305   // Return R14D, which has the return address. Mark it an implicit live-in.
3306   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3307   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3308 }
3309 
3310 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3311                                             SelectionDAG &DAG) const {
3312   SDLoc DL(Op);
3313   SDValue In = Op.getOperand(0);
3314   EVT InVT = In.getValueType();
3315   EVT ResVT = Op.getValueType();
3316 
3317   // Convert loads directly.  This is normally done by DAGCombiner,
3318   // but we need this case for bitcasts that are created during lowering
3319   // and which are then lowered themselves.
3320   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3321     if (ISD::isNormalLoad(LoadN)) {
3322       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3323                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3324       // Update the chain uses.
3325       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3326       return NewLoad;
3327     }
3328 
3329   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3330     SDValue In64;
3331     if (Subtarget.hasHighWord()) {
3332       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3333                                        MVT::i64);
3334       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3335                                        MVT::i64, SDValue(U64, 0), In);
3336     } else {
3337       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3338       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3339                          DAG.getConstant(32, DL, MVT::i64));
3340     }
3341     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3342     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3343                                       DL, MVT::f32, Out64);
3344   }
3345   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3346     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3347     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3348                                              MVT::f64, SDValue(U64, 0), In);
3349     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3350     if (Subtarget.hasHighWord())
3351       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3352                                         MVT::i32, Out64);
3353     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3354                                 DAG.getConstant(32, DL, MVT::i64));
3355     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3356   }
3357   llvm_unreachable("Unexpected bitcast combination");
3358 }
3359 
3360 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3361                                             SelectionDAG &DAG) const {
3362   MachineFunction &MF = DAG.getMachineFunction();
3363   SystemZMachineFunctionInfo *FuncInfo =
3364     MF.getInfo<SystemZMachineFunctionInfo>();
3365   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3366 
3367   SDValue Chain   = Op.getOperand(0);
3368   SDValue Addr    = Op.getOperand(1);
3369   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3370   SDLoc DL(Op);
3371 
3372   // The initial values of each field.
3373   const unsigned NumFields = 4;
3374   SDValue Fields[NumFields] = {
3375     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3376     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3377     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3378     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3379   };
3380 
3381   // Store each field into its respective slot.
3382   SDValue MemOps[NumFields];
3383   unsigned Offset = 0;
3384   for (unsigned I = 0; I < NumFields; ++I) {
3385     SDValue FieldAddr = Addr;
3386     if (Offset != 0)
3387       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3388                               DAG.getIntPtrConstant(Offset, DL));
3389     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3390                              MachinePointerInfo(SV, Offset));
3391     Offset += 8;
3392   }
3393   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3394 }
3395 
3396 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3397                                            SelectionDAG &DAG) const {
3398   SDValue Chain      = Op.getOperand(0);
3399   SDValue DstPtr     = Op.getOperand(1);
3400   SDValue SrcPtr     = Op.getOperand(2);
3401   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3402   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3403   SDLoc DL(Op);
3404 
3405   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3406                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3407                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3408                        MachinePointerInfo(SrcSV));
3409 }
3410 
3411 SDValue SystemZTargetLowering::
3412 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3413   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3414   MachineFunction &MF = DAG.getMachineFunction();
3415   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3416   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3417 
3418   SDValue Chain = Op.getOperand(0);
3419   SDValue Size  = Op.getOperand(1);
3420   SDValue Align = Op.getOperand(2);
3421   SDLoc DL(Op);
3422 
3423   // If user has set the no alignment function attribute, ignore
3424   // alloca alignments.
3425   uint64_t AlignVal =
3426       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3427 
3428   uint64_t StackAlign = TFI->getStackAlignment();
3429   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3430   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3431 
3432   Register SPReg = getStackPointerRegisterToSaveRestore();
3433   SDValue NeededSpace = Size;
3434 
3435   // Get a reference to the stack pointer.
3436   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3437 
3438   // If we need a backchain, save it now.
3439   SDValue Backchain;
3440   if (StoreBackchain)
3441     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3442                             MachinePointerInfo());
3443 
3444   // Add extra space for alignment if needed.
3445   if (ExtraAlignSpace)
3446     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3447                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3448 
3449   // Get the new stack pointer value.
3450   SDValue NewSP;
3451   if (hasInlineStackProbe(MF)) {
3452     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3453                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3454     Chain = NewSP.getValue(1);
3455   }
3456   else {
3457     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3458     // Copy the new stack pointer back.
3459     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3460   }
3461 
3462   // The allocated data lives above the 160 bytes allocated for the standard
3463   // frame, plus any outgoing stack arguments.  We don't know how much that
3464   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3465   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3466   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3467 
3468   // Dynamically realign if needed.
3469   if (RequiredAlign > StackAlign) {
3470     Result =
3471       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3472                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3473     Result =
3474       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3475                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3476   }
3477 
3478   if (StoreBackchain)
3479     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3480                          MachinePointerInfo());
3481 
3482   SDValue Ops[2] = { Result, Chain };
3483   return DAG.getMergeValues(Ops, DL);
3484 }
3485 
3486 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3487     SDValue Op, SelectionDAG &DAG) const {
3488   SDLoc DL(Op);
3489 
3490   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3491 }
3492 
3493 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3494                                               SelectionDAG &DAG) const {
3495   EVT VT = Op.getValueType();
3496   SDLoc DL(Op);
3497   SDValue Ops[2];
3498   if (is32Bit(VT))
3499     // Just do a normal 64-bit multiplication and extract the results.
3500     // We define this so that it can be used for constant division.
3501     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3502                     Op.getOperand(1), Ops[1], Ops[0]);
3503   else if (Subtarget.hasMiscellaneousExtensions2())
3504     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3505     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3506     // return the low half first, so the results are in reverse order.
3507     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3508                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3509   else {
3510     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3511     //
3512     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3513     //
3514     // but using the fact that the upper halves are either all zeros
3515     // or all ones:
3516     //
3517     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3518     //
3519     // and grouping the right terms together since they are quicker than the
3520     // multiplication:
3521     //
3522     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3523     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3524     SDValue LL = Op.getOperand(0);
3525     SDValue RL = Op.getOperand(1);
3526     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3527     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3528     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3529     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3530     // return the low half first, so the results are in reverse order.
3531     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3532                      LL, RL, Ops[1], Ops[0]);
3533     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3534     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3535     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3536     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3537   }
3538   return DAG.getMergeValues(Ops, DL);
3539 }
3540 
3541 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3542                                               SelectionDAG &DAG) const {
3543   EVT VT = Op.getValueType();
3544   SDLoc DL(Op);
3545   SDValue Ops[2];
3546   if (is32Bit(VT))
3547     // Just do a normal 64-bit multiplication and extract the results.
3548     // We define this so that it can be used for constant division.
3549     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3550                     Op.getOperand(1), Ops[1], Ops[0]);
3551   else
3552     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3553     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3554     // return the low half first, so the results are in reverse order.
3555     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3556                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3557   return DAG.getMergeValues(Ops, DL);
3558 }
3559 
3560 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3561                                             SelectionDAG &DAG) const {
3562   SDValue Op0 = Op.getOperand(0);
3563   SDValue Op1 = Op.getOperand(1);
3564   EVT VT = Op.getValueType();
3565   SDLoc DL(Op);
3566 
3567   // We use DSGF for 32-bit division.  This means the first operand must
3568   // always be 64-bit, and the second operand should be 32-bit whenever
3569   // that is possible, to improve performance.
3570   if (is32Bit(VT))
3571     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3572   else if (DAG.ComputeNumSignBits(Op1) > 32)
3573     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3574 
3575   // DSG(F) returns the remainder in the even register and the
3576   // quotient in the odd register.
3577   SDValue Ops[2];
3578   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3579   return DAG.getMergeValues(Ops, DL);
3580 }
3581 
3582 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3583                                             SelectionDAG &DAG) const {
3584   EVT VT = Op.getValueType();
3585   SDLoc DL(Op);
3586 
3587   // DL(G) returns the remainder in the even register and the
3588   // quotient in the odd register.
3589   SDValue Ops[2];
3590   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3591                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3592   return DAG.getMergeValues(Ops, DL);
3593 }
3594 
3595 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3596   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3597 
3598   // Get the known-zero masks for each operand.
3599   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3600   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3601                         DAG.computeKnownBits(Ops[1])};
3602 
3603   // See if the upper 32 bits of one operand and the lower 32 bits of the
3604   // other are known zero.  They are the low and high operands respectively.
3605   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3606                        Known[1].Zero.getZExtValue() };
3607   unsigned High, Low;
3608   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3609     High = 1, Low = 0;
3610   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3611     High = 0, Low = 1;
3612   else
3613     return Op;
3614 
3615   SDValue LowOp = Ops[Low];
3616   SDValue HighOp = Ops[High];
3617 
3618   // If the high part is a constant, we're better off using IILH.
3619   if (HighOp.getOpcode() == ISD::Constant)
3620     return Op;
3621 
3622   // If the low part is a constant that is outside the range of LHI,
3623   // then we're better off using IILF.
3624   if (LowOp.getOpcode() == ISD::Constant) {
3625     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3626     if (!isInt<16>(Value))
3627       return Op;
3628   }
3629 
3630   // Check whether the high part is an AND that doesn't change the
3631   // high 32 bits and just masks out low bits.  We can skip it if so.
3632   if (HighOp.getOpcode() == ISD::AND &&
3633       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3634     SDValue HighOp0 = HighOp.getOperand(0);
3635     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3636     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3637       HighOp = HighOp0;
3638   }
3639 
3640   // Take advantage of the fact that all GR32 operations only change the
3641   // low 32 bits by truncating Low to an i32 and inserting it directly
3642   // using a subreg.  The interesting cases are those where the truncation
3643   // can be folded.
3644   SDLoc DL(Op);
3645   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3646   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3647                                    MVT::i64, HighOp, Low32);
3648 }
3649 
3650 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3651 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3652                                           SelectionDAG &DAG) const {
3653   SDNode *N = Op.getNode();
3654   SDValue LHS = N->getOperand(0);
3655   SDValue RHS = N->getOperand(1);
3656   SDLoc DL(N);
3657   unsigned BaseOp = 0;
3658   unsigned CCValid = 0;
3659   unsigned CCMask = 0;
3660 
3661   switch (Op.getOpcode()) {
3662   default: llvm_unreachable("Unknown instruction!");
3663   case ISD::SADDO:
3664     BaseOp = SystemZISD::SADDO;
3665     CCValid = SystemZ::CCMASK_ARITH;
3666     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3667     break;
3668   case ISD::SSUBO:
3669     BaseOp = SystemZISD::SSUBO;
3670     CCValid = SystemZ::CCMASK_ARITH;
3671     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3672     break;
3673   case ISD::UADDO:
3674     BaseOp = SystemZISD::UADDO;
3675     CCValid = SystemZ::CCMASK_LOGICAL;
3676     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3677     break;
3678   case ISD::USUBO:
3679     BaseOp = SystemZISD::USUBO;
3680     CCValid = SystemZ::CCMASK_LOGICAL;
3681     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3682     break;
3683   }
3684 
3685   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3686   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3687 
3688   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3689   if (N->getValueType(1) == MVT::i1)
3690     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3691 
3692   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3693 }
3694 
3695 static bool isAddCarryChain(SDValue Carry) {
3696   while (Carry.getOpcode() == ISD::ADDCARRY)
3697     Carry = Carry.getOperand(2);
3698   return Carry.getOpcode() == ISD::UADDO;
3699 }
3700 
3701 static bool isSubBorrowChain(SDValue Carry) {
3702   while (Carry.getOpcode() == ISD::SUBCARRY)
3703     Carry = Carry.getOperand(2);
3704   return Carry.getOpcode() == ISD::USUBO;
3705 }
3706 
3707 // Lower ADDCARRY/SUBCARRY nodes.
3708 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3709                                                 SelectionDAG &DAG) const {
3710 
3711   SDNode *N = Op.getNode();
3712   MVT VT = N->getSimpleValueType(0);
3713 
3714   // Let legalize expand this if it isn't a legal type yet.
3715   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3716     return SDValue();
3717 
3718   SDValue LHS = N->getOperand(0);
3719   SDValue RHS = N->getOperand(1);
3720   SDValue Carry = Op.getOperand(2);
3721   SDLoc DL(N);
3722   unsigned BaseOp = 0;
3723   unsigned CCValid = 0;
3724   unsigned CCMask = 0;
3725 
3726   switch (Op.getOpcode()) {
3727   default: llvm_unreachable("Unknown instruction!");
3728   case ISD::ADDCARRY:
3729     if (!isAddCarryChain(Carry))
3730       return SDValue();
3731 
3732     BaseOp = SystemZISD::ADDCARRY;
3733     CCValid = SystemZ::CCMASK_LOGICAL;
3734     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3735     break;
3736   case ISD::SUBCARRY:
3737     if (!isSubBorrowChain(Carry))
3738       return SDValue();
3739 
3740     BaseOp = SystemZISD::SUBCARRY;
3741     CCValid = SystemZ::CCMASK_LOGICAL;
3742     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3743     break;
3744   }
3745 
3746   // Set the condition code from the carry flag.
3747   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3748                       DAG.getConstant(CCValid, DL, MVT::i32),
3749                       DAG.getConstant(CCMask, DL, MVT::i32));
3750 
3751   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3752   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3753 
3754   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3755   if (N->getValueType(1) == MVT::i1)
3756     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3757 
3758   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3759 }
3760 
3761 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3762                                           SelectionDAG &DAG) const {
3763   EVT VT = Op.getValueType();
3764   SDLoc DL(Op);
3765   Op = Op.getOperand(0);
3766 
3767   // Handle vector types via VPOPCT.
3768   if (VT.isVector()) {
3769     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3770     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3771     switch (VT.getScalarSizeInBits()) {
3772     case 8:
3773       break;
3774     case 16: {
3775       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3776       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3777       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3778       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3779       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3780       break;
3781     }
3782     case 32: {
3783       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3784                                             DAG.getConstant(0, DL, MVT::i32));
3785       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3786       break;
3787     }
3788     case 64: {
3789       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3790                                             DAG.getConstant(0, DL, MVT::i32));
3791       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3792       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3793       break;
3794     }
3795     default:
3796       llvm_unreachable("Unexpected type");
3797     }
3798     return Op;
3799   }
3800 
3801   // Get the known-zero mask for the operand.
3802   KnownBits Known = DAG.computeKnownBits(Op);
3803   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3804   if (NumSignificantBits == 0)
3805     return DAG.getConstant(0, DL, VT);
3806 
3807   // Skip known-zero high parts of the operand.
3808   int64_t OrigBitSize = VT.getSizeInBits();
3809   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3810   BitSize = std::min(BitSize, OrigBitSize);
3811 
3812   // The POPCNT instruction counts the number of bits in each byte.
3813   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3814   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3815   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3816 
3817   // Add up per-byte counts in a binary tree.  All bits of Op at
3818   // position larger than BitSize remain zero throughout.
3819   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3820     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3821     if (BitSize != OrigBitSize)
3822       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3823                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3824     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3825   }
3826 
3827   // Extract overall result from high byte.
3828   if (BitSize > 8)
3829     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3830                      DAG.getConstant(BitSize - 8, DL, VT));
3831 
3832   return Op;
3833 }
3834 
3835 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3836                                                  SelectionDAG &DAG) const {
3837   SDLoc DL(Op);
3838   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3839     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3840   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3841     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3842 
3843   // The only fence that needs an instruction is a sequentially-consistent
3844   // cross-thread fence.
3845   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3846       FenceSSID == SyncScope::System) {
3847     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3848                                       Op.getOperand(0)),
3849                    0);
3850   }
3851 
3852   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3853   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3854 }
3855 
3856 // Op is an atomic load.  Lower it into a normal volatile load.
3857 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3858                                                 SelectionDAG &DAG) const {
3859   auto *Node = cast<AtomicSDNode>(Op.getNode());
3860   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3861                         Node->getChain(), Node->getBasePtr(),
3862                         Node->getMemoryVT(), Node->getMemOperand());
3863 }
3864 
3865 // Op is an atomic store.  Lower it into a normal volatile store.
3866 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3867                                                  SelectionDAG &DAG) const {
3868   auto *Node = cast<AtomicSDNode>(Op.getNode());
3869   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3870                                     Node->getBasePtr(), Node->getMemoryVT(),
3871                                     Node->getMemOperand());
3872   // We have to enforce sequential consistency by performing a
3873   // serialization operation after the store.
3874   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3875     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3876                                        MVT::Other, Chain), 0);
3877   return Chain;
3878 }
3879 
3880 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3881 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3882 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3883                                                    SelectionDAG &DAG,
3884                                                    unsigned Opcode) const {
3885   auto *Node = cast<AtomicSDNode>(Op.getNode());
3886 
3887   // 32-bit operations need no code outside the main loop.
3888   EVT NarrowVT = Node->getMemoryVT();
3889   EVT WideVT = MVT::i32;
3890   if (NarrowVT == WideVT)
3891     return Op;
3892 
3893   int64_t BitSize = NarrowVT.getSizeInBits();
3894   SDValue ChainIn = Node->getChain();
3895   SDValue Addr = Node->getBasePtr();
3896   SDValue Src2 = Node->getVal();
3897   MachineMemOperand *MMO = Node->getMemOperand();
3898   SDLoc DL(Node);
3899   EVT PtrVT = Addr.getValueType();
3900 
3901   // Convert atomic subtracts of constants into additions.
3902   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3903     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3904       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3905       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3906     }
3907 
3908   // Get the address of the containing word.
3909   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3910                                     DAG.getConstant(-4, DL, PtrVT));
3911 
3912   // Get the number of bits that the word must be rotated left in order
3913   // to bring the field to the top bits of a GR32.
3914   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3915                                  DAG.getConstant(3, DL, PtrVT));
3916   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3917 
3918   // Get the complementing shift amount, for rotating a field in the top
3919   // bits back to its proper position.
3920   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3921                                     DAG.getConstant(0, DL, WideVT), BitShift);
3922 
3923   // Extend the source operand to 32 bits and prepare it for the inner loop.
3924   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3925   // operations require the source to be shifted in advance.  (This shift
3926   // can be folded if the source is constant.)  For AND and NAND, the lower
3927   // bits must be set, while for other opcodes they should be left clear.
3928   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3929     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3930                        DAG.getConstant(32 - BitSize, DL, WideVT));
3931   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3932       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3933     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3934                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3935 
3936   // Construct the ATOMIC_LOADW_* node.
3937   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3938   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3939                     DAG.getConstant(BitSize, DL, WideVT) };
3940   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3941                                              NarrowVT, MMO);
3942 
3943   // Rotate the result of the final CS so that the field is in the lower
3944   // bits of a GR32, then truncate it.
3945   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3946                                     DAG.getConstant(BitSize, DL, WideVT));
3947   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3948 
3949   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3950   return DAG.getMergeValues(RetOps, DL);
3951 }
3952 
3953 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3954 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3955 // operations into additions.
3956 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3957                                                     SelectionDAG &DAG) const {
3958   auto *Node = cast<AtomicSDNode>(Op.getNode());
3959   EVT MemVT = Node->getMemoryVT();
3960   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3961     // A full-width operation.
3962     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3963     SDValue Src2 = Node->getVal();
3964     SDValue NegSrc2;
3965     SDLoc DL(Src2);
3966 
3967     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3968       // Use an addition if the operand is constant and either LAA(G) is
3969       // available or the negative value is in the range of A(G)FHI.
3970       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3971       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3972         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3973     } else if (Subtarget.hasInterlockedAccess1())
3974       // Use LAA(G) if available.
3975       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3976                             Src2);
3977 
3978     if (NegSrc2.getNode())
3979       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3980                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3981                            Node->getMemOperand());
3982 
3983     // Use the node as-is.
3984     return Op;
3985   }
3986 
3987   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3988 }
3989 
3990 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3991 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3992                                                     SelectionDAG &DAG) const {
3993   auto *Node = cast<AtomicSDNode>(Op.getNode());
3994   SDValue ChainIn = Node->getOperand(0);
3995   SDValue Addr = Node->getOperand(1);
3996   SDValue CmpVal = Node->getOperand(2);
3997   SDValue SwapVal = Node->getOperand(3);
3998   MachineMemOperand *MMO = Node->getMemOperand();
3999   SDLoc DL(Node);
4000 
4001   // We have native support for 32-bit and 64-bit compare and swap, but we
4002   // still need to expand extracting the "success" result from the CC.
4003   EVT NarrowVT = Node->getMemoryVT();
4004   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4005   if (NarrowVT == WideVT) {
4006     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4007     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4008     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4009                                                DL, Tys, Ops, NarrowVT, MMO);
4010     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4011                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4012 
4013     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4014     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4015     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4016     return SDValue();
4017   }
4018 
4019   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4020   // via a fullword ATOMIC_CMP_SWAPW operation.
4021   int64_t BitSize = NarrowVT.getSizeInBits();
4022   EVT PtrVT = Addr.getValueType();
4023 
4024   // Get the address of the containing word.
4025   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4026                                     DAG.getConstant(-4, DL, PtrVT));
4027 
4028   // Get the number of bits that the word must be rotated left in order
4029   // to bring the field to the top bits of a GR32.
4030   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4031                                  DAG.getConstant(3, DL, PtrVT));
4032   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4033 
4034   // Get the complementing shift amount, for rotating a field in the top
4035   // bits back to its proper position.
4036   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4037                                     DAG.getConstant(0, DL, WideVT), BitShift);
4038 
4039   // Construct the ATOMIC_CMP_SWAPW node.
4040   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4041   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4042                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4043   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4044                                              VTList, Ops, NarrowVT, MMO);
4045   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4046                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4047 
4048   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4049   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4050   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4051   return SDValue();
4052 }
4053 
4054 MachineMemOperand::Flags
4055 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4056   // Because of how we convert atomic_load and atomic_store to normal loads and
4057   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4058   // since DAGCombine hasn't been updated to account for atomic, but non
4059   // volatile loads.  (See D57601)
4060   if (auto *SI = dyn_cast<StoreInst>(&I))
4061     if (SI->isAtomic())
4062       return MachineMemOperand::MOVolatile;
4063   if (auto *LI = dyn_cast<LoadInst>(&I))
4064     if (LI->isAtomic())
4065       return MachineMemOperand::MOVolatile;
4066   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4067     if (AI->isAtomic())
4068       return MachineMemOperand::MOVolatile;
4069   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4070     if (AI->isAtomic())
4071       return MachineMemOperand::MOVolatile;
4072   return MachineMemOperand::MONone;
4073 }
4074 
4075 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4076                                               SelectionDAG &DAG) const {
4077   MachineFunction &MF = DAG.getMachineFunction();
4078   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4079   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4080     report_fatal_error("Variable-sized stack allocations are not supported "
4081                        "in GHC calling convention");
4082   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4083                             SystemZ::R15D, Op.getValueType());
4084 }
4085 
4086 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4087                                                  SelectionDAG &DAG) const {
4088   MachineFunction &MF = DAG.getMachineFunction();
4089   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4090   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4091 
4092   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4093     report_fatal_error("Variable-sized stack allocations are not supported "
4094                        "in GHC calling convention");
4095 
4096   SDValue Chain = Op.getOperand(0);
4097   SDValue NewSP = Op.getOperand(1);
4098   SDValue Backchain;
4099   SDLoc DL(Op);
4100 
4101   if (StoreBackchain) {
4102     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4103     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4104                             MachinePointerInfo());
4105   }
4106 
4107   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4108 
4109   if (StoreBackchain)
4110     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4111                          MachinePointerInfo());
4112 
4113   return Chain;
4114 }
4115 
4116 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4117                                              SelectionDAG &DAG) const {
4118   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4119   if (!IsData)
4120     // Just preserve the chain.
4121     return Op.getOperand(0);
4122 
4123   SDLoc DL(Op);
4124   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4125   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4126   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4127   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4128                    Op.getOperand(1)};
4129   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4130                                  Node->getVTList(), Ops,
4131                                  Node->getMemoryVT(), Node->getMemOperand());
4132 }
4133 
4134 // Convert condition code in CCReg to an i32 value.
4135 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4136   SDLoc DL(CCReg);
4137   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4138   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4139                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4140 }
4141 
4142 SDValue
4143 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4144                                               SelectionDAG &DAG) const {
4145   unsigned Opcode, CCValid;
4146   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4147     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4148     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4149     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4150     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4151     return SDValue();
4152   }
4153 
4154   return SDValue();
4155 }
4156 
4157 SDValue
4158 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4159                                                SelectionDAG &DAG) const {
4160   unsigned Opcode, CCValid;
4161   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4162     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4163     if (Op->getNumValues() == 1)
4164       return getCCResult(DAG, SDValue(Node, 0));
4165     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4166     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4167                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4168   }
4169 
4170   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4171   switch (Id) {
4172   case Intrinsic::thread_pointer:
4173     return lowerThreadPointer(SDLoc(Op), DAG);
4174 
4175   case Intrinsic::s390_vpdi:
4176     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4177                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4178 
4179   case Intrinsic::s390_vperm:
4180     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4181                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4182 
4183   case Intrinsic::s390_vuphb:
4184   case Intrinsic::s390_vuphh:
4185   case Intrinsic::s390_vuphf:
4186     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4187                        Op.getOperand(1));
4188 
4189   case Intrinsic::s390_vuplhb:
4190   case Intrinsic::s390_vuplhh:
4191   case Intrinsic::s390_vuplhf:
4192     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4193                        Op.getOperand(1));
4194 
4195   case Intrinsic::s390_vuplb:
4196   case Intrinsic::s390_vuplhw:
4197   case Intrinsic::s390_vuplf:
4198     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4199                        Op.getOperand(1));
4200 
4201   case Intrinsic::s390_vupllb:
4202   case Intrinsic::s390_vupllh:
4203   case Intrinsic::s390_vupllf:
4204     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4205                        Op.getOperand(1));
4206 
4207   case Intrinsic::s390_vsumb:
4208   case Intrinsic::s390_vsumh:
4209   case Intrinsic::s390_vsumgh:
4210   case Intrinsic::s390_vsumgf:
4211   case Intrinsic::s390_vsumqf:
4212   case Intrinsic::s390_vsumqg:
4213     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4214                        Op.getOperand(1), Op.getOperand(2));
4215   }
4216 
4217   return SDValue();
4218 }
4219 
4220 namespace {
4221 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4222 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4223 // Operand is the constant third operand, otherwise it is the number of
4224 // bytes in each element of the result.
4225 struct Permute {
4226   unsigned Opcode;
4227   unsigned Operand;
4228   unsigned char Bytes[SystemZ::VectorBytes];
4229 };
4230 }
4231 
4232 static const Permute PermuteForms[] = {
4233   // VMRHG
4234   { SystemZISD::MERGE_HIGH, 8,
4235     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4236   // VMRHF
4237   { SystemZISD::MERGE_HIGH, 4,
4238     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4239   // VMRHH
4240   { SystemZISD::MERGE_HIGH, 2,
4241     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4242   // VMRHB
4243   { SystemZISD::MERGE_HIGH, 1,
4244     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4245   // VMRLG
4246   { SystemZISD::MERGE_LOW, 8,
4247     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4248   // VMRLF
4249   { SystemZISD::MERGE_LOW, 4,
4250     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4251   // VMRLH
4252   { SystemZISD::MERGE_LOW, 2,
4253     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4254   // VMRLB
4255   { SystemZISD::MERGE_LOW, 1,
4256     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4257   // VPKG
4258   { SystemZISD::PACK, 4,
4259     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4260   // VPKF
4261   { SystemZISD::PACK, 2,
4262     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4263   // VPKH
4264   { SystemZISD::PACK, 1,
4265     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4266   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4267   { SystemZISD::PERMUTE_DWORDS, 4,
4268     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4269   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4270   { SystemZISD::PERMUTE_DWORDS, 1,
4271     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4272 };
4273 
4274 // Called after matching a vector shuffle against a particular pattern.
4275 // Both the original shuffle and the pattern have two vector operands.
4276 // OpNos[0] is the operand of the original shuffle that should be used for
4277 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4278 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4279 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4280 // for operands 0 and 1 of the pattern.
4281 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4282   if (OpNos[0] < 0) {
4283     if (OpNos[1] < 0)
4284       return false;
4285     OpNo0 = OpNo1 = OpNos[1];
4286   } else if (OpNos[1] < 0) {
4287     OpNo0 = OpNo1 = OpNos[0];
4288   } else {
4289     OpNo0 = OpNos[0];
4290     OpNo1 = OpNos[1];
4291   }
4292   return true;
4293 }
4294 
4295 // Bytes is a VPERM-like permute vector, except that -1 is used for
4296 // undefined bytes.  Return true if the VPERM can be implemented using P.
4297 // When returning true set OpNo0 to the VPERM operand that should be
4298 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4299 //
4300 // For example, if swapping the VPERM operands allows P to match, OpNo0
4301 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4302 // operand, but rewriting it to use two duplicated operands allows it to
4303 // match P, then OpNo0 and OpNo1 will be the same.
4304 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4305                          unsigned &OpNo0, unsigned &OpNo1) {
4306   int OpNos[] = { -1, -1 };
4307   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4308     int Elt = Bytes[I];
4309     if (Elt >= 0) {
4310       // Make sure that the two permute vectors use the same suboperand
4311       // byte number.  Only the operand numbers (the high bits) are
4312       // allowed to differ.
4313       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4314         return false;
4315       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4316       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4317       // Make sure that the operand mappings are consistent with previous
4318       // elements.
4319       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4320         return false;
4321       OpNos[ModelOpNo] = RealOpNo;
4322     }
4323   }
4324   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4325 }
4326 
4327 // As above, but search for a matching permute.
4328 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4329                                    unsigned &OpNo0, unsigned &OpNo1) {
4330   for (auto &P : PermuteForms)
4331     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4332       return &P;
4333   return nullptr;
4334 }
4335 
4336 // Bytes is a VPERM-like permute vector, except that -1 is used for
4337 // undefined bytes.  This permute is an operand of an outer permute.
4338 // See whether redistributing the -1 bytes gives a shuffle that can be
4339 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4340 // that, when applied to the result of P, gives the original permute in Bytes.
4341 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4342                                const Permute &P,
4343                                SmallVectorImpl<int> &Transform) {
4344   unsigned To = 0;
4345   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4346     int Elt = Bytes[From];
4347     if (Elt < 0)
4348       // Byte number From of the result is undefined.
4349       Transform[From] = -1;
4350     else {
4351       while (P.Bytes[To] != Elt) {
4352         To += 1;
4353         if (To == SystemZ::VectorBytes)
4354           return false;
4355       }
4356       Transform[From] = To;
4357     }
4358   }
4359   return true;
4360 }
4361 
4362 // As above, but search for a matching permute.
4363 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4364                                          SmallVectorImpl<int> &Transform) {
4365   for (auto &P : PermuteForms)
4366     if (matchDoublePermute(Bytes, P, Transform))
4367       return &P;
4368   return nullptr;
4369 }
4370 
4371 // Convert the mask of the given shuffle op into a byte-level mask,
4372 // as if it had type vNi8.
4373 static bool getVPermMask(SDValue ShuffleOp,
4374                          SmallVectorImpl<int> &Bytes) {
4375   EVT VT = ShuffleOp.getValueType();
4376   unsigned NumElements = VT.getVectorNumElements();
4377   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4378 
4379   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4380     Bytes.resize(NumElements * BytesPerElement, -1);
4381     for (unsigned I = 0; I < NumElements; ++I) {
4382       int Index = VSN->getMaskElt(I);
4383       if (Index >= 0)
4384         for (unsigned J = 0; J < BytesPerElement; ++J)
4385           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4386     }
4387     return true;
4388   }
4389   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4390       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4391     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4392     Bytes.resize(NumElements * BytesPerElement, -1);
4393     for (unsigned I = 0; I < NumElements; ++I)
4394       for (unsigned J = 0; J < BytesPerElement; ++J)
4395         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4396     return true;
4397   }
4398   return false;
4399 }
4400 
4401 // Bytes is a VPERM-like permute vector, except that -1 is used for
4402 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4403 // the result come from a contiguous sequence of bytes from one input.
4404 // Set Base to the selector for the first byte if so.
4405 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4406                             unsigned BytesPerElement, int &Base) {
4407   Base = -1;
4408   for (unsigned I = 0; I < BytesPerElement; ++I) {
4409     if (Bytes[Start + I] >= 0) {
4410       unsigned Elem = Bytes[Start + I];
4411       if (Base < 0) {
4412         Base = Elem - I;
4413         // Make sure the bytes would come from one input operand.
4414         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4415           return false;
4416       } else if (unsigned(Base) != Elem - I)
4417         return false;
4418     }
4419   }
4420   return true;
4421 }
4422 
4423 // Bytes is a VPERM-like permute vector, except that -1 is used for
4424 // undefined bytes.  Return true if it can be performed using VSLDB.
4425 // When returning true, set StartIndex to the shift amount and OpNo0
4426 // and OpNo1 to the VPERM operands that should be used as the first
4427 // and second shift operand respectively.
4428 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4429                                unsigned &StartIndex, unsigned &OpNo0,
4430                                unsigned &OpNo1) {
4431   int OpNos[] = { -1, -1 };
4432   int Shift = -1;
4433   for (unsigned I = 0; I < 16; ++I) {
4434     int Index = Bytes[I];
4435     if (Index >= 0) {
4436       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4437       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4438       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4439       if (Shift < 0)
4440         Shift = ExpectedShift;
4441       else if (Shift != ExpectedShift)
4442         return false;
4443       // Make sure that the operand mappings are consistent with previous
4444       // elements.
4445       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4446         return false;
4447       OpNos[ModelOpNo] = RealOpNo;
4448     }
4449   }
4450   StartIndex = Shift;
4451   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4452 }
4453 
4454 // Create a node that performs P on operands Op0 and Op1, casting the
4455 // operands to the appropriate type.  The type of the result is determined by P.
4456 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4457                               const Permute &P, SDValue Op0, SDValue Op1) {
4458   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4459   // elements of a PACK are twice as wide as the outputs.
4460   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4461                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4462                       P.Operand);
4463   // Cast both operands to the appropriate type.
4464   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4465                               SystemZ::VectorBytes / InBytes);
4466   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4467   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4468   SDValue Op;
4469   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4470     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4471     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4472   } else if (P.Opcode == SystemZISD::PACK) {
4473     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4474                                  SystemZ::VectorBytes / P.Operand);
4475     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4476   } else {
4477     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4478   }
4479   return Op;
4480 }
4481 
4482 static bool isZeroVector(SDValue N) {
4483   if (N->getOpcode() == ISD::BITCAST)
4484     N = N->getOperand(0);
4485   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4486     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4487       return Op->getZExtValue() == 0;
4488   return ISD::isBuildVectorAllZeros(N.getNode());
4489 }
4490 
4491 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4492 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4493   for (unsigned I = 0; I < Num ; I++)
4494     if (isZeroVector(Ops[I]))
4495       return I;
4496   return UINT32_MAX;
4497 }
4498 
4499 // Bytes is a VPERM-like permute vector, except that -1 is used for
4500 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4501 // VSLDB or VPERM.
4502 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4503                                      SDValue *Ops,
4504                                      const SmallVectorImpl<int> &Bytes) {
4505   for (unsigned I = 0; I < 2; ++I)
4506     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4507 
4508   // First see whether VSLDB can be used.
4509   unsigned StartIndex, OpNo0, OpNo1;
4510   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4511     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4512                        Ops[OpNo1],
4513                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4514 
4515   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4516   // eliminate a zero vector by reusing any zero index in the permute vector.
4517   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4518   if (ZeroVecIdx != UINT32_MAX) {
4519     bool MaskFirst = true;
4520     int ZeroIdx = -1;
4521     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4522       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4523       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4524       if (OpNo == ZeroVecIdx && I == 0) {
4525         // If the first byte is zero, use mask as first operand.
4526         ZeroIdx = 0;
4527         break;
4528       }
4529       if (OpNo != ZeroVecIdx && Byte == 0) {
4530         // If mask contains a zero, use it by placing that vector first.
4531         ZeroIdx = I + SystemZ::VectorBytes;
4532         MaskFirst = false;
4533         break;
4534       }
4535     }
4536     if (ZeroIdx != -1) {
4537       SDValue IndexNodes[SystemZ::VectorBytes];
4538       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4539         if (Bytes[I] >= 0) {
4540           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4541           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4542           if (OpNo == ZeroVecIdx)
4543             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4544           else {
4545             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4546             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4547           }
4548         } else
4549           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4550       }
4551       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4552       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4553       if (MaskFirst)
4554         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4555                            Mask);
4556       else
4557         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4558                            Mask);
4559     }
4560   }
4561 
4562   SDValue IndexNodes[SystemZ::VectorBytes];
4563   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4564     if (Bytes[I] >= 0)
4565       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4566     else
4567       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4568   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4569   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4570                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4571 }
4572 
4573 namespace {
4574 // Describes a general N-operand vector shuffle.
4575 struct GeneralShuffle {
4576   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4577   void addUndef();
4578   bool add(SDValue, unsigned);
4579   SDValue getNode(SelectionDAG &, const SDLoc &);
4580   void tryPrepareForUnpack();
4581   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4582   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4583 
4584   // The operands of the shuffle.
4585   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4586 
4587   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4588   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4589   // Bytes[I] / SystemZ::VectorBytes.
4590   SmallVector<int, SystemZ::VectorBytes> Bytes;
4591 
4592   // The type of the shuffle result.
4593   EVT VT;
4594 
4595   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4596   unsigned UnpackFromEltSize;
4597 };
4598 }
4599 
4600 // Add an extra undefined element to the shuffle.
4601 void GeneralShuffle::addUndef() {
4602   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4603   for (unsigned I = 0; I < BytesPerElement; ++I)
4604     Bytes.push_back(-1);
4605 }
4606 
4607 // Add an extra element to the shuffle, taking it from element Elem of Op.
4608 // A null Op indicates a vector input whose value will be calculated later;
4609 // there is at most one such input per shuffle and it always has the same
4610 // type as the result. Aborts and returns false if the source vector elements
4611 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4612 // LLVM they become implicitly extended, but this is rare and not optimized.
4613 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4614   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4615 
4616   // The source vector can have wider elements than the result,
4617   // either through an explicit TRUNCATE or because of type legalization.
4618   // We want the least significant part.
4619   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4620   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4621 
4622   // Return false if the source elements are smaller than their destination
4623   // elements.
4624   if (FromBytesPerElement < BytesPerElement)
4625     return false;
4626 
4627   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4628                    (FromBytesPerElement - BytesPerElement));
4629 
4630   // Look through things like shuffles and bitcasts.
4631   while (Op.getNode()) {
4632     if (Op.getOpcode() == ISD::BITCAST)
4633       Op = Op.getOperand(0);
4634     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4635       // See whether the bytes we need come from a contiguous part of one
4636       // operand.
4637       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4638       if (!getVPermMask(Op, OpBytes))
4639         break;
4640       int NewByte;
4641       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4642         break;
4643       if (NewByte < 0) {
4644         addUndef();
4645         return true;
4646       }
4647       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4648       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4649     } else if (Op.isUndef()) {
4650       addUndef();
4651       return true;
4652     } else
4653       break;
4654   }
4655 
4656   // Make sure that the source of the extraction is in Ops.
4657   unsigned OpNo = 0;
4658   for (; OpNo < Ops.size(); ++OpNo)
4659     if (Ops[OpNo] == Op)
4660       break;
4661   if (OpNo == Ops.size())
4662     Ops.push_back(Op);
4663 
4664   // Add the element to Bytes.
4665   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4666   for (unsigned I = 0; I < BytesPerElement; ++I)
4667     Bytes.push_back(Base + I);
4668 
4669   return true;
4670 }
4671 
4672 // Return SDNodes for the completed shuffle.
4673 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4674   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4675 
4676   if (Ops.size() == 0)
4677     return DAG.getUNDEF(VT);
4678 
4679   // Use a single unpack if possible as the last operation.
4680   tryPrepareForUnpack();
4681 
4682   // Make sure that there are at least two shuffle operands.
4683   if (Ops.size() == 1)
4684     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4685 
4686   // Create a tree of shuffles, deferring root node until after the loop.
4687   // Try to redistribute the undefined elements of non-root nodes so that
4688   // the non-root shuffles match something like a pack or merge, then adjust
4689   // the parent node's permute vector to compensate for the new order.
4690   // Among other things, this copes with vectors like <2 x i16> that were
4691   // padded with undefined elements during type legalization.
4692   //
4693   // In the best case this redistribution will lead to the whole tree
4694   // using packs and merges.  It should rarely be a loss in other cases.
4695   unsigned Stride = 1;
4696   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4697     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4698       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4699 
4700       // Create a mask for just these two operands.
4701       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4702       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4703         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4704         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4705         if (OpNo == I)
4706           NewBytes[J] = Byte;
4707         else if (OpNo == I + Stride)
4708           NewBytes[J] = SystemZ::VectorBytes + Byte;
4709         else
4710           NewBytes[J] = -1;
4711       }
4712       // See if it would be better to reorganize NewMask to avoid using VPERM.
4713       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4714       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4715         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4716         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4717         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4718           if (NewBytes[J] >= 0) {
4719             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4720                    "Invalid double permute");
4721             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4722           } else
4723             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4724         }
4725       } else {
4726         // Just use NewBytes on the operands.
4727         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4728         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4729           if (NewBytes[J] >= 0)
4730             Bytes[J] = I * SystemZ::VectorBytes + J;
4731       }
4732     }
4733   }
4734 
4735   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4736   if (Stride > 1) {
4737     Ops[1] = Ops[Stride];
4738     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4739       if (Bytes[I] >= int(SystemZ::VectorBytes))
4740         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4741   }
4742 
4743   // Look for an instruction that can do the permute without resorting
4744   // to VPERM.
4745   unsigned OpNo0, OpNo1;
4746   SDValue Op;
4747   if (unpackWasPrepared() && Ops[1].isUndef())
4748     Op = Ops[0];
4749   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4750     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4751   else
4752     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4753 
4754   Op = insertUnpackIfPrepared(DAG, DL, Op);
4755 
4756   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4757 }
4758 
4759 #ifndef NDEBUG
4760 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4761   dbgs() << Msg.c_str() << " { ";
4762   for (unsigned i = 0; i < Bytes.size(); i++)
4763     dbgs() << Bytes[i] << " ";
4764   dbgs() << "}\n";
4765 }
4766 #endif
4767 
4768 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4769 // after all else by removing the zero vector and the effect of the unpack on
4770 // Bytes.
4771 void GeneralShuffle::tryPrepareForUnpack() {
4772   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4773   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4774     return;
4775 
4776   // Only do this if removing the zero vector reduces the depth, otherwise
4777   // the critical path will increase with the final unpack.
4778   if (Ops.size() > 2 &&
4779       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4780     return;
4781 
4782   // Find an unpack that would allow removing the zero vector from Ops.
4783   UnpackFromEltSize = 1;
4784   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4785     bool MatchUnpack = true;
4786     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4787     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4788       unsigned ToEltSize = UnpackFromEltSize * 2;
4789       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4790       if (!IsZextByte)
4791         SrcBytes.push_back(Bytes[Elt]);
4792       if (Bytes[Elt] != -1) {
4793         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4794         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4795           MatchUnpack = false;
4796           break;
4797         }
4798       }
4799     }
4800     if (MatchUnpack) {
4801       if (Ops.size() == 2) {
4802         // Don't use unpack if a single source operand needs rearrangement.
4803         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4804           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4805             UnpackFromEltSize = UINT_MAX;
4806             return;
4807           }
4808       }
4809       break;
4810     }
4811   }
4812   if (UnpackFromEltSize > 4)
4813     return;
4814 
4815   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4816              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4817              << ".\n";
4818              dumpBytes(Bytes, "Original Bytes vector:"););
4819 
4820   // Apply the unpack in reverse to the Bytes array.
4821   unsigned B = 0;
4822   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4823     Elt += UnpackFromEltSize;
4824     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4825       Bytes[B] = Bytes[Elt];
4826   }
4827   while (B < SystemZ::VectorBytes)
4828     Bytes[B++] = -1;
4829 
4830   // Remove the zero vector from Ops
4831   Ops.erase(&Ops[ZeroVecOpNo]);
4832   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4833     if (Bytes[I] >= 0) {
4834       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4835       if (OpNo > ZeroVecOpNo)
4836         Bytes[I] -= SystemZ::VectorBytes;
4837     }
4838 
4839   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4840              dbgs() << "\n";);
4841 }
4842 
4843 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4844                                                const SDLoc &DL,
4845                                                SDValue Op) {
4846   if (!unpackWasPrepared())
4847     return Op;
4848   unsigned InBits = UnpackFromEltSize * 8;
4849   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4850                                 SystemZ::VectorBits / InBits);
4851   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4852   unsigned OutBits = InBits * 2;
4853   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4854                                SystemZ::VectorBits / OutBits);
4855   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4856 }
4857 
4858 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4859 static bool isScalarToVector(SDValue Op) {
4860   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4861     if (!Op.getOperand(I).isUndef())
4862       return false;
4863   return true;
4864 }
4865 
4866 // Return a vector of type VT that contains Value in the first element.
4867 // The other elements don't matter.
4868 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4869                                    SDValue Value) {
4870   // If we have a constant, replicate it to all elements and let the
4871   // BUILD_VECTOR lowering take care of it.
4872   if (Value.getOpcode() == ISD::Constant ||
4873       Value.getOpcode() == ISD::ConstantFP) {
4874     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4875     return DAG.getBuildVector(VT, DL, Ops);
4876   }
4877   if (Value.isUndef())
4878     return DAG.getUNDEF(VT);
4879   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4880 }
4881 
4882 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4883 // element 1.  Used for cases in which replication is cheap.
4884 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4885                                  SDValue Op0, SDValue Op1) {
4886   if (Op0.isUndef()) {
4887     if (Op1.isUndef())
4888       return DAG.getUNDEF(VT);
4889     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4890   }
4891   if (Op1.isUndef())
4892     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4893   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4894                      buildScalarToVector(DAG, DL, VT, Op0),
4895                      buildScalarToVector(DAG, DL, VT, Op1));
4896 }
4897 
4898 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4899 // vector for them.
4900 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4901                           SDValue Op1) {
4902   if (Op0.isUndef() && Op1.isUndef())
4903     return DAG.getUNDEF(MVT::v2i64);
4904   // If one of the two inputs is undefined then replicate the other one,
4905   // in order to avoid using another register unnecessarily.
4906   if (Op0.isUndef())
4907     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4908   else if (Op1.isUndef())
4909     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4910   else {
4911     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4912     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4913   }
4914   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4915 }
4916 
4917 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4918 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4919 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4920 // would benefit from this representation and return it if so.
4921 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4922                                      BuildVectorSDNode *BVN) {
4923   EVT VT = BVN->getValueType(0);
4924   unsigned NumElements = VT.getVectorNumElements();
4925 
4926   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4927   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4928   // need a BUILD_VECTOR, add an additional placeholder operand for that
4929   // BUILD_VECTOR and store its operands in ResidueOps.
4930   GeneralShuffle GS(VT);
4931   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4932   bool FoundOne = false;
4933   for (unsigned I = 0; I < NumElements; ++I) {
4934     SDValue Op = BVN->getOperand(I);
4935     if (Op.getOpcode() == ISD::TRUNCATE)
4936       Op = Op.getOperand(0);
4937     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4938         Op.getOperand(1).getOpcode() == ISD::Constant) {
4939       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4940       if (!GS.add(Op.getOperand(0), Elem))
4941         return SDValue();
4942       FoundOne = true;
4943     } else if (Op.isUndef()) {
4944       GS.addUndef();
4945     } else {
4946       if (!GS.add(SDValue(), ResidueOps.size()))
4947         return SDValue();
4948       ResidueOps.push_back(BVN->getOperand(I));
4949     }
4950   }
4951 
4952   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4953   if (!FoundOne)
4954     return SDValue();
4955 
4956   // Create the BUILD_VECTOR for the remaining elements, if any.
4957   if (!ResidueOps.empty()) {
4958     while (ResidueOps.size() < NumElements)
4959       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4960     for (auto &Op : GS.Ops) {
4961       if (!Op.getNode()) {
4962         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4963         break;
4964       }
4965     }
4966   }
4967   return GS.getNode(DAG, SDLoc(BVN));
4968 }
4969 
4970 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4971   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4972     return true;
4973   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4974     return true;
4975   return false;
4976 }
4977 
4978 // Combine GPR scalar values Elems into a vector of type VT.
4979 SDValue
4980 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4981                                    SmallVectorImpl<SDValue> &Elems) const {
4982   // See whether there is a single replicated value.
4983   SDValue Single;
4984   unsigned int NumElements = Elems.size();
4985   unsigned int Count = 0;
4986   for (auto Elem : Elems) {
4987     if (!Elem.isUndef()) {
4988       if (!Single.getNode())
4989         Single = Elem;
4990       else if (Elem != Single) {
4991         Single = SDValue();
4992         break;
4993       }
4994       Count += 1;
4995     }
4996   }
4997   // There are three cases here:
4998   //
4999   // - if the only defined element is a loaded one, the best sequence
5000   //   is a replicating load.
5001   //
5002   // - otherwise, if the only defined element is an i64 value, we will
5003   //   end up with the same VLVGP sequence regardless of whether we short-cut
5004   //   for replication or fall through to the later code.
5005   //
5006   // - otherwise, if the only defined element is an i32 or smaller value,
5007   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5008   //   This is only a win if the single defined element is used more than once.
5009   //   In other cases we're better off using a single VLVGx.
5010   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5011     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5012 
5013   // If all elements are loads, use VLREP/VLEs (below).
5014   bool AllLoads = true;
5015   for (auto Elem : Elems)
5016     if (!isVectorElementLoad(Elem)) {
5017       AllLoads = false;
5018       break;
5019     }
5020 
5021   // The best way of building a v2i64 from two i64s is to use VLVGP.
5022   if (VT == MVT::v2i64 && !AllLoads)
5023     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5024 
5025   // Use a 64-bit merge high to combine two doubles.
5026   if (VT == MVT::v2f64 && !AllLoads)
5027     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5028 
5029   // Build v4f32 values directly from the FPRs:
5030   //
5031   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5032   //         V              V         VMRHF
5033   //      <ABxx>         <CDxx>
5034   //                V                 VMRHG
5035   //              <ABCD>
5036   if (VT == MVT::v4f32 && !AllLoads) {
5037     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5038     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5039     // Avoid unnecessary undefs by reusing the other operand.
5040     if (Op01.isUndef())
5041       Op01 = Op23;
5042     else if (Op23.isUndef())
5043       Op23 = Op01;
5044     // Merging identical replications is a no-op.
5045     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5046       return Op01;
5047     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5048     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5049     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5050                              DL, MVT::v2i64, Op01, Op23);
5051     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5052   }
5053 
5054   // Collect the constant terms.
5055   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5056   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5057 
5058   unsigned NumConstants = 0;
5059   for (unsigned I = 0; I < NumElements; ++I) {
5060     SDValue Elem = Elems[I];
5061     if (Elem.getOpcode() == ISD::Constant ||
5062         Elem.getOpcode() == ISD::ConstantFP) {
5063       NumConstants += 1;
5064       Constants[I] = Elem;
5065       Done[I] = true;
5066     }
5067   }
5068   // If there was at least one constant, fill in the other elements of
5069   // Constants with undefs to get a full vector constant and use that
5070   // as the starting point.
5071   SDValue Result;
5072   SDValue ReplicatedVal;
5073   if (NumConstants > 0) {
5074     for (unsigned I = 0; I < NumElements; ++I)
5075       if (!Constants[I].getNode())
5076         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5077     Result = DAG.getBuildVector(VT, DL, Constants);
5078   } else {
5079     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5080     // avoid a false dependency on any previous contents of the vector
5081     // register.
5082 
5083     // Use a VLREP if at least one element is a load. Make sure to replicate
5084     // the load with the most elements having its value.
5085     std::map<const SDNode*, unsigned> UseCounts;
5086     SDNode *LoadMaxUses = nullptr;
5087     for (unsigned I = 0; I < NumElements; ++I)
5088       if (isVectorElementLoad(Elems[I])) {
5089         SDNode *Ld = Elems[I].getNode();
5090         UseCounts[Ld]++;
5091         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5092           LoadMaxUses = Ld;
5093       }
5094     if (LoadMaxUses != nullptr) {
5095       ReplicatedVal = SDValue(LoadMaxUses, 0);
5096       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5097     } else {
5098       // Try to use VLVGP.
5099       unsigned I1 = NumElements / 2 - 1;
5100       unsigned I2 = NumElements - 1;
5101       bool Def1 = !Elems[I1].isUndef();
5102       bool Def2 = !Elems[I2].isUndef();
5103       if (Def1 || Def2) {
5104         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5105         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5106         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5107                              joinDwords(DAG, DL, Elem1, Elem2));
5108         Done[I1] = true;
5109         Done[I2] = true;
5110       } else
5111         Result = DAG.getUNDEF(VT);
5112     }
5113   }
5114 
5115   // Use VLVGx to insert the other elements.
5116   for (unsigned I = 0; I < NumElements; ++I)
5117     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5118       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5119                            DAG.getConstant(I, DL, MVT::i32));
5120   return Result;
5121 }
5122 
5123 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5124                                                  SelectionDAG &DAG) const {
5125   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5126   SDLoc DL(Op);
5127   EVT VT = Op.getValueType();
5128 
5129   if (BVN->isConstant()) {
5130     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5131       return Op;
5132 
5133     // Fall back to loading it from memory.
5134     return SDValue();
5135   }
5136 
5137   // See if we should use shuffles to construct the vector from other vectors.
5138   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5139     return Res;
5140 
5141   // Detect SCALAR_TO_VECTOR conversions.
5142   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5143     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5144 
5145   // Otherwise use buildVector to build the vector up from GPRs.
5146   unsigned NumElements = Op.getNumOperands();
5147   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5148   for (unsigned I = 0; I < NumElements; ++I)
5149     Ops[I] = Op.getOperand(I);
5150   return buildVector(DAG, DL, VT, Ops);
5151 }
5152 
5153 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5154                                                    SelectionDAG &DAG) const {
5155   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5156   SDLoc DL(Op);
5157   EVT VT = Op.getValueType();
5158   unsigned NumElements = VT.getVectorNumElements();
5159 
5160   if (VSN->isSplat()) {
5161     SDValue Op0 = Op.getOperand(0);
5162     unsigned Index = VSN->getSplatIndex();
5163     assert(Index < VT.getVectorNumElements() &&
5164            "Splat index should be defined and in first operand");
5165     // See whether the value we're splatting is directly available as a scalar.
5166     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5167         Op0.getOpcode() == ISD::BUILD_VECTOR)
5168       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5169     // Otherwise keep it as a vector-to-vector operation.
5170     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5171                        DAG.getTargetConstant(Index, DL, MVT::i32));
5172   }
5173 
5174   GeneralShuffle GS(VT);
5175   for (unsigned I = 0; I < NumElements; ++I) {
5176     int Elt = VSN->getMaskElt(I);
5177     if (Elt < 0)
5178       GS.addUndef();
5179     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5180                      unsigned(Elt) % NumElements))
5181       return SDValue();
5182   }
5183   return GS.getNode(DAG, SDLoc(VSN));
5184 }
5185 
5186 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5187                                                      SelectionDAG &DAG) const {
5188   SDLoc DL(Op);
5189   // Just insert the scalar into element 0 of an undefined vector.
5190   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5191                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5192                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5193 }
5194 
5195 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5196                                                       SelectionDAG &DAG) const {
5197   // Handle insertions of floating-point values.
5198   SDLoc DL(Op);
5199   SDValue Op0 = Op.getOperand(0);
5200   SDValue Op1 = Op.getOperand(1);
5201   SDValue Op2 = Op.getOperand(2);
5202   EVT VT = Op.getValueType();
5203 
5204   // Insertions into constant indices of a v2f64 can be done using VPDI.
5205   // However, if the inserted value is a bitcast or a constant then it's
5206   // better to use GPRs, as below.
5207   if (VT == MVT::v2f64 &&
5208       Op1.getOpcode() != ISD::BITCAST &&
5209       Op1.getOpcode() != ISD::ConstantFP &&
5210       Op2.getOpcode() == ISD::Constant) {
5211     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5212     unsigned Mask = VT.getVectorNumElements() - 1;
5213     if (Index <= Mask)
5214       return Op;
5215   }
5216 
5217   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5218   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5219   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5220   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5221                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5222                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5223   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5224 }
5225 
5226 SDValue
5227 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5228                                                SelectionDAG &DAG) const {
5229   // Handle extractions of floating-point values.
5230   SDLoc DL(Op);
5231   SDValue Op0 = Op.getOperand(0);
5232   SDValue Op1 = Op.getOperand(1);
5233   EVT VT = Op.getValueType();
5234   EVT VecVT = Op0.getValueType();
5235 
5236   // Extractions of constant indices can be done directly.
5237   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5238     uint64_t Index = CIndexN->getZExtValue();
5239     unsigned Mask = VecVT.getVectorNumElements() - 1;
5240     if (Index <= Mask)
5241       return Op;
5242   }
5243 
5244   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5245   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5246   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5247   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5248                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5249   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5250 }
5251 
5252 SDValue SystemZTargetLowering::
5253 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5254   SDValue PackedOp = Op.getOperand(0);
5255   EVT OutVT = Op.getValueType();
5256   EVT InVT = PackedOp.getValueType();
5257   unsigned ToBits = OutVT.getScalarSizeInBits();
5258   unsigned FromBits = InVT.getScalarSizeInBits();
5259   do {
5260     FromBits *= 2;
5261     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5262                                  SystemZ::VectorBits / FromBits);
5263     PackedOp =
5264       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5265   } while (FromBits != ToBits);
5266   return PackedOp;
5267 }
5268 
5269 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5270 SDValue SystemZTargetLowering::
5271 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5272   SDValue PackedOp = Op.getOperand(0);
5273   SDLoc DL(Op);
5274   EVT OutVT = Op.getValueType();
5275   EVT InVT = PackedOp.getValueType();
5276   unsigned InNumElts = InVT.getVectorNumElements();
5277   unsigned OutNumElts = OutVT.getVectorNumElements();
5278   unsigned NumInPerOut = InNumElts / OutNumElts;
5279 
5280   SDValue ZeroVec =
5281     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5282 
5283   SmallVector<int, 16> Mask(InNumElts);
5284   unsigned ZeroVecElt = InNumElts;
5285   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5286     unsigned MaskElt = PackedElt * NumInPerOut;
5287     unsigned End = MaskElt + NumInPerOut - 1;
5288     for (; MaskElt < End; MaskElt++)
5289       Mask[MaskElt] = ZeroVecElt++;
5290     Mask[MaskElt] = PackedElt;
5291   }
5292   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5293   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5294 }
5295 
5296 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5297                                           unsigned ByScalar) const {
5298   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5299   SDValue Op0 = Op.getOperand(0);
5300   SDValue Op1 = Op.getOperand(1);
5301   SDLoc DL(Op);
5302   EVT VT = Op.getValueType();
5303   unsigned ElemBitSize = VT.getScalarSizeInBits();
5304 
5305   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5306   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5307     APInt SplatBits, SplatUndef;
5308     unsigned SplatBitSize;
5309     bool HasAnyUndefs;
5310     // Check for constant splats.  Use ElemBitSize as the minimum element
5311     // width and reject splats that need wider elements.
5312     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5313                              ElemBitSize, true) &&
5314         SplatBitSize == ElemBitSize) {
5315       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5316                                       DL, MVT::i32);
5317       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5318     }
5319     // Check for variable splats.
5320     BitVector UndefElements;
5321     SDValue Splat = BVN->getSplatValue(&UndefElements);
5322     if (Splat) {
5323       // Since i32 is the smallest legal type, we either need a no-op
5324       // or a truncation.
5325       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5326       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5327     }
5328   }
5329 
5330   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5331   // and the shift amount is directly available in a GPR.
5332   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5333     if (VSN->isSplat()) {
5334       SDValue VSNOp0 = VSN->getOperand(0);
5335       unsigned Index = VSN->getSplatIndex();
5336       assert(Index < VT.getVectorNumElements() &&
5337              "Splat index should be defined and in first operand");
5338       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5339           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5340         // Since i32 is the smallest legal type, we either need a no-op
5341         // or a truncation.
5342         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5343                                     VSNOp0.getOperand(Index));
5344         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5345       }
5346     }
5347   }
5348 
5349   // Otherwise just treat the current form as legal.
5350   return Op;
5351 }
5352 
5353 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5354                                               SelectionDAG &DAG) const {
5355   switch (Op.getOpcode()) {
5356   case ISD::FRAMEADDR:
5357     return lowerFRAMEADDR(Op, DAG);
5358   case ISD::RETURNADDR:
5359     return lowerRETURNADDR(Op, DAG);
5360   case ISD::BR_CC:
5361     return lowerBR_CC(Op, DAG);
5362   case ISD::SELECT_CC:
5363     return lowerSELECT_CC(Op, DAG);
5364   case ISD::SETCC:
5365     return lowerSETCC(Op, DAG);
5366   case ISD::STRICT_FSETCC:
5367     return lowerSTRICT_FSETCC(Op, DAG, false);
5368   case ISD::STRICT_FSETCCS:
5369     return lowerSTRICT_FSETCC(Op, DAG, true);
5370   case ISD::GlobalAddress:
5371     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5372   case ISD::GlobalTLSAddress:
5373     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5374   case ISD::BlockAddress:
5375     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5376   case ISD::JumpTable:
5377     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5378   case ISD::ConstantPool:
5379     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5380   case ISD::BITCAST:
5381     return lowerBITCAST(Op, DAG);
5382   case ISD::VASTART:
5383     return lowerVASTART(Op, DAG);
5384   case ISD::VACOPY:
5385     return lowerVACOPY(Op, DAG);
5386   case ISD::DYNAMIC_STACKALLOC:
5387     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5388   case ISD::GET_DYNAMIC_AREA_OFFSET:
5389     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5390   case ISD::SMUL_LOHI:
5391     return lowerSMUL_LOHI(Op, DAG);
5392   case ISD::UMUL_LOHI:
5393     return lowerUMUL_LOHI(Op, DAG);
5394   case ISD::SDIVREM:
5395     return lowerSDIVREM(Op, DAG);
5396   case ISD::UDIVREM:
5397     return lowerUDIVREM(Op, DAG);
5398   case ISD::SADDO:
5399   case ISD::SSUBO:
5400   case ISD::UADDO:
5401   case ISD::USUBO:
5402     return lowerXALUO(Op, DAG);
5403   case ISD::ADDCARRY:
5404   case ISD::SUBCARRY:
5405     return lowerADDSUBCARRY(Op, DAG);
5406   case ISD::OR:
5407     return lowerOR(Op, DAG);
5408   case ISD::CTPOP:
5409     return lowerCTPOP(Op, DAG);
5410   case ISD::ATOMIC_FENCE:
5411     return lowerATOMIC_FENCE(Op, DAG);
5412   case ISD::ATOMIC_SWAP:
5413     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5414   case ISD::ATOMIC_STORE:
5415     return lowerATOMIC_STORE(Op, DAG);
5416   case ISD::ATOMIC_LOAD:
5417     return lowerATOMIC_LOAD(Op, DAG);
5418   case ISD::ATOMIC_LOAD_ADD:
5419     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5420   case ISD::ATOMIC_LOAD_SUB:
5421     return lowerATOMIC_LOAD_SUB(Op, DAG);
5422   case ISD::ATOMIC_LOAD_AND:
5423     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5424   case ISD::ATOMIC_LOAD_OR:
5425     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5426   case ISD::ATOMIC_LOAD_XOR:
5427     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5428   case ISD::ATOMIC_LOAD_NAND:
5429     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5430   case ISD::ATOMIC_LOAD_MIN:
5431     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5432   case ISD::ATOMIC_LOAD_MAX:
5433     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5434   case ISD::ATOMIC_LOAD_UMIN:
5435     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5436   case ISD::ATOMIC_LOAD_UMAX:
5437     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5438   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5439     return lowerATOMIC_CMP_SWAP(Op, DAG);
5440   case ISD::STACKSAVE:
5441     return lowerSTACKSAVE(Op, DAG);
5442   case ISD::STACKRESTORE:
5443     return lowerSTACKRESTORE(Op, DAG);
5444   case ISD::PREFETCH:
5445     return lowerPREFETCH(Op, DAG);
5446   case ISD::INTRINSIC_W_CHAIN:
5447     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5448   case ISD::INTRINSIC_WO_CHAIN:
5449     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5450   case ISD::BUILD_VECTOR:
5451     return lowerBUILD_VECTOR(Op, DAG);
5452   case ISD::VECTOR_SHUFFLE:
5453     return lowerVECTOR_SHUFFLE(Op, DAG);
5454   case ISD::SCALAR_TO_VECTOR:
5455     return lowerSCALAR_TO_VECTOR(Op, DAG);
5456   case ISD::INSERT_VECTOR_ELT:
5457     return lowerINSERT_VECTOR_ELT(Op, DAG);
5458   case ISD::EXTRACT_VECTOR_ELT:
5459     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5460   case ISD::SIGN_EXTEND_VECTOR_INREG:
5461     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5462   case ISD::ZERO_EXTEND_VECTOR_INREG:
5463     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5464   case ISD::SHL:
5465     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5466   case ISD::SRL:
5467     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5468   case ISD::SRA:
5469     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5470   default:
5471     llvm_unreachable("Unexpected node to lower");
5472   }
5473 }
5474 
5475 // Lower operations with invalid operand or result types (currently used
5476 // only for 128-bit integer types).
5477 
5478 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5479   SDLoc DL(In);
5480   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5481                            DAG.getIntPtrConstant(0, DL));
5482   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5483                            DAG.getIntPtrConstant(1, DL));
5484   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5485                                     MVT::Untyped, Hi, Lo);
5486   return SDValue(Pair, 0);
5487 }
5488 
5489 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5490   SDLoc DL(In);
5491   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5492                                           DL, MVT::i64, In);
5493   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5494                                           DL, MVT::i64, In);
5495   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5496 }
5497 
5498 void
5499 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5500                                              SmallVectorImpl<SDValue> &Results,
5501                                              SelectionDAG &DAG) const {
5502   switch (N->getOpcode()) {
5503   case ISD::ATOMIC_LOAD: {
5504     SDLoc DL(N);
5505     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5506     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5507     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5508     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5509                                           DL, Tys, Ops, MVT::i128, MMO);
5510     Results.push_back(lowerGR128ToI128(DAG, Res));
5511     Results.push_back(Res.getValue(1));
5512     break;
5513   }
5514   case ISD::ATOMIC_STORE: {
5515     SDLoc DL(N);
5516     SDVTList Tys = DAG.getVTList(MVT::Other);
5517     SDValue Ops[] = { N->getOperand(0),
5518                       lowerI128ToGR128(DAG, N->getOperand(2)),
5519                       N->getOperand(1) };
5520     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5521     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5522                                           DL, Tys, Ops, MVT::i128, MMO);
5523     // We have to enforce sequential consistency by performing a
5524     // serialization operation after the store.
5525     if (cast<AtomicSDNode>(N)->getOrdering() ==
5526         AtomicOrdering::SequentiallyConsistent)
5527       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5528                                        MVT::Other, Res), 0);
5529     Results.push_back(Res);
5530     break;
5531   }
5532   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5533     SDLoc DL(N);
5534     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5535     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5536                       lowerI128ToGR128(DAG, N->getOperand(2)),
5537                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5538     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5539     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5540                                           DL, Tys, Ops, MVT::i128, MMO);
5541     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5542                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5543     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5544     Results.push_back(lowerGR128ToI128(DAG, Res));
5545     Results.push_back(Success);
5546     Results.push_back(Res.getValue(2));
5547     break;
5548   }
5549   default:
5550     llvm_unreachable("Unexpected node to lower");
5551   }
5552 }
5553 
5554 void
5555 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5556                                           SmallVectorImpl<SDValue> &Results,
5557                                           SelectionDAG &DAG) const {
5558   return LowerOperationWrapper(N, Results, DAG);
5559 }
5560 
5561 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5562 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5563   switch ((SystemZISD::NodeType)Opcode) {
5564     case SystemZISD::FIRST_NUMBER: break;
5565     OPCODE(RET_FLAG);
5566     OPCODE(CALL);
5567     OPCODE(SIBCALL);
5568     OPCODE(TLS_GDCALL);
5569     OPCODE(TLS_LDCALL);
5570     OPCODE(PCREL_WRAPPER);
5571     OPCODE(PCREL_OFFSET);
5572     OPCODE(ICMP);
5573     OPCODE(FCMP);
5574     OPCODE(STRICT_FCMP);
5575     OPCODE(STRICT_FCMPS);
5576     OPCODE(TM);
5577     OPCODE(BR_CCMASK);
5578     OPCODE(SELECT_CCMASK);
5579     OPCODE(ADJDYNALLOC);
5580     OPCODE(PROBED_ALLOCA);
5581     OPCODE(POPCNT);
5582     OPCODE(SMUL_LOHI);
5583     OPCODE(UMUL_LOHI);
5584     OPCODE(SDIVREM);
5585     OPCODE(UDIVREM);
5586     OPCODE(SADDO);
5587     OPCODE(SSUBO);
5588     OPCODE(UADDO);
5589     OPCODE(USUBO);
5590     OPCODE(ADDCARRY);
5591     OPCODE(SUBCARRY);
5592     OPCODE(GET_CCMASK);
5593     OPCODE(MVC);
5594     OPCODE(MVC_LOOP);
5595     OPCODE(NC);
5596     OPCODE(NC_LOOP);
5597     OPCODE(OC);
5598     OPCODE(OC_LOOP);
5599     OPCODE(XC);
5600     OPCODE(XC_LOOP);
5601     OPCODE(CLC);
5602     OPCODE(CLC_LOOP);
5603     OPCODE(STPCPY);
5604     OPCODE(STRCMP);
5605     OPCODE(SEARCH_STRING);
5606     OPCODE(IPM);
5607     OPCODE(MEMBARRIER);
5608     OPCODE(TBEGIN);
5609     OPCODE(TBEGIN_NOFLOAT);
5610     OPCODE(TEND);
5611     OPCODE(BYTE_MASK);
5612     OPCODE(ROTATE_MASK);
5613     OPCODE(REPLICATE);
5614     OPCODE(JOIN_DWORDS);
5615     OPCODE(SPLAT);
5616     OPCODE(MERGE_HIGH);
5617     OPCODE(MERGE_LOW);
5618     OPCODE(SHL_DOUBLE);
5619     OPCODE(PERMUTE_DWORDS);
5620     OPCODE(PERMUTE);
5621     OPCODE(PACK);
5622     OPCODE(PACKS_CC);
5623     OPCODE(PACKLS_CC);
5624     OPCODE(UNPACK_HIGH);
5625     OPCODE(UNPACKL_HIGH);
5626     OPCODE(UNPACK_LOW);
5627     OPCODE(UNPACKL_LOW);
5628     OPCODE(VSHL_BY_SCALAR);
5629     OPCODE(VSRL_BY_SCALAR);
5630     OPCODE(VSRA_BY_SCALAR);
5631     OPCODE(VSUM);
5632     OPCODE(VICMPE);
5633     OPCODE(VICMPH);
5634     OPCODE(VICMPHL);
5635     OPCODE(VICMPES);
5636     OPCODE(VICMPHS);
5637     OPCODE(VICMPHLS);
5638     OPCODE(VFCMPE);
5639     OPCODE(STRICT_VFCMPE);
5640     OPCODE(STRICT_VFCMPES);
5641     OPCODE(VFCMPH);
5642     OPCODE(STRICT_VFCMPH);
5643     OPCODE(STRICT_VFCMPHS);
5644     OPCODE(VFCMPHE);
5645     OPCODE(STRICT_VFCMPHE);
5646     OPCODE(STRICT_VFCMPHES);
5647     OPCODE(VFCMPES);
5648     OPCODE(VFCMPHS);
5649     OPCODE(VFCMPHES);
5650     OPCODE(VFTCI);
5651     OPCODE(VEXTEND);
5652     OPCODE(STRICT_VEXTEND);
5653     OPCODE(VROUND);
5654     OPCODE(STRICT_VROUND);
5655     OPCODE(VTM);
5656     OPCODE(VFAE_CC);
5657     OPCODE(VFAEZ_CC);
5658     OPCODE(VFEE_CC);
5659     OPCODE(VFEEZ_CC);
5660     OPCODE(VFENE_CC);
5661     OPCODE(VFENEZ_CC);
5662     OPCODE(VISTR_CC);
5663     OPCODE(VSTRC_CC);
5664     OPCODE(VSTRCZ_CC);
5665     OPCODE(VSTRS_CC);
5666     OPCODE(VSTRSZ_CC);
5667     OPCODE(TDC);
5668     OPCODE(ATOMIC_SWAPW);
5669     OPCODE(ATOMIC_LOADW_ADD);
5670     OPCODE(ATOMIC_LOADW_SUB);
5671     OPCODE(ATOMIC_LOADW_AND);
5672     OPCODE(ATOMIC_LOADW_OR);
5673     OPCODE(ATOMIC_LOADW_XOR);
5674     OPCODE(ATOMIC_LOADW_NAND);
5675     OPCODE(ATOMIC_LOADW_MIN);
5676     OPCODE(ATOMIC_LOADW_MAX);
5677     OPCODE(ATOMIC_LOADW_UMIN);
5678     OPCODE(ATOMIC_LOADW_UMAX);
5679     OPCODE(ATOMIC_CMP_SWAPW);
5680     OPCODE(ATOMIC_CMP_SWAP);
5681     OPCODE(ATOMIC_LOAD_128);
5682     OPCODE(ATOMIC_STORE_128);
5683     OPCODE(ATOMIC_CMP_SWAP_128);
5684     OPCODE(LRV);
5685     OPCODE(STRV);
5686     OPCODE(VLER);
5687     OPCODE(VSTER);
5688     OPCODE(PREFETCH);
5689   }
5690   return nullptr;
5691 #undef OPCODE
5692 }
5693 
5694 // Return true if VT is a vector whose elements are a whole number of bytes
5695 // in width. Also check for presence of vector support.
5696 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5697   if (!Subtarget.hasVector())
5698     return false;
5699 
5700   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5701 }
5702 
5703 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5704 // producing a result of type ResVT.  Op is a possibly bitcast version
5705 // of the input vector and Index is the index (based on type VecVT) that
5706 // should be extracted.  Return the new extraction if a simplification
5707 // was possible or if Force is true.
5708 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5709                                               EVT VecVT, SDValue Op,
5710                                               unsigned Index,
5711                                               DAGCombinerInfo &DCI,
5712                                               bool Force) const {
5713   SelectionDAG &DAG = DCI.DAG;
5714 
5715   // The number of bytes being extracted.
5716   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5717 
5718   for (;;) {
5719     unsigned Opcode = Op.getOpcode();
5720     if (Opcode == ISD::BITCAST)
5721       // Look through bitcasts.
5722       Op = Op.getOperand(0);
5723     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5724              canTreatAsByteVector(Op.getValueType())) {
5725       // Get a VPERM-like permute mask and see whether the bytes covered
5726       // by the extracted element are a contiguous sequence from one
5727       // source operand.
5728       SmallVector<int, SystemZ::VectorBytes> Bytes;
5729       if (!getVPermMask(Op, Bytes))
5730         break;
5731       int First;
5732       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5733                            BytesPerElement, First))
5734         break;
5735       if (First < 0)
5736         return DAG.getUNDEF(ResVT);
5737       // Make sure the contiguous sequence starts at a multiple of the
5738       // original element size.
5739       unsigned Byte = unsigned(First) % Bytes.size();
5740       if (Byte % BytesPerElement != 0)
5741         break;
5742       // We can get the extracted value directly from an input.
5743       Index = Byte / BytesPerElement;
5744       Op = Op.getOperand(unsigned(First) / Bytes.size());
5745       Force = true;
5746     } else if (Opcode == ISD::BUILD_VECTOR &&
5747                canTreatAsByteVector(Op.getValueType())) {
5748       // We can only optimize this case if the BUILD_VECTOR elements are
5749       // at least as wide as the extracted value.
5750       EVT OpVT = Op.getValueType();
5751       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5752       if (OpBytesPerElement < BytesPerElement)
5753         break;
5754       // Make sure that the least-significant bit of the extracted value
5755       // is the least significant bit of an input.
5756       unsigned End = (Index + 1) * BytesPerElement;
5757       if (End % OpBytesPerElement != 0)
5758         break;
5759       // We're extracting the low part of one operand of the BUILD_VECTOR.
5760       Op = Op.getOperand(End / OpBytesPerElement - 1);
5761       if (!Op.getValueType().isInteger()) {
5762         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5763         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5764         DCI.AddToWorklist(Op.getNode());
5765       }
5766       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5767       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5768       if (VT != ResVT) {
5769         DCI.AddToWorklist(Op.getNode());
5770         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5771       }
5772       return Op;
5773     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5774                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5775                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5776                canTreatAsByteVector(Op.getValueType()) &&
5777                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5778       // Make sure that only the unextended bits are significant.
5779       EVT ExtVT = Op.getValueType();
5780       EVT OpVT = Op.getOperand(0).getValueType();
5781       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5782       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5783       unsigned Byte = Index * BytesPerElement;
5784       unsigned SubByte = Byte % ExtBytesPerElement;
5785       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5786       if (SubByte < MinSubByte ||
5787           SubByte + BytesPerElement > ExtBytesPerElement)
5788         break;
5789       // Get the byte offset of the unextended element
5790       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5791       // ...then add the byte offset relative to that element.
5792       Byte += SubByte - MinSubByte;
5793       if (Byte % BytesPerElement != 0)
5794         break;
5795       Op = Op.getOperand(0);
5796       Index = Byte / BytesPerElement;
5797       Force = true;
5798     } else
5799       break;
5800   }
5801   if (Force) {
5802     if (Op.getValueType() != VecVT) {
5803       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5804       DCI.AddToWorklist(Op.getNode());
5805     }
5806     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5807                        DAG.getConstant(Index, DL, MVT::i32));
5808   }
5809   return SDValue();
5810 }
5811 
5812 // Optimize vector operations in scalar value Op on the basis that Op
5813 // is truncated to TruncVT.
5814 SDValue SystemZTargetLowering::combineTruncateExtract(
5815     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5816   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5817   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5818   // of type TruncVT.
5819   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5820       TruncVT.getSizeInBits() % 8 == 0) {
5821     SDValue Vec = Op.getOperand(0);
5822     EVT VecVT = Vec.getValueType();
5823     if (canTreatAsByteVector(VecVT)) {
5824       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5825         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5826         unsigned TruncBytes = TruncVT.getStoreSize();
5827         if (BytesPerElement % TruncBytes == 0) {
5828           // Calculate the value of Y' in the above description.  We are
5829           // splitting the original elements into Scale equal-sized pieces
5830           // and for truncation purposes want the last (least-significant)
5831           // of these pieces for IndexN.  This is easiest to do by calculating
5832           // the start index of the following element and then subtracting 1.
5833           unsigned Scale = BytesPerElement / TruncBytes;
5834           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5835 
5836           // Defer the creation of the bitcast from X to combineExtract,
5837           // which might be able to optimize the extraction.
5838           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5839                                    VecVT.getStoreSize() / TruncBytes);
5840           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5841           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5842         }
5843       }
5844     }
5845   }
5846   return SDValue();
5847 }
5848 
5849 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5850     SDNode *N, DAGCombinerInfo &DCI) const {
5851   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5852   SelectionDAG &DAG = DCI.DAG;
5853   SDValue N0 = N->getOperand(0);
5854   EVT VT = N->getValueType(0);
5855   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5856     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5857     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5858     if (TrueOp && FalseOp) {
5859       SDLoc DL(N0);
5860       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5861                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5862                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5863       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5864       // If N0 has multiple uses, change other uses as well.
5865       if (!N0.hasOneUse()) {
5866         SDValue TruncSelect =
5867           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5868         DCI.CombineTo(N0.getNode(), TruncSelect);
5869       }
5870       return NewSelect;
5871     }
5872   }
5873   return SDValue();
5874 }
5875 
5876 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5877     SDNode *N, DAGCombinerInfo &DCI) const {
5878   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5879   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5880   // into (select_cc LHS, RHS, -1, 0, COND)
5881   SelectionDAG &DAG = DCI.DAG;
5882   SDValue N0 = N->getOperand(0);
5883   EVT VT = N->getValueType(0);
5884   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5885   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5886     N0 = N0.getOperand(0);
5887   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5888     SDLoc DL(N0);
5889     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5890                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5891                       N0.getOperand(2) };
5892     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5893   }
5894   return SDValue();
5895 }
5896 
5897 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5898     SDNode *N, DAGCombinerInfo &DCI) const {
5899   // Convert (sext (ashr (shl X, C1), C2)) to
5900   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5901   // cheap as narrower ones.
5902   SelectionDAG &DAG = DCI.DAG;
5903   SDValue N0 = N->getOperand(0);
5904   EVT VT = N->getValueType(0);
5905   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5906     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5907     SDValue Inner = N0.getOperand(0);
5908     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5909       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5910         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5911         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5912         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5913         EVT ShiftVT = N0.getOperand(1).getValueType();
5914         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5915                                   Inner.getOperand(0));
5916         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5917                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5918                                                   ShiftVT));
5919         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5920                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5921       }
5922     }
5923   }
5924   return SDValue();
5925 }
5926 
5927 SDValue SystemZTargetLowering::combineMERGE(
5928     SDNode *N, DAGCombinerInfo &DCI) const {
5929   SelectionDAG &DAG = DCI.DAG;
5930   unsigned Opcode = N->getOpcode();
5931   SDValue Op0 = N->getOperand(0);
5932   SDValue Op1 = N->getOperand(1);
5933   if (Op0.getOpcode() == ISD::BITCAST)
5934     Op0 = Op0.getOperand(0);
5935   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5936     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5937     // for v4f32.
5938     if (Op1 == N->getOperand(0))
5939       return Op1;
5940     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5941     EVT VT = Op1.getValueType();
5942     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5943     if (ElemBytes <= 4) {
5944       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5945                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5946       EVT InVT = VT.changeVectorElementTypeToInteger();
5947       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5948                                    SystemZ::VectorBytes / ElemBytes / 2);
5949       if (VT != InVT) {
5950         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5951         DCI.AddToWorklist(Op1.getNode());
5952       }
5953       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5954       DCI.AddToWorklist(Op.getNode());
5955       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5956     }
5957   }
5958   return SDValue();
5959 }
5960 
5961 SDValue SystemZTargetLowering::combineLOAD(
5962     SDNode *N, DAGCombinerInfo &DCI) const {
5963   SelectionDAG &DAG = DCI.DAG;
5964   EVT LdVT = N->getValueType(0);
5965   if (LdVT.isVector() || LdVT.isInteger())
5966     return SDValue();
5967   // Transform a scalar load that is REPLICATEd as well as having other
5968   // use(s) to the form where the other use(s) use the first element of the
5969   // REPLICATE instead of the load. Otherwise instruction selection will not
5970   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5971   // point loads.
5972 
5973   SDValue Replicate;
5974   SmallVector<SDNode*, 8> OtherUses;
5975   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5976        UI != UE; ++UI) {
5977     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5978       if (Replicate)
5979         return SDValue(); // Should never happen
5980       Replicate = SDValue(*UI, 0);
5981     }
5982     else if (UI.getUse().getResNo() == 0)
5983       OtherUses.push_back(*UI);
5984   }
5985   if (!Replicate || OtherUses.empty())
5986     return SDValue();
5987 
5988   SDLoc DL(N);
5989   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5990                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5991   // Update uses of the loaded Value while preserving old chains.
5992   for (SDNode *U : OtherUses) {
5993     SmallVector<SDValue, 8> Ops;
5994     for (SDValue Op : U->ops())
5995       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5996     DAG.UpdateNodeOperands(U, Ops);
5997   }
5998   return SDValue(N, 0);
5999 }
6000 
6001 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6002   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6003     return true;
6004   if (Subtarget.hasVectorEnhancements2())
6005     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6006       return true;
6007   return false;
6008 }
6009 
6010 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6011   if (!VT.isVector() || !VT.isSimple() ||
6012       VT.getSizeInBits() != 128 ||
6013       VT.getScalarSizeInBits() % 8 != 0)
6014     return false;
6015 
6016   unsigned NumElts = VT.getVectorNumElements();
6017   for (unsigned i = 0; i < NumElts; ++i) {
6018     if (M[i] < 0) continue; // ignore UNDEF indices
6019     if ((unsigned) M[i] != NumElts - 1 - i)
6020       return false;
6021   }
6022 
6023   return true;
6024 }
6025 
6026 SDValue SystemZTargetLowering::combineSTORE(
6027     SDNode *N, DAGCombinerInfo &DCI) const {
6028   SelectionDAG &DAG = DCI.DAG;
6029   auto *SN = cast<StoreSDNode>(N);
6030   auto &Op1 = N->getOperand(1);
6031   EVT MemVT = SN->getMemoryVT();
6032   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6033   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6034   // If X has wider elements then convert it to:
6035   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6036   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6037     if (SDValue Value =
6038             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6039       DCI.AddToWorklist(Value.getNode());
6040 
6041       // Rewrite the store with the new form of stored value.
6042       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6043                                SN->getBasePtr(), SN->getMemoryVT(),
6044                                SN->getMemOperand());
6045     }
6046   }
6047   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6048   if (!SN->isTruncatingStore() &&
6049       Op1.getOpcode() == ISD::BSWAP &&
6050       Op1.getNode()->hasOneUse() &&
6051       canLoadStoreByteSwapped(Op1.getValueType())) {
6052 
6053       SDValue BSwapOp = Op1.getOperand(0);
6054 
6055       if (BSwapOp.getValueType() == MVT::i16)
6056         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6057 
6058       SDValue Ops[] = {
6059         N->getOperand(0), BSwapOp, N->getOperand(2)
6060       };
6061 
6062       return
6063         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6064                                 Ops, MemVT, SN->getMemOperand());
6065     }
6066   // Combine STORE (element-swap) into VSTER
6067   if (!SN->isTruncatingStore() &&
6068       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6069       Op1.getNode()->hasOneUse() &&
6070       Subtarget.hasVectorEnhancements2()) {
6071     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6072     ArrayRef<int> ShuffleMask = SVN->getMask();
6073     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6074       SDValue Ops[] = {
6075         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6076       };
6077 
6078       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6079                                      DAG.getVTList(MVT::Other),
6080                                      Ops, MemVT, SN->getMemOperand());
6081     }
6082   }
6083 
6084   return SDValue();
6085 }
6086 
6087 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6088     SDNode *N, DAGCombinerInfo &DCI) const {
6089   SelectionDAG &DAG = DCI.DAG;
6090   // Combine element-swap (LOAD) into VLER
6091   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6092       N->getOperand(0).hasOneUse() &&
6093       Subtarget.hasVectorEnhancements2()) {
6094     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6095     ArrayRef<int> ShuffleMask = SVN->getMask();
6096     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6097       SDValue Load = N->getOperand(0);
6098       LoadSDNode *LD = cast<LoadSDNode>(Load);
6099 
6100       // Create the element-swapping load.
6101       SDValue Ops[] = {
6102         LD->getChain(),    // Chain
6103         LD->getBasePtr()   // Ptr
6104       };
6105       SDValue ESLoad =
6106         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6107                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6108                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6109 
6110       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6111       // by the load dead.
6112       DCI.CombineTo(N, ESLoad);
6113 
6114       // Next, combine the load away, we give it a bogus result value but a real
6115       // chain result.  The result value is dead because the shuffle is dead.
6116       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6117 
6118       // Return N so it doesn't get rechecked!
6119       return SDValue(N, 0);
6120     }
6121   }
6122 
6123   return SDValue();
6124 }
6125 
6126 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6127     SDNode *N, DAGCombinerInfo &DCI) const {
6128   SelectionDAG &DAG = DCI.DAG;
6129 
6130   if (!Subtarget.hasVector())
6131     return SDValue();
6132 
6133   // Look through bitcasts that retain the number of vector elements.
6134   SDValue Op = N->getOperand(0);
6135   if (Op.getOpcode() == ISD::BITCAST &&
6136       Op.getValueType().isVector() &&
6137       Op.getOperand(0).getValueType().isVector() &&
6138       Op.getValueType().getVectorNumElements() ==
6139       Op.getOperand(0).getValueType().getVectorNumElements())
6140     Op = Op.getOperand(0);
6141 
6142   // Pull BSWAP out of a vector extraction.
6143   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6144     EVT VecVT = Op.getValueType();
6145     EVT EltVT = VecVT.getVectorElementType();
6146     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6147                      Op.getOperand(0), N->getOperand(1));
6148     DCI.AddToWorklist(Op.getNode());
6149     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6150     if (EltVT != N->getValueType(0)) {
6151       DCI.AddToWorklist(Op.getNode());
6152       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6153     }
6154     return Op;
6155   }
6156 
6157   // Try to simplify a vector extraction.
6158   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6159     SDValue Op0 = N->getOperand(0);
6160     EVT VecVT = Op0.getValueType();
6161     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6162                           IndexN->getZExtValue(), DCI, false);
6163   }
6164   return SDValue();
6165 }
6166 
6167 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6168     SDNode *N, DAGCombinerInfo &DCI) const {
6169   SelectionDAG &DAG = DCI.DAG;
6170   // (join_dwords X, X) == (replicate X)
6171   if (N->getOperand(0) == N->getOperand(1))
6172     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6173                        N->getOperand(0));
6174   return SDValue();
6175 }
6176 
6177 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6178   SDValue Chain1 = N1->getOperand(0);
6179   SDValue Chain2 = N2->getOperand(0);
6180 
6181   // Trivial case: both nodes take the same chain.
6182   if (Chain1 == Chain2)
6183     return Chain1;
6184 
6185   // FIXME - we could handle more complex cases via TokenFactor,
6186   // assuming we can verify that this would not create a cycle.
6187   return SDValue();
6188 }
6189 
6190 SDValue SystemZTargetLowering::combineFP_ROUND(
6191     SDNode *N, DAGCombinerInfo &DCI) const {
6192 
6193   if (!Subtarget.hasVector())
6194     return SDValue();
6195 
6196   // (fpround (extract_vector_elt X 0))
6197   // (fpround (extract_vector_elt X 1)) ->
6198   // (extract_vector_elt (VROUND X) 0)
6199   // (extract_vector_elt (VROUND X) 2)
6200   //
6201   // This is a special case since the target doesn't really support v2f32s.
6202   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6203   SelectionDAG &DAG = DCI.DAG;
6204   SDValue Op0 = N->getOperand(OpNo);
6205   if (N->getValueType(0) == MVT::f32 &&
6206       Op0.hasOneUse() &&
6207       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6208       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6209       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6210       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6211     SDValue Vec = Op0.getOperand(0);
6212     for (auto *U : Vec->uses()) {
6213       if (U != Op0.getNode() &&
6214           U->hasOneUse() &&
6215           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6216           U->getOperand(0) == Vec &&
6217           U->getOperand(1).getOpcode() == ISD::Constant &&
6218           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6219         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6220         if (OtherRound.getOpcode() == N->getOpcode() &&
6221             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6222             OtherRound.getValueType() == MVT::f32) {
6223           SDValue VRound, Chain;
6224           if (N->isStrictFPOpcode()) {
6225             Chain = MergeInputChains(N, OtherRound.getNode());
6226             if (!Chain)
6227               continue;
6228             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6229                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6230             Chain = VRound.getValue(1);
6231           } else
6232             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6233                                  MVT::v4f32, Vec);
6234           DCI.AddToWorklist(VRound.getNode());
6235           SDValue Extract1 =
6236             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6237                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6238           DCI.AddToWorklist(Extract1.getNode());
6239           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6240           if (Chain)
6241             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6242           SDValue Extract0 =
6243             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6244                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6245           if (Chain)
6246             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6247                                N->getVTList(), Extract0, Chain);
6248           return Extract0;
6249         }
6250       }
6251     }
6252   }
6253   return SDValue();
6254 }
6255 
6256 SDValue SystemZTargetLowering::combineFP_EXTEND(
6257     SDNode *N, DAGCombinerInfo &DCI) const {
6258 
6259   if (!Subtarget.hasVector())
6260     return SDValue();
6261 
6262   // (fpextend (extract_vector_elt X 0))
6263   // (fpextend (extract_vector_elt X 2)) ->
6264   // (extract_vector_elt (VEXTEND X) 0)
6265   // (extract_vector_elt (VEXTEND X) 1)
6266   //
6267   // This is a special case since the target doesn't really support v2f32s.
6268   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6269   SelectionDAG &DAG = DCI.DAG;
6270   SDValue Op0 = N->getOperand(OpNo);
6271   if (N->getValueType(0) == MVT::f64 &&
6272       Op0.hasOneUse() &&
6273       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6274       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6275       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6276       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6277     SDValue Vec = Op0.getOperand(0);
6278     for (auto *U : Vec->uses()) {
6279       if (U != Op0.getNode() &&
6280           U->hasOneUse() &&
6281           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6282           U->getOperand(0) == Vec &&
6283           U->getOperand(1).getOpcode() == ISD::Constant &&
6284           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6285         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6286         if (OtherExtend.getOpcode() == N->getOpcode() &&
6287             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6288             OtherExtend.getValueType() == MVT::f64) {
6289           SDValue VExtend, Chain;
6290           if (N->isStrictFPOpcode()) {
6291             Chain = MergeInputChains(N, OtherExtend.getNode());
6292             if (!Chain)
6293               continue;
6294             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6295                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6296             Chain = VExtend.getValue(1);
6297           } else
6298             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6299                                   MVT::v2f64, Vec);
6300           DCI.AddToWorklist(VExtend.getNode());
6301           SDValue Extract1 =
6302             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6303                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6304           DCI.AddToWorklist(Extract1.getNode());
6305           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6306           if (Chain)
6307             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6308           SDValue Extract0 =
6309             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6310                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6311           if (Chain)
6312             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6313                                N->getVTList(), Extract0, Chain);
6314           return Extract0;
6315         }
6316       }
6317     }
6318   }
6319   return SDValue();
6320 }
6321 
6322 SDValue SystemZTargetLowering::combineINT_TO_FP(
6323     SDNode *N, DAGCombinerInfo &DCI) const {
6324   if (DCI.Level != BeforeLegalizeTypes)
6325     return SDValue();
6326   unsigned Opcode = N->getOpcode();
6327   EVT OutVT = N->getValueType(0);
6328   SelectionDAG &DAG = DCI.DAG;
6329   SDValue Op = N->getOperand(0);
6330   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6331   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6332 
6333   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6334   // v2f64 = uint_to_fp v2i16
6335   // =>
6336   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6337   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6338     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6339                                  OutVT.getVectorNumElements());
6340     unsigned ExtOpcode =
6341       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6342     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6343     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6344   }
6345   return SDValue();
6346 }
6347 
6348 SDValue SystemZTargetLowering::combineBSWAP(
6349     SDNode *N, DAGCombinerInfo &DCI) const {
6350   SelectionDAG &DAG = DCI.DAG;
6351   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6352   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6353       N->getOperand(0).hasOneUse() &&
6354       canLoadStoreByteSwapped(N->getValueType(0))) {
6355       SDValue Load = N->getOperand(0);
6356       LoadSDNode *LD = cast<LoadSDNode>(Load);
6357 
6358       // Create the byte-swapping load.
6359       SDValue Ops[] = {
6360         LD->getChain(),    // Chain
6361         LD->getBasePtr()   // Ptr
6362       };
6363       EVT LoadVT = N->getValueType(0);
6364       if (LoadVT == MVT::i16)
6365         LoadVT = MVT::i32;
6366       SDValue BSLoad =
6367         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6368                                 DAG.getVTList(LoadVT, MVT::Other),
6369                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6370 
6371       // If this is an i16 load, insert the truncate.
6372       SDValue ResVal = BSLoad;
6373       if (N->getValueType(0) == MVT::i16)
6374         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6375 
6376       // First, combine the bswap away.  This makes the value produced by the
6377       // load dead.
6378       DCI.CombineTo(N, ResVal);
6379 
6380       // Next, combine the load away, we give it a bogus result value but a real
6381       // chain result.  The result value is dead because the bswap is dead.
6382       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6383 
6384       // Return N so it doesn't get rechecked!
6385       return SDValue(N, 0);
6386     }
6387 
6388   // Look through bitcasts that retain the number of vector elements.
6389   SDValue Op = N->getOperand(0);
6390   if (Op.getOpcode() == ISD::BITCAST &&
6391       Op.getValueType().isVector() &&
6392       Op.getOperand(0).getValueType().isVector() &&
6393       Op.getValueType().getVectorNumElements() ==
6394       Op.getOperand(0).getValueType().getVectorNumElements())
6395     Op = Op.getOperand(0);
6396 
6397   // Push BSWAP into a vector insertion if at least one side then simplifies.
6398   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6399     SDValue Vec = Op.getOperand(0);
6400     SDValue Elt = Op.getOperand(1);
6401     SDValue Idx = Op.getOperand(2);
6402 
6403     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6404         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6405         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6406         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6407         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6408          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6409       EVT VecVT = N->getValueType(0);
6410       EVT EltVT = N->getValueType(0).getVectorElementType();
6411       if (VecVT != Vec.getValueType()) {
6412         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6413         DCI.AddToWorklist(Vec.getNode());
6414       }
6415       if (EltVT != Elt.getValueType()) {
6416         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6417         DCI.AddToWorklist(Elt.getNode());
6418       }
6419       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6420       DCI.AddToWorklist(Vec.getNode());
6421       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6422       DCI.AddToWorklist(Elt.getNode());
6423       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6424                          Vec, Elt, Idx);
6425     }
6426   }
6427 
6428   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6429   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6430   if (SV && Op.hasOneUse()) {
6431     SDValue Op0 = Op.getOperand(0);
6432     SDValue Op1 = Op.getOperand(1);
6433 
6434     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6435         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6436         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6437         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6438       EVT VecVT = N->getValueType(0);
6439       if (VecVT != Op0.getValueType()) {
6440         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6441         DCI.AddToWorklist(Op0.getNode());
6442       }
6443       if (VecVT != Op1.getValueType()) {
6444         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6445         DCI.AddToWorklist(Op1.getNode());
6446       }
6447       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6448       DCI.AddToWorklist(Op0.getNode());
6449       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6450       DCI.AddToWorklist(Op1.getNode());
6451       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6452     }
6453   }
6454 
6455   return SDValue();
6456 }
6457 
6458 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6459   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6460   // set by the CCReg instruction using the CCValid / CCMask masks,
6461   // If the CCReg instruction is itself a ICMP testing the condition
6462   // code set by some other instruction, see whether we can directly
6463   // use that condition code.
6464 
6465   // Verify that we have an ICMP against some constant.
6466   if (CCValid != SystemZ::CCMASK_ICMP)
6467     return false;
6468   auto *ICmp = CCReg.getNode();
6469   if (ICmp->getOpcode() != SystemZISD::ICMP)
6470     return false;
6471   auto *CompareLHS = ICmp->getOperand(0).getNode();
6472   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6473   if (!CompareRHS)
6474     return false;
6475 
6476   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6477   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6478     // Verify that we have an appropriate mask for a EQ or NE comparison.
6479     bool Invert = false;
6480     if (CCMask == SystemZ::CCMASK_CMP_NE)
6481       Invert = !Invert;
6482     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6483       return false;
6484 
6485     // Verify that the ICMP compares against one of select values.
6486     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6487     if (!TrueVal)
6488       return false;
6489     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6490     if (!FalseVal)
6491       return false;
6492     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6493       Invert = !Invert;
6494     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6495       return false;
6496 
6497     // Compute the effective CC mask for the new branch or select.
6498     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6499     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6500     if (!NewCCValid || !NewCCMask)
6501       return false;
6502     CCValid = NewCCValid->getZExtValue();
6503     CCMask = NewCCMask->getZExtValue();
6504     if (Invert)
6505       CCMask ^= CCValid;
6506 
6507     // Return the updated CCReg link.
6508     CCReg = CompareLHS->getOperand(4);
6509     return true;
6510   }
6511 
6512   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6513   if (CompareLHS->getOpcode() == ISD::SRA) {
6514     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6515     if (!SRACount || SRACount->getZExtValue() != 30)
6516       return false;
6517     auto *SHL = CompareLHS->getOperand(0).getNode();
6518     if (SHL->getOpcode() != ISD::SHL)
6519       return false;
6520     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6521     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6522       return false;
6523     auto *IPM = SHL->getOperand(0).getNode();
6524     if (IPM->getOpcode() != SystemZISD::IPM)
6525       return false;
6526 
6527     // Avoid introducing CC spills (because SRA would clobber CC).
6528     if (!CompareLHS->hasOneUse())
6529       return false;
6530     // Verify that the ICMP compares against zero.
6531     if (CompareRHS->getZExtValue() != 0)
6532       return false;
6533 
6534     // Compute the effective CC mask for the new branch or select.
6535     CCMask = SystemZ::reverseCCMask(CCMask);
6536 
6537     // Return the updated CCReg link.
6538     CCReg = IPM->getOperand(0);
6539     return true;
6540   }
6541 
6542   return false;
6543 }
6544 
6545 SDValue SystemZTargetLowering::combineBR_CCMASK(
6546     SDNode *N, DAGCombinerInfo &DCI) const {
6547   SelectionDAG &DAG = DCI.DAG;
6548 
6549   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6550   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6551   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6552   if (!CCValid || !CCMask)
6553     return SDValue();
6554 
6555   int CCValidVal = CCValid->getZExtValue();
6556   int CCMaskVal = CCMask->getZExtValue();
6557   SDValue Chain = N->getOperand(0);
6558   SDValue CCReg = N->getOperand(4);
6559 
6560   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6561     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6562                        Chain,
6563                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6564                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6565                        N->getOperand(3), CCReg);
6566   return SDValue();
6567 }
6568 
6569 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6570     SDNode *N, DAGCombinerInfo &DCI) const {
6571   SelectionDAG &DAG = DCI.DAG;
6572 
6573   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6574   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6575   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6576   if (!CCValid || !CCMask)
6577     return SDValue();
6578 
6579   int CCValidVal = CCValid->getZExtValue();
6580   int CCMaskVal = CCMask->getZExtValue();
6581   SDValue CCReg = N->getOperand(4);
6582 
6583   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6584     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6585                        N->getOperand(0), N->getOperand(1),
6586                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6587                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6588                        CCReg);
6589   return SDValue();
6590 }
6591 
6592 
6593 SDValue SystemZTargetLowering::combineGET_CCMASK(
6594     SDNode *N, DAGCombinerInfo &DCI) const {
6595 
6596   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6597   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6598   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6599   if (!CCValid || !CCMask)
6600     return SDValue();
6601   int CCValidVal = CCValid->getZExtValue();
6602   int CCMaskVal = CCMask->getZExtValue();
6603 
6604   SDValue Select = N->getOperand(0);
6605   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6606     return SDValue();
6607 
6608   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6609   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6610   if (!SelectCCValid || !SelectCCMask)
6611     return SDValue();
6612   int SelectCCValidVal = SelectCCValid->getZExtValue();
6613   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6614 
6615   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6616   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6617   if (!TrueVal || !FalseVal)
6618     return SDValue();
6619   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6620     ;
6621   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6622     SelectCCMaskVal ^= SelectCCValidVal;
6623   else
6624     return SDValue();
6625 
6626   if (SelectCCValidVal & ~CCValidVal)
6627     return SDValue();
6628   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6629     return SDValue();
6630 
6631   return Select->getOperand(4);
6632 }
6633 
6634 SDValue SystemZTargetLowering::combineIntDIVREM(
6635     SDNode *N, DAGCombinerInfo &DCI) const {
6636   SelectionDAG &DAG = DCI.DAG;
6637   EVT VT = N->getValueType(0);
6638   // In the case where the divisor is a vector of constants a cheaper
6639   // sequence of instructions can replace the divide. BuildSDIV is called to
6640   // do this during DAG combining, but it only succeeds when it can build a
6641   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6642   // since it is not Legal but Custom it can only happen before
6643   // legalization. Therefore we must scalarize this early before Combine
6644   // 1. For widened vectors, this is already the result of type legalization.
6645   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6646       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6647     return DAG.UnrollVectorOp(N);
6648   return SDValue();
6649 }
6650 
6651 SDValue SystemZTargetLowering::combineINTRINSIC(
6652     SDNode *N, DAGCombinerInfo &DCI) const {
6653   SelectionDAG &DAG = DCI.DAG;
6654 
6655   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6656   switch (Id) {
6657   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6658   // or larger is simply a vector load.
6659   case Intrinsic::s390_vll:
6660   case Intrinsic::s390_vlrl:
6661     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6662       if (C->getZExtValue() >= 15)
6663         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6664                            N->getOperand(3), MachinePointerInfo());
6665     break;
6666   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6667   case Intrinsic::s390_vstl:
6668   case Intrinsic::s390_vstrl:
6669     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6670       if (C->getZExtValue() >= 15)
6671         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6672                             N->getOperand(4), MachinePointerInfo());
6673     break;
6674   }
6675 
6676   return SDValue();
6677 }
6678 
6679 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6680   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6681     return N->getOperand(0);
6682   return N;
6683 }
6684 
6685 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6686                                                  DAGCombinerInfo &DCI) const {
6687   switch(N->getOpcode()) {
6688   default: break;
6689   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6690   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6691   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6692   case SystemZISD::MERGE_HIGH:
6693   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6694   case ISD::LOAD:               return combineLOAD(N, DCI);
6695   case ISD::STORE:              return combineSTORE(N, DCI);
6696   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6697   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6698   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6699   case ISD::STRICT_FP_ROUND:
6700   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6701   case ISD::STRICT_FP_EXTEND:
6702   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6703   case ISD::SINT_TO_FP:
6704   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6705   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6706   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6707   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6708   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6709   case ISD::SDIV:
6710   case ISD::UDIV:
6711   case ISD::SREM:
6712   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6713   case ISD::INTRINSIC_W_CHAIN:
6714   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6715   }
6716 
6717   return SDValue();
6718 }
6719 
6720 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6721 // are for Op.
6722 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6723                                     unsigned OpNo) {
6724   EVT VT = Op.getValueType();
6725   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6726   APInt SrcDemE;
6727   unsigned Opcode = Op.getOpcode();
6728   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6729     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6730     switch (Id) {
6731     case Intrinsic::s390_vpksh:   // PACKS
6732     case Intrinsic::s390_vpksf:
6733     case Intrinsic::s390_vpksg:
6734     case Intrinsic::s390_vpkshs:  // PACKS_CC
6735     case Intrinsic::s390_vpksfs:
6736     case Intrinsic::s390_vpksgs:
6737     case Intrinsic::s390_vpklsh:  // PACKLS
6738     case Intrinsic::s390_vpklsf:
6739     case Intrinsic::s390_vpklsg:
6740     case Intrinsic::s390_vpklshs: // PACKLS_CC
6741     case Intrinsic::s390_vpklsfs:
6742     case Intrinsic::s390_vpklsgs:
6743       // VECTOR PACK truncates the elements of two source vectors into one.
6744       SrcDemE = DemandedElts;
6745       if (OpNo == 2)
6746         SrcDemE.lshrInPlace(NumElts / 2);
6747       SrcDemE = SrcDemE.trunc(NumElts / 2);
6748       break;
6749       // VECTOR UNPACK extends half the elements of the source vector.
6750     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6751     case Intrinsic::s390_vuphh:
6752     case Intrinsic::s390_vuphf:
6753     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6754     case Intrinsic::s390_vuplhh:
6755     case Intrinsic::s390_vuplhf:
6756       SrcDemE = APInt(NumElts * 2, 0);
6757       SrcDemE.insertBits(DemandedElts, 0);
6758       break;
6759     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6760     case Intrinsic::s390_vuplhw:
6761     case Intrinsic::s390_vuplf:
6762     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6763     case Intrinsic::s390_vupllh:
6764     case Intrinsic::s390_vupllf:
6765       SrcDemE = APInt(NumElts * 2, 0);
6766       SrcDemE.insertBits(DemandedElts, NumElts);
6767       break;
6768     case Intrinsic::s390_vpdi: {
6769       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6770       SrcDemE = APInt(NumElts, 0);
6771       if (!DemandedElts[OpNo - 1])
6772         break;
6773       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6774       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6775       // Demand input element 0 or 1, given by the mask bit value.
6776       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6777       break;
6778     }
6779     case Intrinsic::s390_vsldb: {
6780       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6781       assert(VT == MVT::v16i8 && "Unexpected type.");
6782       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6783       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6784       unsigned NumSrc0Els = 16 - FirstIdx;
6785       SrcDemE = APInt(NumElts, 0);
6786       if (OpNo == 1) {
6787         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6788         SrcDemE.insertBits(DemEls, FirstIdx);
6789       } else {
6790         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6791         SrcDemE.insertBits(DemEls, 0);
6792       }
6793       break;
6794     }
6795     case Intrinsic::s390_vperm:
6796       SrcDemE = APInt(NumElts, 1);
6797       break;
6798     default:
6799       llvm_unreachable("Unhandled intrinsic.");
6800       break;
6801     }
6802   } else {
6803     switch (Opcode) {
6804     case SystemZISD::JOIN_DWORDS:
6805       // Scalar operand.
6806       SrcDemE = APInt(1, 1);
6807       break;
6808     case SystemZISD::SELECT_CCMASK:
6809       SrcDemE = DemandedElts;
6810       break;
6811     default:
6812       llvm_unreachable("Unhandled opcode.");
6813       break;
6814     }
6815   }
6816   return SrcDemE;
6817 }
6818 
6819 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6820                                   const APInt &DemandedElts,
6821                                   const SelectionDAG &DAG, unsigned Depth,
6822                                   unsigned OpNo) {
6823   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6824   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6825   KnownBits LHSKnown =
6826       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6827   KnownBits RHSKnown =
6828       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6829   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6830 }
6831 
6832 void
6833 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6834                                                      KnownBits &Known,
6835                                                      const APInt &DemandedElts,
6836                                                      const SelectionDAG &DAG,
6837                                                      unsigned Depth) const {
6838   Known.resetAll();
6839 
6840   // Intrinsic CC result is returned in the two low bits.
6841   unsigned tmp0, tmp1; // not used
6842   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6843     Known.Zero.setBitsFrom(2);
6844     return;
6845   }
6846   EVT VT = Op.getValueType();
6847   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6848     return;
6849   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6850           "KnownBits does not match VT in bitwidth");
6851   assert ((!VT.isVector() ||
6852            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6853           "DemandedElts does not match VT number of elements");
6854   unsigned BitWidth = Known.getBitWidth();
6855   unsigned Opcode = Op.getOpcode();
6856   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6857     bool IsLogical = false;
6858     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6859     switch (Id) {
6860     case Intrinsic::s390_vpksh:   // PACKS
6861     case Intrinsic::s390_vpksf:
6862     case Intrinsic::s390_vpksg:
6863     case Intrinsic::s390_vpkshs:  // PACKS_CC
6864     case Intrinsic::s390_vpksfs:
6865     case Intrinsic::s390_vpksgs:
6866     case Intrinsic::s390_vpklsh:  // PACKLS
6867     case Intrinsic::s390_vpklsf:
6868     case Intrinsic::s390_vpklsg:
6869     case Intrinsic::s390_vpklshs: // PACKLS_CC
6870     case Intrinsic::s390_vpklsfs:
6871     case Intrinsic::s390_vpklsgs:
6872     case Intrinsic::s390_vpdi:
6873     case Intrinsic::s390_vsldb:
6874     case Intrinsic::s390_vperm:
6875       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6876       break;
6877     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6878     case Intrinsic::s390_vuplhh:
6879     case Intrinsic::s390_vuplhf:
6880     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6881     case Intrinsic::s390_vupllh:
6882     case Intrinsic::s390_vupllf:
6883       IsLogical = true;
6884       LLVM_FALLTHROUGH;
6885     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6886     case Intrinsic::s390_vuphh:
6887     case Intrinsic::s390_vuphf:
6888     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6889     case Intrinsic::s390_vuplhw:
6890     case Intrinsic::s390_vuplf: {
6891       SDValue SrcOp = Op.getOperand(1);
6892       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6893       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6894       if (IsLogical) {
6895         Known = Known.zext(BitWidth);
6896       } else
6897         Known = Known.sext(BitWidth);
6898       break;
6899     }
6900     default:
6901       break;
6902     }
6903   } else {
6904     switch (Opcode) {
6905     case SystemZISD::JOIN_DWORDS:
6906     case SystemZISD::SELECT_CCMASK:
6907       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6908       break;
6909     case SystemZISD::REPLICATE: {
6910       SDValue SrcOp = Op.getOperand(0);
6911       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6912       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6913         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6914       break;
6915     }
6916     default:
6917       break;
6918     }
6919   }
6920 
6921   // Known has the width of the source operand(s). Adjust if needed to match
6922   // the passed bitwidth.
6923   if (Known.getBitWidth() != BitWidth)
6924     Known = Known.anyextOrTrunc(BitWidth);
6925 }
6926 
6927 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6928                                         const SelectionDAG &DAG, unsigned Depth,
6929                                         unsigned OpNo) {
6930   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6931   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6932   if (LHS == 1) return 1; // Early out.
6933   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6934   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6935   if (RHS == 1) return 1; // Early out.
6936   unsigned Common = std::min(LHS, RHS);
6937   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6938   EVT VT = Op.getValueType();
6939   unsigned VTBits = VT.getScalarSizeInBits();
6940   if (SrcBitWidth > VTBits) { // PACK
6941     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6942     if (Common > SrcExtraBits)
6943       return (Common - SrcExtraBits);
6944     return 1;
6945   }
6946   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6947   return Common;
6948 }
6949 
6950 unsigned
6951 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6952     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6953     unsigned Depth) const {
6954   if (Op.getResNo() != 0)
6955     return 1;
6956   unsigned Opcode = Op.getOpcode();
6957   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6958     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6959     switch (Id) {
6960     case Intrinsic::s390_vpksh:   // PACKS
6961     case Intrinsic::s390_vpksf:
6962     case Intrinsic::s390_vpksg:
6963     case Intrinsic::s390_vpkshs:  // PACKS_CC
6964     case Intrinsic::s390_vpksfs:
6965     case Intrinsic::s390_vpksgs:
6966     case Intrinsic::s390_vpklsh:  // PACKLS
6967     case Intrinsic::s390_vpklsf:
6968     case Intrinsic::s390_vpklsg:
6969     case Intrinsic::s390_vpklshs: // PACKLS_CC
6970     case Intrinsic::s390_vpklsfs:
6971     case Intrinsic::s390_vpklsgs:
6972     case Intrinsic::s390_vpdi:
6973     case Intrinsic::s390_vsldb:
6974     case Intrinsic::s390_vperm:
6975       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6976     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6977     case Intrinsic::s390_vuphh:
6978     case Intrinsic::s390_vuphf:
6979     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6980     case Intrinsic::s390_vuplhw:
6981     case Intrinsic::s390_vuplf: {
6982       SDValue PackedOp = Op.getOperand(1);
6983       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6984       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6985       EVT VT = Op.getValueType();
6986       unsigned VTBits = VT.getScalarSizeInBits();
6987       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6988       return Tmp;
6989     }
6990     default:
6991       break;
6992     }
6993   } else {
6994     switch (Opcode) {
6995     case SystemZISD::SELECT_CCMASK:
6996       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6997     default:
6998       break;
6999     }
7000   }
7001 
7002   return 1;
7003 }
7004 
7005 unsigned
7006 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7007   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7008   unsigned StackAlign = TFI->getStackAlignment();
7009   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7010          "Unexpected stack alignment");
7011   // The default stack probe size is 4096 if the function has no
7012   // stack-probe-size attribute.
7013   unsigned StackProbeSize = 4096;
7014   const Function &Fn = MF.getFunction();
7015   if (Fn.hasFnAttribute("stack-probe-size"))
7016     Fn.getFnAttribute("stack-probe-size")
7017         .getValueAsString()
7018         .getAsInteger(0, StackProbeSize);
7019   // Round down to the stack alignment.
7020   StackProbeSize &= ~(StackAlign - 1);
7021   return StackProbeSize ? StackProbeSize : StackAlign;
7022 }
7023 
7024 //===----------------------------------------------------------------------===//
7025 // Custom insertion
7026 //===----------------------------------------------------------------------===//
7027 
7028 // Force base value Base into a register before MI.  Return the register.
7029 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7030                          const SystemZInstrInfo *TII) {
7031   if (Base.isReg())
7032     return Base.getReg();
7033 
7034   MachineBasicBlock *MBB = MI.getParent();
7035   MachineFunction &MF = *MBB->getParent();
7036   MachineRegisterInfo &MRI = MF.getRegInfo();
7037 
7038   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7039   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7040       .add(Base)
7041       .addImm(0)
7042       .addReg(0);
7043   return Reg;
7044 }
7045 
7046 // The CC operand of MI might be missing a kill marker because there
7047 // were multiple uses of CC, and ISel didn't know which to mark.
7048 // Figure out whether MI should have had a kill marker.
7049 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7050   // Scan forward through BB for a use/def of CC.
7051   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7052   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7053     const MachineInstr& mi = *miI;
7054     if (mi.readsRegister(SystemZ::CC))
7055       return false;
7056     if (mi.definesRegister(SystemZ::CC))
7057       break; // Should have kill-flag - update below.
7058   }
7059 
7060   // If we hit the end of the block, check whether CC is live into a
7061   // successor.
7062   if (miI == MBB->end()) {
7063     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7064       if ((*SI)->isLiveIn(SystemZ::CC))
7065         return false;
7066   }
7067 
7068   return true;
7069 }
7070 
7071 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7072 // together with other Select pseudo-opcodes into a single basic-block with
7073 // a conditional jump around it.
7074 static bool isSelectPseudo(MachineInstr &MI) {
7075   switch (MI.getOpcode()) {
7076   case SystemZ::Select32:
7077   case SystemZ::Select64:
7078   case SystemZ::SelectF32:
7079   case SystemZ::SelectF64:
7080   case SystemZ::SelectF128:
7081   case SystemZ::SelectVR32:
7082   case SystemZ::SelectVR64:
7083   case SystemZ::SelectVR128:
7084     return true;
7085 
7086   default:
7087     return false;
7088   }
7089 }
7090 
7091 // Helper function, which inserts PHI functions into SinkMBB:
7092 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7093 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7094 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7095                                  MachineBasicBlock *TrueMBB,
7096                                  MachineBasicBlock *FalseMBB,
7097                                  MachineBasicBlock *SinkMBB) {
7098   MachineFunction *MF = TrueMBB->getParent();
7099   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7100 
7101   MachineInstr *FirstMI = Selects.front();
7102   unsigned CCValid = FirstMI->getOperand(3).getImm();
7103   unsigned CCMask = FirstMI->getOperand(4).getImm();
7104 
7105   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7106 
7107   // As we are creating the PHIs, we have to be careful if there is more than
7108   // one.  Later Selects may reference the results of earlier Selects, but later
7109   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7110   // That also means that PHI construction must work forward from earlier to
7111   // later, and that the code must maintain a mapping from earlier PHI's
7112   // destination registers, and the registers that went into the PHI.
7113   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7114 
7115   for (auto MI : Selects) {
7116     Register DestReg = MI->getOperand(0).getReg();
7117     Register TrueReg = MI->getOperand(1).getReg();
7118     Register FalseReg = MI->getOperand(2).getReg();
7119 
7120     // If this Select we are generating is the opposite condition from
7121     // the jump we generated, then we have to swap the operands for the
7122     // PHI that is going to be generated.
7123     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7124       std::swap(TrueReg, FalseReg);
7125 
7126     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7127       TrueReg = RegRewriteTable[TrueReg].first;
7128 
7129     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7130       FalseReg = RegRewriteTable[FalseReg].second;
7131 
7132     DebugLoc DL = MI->getDebugLoc();
7133     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7134       .addReg(TrueReg).addMBB(TrueMBB)
7135       .addReg(FalseReg).addMBB(FalseMBB);
7136 
7137     // Add this PHI to the rewrite table.
7138     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7139   }
7140 
7141   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7142 }
7143 
7144 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7145 MachineBasicBlock *
7146 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7147                                   MachineBasicBlock *MBB) const {
7148   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7149   const SystemZInstrInfo *TII =
7150       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7151 
7152   unsigned CCValid = MI.getOperand(3).getImm();
7153   unsigned CCMask = MI.getOperand(4).getImm();
7154 
7155   // If we have a sequence of Select* pseudo instructions using the
7156   // same condition code value, we want to expand all of them into
7157   // a single pair of basic blocks using the same condition.
7158   SmallVector<MachineInstr*, 8> Selects;
7159   SmallVector<MachineInstr*, 8> DbgValues;
7160   Selects.push_back(&MI);
7161   unsigned Count = 0;
7162   for (MachineBasicBlock::iterator NextMIIt =
7163          std::next(MachineBasicBlock::iterator(MI));
7164        NextMIIt != MBB->end(); ++NextMIIt) {
7165     if (isSelectPseudo(*NextMIIt)) {
7166       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7167              "Bad CCValid operands since CC was not redefined.");
7168       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7169           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7170         Selects.push_back(&*NextMIIt);
7171         continue;
7172       }
7173       break;
7174     }
7175     if (NextMIIt->definesRegister(SystemZ::CC) ||
7176         NextMIIt->usesCustomInsertionHook())
7177       break;
7178     bool User = false;
7179     for (auto SelMI : Selects)
7180       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7181         User = true;
7182         break;
7183       }
7184     if (NextMIIt->isDebugInstr()) {
7185       if (User) {
7186         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7187         DbgValues.push_back(&*NextMIIt);
7188       }
7189     }
7190     else if (User || ++Count > 20)
7191       break;
7192   }
7193 
7194   MachineInstr *LastMI = Selects.back();
7195   bool CCKilled =
7196       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7197   MachineBasicBlock *StartMBB = MBB;
7198   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7199   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7200 
7201   // Unless CC was killed in the last Select instruction, mark it as
7202   // live-in to both FalseMBB and JoinMBB.
7203   if (!CCKilled) {
7204     FalseMBB->addLiveIn(SystemZ::CC);
7205     JoinMBB->addLiveIn(SystemZ::CC);
7206   }
7207 
7208   //  StartMBB:
7209   //   BRC CCMask, JoinMBB
7210   //   # fallthrough to FalseMBB
7211   MBB = StartMBB;
7212   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7213     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7214   MBB->addSuccessor(JoinMBB);
7215   MBB->addSuccessor(FalseMBB);
7216 
7217   //  FalseMBB:
7218   //   # fallthrough to JoinMBB
7219   MBB = FalseMBB;
7220   MBB->addSuccessor(JoinMBB);
7221 
7222   //  JoinMBB:
7223   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7224   //  ...
7225   MBB = JoinMBB;
7226   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7227   for (auto SelMI : Selects)
7228     SelMI->eraseFromParent();
7229 
7230   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7231   for (auto DbgMI : DbgValues)
7232     MBB->splice(InsertPos, StartMBB, DbgMI);
7233 
7234   return JoinMBB;
7235 }
7236 
7237 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7238 // StoreOpcode is the store to use and Invert says whether the store should
7239 // happen when the condition is false rather than true.  If a STORE ON
7240 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7241 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7242                                                         MachineBasicBlock *MBB,
7243                                                         unsigned StoreOpcode,
7244                                                         unsigned STOCOpcode,
7245                                                         bool Invert) const {
7246   const SystemZInstrInfo *TII =
7247       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7248 
7249   Register SrcReg = MI.getOperand(0).getReg();
7250   MachineOperand Base = MI.getOperand(1);
7251   int64_t Disp = MI.getOperand(2).getImm();
7252   Register IndexReg = MI.getOperand(3).getReg();
7253   unsigned CCValid = MI.getOperand(4).getImm();
7254   unsigned CCMask = MI.getOperand(5).getImm();
7255   DebugLoc DL = MI.getDebugLoc();
7256 
7257   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7258 
7259   // ISel pattern matching also adds a load memory operand of the same
7260   // address, so take special care to find the storing memory operand.
7261   MachineMemOperand *MMO = nullptr;
7262   for (auto *I : MI.memoperands())
7263     if (I->isStore()) {
7264       MMO = I;
7265       break;
7266     }
7267 
7268   // Use STOCOpcode if possible.  We could use different store patterns in
7269   // order to avoid matching the index register, but the performance trade-offs
7270   // might be more complicated in that case.
7271   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7272     if (Invert)
7273       CCMask ^= CCValid;
7274 
7275     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7276       .addReg(SrcReg)
7277       .add(Base)
7278       .addImm(Disp)
7279       .addImm(CCValid)
7280       .addImm(CCMask)
7281       .addMemOperand(MMO);
7282 
7283     MI.eraseFromParent();
7284     return MBB;
7285   }
7286 
7287   // Get the condition needed to branch around the store.
7288   if (!Invert)
7289     CCMask ^= CCValid;
7290 
7291   MachineBasicBlock *StartMBB = MBB;
7292   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7293   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7294 
7295   // Unless CC was killed in the CondStore instruction, mark it as
7296   // live-in to both FalseMBB and JoinMBB.
7297   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7298     FalseMBB->addLiveIn(SystemZ::CC);
7299     JoinMBB->addLiveIn(SystemZ::CC);
7300   }
7301 
7302   //  StartMBB:
7303   //   BRC CCMask, JoinMBB
7304   //   # fallthrough to FalseMBB
7305   MBB = StartMBB;
7306   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7307     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7308   MBB->addSuccessor(JoinMBB);
7309   MBB->addSuccessor(FalseMBB);
7310 
7311   //  FalseMBB:
7312   //   store %SrcReg, %Disp(%Index,%Base)
7313   //   # fallthrough to JoinMBB
7314   MBB = FalseMBB;
7315   BuildMI(MBB, DL, TII->get(StoreOpcode))
7316       .addReg(SrcReg)
7317       .add(Base)
7318       .addImm(Disp)
7319       .addReg(IndexReg)
7320       .addMemOperand(MMO);
7321   MBB->addSuccessor(JoinMBB);
7322 
7323   MI.eraseFromParent();
7324   return JoinMBB;
7325 }
7326 
7327 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7328 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7329 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7330 // BitSize is the width of the field in bits, or 0 if this is a partword
7331 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7332 // is one of the operands.  Invert says whether the field should be
7333 // inverted after performing BinOpcode (e.g. for NAND).
7334 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7335     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7336     unsigned BitSize, bool Invert) const {
7337   MachineFunction &MF = *MBB->getParent();
7338   const SystemZInstrInfo *TII =
7339       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7340   MachineRegisterInfo &MRI = MF.getRegInfo();
7341   bool IsSubWord = (BitSize < 32);
7342 
7343   // Extract the operands.  Base can be a register or a frame index.
7344   // Src2 can be a register or immediate.
7345   Register Dest = MI.getOperand(0).getReg();
7346   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7347   int64_t Disp = MI.getOperand(2).getImm();
7348   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7349   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7350   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7351   DebugLoc DL = MI.getDebugLoc();
7352   if (IsSubWord)
7353     BitSize = MI.getOperand(6).getImm();
7354 
7355   // Subword operations use 32-bit registers.
7356   const TargetRegisterClass *RC = (BitSize <= 32 ?
7357                                    &SystemZ::GR32BitRegClass :
7358                                    &SystemZ::GR64BitRegClass);
7359   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7360   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7361 
7362   // Get the right opcodes for the displacement.
7363   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7364   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7365   assert(LOpcode && CSOpcode && "Displacement out of range");
7366 
7367   // Create virtual registers for temporary results.
7368   Register OrigVal       = MRI.createVirtualRegister(RC);
7369   Register OldVal        = MRI.createVirtualRegister(RC);
7370   Register NewVal        = (BinOpcode || IsSubWord ?
7371                             MRI.createVirtualRegister(RC) : Src2.getReg());
7372   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7373   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7374 
7375   // Insert a basic block for the main loop.
7376   MachineBasicBlock *StartMBB = MBB;
7377   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7378   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7379 
7380   //  StartMBB:
7381   //   ...
7382   //   %OrigVal = L Disp(%Base)
7383   //   # fall through to LoopMMB
7384   MBB = StartMBB;
7385   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7386   MBB->addSuccessor(LoopMBB);
7387 
7388   //  LoopMBB:
7389   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7390   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7391   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7392   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7393   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7394   //   JNE LoopMBB
7395   //   # fall through to DoneMMB
7396   MBB = LoopMBB;
7397   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7398     .addReg(OrigVal).addMBB(StartMBB)
7399     .addReg(Dest).addMBB(LoopMBB);
7400   if (IsSubWord)
7401     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7402       .addReg(OldVal).addReg(BitShift).addImm(0);
7403   if (Invert) {
7404     // Perform the operation normally and then invert every bit of the field.
7405     Register Tmp = MRI.createVirtualRegister(RC);
7406     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7407     if (BitSize <= 32)
7408       // XILF with the upper BitSize bits set.
7409       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7410         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7411     else {
7412       // Use LCGR and add -1 to the result, which is more compact than
7413       // an XILF, XILH pair.
7414       Register Tmp2 = MRI.createVirtualRegister(RC);
7415       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7416       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7417         .addReg(Tmp2).addImm(-1);
7418     }
7419   } else if (BinOpcode)
7420     // A simply binary operation.
7421     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7422         .addReg(RotatedOldVal)
7423         .add(Src2);
7424   else if (IsSubWord)
7425     // Use RISBG to rotate Src2 into position and use it to replace the
7426     // field in RotatedOldVal.
7427     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7428       .addReg(RotatedOldVal).addReg(Src2.getReg())
7429       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7430   if (IsSubWord)
7431     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7432       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7433   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7434       .addReg(OldVal)
7435       .addReg(NewVal)
7436       .add(Base)
7437       .addImm(Disp);
7438   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7439     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7440   MBB->addSuccessor(LoopMBB);
7441   MBB->addSuccessor(DoneMBB);
7442 
7443   MI.eraseFromParent();
7444   return DoneMBB;
7445 }
7446 
7447 // Implement EmitInstrWithCustomInserter for pseudo
7448 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7449 // instruction that should be used to compare the current field with the
7450 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7451 // for when the current field should be kept.  BitSize is the width of
7452 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7453 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7454     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7455     unsigned KeepOldMask, unsigned BitSize) const {
7456   MachineFunction &MF = *MBB->getParent();
7457   const SystemZInstrInfo *TII =
7458       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7459   MachineRegisterInfo &MRI = MF.getRegInfo();
7460   bool IsSubWord = (BitSize < 32);
7461 
7462   // Extract the operands.  Base can be a register or a frame index.
7463   Register Dest = MI.getOperand(0).getReg();
7464   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7465   int64_t Disp = MI.getOperand(2).getImm();
7466   Register Src2 = MI.getOperand(3).getReg();
7467   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7468   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7469   DebugLoc DL = MI.getDebugLoc();
7470   if (IsSubWord)
7471     BitSize = MI.getOperand(6).getImm();
7472 
7473   // Subword operations use 32-bit registers.
7474   const TargetRegisterClass *RC = (BitSize <= 32 ?
7475                                    &SystemZ::GR32BitRegClass :
7476                                    &SystemZ::GR64BitRegClass);
7477   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7478   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7479 
7480   // Get the right opcodes for the displacement.
7481   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7482   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7483   assert(LOpcode && CSOpcode && "Displacement out of range");
7484 
7485   // Create virtual registers for temporary results.
7486   Register OrigVal       = MRI.createVirtualRegister(RC);
7487   Register OldVal        = MRI.createVirtualRegister(RC);
7488   Register NewVal        = MRI.createVirtualRegister(RC);
7489   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7490   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7491   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7492 
7493   // Insert 3 basic blocks for the loop.
7494   MachineBasicBlock *StartMBB  = MBB;
7495   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7496   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7497   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7498   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7499 
7500   //  StartMBB:
7501   //   ...
7502   //   %OrigVal     = L Disp(%Base)
7503   //   # fall through to LoopMMB
7504   MBB = StartMBB;
7505   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7506   MBB->addSuccessor(LoopMBB);
7507 
7508   //  LoopMBB:
7509   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7510   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7511   //   CompareOpcode %RotatedOldVal, %Src2
7512   //   BRC KeepOldMask, UpdateMBB
7513   MBB = LoopMBB;
7514   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7515     .addReg(OrigVal).addMBB(StartMBB)
7516     .addReg(Dest).addMBB(UpdateMBB);
7517   if (IsSubWord)
7518     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7519       .addReg(OldVal).addReg(BitShift).addImm(0);
7520   BuildMI(MBB, DL, TII->get(CompareOpcode))
7521     .addReg(RotatedOldVal).addReg(Src2);
7522   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7523     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7524   MBB->addSuccessor(UpdateMBB);
7525   MBB->addSuccessor(UseAltMBB);
7526 
7527   //  UseAltMBB:
7528   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7529   //   # fall through to UpdateMMB
7530   MBB = UseAltMBB;
7531   if (IsSubWord)
7532     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7533       .addReg(RotatedOldVal).addReg(Src2)
7534       .addImm(32).addImm(31 + BitSize).addImm(0);
7535   MBB->addSuccessor(UpdateMBB);
7536 
7537   //  UpdateMBB:
7538   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7539   //                        [ %RotatedAltVal, UseAltMBB ]
7540   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7541   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7542   //   JNE LoopMBB
7543   //   # fall through to DoneMMB
7544   MBB = UpdateMBB;
7545   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7546     .addReg(RotatedOldVal).addMBB(LoopMBB)
7547     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7548   if (IsSubWord)
7549     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7550       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7551   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7552       .addReg(OldVal)
7553       .addReg(NewVal)
7554       .add(Base)
7555       .addImm(Disp);
7556   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7557     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7558   MBB->addSuccessor(LoopMBB);
7559   MBB->addSuccessor(DoneMBB);
7560 
7561   MI.eraseFromParent();
7562   return DoneMBB;
7563 }
7564 
7565 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7566 // instruction MI.
7567 MachineBasicBlock *
7568 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7569                                           MachineBasicBlock *MBB) const {
7570 
7571   MachineFunction &MF = *MBB->getParent();
7572   const SystemZInstrInfo *TII =
7573       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7574   MachineRegisterInfo &MRI = MF.getRegInfo();
7575 
7576   // Extract the operands.  Base can be a register or a frame index.
7577   Register Dest = MI.getOperand(0).getReg();
7578   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7579   int64_t Disp = MI.getOperand(2).getImm();
7580   Register OrigCmpVal = MI.getOperand(3).getReg();
7581   Register OrigSwapVal = MI.getOperand(4).getReg();
7582   Register BitShift = MI.getOperand(5).getReg();
7583   Register NegBitShift = MI.getOperand(6).getReg();
7584   int64_t BitSize = MI.getOperand(7).getImm();
7585   DebugLoc DL = MI.getDebugLoc();
7586 
7587   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7588 
7589   // Get the right opcodes for the displacement.
7590   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7591   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7592   assert(LOpcode && CSOpcode && "Displacement out of range");
7593 
7594   // Create virtual registers for temporary results.
7595   Register OrigOldVal = MRI.createVirtualRegister(RC);
7596   Register OldVal = MRI.createVirtualRegister(RC);
7597   Register CmpVal = MRI.createVirtualRegister(RC);
7598   Register SwapVal = MRI.createVirtualRegister(RC);
7599   Register StoreVal = MRI.createVirtualRegister(RC);
7600   Register RetryOldVal = MRI.createVirtualRegister(RC);
7601   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7602   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7603 
7604   // Insert 2 basic blocks for the loop.
7605   MachineBasicBlock *StartMBB = MBB;
7606   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7607   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7608   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7609 
7610   //  StartMBB:
7611   //   ...
7612   //   %OrigOldVal     = L Disp(%Base)
7613   //   # fall through to LoopMMB
7614   MBB = StartMBB;
7615   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7616       .add(Base)
7617       .addImm(Disp)
7618       .addReg(0);
7619   MBB->addSuccessor(LoopMBB);
7620 
7621   //  LoopMBB:
7622   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7623   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7624   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7625   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7626   //                      ^^ The low BitSize bits contain the field
7627   //                         of interest.
7628   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7629   //                      ^^ Replace the upper 32-BitSize bits of the
7630   //                         comparison value with those that we loaded,
7631   //                         so that we can use a full word comparison.
7632   //   CR %Dest, %RetryCmpVal
7633   //   JNE DoneMBB
7634   //   # Fall through to SetMBB
7635   MBB = LoopMBB;
7636   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7637     .addReg(OrigOldVal).addMBB(StartMBB)
7638     .addReg(RetryOldVal).addMBB(SetMBB);
7639   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7640     .addReg(OrigCmpVal).addMBB(StartMBB)
7641     .addReg(RetryCmpVal).addMBB(SetMBB);
7642   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7643     .addReg(OrigSwapVal).addMBB(StartMBB)
7644     .addReg(RetrySwapVal).addMBB(SetMBB);
7645   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7646     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7647   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7648     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7649   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7650     .addReg(Dest).addReg(RetryCmpVal);
7651   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7652     .addImm(SystemZ::CCMASK_ICMP)
7653     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7654   MBB->addSuccessor(DoneMBB);
7655   MBB->addSuccessor(SetMBB);
7656 
7657   //  SetMBB:
7658   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7659   //                      ^^ Replace the upper 32-BitSize bits of the new
7660   //                         value with those that we loaded.
7661   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7662   //                      ^^ Rotate the new field to its proper position.
7663   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7664   //   JNE LoopMBB
7665   //   # fall through to ExitMMB
7666   MBB = SetMBB;
7667   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7668     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7669   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7670     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7671   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7672       .addReg(OldVal)
7673       .addReg(StoreVal)
7674       .add(Base)
7675       .addImm(Disp);
7676   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7677     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7678   MBB->addSuccessor(LoopMBB);
7679   MBB->addSuccessor(DoneMBB);
7680 
7681   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7682   // to the block after the loop.  At this point, CC may have been defined
7683   // either by the CR in LoopMBB or by the CS in SetMBB.
7684   if (!MI.registerDefIsDead(SystemZ::CC))
7685     DoneMBB->addLiveIn(SystemZ::CC);
7686 
7687   MI.eraseFromParent();
7688   return DoneMBB;
7689 }
7690 
7691 // Emit a move from two GR64s to a GR128.
7692 MachineBasicBlock *
7693 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7694                                    MachineBasicBlock *MBB) const {
7695   MachineFunction &MF = *MBB->getParent();
7696   const SystemZInstrInfo *TII =
7697       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7698   MachineRegisterInfo &MRI = MF.getRegInfo();
7699   DebugLoc DL = MI.getDebugLoc();
7700 
7701   Register Dest = MI.getOperand(0).getReg();
7702   Register Hi = MI.getOperand(1).getReg();
7703   Register Lo = MI.getOperand(2).getReg();
7704   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7705   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7706 
7707   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7708   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7709     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7710   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7711     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7712 
7713   MI.eraseFromParent();
7714   return MBB;
7715 }
7716 
7717 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7718 // if the high register of the GR128 value must be cleared or false if
7719 // it's "don't care".
7720 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7721                                                      MachineBasicBlock *MBB,
7722                                                      bool ClearEven) const {
7723   MachineFunction &MF = *MBB->getParent();
7724   const SystemZInstrInfo *TII =
7725       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7726   MachineRegisterInfo &MRI = MF.getRegInfo();
7727   DebugLoc DL = MI.getDebugLoc();
7728 
7729   Register Dest = MI.getOperand(0).getReg();
7730   Register Src = MI.getOperand(1).getReg();
7731   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7732 
7733   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7734   if (ClearEven) {
7735     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7736     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7737 
7738     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7739       .addImm(0);
7740     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7741       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7742     In128 = NewIn128;
7743   }
7744   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7745     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7746 
7747   MI.eraseFromParent();
7748   return MBB;
7749 }
7750 
7751 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7752     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7753   MachineFunction &MF = *MBB->getParent();
7754   const SystemZInstrInfo *TII =
7755       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7756   MachineRegisterInfo &MRI = MF.getRegInfo();
7757   DebugLoc DL = MI.getDebugLoc();
7758 
7759   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7760   uint64_t DestDisp = MI.getOperand(1).getImm();
7761   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7762   uint64_t SrcDisp = MI.getOperand(3).getImm();
7763   uint64_t Length = MI.getOperand(4).getImm();
7764 
7765   // When generating more than one CLC, all but the last will need to
7766   // branch to the end when a difference is found.
7767   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7768                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7769 
7770   // Check for the loop form, in which operand 5 is the trip count.
7771   if (MI.getNumExplicitOperands() > 5) {
7772     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7773 
7774     Register StartCountReg = MI.getOperand(5).getReg();
7775     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7776     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7777                               forceReg(MI, DestBase, TII));
7778 
7779     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7780     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7781     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7782                             MRI.createVirtualRegister(RC));
7783     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7784     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7785                             MRI.createVirtualRegister(RC));
7786 
7787     RC = &SystemZ::GR64BitRegClass;
7788     Register ThisCountReg = MRI.createVirtualRegister(RC);
7789     Register NextCountReg = MRI.createVirtualRegister(RC);
7790 
7791     MachineBasicBlock *StartMBB = MBB;
7792     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7793     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7794     MachineBasicBlock *NextMBB =
7795         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7796 
7797     //  StartMBB:
7798     //   # fall through to LoopMMB
7799     MBB->addSuccessor(LoopMBB);
7800 
7801     //  LoopMBB:
7802     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7803     //                      [ %NextDestReg, NextMBB ]
7804     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7805     //                     [ %NextSrcReg, NextMBB ]
7806     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7807     //                       [ %NextCountReg, NextMBB ]
7808     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7809     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7810     //   ( JLH EndMBB )
7811     //
7812     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7813     MBB = LoopMBB;
7814 
7815     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7816       .addReg(StartDestReg).addMBB(StartMBB)
7817       .addReg(NextDestReg).addMBB(NextMBB);
7818     if (!HaveSingleBase)
7819       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7820         .addReg(StartSrcReg).addMBB(StartMBB)
7821         .addReg(NextSrcReg).addMBB(NextMBB);
7822     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7823       .addReg(StartCountReg).addMBB(StartMBB)
7824       .addReg(NextCountReg).addMBB(NextMBB);
7825     if (Opcode == SystemZ::MVC)
7826       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7827         .addImm(SystemZ::PFD_WRITE)
7828         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7829     BuildMI(MBB, DL, TII->get(Opcode))
7830       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7831       .addReg(ThisSrcReg).addImm(SrcDisp);
7832     if (EndMBB) {
7833       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7834         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7835         .addMBB(EndMBB);
7836       MBB->addSuccessor(EndMBB);
7837       MBB->addSuccessor(NextMBB);
7838     }
7839 
7840     // NextMBB:
7841     //   %NextDestReg = LA 256(%ThisDestReg)
7842     //   %NextSrcReg = LA 256(%ThisSrcReg)
7843     //   %NextCountReg = AGHI %ThisCountReg, -1
7844     //   CGHI %NextCountReg, 0
7845     //   JLH LoopMBB
7846     //   # fall through to DoneMMB
7847     //
7848     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7849     MBB = NextMBB;
7850 
7851     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7852       .addReg(ThisDestReg).addImm(256).addReg(0);
7853     if (!HaveSingleBase)
7854       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7855         .addReg(ThisSrcReg).addImm(256).addReg(0);
7856     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7857       .addReg(ThisCountReg).addImm(-1);
7858     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7859       .addReg(NextCountReg).addImm(0);
7860     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7861       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7862       .addMBB(LoopMBB);
7863     MBB->addSuccessor(LoopMBB);
7864     MBB->addSuccessor(DoneMBB);
7865 
7866     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7867     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7868     Length &= 255;
7869     if (EndMBB && !Length)
7870       // If the loop handled the whole CLC range, DoneMBB will be empty with
7871       // CC live-through into EndMBB, so add it as live-in.
7872       DoneMBB->addLiveIn(SystemZ::CC);
7873     MBB = DoneMBB;
7874   }
7875   // Handle any remaining bytes with straight-line code.
7876   while (Length > 0) {
7877     uint64_t ThisLength = std::min(Length, uint64_t(256));
7878     // The previous iteration might have created out-of-range displacements.
7879     // Apply them using LAY if so.
7880     if (!isUInt<12>(DestDisp)) {
7881       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7882       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7883           .add(DestBase)
7884           .addImm(DestDisp)
7885           .addReg(0);
7886       DestBase = MachineOperand::CreateReg(Reg, false);
7887       DestDisp = 0;
7888     }
7889     if (!isUInt<12>(SrcDisp)) {
7890       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7891       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7892           .add(SrcBase)
7893           .addImm(SrcDisp)
7894           .addReg(0);
7895       SrcBase = MachineOperand::CreateReg(Reg, false);
7896       SrcDisp = 0;
7897     }
7898     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7899         .add(DestBase)
7900         .addImm(DestDisp)
7901         .addImm(ThisLength)
7902         .add(SrcBase)
7903         .addImm(SrcDisp)
7904         .setMemRefs(MI.memoperands());
7905     DestDisp += ThisLength;
7906     SrcDisp += ThisLength;
7907     Length -= ThisLength;
7908     // If there's another CLC to go, branch to the end if a difference
7909     // was found.
7910     if (EndMBB && Length > 0) {
7911       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7912       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7913         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7914         .addMBB(EndMBB);
7915       MBB->addSuccessor(EndMBB);
7916       MBB->addSuccessor(NextMBB);
7917       MBB = NextMBB;
7918     }
7919   }
7920   if (EndMBB) {
7921     MBB->addSuccessor(EndMBB);
7922     MBB = EndMBB;
7923     MBB->addLiveIn(SystemZ::CC);
7924   }
7925 
7926   MI.eraseFromParent();
7927   return MBB;
7928 }
7929 
7930 // Decompose string pseudo-instruction MI into a loop that continually performs
7931 // Opcode until CC != 3.
7932 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7933     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7934   MachineFunction &MF = *MBB->getParent();
7935   const SystemZInstrInfo *TII =
7936       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7937   MachineRegisterInfo &MRI = MF.getRegInfo();
7938   DebugLoc DL = MI.getDebugLoc();
7939 
7940   uint64_t End1Reg = MI.getOperand(0).getReg();
7941   uint64_t Start1Reg = MI.getOperand(1).getReg();
7942   uint64_t Start2Reg = MI.getOperand(2).getReg();
7943   uint64_t CharReg = MI.getOperand(3).getReg();
7944 
7945   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7946   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7947   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7948   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7949 
7950   MachineBasicBlock *StartMBB = MBB;
7951   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7952   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7953 
7954   //  StartMBB:
7955   //   # fall through to LoopMMB
7956   MBB->addSuccessor(LoopMBB);
7957 
7958   //  LoopMBB:
7959   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7960   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7961   //   R0L = %CharReg
7962   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7963   //   JO LoopMBB
7964   //   # fall through to DoneMMB
7965   //
7966   // The load of R0L can be hoisted by post-RA LICM.
7967   MBB = LoopMBB;
7968 
7969   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7970     .addReg(Start1Reg).addMBB(StartMBB)
7971     .addReg(End1Reg).addMBB(LoopMBB);
7972   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7973     .addReg(Start2Reg).addMBB(StartMBB)
7974     .addReg(End2Reg).addMBB(LoopMBB);
7975   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7976   BuildMI(MBB, DL, TII->get(Opcode))
7977     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7978     .addReg(This1Reg).addReg(This2Reg);
7979   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7980     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7981   MBB->addSuccessor(LoopMBB);
7982   MBB->addSuccessor(DoneMBB);
7983 
7984   DoneMBB->addLiveIn(SystemZ::CC);
7985 
7986   MI.eraseFromParent();
7987   return DoneMBB;
7988 }
7989 
7990 // Update TBEGIN instruction with final opcode and register clobbers.
7991 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7992     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7993     bool NoFloat) const {
7994   MachineFunction &MF = *MBB->getParent();
7995   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7996   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7997 
7998   // Update opcode.
7999   MI.setDesc(TII->get(Opcode));
8000 
8001   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8002   // Make sure to add the corresponding GRSM bits if they are missing.
8003   uint64_t Control = MI.getOperand(2).getImm();
8004   static const unsigned GPRControlBit[16] = {
8005     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8006     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8007   };
8008   Control |= GPRControlBit[15];
8009   if (TFI->hasFP(MF))
8010     Control |= GPRControlBit[11];
8011   MI.getOperand(2).setImm(Control);
8012 
8013   // Add GPR clobbers.
8014   for (int I = 0; I < 16; I++) {
8015     if ((Control & GPRControlBit[I]) == 0) {
8016       unsigned Reg = SystemZMC::GR64Regs[I];
8017       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8018     }
8019   }
8020 
8021   // Add FPR/VR clobbers.
8022   if (!NoFloat && (Control & 4) != 0) {
8023     if (Subtarget.hasVector()) {
8024       for (int I = 0; I < 32; I++) {
8025         unsigned Reg = SystemZMC::VR128Regs[I];
8026         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8027       }
8028     } else {
8029       for (int I = 0; I < 16; I++) {
8030         unsigned Reg = SystemZMC::FP64Regs[I];
8031         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8032       }
8033     }
8034   }
8035 
8036   return MBB;
8037 }
8038 
8039 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8040     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8041   MachineFunction &MF = *MBB->getParent();
8042   MachineRegisterInfo *MRI = &MF.getRegInfo();
8043   const SystemZInstrInfo *TII =
8044       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8045   DebugLoc DL = MI.getDebugLoc();
8046 
8047   Register SrcReg = MI.getOperand(0).getReg();
8048 
8049   // Create new virtual register of the same class as source.
8050   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8051   Register DstReg = MRI->createVirtualRegister(RC);
8052 
8053   // Replace pseudo with a normal load-and-test that models the def as
8054   // well.
8055   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8056     .addReg(SrcReg)
8057     .setMIFlags(MI.getFlags());
8058   MI.eraseFromParent();
8059 
8060   return MBB;
8061 }
8062 
8063 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8064     MachineInstr &MI, MachineBasicBlock *MBB) const {
8065   MachineFunction &MF = *MBB->getParent();
8066   MachineRegisterInfo *MRI = &MF.getRegInfo();
8067   const SystemZInstrInfo *TII =
8068       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8069   DebugLoc DL = MI.getDebugLoc();
8070   const unsigned ProbeSize = getStackProbeSize(MF);
8071   Register DstReg = MI.getOperand(0).getReg();
8072   Register SizeReg = MI.getOperand(2).getReg();
8073 
8074   MachineBasicBlock *StartMBB = MBB;
8075   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8076   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8077   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8078   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8079   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8080 
8081   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8082     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8083 
8084   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8085   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8086 
8087   //  LoopTestMBB
8088   //  BRC TailTestMBB
8089   //  # fallthrough to LoopBodyMBB
8090   StartMBB->addSuccessor(LoopTestMBB);
8091   MBB = LoopTestMBB;
8092   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8093     .addReg(SizeReg)
8094     .addMBB(StartMBB)
8095     .addReg(IncReg)
8096     .addMBB(LoopBodyMBB);
8097   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8098     .addReg(PHIReg)
8099     .addImm(ProbeSize);
8100   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8101     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8102     .addMBB(TailTestMBB);
8103   MBB->addSuccessor(LoopBodyMBB);
8104   MBB->addSuccessor(TailTestMBB);
8105 
8106   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8107   //  J LoopTestMBB
8108   MBB = LoopBodyMBB;
8109   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8110     .addReg(PHIReg)
8111     .addImm(ProbeSize);
8112   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8113     .addReg(SystemZ::R15D)
8114     .addImm(ProbeSize);
8115   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8116     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8117     .setMemRefs(VolLdMMO);
8118   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8119   MBB->addSuccessor(LoopTestMBB);
8120 
8121   //  TailTestMBB
8122   //  BRC DoneMBB
8123   //  # fallthrough to TailMBB
8124   MBB = TailTestMBB;
8125   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8126     .addReg(PHIReg)
8127     .addImm(0);
8128   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8129     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8130     .addMBB(DoneMBB);
8131   MBB->addSuccessor(TailMBB);
8132   MBB->addSuccessor(DoneMBB);
8133 
8134   //  TailMBB
8135   //  # fallthrough to DoneMBB
8136   MBB = TailMBB;
8137   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8138     .addReg(SystemZ::R15D)
8139     .addReg(PHIReg);
8140   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8141     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8142     .setMemRefs(VolLdMMO);
8143   MBB->addSuccessor(DoneMBB);
8144 
8145   //  DoneMBB
8146   MBB = DoneMBB;
8147   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8148     .addReg(SystemZ::R15D);
8149 
8150   MI.eraseFromParent();
8151   return DoneMBB;
8152 }
8153 
8154 SDValue SystemZTargetLowering::
8155 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8156   MachineFunction &MF = DAG.getMachineFunction();
8157   auto *TFL =
8158       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8159   SDLoc DL(SP);
8160   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8161                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8162 }
8163 
8164 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8165     MachineInstr &MI, MachineBasicBlock *MBB) const {
8166   switch (MI.getOpcode()) {
8167   case SystemZ::Select32:
8168   case SystemZ::Select64:
8169   case SystemZ::SelectF32:
8170   case SystemZ::SelectF64:
8171   case SystemZ::SelectF128:
8172   case SystemZ::SelectVR32:
8173   case SystemZ::SelectVR64:
8174   case SystemZ::SelectVR128:
8175     return emitSelect(MI, MBB);
8176 
8177   case SystemZ::CondStore8Mux:
8178     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8179   case SystemZ::CondStore8MuxInv:
8180     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8181   case SystemZ::CondStore16Mux:
8182     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8183   case SystemZ::CondStore16MuxInv:
8184     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8185   case SystemZ::CondStore32Mux:
8186     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8187   case SystemZ::CondStore32MuxInv:
8188     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8189   case SystemZ::CondStore8:
8190     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8191   case SystemZ::CondStore8Inv:
8192     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8193   case SystemZ::CondStore16:
8194     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8195   case SystemZ::CondStore16Inv:
8196     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8197   case SystemZ::CondStore32:
8198     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8199   case SystemZ::CondStore32Inv:
8200     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8201   case SystemZ::CondStore64:
8202     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8203   case SystemZ::CondStore64Inv:
8204     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8205   case SystemZ::CondStoreF32:
8206     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8207   case SystemZ::CondStoreF32Inv:
8208     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8209   case SystemZ::CondStoreF64:
8210     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8211   case SystemZ::CondStoreF64Inv:
8212     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8213 
8214   case SystemZ::PAIR128:
8215     return emitPair128(MI, MBB);
8216   case SystemZ::AEXT128:
8217     return emitExt128(MI, MBB, false);
8218   case SystemZ::ZEXT128:
8219     return emitExt128(MI, MBB, true);
8220 
8221   case SystemZ::ATOMIC_SWAPW:
8222     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8223   case SystemZ::ATOMIC_SWAP_32:
8224     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8225   case SystemZ::ATOMIC_SWAP_64:
8226     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8227 
8228   case SystemZ::ATOMIC_LOADW_AR:
8229     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8230   case SystemZ::ATOMIC_LOADW_AFI:
8231     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8232   case SystemZ::ATOMIC_LOAD_AR:
8233     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8234   case SystemZ::ATOMIC_LOAD_AHI:
8235     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8236   case SystemZ::ATOMIC_LOAD_AFI:
8237     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8238   case SystemZ::ATOMIC_LOAD_AGR:
8239     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8240   case SystemZ::ATOMIC_LOAD_AGHI:
8241     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8242   case SystemZ::ATOMIC_LOAD_AGFI:
8243     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8244 
8245   case SystemZ::ATOMIC_LOADW_SR:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8247   case SystemZ::ATOMIC_LOAD_SR:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8249   case SystemZ::ATOMIC_LOAD_SGR:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8251 
8252   case SystemZ::ATOMIC_LOADW_NR:
8253     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8254   case SystemZ::ATOMIC_LOADW_NILH:
8255     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8256   case SystemZ::ATOMIC_LOAD_NR:
8257     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8258   case SystemZ::ATOMIC_LOAD_NILL:
8259     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8260   case SystemZ::ATOMIC_LOAD_NILH:
8261     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8262   case SystemZ::ATOMIC_LOAD_NILF:
8263     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8264   case SystemZ::ATOMIC_LOAD_NGR:
8265     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8266   case SystemZ::ATOMIC_LOAD_NILL64:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8268   case SystemZ::ATOMIC_LOAD_NILH64:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8270   case SystemZ::ATOMIC_LOAD_NIHL64:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8272   case SystemZ::ATOMIC_LOAD_NIHH64:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8274   case SystemZ::ATOMIC_LOAD_NILF64:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8276   case SystemZ::ATOMIC_LOAD_NIHF64:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8278 
8279   case SystemZ::ATOMIC_LOADW_OR:
8280     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8281   case SystemZ::ATOMIC_LOADW_OILH:
8282     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8283   case SystemZ::ATOMIC_LOAD_OR:
8284     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8285   case SystemZ::ATOMIC_LOAD_OILL:
8286     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8287   case SystemZ::ATOMIC_LOAD_OILH:
8288     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8289   case SystemZ::ATOMIC_LOAD_OILF:
8290     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8291   case SystemZ::ATOMIC_LOAD_OGR:
8292     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8293   case SystemZ::ATOMIC_LOAD_OILL64:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8295   case SystemZ::ATOMIC_LOAD_OILH64:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8297   case SystemZ::ATOMIC_LOAD_OIHL64:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8299   case SystemZ::ATOMIC_LOAD_OIHH64:
8300     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8301   case SystemZ::ATOMIC_LOAD_OILF64:
8302     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8303   case SystemZ::ATOMIC_LOAD_OIHF64:
8304     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8305 
8306   case SystemZ::ATOMIC_LOADW_XR:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8308   case SystemZ::ATOMIC_LOADW_XILF:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8310   case SystemZ::ATOMIC_LOAD_XR:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8312   case SystemZ::ATOMIC_LOAD_XILF:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8314   case SystemZ::ATOMIC_LOAD_XGR:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8316   case SystemZ::ATOMIC_LOAD_XILF64:
8317     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8318   case SystemZ::ATOMIC_LOAD_XIHF64:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8320 
8321   case SystemZ::ATOMIC_LOADW_NRi:
8322     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8323   case SystemZ::ATOMIC_LOADW_NILHi:
8324     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8325   case SystemZ::ATOMIC_LOAD_NRi:
8326     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8327   case SystemZ::ATOMIC_LOAD_NILLi:
8328     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8329   case SystemZ::ATOMIC_LOAD_NILHi:
8330     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8331   case SystemZ::ATOMIC_LOAD_NILFi:
8332     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8333   case SystemZ::ATOMIC_LOAD_NGRi:
8334     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8335   case SystemZ::ATOMIC_LOAD_NILL64i:
8336     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8337   case SystemZ::ATOMIC_LOAD_NILH64i:
8338     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8339   case SystemZ::ATOMIC_LOAD_NIHL64i:
8340     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8341   case SystemZ::ATOMIC_LOAD_NIHH64i:
8342     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8343   case SystemZ::ATOMIC_LOAD_NILF64i:
8344     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8345   case SystemZ::ATOMIC_LOAD_NIHF64i:
8346     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8347 
8348   case SystemZ::ATOMIC_LOADW_MIN:
8349     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8350                                 SystemZ::CCMASK_CMP_LE, 0);
8351   case SystemZ::ATOMIC_LOAD_MIN_32:
8352     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8353                                 SystemZ::CCMASK_CMP_LE, 32);
8354   case SystemZ::ATOMIC_LOAD_MIN_64:
8355     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8356                                 SystemZ::CCMASK_CMP_LE, 64);
8357 
8358   case SystemZ::ATOMIC_LOADW_MAX:
8359     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8360                                 SystemZ::CCMASK_CMP_GE, 0);
8361   case SystemZ::ATOMIC_LOAD_MAX_32:
8362     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8363                                 SystemZ::CCMASK_CMP_GE, 32);
8364   case SystemZ::ATOMIC_LOAD_MAX_64:
8365     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8366                                 SystemZ::CCMASK_CMP_GE, 64);
8367 
8368   case SystemZ::ATOMIC_LOADW_UMIN:
8369     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8370                                 SystemZ::CCMASK_CMP_LE, 0);
8371   case SystemZ::ATOMIC_LOAD_UMIN_32:
8372     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8373                                 SystemZ::CCMASK_CMP_LE, 32);
8374   case SystemZ::ATOMIC_LOAD_UMIN_64:
8375     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8376                                 SystemZ::CCMASK_CMP_LE, 64);
8377 
8378   case SystemZ::ATOMIC_LOADW_UMAX:
8379     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8380                                 SystemZ::CCMASK_CMP_GE, 0);
8381   case SystemZ::ATOMIC_LOAD_UMAX_32:
8382     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8383                                 SystemZ::CCMASK_CMP_GE, 32);
8384   case SystemZ::ATOMIC_LOAD_UMAX_64:
8385     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8386                                 SystemZ::CCMASK_CMP_GE, 64);
8387 
8388   case SystemZ::ATOMIC_CMP_SWAPW:
8389     return emitAtomicCmpSwapW(MI, MBB);
8390   case SystemZ::MVCSequence:
8391   case SystemZ::MVCLoop:
8392     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8393   case SystemZ::NCSequence:
8394   case SystemZ::NCLoop:
8395     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8396   case SystemZ::OCSequence:
8397   case SystemZ::OCLoop:
8398     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8399   case SystemZ::XCSequence:
8400   case SystemZ::XCLoop:
8401     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8402   case SystemZ::CLCSequence:
8403   case SystemZ::CLCLoop:
8404     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8405   case SystemZ::CLSTLoop:
8406     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8407   case SystemZ::MVSTLoop:
8408     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8409   case SystemZ::SRSTLoop:
8410     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8411   case SystemZ::TBEGIN:
8412     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8413   case SystemZ::TBEGIN_nofloat:
8414     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8415   case SystemZ::TBEGINC:
8416     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8417   case SystemZ::LTEBRCompare_VecPseudo:
8418     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8419   case SystemZ::LTDBRCompare_VecPseudo:
8420     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8421   case SystemZ::LTXBRCompare_VecPseudo:
8422     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8423 
8424   case SystemZ::PROBED_ALLOCA:
8425     return emitProbedAlloca(MI, MBB);
8426 
8427   case TargetOpcode::STACKMAP:
8428   case TargetOpcode::PATCHPOINT:
8429     return emitPatchPoint(MI, MBB);
8430 
8431   default:
8432     llvm_unreachable("Unexpected instr type to insert");
8433   }
8434 }
8435 
8436 // This is only used by the isel schedulers, and is needed only to prevent
8437 // compiler from crashing when list-ilp is used.
8438 const TargetRegisterClass *
8439 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8440   if (VT == MVT::Untyped)
8441     return &SystemZ::ADDR128BitRegClass;
8442   return TargetLowering::getRepRegClassFor(VT);
8443 }
8444