1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 auto *Regs = STI.getSpecialRegisters(); 86 87 // Set up the register classes. 88 if (Subtarget.hasHighWord()) 89 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 90 else 91 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 92 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 93 if (!useSoftFloat()) { 94 if (Subtarget.hasVector()) { 95 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 97 } else { 98 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 100 } 101 if (Subtarget.hasVectorEnhancements1()) 102 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 103 else 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 } 115 116 // Compute derived properties from the register classes 117 computeRegisterProperties(Subtarget.getRegisterInfo()); 118 119 // Set up special registers. 120 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(Align(2)); 133 // For performance reasons we prefer 16-byte alignment. 134 setPrefFunctionAlignment(Align(16)); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 146 147 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 148 setOperationAction(ISD::SELECT, VT, Expand); 149 150 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 151 setOperationAction(ISD::SELECT_CC, VT, Custom); 152 setOperationAction(ISD::BR_CC, VT, Custom); 153 } 154 } 155 156 // Expand jump table branches as address arithmetic followed by an 157 // indirect jump. 158 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 159 160 // Expand BRCOND into a BR_CC (see above). 161 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 162 163 // Handle integer types. 164 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 165 I <= MVT::LAST_INTEGER_VALUETYPE; 166 ++I) { 167 MVT VT = MVT::SimpleValueType(I); 168 if (isTypeLegal(VT)) { 169 setOperationAction(ISD::ABS, VT, Legal); 170 171 // Expand individual DIV and REMs into DIVREMs. 172 setOperationAction(ISD::SDIV, VT, Expand); 173 setOperationAction(ISD::UDIV, VT, Expand); 174 setOperationAction(ISD::SREM, VT, Expand); 175 setOperationAction(ISD::UREM, VT, Expand); 176 setOperationAction(ISD::SDIVREM, VT, Custom); 177 setOperationAction(ISD::UDIVREM, VT, Custom); 178 179 // Support addition/subtraction with overflow. 180 setOperationAction(ISD::SADDO, VT, Custom); 181 setOperationAction(ISD::SSUBO, VT, Custom); 182 183 // Support addition/subtraction with carry. 184 setOperationAction(ISD::UADDO, VT, Custom); 185 setOperationAction(ISD::USUBO, VT, Custom); 186 187 // Support carry in as value rather than glue. 188 setOperationAction(ISD::ADDCARRY, VT, Custom); 189 setOperationAction(ISD::SUBCARRY, VT, Custom); 190 191 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 192 // stores, putting a serialization instruction after the stores. 193 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 194 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 195 196 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 197 // available, or if the operand is constant. 198 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 199 200 // Use POPCNT on z196 and above. 201 if (Subtarget.hasPopulationCount()) 202 setOperationAction(ISD::CTPOP, VT, Custom); 203 else 204 setOperationAction(ISD::CTPOP, VT, Expand); 205 206 // No special instructions for these. 207 setOperationAction(ISD::CTTZ, VT, Expand); 208 setOperationAction(ISD::ROTR, VT, Expand); 209 210 // Use *MUL_LOHI where possible instead of MULH*. 211 setOperationAction(ISD::MULHS, VT, Expand); 212 setOperationAction(ISD::MULHU, VT, Expand); 213 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 214 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 215 216 // Only z196 and above have native support for conversions to unsigned. 217 // On z10, promoting to i64 doesn't generate an inexact condition for 218 // values that are outside the i32 range but in the i64 range, so use 219 // the default expansion. 220 if (!Subtarget.hasFPExtension()) 221 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 222 223 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 224 // default to Expand, so need to be modified to Legal where appropriate. 225 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 226 if (Subtarget.hasFPExtension()) 227 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 228 229 // And similarly for STRICT_[SU]INT_TO_FP. 230 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 231 if (Subtarget.hasFPExtension()) 232 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 233 } 234 } 235 236 // Type legalization will convert 8- and 16-bit atomic operations into 237 // forms that operate on i32s (but still keeping the original memory VT). 238 // Lower them into full i32 operations. 239 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 250 251 // Even though i128 is not a legal type, we still need to custom lower 252 // the atomic operations in order to exploit SystemZ instructions. 253 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 254 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 255 256 // We can use the CC result of compare-and-swap to implement 257 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 261 262 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 263 264 // Traps are legal, as we will convert them to "j .+2". 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 267 // z10 has instructions for signed but not unsigned FP conversion. 268 // Handle unsigned 32-bit types as signed 64-bit types. 269 if (!Subtarget.hasFPExtension()) { 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 274 } 275 276 // We have native support for a 64-bit CTLZ, via FLOGR. 277 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 278 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 280 281 // On z15 we have native support for a 64-bit CTPOP. 282 if (Subtarget.hasMiscellaneousExtensions3()) { 283 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 284 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 285 } 286 287 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 288 setOperationAction(ISD::OR, MVT::i64, Custom); 289 290 // Expand 128 bit shifts without using a libcall. 291 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 292 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 294 setLibcallName(RTLIB::SRL_I128, nullptr); 295 setLibcallName(RTLIB::SHL_I128, nullptr); 296 setLibcallName(RTLIB::SRA_I128, nullptr); 297 298 // Handle bitcast from fp128 to i128. 299 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 300 301 // We have native instructions for i8, i16 and i32 extensions, but not i1. 302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 303 for (MVT VT : MVT::integer_valuetypes()) { 304 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 305 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 307 } 308 309 // Handle the various types of symbolic address. 310 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 311 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 312 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 313 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 314 setOperationAction(ISD::JumpTable, PtrVT, Custom); 315 316 // We need to handle dynamic allocations specially because of the 317 // 160-byte area at the bottom of the stack. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 319 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 320 321 // Use custom expanders so that we can force the function to use 322 // a frame pointer. 323 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 324 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 325 326 // Handle prefetches with PFD or PFDRL. 327 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 328 329 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 330 // Assume by default that all vector operations need to be expanded. 331 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 332 if (getOperationAction(Opcode, VT) == Legal) 333 setOperationAction(Opcode, VT, Expand); 334 335 // Likewise all truncating stores and extending loads. 336 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 337 setTruncStoreAction(VT, InnerVT, Expand); 338 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 339 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 340 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 341 } 342 343 if (isTypeLegal(VT)) { 344 // These operations are legal for anything that can be stored in a 345 // vector register, even if there is no native support for the format 346 // as such. In particular, we can do these for v4f32 even though there 347 // are no specific instructions for that format. 348 setOperationAction(ISD::LOAD, VT, Legal); 349 setOperationAction(ISD::STORE, VT, Legal); 350 setOperationAction(ISD::VSELECT, VT, Legal); 351 setOperationAction(ISD::BITCAST, VT, Legal); 352 setOperationAction(ISD::UNDEF, VT, Legal); 353 354 // Likewise, except that we need to replace the nodes with something 355 // more specific. 356 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 357 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 358 } 359 } 360 361 // Handle integer vector types. 362 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 363 if (isTypeLegal(VT)) { 364 // These operations have direct equivalents. 365 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 366 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 367 setOperationAction(ISD::ADD, VT, Legal); 368 setOperationAction(ISD::SUB, VT, Legal); 369 if (VT != MVT::v2i64) 370 setOperationAction(ISD::MUL, VT, Legal); 371 setOperationAction(ISD::ABS, VT, Legal); 372 setOperationAction(ISD::AND, VT, Legal); 373 setOperationAction(ISD::OR, VT, Legal); 374 setOperationAction(ISD::XOR, VT, Legal); 375 if (Subtarget.hasVectorEnhancements1()) 376 setOperationAction(ISD::CTPOP, VT, Legal); 377 else 378 setOperationAction(ISD::CTPOP, VT, Custom); 379 setOperationAction(ISD::CTTZ, VT, Legal); 380 setOperationAction(ISD::CTLZ, VT, Legal); 381 382 // Convert a GPR scalar to a vector by inserting it into element 0. 383 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 384 385 // Use a series of unpacks for extensions. 386 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 387 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 388 389 // Detect shifts by a scalar amount and convert them into 390 // V*_BY_SCALAR. 391 setOperationAction(ISD::SHL, VT, Custom); 392 setOperationAction(ISD::SRA, VT, Custom); 393 setOperationAction(ISD::SRL, VT, Custom); 394 395 // At present ROTL isn't matched by DAGCombiner. ROTR should be 396 // converted into ROTL. 397 setOperationAction(ISD::ROTL, VT, Expand); 398 setOperationAction(ISD::ROTR, VT, Expand); 399 400 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 401 // and inverting the result as necessary. 402 setOperationAction(ISD::SETCC, VT, Custom); 403 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 404 if (Subtarget.hasVectorEnhancements1()) 405 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 406 } 407 } 408 409 if (Subtarget.hasVector()) { 410 // There should be no need to check for float types other than v2f64 411 // since <2 x f32> isn't a legal type. 412 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 415 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 416 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 418 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 419 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 420 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 424 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 425 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 426 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 427 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 428 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 429 } 430 431 if (Subtarget.hasVectorEnhancements2()) { 432 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 435 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 436 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 438 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 439 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 440 441 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 443 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 444 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 445 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 446 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 447 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 448 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 449 } 450 451 // Handle floating-point types. 452 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 453 I <= MVT::LAST_FP_VALUETYPE; 454 ++I) { 455 MVT VT = MVT::SimpleValueType(I); 456 if (isTypeLegal(VT)) { 457 // We can use FI for FRINT. 458 setOperationAction(ISD::FRINT, VT, Legal); 459 460 // We can use the extended form of FI for other rounding operations. 461 if (Subtarget.hasFPExtension()) { 462 setOperationAction(ISD::FNEARBYINT, VT, Legal); 463 setOperationAction(ISD::FFLOOR, VT, Legal); 464 setOperationAction(ISD::FCEIL, VT, Legal); 465 setOperationAction(ISD::FTRUNC, VT, Legal); 466 setOperationAction(ISD::FROUND, VT, Legal); 467 } 468 469 // No special instructions for these. 470 setOperationAction(ISD::FSIN, VT, Expand); 471 setOperationAction(ISD::FCOS, VT, Expand); 472 setOperationAction(ISD::FSINCOS, VT, Expand); 473 setOperationAction(ISD::FREM, VT, Expand); 474 setOperationAction(ISD::FPOW, VT, Expand); 475 476 // Handle constrained floating-point operations. 477 setOperationAction(ISD::STRICT_FADD, VT, Legal); 478 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 479 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 480 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 481 setOperationAction(ISD::STRICT_FMA, VT, Legal); 482 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 483 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 484 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 485 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 486 if (Subtarget.hasFPExtension()) { 487 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 488 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 489 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 490 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 491 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 492 } 493 } 494 } 495 496 // Handle floating-point vector types. 497 if (Subtarget.hasVector()) { 498 // Scalar-to-vector conversion is just a subreg. 499 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 500 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 501 502 // Some insertions and extractions can be done directly but others 503 // need to go via integers. 504 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 505 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 506 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 507 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 508 509 // These operations have direct equivalents. 510 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 511 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 512 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 513 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 514 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 515 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 516 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 517 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 518 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 519 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 520 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 521 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 522 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 523 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 524 525 // Handle constrained floating-point operations. 526 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 536 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 537 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 538 } 539 540 // The vector enhancements facility 1 has instructions for these. 541 if (Subtarget.hasVectorEnhancements1()) { 542 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 543 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 544 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 545 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 546 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 547 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 548 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 549 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 550 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 551 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 552 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 553 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 554 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 555 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 556 557 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 558 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 559 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 560 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 561 562 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 563 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 564 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 565 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 566 567 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 568 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 569 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 570 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 571 572 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 573 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 574 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 575 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 576 577 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 578 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 579 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 580 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 581 582 // Handle constrained floating-point operations. 583 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 593 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 594 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 595 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 596 MVT::v4f32, MVT::v2f64 }) { 597 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 598 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 599 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 600 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 601 } 602 } 603 604 // We only have fused f128 multiply-addition on vector registers. 605 if (!Subtarget.hasVectorEnhancements1()) { 606 setOperationAction(ISD::FMA, MVT::f128, Expand); 607 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 608 } 609 610 // We don't have a copysign instruction on vector registers. 611 if (Subtarget.hasVectorEnhancements1()) 612 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 613 614 // Needed so that we don't try to implement f128 constant loads using 615 // a load-and-extend of a f80 constant (in cases where the constant 616 // would fit in an f80). 617 for (MVT VT : MVT::fp_valuetypes()) 618 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 619 620 // We don't have extending load instruction on vector registers. 621 if (Subtarget.hasVectorEnhancements1()) { 622 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 623 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 624 } 625 626 // Floating-point truncation and stores need to be done separately. 627 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 628 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 629 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 630 631 // We have 64-bit FPR<->GPR moves, but need special handling for 632 // 32-bit forms. 633 if (!Subtarget.hasVector()) { 634 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 635 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 636 } 637 638 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 639 // structure, but VAEND is a no-op. 640 setOperationAction(ISD::VASTART, MVT::Other, Custom); 641 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 642 setOperationAction(ISD::VAEND, MVT::Other, Expand); 643 644 // Codes for which we want to perform some z-specific combinations. 645 setTargetDAGCombine(ISD::ZERO_EXTEND); 646 setTargetDAGCombine(ISD::SIGN_EXTEND); 647 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 648 setTargetDAGCombine(ISD::LOAD); 649 setTargetDAGCombine(ISD::STORE); 650 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 651 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 652 setTargetDAGCombine(ISD::FP_ROUND); 653 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 654 setTargetDAGCombine(ISD::FP_EXTEND); 655 setTargetDAGCombine(ISD::SINT_TO_FP); 656 setTargetDAGCombine(ISD::UINT_TO_FP); 657 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 658 setTargetDAGCombine(ISD::BSWAP); 659 setTargetDAGCombine(ISD::SDIV); 660 setTargetDAGCombine(ISD::UDIV); 661 setTargetDAGCombine(ISD::SREM); 662 setTargetDAGCombine(ISD::UREM); 663 setTargetDAGCombine(ISD::INTRINSIC_VOID); 664 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 665 666 // Handle intrinsics. 667 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 668 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 669 670 // We want to use MVC in preference to even a single load/store pair. 671 MaxStoresPerMemcpy = 0; 672 MaxStoresPerMemcpyOptSize = 0; 673 674 // The main memset sequence is a byte store followed by an MVC. 675 // Two STC or MV..I stores win over that, but the kind of fused stores 676 // generated by target-independent code don't when the byte value is 677 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 678 // than "STC;MVC". Handle the choice in target-specific code instead. 679 MaxStoresPerMemset = 0; 680 MaxStoresPerMemsetOptSize = 0; 681 682 // Default to having -disable-strictnode-mutation on 683 IsStrictFPEnabled = true; 684 } 685 686 bool SystemZTargetLowering::useSoftFloat() const { 687 return Subtarget.hasSoftFloat(); 688 } 689 690 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 691 LLVMContext &, EVT VT) const { 692 if (!VT.isVector()) 693 return MVT::i32; 694 return VT.changeVectorElementTypeToInteger(); 695 } 696 697 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 698 const MachineFunction &MF, EVT VT) const { 699 VT = VT.getScalarType(); 700 701 if (!VT.isSimple()) 702 return false; 703 704 switch (VT.getSimpleVT().SimpleTy) { 705 case MVT::f32: 706 case MVT::f64: 707 return true; 708 case MVT::f128: 709 return Subtarget.hasVectorEnhancements1(); 710 default: 711 break; 712 } 713 714 return false; 715 } 716 717 // Return true if the constant can be generated with a vector instruction, 718 // such as VGM, VGMB or VREPI. 719 bool SystemZVectorConstantInfo::isVectorConstantLegal( 720 const SystemZSubtarget &Subtarget) { 721 const SystemZInstrInfo *TII = 722 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 723 if (!Subtarget.hasVector() || 724 (isFP128 && !Subtarget.hasVectorEnhancements1())) 725 return false; 726 727 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 728 // preferred way of creating all-zero and all-one vectors so give it 729 // priority over other methods below. 730 unsigned Mask = 0; 731 unsigned I = 0; 732 for (; I < SystemZ::VectorBytes; ++I) { 733 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 734 if (Byte == 0xff) 735 Mask |= 1ULL << I; 736 else if (Byte != 0) 737 break; 738 } 739 if (I == SystemZ::VectorBytes) { 740 Opcode = SystemZISD::BYTE_MASK; 741 OpVals.push_back(Mask); 742 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 743 return true; 744 } 745 746 if (SplatBitSize > 64) 747 return false; 748 749 auto tryValue = [&](uint64_t Value) -> bool { 750 // Try VECTOR REPLICATE IMMEDIATE 751 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 752 if (isInt<16>(SignedValue)) { 753 OpVals.push_back(((unsigned) SignedValue)); 754 Opcode = SystemZISD::REPLICATE; 755 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 756 SystemZ::VectorBits / SplatBitSize); 757 return true; 758 } 759 // Try VECTOR GENERATE MASK 760 unsigned Start, End; 761 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 762 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 763 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 764 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 765 OpVals.push_back(Start - (64 - SplatBitSize)); 766 OpVals.push_back(End - (64 - SplatBitSize)); 767 Opcode = SystemZISD::ROTATE_MASK; 768 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 769 SystemZ::VectorBits / SplatBitSize); 770 return true; 771 } 772 return false; 773 }; 774 775 // First try assuming that any undefined bits above the highest set bit 776 // and below the lowest set bit are 1s. This increases the likelihood of 777 // being able to use a sign-extended element value in VECTOR REPLICATE 778 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 779 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 780 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 781 uint64_t Lower = 782 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 783 uint64_t Upper = 784 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 785 if (tryValue(SplatBitsZ | Upper | Lower)) 786 return true; 787 788 // Now try assuming that any undefined bits between the first and 789 // last defined set bits are set. This increases the chances of 790 // using a non-wraparound mask. 791 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 792 return tryValue(SplatBitsZ | Middle); 793 } 794 795 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 796 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 797 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 798 SplatBits = FPImm.bitcastToAPInt(); 799 unsigned Width = SplatBits.getBitWidth(); 800 IntBits <<= (SystemZ::VectorBits - Width); 801 802 // Find the smallest splat. 803 while (Width > 8) { 804 unsigned HalfSize = Width / 2; 805 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 806 APInt LowValue = SplatBits.trunc(HalfSize); 807 808 // If the two halves do not match, stop here. 809 if (HighValue != LowValue || 8 > HalfSize) 810 break; 811 812 SplatBits = HighValue; 813 Width = HalfSize; 814 } 815 SplatUndef = 0; 816 SplatBitSize = Width; 817 } 818 819 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 820 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 821 bool HasAnyUndefs; 822 823 // Get IntBits by finding the 128 bit splat. 824 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 825 true); 826 827 // Get SplatBits by finding the 8 bit or greater splat. 828 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 829 true); 830 } 831 832 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 833 bool ForCodeSize) const { 834 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 835 if (Imm.isZero() || Imm.isNegZero()) 836 return true; 837 838 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 839 } 840 841 /// Returns true if stack probing through inline assembly is requested. 842 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 843 // If the function specifically requests inline stack probes, emit them. 844 if (MF.getFunction().hasFnAttribute("probe-stack")) 845 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 846 "inline-asm"; 847 return false; 848 } 849 850 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 851 // We can use CGFI or CLGFI. 852 return isInt<32>(Imm) || isUInt<32>(Imm); 853 } 854 855 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 856 // We can use ALGFI or SLGFI. 857 return isUInt<32>(Imm) || isUInt<32>(-Imm); 858 } 859 860 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 861 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 862 // Unaligned accesses should never be slower than the expanded version. 863 // We check specifically for aligned accesses in the few cases where 864 // they are required. 865 if (Fast) 866 *Fast = true; 867 return true; 868 } 869 870 // Information about the addressing mode for a memory access. 871 struct AddressingMode { 872 // True if a long displacement is supported. 873 bool LongDisplacement; 874 875 // True if use of index register is supported. 876 bool IndexReg; 877 878 AddressingMode(bool LongDispl, bool IdxReg) : 879 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 880 }; 881 882 // Return the desired addressing mode for a Load which has only one use (in 883 // the same block) which is a Store. 884 static AddressingMode getLoadStoreAddrMode(bool HasVector, 885 Type *Ty) { 886 // With vector support a Load->Store combination may be combined to either 887 // an MVC or vector operations and it seems to work best to allow the 888 // vector addressing mode. 889 if (HasVector) 890 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 891 892 // Otherwise only the MVC case is special. 893 bool MVC = Ty->isIntegerTy(8); 894 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 895 } 896 897 // Return the addressing mode which seems most desirable given an LLVM 898 // Instruction pointer. 899 static AddressingMode 900 supportedAddressingMode(Instruction *I, bool HasVector) { 901 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 902 switch (II->getIntrinsicID()) { 903 default: break; 904 case Intrinsic::memset: 905 case Intrinsic::memmove: 906 case Intrinsic::memcpy: 907 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 908 } 909 } 910 911 if (isa<LoadInst>(I) && I->hasOneUse()) { 912 auto *SingleUser = cast<Instruction>(*I->user_begin()); 913 if (SingleUser->getParent() == I->getParent()) { 914 if (isa<ICmpInst>(SingleUser)) { 915 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 916 if (C->getBitWidth() <= 64 && 917 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 918 // Comparison of memory with 16 bit signed / unsigned immediate 919 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 920 } else if (isa<StoreInst>(SingleUser)) 921 // Load->Store 922 return getLoadStoreAddrMode(HasVector, I->getType()); 923 } 924 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 925 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 926 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 927 // Load->Store 928 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 929 } 930 931 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 932 933 // * Use LDE instead of LE/LEY for z13 to avoid partial register 934 // dependencies (LDE only supports small offsets). 935 // * Utilize the vector registers to hold floating point 936 // values (vector load / store instructions only support small 937 // offsets). 938 939 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 940 I->getOperand(0)->getType()); 941 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 942 bool IsVectorAccess = MemAccessTy->isVectorTy(); 943 944 // A store of an extracted vector element will be combined into a VSTE type 945 // instruction. 946 if (!IsVectorAccess && isa<StoreInst>(I)) { 947 Value *DataOp = I->getOperand(0); 948 if (isa<ExtractElementInst>(DataOp)) 949 IsVectorAccess = true; 950 } 951 952 // A load which gets inserted into a vector element will be combined into a 953 // VLE type instruction. 954 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 955 User *LoadUser = *I->user_begin(); 956 if (isa<InsertElementInst>(LoadUser)) 957 IsVectorAccess = true; 958 } 959 960 if (IsFPAccess || IsVectorAccess) 961 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 962 } 963 964 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 965 } 966 967 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 968 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 969 // Punt on globals for now, although they can be used in limited 970 // RELATIVE LONG cases. 971 if (AM.BaseGV) 972 return false; 973 974 // Require a 20-bit signed offset. 975 if (!isInt<20>(AM.BaseOffs)) 976 return false; 977 978 AddressingMode SupportedAM(true, true); 979 if (I != nullptr) 980 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 981 982 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 983 return false; 984 985 if (!SupportedAM.IndexReg) 986 // No indexing allowed. 987 return AM.Scale == 0; 988 else 989 // Indexing is OK but no scale factor can be applied. 990 return AM.Scale == 0 || AM.Scale == 1; 991 } 992 993 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 994 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 995 return false; 996 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 997 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 998 return FromBits > ToBits; 999 } 1000 1001 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1002 if (!FromVT.isInteger() || !ToVT.isInteger()) 1003 return false; 1004 unsigned FromBits = FromVT.getFixedSizeInBits(); 1005 unsigned ToBits = ToVT.getFixedSizeInBits(); 1006 return FromBits > ToBits; 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // Inline asm support 1011 //===----------------------------------------------------------------------===// 1012 1013 TargetLowering::ConstraintType 1014 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1015 if (Constraint.size() == 1) { 1016 switch (Constraint[0]) { 1017 case 'a': // Address register 1018 case 'd': // Data register (equivalent to 'r') 1019 case 'f': // Floating-point register 1020 case 'h': // High-part register 1021 case 'r': // General-purpose register 1022 case 'v': // Vector register 1023 return C_RegisterClass; 1024 1025 case 'Q': // Memory with base and unsigned 12-bit displacement 1026 case 'R': // Likewise, plus an index 1027 case 'S': // Memory with base and signed 20-bit displacement 1028 case 'T': // Likewise, plus an index 1029 case 'm': // Equivalent to 'T'. 1030 return C_Memory; 1031 1032 case 'I': // Unsigned 8-bit constant 1033 case 'J': // Unsigned 12-bit constant 1034 case 'K': // Signed 16-bit constant 1035 case 'L': // Signed 20-bit displacement (on all targets we support) 1036 case 'M': // 0x7fffffff 1037 return C_Immediate; 1038 1039 default: 1040 break; 1041 } 1042 } 1043 return TargetLowering::getConstraintType(Constraint); 1044 } 1045 1046 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1047 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1048 const char *constraint) const { 1049 ConstraintWeight weight = CW_Invalid; 1050 Value *CallOperandVal = info.CallOperandVal; 1051 // If we don't have a value, we can't do a match, 1052 // but allow it at the lowest weight. 1053 if (!CallOperandVal) 1054 return CW_Default; 1055 Type *type = CallOperandVal->getType(); 1056 // Look at the constraint type. 1057 switch (*constraint) { 1058 default: 1059 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1060 break; 1061 1062 case 'a': // Address register 1063 case 'd': // Data register (equivalent to 'r') 1064 case 'h': // High-part register 1065 case 'r': // General-purpose register 1066 if (CallOperandVal->getType()->isIntegerTy()) 1067 weight = CW_Register; 1068 break; 1069 1070 case 'f': // Floating-point register 1071 if (type->isFloatingPointTy()) 1072 weight = CW_Register; 1073 break; 1074 1075 case 'v': // Vector register 1076 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1077 Subtarget.hasVector()) 1078 weight = CW_Register; 1079 break; 1080 1081 case 'I': // Unsigned 8-bit constant 1082 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1083 if (isUInt<8>(C->getZExtValue())) 1084 weight = CW_Constant; 1085 break; 1086 1087 case 'J': // Unsigned 12-bit constant 1088 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1089 if (isUInt<12>(C->getZExtValue())) 1090 weight = CW_Constant; 1091 break; 1092 1093 case 'K': // Signed 16-bit constant 1094 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1095 if (isInt<16>(C->getSExtValue())) 1096 weight = CW_Constant; 1097 break; 1098 1099 case 'L': // Signed 20-bit displacement (on all targets we support) 1100 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1101 if (isInt<20>(C->getSExtValue())) 1102 weight = CW_Constant; 1103 break; 1104 1105 case 'M': // 0x7fffffff 1106 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1107 if (C->getZExtValue() == 0x7fffffff) 1108 weight = CW_Constant; 1109 break; 1110 } 1111 return weight; 1112 } 1113 1114 // Parse a "{tNNN}" register constraint for which the register type "t" 1115 // has already been verified. MC is the class associated with "t" and 1116 // Map maps 0-based register numbers to LLVM register numbers. 1117 static std::pair<unsigned, const TargetRegisterClass *> 1118 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1119 const unsigned *Map, unsigned Size) { 1120 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1121 if (isdigit(Constraint[2])) { 1122 unsigned Index; 1123 bool Failed = 1124 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1125 if (!Failed && Index < Size && Map[Index]) 1126 return std::make_pair(Map[Index], RC); 1127 } 1128 return std::make_pair(0U, nullptr); 1129 } 1130 1131 std::pair<unsigned, const TargetRegisterClass *> 1132 SystemZTargetLowering::getRegForInlineAsmConstraint( 1133 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1134 if (Constraint.size() == 1) { 1135 // GCC Constraint Letters 1136 switch (Constraint[0]) { 1137 default: break; 1138 case 'd': // Data register (equivalent to 'r') 1139 case 'r': // General-purpose register 1140 if (VT == MVT::i64) 1141 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1142 else if (VT == MVT::i128) 1143 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1144 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1145 1146 case 'a': // Address register 1147 if (VT == MVT::i64) 1148 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1149 else if (VT == MVT::i128) 1150 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1151 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1152 1153 case 'h': // High-part register (an LLVM extension) 1154 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1155 1156 case 'f': // Floating-point register 1157 if (!useSoftFloat()) { 1158 if (VT == MVT::f64) 1159 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1160 else if (VT == MVT::f128) 1161 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1162 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1163 } 1164 break; 1165 case 'v': // Vector register 1166 if (Subtarget.hasVector()) { 1167 if (VT == MVT::f32) 1168 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1169 if (VT == MVT::f64) 1170 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1171 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1172 } 1173 break; 1174 } 1175 } 1176 if (Constraint.size() > 0 && Constraint[0] == '{') { 1177 // We need to override the default register parsing for GPRs and FPRs 1178 // because the interpretation depends on VT. The internal names of 1179 // the registers are also different from the external names 1180 // (F0D and F0S instead of F0, etc.). 1181 if (Constraint[1] == 'r') { 1182 if (VT == MVT::i32) 1183 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1184 SystemZMC::GR32Regs, 16); 1185 if (VT == MVT::i128) 1186 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1187 SystemZMC::GR128Regs, 16); 1188 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1189 SystemZMC::GR64Regs, 16); 1190 } 1191 if (Constraint[1] == 'f') { 1192 if (useSoftFloat()) 1193 return std::make_pair( 1194 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1195 if (VT == MVT::f32) 1196 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1197 SystemZMC::FP32Regs, 16); 1198 if (VT == MVT::f128) 1199 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1200 SystemZMC::FP128Regs, 16); 1201 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1202 SystemZMC::FP64Regs, 16); 1203 } 1204 if (Constraint[1] == 'v') { 1205 if (!Subtarget.hasVector()) 1206 return std::make_pair( 1207 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1208 if (VT == MVT::f32) 1209 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1210 SystemZMC::VR32Regs, 32); 1211 if (VT == MVT::f64) 1212 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1213 SystemZMC::VR64Regs, 32); 1214 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1215 SystemZMC::VR128Regs, 32); 1216 } 1217 } 1218 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1219 } 1220 1221 // FIXME? Maybe this could be a TableGen attribute on some registers and 1222 // this table could be generated automatically from RegInfo. 1223 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1224 const MachineFunction &MF) const { 1225 1226 Register Reg = StringSwitch<Register>(RegName) 1227 .Case("r15", SystemZ::R15D) 1228 .Default(0); 1229 if (Reg) 1230 return Reg; 1231 report_fatal_error("Invalid register name global variable"); 1232 } 1233 1234 void SystemZTargetLowering:: 1235 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1236 std::vector<SDValue> &Ops, 1237 SelectionDAG &DAG) const { 1238 // Only support length 1 constraints for now. 1239 if (Constraint.length() == 1) { 1240 switch (Constraint[0]) { 1241 case 'I': // Unsigned 8-bit constant 1242 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1243 if (isUInt<8>(C->getZExtValue())) 1244 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1245 Op.getValueType())); 1246 return; 1247 1248 case 'J': // Unsigned 12-bit constant 1249 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1250 if (isUInt<12>(C->getZExtValue())) 1251 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1252 Op.getValueType())); 1253 return; 1254 1255 case 'K': // Signed 16-bit constant 1256 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1257 if (isInt<16>(C->getSExtValue())) 1258 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1259 Op.getValueType())); 1260 return; 1261 1262 case 'L': // Signed 20-bit displacement (on all targets we support) 1263 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1264 if (isInt<20>(C->getSExtValue())) 1265 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1266 Op.getValueType())); 1267 return; 1268 1269 case 'M': // 0x7fffffff 1270 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1271 if (C->getZExtValue() == 0x7fffffff) 1272 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1273 Op.getValueType())); 1274 return; 1275 } 1276 } 1277 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // Calling conventions 1282 //===----------------------------------------------------------------------===// 1283 1284 #include "SystemZGenCallingConv.inc" 1285 1286 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1287 CallingConv::ID) const { 1288 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1289 SystemZ::R14D, 0 }; 1290 return ScratchRegs; 1291 } 1292 1293 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1294 Type *ToType) const { 1295 return isTruncateFree(FromType, ToType); 1296 } 1297 1298 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1299 return CI->isTailCall(); 1300 } 1301 1302 // We do not yet support 128-bit single-element vector types. If the user 1303 // attempts to use such types as function argument or return type, prefer 1304 // to error out instead of emitting code violating the ABI. 1305 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1306 if (ArgVT.isVector() && !VT.isVector()) 1307 report_fatal_error("Unsupported vector argument or return type"); 1308 } 1309 1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1311 for (unsigned i = 0; i < Ins.size(); ++i) 1312 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1313 } 1314 1315 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1316 for (unsigned i = 0; i < Outs.size(); ++i) 1317 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1318 } 1319 1320 // Value is a value that has been passed to us in the location described by VA 1321 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1322 // any loads onto Chain. 1323 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1324 CCValAssign &VA, SDValue Chain, 1325 SDValue Value) { 1326 // If the argument has been promoted from a smaller type, insert an 1327 // assertion to capture this. 1328 if (VA.getLocInfo() == CCValAssign::SExt) 1329 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1330 DAG.getValueType(VA.getValVT())); 1331 else if (VA.getLocInfo() == CCValAssign::ZExt) 1332 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1333 DAG.getValueType(VA.getValVT())); 1334 1335 if (VA.isExtInLoc()) 1336 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1337 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1338 // If this is a short vector argument loaded from the stack, 1339 // extend from i64 to full vector size and then bitcast. 1340 assert(VA.getLocVT() == MVT::i64); 1341 assert(VA.getValVT().isVector()); 1342 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1343 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1344 } else 1345 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1346 return Value; 1347 } 1348 1349 // Value is a value of type VA.getValVT() that we need to copy into 1350 // the location described by VA. Return a copy of Value converted to 1351 // VA.getValVT(). The caller is responsible for handling indirect values. 1352 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1353 CCValAssign &VA, SDValue Value) { 1354 switch (VA.getLocInfo()) { 1355 case CCValAssign::SExt: 1356 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1357 case CCValAssign::ZExt: 1358 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1359 case CCValAssign::AExt: 1360 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1361 case CCValAssign::BCvt: { 1362 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1363 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 || 1364 VA.getValVT() == MVT::f128); 1365 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1366 ? MVT::v2i64 1367 : VA.getLocVT(); 1368 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1369 // For ELF, this is a short vector argument to be stored to the stack, 1370 // bitcast to v2i64 and then extract first element. 1371 if (BitCastToType == MVT::v2i64) 1372 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1373 DAG.getConstant(0, DL, MVT::i32)); 1374 return Value; 1375 } 1376 case CCValAssign::Full: 1377 return Value; 1378 default: 1379 llvm_unreachable("Unhandled getLocInfo()"); 1380 } 1381 } 1382 1383 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1384 SDLoc DL(In); 1385 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1386 DAG.getIntPtrConstant(0, DL)); 1387 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1388 DAG.getIntPtrConstant(1, DL)); 1389 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1390 MVT::Untyped, Hi, Lo); 1391 return SDValue(Pair, 0); 1392 } 1393 1394 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1395 SDLoc DL(In); 1396 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1397 DL, MVT::i64, In); 1398 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1399 DL, MVT::i64, In); 1400 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1401 } 1402 1403 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1404 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1405 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1406 EVT ValueVT = Val.getValueType(); 1407 assert((ValueVT != MVT::i128 || 1408 ((NumParts == 1 && PartVT == MVT::Untyped) || 1409 (NumParts == 2 && PartVT == MVT::i64))) && 1410 "Unknown handling of i128 value."); 1411 if (ValueVT == MVT::i128 && NumParts == 1) { 1412 // Inline assembly operand. 1413 Parts[0] = lowerI128ToGR128(DAG, Val); 1414 return true; 1415 } 1416 return false; 1417 } 1418 1419 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1420 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1421 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1422 assert((ValueVT != MVT::i128 || 1423 ((NumParts == 1 && PartVT == MVT::Untyped) || 1424 (NumParts == 2 && PartVT == MVT::i64))) && 1425 "Unknown handling of i128 value."); 1426 if (ValueVT == MVT::i128 && NumParts == 1) 1427 // Inline assembly operand. 1428 return lowerGR128ToI128(DAG, Parts[0]); 1429 return SDValue(); 1430 } 1431 1432 SDValue SystemZTargetLowering::LowerFormalArguments( 1433 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1434 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1435 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1436 MachineFunction &MF = DAG.getMachineFunction(); 1437 MachineFrameInfo &MFI = MF.getFrameInfo(); 1438 MachineRegisterInfo &MRI = MF.getRegInfo(); 1439 SystemZMachineFunctionInfo *FuncInfo = 1440 MF.getInfo<SystemZMachineFunctionInfo>(); 1441 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1442 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1443 1444 // Detect unsupported vector argument types. 1445 if (Subtarget.hasVector()) 1446 VerifyVectorTypes(Ins); 1447 1448 // Assign locations to all of the incoming arguments. 1449 SmallVector<CCValAssign, 16> ArgLocs; 1450 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1451 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1452 1453 unsigned NumFixedGPRs = 0; 1454 unsigned NumFixedFPRs = 0; 1455 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1456 SDValue ArgValue; 1457 CCValAssign &VA = ArgLocs[I]; 1458 EVT LocVT = VA.getLocVT(); 1459 if (VA.isRegLoc()) { 1460 // Arguments passed in registers 1461 const TargetRegisterClass *RC; 1462 switch (LocVT.getSimpleVT().SimpleTy) { 1463 default: 1464 // Integers smaller than i64 should be promoted to i64. 1465 llvm_unreachable("Unexpected argument type"); 1466 case MVT::i32: 1467 NumFixedGPRs += 1; 1468 RC = &SystemZ::GR32BitRegClass; 1469 break; 1470 case MVT::i64: 1471 NumFixedGPRs += 1; 1472 RC = &SystemZ::GR64BitRegClass; 1473 break; 1474 case MVT::f32: 1475 NumFixedFPRs += 1; 1476 RC = &SystemZ::FP32BitRegClass; 1477 break; 1478 case MVT::f64: 1479 NumFixedFPRs += 1; 1480 RC = &SystemZ::FP64BitRegClass; 1481 break; 1482 case MVT::f128: 1483 NumFixedFPRs += 2; 1484 RC = &SystemZ::FP128BitRegClass; 1485 break; 1486 case MVT::v16i8: 1487 case MVT::v8i16: 1488 case MVT::v4i32: 1489 case MVT::v2i64: 1490 case MVT::v4f32: 1491 case MVT::v2f64: 1492 RC = &SystemZ::VR128BitRegClass; 1493 break; 1494 } 1495 1496 Register VReg = MRI.createVirtualRegister(RC); 1497 MRI.addLiveIn(VA.getLocReg(), VReg); 1498 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1499 } else { 1500 assert(VA.isMemLoc() && "Argument not register or memory"); 1501 1502 // Create the frame index object for this incoming parameter. 1503 // FIXME: Pre-include call frame size in the offset, should not 1504 // need to manually add it here. 1505 int64_t ArgSPOffset = VA.getLocMemOffset(); 1506 if (Subtarget.isTargetXPLINK64()) { 1507 auto &XPRegs = 1508 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1509 ArgSPOffset += XPRegs.getCallFrameSize(); 1510 } 1511 int FI = 1512 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1513 1514 // Create the SelectionDAG nodes corresponding to a load 1515 // from this parameter. Unpromoted ints and floats are 1516 // passed as right-justified 8-byte values. 1517 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1518 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1519 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1520 DAG.getIntPtrConstant(4, DL)); 1521 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1522 MachinePointerInfo::getFixedStack(MF, FI)); 1523 } 1524 1525 // Convert the value of the argument register into the value that's 1526 // being passed. 1527 if (VA.getLocInfo() == CCValAssign::Indirect) { 1528 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1529 MachinePointerInfo())); 1530 // If the original argument was split (e.g. i128), we need 1531 // to load all parts of it here (using the same address). 1532 unsigned ArgIndex = Ins[I].OrigArgIndex; 1533 assert (Ins[I].PartOffset == 0); 1534 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1535 CCValAssign &PartVA = ArgLocs[I + 1]; 1536 unsigned PartOffset = Ins[I + 1].PartOffset; 1537 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1538 DAG.getIntPtrConstant(PartOffset, DL)); 1539 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1540 MachinePointerInfo())); 1541 ++I; 1542 } 1543 } else 1544 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1545 } 1546 1547 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1548 if (IsVarArg && Subtarget.isTargetELF()) { 1549 // Save the number of non-varargs registers for later use by va_start, etc. 1550 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1551 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1552 1553 // Likewise the address (in the form of a frame index) of where the 1554 // first stack vararg would be. The 1-byte size here is arbitrary. 1555 int64_t StackSize = CCInfo.getNextStackOffset(); 1556 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1557 1558 // ...and a similar frame index for the caller-allocated save area 1559 // that will be used to store the incoming registers. 1560 int64_t RegSaveOffset = 1561 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1562 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1563 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1564 1565 // Store the FPR varargs in the reserved frame slots. (We store the 1566 // GPRs as part of the prologue.) 1567 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1568 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1569 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1570 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1571 int FI = 1572 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1573 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1574 unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1575 &SystemZ::FP64BitRegClass); 1576 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1577 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1578 MachinePointerInfo::getFixedStack(MF, FI)); 1579 } 1580 // Join the stores, which are independent of one another. 1581 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1582 makeArrayRef(&MemOps[NumFixedFPRs], 1583 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1584 } 1585 } 1586 1587 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1588 // register (R5) 1589 return Chain; 1590 } 1591 1592 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1593 SmallVectorImpl<CCValAssign> &ArgLocs, 1594 SmallVectorImpl<ISD::OutputArg> &Outs) { 1595 // Punt if there are any indirect or stack arguments, or if the call 1596 // needs the callee-saved argument register R6, or if the call uses 1597 // the callee-saved register arguments SwiftSelf and SwiftError. 1598 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1599 CCValAssign &VA = ArgLocs[I]; 1600 if (VA.getLocInfo() == CCValAssign::Indirect) 1601 return false; 1602 if (!VA.isRegLoc()) 1603 return false; 1604 Register Reg = VA.getLocReg(); 1605 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1606 return false; 1607 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1608 return false; 1609 } 1610 return true; 1611 } 1612 1613 SDValue 1614 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1615 SmallVectorImpl<SDValue> &InVals) const { 1616 SelectionDAG &DAG = CLI.DAG; 1617 SDLoc &DL = CLI.DL; 1618 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1619 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1620 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1621 SDValue Chain = CLI.Chain; 1622 SDValue Callee = CLI.Callee; 1623 bool &IsTailCall = CLI.IsTailCall; 1624 CallingConv::ID CallConv = CLI.CallConv; 1625 bool IsVarArg = CLI.IsVarArg; 1626 MachineFunction &MF = DAG.getMachineFunction(); 1627 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1628 LLVMContext &Ctx = *DAG.getContext(); 1629 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1630 1631 // FIXME: z/OS support to be added in later. 1632 if (Subtarget.isTargetXPLINK64()) 1633 IsTailCall = false; 1634 1635 // Detect unsupported vector argument and return types. 1636 if (Subtarget.hasVector()) { 1637 VerifyVectorTypes(Outs); 1638 VerifyVectorTypes(Ins); 1639 } 1640 1641 // Analyze the operands of the call, assigning locations to each operand. 1642 SmallVector<CCValAssign, 16> ArgLocs; 1643 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1644 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1645 1646 // We don't support GuaranteedTailCallOpt, only automatically-detected 1647 // sibling calls. 1648 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1649 IsTailCall = false; 1650 1651 // Get a count of how many bytes are to be pushed on the stack. 1652 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1653 1654 if (Subtarget.isTargetXPLINK64()) 1655 // Although the XPLINK specifications for AMODE64 state that minimum size 1656 // of the param area is minimum 32 bytes and no rounding is otherwise 1657 // specified, we round this area in 64 bytes increments to be compatible 1658 // with existing compilers. 1659 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1660 1661 // Mark the start of the call. 1662 if (!IsTailCall) 1663 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1664 1665 // Copy argument values to their designated locations. 1666 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1667 SmallVector<SDValue, 8> MemOpChains; 1668 SDValue StackPtr; 1669 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1670 CCValAssign &VA = ArgLocs[I]; 1671 SDValue ArgValue = OutVals[I]; 1672 1673 if (VA.getLocInfo() == CCValAssign::Indirect) { 1674 // Store the argument in a stack slot and pass its address. 1675 unsigned ArgIndex = Outs[I].OrigArgIndex; 1676 EVT SlotVT; 1677 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1678 // Allocate the full stack space for a promoted (and split) argument. 1679 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1680 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1681 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1682 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1683 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1684 } else { 1685 SlotVT = Outs[I].ArgVT; 1686 } 1687 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1688 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1689 MemOpChains.push_back( 1690 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1691 MachinePointerInfo::getFixedStack(MF, FI))); 1692 // If the original argument was split (e.g. i128), we need 1693 // to store all parts of it here (and pass just one address). 1694 assert (Outs[I].PartOffset == 0); 1695 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1696 SDValue PartValue = OutVals[I + 1]; 1697 unsigned PartOffset = Outs[I + 1].PartOffset; 1698 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1699 DAG.getIntPtrConstant(PartOffset, DL)); 1700 MemOpChains.push_back( 1701 DAG.getStore(Chain, DL, PartValue, Address, 1702 MachinePointerInfo::getFixedStack(MF, FI))); 1703 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1704 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1705 ++I; 1706 } 1707 ArgValue = SpillSlot; 1708 } else 1709 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1710 1711 if (VA.isRegLoc()) { 1712 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1713 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1714 // and low values. 1715 if (VA.getLocVT() == MVT::i128) 1716 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1717 // Queue up the argument copies and emit them at the end. 1718 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1719 } else { 1720 assert(VA.isMemLoc() && "Argument not register or memory"); 1721 1722 // Work out the address of the stack slot. Unpromoted ints and 1723 // floats are passed as right-justified 8-byte values. 1724 if (!StackPtr.getNode()) 1725 StackPtr = DAG.getCopyFromReg(Chain, DL, 1726 Regs->getStackPointerRegister(), PtrVT); 1727 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1728 VA.getLocMemOffset(); 1729 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1730 Offset += 4; 1731 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1732 DAG.getIntPtrConstant(Offset, DL)); 1733 1734 // Emit the store. 1735 MemOpChains.push_back( 1736 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1737 1738 // Although long doubles or vectors are passed through the stack when 1739 // they are vararg (non-fixed arguments), if a long double or vector 1740 // occupies the third and fourth slot of the argument list GPR3 should 1741 // still shadow the third slot of the argument list. 1742 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1743 SDValue ShadowArgValue = 1744 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1745 DAG.getIntPtrConstant(1, DL)); 1746 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1747 } 1748 } 1749 } 1750 1751 // Join the stores, which are independent of one another. 1752 if (!MemOpChains.empty()) 1753 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1754 1755 // Accept direct calls by converting symbolic call addresses to the 1756 // associated Target* opcodes. Force %r1 to be used for indirect 1757 // tail calls. 1758 SDValue Glue; 1759 // FIXME: Add support for XPLINK using the ADA register. 1760 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1761 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1762 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1763 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1764 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1765 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1766 } else if (IsTailCall) { 1767 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1768 Glue = Chain.getValue(1); 1769 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1770 } 1771 1772 // Build a sequence of copy-to-reg nodes, chained and glued together. 1773 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1774 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1775 RegsToPass[I].second, Glue); 1776 Glue = Chain.getValue(1); 1777 } 1778 1779 // The first call operand is the chain and the second is the target address. 1780 SmallVector<SDValue, 8> Ops; 1781 Ops.push_back(Chain); 1782 Ops.push_back(Callee); 1783 1784 // Add argument registers to the end of the list so that they are 1785 // known live into the call. 1786 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1787 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1788 RegsToPass[I].second.getValueType())); 1789 1790 // Add a register mask operand representing the call-preserved registers. 1791 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1792 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1793 assert(Mask && "Missing call preserved mask for calling convention"); 1794 Ops.push_back(DAG.getRegisterMask(Mask)); 1795 1796 // Glue the call to the argument copies, if any. 1797 if (Glue.getNode()) 1798 Ops.push_back(Glue); 1799 1800 // Emit the call. 1801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1802 if (IsTailCall) 1803 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1804 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1805 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1806 Glue = Chain.getValue(1); 1807 1808 // Mark the end of the call, which is glued to the call itself. 1809 Chain = DAG.getCALLSEQ_END(Chain, 1810 DAG.getConstant(NumBytes, DL, PtrVT, true), 1811 DAG.getConstant(0, DL, PtrVT, true), 1812 Glue, DL); 1813 Glue = Chain.getValue(1); 1814 1815 // Assign locations to each value returned by this call. 1816 SmallVector<CCValAssign, 16> RetLocs; 1817 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1818 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1819 1820 // Copy all of the result registers out of their specified physreg. 1821 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1822 CCValAssign &VA = RetLocs[I]; 1823 1824 // Copy the value out, gluing the copy to the end of the call sequence. 1825 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1826 VA.getLocVT(), Glue); 1827 Chain = RetValue.getValue(1); 1828 Glue = RetValue.getValue(2); 1829 1830 // Convert the value of the return register into the value that's 1831 // being returned. 1832 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1833 } 1834 1835 return Chain; 1836 } 1837 1838 bool SystemZTargetLowering:: 1839 CanLowerReturn(CallingConv::ID CallConv, 1840 MachineFunction &MF, bool isVarArg, 1841 const SmallVectorImpl<ISD::OutputArg> &Outs, 1842 LLVMContext &Context) const { 1843 // Detect unsupported vector return types. 1844 if (Subtarget.hasVector()) 1845 VerifyVectorTypes(Outs); 1846 1847 // Special case that we cannot easily detect in RetCC_SystemZ since 1848 // i128 is not a legal type. 1849 for (auto &Out : Outs) 1850 if (Out.ArgVT == MVT::i128) 1851 return false; 1852 1853 SmallVector<CCValAssign, 16> RetLocs; 1854 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1855 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1856 } 1857 1858 SDValue 1859 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1860 bool IsVarArg, 1861 const SmallVectorImpl<ISD::OutputArg> &Outs, 1862 const SmallVectorImpl<SDValue> &OutVals, 1863 const SDLoc &DL, SelectionDAG &DAG) const { 1864 MachineFunction &MF = DAG.getMachineFunction(); 1865 1866 // Detect unsupported vector return types. 1867 if (Subtarget.hasVector()) 1868 VerifyVectorTypes(Outs); 1869 1870 // Assign locations to each returned value. 1871 SmallVector<CCValAssign, 16> RetLocs; 1872 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1873 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1874 1875 // Quick exit for void returns 1876 if (RetLocs.empty()) 1877 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1878 1879 if (CallConv == CallingConv::GHC) 1880 report_fatal_error("GHC functions return void only"); 1881 1882 // Copy the result values into the output registers. 1883 SDValue Glue; 1884 SmallVector<SDValue, 4> RetOps; 1885 RetOps.push_back(Chain); 1886 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1887 CCValAssign &VA = RetLocs[I]; 1888 SDValue RetValue = OutVals[I]; 1889 1890 // Make the return register live on exit. 1891 assert(VA.isRegLoc() && "Can only return in registers!"); 1892 1893 // Promote the value as required. 1894 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1895 1896 // Chain and glue the copies together. 1897 Register Reg = VA.getLocReg(); 1898 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1899 Glue = Chain.getValue(1); 1900 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1901 } 1902 1903 // Update chain and glue. 1904 RetOps[0] = Chain; 1905 if (Glue.getNode()) 1906 RetOps.push_back(Glue); 1907 1908 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1909 } 1910 1911 // Return true if Op is an intrinsic node with chain that returns the CC value 1912 // as its only (other) argument. Provide the associated SystemZISD opcode and 1913 // the mask of valid CC values if so. 1914 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1915 unsigned &CCValid) { 1916 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1917 switch (Id) { 1918 case Intrinsic::s390_tbegin: 1919 Opcode = SystemZISD::TBEGIN; 1920 CCValid = SystemZ::CCMASK_TBEGIN; 1921 return true; 1922 1923 case Intrinsic::s390_tbegin_nofloat: 1924 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1925 CCValid = SystemZ::CCMASK_TBEGIN; 1926 return true; 1927 1928 case Intrinsic::s390_tend: 1929 Opcode = SystemZISD::TEND; 1930 CCValid = SystemZ::CCMASK_TEND; 1931 return true; 1932 1933 default: 1934 return false; 1935 } 1936 } 1937 1938 // Return true if Op is an intrinsic node without chain that returns the 1939 // CC value as its final argument. Provide the associated SystemZISD 1940 // opcode and the mask of valid CC values if so. 1941 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1942 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1943 switch (Id) { 1944 case Intrinsic::s390_vpkshs: 1945 case Intrinsic::s390_vpksfs: 1946 case Intrinsic::s390_vpksgs: 1947 Opcode = SystemZISD::PACKS_CC; 1948 CCValid = SystemZ::CCMASK_VCMP; 1949 return true; 1950 1951 case Intrinsic::s390_vpklshs: 1952 case Intrinsic::s390_vpklsfs: 1953 case Intrinsic::s390_vpklsgs: 1954 Opcode = SystemZISD::PACKLS_CC; 1955 CCValid = SystemZ::CCMASK_VCMP; 1956 return true; 1957 1958 case Intrinsic::s390_vceqbs: 1959 case Intrinsic::s390_vceqhs: 1960 case Intrinsic::s390_vceqfs: 1961 case Intrinsic::s390_vceqgs: 1962 Opcode = SystemZISD::VICMPES; 1963 CCValid = SystemZ::CCMASK_VCMP; 1964 return true; 1965 1966 case Intrinsic::s390_vchbs: 1967 case Intrinsic::s390_vchhs: 1968 case Intrinsic::s390_vchfs: 1969 case Intrinsic::s390_vchgs: 1970 Opcode = SystemZISD::VICMPHS; 1971 CCValid = SystemZ::CCMASK_VCMP; 1972 return true; 1973 1974 case Intrinsic::s390_vchlbs: 1975 case Intrinsic::s390_vchlhs: 1976 case Intrinsic::s390_vchlfs: 1977 case Intrinsic::s390_vchlgs: 1978 Opcode = SystemZISD::VICMPHLS; 1979 CCValid = SystemZ::CCMASK_VCMP; 1980 return true; 1981 1982 case Intrinsic::s390_vtm: 1983 Opcode = SystemZISD::VTM; 1984 CCValid = SystemZ::CCMASK_VCMP; 1985 return true; 1986 1987 case Intrinsic::s390_vfaebs: 1988 case Intrinsic::s390_vfaehs: 1989 case Intrinsic::s390_vfaefs: 1990 Opcode = SystemZISD::VFAE_CC; 1991 CCValid = SystemZ::CCMASK_ANY; 1992 return true; 1993 1994 case Intrinsic::s390_vfaezbs: 1995 case Intrinsic::s390_vfaezhs: 1996 case Intrinsic::s390_vfaezfs: 1997 Opcode = SystemZISD::VFAEZ_CC; 1998 CCValid = SystemZ::CCMASK_ANY; 1999 return true; 2000 2001 case Intrinsic::s390_vfeebs: 2002 case Intrinsic::s390_vfeehs: 2003 case Intrinsic::s390_vfeefs: 2004 Opcode = SystemZISD::VFEE_CC; 2005 CCValid = SystemZ::CCMASK_ANY; 2006 return true; 2007 2008 case Intrinsic::s390_vfeezbs: 2009 case Intrinsic::s390_vfeezhs: 2010 case Intrinsic::s390_vfeezfs: 2011 Opcode = SystemZISD::VFEEZ_CC; 2012 CCValid = SystemZ::CCMASK_ANY; 2013 return true; 2014 2015 case Intrinsic::s390_vfenebs: 2016 case Intrinsic::s390_vfenehs: 2017 case Intrinsic::s390_vfenefs: 2018 Opcode = SystemZISD::VFENE_CC; 2019 CCValid = SystemZ::CCMASK_ANY; 2020 return true; 2021 2022 case Intrinsic::s390_vfenezbs: 2023 case Intrinsic::s390_vfenezhs: 2024 case Intrinsic::s390_vfenezfs: 2025 Opcode = SystemZISD::VFENEZ_CC; 2026 CCValid = SystemZ::CCMASK_ANY; 2027 return true; 2028 2029 case Intrinsic::s390_vistrbs: 2030 case Intrinsic::s390_vistrhs: 2031 case Intrinsic::s390_vistrfs: 2032 Opcode = SystemZISD::VISTR_CC; 2033 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2034 return true; 2035 2036 case Intrinsic::s390_vstrcbs: 2037 case Intrinsic::s390_vstrchs: 2038 case Intrinsic::s390_vstrcfs: 2039 Opcode = SystemZISD::VSTRC_CC; 2040 CCValid = SystemZ::CCMASK_ANY; 2041 return true; 2042 2043 case Intrinsic::s390_vstrczbs: 2044 case Intrinsic::s390_vstrczhs: 2045 case Intrinsic::s390_vstrczfs: 2046 Opcode = SystemZISD::VSTRCZ_CC; 2047 CCValid = SystemZ::CCMASK_ANY; 2048 return true; 2049 2050 case Intrinsic::s390_vstrsb: 2051 case Intrinsic::s390_vstrsh: 2052 case Intrinsic::s390_vstrsf: 2053 Opcode = SystemZISD::VSTRS_CC; 2054 CCValid = SystemZ::CCMASK_ANY; 2055 return true; 2056 2057 case Intrinsic::s390_vstrszb: 2058 case Intrinsic::s390_vstrszh: 2059 case Intrinsic::s390_vstrszf: 2060 Opcode = SystemZISD::VSTRSZ_CC; 2061 CCValid = SystemZ::CCMASK_ANY; 2062 return true; 2063 2064 case Intrinsic::s390_vfcedbs: 2065 case Intrinsic::s390_vfcesbs: 2066 Opcode = SystemZISD::VFCMPES; 2067 CCValid = SystemZ::CCMASK_VCMP; 2068 return true; 2069 2070 case Intrinsic::s390_vfchdbs: 2071 case Intrinsic::s390_vfchsbs: 2072 Opcode = SystemZISD::VFCMPHS; 2073 CCValid = SystemZ::CCMASK_VCMP; 2074 return true; 2075 2076 case Intrinsic::s390_vfchedbs: 2077 case Intrinsic::s390_vfchesbs: 2078 Opcode = SystemZISD::VFCMPHES; 2079 CCValid = SystemZ::CCMASK_VCMP; 2080 return true; 2081 2082 case Intrinsic::s390_vftcidb: 2083 case Intrinsic::s390_vftcisb: 2084 Opcode = SystemZISD::VFTCI; 2085 CCValid = SystemZ::CCMASK_VCMP; 2086 return true; 2087 2088 case Intrinsic::s390_tdc: 2089 Opcode = SystemZISD::TDC; 2090 CCValid = SystemZ::CCMASK_TDC; 2091 return true; 2092 2093 default: 2094 return false; 2095 } 2096 } 2097 2098 // Emit an intrinsic with chain and an explicit CC register result. 2099 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2100 unsigned Opcode) { 2101 // Copy all operands except the intrinsic ID. 2102 unsigned NumOps = Op.getNumOperands(); 2103 SmallVector<SDValue, 6> Ops; 2104 Ops.reserve(NumOps - 1); 2105 Ops.push_back(Op.getOperand(0)); 2106 for (unsigned I = 2; I < NumOps; ++I) 2107 Ops.push_back(Op.getOperand(I)); 2108 2109 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2110 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2111 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2112 SDValue OldChain = SDValue(Op.getNode(), 1); 2113 SDValue NewChain = SDValue(Intr.getNode(), 1); 2114 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2115 return Intr.getNode(); 2116 } 2117 2118 // Emit an intrinsic with an explicit CC register result. 2119 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2120 unsigned Opcode) { 2121 // Copy all operands except the intrinsic ID. 2122 unsigned NumOps = Op.getNumOperands(); 2123 SmallVector<SDValue, 6> Ops; 2124 Ops.reserve(NumOps - 1); 2125 for (unsigned I = 1; I < NumOps; ++I) 2126 Ops.push_back(Op.getOperand(I)); 2127 2128 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2129 return Intr.getNode(); 2130 } 2131 2132 // CC is a comparison that will be implemented using an integer or 2133 // floating-point comparison. Return the condition code mask for 2134 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2135 // unsigned comparisons and clear for signed ones. In the floating-point 2136 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2137 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2138 #define CONV(X) \ 2139 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2140 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2141 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2142 2143 switch (CC) { 2144 default: 2145 llvm_unreachable("Invalid integer condition!"); 2146 2147 CONV(EQ); 2148 CONV(NE); 2149 CONV(GT); 2150 CONV(GE); 2151 CONV(LT); 2152 CONV(LE); 2153 2154 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2155 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2156 } 2157 #undef CONV 2158 } 2159 2160 // If C can be converted to a comparison against zero, adjust the operands 2161 // as necessary. 2162 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2163 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2164 return; 2165 2166 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2167 if (!ConstOp1) 2168 return; 2169 2170 int64_t Value = ConstOp1->getSExtValue(); 2171 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2172 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2173 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2174 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2175 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2176 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2177 } 2178 } 2179 2180 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2181 // adjust the operands as necessary. 2182 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2183 Comparison &C) { 2184 // For us to make any changes, it must a comparison between a single-use 2185 // load and a constant. 2186 if (!C.Op0.hasOneUse() || 2187 C.Op0.getOpcode() != ISD::LOAD || 2188 C.Op1.getOpcode() != ISD::Constant) 2189 return; 2190 2191 // We must have an 8- or 16-bit load. 2192 auto *Load = cast<LoadSDNode>(C.Op0); 2193 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2194 if ((NumBits != 8 && NumBits != 16) || 2195 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2196 return; 2197 2198 // The load must be an extending one and the constant must be within the 2199 // range of the unextended value. 2200 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2201 uint64_t Value = ConstOp1->getZExtValue(); 2202 uint64_t Mask = (1 << NumBits) - 1; 2203 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2204 // Make sure that ConstOp1 is in range of C.Op0. 2205 int64_t SignedValue = ConstOp1->getSExtValue(); 2206 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2207 return; 2208 if (C.ICmpType != SystemZICMP::SignedOnly) { 2209 // Unsigned comparison between two sign-extended values is equivalent 2210 // to unsigned comparison between two zero-extended values. 2211 Value &= Mask; 2212 } else if (NumBits == 8) { 2213 // Try to treat the comparison as unsigned, so that we can use CLI. 2214 // Adjust CCMask and Value as necessary. 2215 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2216 // Test whether the high bit of the byte is set. 2217 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2218 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2219 // Test whether the high bit of the byte is clear. 2220 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2221 else 2222 // No instruction exists for this combination. 2223 return; 2224 C.ICmpType = SystemZICMP::UnsignedOnly; 2225 } 2226 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2227 if (Value > Mask) 2228 return; 2229 // If the constant is in range, we can use any comparison. 2230 C.ICmpType = SystemZICMP::Any; 2231 } else 2232 return; 2233 2234 // Make sure that the first operand is an i32 of the right extension type. 2235 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2236 ISD::SEXTLOAD : 2237 ISD::ZEXTLOAD); 2238 if (C.Op0.getValueType() != MVT::i32 || 2239 Load->getExtensionType() != ExtType) { 2240 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2241 Load->getBasePtr(), Load->getPointerInfo(), 2242 Load->getMemoryVT(), Load->getAlignment(), 2243 Load->getMemOperand()->getFlags()); 2244 // Update the chain uses. 2245 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2246 } 2247 2248 // Make sure that the second operand is an i32 with the right value. 2249 if (C.Op1.getValueType() != MVT::i32 || 2250 Value != ConstOp1->getZExtValue()) 2251 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2252 } 2253 2254 // Return true if Op is either an unextended load, or a load suitable 2255 // for integer register-memory comparisons of type ICmpType. 2256 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2257 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2258 if (Load) { 2259 // There are no instructions to compare a register with a memory byte. 2260 if (Load->getMemoryVT() == MVT::i8) 2261 return false; 2262 // Otherwise decide on extension type. 2263 switch (Load->getExtensionType()) { 2264 case ISD::NON_EXTLOAD: 2265 return true; 2266 case ISD::SEXTLOAD: 2267 return ICmpType != SystemZICMP::UnsignedOnly; 2268 case ISD::ZEXTLOAD: 2269 return ICmpType != SystemZICMP::SignedOnly; 2270 default: 2271 break; 2272 } 2273 } 2274 return false; 2275 } 2276 2277 // Return true if it is better to swap the operands of C. 2278 static bool shouldSwapCmpOperands(const Comparison &C) { 2279 // Leave f128 comparisons alone, since they have no memory forms. 2280 if (C.Op0.getValueType() == MVT::f128) 2281 return false; 2282 2283 // Always keep a floating-point constant second, since comparisons with 2284 // zero can use LOAD TEST and comparisons with other constants make a 2285 // natural memory operand. 2286 if (isa<ConstantFPSDNode>(C.Op1)) 2287 return false; 2288 2289 // Never swap comparisons with zero since there are many ways to optimize 2290 // those later. 2291 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2292 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2293 return false; 2294 2295 // Also keep natural memory operands second if the loaded value is 2296 // only used here. Several comparisons have memory forms. 2297 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2298 return false; 2299 2300 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2301 // In that case we generally prefer the memory to be second. 2302 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2303 // The only exceptions are when the second operand is a constant and 2304 // we can use things like CHHSI. 2305 if (!ConstOp1) 2306 return true; 2307 // The unsigned memory-immediate instructions can handle 16-bit 2308 // unsigned integers. 2309 if (C.ICmpType != SystemZICMP::SignedOnly && 2310 isUInt<16>(ConstOp1->getZExtValue())) 2311 return false; 2312 // The signed memory-immediate instructions can handle 16-bit 2313 // signed integers. 2314 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2315 isInt<16>(ConstOp1->getSExtValue())) 2316 return false; 2317 return true; 2318 } 2319 2320 // Try to promote the use of CGFR and CLGFR. 2321 unsigned Opcode0 = C.Op0.getOpcode(); 2322 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2323 return true; 2324 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2325 return true; 2326 if (C.ICmpType != SystemZICMP::SignedOnly && 2327 Opcode0 == ISD::AND && 2328 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2329 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2330 return true; 2331 2332 return false; 2333 } 2334 2335 // Check whether C tests for equality between X and Y and whether X - Y 2336 // or Y - X is also computed. In that case it's better to compare the 2337 // result of the subtraction against zero. 2338 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2339 Comparison &C) { 2340 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2341 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2342 for (SDNode *N : C.Op0->uses()) { 2343 if (N->getOpcode() == ISD::SUB && 2344 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2345 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2346 C.Op0 = SDValue(N, 0); 2347 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2348 return; 2349 } 2350 } 2351 } 2352 } 2353 2354 // Check whether C compares a floating-point value with zero and if that 2355 // floating-point value is also negated. In this case we can use the 2356 // negation to set CC, so avoiding separate LOAD AND TEST and 2357 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2358 static void adjustForFNeg(Comparison &C) { 2359 // This optimization is invalid for strict comparisons, since FNEG 2360 // does not raise any exceptions. 2361 if (C.Chain) 2362 return; 2363 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2364 if (C1 && C1->isZero()) { 2365 for (SDNode *N : C.Op0->uses()) { 2366 if (N->getOpcode() == ISD::FNEG) { 2367 C.Op0 = SDValue(N, 0); 2368 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2369 return; 2370 } 2371 } 2372 } 2373 } 2374 2375 // Check whether C compares (shl X, 32) with 0 and whether X is 2376 // also sign-extended. In that case it is better to test the result 2377 // of the sign extension using LTGFR. 2378 // 2379 // This case is important because InstCombine transforms a comparison 2380 // with (sext (trunc X)) into a comparison with (shl X, 32). 2381 static void adjustForLTGFR(Comparison &C) { 2382 // Check for a comparison between (shl X, 32) and 0. 2383 if (C.Op0.getOpcode() == ISD::SHL && 2384 C.Op0.getValueType() == MVT::i64 && 2385 C.Op1.getOpcode() == ISD::Constant && 2386 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2387 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2388 if (C1 && C1->getZExtValue() == 32) { 2389 SDValue ShlOp0 = C.Op0.getOperand(0); 2390 // See whether X has any SIGN_EXTEND_INREG uses. 2391 for (SDNode *N : ShlOp0->uses()) { 2392 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2393 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2394 C.Op0 = SDValue(N, 0); 2395 return; 2396 } 2397 } 2398 } 2399 } 2400 } 2401 2402 // If C compares the truncation of an extending load, try to compare 2403 // the untruncated value instead. This exposes more opportunities to 2404 // reuse CC. 2405 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2406 Comparison &C) { 2407 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2408 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2409 C.Op1.getOpcode() == ISD::Constant && 2410 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2411 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2412 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2413 C.Op0.getValueSizeInBits().getFixedSize()) { 2414 unsigned Type = L->getExtensionType(); 2415 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2416 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2417 C.Op0 = C.Op0.getOperand(0); 2418 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2419 } 2420 } 2421 } 2422 } 2423 2424 // Return true if shift operation N has an in-range constant shift value. 2425 // Store it in ShiftVal if so. 2426 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2427 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2428 if (!Shift) 2429 return false; 2430 2431 uint64_t Amount = Shift->getZExtValue(); 2432 if (Amount >= N.getValueSizeInBits()) 2433 return false; 2434 2435 ShiftVal = Amount; 2436 return true; 2437 } 2438 2439 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2440 // instruction and whether the CC value is descriptive enough to handle 2441 // a comparison of type Opcode between the AND result and CmpVal. 2442 // CCMask says which comparison result is being tested and BitSize is 2443 // the number of bits in the operands. If TEST UNDER MASK can be used, 2444 // return the corresponding CC mask, otherwise return 0. 2445 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2446 uint64_t Mask, uint64_t CmpVal, 2447 unsigned ICmpType) { 2448 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2449 2450 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2451 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2452 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2453 return 0; 2454 2455 // Work out the masks for the lowest and highest bits. 2456 unsigned HighShift = 63 - countLeadingZeros(Mask); 2457 uint64_t High = uint64_t(1) << HighShift; 2458 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2459 2460 // Signed ordered comparisons are effectively unsigned if the sign 2461 // bit is dropped. 2462 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2463 2464 // Check for equality comparisons with 0, or the equivalent. 2465 if (CmpVal == 0) { 2466 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2467 return SystemZ::CCMASK_TM_ALL_0; 2468 if (CCMask == SystemZ::CCMASK_CMP_NE) 2469 return SystemZ::CCMASK_TM_SOME_1; 2470 } 2471 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2472 if (CCMask == SystemZ::CCMASK_CMP_LT) 2473 return SystemZ::CCMASK_TM_ALL_0; 2474 if (CCMask == SystemZ::CCMASK_CMP_GE) 2475 return SystemZ::CCMASK_TM_SOME_1; 2476 } 2477 if (EffectivelyUnsigned && CmpVal < Low) { 2478 if (CCMask == SystemZ::CCMASK_CMP_LE) 2479 return SystemZ::CCMASK_TM_ALL_0; 2480 if (CCMask == SystemZ::CCMASK_CMP_GT) 2481 return SystemZ::CCMASK_TM_SOME_1; 2482 } 2483 2484 // Check for equality comparisons with the mask, or the equivalent. 2485 if (CmpVal == Mask) { 2486 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2487 return SystemZ::CCMASK_TM_ALL_1; 2488 if (CCMask == SystemZ::CCMASK_CMP_NE) 2489 return SystemZ::CCMASK_TM_SOME_0; 2490 } 2491 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2492 if (CCMask == SystemZ::CCMASK_CMP_GT) 2493 return SystemZ::CCMASK_TM_ALL_1; 2494 if (CCMask == SystemZ::CCMASK_CMP_LE) 2495 return SystemZ::CCMASK_TM_SOME_0; 2496 } 2497 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2498 if (CCMask == SystemZ::CCMASK_CMP_GE) 2499 return SystemZ::CCMASK_TM_ALL_1; 2500 if (CCMask == SystemZ::CCMASK_CMP_LT) 2501 return SystemZ::CCMASK_TM_SOME_0; 2502 } 2503 2504 // Check for ordered comparisons with the top bit. 2505 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2506 if (CCMask == SystemZ::CCMASK_CMP_LE) 2507 return SystemZ::CCMASK_TM_MSB_0; 2508 if (CCMask == SystemZ::CCMASK_CMP_GT) 2509 return SystemZ::CCMASK_TM_MSB_1; 2510 } 2511 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2512 if (CCMask == SystemZ::CCMASK_CMP_LT) 2513 return SystemZ::CCMASK_TM_MSB_0; 2514 if (CCMask == SystemZ::CCMASK_CMP_GE) 2515 return SystemZ::CCMASK_TM_MSB_1; 2516 } 2517 2518 // If there are just two bits, we can do equality checks for Low and High 2519 // as well. 2520 if (Mask == Low + High) { 2521 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2522 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2523 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2524 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2525 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2526 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2527 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2528 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2529 } 2530 2531 // Looks like we've exhausted our options. 2532 return 0; 2533 } 2534 2535 // See whether C can be implemented as a TEST UNDER MASK instruction. 2536 // Update the arguments with the TM version if so. 2537 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2538 Comparison &C) { 2539 // Check that we have a comparison with a constant. 2540 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2541 if (!ConstOp1) 2542 return; 2543 uint64_t CmpVal = ConstOp1->getZExtValue(); 2544 2545 // Check whether the nonconstant input is an AND with a constant mask. 2546 Comparison NewC(C); 2547 uint64_t MaskVal; 2548 ConstantSDNode *Mask = nullptr; 2549 if (C.Op0.getOpcode() == ISD::AND) { 2550 NewC.Op0 = C.Op0.getOperand(0); 2551 NewC.Op1 = C.Op0.getOperand(1); 2552 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2553 if (!Mask) 2554 return; 2555 MaskVal = Mask->getZExtValue(); 2556 } else { 2557 // There is no instruction to compare with a 64-bit immediate 2558 // so use TMHH instead if possible. We need an unsigned ordered 2559 // comparison with an i64 immediate. 2560 if (NewC.Op0.getValueType() != MVT::i64 || 2561 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2562 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2563 NewC.ICmpType == SystemZICMP::SignedOnly) 2564 return; 2565 // Convert LE and GT comparisons into LT and GE. 2566 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2567 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2568 if (CmpVal == uint64_t(-1)) 2569 return; 2570 CmpVal += 1; 2571 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2572 } 2573 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2574 // be masked off without changing the result. 2575 MaskVal = -(CmpVal & -CmpVal); 2576 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2577 } 2578 if (!MaskVal) 2579 return; 2580 2581 // Check whether the combination of mask, comparison value and comparison 2582 // type are suitable. 2583 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2584 unsigned NewCCMask, ShiftVal; 2585 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2586 NewC.Op0.getOpcode() == ISD::SHL && 2587 isSimpleShift(NewC.Op0, ShiftVal) && 2588 (MaskVal >> ShiftVal != 0) && 2589 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2590 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2591 MaskVal >> ShiftVal, 2592 CmpVal >> ShiftVal, 2593 SystemZICMP::Any))) { 2594 NewC.Op0 = NewC.Op0.getOperand(0); 2595 MaskVal >>= ShiftVal; 2596 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2597 NewC.Op0.getOpcode() == ISD::SRL && 2598 isSimpleShift(NewC.Op0, ShiftVal) && 2599 (MaskVal << ShiftVal != 0) && 2600 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2601 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2602 MaskVal << ShiftVal, 2603 CmpVal << ShiftVal, 2604 SystemZICMP::UnsignedOnly))) { 2605 NewC.Op0 = NewC.Op0.getOperand(0); 2606 MaskVal <<= ShiftVal; 2607 } else { 2608 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2609 NewC.ICmpType); 2610 if (!NewCCMask) 2611 return; 2612 } 2613 2614 // Go ahead and make the change. 2615 C.Opcode = SystemZISD::TM; 2616 C.Op0 = NewC.Op0; 2617 if (Mask && Mask->getZExtValue() == MaskVal) 2618 C.Op1 = SDValue(Mask, 0); 2619 else 2620 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2621 C.CCValid = SystemZ::CCMASK_TM; 2622 C.CCMask = NewCCMask; 2623 } 2624 2625 // See whether the comparison argument contains a redundant AND 2626 // and remove it if so. This sometimes happens due to the generic 2627 // BRCOND expansion. 2628 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2629 Comparison &C) { 2630 if (C.Op0.getOpcode() != ISD::AND) 2631 return; 2632 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2633 if (!Mask) 2634 return; 2635 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2636 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2637 return; 2638 2639 C.Op0 = C.Op0.getOperand(0); 2640 } 2641 2642 // Return a Comparison that tests the condition-code result of intrinsic 2643 // node Call against constant integer CC using comparison code Cond. 2644 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2645 // and CCValid is the set of possible condition-code results. 2646 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2647 SDValue Call, unsigned CCValid, uint64_t CC, 2648 ISD::CondCode Cond) { 2649 Comparison C(Call, SDValue(), SDValue()); 2650 C.Opcode = Opcode; 2651 C.CCValid = CCValid; 2652 if (Cond == ISD::SETEQ) 2653 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2654 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2655 else if (Cond == ISD::SETNE) 2656 // ...and the inverse of that. 2657 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2658 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2659 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2660 // always true for CC>3. 2661 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2662 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2663 // ...and the inverse of that. 2664 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2665 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2666 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2667 // always true for CC>3. 2668 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2669 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2670 // ...and the inverse of that. 2671 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2672 else 2673 llvm_unreachable("Unexpected integer comparison type"); 2674 C.CCMask &= CCValid; 2675 return C; 2676 } 2677 2678 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2679 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2680 ISD::CondCode Cond, const SDLoc &DL, 2681 SDValue Chain = SDValue(), 2682 bool IsSignaling = false) { 2683 if (CmpOp1.getOpcode() == ISD::Constant) { 2684 assert(!Chain); 2685 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2686 unsigned Opcode, CCValid; 2687 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2688 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2689 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2690 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2691 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2692 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2693 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2694 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2695 } 2696 Comparison C(CmpOp0, CmpOp1, Chain); 2697 C.CCMask = CCMaskForCondCode(Cond); 2698 if (C.Op0.getValueType().isFloatingPoint()) { 2699 C.CCValid = SystemZ::CCMASK_FCMP; 2700 if (!C.Chain) 2701 C.Opcode = SystemZISD::FCMP; 2702 else if (!IsSignaling) 2703 C.Opcode = SystemZISD::STRICT_FCMP; 2704 else 2705 C.Opcode = SystemZISD::STRICT_FCMPS; 2706 adjustForFNeg(C); 2707 } else { 2708 assert(!C.Chain); 2709 C.CCValid = SystemZ::CCMASK_ICMP; 2710 C.Opcode = SystemZISD::ICMP; 2711 // Choose the type of comparison. Equality and inequality tests can 2712 // use either signed or unsigned comparisons. The choice also doesn't 2713 // matter if both sign bits are known to be clear. In those cases we 2714 // want to give the main isel code the freedom to choose whichever 2715 // form fits best. 2716 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2717 C.CCMask == SystemZ::CCMASK_CMP_NE || 2718 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2719 C.ICmpType = SystemZICMP::Any; 2720 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2721 C.ICmpType = SystemZICMP::UnsignedOnly; 2722 else 2723 C.ICmpType = SystemZICMP::SignedOnly; 2724 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2725 adjustForRedundantAnd(DAG, DL, C); 2726 adjustZeroCmp(DAG, DL, C); 2727 adjustSubwordCmp(DAG, DL, C); 2728 adjustForSubtraction(DAG, DL, C); 2729 adjustForLTGFR(C); 2730 adjustICmpTruncate(DAG, DL, C); 2731 } 2732 2733 if (shouldSwapCmpOperands(C)) { 2734 std::swap(C.Op0, C.Op1); 2735 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2736 } 2737 2738 adjustForTestUnderMask(DAG, DL, C); 2739 return C; 2740 } 2741 2742 // Emit the comparison instruction described by C. 2743 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2744 if (!C.Op1.getNode()) { 2745 SDNode *Node; 2746 switch (C.Op0.getOpcode()) { 2747 case ISD::INTRINSIC_W_CHAIN: 2748 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2749 return SDValue(Node, 0); 2750 case ISD::INTRINSIC_WO_CHAIN: 2751 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2752 return SDValue(Node, Node->getNumValues() - 1); 2753 default: 2754 llvm_unreachable("Invalid comparison operands"); 2755 } 2756 } 2757 if (C.Opcode == SystemZISD::ICMP) 2758 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2759 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2760 if (C.Opcode == SystemZISD::TM) { 2761 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2762 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2763 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2764 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2765 } 2766 if (C.Chain) { 2767 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2768 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2769 } 2770 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2771 } 2772 2773 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2774 // 64 bits. Extend is the extension type to use. Store the high part 2775 // in Hi and the low part in Lo. 2776 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2777 SDValue Op0, SDValue Op1, SDValue &Hi, 2778 SDValue &Lo) { 2779 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2780 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2781 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2782 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2783 DAG.getConstant(32, DL, MVT::i64)); 2784 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2785 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2786 } 2787 2788 // Lower a binary operation that produces two VT results, one in each 2789 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2790 // and Opcode performs the GR128 operation. Store the even register result 2791 // in Even and the odd register result in Odd. 2792 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2793 unsigned Opcode, SDValue Op0, SDValue Op1, 2794 SDValue &Even, SDValue &Odd) { 2795 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2796 bool Is32Bit = is32Bit(VT); 2797 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2798 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2799 } 2800 2801 // Return an i32 value that is 1 if the CC value produced by CCReg is 2802 // in the mask CCMask and 0 otherwise. CC is known to have a value 2803 // in CCValid, so other values can be ignored. 2804 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2805 unsigned CCValid, unsigned CCMask) { 2806 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2807 DAG.getConstant(0, DL, MVT::i32), 2808 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2809 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2810 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2811 } 2812 2813 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2814 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2815 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2816 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2817 // floating-point comparisons. 2818 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2819 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2820 switch (CC) { 2821 case ISD::SETOEQ: 2822 case ISD::SETEQ: 2823 switch (Mode) { 2824 case CmpMode::Int: return SystemZISD::VICMPE; 2825 case CmpMode::FP: return SystemZISD::VFCMPE; 2826 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2827 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2828 } 2829 llvm_unreachable("Bad mode"); 2830 2831 case ISD::SETOGE: 2832 case ISD::SETGE: 2833 switch (Mode) { 2834 case CmpMode::Int: return 0; 2835 case CmpMode::FP: return SystemZISD::VFCMPHE; 2836 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2837 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2838 } 2839 llvm_unreachable("Bad mode"); 2840 2841 case ISD::SETOGT: 2842 case ISD::SETGT: 2843 switch (Mode) { 2844 case CmpMode::Int: return SystemZISD::VICMPH; 2845 case CmpMode::FP: return SystemZISD::VFCMPH; 2846 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2847 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2848 } 2849 llvm_unreachable("Bad mode"); 2850 2851 case ISD::SETUGT: 2852 switch (Mode) { 2853 case CmpMode::Int: return SystemZISD::VICMPHL; 2854 case CmpMode::FP: return 0; 2855 case CmpMode::StrictFP: return 0; 2856 case CmpMode::SignalingFP: return 0; 2857 } 2858 llvm_unreachable("Bad mode"); 2859 2860 default: 2861 return 0; 2862 } 2863 } 2864 2865 // Return the SystemZISD vector comparison operation for CC or its inverse, 2866 // or 0 if neither can be done directly. Indicate in Invert whether the 2867 // result is for the inverse of CC. Mode is as above. 2868 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2869 bool &Invert) { 2870 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2871 Invert = false; 2872 return Opcode; 2873 } 2874 2875 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2876 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2877 Invert = true; 2878 return Opcode; 2879 } 2880 2881 return 0; 2882 } 2883 2884 // Return a v2f64 that contains the extended form of elements Start and Start+1 2885 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2886 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2887 SDValue Op, SDValue Chain) { 2888 int Mask[] = { Start, -1, Start + 1, -1 }; 2889 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2890 if (Chain) { 2891 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2892 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2893 } 2894 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2895 } 2896 2897 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2898 // producing a result of type VT. If Chain is nonnull, return the strict form. 2899 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2900 const SDLoc &DL, EVT VT, 2901 SDValue CmpOp0, 2902 SDValue CmpOp1, 2903 SDValue Chain) const { 2904 // There is no hardware support for v4f32 (unless we have the vector 2905 // enhancements facility 1), so extend the vector into two v2f64s 2906 // and compare those. 2907 if (CmpOp0.getValueType() == MVT::v4f32 && 2908 !Subtarget.hasVectorEnhancements1()) { 2909 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2910 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2911 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2912 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2913 if (Chain) { 2914 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2915 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2916 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2917 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2918 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2919 H1.getValue(1), L1.getValue(1), 2920 HRes.getValue(1), LRes.getValue(1) }; 2921 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2922 SDValue Ops[2] = { Res, NewChain }; 2923 return DAG.getMergeValues(Ops, DL); 2924 } 2925 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2926 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2927 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2928 } 2929 if (Chain) { 2930 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2931 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2932 } 2933 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2934 } 2935 2936 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2937 // an integer mask of type VT. If Chain is nonnull, we have a strict 2938 // floating-point comparison. If in addition IsSignaling is true, we have 2939 // a strict signaling floating-point comparison. 2940 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2941 const SDLoc &DL, EVT VT, 2942 ISD::CondCode CC, 2943 SDValue CmpOp0, 2944 SDValue CmpOp1, 2945 SDValue Chain, 2946 bool IsSignaling) const { 2947 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2948 assert (!Chain || IsFP); 2949 assert (!IsSignaling || Chain); 2950 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2951 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2952 bool Invert = false; 2953 SDValue Cmp; 2954 switch (CC) { 2955 // Handle tests for order using (or (ogt y x) (oge x y)). 2956 case ISD::SETUO: 2957 Invert = true; 2958 LLVM_FALLTHROUGH; 2959 case ISD::SETO: { 2960 assert(IsFP && "Unexpected integer comparison"); 2961 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2962 DL, VT, CmpOp1, CmpOp0, Chain); 2963 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2964 DL, VT, CmpOp0, CmpOp1, Chain); 2965 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2966 if (Chain) 2967 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2968 LT.getValue(1), GE.getValue(1)); 2969 break; 2970 } 2971 2972 // Handle <> tests using (or (ogt y x) (ogt x y)). 2973 case ISD::SETUEQ: 2974 Invert = true; 2975 LLVM_FALLTHROUGH; 2976 case ISD::SETONE: { 2977 assert(IsFP && "Unexpected integer comparison"); 2978 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2979 DL, VT, CmpOp1, CmpOp0, Chain); 2980 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2981 DL, VT, CmpOp0, CmpOp1, Chain); 2982 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2983 if (Chain) 2984 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2985 LT.getValue(1), GT.getValue(1)); 2986 break; 2987 } 2988 2989 // Otherwise a single comparison is enough. It doesn't really 2990 // matter whether we try the inversion or the swap first, since 2991 // there are no cases where both work. 2992 default: 2993 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2994 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2995 else { 2996 CC = ISD::getSetCCSwappedOperands(CC); 2997 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2998 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2999 else 3000 llvm_unreachable("Unhandled comparison"); 3001 } 3002 if (Chain) 3003 Chain = Cmp.getValue(1); 3004 break; 3005 } 3006 if (Invert) { 3007 SDValue Mask = 3008 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3009 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3010 } 3011 if (Chain && Chain.getNode() != Cmp.getNode()) { 3012 SDValue Ops[2] = { Cmp, Chain }; 3013 Cmp = DAG.getMergeValues(Ops, DL); 3014 } 3015 return Cmp; 3016 } 3017 3018 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3019 SelectionDAG &DAG) const { 3020 SDValue CmpOp0 = Op.getOperand(0); 3021 SDValue CmpOp1 = Op.getOperand(1); 3022 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3023 SDLoc DL(Op); 3024 EVT VT = Op.getValueType(); 3025 if (VT.isVector()) 3026 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3027 3028 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3029 SDValue CCReg = emitCmp(DAG, DL, C); 3030 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3031 } 3032 3033 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3034 SelectionDAG &DAG, 3035 bool IsSignaling) const { 3036 SDValue Chain = Op.getOperand(0); 3037 SDValue CmpOp0 = Op.getOperand(1); 3038 SDValue CmpOp1 = Op.getOperand(2); 3039 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3040 SDLoc DL(Op); 3041 EVT VT = Op.getNode()->getValueType(0); 3042 if (VT.isVector()) { 3043 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3044 Chain, IsSignaling); 3045 return Res.getValue(Op.getResNo()); 3046 } 3047 3048 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3049 SDValue CCReg = emitCmp(DAG, DL, C); 3050 CCReg->setFlags(Op->getFlags()); 3051 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3052 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3053 return DAG.getMergeValues(Ops, DL); 3054 } 3055 3056 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3057 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3058 SDValue CmpOp0 = Op.getOperand(2); 3059 SDValue CmpOp1 = Op.getOperand(3); 3060 SDValue Dest = Op.getOperand(4); 3061 SDLoc DL(Op); 3062 3063 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3064 SDValue CCReg = emitCmp(DAG, DL, C); 3065 return DAG.getNode( 3066 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3067 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3068 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3069 } 3070 3071 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3072 // allowing Pos and Neg to be wider than CmpOp. 3073 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3074 return (Neg.getOpcode() == ISD::SUB && 3075 Neg.getOperand(0).getOpcode() == ISD::Constant && 3076 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3077 Neg.getOperand(1) == Pos && 3078 (Pos == CmpOp || 3079 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3080 Pos.getOperand(0) == CmpOp))); 3081 } 3082 3083 // Return the absolute or negative absolute of Op; IsNegative decides which. 3084 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3085 bool IsNegative) { 3086 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3087 if (IsNegative) 3088 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3089 DAG.getConstant(0, DL, Op.getValueType()), Op); 3090 return Op; 3091 } 3092 3093 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3094 SelectionDAG &DAG) const { 3095 SDValue CmpOp0 = Op.getOperand(0); 3096 SDValue CmpOp1 = Op.getOperand(1); 3097 SDValue TrueOp = Op.getOperand(2); 3098 SDValue FalseOp = Op.getOperand(3); 3099 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3100 SDLoc DL(Op); 3101 3102 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3103 3104 // Check for absolute and negative-absolute selections, including those 3105 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3106 // This check supplements the one in DAGCombiner. 3107 if (C.Opcode == SystemZISD::ICMP && 3108 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3109 C.CCMask != SystemZ::CCMASK_CMP_NE && 3110 C.Op1.getOpcode() == ISD::Constant && 3111 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3112 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3113 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3114 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3115 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3116 } 3117 3118 SDValue CCReg = emitCmp(DAG, DL, C); 3119 SDValue Ops[] = {TrueOp, FalseOp, 3120 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3121 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3122 3123 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3124 } 3125 3126 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3127 SelectionDAG &DAG) const { 3128 SDLoc DL(Node); 3129 const GlobalValue *GV = Node->getGlobal(); 3130 int64_t Offset = Node->getOffset(); 3131 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3132 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3133 3134 SDValue Result; 3135 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3136 if (isInt<32>(Offset)) { 3137 // Assign anchors at 1<<12 byte boundaries. 3138 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3139 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3140 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3141 3142 // The offset can be folded into the address if it is aligned to a 3143 // halfword. 3144 Offset -= Anchor; 3145 if (Offset != 0 && (Offset & 1) == 0) { 3146 SDValue Full = 3147 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3148 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3149 Offset = 0; 3150 } 3151 } else { 3152 // Conservatively load a constant offset greater than 32 bits into a 3153 // register below. 3154 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3155 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3156 } 3157 } else { 3158 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3159 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3160 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3161 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3162 } 3163 3164 // If there was a non-zero offset that we didn't fold, create an explicit 3165 // addition for it. 3166 if (Offset != 0) 3167 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3168 DAG.getConstant(Offset, DL, PtrVT)); 3169 3170 return Result; 3171 } 3172 3173 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3174 SelectionDAG &DAG, 3175 unsigned Opcode, 3176 SDValue GOTOffset) const { 3177 SDLoc DL(Node); 3178 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3179 SDValue Chain = DAG.getEntryNode(); 3180 SDValue Glue; 3181 3182 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3183 CallingConv::GHC) 3184 report_fatal_error("In GHC calling convention TLS is not supported"); 3185 3186 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3187 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3188 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3189 Glue = Chain.getValue(1); 3190 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3191 Glue = Chain.getValue(1); 3192 3193 // The first call operand is the chain and the second is the TLS symbol. 3194 SmallVector<SDValue, 8> Ops; 3195 Ops.push_back(Chain); 3196 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3197 Node->getValueType(0), 3198 0, 0)); 3199 3200 // Add argument registers to the end of the list so that they are 3201 // known live into the call. 3202 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3203 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3204 3205 // Add a register mask operand representing the call-preserved registers. 3206 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3207 const uint32_t *Mask = 3208 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3209 assert(Mask && "Missing call preserved mask for calling convention"); 3210 Ops.push_back(DAG.getRegisterMask(Mask)); 3211 3212 // Glue the call to the argument copies. 3213 Ops.push_back(Glue); 3214 3215 // Emit the call. 3216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3217 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3218 Glue = Chain.getValue(1); 3219 3220 // Copy the return value from %r2. 3221 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3222 } 3223 3224 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3225 SelectionDAG &DAG) const { 3226 SDValue Chain = DAG.getEntryNode(); 3227 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3228 3229 // The high part of the thread pointer is in access register 0. 3230 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3231 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3232 3233 // The low part of the thread pointer is in access register 1. 3234 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3235 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3236 3237 // Merge them into a single 64-bit address. 3238 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3239 DAG.getConstant(32, DL, PtrVT)); 3240 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3241 } 3242 3243 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3244 SelectionDAG &DAG) const { 3245 if (DAG.getTarget().useEmulatedTLS()) 3246 return LowerToTLSEmulatedModel(Node, DAG); 3247 SDLoc DL(Node); 3248 const GlobalValue *GV = Node->getGlobal(); 3249 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3250 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3251 3252 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3253 CallingConv::GHC) 3254 report_fatal_error("In GHC calling convention TLS is not supported"); 3255 3256 SDValue TP = lowerThreadPointer(DL, DAG); 3257 3258 // Get the offset of GA from the thread pointer, based on the TLS model. 3259 SDValue Offset; 3260 switch (model) { 3261 case TLSModel::GeneralDynamic: { 3262 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3263 SystemZConstantPoolValue *CPV = 3264 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3265 3266 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3267 Offset = DAG.getLoad( 3268 PtrVT, DL, DAG.getEntryNode(), Offset, 3269 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3270 3271 // Call __tls_get_offset to retrieve the offset. 3272 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3273 break; 3274 } 3275 3276 case TLSModel::LocalDynamic: { 3277 // Load the GOT offset of the module ID. 3278 SystemZConstantPoolValue *CPV = 3279 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3280 3281 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3282 Offset = DAG.getLoad( 3283 PtrVT, DL, DAG.getEntryNode(), Offset, 3284 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3285 3286 // Call __tls_get_offset to retrieve the module base offset. 3287 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3288 3289 // Note: The SystemZLDCleanupPass will remove redundant computations 3290 // of the module base offset. Count total number of local-dynamic 3291 // accesses to trigger execution of that pass. 3292 SystemZMachineFunctionInfo* MFI = 3293 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3294 MFI->incNumLocalDynamicTLSAccesses(); 3295 3296 // Add the per-symbol offset. 3297 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3298 3299 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3300 DTPOffset = DAG.getLoad( 3301 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3302 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3303 3304 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3305 break; 3306 } 3307 3308 case TLSModel::InitialExec: { 3309 // Load the offset from the GOT. 3310 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3311 SystemZII::MO_INDNTPOFF); 3312 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3313 Offset = 3314 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3315 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3316 break; 3317 } 3318 3319 case TLSModel::LocalExec: { 3320 // Force the offset into the constant pool and load it from there. 3321 SystemZConstantPoolValue *CPV = 3322 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3323 3324 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3325 Offset = DAG.getLoad( 3326 PtrVT, DL, DAG.getEntryNode(), Offset, 3327 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3328 break; 3329 } 3330 } 3331 3332 // Add the base and offset together. 3333 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3334 } 3335 3336 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3337 SelectionDAG &DAG) const { 3338 SDLoc DL(Node); 3339 const BlockAddress *BA = Node->getBlockAddress(); 3340 int64_t Offset = Node->getOffset(); 3341 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3342 3343 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3344 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3345 return Result; 3346 } 3347 3348 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3349 SelectionDAG &DAG) const { 3350 SDLoc DL(JT); 3351 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3352 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3353 3354 // Use LARL to load the address of the table. 3355 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3356 } 3357 3358 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3359 SelectionDAG &DAG) const { 3360 SDLoc DL(CP); 3361 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3362 3363 SDValue Result; 3364 if (CP->isMachineConstantPoolEntry()) 3365 Result = 3366 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3367 else 3368 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3369 CP->getOffset()); 3370 3371 // Use LARL to load the address of the constant pool entry. 3372 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3373 } 3374 3375 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3376 SelectionDAG &DAG) const { 3377 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3378 MachineFunction &MF = DAG.getMachineFunction(); 3379 MachineFrameInfo &MFI = MF.getFrameInfo(); 3380 MFI.setFrameAddressIsTaken(true); 3381 3382 SDLoc DL(Op); 3383 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3384 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3385 3386 // By definition, the frame address is the address of the back chain. (In 3387 // the case of packed stack without backchain, return the address where the 3388 // backchain would have been stored. This will either be an unused space or 3389 // contain a saved register). 3390 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3391 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3392 3393 // FIXME The frontend should detect this case. 3394 if (Depth > 0) { 3395 report_fatal_error("Unsupported stack frame traversal count"); 3396 } 3397 3398 return BackChain; 3399 } 3400 3401 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3402 SelectionDAG &DAG) const { 3403 MachineFunction &MF = DAG.getMachineFunction(); 3404 MachineFrameInfo &MFI = MF.getFrameInfo(); 3405 MFI.setReturnAddressIsTaken(true); 3406 3407 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3408 return SDValue(); 3409 3410 SDLoc DL(Op); 3411 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3412 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3413 3414 // FIXME The frontend should detect this case. 3415 if (Depth > 0) { 3416 report_fatal_error("Unsupported stack frame traversal count"); 3417 } 3418 3419 // Return R14D, which has the return address. Mark it an implicit live-in. 3420 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3421 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3422 } 3423 3424 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3425 SelectionDAG &DAG) const { 3426 SDLoc DL(Op); 3427 SDValue In = Op.getOperand(0); 3428 EVT InVT = In.getValueType(); 3429 EVT ResVT = Op.getValueType(); 3430 3431 // Convert loads directly. This is normally done by DAGCombiner, 3432 // but we need this case for bitcasts that are created during lowering 3433 // and which are then lowered themselves. 3434 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3435 if (ISD::isNormalLoad(LoadN)) { 3436 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3437 LoadN->getBasePtr(), LoadN->getMemOperand()); 3438 // Update the chain uses. 3439 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3440 return NewLoad; 3441 } 3442 3443 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3444 SDValue In64; 3445 if (Subtarget.hasHighWord()) { 3446 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3447 MVT::i64); 3448 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3449 MVT::i64, SDValue(U64, 0), In); 3450 } else { 3451 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3452 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3453 DAG.getConstant(32, DL, MVT::i64)); 3454 } 3455 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3456 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3457 DL, MVT::f32, Out64); 3458 } 3459 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3460 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3461 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3462 MVT::f64, SDValue(U64, 0), In); 3463 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3464 if (Subtarget.hasHighWord()) 3465 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3466 MVT::i32, Out64); 3467 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3468 DAG.getConstant(32, DL, MVT::i64)); 3469 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3470 } 3471 llvm_unreachable("Unexpected bitcast combination"); 3472 } 3473 3474 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3475 SelectionDAG &DAG) const { 3476 MachineFunction &MF = DAG.getMachineFunction(); 3477 SystemZMachineFunctionInfo *FuncInfo = 3478 MF.getInfo<SystemZMachineFunctionInfo>(); 3479 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3480 3481 SDValue Chain = Op.getOperand(0); 3482 SDValue Addr = Op.getOperand(1); 3483 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3484 SDLoc DL(Op); 3485 3486 // The initial values of each field. 3487 const unsigned NumFields = 4; 3488 SDValue Fields[NumFields] = { 3489 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3490 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3491 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3492 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3493 }; 3494 3495 // Store each field into its respective slot. 3496 SDValue MemOps[NumFields]; 3497 unsigned Offset = 0; 3498 for (unsigned I = 0; I < NumFields; ++I) { 3499 SDValue FieldAddr = Addr; 3500 if (Offset != 0) 3501 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3502 DAG.getIntPtrConstant(Offset, DL)); 3503 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3504 MachinePointerInfo(SV, Offset)); 3505 Offset += 8; 3506 } 3507 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3508 } 3509 3510 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3511 SelectionDAG &DAG) const { 3512 SDValue Chain = Op.getOperand(0); 3513 SDValue DstPtr = Op.getOperand(1); 3514 SDValue SrcPtr = Op.getOperand(2); 3515 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3516 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3517 SDLoc DL(Op); 3518 3519 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3520 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3521 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3522 MachinePointerInfo(SrcSV)); 3523 } 3524 3525 SDValue SystemZTargetLowering:: 3526 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3527 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3528 MachineFunction &MF = DAG.getMachineFunction(); 3529 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3530 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3531 3532 SDValue Chain = Op.getOperand(0); 3533 SDValue Size = Op.getOperand(1); 3534 SDValue Align = Op.getOperand(2); 3535 SDLoc DL(Op); 3536 3537 // If user has set the no alignment function attribute, ignore 3538 // alloca alignments. 3539 uint64_t AlignVal = 3540 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3541 3542 uint64_t StackAlign = TFI->getStackAlignment(); 3543 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3544 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3545 3546 Register SPReg = getStackPointerRegisterToSaveRestore(); 3547 SDValue NeededSpace = Size; 3548 3549 // Get a reference to the stack pointer. 3550 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3551 3552 // If we need a backchain, save it now. 3553 SDValue Backchain; 3554 if (StoreBackchain) 3555 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3556 MachinePointerInfo()); 3557 3558 // Add extra space for alignment if needed. 3559 if (ExtraAlignSpace) 3560 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3561 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3562 3563 // Get the new stack pointer value. 3564 SDValue NewSP; 3565 if (hasInlineStackProbe(MF)) { 3566 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3567 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3568 Chain = NewSP.getValue(1); 3569 } 3570 else { 3571 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3572 // Copy the new stack pointer back. 3573 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3574 } 3575 3576 // The allocated data lives above the 160 bytes allocated for the standard 3577 // frame, plus any outgoing stack arguments. We don't know how much that 3578 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3579 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3580 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3581 3582 // Dynamically realign if needed. 3583 if (RequiredAlign > StackAlign) { 3584 Result = 3585 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3586 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3587 Result = 3588 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3589 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3590 } 3591 3592 if (StoreBackchain) 3593 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3594 MachinePointerInfo()); 3595 3596 SDValue Ops[2] = { Result, Chain }; 3597 return DAG.getMergeValues(Ops, DL); 3598 } 3599 3600 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3601 SDValue Op, SelectionDAG &DAG) const { 3602 SDLoc DL(Op); 3603 3604 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3605 } 3606 3607 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3608 SelectionDAG &DAG) const { 3609 EVT VT = Op.getValueType(); 3610 SDLoc DL(Op); 3611 SDValue Ops[2]; 3612 if (is32Bit(VT)) 3613 // Just do a normal 64-bit multiplication and extract the results. 3614 // We define this so that it can be used for constant division. 3615 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3616 Op.getOperand(1), Ops[1], Ops[0]); 3617 else if (Subtarget.hasMiscellaneousExtensions2()) 3618 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3619 // the high result in the even register. ISD::SMUL_LOHI is defined to 3620 // return the low half first, so the results are in reverse order. 3621 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3622 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3623 else { 3624 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3625 // 3626 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3627 // 3628 // but using the fact that the upper halves are either all zeros 3629 // or all ones: 3630 // 3631 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3632 // 3633 // and grouping the right terms together since they are quicker than the 3634 // multiplication: 3635 // 3636 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3637 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3638 SDValue LL = Op.getOperand(0); 3639 SDValue RL = Op.getOperand(1); 3640 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3641 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3642 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3643 // the high result in the even register. ISD::SMUL_LOHI is defined to 3644 // return the low half first, so the results are in reverse order. 3645 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3646 LL, RL, Ops[1], Ops[0]); 3647 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3648 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3649 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3650 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3651 } 3652 return DAG.getMergeValues(Ops, DL); 3653 } 3654 3655 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3656 SelectionDAG &DAG) const { 3657 EVT VT = Op.getValueType(); 3658 SDLoc DL(Op); 3659 SDValue Ops[2]; 3660 if (is32Bit(VT)) 3661 // Just do a normal 64-bit multiplication and extract the results. 3662 // We define this so that it can be used for constant division. 3663 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3664 Op.getOperand(1), Ops[1], Ops[0]); 3665 else 3666 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3667 // the high result in the even register. ISD::UMUL_LOHI is defined to 3668 // return the low half first, so the results are in reverse order. 3669 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3670 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3671 return DAG.getMergeValues(Ops, DL); 3672 } 3673 3674 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3675 SelectionDAG &DAG) const { 3676 SDValue Op0 = Op.getOperand(0); 3677 SDValue Op1 = Op.getOperand(1); 3678 EVT VT = Op.getValueType(); 3679 SDLoc DL(Op); 3680 3681 // We use DSGF for 32-bit division. This means the first operand must 3682 // always be 64-bit, and the second operand should be 32-bit whenever 3683 // that is possible, to improve performance. 3684 if (is32Bit(VT)) 3685 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3686 else if (DAG.ComputeNumSignBits(Op1) > 32) 3687 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3688 3689 // DSG(F) returns the remainder in the even register and the 3690 // quotient in the odd register. 3691 SDValue Ops[2]; 3692 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3693 return DAG.getMergeValues(Ops, DL); 3694 } 3695 3696 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3697 SelectionDAG &DAG) const { 3698 EVT VT = Op.getValueType(); 3699 SDLoc DL(Op); 3700 3701 // DL(G) returns the remainder in the even register and the 3702 // quotient in the odd register. 3703 SDValue Ops[2]; 3704 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3705 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3706 return DAG.getMergeValues(Ops, DL); 3707 } 3708 3709 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3710 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3711 3712 // Get the known-zero masks for each operand. 3713 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3714 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3715 DAG.computeKnownBits(Ops[1])}; 3716 3717 // See if the upper 32 bits of one operand and the lower 32 bits of the 3718 // other are known zero. They are the low and high operands respectively. 3719 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3720 Known[1].Zero.getZExtValue() }; 3721 unsigned High, Low; 3722 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3723 High = 1, Low = 0; 3724 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3725 High = 0, Low = 1; 3726 else 3727 return Op; 3728 3729 SDValue LowOp = Ops[Low]; 3730 SDValue HighOp = Ops[High]; 3731 3732 // If the high part is a constant, we're better off using IILH. 3733 if (HighOp.getOpcode() == ISD::Constant) 3734 return Op; 3735 3736 // If the low part is a constant that is outside the range of LHI, 3737 // then we're better off using IILF. 3738 if (LowOp.getOpcode() == ISD::Constant) { 3739 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3740 if (!isInt<16>(Value)) 3741 return Op; 3742 } 3743 3744 // Check whether the high part is an AND that doesn't change the 3745 // high 32 bits and just masks out low bits. We can skip it if so. 3746 if (HighOp.getOpcode() == ISD::AND && 3747 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3748 SDValue HighOp0 = HighOp.getOperand(0); 3749 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3750 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3751 HighOp = HighOp0; 3752 } 3753 3754 // Take advantage of the fact that all GR32 operations only change the 3755 // low 32 bits by truncating Low to an i32 and inserting it directly 3756 // using a subreg. The interesting cases are those where the truncation 3757 // can be folded. 3758 SDLoc DL(Op); 3759 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3760 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3761 MVT::i64, HighOp, Low32); 3762 } 3763 3764 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3765 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3766 SelectionDAG &DAG) const { 3767 SDNode *N = Op.getNode(); 3768 SDValue LHS = N->getOperand(0); 3769 SDValue RHS = N->getOperand(1); 3770 SDLoc DL(N); 3771 unsigned BaseOp = 0; 3772 unsigned CCValid = 0; 3773 unsigned CCMask = 0; 3774 3775 switch (Op.getOpcode()) { 3776 default: llvm_unreachable("Unknown instruction!"); 3777 case ISD::SADDO: 3778 BaseOp = SystemZISD::SADDO; 3779 CCValid = SystemZ::CCMASK_ARITH; 3780 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3781 break; 3782 case ISD::SSUBO: 3783 BaseOp = SystemZISD::SSUBO; 3784 CCValid = SystemZ::CCMASK_ARITH; 3785 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3786 break; 3787 case ISD::UADDO: 3788 BaseOp = SystemZISD::UADDO; 3789 CCValid = SystemZ::CCMASK_LOGICAL; 3790 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3791 break; 3792 case ISD::USUBO: 3793 BaseOp = SystemZISD::USUBO; 3794 CCValid = SystemZ::CCMASK_LOGICAL; 3795 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3796 break; 3797 } 3798 3799 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3800 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3801 3802 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3803 if (N->getValueType(1) == MVT::i1) 3804 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3805 3806 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3807 } 3808 3809 static bool isAddCarryChain(SDValue Carry) { 3810 while (Carry.getOpcode() == ISD::ADDCARRY) 3811 Carry = Carry.getOperand(2); 3812 return Carry.getOpcode() == ISD::UADDO; 3813 } 3814 3815 static bool isSubBorrowChain(SDValue Carry) { 3816 while (Carry.getOpcode() == ISD::SUBCARRY) 3817 Carry = Carry.getOperand(2); 3818 return Carry.getOpcode() == ISD::USUBO; 3819 } 3820 3821 // Lower ADDCARRY/SUBCARRY nodes. 3822 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3823 SelectionDAG &DAG) const { 3824 3825 SDNode *N = Op.getNode(); 3826 MVT VT = N->getSimpleValueType(0); 3827 3828 // Let legalize expand this if it isn't a legal type yet. 3829 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3830 return SDValue(); 3831 3832 SDValue LHS = N->getOperand(0); 3833 SDValue RHS = N->getOperand(1); 3834 SDValue Carry = Op.getOperand(2); 3835 SDLoc DL(N); 3836 unsigned BaseOp = 0; 3837 unsigned CCValid = 0; 3838 unsigned CCMask = 0; 3839 3840 switch (Op.getOpcode()) { 3841 default: llvm_unreachable("Unknown instruction!"); 3842 case ISD::ADDCARRY: 3843 if (!isAddCarryChain(Carry)) 3844 return SDValue(); 3845 3846 BaseOp = SystemZISD::ADDCARRY; 3847 CCValid = SystemZ::CCMASK_LOGICAL; 3848 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3849 break; 3850 case ISD::SUBCARRY: 3851 if (!isSubBorrowChain(Carry)) 3852 return SDValue(); 3853 3854 BaseOp = SystemZISD::SUBCARRY; 3855 CCValid = SystemZ::CCMASK_LOGICAL; 3856 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3857 break; 3858 } 3859 3860 // Set the condition code from the carry flag. 3861 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3862 DAG.getConstant(CCValid, DL, MVT::i32), 3863 DAG.getConstant(CCMask, DL, MVT::i32)); 3864 3865 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3866 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3867 3868 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3869 if (N->getValueType(1) == MVT::i1) 3870 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3871 3872 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3873 } 3874 3875 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3876 SelectionDAG &DAG) const { 3877 EVT VT = Op.getValueType(); 3878 SDLoc DL(Op); 3879 Op = Op.getOperand(0); 3880 3881 // Handle vector types via VPOPCT. 3882 if (VT.isVector()) { 3883 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3884 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3885 switch (VT.getScalarSizeInBits()) { 3886 case 8: 3887 break; 3888 case 16: { 3889 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3890 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3891 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3892 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3893 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3894 break; 3895 } 3896 case 32: { 3897 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3898 DAG.getConstant(0, DL, MVT::i32)); 3899 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3900 break; 3901 } 3902 case 64: { 3903 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3904 DAG.getConstant(0, DL, MVT::i32)); 3905 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3906 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3907 break; 3908 } 3909 default: 3910 llvm_unreachable("Unexpected type"); 3911 } 3912 return Op; 3913 } 3914 3915 // Get the known-zero mask for the operand. 3916 KnownBits Known = DAG.computeKnownBits(Op); 3917 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3918 if (NumSignificantBits == 0) 3919 return DAG.getConstant(0, DL, VT); 3920 3921 // Skip known-zero high parts of the operand. 3922 int64_t OrigBitSize = VT.getSizeInBits(); 3923 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3924 BitSize = std::min(BitSize, OrigBitSize); 3925 3926 // The POPCNT instruction counts the number of bits in each byte. 3927 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3928 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3929 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3930 3931 // Add up per-byte counts in a binary tree. All bits of Op at 3932 // position larger than BitSize remain zero throughout. 3933 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3934 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3935 if (BitSize != OrigBitSize) 3936 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3937 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3938 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3939 } 3940 3941 // Extract overall result from high byte. 3942 if (BitSize > 8) 3943 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3944 DAG.getConstant(BitSize - 8, DL, VT)); 3945 3946 return Op; 3947 } 3948 3949 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3950 SelectionDAG &DAG) const { 3951 SDLoc DL(Op); 3952 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3953 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3954 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3955 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3956 3957 // The only fence that needs an instruction is a sequentially-consistent 3958 // cross-thread fence. 3959 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3960 FenceSSID == SyncScope::System) { 3961 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3962 Op.getOperand(0)), 3963 0); 3964 } 3965 3966 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3967 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3968 } 3969 3970 // Op is an atomic load. Lower it into a normal volatile load. 3971 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3972 SelectionDAG &DAG) const { 3973 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3974 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3975 Node->getChain(), Node->getBasePtr(), 3976 Node->getMemoryVT(), Node->getMemOperand()); 3977 } 3978 3979 // Op is an atomic store. Lower it into a normal volatile store. 3980 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3981 SelectionDAG &DAG) const { 3982 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3983 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3984 Node->getBasePtr(), Node->getMemoryVT(), 3985 Node->getMemOperand()); 3986 // We have to enforce sequential consistency by performing a 3987 // serialization operation after the store. 3988 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 3989 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3990 MVT::Other, Chain), 0); 3991 return Chain; 3992 } 3993 3994 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3995 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3996 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3997 SelectionDAG &DAG, 3998 unsigned Opcode) const { 3999 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4000 4001 // 32-bit operations need no code outside the main loop. 4002 EVT NarrowVT = Node->getMemoryVT(); 4003 EVT WideVT = MVT::i32; 4004 if (NarrowVT == WideVT) 4005 return Op; 4006 4007 int64_t BitSize = NarrowVT.getSizeInBits(); 4008 SDValue ChainIn = Node->getChain(); 4009 SDValue Addr = Node->getBasePtr(); 4010 SDValue Src2 = Node->getVal(); 4011 MachineMemOperand *MMO = Node->getMemOperand(); 4012 SDLoc DL(Node); 4013 EVT PtrVT = Addr.getValueType(); 4014 4015 // Convert atomic subtracts of constants into additions. 4016 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4017 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4018 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4019 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4020 } 4021 4022 // Get the address of the containing word. 4023 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4024 DAG.getConstant(-4, DL, PtrVT)); 4025 4026 // Get the number of bits that the word must be rotated left in order 4027 // to bring the field to the top bits of a GR32. 4028 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4029 DAG.getConstant(3, DL, PtrVT)); 4030 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4031 4032 // Get the complementing shift amount, for rotating a field in the top 4033 // bits back to its proper position. 4034 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4035 DAG.getConstant(0, DL, WideVT), BitShift); 4036 4037 // Extend the source operand to 32 bits and prepare it for the inner loop. 4038 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4039 // operations require the source to be shifted in advance. (This shift 4040 // can be folded if the source is constant.) For AND and NAND, the lower 4041 // bits must be set, while for other opcodes they should be left clear. 4042 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4043 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4044 DAG.getConstant(32 - BitSize, DL, WideVT)); 4045 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4046 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4047 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4048 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4049 4050 // Construct the ATOMIC_LOADW_* node. 4051 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4052 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4053 DAG.getConstant(BitSize, DL, WideVT) }; 4054 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4055 NarrowVT, MMO); 4056 4057 // Rotate the result of the final CS so that the field is in the lower 4058 // bits of a GR32, then truncate it. 4059 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4060 DAG.getConstant(BitSize, DL, WideVT)); 4061 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4062 4063 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4064 return DAG.getMergeValues(RetOps, DL); 4065 } 4066 4067 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4068 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4069 // operations into additions. 4070 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4071 SelectionDAG &DAG) const { 4072 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4073 EVT MemVT = Node->getMemoryVT(); 4074 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4075 // A full-width operation. 4076 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4077 SDValue Src2 = Node->getVal(); 4078 SDValue NegSrc2; 4079 SDLoc DL(Src2); 4080 4081 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4082 // Use an addition if the operand is constant and either LAA(G) is 4083 // available or the negative value is in the range of A(G)FHI. 4084 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4085 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4086 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4087 } else if (Subtarget.hasInterlockedAccess1()) 4088 // Use LAA(G) if available. 4089 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4090 Src2); 4091 4092 if (NegSrc2.getNode()) 4093 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4094 Node->getChain(), Node->getBasePtr(), NegSrc2, 4095 Node->getMemOperand()); 4096 4097 // Use the node as-is. 4098 return Op; 4099 } 4100 4101 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4102 } 4103 4104 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4105 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4106 SelectionDAG &DAG) const { 4107 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4108 SDValue ChainIn = Node->getOperand(0); 4109 SDValue Addr = Node->getOperand(1); 4110 SDValue CmpVal = Node->getOperand(2); 4111 SDValue SwapVal = Node->getOperand(3); 4112 MachineMemOperand *MMO = Node->getMemOperand(); 4113 SDLoc DL(Node); 4114 4115 // We have native support for 32-bit and 64-bit compare and swap, but we 4116 // still need to expand extracting the "success" result from the CC. 4117 EVT NarrowVT = Node->getMemoryVT(); 4118 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4119 if (NarrowVT == WideVT) { 4120 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4121 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4122 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4123 DL, Tys, Ops, NarrowVT, MMO); 4124 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4125 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4126 4127 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4128 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4129 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4130 return SDValue(); 4131 } 4132 4133 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4134 // via a fullword ATOMIC_CMP_SWAPW operation. 4135 int64_t BitSize = NarrowVT.getSizeInBits(); 4136 EVT PtrVT = Addr.getValueType(); 4137 4138 // Get the address of the containing word. 4139 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4140 DAG.getConstant(-4, DL, PtrVT)); 4141 4142 // Get the number of bits that the word must be rotated left in order 4143 // to bring the field to the top bits of a GR32. 4144 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4145 DAG.getConstant(3, DL, PtrVT)); 4146 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4147 4148 // Get the complementing shift amount, for rotating a field in the top 4149 // bits back to its proper position. 4150 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4151 DAG.getConstant(0, DL, WideVT), BitShift); 4152 4153 // Construct the ATOMIC_CMP_SWAPW node. 4154 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4155 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4156 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4157 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4158 VTList, Ops, NarrowVT, MMO); 4159 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4160 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4161 4162 // emitAtomicCmpSwapW() will zero extend the result (original value). 4163 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4164 DAG.getValueType(NarrowVT)); 4165 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4166 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4167 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4168 return SDValue(); 4169 } 4170 4171 MachineMemOperand::Flags 4172 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4173 // Because of how we convert atomic_load and atomic_store to normal loads and 4174 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4175 // since DAGCombine hasn't been updated to account for atomic, but non 4176 // volatile loads. (See D57601) 4177 if (auto *SI = dyn_cast<StoreInst>(&I)) 4178 if (SI->isAtomic()) 4179 return MachineMemOperand::MOVolatile; 4180 if (auto *LI = dyn_cast<LoadInst>(&I)) 4181 if (LI->isAtomic()) 4182 return MachineMemOperand::MOVolatile; 4183 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4184 if (AI->isAtomic()) 4185 return MachineMemOperand::MOVolatile; 4186 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4187 if (AI->isAtomic()) 4188 return MachineMemOperand::MOVolatile; 4189 return MachineMemOperand::MONone; 4190 } 4191 4192 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4193 SelectionDAG &DAG) const { 4194 MachineFunction &MF = DAG.getMachineFunction(); 4195 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4196 auto *Regs = Subtarget->getSpecialRegisters(); 4197 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4198 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4199 report_fatal_error("Variable-sized stack allocations are not supported " 4200 "in GHC calling convention"); 4201 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4202 Regs->getStackPointerRegister(), Op.getValueType()); 4203 } 4204 4205 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4206 SelectionDAG &DAG) const { 4207 MachineFunction &MF = DAG.getMachineFunction(); 4208 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4209 auto *Regs = Subtarget->getSpecialRegisters(); 4210 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4211 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4212 4213 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4214 report_fatal_error("Variable-sized stack allocations are not supported " 4215 "in GHC calling convention"); 4216 4217 SDValue Chain = Op.getOperand(0); 4218 SDValue NewSP = Op.getOperand(1); 4219 SDValue Backchain; 4220 SDLoc DL(Op); 4221 4222 if (StoreBackchain) { 4223 SDValue OldSP = DAG.getCopyFromReg( 4224 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4225 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4226 MachinePointerInfo()); 4227 } 4228 4229 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4230 4231 if (StoreBackchain) 4232 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4233 MachinePointerInfo()); 4234 4235 return Chain; 4236 } 4237 4238 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4239 SelectionDAG &DAG) const { 4240 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4241 if (!IsData) 4242 // Just preserve the chain. 4243 return Op.getOperand(0); 4244 4245 SDLoc DL(Op); 4246 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4247 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4248 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4249 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4250 Op.getOperand(1)}; 4251 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4252 Node->getVTList(), Ops, 4253 Node->getMemoryVT(), Node->getMemOperand()); 4254 } 4255 4256 // Convert condition code in CCReg to an i32 value. 4257 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4258 SDLoc DL(CCReg); 4259 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4260 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4261 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4262 } 4263 4264 SDValue 4265 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4266 SelectionDAG &DAG) const { 4267 unsigned Opcode, CCValid; 4268 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4269 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4270 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4271 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4272 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4273 return SDValue(); 4274 } 4275 4276 return SDValue(); 4277 } 4278 4279 SDValue 4280 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4281 SelectionDAG &DAG) const { 4282 unsigned Opcode, CCValid; 4283 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4284 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4285 if (Op->getNumValues() == 1) 4286 return getCCResult(DAG, SDValue(Node, 0)); 4287 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4288 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4289 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4290 } 4291 4292 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4293 switch (Id) { 4294 case Intrinsic::thread_pointer: 4295 return lowerThreadPointer(SDLoc(Op), DAG); 4296 4297 case Intrinsic::s390_vpdi: 4298 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4299 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4300 4301 case Intrinsic::s390_vperm: 4302 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4303 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4304 4305 case Intrinsic::s390_vuphb: 4306 case Intrinsic::s390_vuphh: 4307 case Intrinsic::s390_vuphf: 4308 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4309 Op.getOperand(1)); 4310 4311 case Intrinsic::s390_vuplhb: 4312 case Intrinsic::s390_vuplhh: 4313 case Intrinsic::s390_vuplhf: 4314 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4315 Op.getOperand(1)); 4316 4317 case Intrinsic::s390_vuplb: 4318 case Intrinsic::s390_vuplhw: 4319 case Intrinsic::s390_vuplf: 4320 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4321 Op.getOperand(1)); 4322 4323 case Intrinsic::s390_vupllb: 4324 case Intrinsic::s390_vupllh: 4325 case Intrinsic::s390_vupllf: 4326 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4327 Op.getOperand(1)); 4328 4329 case Intrinsic::s390_vsumb: 4330 case Intrinsic::s390_vsumh: 4331 case Intrinsic::s390_vsumgh: 4332 case Intrinsic::s390_vsumgf: 4333 case Intrinsic::s390_vsumqf: 4334 case Intrinsic::s390_vsumqg: 4335 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4336 Op.getOperand(1), Op.getOperand(2)); 4337 } 4338 4339 return SDValue(); 4340 } 4341 4342 namespace { 4343 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4344 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4345 // Operand is the constant third operand, otherwise it is the number of 4346 // bytes in each element of the result. 4347 struct Permute { 4348 unsigned Opcode; 4349 unsigned Operand; 4350 unsigned char Bytes[SystemZ::VectorBytes]; 4351 }; 4352 } 4353 4354 static const Permute PermuteForms[] = { 4355 // VMRHG 4356 { SystemZISD::MERGE_HIGH, 8, 4357 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4358 // VMRHF 4359 { SystemZISD::MERGE_HIGH, 4, 4360 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4361 // VMRHH 4362 { SystemZISD::MERGE_HIGH, 2, 4363 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4364 // VMRHB 4365 { SystemZISD::MERGE_HIGH, 1, 4366 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4367 // VMRLG 4368 { SystemZISD::MERGE_LOW, 8, 4369 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4370 // VMRLF 4371 { SystemZISD::MERGE_LOW, 4, 4372 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4373 // VMRLH 4374 { SystemZISD::MERGE_LOW, 2, 4375 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4376 // VMRLB 4377 { SystemZISD::MERGE_LOW, 1, 4378 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4379 // VPKG 4380 { SystemZISD::PACK, 4, 4381 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4382 // VPKF 4383 { SystemZISD::PACK, 2, 4384 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4385 // VPKH 4386 { SystemZISD::PACK, 1, 4387 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4388 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4389 { SystemZISD::PERMUTE_DWORDS, 4, 4390 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4391 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4392 { SystemZISD::PERMUTE_DWORDS, 1, 4393 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4394 }; 4395 4396 // Called after matching a vector shuffle against a particular pattern. 4397 // Both the original shuffle and the pattern have two vector operands. 4398 // OpNos[0] is the operand of the original shuffle that should be used for 4399 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4400 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4401 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4402 // for operands 0 and 1 of the pattern. 4403 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4404 if (OpNos[0] < 0) { 4405 if (OpNos[1] < 0) 4406 return false; 4407 OpNo0 = OpNo1 = OpNos[1]; 4408 } else if (OpNos[1] < 0) { 4409 OpNo0 = OpNo1 = OpNos[0]; 4410 } else { 4411 OpNo0 = OpNos[0]; 4412 OpNo1 = OpNos[1]; 4413 } 4414 return true; 4415 } 4416 4417 // Bytes is a VPERM-like permute vector, except that -1 is used for 4418 // undefined bytes. Return true if the VPERM can be implemented using P. 4419 // When returning true set OpNo0 to the VPERM operand that should be 4420 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4421 // 4422 // For example, if swapping the VPERM operands allows P to match, OpNo0 4423 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4424 // operand, but rewriting it to use two duplicated operands allows it to 4425 // match P, then OpNo0 and OpNo1 will be the same. 4426 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4427 unsigned &OpNo0, unsigned &OpNo1) { 4428 int OpNos[] = { -1, -1 }; 4429 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4430 int Elt = Bytes[I]; 4431 if (Elt >= 0) { 4432 // Make sure that the two permute vectors use the same suboperand 4433 // byte number. Only the operand numbers (the high bits) are 4434 // allowed to differ. 4435 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4436 return false; 4437 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4438 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4439 // Make sure that the operand mappings are consistent with previous 4440 // elements. 4441 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4442 return false; 4443 OpNos[ModelOpNo] = RealOpNo; 4444 } 4445 } 4446 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4447 } 4448 4449 // As above, but search for a matching permute. 4450 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4451 unsigned &OpNo0, unsigned &OpNo1) { 4452 for (auto &P : PermuteForms) 4453 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4454 return &P; 4455 return nullptr; 4456 } 4457 4458 // Bytes is a VPERM-like permute vector, except that -1 is used for 4459 // undefined bytes. This permute is an operand of an outer permute. 4460 // See whether redistributing the -1 bytes gives a shuffle that can be 4461 // implemented using P. If so, set Transform to a VPERM-like permute vector 4462 // that, when applied to the result of P, gives the original permute in Bytes. 4463 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4464 const Permute &P, 4465 SmallVectorImpl<int> &Transform) { 4466 unsigned To = 0; 4467 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4468 int Elt = Bytes[From]; 4469 if (Elt < 0) 4470 // Byte number From of the result is undefined. 4471 Transform[From] = -1; 4472 else { 4473 while (P.Bytes[To] != Elt) { 4474 To += 1; 4475 if (To == SystemZ::VectorBytes) 4476 return false; 4477 } 4478 Transform[From] = To; 4479 } 4480 } 4481 return true; 4482 } 4483 4484 // As above, but search for a matching permute. 4485 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4486 SmallVectorImpl<int> &Transform) { 4487 for (auto &P : PermuteForms) 4488 if (matchDoublePermute(Bytes, P, Transform)) 4489 return &P; 4490 return nullptr; 4491 } 4492 4493 // Convert the mask of the given shuffle op into a byte-level mask, 4494 // as if it had type vNi8. 4495 static bool getVPermMask(SDValue ShuffleOp, 4496 SmallVectorImpl<int> &Bytes) { 4497 EVT VT = ShuffleOp.getValueType(); 4498 unsigned NumElements = VT.getVectorNumElements(); 4499 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4500 4501 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4502 Bytes.resize(NumElements * BytesPerElement, -1); 4503 for (unsigned I = 0; I < NumElements; ++I) { 4504 int Index = VSN->getMaskElt(I); 4505 if (Index >= 0) 4506 for (unsigned J = 0; J < BytesPerElement; ++J) 4507 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4508 } 4509 return true; 4510 } 4511 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4512 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4513 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4514 Bytes.resize(NumElements * BytesPerElement, -1); 4515 for (unsigned I = 0; I < NumElements; ++I) 4516 for (unsigned J = 0; J < BytesPerElement; ++J) 4517 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4518 return true; 4519 } 4520 return false; 4521 } 4522 4523 // Bytes is a VPERM-like permute vector, except that -1 is used for 4524 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4525 // the result come from a contiguous sequence of bytes from one input. 4526 // Set Base to the selector for the first byte if so. 4527 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4528 unsigned BytesPerElement, int &Base) { 4529 Base = -1; 4530 for (unsigned I = 0; I < BytesPerElement; ++I) { 4531 if (Bytes[Start + I] >= 0) { 4532 unsigned Elem = Bytes[Start + I]; 4533 if (Base < 0) { 4534 Base = Elem - I; 4535 // Make sure the bytes would come from one input operand. 4536 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4537 return false; 4538 } else if (unsigned(Base) != Elem - I) 4539 return false; 4540 } 4541 } 4542 return true; 4543 } 4544 4545 // Bytes is a VPERM-like permute vector, except that -1 is used for 4546 // undefined bytes. Return true if it can be performed using VSLDB. 4547 // When returning true, set StartIndex to the shift amount and OpNo0 4548 // and OpNo1 to the VPERM operands that should be used as the first 4549 // and second shift operand respectively. 4550 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4551 unsigned &StartIndex, unsigned &OpNo0, 4552 unsigned &OpNo1) { 4553 int OpNos[] = { -1, -1 }; 4554 int Shift = -1; 4555 for (unsigned I = 0; I < 16; ++I) { 4556 int Index = Bytes[I]; 4557 if (Index >= 0) { 4558 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4559 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4560 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4561 if (Shift < 0) 4562 Shift = ExpectedShift; 4563 else if (Shift != ExpectedShift) 4564 return false; 4565 // Make sure that the operand mappings are consistent with previous 4566 // elements. 4567 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4568 return false; 4569 OpNos[ModelOpNo] = RealOpNo; 4570 } 4571 } 4572 StartIndex = Shift; 4573 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4574 } 4575 4576 // Create a node that performs P on operands Op0 and Op1, casting the 4577 // operands to the appropriate type. The type of the result is determined by P. 4578 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4579 const Permute &P, SDValue Op0, SDValue Op1) { 4580 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4581 // elements of a PACK are twice as wide as the outputs. 4582 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4583 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4584 P.Operand); 4585 // Cast both operands to the appropriate type. 4586 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4587 SystemZ::VectorBytes / InBytes); 4588 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4589 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4590 SDValue Op; 4591 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4592 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4593 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4594 } else if (P.Opcode == SystemZISD::PACK) { 4595 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4596 SystemZ::VectorBytes / P.Operand); 4597 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4598 } else { 4599 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4600 } 4601 return Op; 4602 } 4603 4604 static bool isZeroVector(SDValue N) { 4605 if (N->getOpcode() == ISD::BITCAST) 4606 N = N->getOperand(0); 4607 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4608 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4609 return Op->getZExtValue() == 0; 4610 return ISD::isBuildVectorAllZeros(N.getNode()); 4611 } 4612 4613 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4614 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4615 for (unsigned I = 0; I < Num ; I++) 4616 if (isZeroVector(Ops[I])) 4617 return I; 4618 return UINT32_MAX; 4619 } 4620 4621 // Bytes is a VPERM-like permute vector, except that -1 is used for 4622 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4623 // VSLDB or VPERM. 4624 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4625 SDValue *Ops, 4626 const SmallVectorImpl<int> &Bytes) { 4627 for (unsigned I = 0; I < 2; ++I) 4628 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4629 4630 // First see whether VSLDB can be used. 4631 unsigned StartIndex, OpNo0, OpNo1; 4632 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4633 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4634 Ops[OpNo1], 4635 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4636 4637 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4638 // eliminate a zero vector by reusing any zero index in the permute vector. 4639 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4640 if (ZeroVecIdx != UINT32_MAX) { 4641 bool MaskFirst = true; 4642 int ZeroIdx = -1; 4643 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4644 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4645 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4646 if (OpNo == ZeroVecIdx && I == 0) { 4647 // If the first byte is zero, use mask as first operand. 4648 ZeroIdx = 0; 4649 break; 4650 } 4651 if (OpNo != ZeroVecIdx && Byte == 0) { 4652 // If mask contains a zero, use it by placing that vector first. 4653 ZeroIdx = I + SystemZ::VectorBytes; 4654 MaskFirst = false; 4655 break; 4656 } 4657 } 4658 if (ZeroIdx != -1) { 4659 SDValue IndexNodes[SystemZ::VectorBytes]; 4660 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4661 if (Bytes[I] >= 0) { 4662 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4663 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4664 if (OpNo == ZeroVecIdx) 4665 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4666 else { 4667 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4668 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4669 } 4670 } else 4671 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4672 } 4673 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4674 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4675 if (MaskFirst) 4676 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4677 Mask); 4678 else 4679 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4680 Mask); 4681 } 4682 } 4683 4684 SDValue IndexNodes[SystemZ::VectorBytes]; 4685 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4686 if (Bytes[I] >= 0) 4687 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4688 else 4689 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4690 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4691 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4692 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4693 } 4694 4695 namespace { 4696 // Describes a general N-operand vector shuffle. 4697 struct GeneralShuffle { 4698 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4699 void addUndef(); 4700 bool add(SDValue, unsigned); 4701 SDValue getNode(SelectionDAG &, const SDLoc &); 4702 void tryPrepareForUnpack(); 4703 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4704 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4705 4706 // The operands of the shuffle. 4707 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4708 4709 // Index I is -1 if byte I of the result is undefined. Otherwise the 4710 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4711 // Bytes[I] / SystemZ::VectorBytes. 4712 SmallVector<int, SystemZ::VectorBytes> Bytes; 4713 4714 // The type of the shuffle result. 4715 EVT VT; 4716 4717 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4718 unsigned UnpackFromEltSize; 4719 }; 4720 } 4721 4722 // Add an extra undefined element to the shuffle. 4723 void GeneralShuffle::addUndef() { 4724 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4725 for (unsigned I = 0; I < BytesPerElement; ++I) 4726 Bytes.push_back(-1); 4727 } 4728 4729 // Add an extra element to the shuffle, taking it from element Elem of Op. 4730 // A null Op indicates a vector input whose value will be calculated later; 4731 // there is at most one such input per shuffle and it always has the same 4732 // type as the result. Aborts and returns false if the source vector elements 4733 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4734 // LLVM they become implicitly extended, but this is rare and not optimized. 4735 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4736 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4737 4738 // The source vector can have wider elements than the result, 4739 // either through an explicit TRUNCATE or because of type legalization. 4740 // We want the least significant part. 4741 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4742 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4743 4744 // Return false if the source elements are smaller than their destination 4745 // elements. 4746 if (FromBytesPerElement < BytesPerElement) 4747 return false; 4748 4749 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4750 (FromBytesPerElement - BytesPerElement)); 4751 4752 // Look through things like shuffles and bitcasts. 4753 while (Op.getNode()) { 4754 if (Op.getOpcode() == ISD::BITCAST) 4755 Op = Op.getOperand(0); 4756 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4757 // See whether the bytes we need come from a contiguous part of one 4758 // operand. 4759 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4760 if (!getVPermMask(Op, OpBytes)) 4761 break; 4762 int NewByte; 4763 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4764 break; 4765 if (NewByte < 0) { 4766 addUndef(); 4767 return true; 4768 } 4769 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4770 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4771 } else if (Op.isUndef()) { 4772 addUndef(); 4773 return true; 4774 } else 4775 break; 4776 } 4777 4778 // Make sure that the source of the extraction is in Ops. 4779 unsigned OpNo = 0; 4780 for (; OpNo < Ops.size(); ++OpNo) 4781 if (Ops[OpNo] == Op) 4782 break; 4783 if (OpNo == Ops.size()) 4784 Ops.push_back(Op); 4785 4786 // Add the element to Bytes. 4787 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4788 for (unsigned I = 0; I < BytesPerElement; ++I) 4789 Bytes.push_back(Base + I); 4790 4791 return true; 4792 } 4793 4794 // Return SDNodes for the completed shuffle. 4795 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4796 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4797 4798 if (Ops.size() == 0) 4799 return DAG.getUNDEF(VT); 4800 4801 // Use a single unpack if possible as the last operation. 4802 tryPrepareForUnpack(); 4803 4804 // Make sure that there are at least two shuffle operands. 4805 if (Ops.size() == 1) 4806 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4807 4808 // Create a tree of shuffles, deferring root node until after the loop. 4809 // Try to redistribute the undefined elements of non-root nodes so that 4810 // the non-root shuffles match something like a pack or merge, then adjust 4811 // the parent node's permute vector to compensate for the new order. 4812 // Among other things, this copes with vectors like <2 x i16> that were 4813 // padded with undefined elements during type legalization. 4814 // 4815 // In the best case this redistribution will lead to the whole tree 4816 // using packs and merges. It should rarely be a loss in other cases. 4817 unsigned Stride = 1; 4818 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4819 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4820 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4821 4822 // Create a mask for just these two operands. 4823 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4824 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4825 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4826 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4827 if (OpNo == I) 4828 NewBytes[J] = Byte; 4829 else if (OpNo == I + Stride) 4830 NewBytes[J] = SystemZ::VectorBytes + Byte; 4831 else 4832 NewBytes[J] = -1; 4833 } 4834 // See if it would be better to reorganize NewMask to avoid using VPERM. 4835 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4836 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4837 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4838 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4839 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4840 if (NewBytes[J] >= 0) { 4841 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4842 "Invalid double permute"); 4843 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4844 } else 4845 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4846 } 4847 } else { 4848 // Just use NewBytes on the operands. 4849 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4850 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4851 if (NewBytes[J] >= 0) 4852 Bytes[J] = I * SystemZ::VectorBytes + J; 4853 } 4854 } 4855 } 4856 4857 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4858 if (Stride > 1) { 4859 Ops[1] = Ops[Stride]; 4860 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4861 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4862 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4863 } 4864 4865 // Look for an instruction that can do the permute without resorting 4866 // to VPERM. 4867 unsigned OpNo0, OpNo1; 4868 SDValue Op; 4869 if (unpackWasPrepared() && Ops[1].isUndef()) 4870 Op = Ops[0]; 4871 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4872 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4873 else 4874 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4875 4876 Op = insertUnpackIfPrepared(DAG, DL, Op); 4877 4878 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4879 } 4880 4881 #ifndef NDEBUG 4882 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4883 dbgs() << Msg.c_str() << " { "; 4884 for (unsigned i = 0; i < Bytes.size(); i++) 4885 dbgs() << Bytes[i] << " "; 4886 dbgs() << "}\n"; 4887 } 4888 #endif 4889 4890 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4891 // after all else by removing the zero vector and the effect of the unpack on 4892 // Bytes. 4893 void GeneralShuffle::tryPrepareForUnpack() { 4894 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4895 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4896 return; 4897 4898 // Only do this if removing the zero vector reduces the depth, otherwise 4899 // the critical path will increase with the final unpack. 4900 if (Ops.size() > 2 && 4901 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4902 return; 4903 4904 // Find an unpack that would allow removing the zero vector from Ops. 4905 UnpackFromEltSize = 1; 4906 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4907 bool MatchUnpack = true; 4908 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4909 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4910 unsigned ToEltSize = UnpackFromEltSize * 2; 4911 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4912 if (!IsZextByte) 4913 SrcBytes.push_back(Bytes[Elt]); 4914 if (Bytes[Elt] != -1) { 4915 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4916 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4917 MatchUnpack = false; 4918 break; 4919 } 4920 } 4921 } 4922 if (MatchUnpack) { 4923 if (Ops.size() == 2) { 4924 // Don't use unpack if a single source operand needs rearrangement. 4925 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4926 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4927 UnpackFromEltSize = UINT_MAX; 4928 return; 4929 } 4930 } 4931 break; 4932 } 4933 } 4934 if (UnpackFromEltSize > 4) 4935 return; 4936 4937 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4938 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4939 << ".\n"; 4940 dumpBytes(Bytes, "Original Bytes vector:");); 4941 4942 // Apply the unpack in reverse to the Bytes array. 4943 unsigned B = 0; 4944 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4945 Elt += UnpackFromEltSize; 4946 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4947 Bytes[B] = Bytes[Elt]; 4948 } 4949 while (B < SystemZ::VectorBytes) 4950 Bytes[B++] = -1; 4951 4952 // Remove the zero vector from Ops 4953 Ops.erase(&Ops[ZeroVecOpNo]); 4954 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4955 if (Bytes[I] >= 0) { 4956 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4957 if (OpNo > ZeroVecOpNo) 4958 Bytes[I] -= SystemZ::VectorBytes; 4959 } 4960 4961 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4962 dbgs() << "\n";); 4963 } 4964 4965 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4966 const SDLoc &DL, 4967 SDValue Op) { 4968 if (!unpackWasPrepared()) 4969 return Op; 4970 unsigned InBits = UnpackFromEltSize * 8; 4971 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4972 SystemZ::VectorBits / InBits); 4973 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4974 unsigned OutBits = InBits * 2; 4975 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4976 SystemZ::VectorBits / OutBits); 4977 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4978 } 4979 4980 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4981 static bool isScalarToVector(SDValue Op) { 4982 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4983 if (!Op.getOperand(I).isUndef()) 4984 return false; 4985 return true; 4986 } 4987 4988 // Return a vector of type VT that contains Value in the first element. 4989 // The other elements don't matter. 4990 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4991 SDValue Value) { 4992 // If we have a constant, replicate it to all elements and let the 4993 // BUILD_VECTOR lowering take care of it. 4994 if (Value.getOpcode() == ISD::Constant || 4995 Value.getOpcode() == ISD::ConstantFP) { 4996 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4997 return DAG.getBuildVector(VT, DL, Ops); 4998 } 4999 if (Value.isUndef()) 5000 return DAG.getUNDEF(VT); 5001 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5002 } 5003 5004 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5005 // element 1. Used for cases in which replication is cheap. 5006 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5007 SDValue Op0, SDValue Op1) { 5008 if (Op0.isUndef()) { 5009 if (Op1.isUndef()) 5010 return DAG.getUNDEF(VT); 5011 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5012 } 5013 if (Op1.isUndef()) 5014 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5015 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5016 buildScalarToVector(DAG, DL, VT, Op0), 5017 buildScalarToVector(DAG, DL, VT, Op1)); 5018 } 5019 5020 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5021 // vector for them. 5022 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5023 SDValue Op1) { 5024 if (Op0.isUndef() && Op1.isUndef()) 5025 return DAG.getUNDEF(MVT::v2i64); 5026 // If one of the two inputs is undefined then replicate the other one, 5027 // in order to avoid using another register unnecessarily. 5028 if (Op0.isUndef()) 5029 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5030 else if (Op1.isUndef()) 5031 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5032 else { 5033 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5034 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5035 } 5036 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5037 } 5038 5039 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5040 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5041 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5042 // would benefit from this representation and return it if so. 5043 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5044 BuildVectorSDNode *BVN) { 5045 EVT VT = BVN->getValueType(0); 5046 unsigned NumElements = VT.getVectorNumElements(); 5047 5048 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5049 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5050 // need a BUILD_VECTOR, add an additional placeholder operand for that 5051 // BUILD_VECTOR and store its operands in ResidueOps. 5052 GeneralShuffle GS(VT); 5053 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5054 bool FoundOne = false; 5055 for (unsigned I = 0; I < NumElements; ++I) { 5056 SDValue Op = BVN->getOperand(I); 5057 if (Op.getOpcode() == ISD::TRUNCATE) 5058 Op = Op.getOperand(0); 5059 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5060 Op.getOperand(1).getOpcode() == ISD::Constant) { 5061 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5062 if (!GS.add(Op.getOperand(0), Elem)) 5063 return SDValue(); 5064 FoundOne = true; 5065 } else if (Op.isUndef()) { 5066 GS.addUndef(); 5067 } else { 5068 if (!GS.add(SDValue(), ResidueOps.size())) 5069 return SDValue(); 5070 ResidueOps.push_back(BVN->getOperand(I)); 5071 } 5072 } 5073 5074 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5075 if (!FoundOne) 5076 return SDValue(); 5077 5078 // Create the BUILD_VECTOR for the remaining elements, if any. 5079 if (!ResidueOps.empty()) { 5080 while (ResidueOps.size() < NumElements) 5081 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5082 for (auto &Op : GS.Ops) { 5083 if (!Op.getNode()) { 5084 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5085 break; 5086 } 5087 } 5088 } 5089 return GS.getNode(DAG, SDLoc(BVN)); 5090 } 5091 5092 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5093 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5094 return true; 5095 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5096 return true; 5097 return false; 5098 } 5099 5100 // Combine GPR scalar values Elems into a vector of type VT. 5101 SDValue 5102 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5103 SmallVectorImpl<SDValue> &Elems) const { 5104 // See whether there is a single replicated value. 5105 SDValue Single; 5106 unsigned int NumElements = Elems.size(); 5107 unsigned int Count = 0; 5108 for (auto Elem : Elems) { 5109 if (!Elem.isUndef()) { 5110 if (!Single.getNode()) 5111 Single = Elem; 5112 else if (Elem != Single) { 5113 Single = SDValue(); 5114 break; 5115 } 5116 Count += 1; 5117 } 5118 } 5119 // There are three cases here: 5120 // 5121 // - if the only defined element is a loaded one, the best sequence 5122 // is a replicating load. 5123 // 5124 // - otherwise, if the only defined element is an i64 value, we will 5125 // end up with the same VLVGP sequence regardless of whether we short-cut 5126 // for replication or fall through to the later code. 5127 // 5128 // - otherwise, if the only defined element is an i32 or smaller value, 5129 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5130 // This is only a win if the single defined element is used more than once. 5131 // In other cases we're better off using a single VLVGx. 5132 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5133 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5134 5135 // If all elements are loads, use VLREP/VLEs (below). 5136 bool AllLoads = true; 5137 for (auto Elem : Elems) 5138 if (!isVectorElementLoad(Elem)) { 5139 AllLoads = false; 5140 break; 5141 } 5142 5143 // The best way of building a v2i64 from two i64s is to use VLVGP. 5144 if (VT == MVT::v2i64 && !AllLoads) 5145 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5146 5147 // Use a 64-bit merge high to combine two doubles. 5148 if (VT == MVT::v2f64 && !AllLoads) 5149 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5150 5151 // Build v4f32 values directly from the FPRs: 5152 // 5153 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5154 // V V VMRHF 5155 // <ABxx> <CDxx> 5156 // V VMRHG 5157 // <ABCD> 5158 if (VT == MVT::v4f32 && !AllLoads) { 5159 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5160 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5161 // Avoid unnecessary undefs by reusing the other operand. 5162 if (Op01.isUndef()) 5163 Op01 = Op23; 5164 else if (Op23.isUndef()) 5165 Op23 = Op01; 5166 // Merging identical replications is a no-op. 5167 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5168 return Op01; 5169 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5170 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5171 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5172 DL, MVT::v2i64, Op01, Op23); 5173 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5174 } 5175 5176 // Collect the constant terms. 5177 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5178 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5179 5180 unsigned NumConstants = 0; 5181 for (unsigned I = 0; I < NumElements; ++I) { 5182 SDValue Elem = Elems[I]; 5183 if (Elem.getOpcode() == ISD::Constant || 5184 Elem.getOpcode() == ISD::ConstantFP) { 5185 NumConstants += 1; 5186 Constants[I] = Elem; 5187 Done[I] = true; 5188 } 5189 } 5190 // If there was at least one constant, fill in the other elements of 5191 // Constants with undefs to get a full vector constant and use that 5192 // as the starting point. 5193 SDValue Result; 5194 SDValue ReplicatedVal; 5195 if (NumConstants > 0) { 5196 for (unsigned I = 0; I < NumElements; ++I) 5197 if (!Constants[I].getNode()) 5198 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5199 Result = DAG.getBuildVector(VT, DL, Constants); 5200 } else { 5201 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5202 // avoid a false dependency on any previous contents of the vector 5203 // register. 5204 5205 // Use a VLREP if at least one element is a load. Make sure to replicate 5206 // the load with the most elements having its value. 5207 std::map<const SDNode*, unsigned> UseCounts; 5208 SDNode *LoadMaxUses = nullptr; 5209 for (unsigned I = 0; I < NumElements; ++I) 5210 if (isVectorElementLoad(Elems[I])) { 5211 SDNode *Ld = Elems[I].getNode(); 5212 UseCounts[Ld]++; 5213 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5214 LoadMaxUses = Ld; 5215 } 5216 if (LoadMaxUses != nullptr) { 5217 ReplicatedVal = SDValue(LoadMaxUses, 0); 5218 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5219 } else { 5220 // Try to use VLVGP. 5221 unsigned I1 = NumElements / 2 - 1; 5222 unsigned I2 = NumElements - 1; 5223 bool Def1 = !Elems[I1].isUndef(); 5224 bool Def2 = !Elems[I2].isUndef(); 5225 if (Def1 || Def2) { 5226 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5227 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5228 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5229 joinDwords(DAG, DL, Elem1, Elem2)); 5230 Done[I1] = true; 5231 Done[I2] = true; 5232 } else 5233 Result = DAG.getUNDEF(VT); 5234 } 5235 } 5236 5237 // Use VLVGx to insert the other elements. 5238 for (unsigned I = 0; I < NumElements; ++I) 5239 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5240 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5241 DAG.getConstant(I, DL, MVT::i32)); 5242 return Result; 5243 } 5244 5245 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5246 SelectionDAG &DAG) const { 5247 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5248 SDLoc DL(Op); 5249 EVT VT = Op.getValueType(); 5250 5251 if (BVN->isConstant()) { 5252 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5253 return Op; 5254 5255 // Fall back to loading it from memory. 5256 return SDValue(); 5257 } 5258 5259 // See if we should use shuffles to construct the vector from other vectors. 5260 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5261 return Res; 5262 5263 // Detect SCALAR_TO_VECTOR conversions. 5264 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5265 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5266 5267 // Otherwise use buildVector to build the vector up from GPRs. 5268 unsigned NumElements = Op.getNumOperands(); 5269 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5270 for (unsigned I = 0; I < NumElements; ++I) 5271 Ops[I] = Op.getOperand(I); 5272 return buildVector(DAG, DL, VT, Ops); 5273 } 5274 5275 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5276 SelectionDAG &DAG) const { 5277 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5278 SDLoc DL(Op); 5279 EVT VT = Op.getValueType(); 5280 unsigned NumElements = VT.getVectorNumElements(); 5281 5282 if (VSN->isSplat()) { 5283 SDValue Op0 = Op.getOperand(0); 5284 unsigned Index = VSN->getSplatIndex(); 5285 assert(Index < VT.getVectorNumElements() && 5286 "Splat index should be defined and in first operand"); 5287 // See whether the value we're splatting is directly available as a scalar. 5288 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5289 Op0.getOpcode() == ISD::BUILD_VECTOR) 5290 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5291 // Otherwise keep it as a vector-to-vector operation. 5292 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5293 DAG.getTargetConstant(Index, DL, MVT::i32)); 5294 } 5295 5296 GeneralShuffle GS(VT); 5297 for (unsigned I = 0; I < NumElements; ++I) { 5298 int Elt = VSN->getMaskElt(I); 5299 if (Elt < 0) 5300 GS.addUndef(); 5301 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5302 unsigned(Elt) % NumElements)) 5303 return SDValue(); 5304 } 5305 return GS.getNode(DAG, SDLoc(VSN)); 5306 } 5307 5308 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5309 SelectionDAG &DAG) const { 5310 SDLoc DL(Op); 5311 // Just insert the scalar into element 0 of an undefined vector. 5312 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5313 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5314 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5315 } 5316 5317 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5318 SelectionDAG &DAG) const { 5319 // Handle insertions of floating-point values. 5320 SDLoc DL(Op); 5321 SDValue Op0 = Op.getOperand(0); 5322 SDValue Op1 = Op.getOperand(1); 5323 SDValue Op2 = Op.getOperand(2); 5324 EVT VT = Op.getValueType(); 5325 5326 // Insertions into constant indices of a v2f64 can be done using VPDI. 5327 // However, if the inserted value is a bitcast or a constant then it's 5328 // better to use GPRs, as below. 5329 if (VT == MVT::v2f64 && 5330 Op1.getOpcode() != ISD::BITCAST && 5331 Op1.getOpcode() != ISD::ConstantFP && 5332 Op2.getOpcode() == ISD::Constant) { 5333 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5334 unsigned Mask = VT.getVectorNumElements() - 1; 5335 if (Index <= Mask) 5336 return Op; 5337 } 5338 5339 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5340 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5341 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5342 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5343 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5344 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5345 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5346 } 5347 5348 SDValue 5349 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5350 SelectionDAG &DAG) const { 5351 // Handle extractions of floating-point values. 5352 SDLoc DL(Op); 5353 SDValue Op0 = Op.getOperand(0); 5354 SDValue Op1 = Op.getOperand(1); 5355 EVT VT = Op.getValueType(); 5356 EVT VecVT = Op0.getValueType(); 5357 5358 // Extractions of constant indices can be done directly. 5359 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5360 uint64_t Index = CIndexN->getZExtValue(); 5361 unsigned Mask = VecVT.getVectorNumElements() - 1; 5362 if (Index <= Mask) 5363 return Op; 5364 } 5365 5366 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5367 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5368 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5369 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5370 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5371 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5372 } 5373 5374 SDValue SystemZTargetLowering:: 5375 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5376 SDValue PackedOp = Op.getOperand(0); 5377 EVT OutVT = Op.getValueType(); 5378 EVT InVT = PackedOp.getValueType(); 5379 unsigned ToBits = OutVT.getScalarSizeInBits(); 5380 unsigned FromBits = InVT.getScalarSizeInBits(); 5381 do { 5382 FromBits *= 2; 5383 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5384 SystemZ::VectorBits / FromBits); 5385 PackedOp = 5386 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5387 } while (FromBits != ToBits); 5388 return PackedOp; 5389 } 5390 5391 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5392 SDValue SystemZTargetLowering:: 5393 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5394 SDValue PackedOp = Op.getOperand(0); 5395 SDLoc DL(Op); 5396 EVT OutVT = Op.getValueType(); 5397 EVT InVT = PackedOp.getValueType(); 5398 unsigned InNumElts = InVT.getVectorNumElements(); 5399 unsigned OutNumElts = OutVT.getVectorNumElements(); 5400 unsigned NumInPerOut = InNumElts / OutNumElts; 5401 5402 SDValue ZeroVec = 5403 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5404 5405 SmallVector<int, 16> Mask(InNumElts); 5406 unsigned ZeroVecElt = InNumElts; 5407 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5408 unsigned MaskElt = PackedElt * NumInPerOut; 5409 unsigned End = MaskElt + NumInPerOut - 1; 5410 for (; MaskElt < End; MaskElt++) 5411 Mask[MaskElt] = ZeroVecElt++; 5412 Mask[MaskElt] = PackedElt; 5413 } 5414 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5415 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5416 } 5417 5418 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5419 unsigned ByScalar) const { 5420 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5421 SDValue Op0 = Op.getOperand(0); 5422 SDValue Op1 = Op.getOperand(1); 5423 SDLoc DL(Op); 5424 EVT VT = Op.getValueType(); 5425 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5426 5427 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5428 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5429 APInt SplatBits, SplatUndef; 5430 unsigned SplatBitSize; 5431 bool HasAnyUndefs; 5432 // Check for constant splats. Use ElemBitSize as the minimum element 5433 // width and reject splats that need wider elements. 5434 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5435 ElemBitSize, true) && 5436 SplatBitSize == ElemBitSize) { 5437 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5438 DL, MVT::i32); 5439 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5440 } 5441 // Check for variable splats. 5442 BitVector UndefElements; 5443 SDValue Splat = BVN->getSplatValue(&UndefElements); 5444 if (Splat) { 5445 // Since i32 is the smallest legal type, we either need a no-op 5446 // or a truncation. 5447 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5448 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5449 } 5450 } 5451 5452 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5453 // and the shift amount is directly available in a GPR. 5454 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5455 if (VSN->isSplat()) { 5456 SDValue VSNOp0 = VSN->getOperand(0); 5457 unsigned Index = VSN->getSplatIndex(); 5458 assert(Index < VT.getVectorNumElements() && 5459 "Splat index should be defined and in first operand"); 5460 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5461 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5462 // Since i32 is the smallest legal type, we either need a no-op 5463 // or a truncation. 5464 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5465 VSNOp0.getOperand(Index)); 5466 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5467 } 5468 } 5469 } 5470 5471 // Otherwise just treat the current form as legal. 5472 return Op; 5473 } 5474 5475 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5476 SelectionDAG &DAG) const { 5477 switch (Op.getOpcode()) { 5478 case ISD::FRAMEADDR: 5479 return lowerFRAMEADDR(Op, DAG); 5480 case ISD::RETURNADDR: 5481 return lowerRETURNADDR(Op, DAG); 5482 case ISD::BR_CC: 5483 return lowerBR_CC(Op, DAG); 5484 case ISD::SELECT_CC: 5485 return lowerSELECT_CC(Op, DAG); 5486 case ISD::SETCC: 5487 return lowerSETCC(Op, DAG); 5488 case ISD::STRICT_FSETCC: 5489 return lowerSTRICT_FSETCC(Op, DAG, false); 5490 case ISD::STRICT_FSETCCS: 5491 return lowerSTRICT_FSETCC(Op, DAG, true); 5492 case ISD::GlobalAddress: 5493 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5494 case ISD::GlobalTLSAddress: 5495 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5496 case ISD::BlockAddress: 5497 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5498 case ISD::JumpTable: 5499 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5500 case ISD::ConstantPool: 5501 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5502 case ISD::BITCAST: 5503 return lowerBITCAST(Op, DAG); 5504 case ISD::VASTART: 5505 return lowerVASTART(Op, DAG); 5506 case ISD::VACOPY: 5507 return lowerVACOPY(Op, DAG); 5508 case ISD::DYNAMIC_STACKALLOC: 5509 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5510 case ISD::GET_DYNAMIC_AREA_OFFSET: 5511 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5512 case ISD::SMUL_LOHI: 5513 return lowerSMUL_LOHI(Op, DAG); 5514 case ISD::UMUL_LOHI: 5515 return lowerUMUL_LOHI(Op, DAG); 5516 case ISD::SDIVREM: 5517 return lowerSDIVREM(Op, DAG); 5518 case ISD::UDIVREM: 5519 return lowerUDIVREM(Op, DAG); 5520 case ISD::SADDO: 5521 case ISD::SSUBO: 5522 case ISD::UADDO: 5523 case ISD::USUBO: 5524 return lowerXALUO(Op, DAG); 5525 case ISD::ADDCARRY: 5526 case ISD::SUBCARRY: 5527 return lowerADDSUBCARRY(Op, DAG); 5528 case ISD::OR: 5529 return lowerOR(Op, DAG); 5530 case ISD::CTPOP: 5531 return lowerCTPOP(Op, DAG); 5532 case ISD::ATOMIC_FENCE: 5533 return lowerATOMIC_FENCE(Op, DAG); 5534 case ISD::ATOMIC_SWAP: 5535 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5536 case ISD::ATOMIC_STORE: 5537 return lowerATOMIC_STORE(Op, DAG); 5538 case ISD::ATOMIC_LOAD: 5539 return lowerATOMIC_LOAD(Op, DAG); 5540 case ISD::ATOMIC_LOAD_ADD: 5541 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5542 case ISD::ATOMIC_LOAD_SUB: 5543 return lowerATOMIC_LOAD_SUB(Op, DAG); 5544 case ISD::ATOMIC_LOAD_AND: 5545 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5546 case ISD::ATOMIC_LOAD_OR: 5547 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5548 case ISD::ATOMIC_LOAD_XOR: 5549 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5550 case ISD::ATOMIC_LOAD_NAND: 5551 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5552 case ISD::ATOMIC_LOAD_MIN: 5553 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5554 case ISD::ATOMIC_LOAD_MAX: 5555 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5556 case ISD::ATOMIC_LOAD_UMIN: 5557 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5558 case ISD::ATOMIC_LOAD_UMAX: 5559 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5560 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5561 return lowerATOMIC_CMP_SWAP(Op, DAG); 5562 case ISD::STACKSAVE: 5563 return lowerSTACKSAVE(Op, DAG); 5564 case ISD::STACKRESTORE: 5565 return lowerSTACKRESTORE(Op, DAG); 5566 case ISD::PREFETCH: 5567 return lowerPREFETCH(Op, DAG); 5568 case ISD::INTRINSIC_W_CHAIN: 5569 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5570 case ISD::INTRINSIC_WO_CHAIN: 5571 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5572 case ISD::BUILD_VECTOR: 5573 return lowerBUILD_VECTOR(Op, DAG); 5574 case ISD::VECTOR_SHUFFLE: 5575 return lowerVECTOR_SHUFFLE(Op, DAG); 5576 case ISD::SCALAR_TO_VECTOR: 5577 return lowerSCALAR_TO_VECTOR(Op, DAG); 5578 case ISD::INSERT_VECTOR_ELT: 5579 return lowerINSERT_VECTOR_ELT(Op, DAG); 5580 case ISD::EXTRACT_VECTOR_ELT: 5581 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5582 case ISD::SIGN_EXTEND_VECTOR_INREG: 5583 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5584 case ISD::ZERO_EXTEND_VECTOR_INREG: 5585 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5586 case ISD::SHL: 5587 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5588 case ISD::SRL: 5589 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5590 case ISD::SRA: 5591 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5592 default: 5593 llvm_unreachable("Unexpected node to lower"); 5594 } 5595 } 5596 5597 // Lower operations with invalid operand or result types (currently used 5598 // only for 128-bit integer types). 5599 void 5600 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5601 SmallVectorImpl<SDValue> &Results, 5602 SelectionDAG &DAG) const { 5603 switch (N->getOpcode()) { 5604 case ISD::ATOMIC_LOAD: { 5605 SDLoc DL(N); 5606 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5607 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5608 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5609 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5610 DL, Tys, Ops, MVT::i128, MMO); 5611 Results.push_back(lowerGR128ToI128(DAG, Res)); 5612 Results.push_back(Res.getValue(1)); 5613 break; 5614 } 5615 case ISD::ATOMIC_STORE: { 5616 SDLoc DL(N); 5617 SDVTList Tys = DAG.getVTList(MVT::Other); 5618 SDValue Ops[] = { N->getOperand(0), 5619 lowerI128ToGR128(DAG, N->getOperand(2)), 5620 N->getOperand(1) }; 5621 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5622 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5623 DL, Tys, Ops, MVT::i128, MMO); 5624 // We have to enforce sequential consistency by performing a 5625 // serialization operation after the store. 5626 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5627 AtomicOrdering::SequentiallyConsistent) 5628 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5629 MVT::Other, Res), 0); 5630 Results.push_back(Res); 5631 break; 5632 } 5633 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5634 SDLoc DL(N); 5635 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5636 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5637 lowerI128ToGR128(DAG, N->getOperand(2)), 5638 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5639 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5640 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5641 DL, Tys, Ops, MVT::i128, MMO); 5642 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5643 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5644 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5645 Results.push_back(lowerGR128ToI128(DAG, Res)); 5646 Results.push_back(Success); 5647 Results.push_back(Res.getValue(2)); 5648 break; 5649 } 5650 case ISD::BITCAST: { 5651 SDValue Src = N->getOperand(0); 5652 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5653 !useSoftFloat()) { 5654 SDLoc DL(N); 5655 SDValue Lo, Hi; 5656 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5657 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5658 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5659 DAG.getConstant(1, DL, MVT::i32)); 5660 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5661 DAG.getConstant(0, DL, MVT::i32)); 5662 } else { 5663 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5664 "Unrecognized register class for f128."); 5665 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5666 DL, MVT::f64, Src); 5667 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5668 DL, MVT::f64, Src); 5669 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5670 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5671 } 5672 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5673 } 5674 break; 5675 } 5676 default: 5677 llvm_unreachable("Unexpected node to lower"); 5678 } 5679 } 5680 5681 void 5682 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5683 SmallVectorImpl<SDValue> &Results, 5684 SelectionDAG &DAG) const { 5685 return LowerOperationWrapper(N, Results, DAG); 5686 } 5687 5688 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5689 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5690 switch ((SystemZISD::NodeType)Opcode) { 5691 case SystemZISD::FIRST_NUMBER: break; 5692 OPCODE(RET_FLAG); 5693 OPCODE(CALL); 5694 OPCODE(SIBCALL); 5695 OPCODE(TLS_GDCALL); 5696 OPCODE(TLS_LDCALL); 5697 OPCODE(PCREL_WRAPPER); 5698 OPCODE(PCREL_OFFSET); 5699 OPCODE(ICMP); 5700 OPCODE(FCMP); 5701 OPCODE(STRICT_FCMP); 5702 OPCODE(STRICT_FCMPS); 5703 OPCODE(TM); 5704 OPCODE(BR_CCMASK); 5705 OPCODE(SELECT_CCMASK); 5706 OPCODE(ADJDYNALLOC); 5707 OPCODE(PROBED_ALLOCA); 5708 OPCODE(POPCNT); 5709 OPCODE(SMUL_LOHI); 5710 OPCODE(UMUL_LOHI); 5711 OPCODE(SDIVREM); 5712 OPCODE(UDIVREM); 5713 OPCODE(SADDO); 5714 OPCODE(SSUBO); 5715 OPCODE(UADDO); 5716 OPCODE(USUBO); 5717 OPCODE(ADDCARRY); 5718 OPCODE(SUBCARRY); 5719 OPCODE(GET_CCMASK); 5720 OPCODE(MVC); 5721 OPCODE(NC); 5722 OPCODE(OC); 5723 OPCODE(XC); 5724 OPCODE(CLC); 5725 OPCODE(MEMSET_MVC); 5726 OPCODE(STPCPY); 5727 OPCODE(STRCMP); 5728 OPCODE(SEARCH_STRING); 5729 OPCODE(IPM); 5730 OPCODE(MEMBARRIER); 5731 OPCODE(TBEGIN); 5732 OPCODE(TBEGIN_NOFLOAT); 5733 OPCODE(TEND); 5734 OPCODE(BYTE_MASK); 5735 OPCODE(ROTATE_MASK); 5736 OPCODE(REPLICATE); 5737 OPCODE(JOIN_DWORDS); 5738 OPCODE(SPLAT); 5739 OPCODE(MERGE_HIGH); 5740 OPCODE(MERGE_LOW); 5741 OPCODE(SHL_DOUBLE); 5742 OPCODE(PERMUTE_DWORDS); 5743 OPCODE(PERMUTE); 5744 OPCODE(PACK); 5745 OPCODE(PACKS_CC); 5746 OPCODE(PACKLS_CC); 5747 OPCODE(UNPACK_HIGH); 5748 OPCODE(UNPACKL_HIGH); 5749 OPCODE(UNPACK_LOW); 5750 OPCODE(UNPACKL_LOW); 5751 OPCODE(VSHL_BY_SCALAR); 5752 OPCODE(VSRL_BY_SCALAR); 5753 OPCODE(VSRA_BY_SCALAR); 5754 OPCODE(VSUM); 5755 OPCODE(VICMPE); 5756 OPCODE(VICMPH); 5757 OPCODE(VICMPHL); 5758 OPCODE(VICMPES); 5759 OPCODE(VICMPHS); 5760 OPCODE(VICMPHLS); 5761 OPCODE(VFCMPE); 5762 OPCODE(STRICT_VFCMPE); 5763 OPCODE(STRICT_VFCMPES); 5764 OPCODE(VFCMPH); 5765 OPCODE(STRICT_VFCMPH); 5766 OPCODE(STRICT_VFCMPHS); 5767 OPCODE(VFCMPHE); 5768 OPCODE(STRICT_VFCMPHE); 5769 OPCODE(STRICT_VFCMPHES); 5770 OPCODE(VFCMPES); 5771 OPCODE(VFCMPHS); 5772 OPCODE(VFCMPHES); 5773 OPCODE(VFTCI); 5774 OPCODE(VEXTEND); 5775 OPCODE(STRICT_VEXTEND); 5776 OPCODE(VROUND); 5777 OPCODE(STRICT_VROUND); 5778 OPCODE(VTM); 5779 OPCODE(VFAE_CC); 5780 OPCODE(VFAEZ_CC); 5781 OPCODE(VFEE_CC); 5782 OPCODE(VFEEZ_CC); 5783 OPCODE(VFENE_CC); 5784 OPCODE(VFENEZ_CC); 5785 OPCODE(VISTR_CC); 5786 OPCODE(VSTRC_CC); 5787 OPCODE(VSTRCZ_CC); 5788 OPCODE(VSTRS_CC); 5789 OPCODE(VSTRSZ_CC); 5790 OPCODE(TDC); 5791 OPCODE(ATOMIC_SWAPW); 5792 OPCODE(ATOMIC_LOADW_ADD); 5793 OPCODE(ATOMIC_LOADW_SUB); 5794 OPCODE(ATOMIC_LOADW_AND); 5795 OPCODE(ATOMIC_LOADW_OR); 5796 OPCODE(ATOMIC_LOADW_XOR); 5797 OPCODE(ATOMIC_LOADW_NAND); 5798 OPCODE(ATOMIC_LOADW_MIN); 5799 OPCODE(ATOMIC_LOADW_MAX); 5800 OPCODE(ATOMIC_LOADW_UMIN); 5801 OPCODE(ATOMIC_LOADW_UMAX); 5802 OPCODE(ATOMIC_CMP_SWAPW); 5803 OPCODE(ATOMIC_CMP_SWAP); 5804 OPCODE(ATOMIC_LOAD_128); 5805 OPCODE(ATOMIC_STORE_128); 5806 OPCODE(ATOMIC_CMP_SWAP_128); 5807 OPCODE(LRV); 5808 OPCODE(STRV); 5809 OPCODE(VLER); 5810 OPCODE(VSTER); 5811 OPCODE(PREFETCH); 5812 } 5813 return nullptr; 5814 #undef OPCODE 5815 } 5816 5817 // Return true if VT is a vector whose elements are a whole number of bytes 5818 // in width. Also check for presence of vector support. 5819 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5820 if (!Subtarget.hasVector()) 5821 return false; 5822 5823 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5824 } 5825 5826 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5827 // producing a result of type ResVT. Op is a possibly bitcast version 5828 // of the input vector and Index is the index (based on type VecVT) that 5829 // should be extracted. Return the new extraction if a simplification 5830 // was possible or if Force is true. 5831 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5832 EVT VecVT, SDValue Op, 5833 unsigned Index, 5834 DAGCombinerInfo &DCI, 5835 bool Force) const { 5836 SelectionDAG &DAG = DCI.DAG; 5837 5838 // The number of bytes being extracted. 5839 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5840 5841 for (;;) { 5842 unsigned Opcode = Op.getOpcode(); 5843 if (Opcode == ISD::BITCAST) 5844 // Look through bitcasts. 5845 Op = Op.getOperand(0); 5846 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5847 canTreatAsByteVector(Op.getValueType())) { 5848 // Get a VPERM-like permute mask and see whether the bytes covered 5849 // by the extracted element are a contiguous sequence from one 5850 // source operand. 5851 SmallVector<int, SystemZ::VectorBytes> Bytes; 5852 if (!getVPermMask(Op, Bytes)) 5853 break; 5854 int First; 5855 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5856 BytesPerElement, First)) 5857 break; 5858 if (First < 0) 5859 return DAG.getUNDEF(ResVT); 5860 // Make sure the contiguous sequence starts at a multiple of the 5861 // original element size. 5862 unsigned Byte = unsigned(First) % Bytes.size(); 5863 if (Byte % BytesPerElement != 0) 5864 break; 5865 // We can get the extracted value directly from an input. 5866 Index = Byte / BytesPerElement; 5867 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5868 Force = true; 5869 } else if (Opcode == ISD::BUILD_VECTOR && 5870 canTreatAsByteVector(Op.getValueType())) { 5871 // We can only optimize this case if the BUILD_VECTOR elements are 5872 // at least as wide as the extracted value. 5873 EVT OpVT = Op.getValueType(); 5874 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5875 if (OpBytesPerElement < BytesPerElement) 5876 break; 5877 // Make sure that the least-significant bit of the extracted value 5878 // is the least significant bit of an input. 5879 unsigned End = (Index + 1) * BytesPerElement; 5880 if (End % OpBytesPerElement != 0) 5881 break; 5882 // We're extracting the low part of one operand of the BUILD_VECTOR. 5883 Op = Op.getOperand(End / OpBytesPerElement - 1); 5884 if (!Op.getValueType().isInteger()) { 5885 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5886 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5887 DCI.AddToWorklist(Op.getNode()); 5888 } 5889 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5890 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5891 if (VT != ResVT) { 5892 DCI.AddToWorklist(Op.getNode()); 5893 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5894 } 5895 return Op; 5896 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5897 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5898 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5899 canTreatAsByteVector(Op.getValueType()) && 5900 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5901 // Make sure that only the unextended bits are significant. 5902 EVT ExtVT = Op.getValueType(); 5903 EVT OpVT = Op.getOperand(0).getValueType(); 5904 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5905 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5906 unsigned Byte = Index * BytesPerElement; 5907 unsigned SubByte = Byte % ExtBytesPerElement; 5908 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5909 if (SubByte < MinSubByte || 5910 SubByte + BytesPerElement > ExtBytesPerElement) 5911 break; 5912 // Get the byte offset of the unextended element 5913 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5914 // ...then add the byte offset relative to that element. 5915 Byte += SubByte - MinSubByte; 5916 if (Byte % BytesPerElement != 0) 5917 break; 5918 Op = Op.getOperand(0); 5919 Index = Byte / BytesPerElement; 5920 Force = true; 5921 } else 5922 break; 5923 } 5924 if (Force) { 5925 if (Op.getValueType() != VecVT) { 5926 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5927 DCI.AddToWorklist(Op.getNode()); 5928 } 5929 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5930 DAG.getConstant(Index, DL, MVT::i32)); 5931 } 5932 return SDValue(); 5933 } 5934 5935 // Optimize vector operations in scalar value Op on the basis that Op 5936 // is truncated to TruncVT. 5937 SDValue SystemZTargetLowering::combineTruncateExtract( 5938 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5939 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5940 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5941 // of type TruncVT. 5942 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5943 TruncVT.getSizeInBits() % 8 == 0) { 5944 SDValue Vec = Op.getOperand(0); 5945 EVT VecVT = Vec.getValueType(); 5946 if (canTreatAsByteVector(VecVT)) { 5947 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5948 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5949 unsigned TruncBytes = TruncVT.getStoreSize(); 5950 if (BytesPerElement % TruncBytes == 0) { 5951 // Calculate the value of Y' in the above description. We are 5952 // splitting the original elements into Scale equal-sized pieces 5953 // and for truncation purposes want the last (least-significant) 5954 // of these pieces for IndexN. This is easiest to do by calculating 5955 // the start index of the following element and then subtracting 1. 5956 unsigned Scale = BytesPerElement / TruncBytes; 5957 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5958 5959 // Defer the creation of the bitcast from X to combineExtract, 5960 // which might be able to optimize the extraction. 5961 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5962 VecVT.getStoreSize() / TruncBytes); 5963 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5964 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5965 } 5966 } 5967 } 5968 } 5969 return SDValue(); 5970 } 5971 5972 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5973 SDNode *N, DAGCombinerInfo &DCI) const { 5974 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5975 SelectionDAG &DAG = DCI.DAG; 5976 SDValue N0 = N->getOperand(0); 5977 EVT VT = N->getValueType(0); 5978 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5979 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5980 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5981 if (TrueOp && FalseOp) { 5982 SDLoc DL(N0); 5983 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5984 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5985 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5986 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5987 // If N0 has multiple uses, change other uses as well. 5988 if (!N0.hasOneUse()) { 5989 SDValue TruncSelect = 5990 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5991 DCI.CombineTo(N0.getNode(), TruncSelect); 5992 } 5993 return NewSelect; 5994 } 5995 } 5996 return SDValue(); 5997 } 5998 5999 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6000 SDNode *N, DAGCombinerInfo &DCI) const { 6001 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6002 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6003 // into (select_cc LHS, RHS, -1, 0, COND) 6004 SelectionDAG &DAG = DCI.DAG; 6005 SDValue N0 = N->getOperand(0); 6006 EVT VT = N->getValueType(0); 6007 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6008 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6009 N0 = N0.getOperand(0); 6010 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6011 SDLoc DL(N0); 6012 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6013 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6014 N0.getOperand(2) }; 6015 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6016 } 6017 return SDValue(); 6018 } 6019 6020 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6021 SDNode *N, DAGCombinerInfo &DCI) const { 6022 // Convert (sext (ashr (shl X, C1), C2)) to 6023 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6024 // cheap as narrower ones. 6025 SelectionDAG &DAG = DCI.DAG; 6026 SDValue N0 = N->getOperand(0); 6027 EVT VT = N->getValueType(0); 6028 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6029 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6030 SDValue Inner = N0.getOperand(0); 6031 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6032 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6033 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6034 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6035 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6036 EVT ShiftVT = N0.getOperand(1).getValueType(); 6037 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6038 Inner.getOperand(0)); 6039 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6040 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6041 ShiftVT)); 6042 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6043 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6044 } 6045 } 6046 } 6047 return SDValue(); 6048 } 6049 6050 SDValue SystemZTargetLowering::combineMERGE( 6051 SDNode *N, DAGCombinerInfo &DCI) const { 6052 SelectionDAG &DAG = DCI.DAG; 6053 unsigned Opcode = N->getOpcode(); 6054 SDValue Op0 = N->getOperand(0); 6055 SDValue Op1 = N->getOperand(1); 6056 if (Op0.getOpcode() == ISD::BITCAST) 6057 Op0 = Op0.getOperand(0); 6058 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6059 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6060 // for v4f32. 6061 if (Op1 == N->getOperand(0)) 6062 return Op1; 6063 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6064 EVT VT = Op1.getValueType(); 6065 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6066 if (ElemBytes <= 4) { 6067 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6068 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6069 EVT InVT = VT.changeVectorElementTypeToInteger(); 6070 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6071 SystemZ::VectorBytes / ElemBytes / 2); 6072 if (VT != InVT) { 6073 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6074 DCI.AddToWorklist(Op1.getNode()); 6075 } 6076 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6077 DCI.AddToWorklist(Op.getNode()); 6078 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6079 } 6080 } 6081 return SDValue(); 6082 } 6083 6084 SDValue SystemZTargetLowering::combineLOAD( 6085 SDNode *N, DAGCombinerInfo &DCI) const { 6086 SelectionDAG &DAG = DCI.DAG; 6087 EVT LdVT = N->getValueType(0); 6088 if (LdVT.isVector() || LdVT.isInteger()) 6089 return SDValue(); 6090 // Transform a scalar load that is REPLICATEd as well as having other 6091 // use(s) to the form where the other use(s) use the first element of the 6092 // REPLICATE instead of the load. Otherwise instruction selection will not 6093 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6094 // point loads. 6095 6096 SDValue Replicate; 6097 SmallVector<SDNode*, 8> OtherUses; 6098 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6099 UI != UE; ++UI) { 6100 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6101 if (Replicate) 6102 return SDValue(); // Should never happen 6103 Replicate = SDValue(*UI, 0); 6104 } 6105 else if (UI.getUse().getResNo() == 0) 6106 OtherUses.push_back(*UI); 6107 } 6108 if (!Replicate || OtherUses.empty()) 6109 return SDValue(); 6110 6111 SDLoc DL(N); 6112 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6113 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6114 // Update uses of the loaded Value while preserving old chains. 6115 for (SDNode *U : OtherUses) { 6116 SmallVector<SDValue, 8> Ops; 6117 for (SDValue Op : U->ops()) 6118 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6119 DAG.UpdateNodeOperands(U, Ops); 6120 } 6121 return SDValue(N, 0); 6122 } 6123 6124 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6125 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6126 return true; 6127 if (Subtarget.hasVectorEnhancements2()) 6128 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6129 return true; 6130 return false; 6131 } 6132 6133 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6134 if (!VT.isVector() || !VT.isSimple() || 6135 VT.getSizeInBits() != 128 || 6136 VT.getScalarSizeInBits() % 8 != 0) 6137 return false; 6138 6139 unsigned NumElts = VT.getVectorNumElements(); 6140 for (unsigned i = 0; i < NumElts; ++i) { 6141 if (M[i] < 0) continue; // ignore UNDEF indices 6142 if ((unsigned) M[i] != NumElts - 1 - i) 6143 return false; 6144 } 6145 6146 return true; 6147 } 6148 6149 SDValue SystemZTargetLowering::combineSTORE( 6150 SDNode *N, DAGCombinerInfo &DCI) const { 6151 SelectionDAG &DAG = DCI.DAG; 6152 auto *SN = cast<StoreSDNode>(N); 6153 auto &Op1 = N->getOperand(1); 6154 EVT MemVT = SN->getMemoryVT(); 6155 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6156 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6157 // If X has wider elements then convert it to: 6158 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6159 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6160 if (SDValue Value = 6161 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6162 DCI.AddToWorklist(Value.getNode()); 6163 6164 // Rewrite the store with the new form of stored value. 6165 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6166 SN->getBasePtr(), SN->getMemoryVT(), 6167 SN->getMemOperand()); 6168 } 6169 } 6170 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6171 if (!SN->isTruncatingStore() && 6172 Op1.getOpcode() == ISD::BSWAP && 6173 Op1.getNode()->hasOneUse() && 6174 canLoadStoreByteSwapped(Op1.getValueType())) { 6175 6176 SDValue BSwapOp = Op1.getOperand(0); 6177 6178 if (BSwapOp.getValueType() == MVT::i16) 6179 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6180 6181 SDValue Ops[] = { 6182 N->getOperand(0), BSwapOp, N->getOperand(2) 6183 }; 6184 6185 return 6186 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6187 Ops, MemVT, SN->getMemOperand()); 6188 } 6189 // Combine STORE (element-swap) into VSTER 6190 if (!SN->isTruncatingStore() && 6191 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6192 Op1.getNode()->hasOneUse() && 6193 Subtarget.hasVectorEnhancements2()) { 6194 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6195 ArrayRef<int> ShuffleMask = SVN->getMask(); 6196 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6197 SDValue Ops[] = { 6198 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6199 }; 6200 6201 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6202 DAG.getVTList(MVT::Other), 6203 Ops, MemVT, SN->getMemOperand()); 6204 } 6205 } 6206 6207 return SDValue(); 6208 } 6209 6210 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6211 SDNode *N, DAGCombinerInfo &DCI) const { 6212 SelectionDAG &DAG = DCI.DAG; 6213 // Combine element-swap (LOAD) into VLER 6214 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6215 N->getOperand(0).hasOneUse() && 6216 Subtarget.hasVectorEnhancements2()) { 6217 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6218 ArrayRef<int> ShuffleMask = SVN->getMask(); 6219 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6220 SDValue Load = N->getOperand(0); 6221 LoadSDNode *LD = cast<LoadSDNode>(Load); 6222 6223 // Create the element-swapping load. 6224 SDValue Ops[] = { 6225 LD->getChain(), // Chain 6226 LD->getBasePtr() // Ptr 6227 }; 6228 SDValue ESLoad = 6229 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6230 DAG.getVTList(LD->getValueType(0), MVT::Other), 6231 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6232 6233 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6234 // by the load dead. 6235 DCI.CombineTo(N, ESLoad); 6236 6237 // Next, combine the load away, we give it a bogus result value but a real 6238 // chain result. The result value is dead because the shuffle is dead. 6239 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6240 6241 // Return N so it doesn't get rechecked! 6242 return SDValue(N, 0); 6243 } 6244 } 6245 6246 return SDValue(); 6247 } 6248 6249 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6250 SDNode *N, DAGCombinerInfo &DCI) const { 6251 SelectionDAG &DAG = DCI.DAG; 6252 6253 if (!Subtarget.hasVector()) 6254 return SDValue(); 6255 6256 // Look through bitcasts that retain the number of vector elements. 6257 SDValue Op = N->getOperand(0); 6258 if (Op.getOpcode() == ISD::BITCAST && 6259 Op.getValueType().isVector() && 6260 Op.getOperand(0).getValueType().isVector() && 6261 Op.getValueType().getVectorNumElements() == 6262 Op.getOperand(0).getValueType().getVectorNumElements()) 6263 Op = Op.getOperand(0); 6264 6265 // Pull BSWAP out of a vector extraction. 6266 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6267 EVT VecVT = Op.getValueType(); 6268 EVT EltVT = VecVT.getVectorElementType(); 6269 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6270 Op.getOperand(0), N->getOperand(1)); 6271 DCI.AddToWorklist(Op.getNode()); 6272 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6273 if (EltVT != N->getValueType(0)) { 6274 DCI.AddToWorklist(Op.getNode()); 6275 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6276 } 6277 return Op; 6278 } 6279 6280 // Try to simplify a vector extraction. 6281 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6282 SDValue Op0 = N->getOperand(0); 6283 EVT VecVT = Op0.getValueType(); 6284 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6285 IndexN->getZExtValue(), DCI, false); 6286 } 6287 return SDValue(); 6288 } 6289 6290 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6291 SDNode *N, DAGCombinerInfo &DCI) const { 6292 SelectionDAG &DAG = DCI.DAG; 6293 // (join_dwords X, X) == (replicate X) 6294 if (N->getOperand(0) == N->getOperand(1)) 6295 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6296 N->getOperand(0)); 6297 return SDValue(); 6298 } 6299 6300 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6301 SDValue Chain1 = N1->getOperand(0); 6302 SDValue Chain2 = N2->getOperand(0); 6303 6304 // Trivial case: both nodes take the same chain. 6305 if (Chain1 == Chain2) 6306 return Chain1; 6307 6308 // FIXME - we could handle more complex cases via TokenFactor, 6309 // assuming we can verify that this would not create a cycle. 6310 return SDValue(); 6311 } 6312 6313 SDValue SystemZTargetLowering::combineFP_ROUND( 6314 SDNode *N, DAGCombinerInfo &DCI) const { 6315 6316 if (!Subtarget.hasVector()) 6317 return SDValue(); 6318 6319 // (fpround (extract_vector_elt X 0)) 6320 // (fpround (extract_vector_elt X 1)) -> 6321 // (extract_vector_elt (VROUND X) 0) 6322 // (extract_vector_elt (VROUND X) 2) 6323 // 6324 // This is a special case since the target doesn't really support v2f32s. 6325 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6326 SelectionDAG &DAG = DCI.DAG; 6327 SDValue Op0 = N->getOperand(OpNo); 6328 if (N->getValueType(0) == MVT::f32 && 6329 Op0.hasOneUse() && 6330 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6331 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6332 Op0.getOperand(1).getOpcode() == ISD::Constant && 6333 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6334 SDValue Vec = Op0.getOperand(0); 6335 for (auto *U : Vec->uses()) { 6336 if (U != Op0.getNode() && 6337 U->hasOneUse() && 6338 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6339 U->getOperand(0) == Vec && 6340 U->getOperand(1).getOpcode() == ISD::Constant && 6341 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6342 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6343 if (OtherRound.getOpcode() == N->getOpcode() && 6344 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6345 OtherRound.getValueType() == MVT::f32) { 6346 SDValue VRound, Chain; 6347 if (N->isStrictFPOpcode()) { 6348 Chain = MergeInputChains(N, OtherRound.getNode()); 6349 if (!Chain) 6350 continue; 6351 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6352 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6353 Chain = VRound.getValue(1); 6354 } else 6355 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6356 MVT::v4f32, Vec); 6357 DCI.AddToWorklist(VRound.getNode()); 6358 SDValue Extract1 = 6359 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6360 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6361 DCI.AddToWorklist(Extract1.getNode()); 6362 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6363 if (Chain) 6364 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6365 SDValue Extract0 = 6366 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6367 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6368 if (Chain) 6369 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6370 N->getVTList(), Extract0, Chain); 6371 return Extract0; 6372 } 6373 } 6374 } 6375 } 6376 return SDValue(); 6377 } 6378 6379 SDValue SystemZTargetLowering::combineFP_EXTEND( 6380 SDNode *N, DAGCombinerInfo &DCI) const { 6381 6382 if (!Subtarget.hasVector()) 6383 return SDValue(); 6384 6385 // (fpextend (extract_vector_elt X 0)) 6386 // (fpextend (extract_vector_elt X 2)) -> 6387 // (extract_vector_elt (VEXTEND X) 0) 6388 // (extract_vector_elt (VEXTEND X) 1) 6389 // 6390 // This is a special case since the target doesn't really support v2f32s. 6391 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6392 SelectionDAG &DAG = DCI.DAG; 6393 SDValue Op0 = N->getOperand(OpNo); 6394 if (N->getValueType(0) == MVT::f64 && 6395 Op0.hasOneUse() && 6396 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6397 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6398 Op0.getOperand(1).getOpcode() == ISD::Constant && 6399 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6400 SDValue Vec = Op0.getOperand(0); 6401 for (auto *U : Vec->uses()) { 6402 if (U != Op0.getNode() && 6403 U->hasOneUse() && 6404 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6405 U->getOperand(0) == Vec && 6406 U->getOperand(1).getOpcode() == ISD::Constant && 6407 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6408 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6409 if (OtherExtend.getOpcode() == N->getOpcode() && 6410 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6411 OtherExtend.getValueType() == MVT::f64) { 6412 SDValue VExtend, Chain; 6413 if (N->isStrictFPOpcode()) { 6414 Chain = MergeInputChains(N, OtherExtend.getNode()); 6415 if (!Chain) 6416 continue; 6417 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6418 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6419 Chain = VExtend.getValue(1); 6420 } else 6421 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6422 MVT::v2f64, Vec); 6423 DCI.AddToWorklist(VExtend.getNode()); 6424 SDValue Extract1 = 6425 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6426 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6427 DCI.AddToWorklist(Extract1.getNode()); 6428 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6429 if (Chain) 6430 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6431 SDValue Extract0 = 6432 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6433 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6434 if (Chain) 6435 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6436 N->getVTList(), Extract0, Chain); 6437 return Extract0; 6438 } 6439 } 6440 } 6441 } 6442 return SDValue(); 6443 } 6444 6445 SDValue SystemZTargetLowering::combineINT_TO_FP( 6446 SDNode *N, DAGCombinerInfo &DCI) const { 6447 if (DCI.Level != BeforeLegalizeTypes) 6448 return SDValue(); 6449 unsigned Opcode = N->getOpcode(); 6450 EVT OutVT = N->getValueType(0); 6451 SelectionDAG &DAG = DCI.DAG; 6452 SDValue Op = N->getOperand(0); 6453 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6454 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6455 6456 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6457 // v2f64 = uint_to_fp v2i16 6458 // => 6459 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6460 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6461 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6462 OutVT.getVectorNumElements()); 6463 unsigned ExtOpcode = 6464 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6465 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6466 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6467 } 6468 return SDValue(); 6469 } 6470 6471 SDValue SystemZTargetLowering::combineBSWAP( 6472 SDNode *N, DAGCombinerInfo &DCI) const { 6473 SelectionDAG &DAG = DCI.DAG; 6474 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6475 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6476 N->getOperand(0).hasOneUse() && 6477 canLoadStoreByteSwapped(N->getValueType(0))) { 6478 SDValue Load = N->getOperand(0); 6479 LoadSDNode *LD = cast<LoadSDNode>(Load); 6480 6481 // Create the byte-swapping load. 6482 SDValue Ops[] = { 6483 LD->getChain(), // Chain 6484 LD->getBasePtr() // Ptr 6485 }; 6486 EVT LoadVT = N->getValueType(0); 6487 if (LoadVT == MVT::i16) 6488 LoadVT = MVT::i32; 6489 SDValue BSLoad = 6490 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6491 DAG.getVTList(LoadVT, MVT::Other), 6492 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6493 6494 // If this is an i16 load, insert the truncate. 6495 SDValue ResVal = BSLoad; 6496 if (N->getValueType(0) == MVT::i16) 6497 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6498 6499 // First, combine the bswap away. This makes the value produced by the 6500 // load dead. 6501 DCI.CombineTo(N, ResVal); 6502 6503 // Next, combine the load away, we give it a bogus result value but a real 6504 // chain result. The result value is dead because the bswap is dead. 6505 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6506 6507 // Return N so it doesn't get rechecked! 6508 return SDValue(N, 0); 6509 } 6510 6511 // Look through bitcasts that retain the number of vector elements. 6512 SDValue Op = N->getOperand(0); 6513 if (Op.getOpcode() == ISD::BITCAST && 6514 Op.getValueType().isVector() && 6515 Op.getOperand(0).getValueType().isVector() && 6516 Op.getValueType().getVectorNumElements() == 6517 Op.getOperand(0).getValueType().getVectorNumElements()) 6518 Op = Op.getOperand(0); 6519 6520 // Push BSWAP into a vector insertion if at least one side then simplifies. 6521 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6522 SDValue Vec = Op.getOperand(0); 6523 SDValue Elt = Op.getOperand(1); 6524 SDValue Idx = Op.getOperand(2); 6525 6526 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6527 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6528 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6529 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6530 (canLoadStoreByteSwapped(N->getValueType(0)) && 6531 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6532 EVT VecVT = N->getValueType(0); 6533 EVT EltVT = N->getValueType(0).getVectorElementType(); 6534 if (VecVT != Vec.getValueType()) { 6535 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6536 DCI.AddToWorklist(Vec.getNode()); 6537 } 6538 if (EltVT != Elt.getValueType()) { 6539 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6540 DCI.AddToWorklist(Elt.getNode()); 6541 } 6542 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6543 DCI.AddToWorklist(Vec.getNode()); 6544 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6545 DCI.AddToWorklist(Elt.getNode()); 6546 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6547 Vec, Elt, Idx); 6548 } 6549 } 6550 6551 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6552 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6553 if (SV && Op.hasOneUse()) { 6554 SDValue Op0 = Op.getOperand(0); 6555 SDValue Op1 = Op.getOperand(1); 6556 6557 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6558 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6559 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6560 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6561 EVT VecVT = N->getValueType(0); 6562 if (VecVT != Op0.getValueType()) { 6563 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6564 DCI.AddToWorklist(Op0.getNode()); 6565 } 6566 if (VecVT != Op1.getValueType()) { 6567 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6568 DCI.AddToWorklist(Op1.getNode()); 6569 } 6570 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6571 DCI.AddToWorklist(Op0.getNode()); 6572 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6573 DCI.AddToWorklist(Op1.getNode()); 6574 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6575 } 6576 } 6577 6578 return SDValue(); 6579 } 6580 6581 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6582 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6583 // set by the CCReg instruction using the CCValid / CCMask masks, 6584 // If the CCReg instruction is itself a ICMP testing the condition 6585 // code set by some other instruction, see whether we can directly 6586 // use that condition code. 6587 6588 // Verify that we have an ICMP against some constant. 6589 if (CCValid != SystemZ::CCMASK_ICMP) 6590 return false; 6591 auto *ICmp = CCReg.getNode(); 6592 if (ICmp->getOpcode() != SystemZISD::ICMP) 6593 return false; 6594 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6595 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6596 if (!CompareRHS) 6597 return false; 6598 6599 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6600 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6601 // Verify that we have an appropriate mask for a EQ or NE comparison. 6602 bool Invert = false; 6603 if (CCMask == SystemZ::CCMASK_CMP_NE) 6604 Invert = !Invert; 6605 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6606 return false; 6607 6608 // Verify that the ICMP compares against one of select values. 6609 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6610 if (!TrueVal) 6611 return false; 6612 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6613 if (!FalseVal) 6614 return false; 6615 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6616 Invert = !Invert; 6617 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6618 return false; 6619 6620 // Compute the effective CC mask for the new branch or select. 6621 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6622 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6623 if (!NewCCValid || !NewCCMask) 6624 return false; 6625 CCValid = NewCCValid->getZExtValue(); 6626 CCMask = NewCCMask->getZExtValue(); 6627 if (Invert) 6628 CCMask ^= CCValid; 6629 6630 // Return the updated CCReg link. 6631 CCReg = CompareLHS->getOperand(4); 6632 return true; 6633 } 6634 6635 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6636 if (CompareLHS->getOpcode() == ISD::SRA) { 6637 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6638 if (!SRACount || SRACount->getZExtValue() != 30) 6639 return false; 6640 auto *SHL = CompareLHS->getOperand(0).getNode(); 6641 if (SHL->getOpcode() != ISD::SHL) 6642 return false; 6643 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6644 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6645 return false; 6646 auto *IPM = SHL->getOperand(0).getNode(); 6647 if (IPM->getOpcode() != SystemZISD::IPM) 6648 return false; 6649 6650 // Avoid introducing CC spills (because SRA would clobber CC). 6651 if (!CompareLHS->hasOneUse()) 6652 return false; 6653 // Verify that the ICMP compares against zero. 6654 if (CompareRHS->getZExtValue() != 0) 6655 return false; 6656 6657 // Compute the effective CC mask for the new branch or select. 6658 CCMask = SystemZ::reverseCCMask(CCMask); 6659 6660 // Return the updated CCReg link. 6661 CCReg = IPM->getOperand(0); 6662 return true; 6663 } 6664 6665 return false; 6666 } 6667 6668 SDValue SystemZTargetLowering::combineBR_CCMASK( 6669 SDNode *N, DAGCombinerInfo &DCI) const { 6670 SelectionDAG &DAG = DCI.DAG; 6671 6672 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6673 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6674 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6675 if (!CCValid || !CCMask) 6676 return SDValue(); 6677 6678 int CCValidVal = CCValid->getZExtValue(); 6679 int CCMaskVal = CCMask->getZExtValue(); 6680 SDValue Chain = N->getOperand(0); 6681 SDValue CCReg = N->getOperand(4); 6682 6683 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6684 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6685 Chain, 6686 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6687 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6688 N->getOperand(3), CCReg); 6689 return SDValue(); 6690 } 6691 6692 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6693 SDNode *N, DAGCombinerInfo &DCI) const { 6694 SelectionDAG &DAG = DCI.DAG; 6695 6696 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6697 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6698 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6699 if (!CCValid || !CCMask) 6700 return SDValue(); 6701 6702 int CCValidVal = CCValid->getZExtValue(); 6703 int CCMaskVal = CCMask->getZExtValue(); 6704 SDValue CCReg = N->getOperand(4); 6705 6706 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6707 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6708 N->getOperand(0), N->getOperand(1), 6709 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6710 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6711 CCReg); 6712 return SDValue(); 6713 } 6714 6715 6716 SDValue SystemZTargetLowering::combineGET_CCMASK( 6717 SDNode *N, DAGCombinerInfo &DCI) const { 6718 6719 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6720 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6721 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6722 if (!CCValid || !CCMask) 6723 return SDValue(); 6724 int CCValidVal = CCValid->getZExtValue(); 6725 int CCMaskVal = CCMask->getZExtValue(); 6726 6727 SDValue Select = N->getOperand(0); 6728 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6729 return SDValue(); 6730 6731 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6732 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6733 if (!SelectCCValid || !SelectCCMask) 6734 return SDValue(); 6735 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6736 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6737 6738 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6739 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6740 if (!TrueVal || !FalseVal) 6741 return SDValue(); 6742 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6743 ; 6744 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6745 SelectCCMaskVal ^= SelectCCValidVal; 6746 else 6747 return SDValue(); 6748 6749 if (SelectCCValidVal & ~CCValidVal) 6750 return SDValue(); 6751 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6752 return SDValue(); 6753 6754 return Select->getOperand(4); 6755 } 6756 6757 SDValue SystemZTargetLowering::combineIntDIVREM( 6758 SDNode *N, DAGCombinerInfo &DCI) const { 6759 SelectionDAG &DAG = DCI.DAG; 6760 EVT VT = N->getValueType(0); 6761 // In the case where the divisor is a vector of constants a cheaper 6762 // sequence of instructions can replace the divide. BuildSDIV is called to 6763 // do this during DAG combining, but it only succeeds when it can build a 6764 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6765 // since it is not Legal but Custom it can only happen before 6766 // legalization. Therefore we must scalarize this early before Combine 6767 // 1. For widened vectors, this is already the result of type legalization. 6768 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6769 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6770 return DAG.UnrollVectorOp(N); 6771 return SDValue(); 6772 } 6773 6774 SDValue SystemZTargetLowering::combineINTRINSIC( 6775 SDNode *N, DAGCombinerInfo &DCI) const { 6776 SelectionDAG &DAG = DCI.DAG; 6777 6778 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6779 switch (Id) { 6780 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6781 // or larger is simply a vector load. 6782 case Intrinsic::s390_vll: 6783 case Intrinsic::s390_vlrl: 6784 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6785 if (C->getZExtValue() >= 15) 6786 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6787 N->getOperand(3), MachinePointerInfo()); 6788 break; 6789 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6790 case Intrinsic::s390_vstl: 6791 case Intrinsic::s390_vstrl: 6792 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6793 if (C->getZExtValue() >= 15) 6794 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6795 N->getOperand(4), MachinePointerInfo()); 6796 break; 6797 } 6798 6799 return SDValue(); 6800 } 6801 6802 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6803 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6804 return N->getOperand(0); 6805 return N; 6806 } 6807 6808 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6809 DAGCombinerInfo &DCI) const { 6810 switch(N->getOpcode()) { 6811 default: break; 6812 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6813 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6814 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6815 case SystemZISD::MERGE_HIGH: 6816 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6817 case ISD::LOAD: return combineLOAD(N, DCI); 6818 case ISD::STORE: return combineSTORE(N, DCI); 6819 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6820 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6821 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6822 case ISD::STRICT_FP_ROUND: 6823 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6824 case ISD::STRICT_FP_EXTEND: 6825 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6826 case ISD::SINT_TO_FP: 6827 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6828 case ISD::BSWAP: return combineBSWAP(N, DCI); 6829 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6830 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6831 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6832 case ISD::SDIV: 6833 case ISD::UDIV: 6834 case ISD::SREM: 6835 case ISD::UREM: return combineIntDIVREM(N, DCI); 6836 case ISD::INTRINSIC_W_CHAIN: 6837 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6838 } 6839 6840 return SDValue(); 6841 } 6842 6843 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6844 // are for Op. 6845 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6846 unsigned OpNo) { 6847 EVT VT = Op.getValueType(); 6848 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6849 APInt SrcDemE; 6850 unsigned Opcode = Op.getOpcode(); 6851 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6852 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6853 switch (Id) { 6854 case Intrinsic::s390_vpksh: // PACKS 6855 case Intrinsic::s390_vpksf: 6856 case Intrinsic::s390_vpksg: 6857 case Intrinsic::s390_vpkshs: // PACKS_CC 6858 case Intrinsic::s390_vpksfs: 6859 case Intrinsic::s390_vpksgs: 6860 case Intrinsic::s390_vpklsh: // PACKLS 6861 case Intrinsic::s390_vpklsf: 6862 case Intrinsic::s390_vpklsg: 6863 case Intrinsic::s390_vpklshs: // PACKLS_CC 6864 case Intrinsic::s390_vpklsfs: 6865 case Intrinsic::s390_vpklsgs: 6866 // VECTOR PACK truncates the elements of two source vectors into one. 6867 SrcDemE = DemandedElts; 6868 if (OpNo == 2) 6869 SrcDemE.lshrInPlace(NumElts / 2); 6870 SrcDemE = SrcDemE.trunc(NumElts / 2); 6871 break; 6872 // VECTOR UNPACK extends half the elements of the source vector. 6873 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6874 case Intrinsic::s390_vuphh: 6875 case Intrinsic::s390_vuphf: 6876 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6877 case Intrinsic::s390_vuplhh: 6878 case Intrinsic::s390_vuplhf: 6879 SrcDemE = APInt(NumElts * 2, 0); 6880 SrcDemE.insertBits(DemandedElts, 0); 6881 break; 6882 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6883 case Intrinsic::s390_vuplhw: 6884 case Intrinsic::s390_vuplf: 6885 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6886 case Intrinsic::s390_vupllh: 6887 case Intrinsic::s390_vupllf: 6888 SrcDemE = APInt(NumElts * 2, 0); 6889 SrcDemE.insertBits(DemandedElts, NumElts); 6890 break; 6891 case Intrinsic::s390_vpdi: { 6892 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6893 SrcDemE = APInt(NumElts, 0); 6894 if (!DemandedElts[OpNo - 1]) 6895 break; 6896 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6897 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6898 // Demand input element 0 or 1, given by the mask bit value. 6899 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6900 break; 6901 } 6902 case Intrinsic::s390_vsldb: { 6903 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6904 assert(VT == MVT::v16i8 && "Unexpected type."); 6905 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6906 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6907 unsigned NumSrc0Els = 16 - FirstIdx; 6908 SrcDemE = APInt(NumElts, 0); 6909 if (OpNo == 1) { 6910 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6911 SrcDemE.insertBits(DemEls, FirstIdx); 6912 } else { 6913 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6914 SrcDemE.insertBits(DemEls, 0); 6915 } 6916 break; 6917 } 6918 case Intrinsic::s390_vperm: 6919 SrcDemE = APInt(NumElts, 1); 6920 break; 6921 default: 6922 llvm_unreachable("Unhandled intrinsic."); 6923 break; 6924 } 6925 } else { 6926 switch (Opcode) { 6927 case SystemZISD::JOIN_DWORDS: 6928 // Scalar operand. 6929 SrcDemE = APInt(1, 1); 6930 break; 6931 case SystemZISD::SELECT_CCMASK: 6932 SrcDemE = DemandedElts; 6933 break; 6934 default: 6935 llvm_unreachable("Unhandled opcode."); 6936 break; 6937 } 6938 } 6939 return SrcDemE; 6940 } 6941 6942 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6943 const APInt &DemandedElts, 6944 const SelectionDAG &DAG, unsigned Depth, 6945 unsigned OpNo) { 6946 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6947 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6948 KnownBits LHSKnown = 6949 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6950 KnownBits RHSKnown = 6951 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6952 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 6953 } 6954 6955 void 6956 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6957 KnownBits &Known, 6958 const APInt &DemandedElts, 6959 const SelectionDAG &DAG, 6960 unsigned Depth) const { 6961 Known.resetAll(); 6962 6963 // Intrinsic CC result is returned in the two low bits. 6964 unsigned tmp0, tmp1; // not used 6965 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6966 Known.Zero.setBitsFrom(2); 6967 return; 6968 } 6969 EVT VT = Op.getValueType(); 6970 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6971 return; 6972 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6973 "KnownBits does not match VT in bitwidth"); 6974 assert ((!VT.isVector() || 6975 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6976 "DemandedElts does not match VT number of elements"); 6977 unsigned BitWidth = Known.getBitWidth(); 6978 unsigned Opcode = Op.getOpcode(); 6979 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6980 bool IsLogical = false; 6981 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6982 switch (Id) { 6983 case Intrinsic::s390_vpksh: // PACKS 6984 case Intrinsic::s390_vpksf: 6985 case Intrinsic::s390_vpksg: 6986 case Intrinsic::s390_vpkshs: // PACKS_CC 6987 case Intrinsic::s390_vpksfs: 6988 case Intrinsic::s390_vpksgs: 6989 case Intrinsic::s390_vpklsh: // PACKLS 6990 case Intrinsic::s390_vpklsf: 6991 case Intrinsic::s390_vpklsg: 6992 case Intrinsic::s390_vpklshs: // PACKLS_CC 6993 case Intrinsic::s390_vpklsfs: 6994 case Intrinsic::s390_vpklsgs: 6995 case Intrinsic::s390_vpdi: 6996 case Intrinsic::s390_vsldb: 6997 case Intrinsic::s390_vperm: 6998 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6999 break; 7000 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7001 case Intrinsic::s390_vuplhh: 7002 case Intrinsic::s390_vuplhf: 7003 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7004 case Intrinsic::s390_vupllh: 7005 case Intrinsic::s390_vupllf: 7006 IsLogical = true; 7007 LLVM_FALLTHROUGH; 7008 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7009 case Intrinsic::s390_vuphh: 7010 case Intrinsic::s390_vuphf: 7011 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7012 case Intrinsic::s390_vuplhw: 7013 case Intrinsic::s390_vuplf: { 7014 SDValue SrcOp = Op.getOperand(1); 7015 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7016 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7017 if (IsLogical) { 7018 Known = Known.zext(BitWidth); 7019 } else 7020 Known = Known.sext(BitWidth); 7021 break; 7022 } 7023 default: 7024 break; 7025 } 7026 } else { 7027 switch (Opcode) { 7028 case SystemZISD::JOIN_DWORDS: 7029 case SystemZISD::SELECT_CCMASK: 7030 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7031 break; 7032 case SystemZISD::REPLICATE: { 7033 SDValue SrcOp = Op.getOperand(0); 7034 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7035 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7036 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7037 break; 7038 } 7039 default: 7040 break; 7041 } 7042 } 7043 7044 // Known has the width of the source operand(s). Adjust if needed to match 7045 // the passed bitwidth. 7046 if (Known.getBitWidth() != BitWidth) 7047 Known = Known.anyextOrTrunc(BitWidth); 7048 } 7049 7050 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7051 const SelectionDAG &DAG, unsigned Depth, 7052 unsigned OpNo) { 7053 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7054 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7055 if (LHS == 1) return 1; // Early out. 7056 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7057 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7058 if (RHS == 1) return 1; // Early out. 7059 unsigned Common = std::min(LHS, RHS); 7060 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7061 EVT VT = Op.getValueType(); 7062 unsigned VTBits = VT.getScalarSizeInBits(); 7063 if (SrcBitWidth > VTBits) { // PACK 7064 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7065 if (Common > SrcExtraBits) 7066 return (Common - SrcExtraBits); 7067 return 1; 7068 } 7069 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7070 return Common; 7071 } 7072 7073 unsigned 7074 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7075 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7076 unsigned Depth) const { 7077 if (Op.getResNo() != 0) 7078 return 1; 7079 unsigned Opcode = Op.getOpcode(); 7080 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7081 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7082 switch (Id) { 7083 case Intrinsic::s390_vpksh: // PACKS 7084 case Intrinsic::s390_vpksf: 7085 case Intrinsic::s390_vpksg: 7086 case Intrinsic::s390_vpkshs: // PACKS_CC 7087 case Intrinsic::s390_vpksfs: 7088 case Intrinsic::s390_vpksgs: 7089 case Intrinsic::s390_vpklsh: // PACKLS 7090 case Intrinsic::s390_vpklsf: 7091 case Intrinsic::s390_vpklsg: 7092 case Intrinsic::s390_vpklshs: // PACKLS_CC 7093 case Intrinsic::s390_vpklsfs: 7094 case Intrinsic::s390_vpklsgs: 7095 case Intrinsic::s390_vpdi: 7096 case Intrinsic::s390_vsldb: 7097 case Intrinsic::s390_vperm: 7098 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7099 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7100 case Intrinsic::s390_vuphh: 7101 case Intrinsic::s390_vuphf: 7102 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7103 case Intrinsic::s390_vuplhw: 7104 case Intrinsic::s390_vuplf: { 7105 SDValue PackedOp = Op.getOperand(1); 7106 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7107 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7108 EVT VT = Op.getValueType(); 7109 unsigned VTBits = VT.getScalarSizeInBits(); 7110 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7111 return Tmp; 7112 } 7113 default: 7114 break; 7115 } 7116 } else { 7117 switch (Opcode) { 7118 case SystemZISD::SELECT_CCMASK: 7119 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7120 default: 7121 break; 7122 } 7123 } 7124 7125 return 1; 7126 } 7127 7128 unsigned 7129 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7130 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7131 unsigned StackAlign = TFI->getStackAlignment(); 7132 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7133 "Unexpected stack alignment"); 7134 // The default stack probe size is 4096 if the function has no 7135 // stack-probe-size attribute. 7136 unsigned StackProbeSize = 4096; 7137 const Function &Fn = MF.getFunction(); 7138 if (Fn.hasFnAttribute("stack-probe-size")) 7139 Fn.getFnAttribute("stack-probe-size") 7140 .getValueAsString() 7141 .getAsInteger(0, StackProbeSize); 7142 // Round down to the stack alignment. 7143 StackProbeSize &= ~(StackAlign - 1); 7144 return StackProbeSize ? StackProbeSize : StackAlign; 7145 } 7146 7147 //===----------------------------------------------------------------------===// 7148 // Custom insertion 7149 //===----------------------------------------------------------------------===// 7150 7151 // Force base value Base into a register before MI. Return the register. 7152 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7153 const SystemZInstrInfo *TII) { 7154 MachineBasicBlock *MBB = MI.getParent(); 7155 MachineFunction &MF = *MBB->getParent(); 7156 MachineRegisterInfo &MRI = MF.getRegInfo(); 7157 7158 if (Base.isReg()) { 7159 // Copy Base into a new virtual register to help register coalescing in 7160 // cases with multiple uses. 7161 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7162 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7163 .add(Base); 7164 return Reg; 7165 } 7166 7167 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7168 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7169 .add(Base) 7170 .addImm(0) 7171 .addReg(0); 7172 return Reg; 7173 } 7174 7175 // The CC operand of MI might be missing a kill marker because there 7176 // were multiple uses of CC, and ISel didn't know which to mark. 7177 // Figure out whether MI should have had a kill marker. 7178 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7179 // Scan forward through BB for a use/def of CC. 7180 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7181 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7182 const MachineInstr& mi = *miI; 7183 if (mi.readsRegister(SystemZ::CC)) 7184 return false; 7185 if (mi.definesRegister(SystemZ::CC)) 7186 break; // Should have kill-flag - update below. 7187 } 7188 7189 // If we hit the end of the block, check whether CC is live into a 7190 // successor. 7191 if (miI == MBB->end()) { 7192 for (const MachineBasicBlock *Succ : MBB->successors()) 7193 if (Succ->isLiveIn(SystemZ::CC)) 7194 return false; 7195 } 7196 7197 return true; 7198 } 7199 7200 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7201 // together with other Select pseudo-opcodes into a single basic-block with 7202 // a conditional jump around it. 7203 static bool isSelectPseudo(MachineInstr &MI) { 7204 switch (MI.getOpcode()) { 7205 case SystemZ::Select32: 7206 case SystemZ::Select64: 7207 case SystemZ::SelectF32: 7208 case SystemZ::SelectF64: 7209 case SystemZ::SelectF128: 7210 case SystemZ::SelectVR32: 7211 case SystemZ::SelectVR64: 7212 case SystemZ::SelectVR128: 7213 return true; 7214 7215 default: 7216 return false; 7217 } 7218 } 7219 7220 // Helper function, which inserts PHI functions into SinkMBB: 7221 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7222 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7223 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7224 MachineBasicBlock *TrueMBB, 7225 MachineBasicBlock *FalseMBB, 7226 MachineBasicBlock *SinkMBB) { 7227 MachineFunction *MF = TrueMBB->getParent(); 7228 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7229 7230 MachineInstr *FirstMI = Selects.front(); 7231 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7232 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7233 7234 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7235 7236 // As we are creating the PHIs, we have to be careful if there is more than 7237 // one. Later Selects may reference the results of earlier Selects, but later 7238 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7239 // That also means that PHI construction must work forward from earlier to 7240 // later, and that the code must maintain a mapping from earlier PHI's 7241 // destination registers, and the registers that went into the PHI. 7242 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7243 7244 for (auto MI : Selects) { 7245 Register DestReg = MI->getOperand(0).getReg(); 7246 Register TrueReg = MI->getOperand(1).getReg(); 7247 Register FalseReg = MI->getOperand(2).getReg(); 7248 7249 // If this Select we are generating is the opposite condition from 7250 // the jump we generated, then we have to swap the operands for the 7251 // PHI that is going to be generated. 7252 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7253 std::swap(TrueReg, FalseReg); 7254 7255 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7256 TrueReg = RegRewriteTable[TrueReg].first; 7257 7258 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7259 FalseReg = RegRewriteTable[FalseReg].second; 7260 7261 DebugLoc DL = MI->getDebugLoc(); 7262 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7263 .addReg(TrueReg).addMBB(TrueMBB) 7264 .addReg(FalseReg).addMBB(FalseMBB); 7265 7266 // Add this PHI to the rewrite table. 7267 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7268 } 7269 7270 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7271 } 7272 7273 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7274 MachineBasicBlock * 7275 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7276 MachineBasicBlock *MBB) const { 7277 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7278 const SystemZInstrInfo *TII = 7279 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7280 7281 unsigned CCValid = MI.getOperand(3).getImm(); 7282 unsigned CCMask = MI.getOperand(4).getImm(); 7283 7284 // If we have a sequence of Select* pseudo instructions using the 7285 // same condition code value, we want to expand all of them into 7286 // a single pair of basic blocks using the same condition. 7287 SmallVector<MachineInstr*, 8> Selects; 7288 SmallVector<MachineInstr*, 8> DbgValues; 7289 Selects.push_back(&MI); 7290 unsigned Count = 0; 7291 for (MachineBasicBlock::iterator NextMIIt = 7292 std::next(MachineBasicBlock::iterator(MI)); 7293 NextMIIt != MBB->end(); ++NextMIIt) { 7294 if (isSelectPseudo(*NextMIIt)) { 7295 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7296 "Bad CCValid operands since CC was not redefined."); 7297 if (NextMIIt->getOperand(4).getImm() == CCMask || 7298 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7299 Selects.push_back(&*NextMIIt); 7300 continue; 7301 } 7302 break; 7303 } 7304 if (NextMIIt->definesRegister(SystemZ::CC) || 7305 NextMIIt->usesCustomInsertionHook()) 7306 break; 7307 bool User = false; 7308 for (auto SelMI : Selects) 7309 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7310 User = true; 7311 break; 7312 } 7313 if (NextMIIt->isDebugInstr()) { 7314 if (User) { 7315 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7316 DbgValues.push_back(&*NextMIIt); 7317 } 7318 } 7319 else if (User || ++Count > 20) 7320 break; 7321 } 7322 7323 MachineInstr *LastMI = Selects.back(); 7324 bool CCKilled = 7325 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7326 MachineBasicBlock *StartMBB = MBB; 7327 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7328 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7329 7330 // Unless CC was killed in the last Select instruction, mark it as 7331 // live-in to both FalseMBB and JoinMBB. 7332 if (!CCKilled) { 7333 FalseMBB->addLiveIn(SystemZ::CC); 7334 JoinMBB->addLiveIn(SystemZ::CC); 7335 } 7336 7337 // StartMBB: 7338 // BRC CCMask, JoinMBB 7339 // # fallthrough to FalseMBB 7340 MBB = StartMBB; 7341 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7342 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7343 MBB->addSuccessor(JoinMBB); 7344 MBB->addSuccessor(FalseMBB); 7345 7346 // FalseMBB: 7347 // # fallthrough to JoinMBB 7348 MBB = FalseMBB; 7349 MBB->addSuccessor(JoinMBB); 7350 7351 // JoinMBB: 7352 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7353 // ... 7354 MBB = JoinMBB; 7355 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7356 for (auto SelMI : Selects) 7357 SelMI->eraseFromParent(); 7358 7359 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7360 for (auto DbgMI : DbgValues) 7361 MBB->splice(InsertPos, StartMBB, DbgMI); 7362 7363 return JoinMBB; 7364 } 7365 7366 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7367 // StoreOpcode is the store to use and Invert says whether the store should 7368 // happen when the condition is false rather than true. If a STORE ON 7369 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7370 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7371 MachineBasicBlock *MBB, 7372 unsigned StoreOpcode, 7373 unsigned STOCOpcode, 7374 bool Invert) const { 7375 const SystemZInstrInfo *TII = 7376 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7377 7378 Register SrcReg = MI.getOperand(0).getReg(); 7379 MachineOperand Base = MI.getOperand(1); 7380 int64_t Disp = MI.getOperand(2).getImm(); 7381 Register IndexReg = MI.getOperand(3).getReg(); 7382 unsigned CCValid = MI.getOperand(4).getImm(); 7383 unsigned CCMask = MI.getOperand(5).getImm(); 7384 DebugLoc DL = MI.getDebugLoc(); 7385 7386 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7387 7388 // ISel pattern matching also adds a load memory operand of the same 7389 // address, so take special care to find the storing memory operand. 7390 MachineMemOperand *MMO = nullptr; 7391 for (auto *I : MI.memoperands()) 7392 if (I->isStore()) { 7393 MMO = I; 7394 break; 7395 } 7396 7397 // Use STOCOpcode if possible. We could use different store patterns in 7398 // order to avoid matching the index register, but the performance trade-offs 7399 // might be more complicated in that case. 7400 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7401 if (Invert) 7402 CCMask ^= CCValid; 7403 7404 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7405 .addReg(SrcReg) 7406 .add(Base) 7407 .addImm(Disp) 7408 .addImm(CCValid) 7409 .addImm(CCMask) 7410 .addMemOperand(MMO); 7411 7412 MI.eraseFromParent(); 7413 return MBB; 7414 } 7415 7416 // Get the condition needed to branch around the store. 7417 if (!Invert) 7418 CCMask ^= CCValid; 7419 7420 MachineBasicBlock *StartMBB = MBB; 7421 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7422 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7423 7424 // Unless CC was killed in the CondStore instruction, mark it as 7425 // live-in to both FalseMBB and JoinMBB. 7426 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7427 FalseMBB->addLiveIn(SystemZ::CC); 7428 JoinMBB->addLiveIn(SystemZ::CC); 7429 } 7430 7431 // StartMBB: 7432 // BRC CCMask, JoinMBB 7433 // # fallthrough to FalseMBB 7434 MBB = StartMBB; 7435 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7436 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7437 MBB->addSuccessor(JoinMBB); 7438 MBB->addSuccessor(FalseMBB); 7439 7440 // FalseMBB: 7441 // store %SrcReg, %Disp(%Index,%Base) 7442 // # fallthrough to JoinMBB 7443 MBB = FalseMBB; 7444 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7445 .addReg(SrcReg) 7446 .add(Base) 7447 .addImm(Disp) 7448 .addReg(IndexReg) 7449 .addMemOperand(MMO); 7450 MBB->addSuccessor(JoinMBB); 7451 7452 MI.eraseFromParent(); 7453 return JoinMBB; 7454 } 7455 7456 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7457 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7458 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7459 // BitSize is the width of the field in bits, or 0 if this is a partword 7460 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7461 // is one of the operands. Invert says whether the field should be 7462 // inverted after performing BinOpcode (e.g. for NAND). 7463 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7464 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7465 unsigned BitSize, bool Invert) const { 7466 MachineFunction &MF = *MBB->getParent(); 7467 const SystemZInstrInfo *TII = 7468 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7469 MachineRegisterInfo &MRI = MF.getRegInfo(); 7470 bool IsSubWord = (BitSize < 32); 7471 7472 // Extract the operands. Base can be a register or a frame index. 7473 // Src2 can be a register or immediate. 7474 Register Dest = MI.getOperand(0).getReg(); 7475 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7476 int64_t Disp = MI.getOperand(2).getImm(); 7477 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7478 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7479 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7480 DebugLoc DL = MI.getDebugLoc(); 7481 if (IsSubWord) 7482 BitSize = MI.getOperand(6).getImm(); 7483 7484 // Subword operations use 32-bit registers. 7485 const TargetRegisterClass *RC = (BitSize <= 32 ? 7486 &SystemZ::GR32BitRegClass : 7487 &SystemZ::GR64BitRegClass); 7488 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7489 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7490 7491 // Get the right opcodes for the displacement. 7492 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7493 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7494 assert(LOpcode && CSOpcode && "Displacement out of range"); 7495 7496 // Create virtual registers for temporary results. 7497 Register OrigVal = MRI.createVirtualRegister(RC); 7498 Register OldVal = MRI.createVirtualRegister(RC); 7499 Register NewVal = (BinOpcode || IsSubWord ? 7500 MRI.createVirtualRegister(RC) : Src2.getReg()); 7501 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7502 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7503 7504 // Insert a basic block for the main loop. 7505 MachineBasicBlock *StartMBB = MBB; 7506 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7507 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7508 7509 // StartMBB: 7510 // ... 7511 // %OrigVal = L Disp(%Base) 7512 // # fall through to LoopMBB 7513 MBB = StartMBB; 7514 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7515 MBB->addSuccessor(LoopMBB); 7516 7517 // LoopMBB: 7518 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7519 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7520 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7521 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7522 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7523 // JNE LoopMBB 7524 // # fall through to DoneMBB 7525 MBB = LoopMBB; 7526 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7527 .addReg(OrigVal).addMBB(StartMBB) 7528 .addReg(Dest).addMBB(LoopMBB); 7529 if (IsSubWord) 7530 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7531 .addReg(OldVal).addReg(BitShift).addImm(0); 7532 if (Invert) { 7533 // Perform the operation normally and then invert every bit of the field. 7534 Register Tmp = MRI.createVirtualRegister(RC); 7535 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7536 if (BitSize <= 32) 7537 // XILF with the upper BitSize bits set. 7538 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7539 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7540 else { 7541 // Use LCGR and add -1 to the result, which is more compact than 7542 // an XILF, XILH pair. 7543 Register Tmp2 = MRI.createVirtualRegister(RC); 7544 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7545 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7546 .addReg(Tmp2).addImm(-1); 7547 } 7548 } else if (BinOpcode) 7549 // A simply binary operation. 7550 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7551 .addReg(RotatedOldVal) 7552 .add(Src2); 7553 else if (IsSubWord) 7554 // Use RISBG to rotate Src2 into position and use it to replace the 7555 // field in RotatedOldVal. 7556 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7557 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7558 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7559 if (IsSubWord) 7560 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7561 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7562 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7563 .addReg(OldVal) 7564 .addReg(NewVal) 7565 .add(Base) 7566 .addImm(Disp); 7567 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7568 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7569 MBB->addSuccessor(LoopMBB); 7570 MBB->addSuccessor(DoneMBB); 7571 7572 MI.eraseFromParent(); 7573 return DoneMBB; 7574 } 7575 7576 // Implement EmitInstrWithCustomInserter for pseudo 7577 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7578 // instruction that should be used to compare the current field with the 7579 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7580 // for when the current field should be kept. BitSize is the width of 7581 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7582 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7583 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7584 unsigned KeepOldMask, unsigned BitSize) const { 7585 MachineFunction &MF = *MBB->getParent(); 7586 const SystemZInstrInfo *TII = 7587 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7588 MachineRegisterInfo &MRI = MF.getRegInfo(); 7589 bool IsSubWord = (BitSize < 32); 7590 7591 // Extract the operands. Base can be a register or a frame index. 7592 Register Dest = MI.getOperand(0).getReg(); 7593 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7594 int64_t Disp = MI.getOperand(2).getImm(); 7595 Register Src2 = MI.getOperand(3).getReg(); 7596 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7597 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7598 DebugLoc DL = MI.getDebugLoc(); 7599 if (IsSubWord) 7600 BitSize = MI.getOperand(6).getImm(); 7601 7602 // Subword operations use 32-bit registers. 7603 const TargetRegisterClass *RC = (BitSize <= 32 ? 7604 &SystemZ::GR32BitRegClass : 7605 &SystemZ::GR64BitRegClass); 7606 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7607 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7608 7609 // Get the right opcodes for the displacement. 7610 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7611 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7612 assert(LOpcode && CSOpcode && "Displacement out of range"); 7613 7614 // Create virtual registers for temporary results. 7615 Register OrigVal = MRI.createVirtualRegister(RC); 7616 Register OldVal = MRI.createVirtualRegister(RC); 7617 Register NewVal = MRI.createVirtualRegister(RC); 7618 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7619 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7620 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7621 7622 // Insert 3 basic blocks for the loop. 7623 MachineBasicBlock *StartMBB = MBB; 7624 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7625 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7626 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7627 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7628 7629 // StartMBB: 7630 // ... 7631 // %OrigVal = L Disp(%Base) 7632 // # fall through to LoopMBB 7633 MBB = StartMBB; 7634 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7635 MBB->addSuccessor(LoopMBB); 7636 7637 // LoopMBB: 7638 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7639 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7640 // CompareOpcode %RotatedOldVal, %Src2 7641 // BRC KeepOldMask, UpdateMBB 7642 MBB = LoopMBB; 7643 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7644 .addReg(OrigVal).addMBB(StartMBB) 7645 .addReg(Dest).addMBB(UpdateMBB); 7646 if (IsSubWord) 7647 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7648 .addReg(OldVal).addReg(BitShift).addImm(0); 7649 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7650 .addReg(RotatedOldVal).addReg(Src2); 7651 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7652 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7653 MBB->addSuccessor(UpdateMBB); 7654 MBB->addSuccessor(UseAltMBB); 7655 7656 // UseAltMBB: 7657 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7658 // # fall through to UpdateMBB 7659 MBB = UseAltMBB; 7660 if (IsSubWord) 7661 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7662 .addReg(RotatedOldVal).addReg(Src2) 7663 .addImm(32).addImm(31 + BitSize).addImm(0); 7664 MBB->addSuccessor(UpdateMBB); 7665 7666 // UpdateMBB: 7667 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7668 // [ %RotatedAltVal, UseAltMBB ] 7669 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7670 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7671 // JNE LoopMBB 7672 // # fall through to DoneMBB 7673 MBB = UpdateMBB; 7674 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7675 .addReg(RotatedOldVal).addMBB(LoopMBB) 7676 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7677 if (IsSubWord) 7678 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7679 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7680 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7681 .addReg(OldVal) 7682 .addReg(NewVal) 7683 .add(Base) 7684 .addImm(Disp); 7685 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7686 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7687 MBB->addSuccessor(LoopMBB); 7688 MBB->addSuccessor(DoneMBB); 7689 7690 MI.eraseFromParent(); 7691 return DoneMBB; 7692 } 7693 7694 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7695 // instruction MI. 7696 MachineBasicBlock * 7697 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7698 MachineBasicBlock *MBB) const { 7699 MachineFunction &MF = *MBB->getParent(); 7700 const SystemZInstrInfo *TII = 7701 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7702 MachineRegisterInfo &MRI = MF.getRegInfo(); 7703 7704 // Extract the operands. Base can be a register or a frame index. 7705 Register Dest = MI.getOperand(0).getReg(); 7706 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7707 int64_t Disp = MI.getOperand(2).getImm(); 7708 Register CmpVal = MI.getOperand(3).getReg(); 7709 Register OrigSwapVal = MI.getOperand(4).getReg(); 7710 Register BitShift = MI.getOperand(5).getReg(); 7711 Register NegBitShift = MI.getOperand(6).getReg(); 7712 int64_t BitSize = MI.getOperand(7).getImm(); 7713 DebugLoc DL = MI.getDebugLoc(); 7714 7715 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7716 7717 // Get the right opcodes for the displacement and zero-extension. 7718 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7719 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7720 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7721 assert(LOpcode && CSOpcode && "Displacement out of range"); 7722 7723 // Create virtual registers for temporary results. 7724 Register OrigOldVal = MRI.createVirtualRegister(RC); 7725 Register OldVal = MRI.createVirtualRegister(RC); 7726 Register SwapVal = MRI.createVirtualRegister(RC); 7727 Register StoreVal = MRI.createVirtualRegister(RC); 7728 Register OldValRot = MRI.createVirtualRegister(RC); 7729 Register RetryOldVal = MRI.createVirtualRegister(RC); 7730 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7731 7732 // Insert 2 basic blocks for the loop. 7733 MachineBasicBlock *StartMBB = MBB; 7734 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7735 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7736 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7737 7738 // StartMBB: 7739 // ... 7740 // %OrigOldVal = L Disp(%Base) 7741 // # fall through to LoopMBB 7742 MBB = StartMBB; 7743 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7744 .add(Base) 7745 .addImm(Disp) 7746 .addReg(0); 7747 MBB->addSuccessor(LoopMBB); 7748 7749 // LoopMBB: 7750 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7751 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7752 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7753 // ^^ The low BitSize bits contain the field 7754 // of interest. 7755 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7756 // ^^ Replace the upper 32-BitSize bits of the 7757 // swap value with those that we loaded and rotated. 7758 // %Dest = LL[CH] %OldValRot 7759 // CR %Dest, %CmpVal 7760 // JNE DoneMBB 7761 // # Fall through to SetMBB 7762 MBB = LoopMBB; 7763 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7764 .addReg(OrigOldVal).addMBB(StartMBB) 7765 .addReg(RetryOldVal).addMBB(SetMBB); 7766 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7767 .addReg(OrigSwapVal).addMBB(StartMBB) 7768 .addReg(RetrySwapVal).addMBB(SetMBB); 7769 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7770 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7771 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7772 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7773 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7774 .addReg(OldValRot); 7775 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7776 .addReg(Dest).addReg(CmpVal); 7777 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7778 .addImm(SystemZ::CCMASK_ICMP) 7779 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7780 MBB->addSuccessor(DoneMBB); 7781 MBB->addSuccessor(SetMBB); 7782 7783 // SetMBB: 7784 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7785 // ^^ Rotate the new field to its proper position. 7786 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7787 // JNE LoopMBB 7788 // # fall through to ExitMBB 7789 MBB = SetMBB; 7790 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7791 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7792 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7793 .addReg(OldVal) 7794 .addReg(StoreVal) 7795 .add(Base) 7796 .addImm(Disp); 7797 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7798 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7799 MBB->addSuccessor(LoopMBB); 7800 MBB->addSuccessor(DoneMBB); 7801 7802 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7803 // to the block after the loop. At this point, CC may have been defined 7804 // either by the CR in LoopMBB or by the CS in SetMBB. 7805 if (!MI.registerDefIsDead(SystemZ::CC)) 7806 DoneMBB->addLiveIn(SystemZ::CC); 7807 7808 MI.eraseFromParent(); 7809 return DoneMBB; 7810 } 7811 7812 // Emit a move from two GR64s to a GR128. 7813 MachineBasicBlock * 7814 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7815 MachineBasicBlock *MBB) const { 7816 MachineFunction &MF = *MBB->getParent(); 7817 const SystemZInstrInfo *TII = 7818 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7819 MachineRegisterInfo &MRI = MF.getRegInfo(); 7820 DebugLoc DL = MI.getDebugLoc(); 7821 7822 Register Dest = MI.getOperand(0).getReg(); 7823 Register Hi = MI.getOperand(1).getReg(); 7824 Register Lo = MI.getOperand(2).getReg(); 7825 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7826 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7827 7828 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7829 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7830 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7831 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7832 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7833 7834 MI.eraseFromParent(); 7835 return MBB; 7836 } 7837 7838 // Emit an extension from a GR64 to a GR128. ClearEven is true 7839 // if the high register of the GR128 value must be cleared or false if 7840 // it's "don't care". 7841 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7842 MachineBasicBlock *MBB, 7843 bool ClearEven) const { 7844 MachineFunction &MF = *MBB->getParent(); 7845 const SystemZInstrInfo *TII = 7846 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7847 MachineRegisterInfo &MRI = MF.getRegInfo(); 7848 DebugLoc DL = MI.getDebugLoc(); 7849 7850 Register Dest = MI.getOperand(0).getReg(); 7851 Register Src = MI.getOperand(1).getReg(); 7852 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7853 7854 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7855 if (ClearEven) { 7856 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7857 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7858 7859 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7860 .addImm(0); 7861 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7862 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7863 In128 = NewIn128; 7864 } 7865 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7866 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7867 7868 MI.eraseFromParent(); 7869 return MBB; 7870 } 7871 7872 MachineBasicBlock * 7873 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 7874 MachineBasicBlock *MBB, 7875 unsigned Opcode, bool IsMemset) const { 7876 MachineFunction &MF = *MBB->getParent(); 7877 const SystemZInstrInfo *TII = 7878 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7879 MachineRegisterInfo &MRI = MF.getRegInfo(); 7880 DebugLoc DL = MI.getDebugLoc(); 7881 7882 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7883 uint64_t DestDisp = MI.getOperand(1).getImm(); 7884 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 7885 uint64_t SrcDisp; 7886 7887 // Fold the displacement Disp if it is out of range. 7888 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 7889 if (!isUInt<12>(Disp)) { 7890 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7891 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 7892 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 7893 .add(Base).addImm(Disp).addReg(0); 7894 Base = MachineOperand::CreateReg(Reg, false); 7895 Disp = 0; 7896 } 7897 }; 7898 7899 if (!IsMemset) { 7900 SrcBase = earlyUseOperand(MI.getOperand(2)); 7901 SrcDisp = MI.getOperand(3).getImm(); 7902 } else { 7903 SrcBase = DestBase; 7904 SrcDisp = DestDisp++; 7905 foldDisplIfNeeded(DestBase, DestDisp); 7906 } 7907 7908 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 7909 bool IsImmForm = LengthMO.isImm(); 7910 bool IsRegForm = !IsImmForm; 7911 7912 // Build and insert one Opcode of Length, with special treatment for memset. 7913 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 7914 MachineBasicBlock::iterator InsPos, 7915 MachineOperand DBase, uint64_t DDisp, 7916 MachineOperand SBase, uint64_t SDisp, 7917 unsigned Length) -> void { 7918 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 7919 if (IsMemset) { 7920 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 7921 if (ByteMO.isImm()) 7922 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 7923 .add(SBase).addImm(SDisp).add(ByteMO); 7924 else 7925 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 7926 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 7927 if (--Length == 0) 7928 return; 7929 } 7930 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 7931 .add(DBase).addImm(DDisp).addImm(Length) 7932 .add(SBase).addImm(SDisp) 7933 .setMemRefs(MI.memoperands()); 7934 }; 7935 7936 bool NeedsLoop = false; 7937 uint64_t ImmLength = 0; 7938 Register LenAdjReg = SystemZ::NoRegister; 7939 if (IsImmForm) { 7940 ImmLength = LengthMO.getImm(); 7941 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 7942 if (ImmLength == 0) { 7943 MI.eraseFromParent(); 7944 return MBB; 7945 } 7946 if (Opcode == SystemZ::CLC) { 7947 if (ImmLength > 3 * 256) 7948 // A two-CLC sequence is a clear win over a loop, not least because 7949 // it needs only one branch. A three-CLC sequence needs the same 7950 // number of branches as a loop (i.e. 2), but is shorter. That 7951 // brings us to lengths greater than 768 bytes. It seems relatively 7952 // likely that a difference will be found within the first 768 bytes, 7953 // so we just optimize for the smallest number of branch 7954 // instructions, in order to avoid polluting the prediction buffer 7955 // too much. 7956 NeedsLoop = true; 7957 } else if (ImmLength > 6 * 256) 7958 // The heuristic we use is to prefer loops for anything that would 7959 // require 7 or more MVCs. With these kinds of sizes there isn't much 7960 // to choose between straight-line code and looping code, since the 7961 // time will be dominated by the MVCs themselves. 7962 NeedsLoop = true; 7963 } else { 7964 NeedsLoop = true; 7965 LenAdjReg = LengthMO.getReg(); 7966 } 7967 7968 // When generating more than one CLC, all but the last will need to 7969 // branch to the end when a difference is found. 7970 MachineBasicBlock *EndMBB = 7971 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 7972 ? SystemZ::splitBlockAfter(MI, MBB) 7973 : nullptr); 7974 7975 if (NeedsLoop) { 7976 Register StartCountReg = 7977 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7978 if (IsImmForm) { 7979 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 7980 ImmLength &= 255; 7981 } else { 7982 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 7983 .addReg(LenAdjReg) 7984 .addReg(0) 7985 .addImm(8); 7986 } 7987 7988 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7989 auto loadZeroAddress = [&]() -> MachineOperand { 7990 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7991 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 7992 return MachineOperand::CreateReg(Reg, false); 7993 }; 7994 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 7995 DestBase = loadZeroAddress(); 7996 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 7997 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 7998 7999 MachineBasicBlock *StartMBB = nullptr; 8000 MachineBasicBlock *LoopMBB = nullptr; 8001 MachineBasicBlock *NextMBB = nullptr; 8002 MachineBasicBlock *DoneMBB = nullptr; 8003 MachineBasicBlock *AllDoneMBB = nullptr; 8004 8005 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8006 Register StartDestReg = 8007 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8008 8009 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8010 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8011 Register ThisDestReg = 8012 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8013 Register NextSrcReg = MRI.createVirtualRegister(RC); 8014 Register NextDestReg = 8015 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8016 RC = &SystemZ::GR64BitRegClass; 8017 Register ThisCountReg = MRI.createVirtualRegister(RC); 8018 Register NextCountReg = MRI.createVirtualRegister(RC); 8019 8020 if (IsRegForm) { 8021 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8022 StartMBB = SystemZ::emitBlockAfter(MBB); 8023 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8024 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8025 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8026 8027 // MBB: 8028 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8029 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8030 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8031 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8032 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8033 .addMBB(AllDoneMBB); 8034 MBB->addSuccessor(AllDoneMBB); 8035 if (!IsMemset) 8036 MBB->addSuccessor(StartMBB); 8037 else { 8038 // MemsetOneCheckMBB: 8039 // # Jump to MemsetOneMBB for a memset of length 1, or 8040 // # fall thru to StartMBB. 8041 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8042 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8043 MBB->addSuccessor(MemsetOneCheckMBB); 8044 MBB = MemsetOneCheckMBB; 8045 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8046 .addReg(LenAdjReg).addImm(-1); 8047 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8048 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8049 .addMBB(MemsetOneMBB); 8050 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8051 MBB->addSuccessor(StartMBB, {90, 100}); 8052 8053 // MemsetOneMBB: 8054 // # Jump back to AllDoneMBB after a single MVI or STC. 8055 MBB = MemsetOneMBB; 8056 insertMemMemOp(MBB, MBB->end(), 8057 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8058 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8059 1); 8060 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8061 MBB->addSuccessor(AllDoneMBB); 8062 } 8063 8064 // StartMBB: 8065 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8066 MBB = StartMBB; 8067 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8068 .addReg(StartCountReg).addImm(0); 8069 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8070 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8071 .addMBB(DoneMBB); 8072 MBB->addSuccessor(DoneMBB); 8073 MBB->addSuccessor(LoopMBB); 8074 } 8075 else { 8076 StartMBB = MBB; 8077 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8078 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8079 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8080 8081 // StartMBB: 8082 // # fall through to LoopMBB 8083 MBB->addSuccessor(LoopMBB); 8084 8085 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8086 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8087 if (EndMBB && !ImmLength) 8088 // If the loop handled the whole CLC range, DoneMBB will be empty with 8089 // CC live-through into EndMBB, so add it as live-in. 8090 DoneMBB->addLiveIn(SystemZ::CC); 8091 } 8092 8093 // LoopMBB: 8094 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8095 // [ %NextDestReg, NextMBB ] 8096 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8097 // [ %NextSrcReg, NextMBB ] 8098 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8099 // [ %NextCountReg, NextMBB ] 8100 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8101 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8102 // ( JLH EndMBB ) 8103 // 8104 // The prefetch is used only for MVC. The JLH is used only for CLC. 8105 MBB = LoopMBB; 8106 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8107 .addReg(StartDestReg).addMBB(StartMBB) 8108 .addReg(NextDestReg).addMBB(NextMBB); 8109 if (!HaveSingleBase) 8110 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8111 .addReg(StartSrcReg).addMBB(StartMBB) 8112 .addReg(NextSrcReg).addMBB(NextMBB); 8113 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8114 .addReg(StartCountReg).addMBB(StartMBB) 8115 .addReg(NextCountReg).addMBB(NextMBB); 8116 if (Opcode == SystemZ::MVC) 8117 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8118 .addImm(SystemZ::PFD_WRITE) 8119 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8120 insertMemMemOp(MBB, MBB->end(), 8121 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8122 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8123 if (EndMBB) { 8124 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8125 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8126 .addMBB(EndMBB); 8127 MBB->addSuccessor(EndMBB); 8128 MBB->addSuccessor(NextMBB); 8129 } 8130 8131 // NextMBB: 8132 // %NextDestReg = LA 256(%ThisDestReg) 8133 // %NextSrcReg = LA 256(%ThisSrcReg) 8134 // %NextCountReg = AGHI %ThisCountReg, -1 8135 // CGHI %NextCountReg, 0 8136 // JLH LoopMBB 8137 // # fall through to DoneMBB 8138 // 8139 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8140 MBB = NextMBB; 8141 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8142 .addReg(ThisDestReg).addImm(256).addReg(0); 8143 if (!HaveSingleBase) 8144 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8145 .addReg(ThisSrcReg).addImm(256).addReg(0); 8146 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8147 .addReg(ThisCountReg).addImm(-1); 8148 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8149 .addReg(NextCountReg).addImm(0); 8150 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8151 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8152 .addMBB(LoopMBB); 8153 MBB->addSuccessor(LoopMBB); 8154 MBB->addSuccessor(DoneMBB); 8155 8156 MBB = DoneMBB; 8157 if (IsRegForm) { 8158 // DoneMBB: 8159 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8160 // # Use EXecute Relative Long for the remainder of the bytes. The target 8161 // instruction of the EXRL will have a length field of 1 since 0 is an 8162 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8163 // 0xff) + 1. 8164 // # Fall through to AllDoneMBB. 8165 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8166 Register RemDestReg = HaveSingleBase ? RemSrcReg 8167 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8168 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8169 .addReg(StartDestReg).addMBB(StartMBB) 8170 .addReg(NextDestReg).addMBB(NextMBB); 8171 if (!HaveSingleBase) 8172 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8173 .addReg(StartSrcReg).addMBB(StartMBB) 8174 .addReg(NextSrcReg).addMBB(NextMBB); 8175 if (IsMemset) 8176 insertMemMemOp(MBB, MBB->end(), 8177 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8178 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8179 MachineInstrBuilder EXRL_MIB = 8180 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8181 .addImm(Opcode) 8182 .addReg(LenAdjReg) 8183 .addReg(RemDestReg).addImm(DestDisp) 8184 .addReg(RemSrcReg).addImm(SrcDisp); 8185 MBB->addSuccessor(AllDoneMBB); 8186 MBB = AllDoneMBB; 8187 if (EndMBB) { 8188 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8189 MBB->addLiveIn(SystemZ::CC); 8190 } 8191 } 8192 } 8193 8194 // Handle any remaining bytes with straight-line code. 8195 while (ImmLength > 0) { 8196 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8197 // The previous iteration might have created out-of-range displacements. 8198 // Apply them using LA/LAY if so. 8199 foldDisplIfNeeded(DestBase, DestDisp); 8200 foldDisplIfNeeded(SrcBase, SrcDisp); 8201 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8202 DestDisp += ThisLength; 8203 SrcDisp += ThisLength; 8204 ImmLength -= ThisLength; 8205 // If there's another CLC to go, branch to the end if a difference 8206 // was found. 8207 if (EndMBB && ImmLength > 0) { 8208 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8209 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8210 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8211 .addMBB(EndMBB); 8212 MBB->addSuccessor(EndMBB); 8213 MBB->addSuccessor(NextMBB); 8214 MBB = NextMBB; 8215 } 8216 } 8217 if (EndMBB) { 8218 MBB->addSuccessor(EndMBB); 8219 MBB = EndMBB; 8220 MBB->addLiveIn(SystemZ::CC); 8221 } 8222 8223 MI.eraseFromParent(); 8224 return MBB; 8225 } 8226 8227 // Decompose string pseudo-instruction MI into a loop that continually performs 8228 // Opcode until CC != 3. 8229 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8230 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8231 MachineFunction &MF = *MBB->getParent(); 8232 const SystemZInstrInfo *TII = 8233 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8234 MachineRegisterInfo &MRI = MF.getRegInfo(); 8235 DebugLoc DL = MI.getDebugLoc(); 8236 8237 uint64_t End1Reg = MI.getOperand(0).getReg(); 8238 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8239 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8240 uint64_t CharReg = MI.getOperand(3).getReg(); 8241 8242 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8243 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8244 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8245 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8246 8247 MachineBasicBlock *StartMBB = MBB; 8248 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8249 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8250 8251 // StartMBB: 8252 // # fall through to LoopMBB 8253 MBB->addSuccessor(LoopMBB); 8254 8255 // LoopMBB: 8256 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8257 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8258 // R0L = %CharReg 8259 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8260 // JO LoopMBB 8261 // # fall through to DoneMBB 8262 // 8263 // The load of R0L can be hoisted by post-RA LICM. 8264 MBB = LoopMBB; 8265 8266 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8267 .addReg(Start1Reg).addMBB(StartMBB) 8268 .addReg(End1Reg).addMBB(LoopMBB); 8269 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8270 .addReg(Start2Reg).addMBB(StartMBB) 8271 .addReg(End2Reg).addMBB(LoopMBB); 8272 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8273 BuildMI(MBB, DL, TII->get(Opcode)) 8274 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8275 .addReg(This1Reg).addReg(This2Reg); 8276 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8277 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8278 MBB->addSuccessor(LoopMBB); 8279 MBB->addSuccessor(DoneMBB); 8280 8281 DoneMBB->addLiveIn(SystemZ::CC); 8282 8283 MI.eraseFromParent(); 8284 return DoneMBB; 8285 } 8286 8287 // Update TBEGIN instruction with final opcode and register clobbers. 8288 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8289 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8290 bool NoFloat) const { 8291 MachineFunction &MF = *MBB->getParent(); 8292 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8293 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8294 8295 // Update opcode. 8296 MI.setDesc(TII->get(Opcode)); 8297 8298 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8299 // Make sure to add the corresponding GRSM bits if they are missing. 8300 uint64_t Control = MI.getOperand(2).getImm(); 8301 static const unsigned GPRControlBit[16] = { 8302 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8303 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8304 }; 8305 Control |= GPRControlBit[15]; 8306 if (TFI->hasFP(MF)) 8307 Control |= GPRControlBit[11]; 8308 MI.getOperand(2).setImm(Control); 8309 8310 // Add GPR clobbers. 8311 for (int I = 0; I < 16; I++) { 8312 if ((Control & GPRControlBit[I]) == 0) { 8313 unsigned Reg = SystemZMC::GR64Regs[I]; 8314 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8315 } 8316 } 8317 8318 // Add FPR/VR clobbers. 8319 if (!NoFloat && (Control & 4) != 0) { 8320 if (Subtarget.hasVector()) { 8321 for (int I = 0; I < 32; I++) { 8322 unsigned Reg = SystemZMC::VR128Regs[I]; 8323 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8324 } 8325 } else { 8326 for (int I = 0; I < 16; I++) { 8327 unsigned Reg = SystemZMC::FP64Regs[I]; 8328 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8329 } 8330 } 8331 } 8332 8333 return MBB; 8334 } 8335 8336 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8337 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8338 MachineFunction &MF = *MBB->getParent(); 8339 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8340 const SystemZInstrInfo *TII = 8341 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8342 DebugLoc DL = MI.getDebugLoc(); 8343 8344 Register SrcReg = MI.getOperand(0).getReg(); 8345 8346 // Create new virtual register of the same class as source. 8347 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8348 Register DstReg = MRI->createVirtualRegister(RC); 8349 8350 // Replace pseudo with a normal load-and-test that models the def as 8351 // well. 8352 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8353 .addReg(SrcReg) 8354 .setMIFlags(MI.getFlags()); 8355 MI.eraseFromParent(); 8356 8357 return MBB; 8358 } 8359 8360 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8361 MachineInstr &MI, MachineBasicBlock *MBB) const { 8362 MachineFunction &MF = *MBB->getParent(); 8363 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8364 const SystemZInstrInfo *TII = 8365 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8366 DebugLoc DL = MI.getDebugLoc(); 8367 const unsigned ProbeSize = getStackProbeSize(MF); 8368 Register DstReg = MI.getOperand(0).getReg(); 8369 Register SizeReg = MI.getOperand(2).getReg(); 8370 8371 MachineBasicBlock *StartMBB = MBB; 8372 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8373 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8374 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8375 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8376 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8377 8378 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8379 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8380 8381 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8382 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8383 8384 // LoopTestMBB 8385 // BRC TailTestMBB 8386 // # fallthrough to LoopBodyMBB 8387 StartMBB->addSuccessor(LoopTestMBB); 8388 MBB = LoopTestMBB; 8389 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8390 .addReg(SizeReg) 8391 .addMBB(StartMBB) 8392 .addReg(IncReg) 8393 .addMBB(LoopBodyMBB); 8394 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8395 .addReg(PHIReg) 8396 .addImm(ProbeSize); 8397 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8398 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8399 .addMBB(TailTestMBB); 8400 MBB->addSuccessor(LoopBodyMBB); 8401 MBB->addSuccessor(TailTestMBB); 8402 8403 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8404 // J LoopTestMBB 8405 MBB = LoopBodyMBB; 8406 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8407 .addReg(PHIReg) 8408 .addImm(ProbeSize); 8409 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8410 .addReg(SystemZ::R15D) 8411 .addImm(ProbeSize); 8412 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8413 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8414 .setMemRefs(VolLdMMO); 8415 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8416 MBB->addSuccessor(LoopTestMBB); 8417 8418 // TailTestMBB 8419 // BRC DoneMBB 8420 // # fallthrough to TailMBB 8421 MBB = TailTestMBB; 8422 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8423 .addReg(PHIReg) 8424 .addImm(0); 8425 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8426 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8427 .addMBB(DoneMBB); 8428 MBB->addSuccessor(TailMBB); 8429 MBB->addSuccessor(DoneMBB); 8430 8431 // TailMBB 8432 // # fallthrough to DoneMBB 8433 MBB = TailMBB; 8434 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8435 .addReg(SystemZ::R15D) 8436 .addReg(PHIReg); 8437 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8438 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8439 .setMemRefs(VolLdMMO); 8440 MBB->addSuccessor(DoneMBB); 8441 8442 // DoneMBB 8443 MBB = DoneMBB; 8444 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8445 .addReg(SystemZ::R15D); 8446 8447 MI.eraseFromParent(); 8448 return DoneMBB; 8449 } 8450 8451 SDValue SystemZTargetLowering:: 8452 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8453 MachineFunction &MF = DAG.getMachineFunction(); 8454 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8455 SDLoc DL(SP); 8456 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8457 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8458 } 8459 8460 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8461 MachineInstr &MI, MachineBasicBlock *MBB) const { 8462 switch (MI.getOpcode()) { 8463 case SystemZ::Select32: 8464 case SystemZ::Select64: 8465 case SystemZ::SelectF32: 8466 case SystemZ::SelectF64: 8467 case SystemZ::SelectF128: 8468 case SystemZ::SelectVR32: 8469 case SystemZ::SelectVR64: 8470 case SystemZ::SelectVR128: 8471 return emitSelect(MI, MBB); 8472 8473 case SystemZ::CondStore8Mux: 8474 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8475 case SystemZ::CondStore8MuxInv: 8476 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8477 case SystemZ::CondStore16Mux: 8478 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8479 case SystemZ::CondStore16MuxInv: 8480 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8481 case SystemZ::CondStore32Mux: 8482 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8483 case SystemZ::CondStore32MuxInv: 8484 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8485 case SystemZ::CondStore8: 8486 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8487 case SystemZ::CondStore8Inv: 8488 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8489 case SystemZ::CondStore16: 8490 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8491 case SystemZ::CondStore16Inv: 8492 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8493 case SystemZ::CondStore32: 8494 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8495 case SystemZ::CondStore32Inv: 8496 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8497 case SystemZ::CondStore64: 8498 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8499 case SystemZ::CondStore64Inv: 8500 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8501 case SystemZ::CondStoreF32: 8502 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8503 case SystemZ::CondStoreF32Inv: 8504 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8505 case SystemZ::CondStoreF64: 8506 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8507 case SystemZ::CondStoreF64Inv: 8508 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8509 8510 case SystemZ::PAIR128: 8511 return emitPair128(MI, MBB); 8512 case SystemZ::AEXT128: 8513 return emitExt128(MI, MBB, false); 8514 case SystemZ::ZEXT128: 8515 return emitExt128(MI, MBB, true); 8516 8517 case SystemZ::ATOMIC_SWAPW: 8518 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8519 case SystemZ::ATOMIC_SWAP_32: 8520 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8521 case SystemZ::ATOMIC_SWAP_64: 8522 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8523 8524 case SystemZ::ATOMIC_LOADW_AR: 8525 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8526 case SystemZ::ATOMIC_LOADW_AFI: 8527 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8528 case SystemZ::ATOMIC_LOAD_AR: 8529 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8530 case SystemZ::ATOMIC_LOAD_AHI: 8531 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8532 case SystemZ::ATOMIC_LOAD_AFI: 8533 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8534 case SystemZ::ATOMIC_LOAD_AGR: 8535 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8536 case SystemZ::ATOMIC_LOAD_AGHI: 8537 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8538 case SystemZ::ATOMIC_LOAD_AGFI: 8539 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8540 8541 case SystemZ::ATOMIC_LOADW_SR: 8542 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8543 case SystemZ::ATOMIC_LOAD_SR: 8544 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8545 case SystemZ::ATOMIC_LOAD_SGR: 8546 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8547 8548 case SystemZ::ATOMIC_LOADW_NR: 8549 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8550 case SystemZ::ATOMIC_LOADW_NILH: 8551 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8552 case SystemZ::ATOMIC_LOAD_NR: 8553 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8554 case SystemZ::ATOMIC_LOAD_NILL: 8555 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8556 case SystemZ::ATOMIC_LOAD_NILH: 8557 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8558 case SystemZ::ATOMIC_LOAD_NILF: 8559 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8560 case SystemZ::ATOMIC_LOAD_NGR: 8561 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8562 case SystemZ::ATOMIC_LOAD_NILL64: 8563 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8564 case SystemZ::ATOMIC_LOAD_NILH64: 8565 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8566 case SystemZ::ATOMIC_LOAD_NIHL64: 8567 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8568 case SystemZ::ATOMIC_LOAD_NIHH64: 8569 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8570 case SystemZ::ATOMIC_LOAD_NILF64: 8571 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8572 case SystemZ::ATOMIC_LOAD_NIHF64: 8573 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8574 8575 case SystemZ::ATOMIC_LOADW_OR: 8576 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8577 case SystemZ::ATOMIC_LOADW_OILH: 8578 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8579 case SystemZ::ATOMIC_LOAD_OR: 8580 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8581 case SystemZ::ATOMIC_LOAD_OILL: 8582 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8583 case SystemZ::ATOMIC_LOAD_OILH: 8584 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8585 case SystemZ::ATOMIC_LOAD_OILF: 8586 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8587 case SystemZ::ATOMIC_LOAD_OGR: 8588 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8589 case SystemZ::ATOMIC_LOAD_OILL64: 8590 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8591 case SystemZ::ATOMIC_LOAD_OILH64: 8592 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8593 case SystemZ::ATOMIC_LOAD_OIHL64: 8594 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8595 case SystemZ::ATOMIC_LOAD_OIHH64: 8596 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8597 case SystemZ::ATOMIC_LOAD_OILF64: 8598 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8599 case SystemZ::ATOMIC_LOAD_OIHF64: 8600 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8601 8602 case SystemZ::ATOMIC_LOADW_XR: 8603 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8604 case SystemZ::ATOMIC_LOADW_XILF: 8605 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8606 case SystemZ::ATOMIC_LOAD_XR: 8607 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8608 case SystemZ::ATOMIC_LOAD_XILF: 8609 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8610 case SystemZ::ATOMIC_LOAD_XGR: 8611 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8612 case SystemZ::ATOMIC_LOAD_XILF64: 8613 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8614 case SystemZ::ATOMIC_LOAD_XIHF64: 8615 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8616 8617 case SystemZ::ATOMIC_LOADW_NRi: 8618 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8619 case SystemZ::ATOMIC_LOADW_NILHi: 8620 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8621 case SystemZ::ATOMIC_LOAD_NRi: 8622 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8623 case SystemZ::ATOMIC_LOAD_NILLi: 8624 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8625 case SystemZ::ATOMIC_LOAD_NILHi: 8626 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8627 case SystemZ::ATOMIC_LOAD_NILFi: 8628 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8629 case SystemZ::ATOMIC_LOAD_NGRi: 8630 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8631 case SystemZ::ATOMIC_LOAD_NILL64i: 8632 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8633 case SystemZ::ATOMIC_LOAD_NILH64i: 8634 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8635 case SystemZ::ATOMIC_LOAD_NIHL64i: 8636 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8637 case SystemZ::ATOMIC_LOAD_NIHH64i: 8638 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8639 case SystemZ::ATOMIC_LOAD_NILF64i: 8640 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8641 case SystemZ::ATOMIC_LOAD_NIHF64i: 8642 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8643 8644 case SystemZ::ATOMIC_LOADW_MIN: 8645 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8646 SystemZ::CCMASK_CMP_LE, 0); 8647 case SystemZ::ATOMIC_LOAD_MIN_32: 8648 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8649 SystemZ::CCMASK_CMP_LE, 32); 8650 case SystemZ::ATOMIC_LOAD_MIN_64: 8651 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8652 SystemZ::CCMASK_CMP_LE, 64); 8653 8654 case SystemZ::ATOMIC_LOADW_MAX: 8655 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8656 SystemZ::CCMASK_CMP_GE, 0); 8657 case SystemZ::ATOMIC_LOAD_MAX_32: 8658 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8659 SystemZ::CCMASK_CMP_GE, 32); 8660 case SystemZ::ATOMIC_LOAD_MAX_64: 8661 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8662 SystemZ::CCMASK_CMP_GE, 64); 8663 8664 case SystemZ::ATOMIC_LOADW_UMIN: 8665 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8666 SystemZ::CCMASK_CMP_LE, 0); 8667 case SystemZ::ATOMIC_LOAD_UMIN_32: 8668 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8669 SystemZ::CCMASK_CMP_LE, 32); 8670 case SystemZ::ATOMIC_LOAD_UMIN_64: 8671 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8672 SystemZ::CCMASK_CMP_LE, 64); 8673 8674 case SystemZ::ATOMIC_LOADW_UMAX: 8675 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8676 SystemZ::CCMASK_CMP_GE, 0); 8677 case SystemZ::ATOMIC_LOAD_UMAX_32: 8678 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8679 SystemZ::CCMASK_CMP_GE, 32); 8680 case SystemZ::ATOMIC_LOAD_UMAX_64: 8681 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8682 SystemZ::CCMASK_CMP_GE, 64); 8683 8684 case SystemZ::ATOMIC_CMP_SWAPW: 8685 return emitAtomicCmpSwapW(MI, MBB); 8686 case SystemZ::MVCImm: 8687 case SystemZ::MVCReg: 8688 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8689 case SystemZ::NCImm: 8690 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8691 case SystemZ::OCImm: 8692 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8693 case SystemZ::XCImm: 8694 case SystemZ::XCReg: 8695 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8696 case SystemZ::CLCImm: 8697 case SystemZ::CLCReg: 8698 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8699 case SystemZ::MemsetImmImm: 8700 case SystemZ::MemsetImmReg: 8701 case SystemZ::MemsetRegImm: 8702 case SystemZ::MemsetRegReg: 8703 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 8704 case SystemZ::CLSTLoop: 8705 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8706 case SystemZ::MVSTLoop: 8707 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8708 case SystemZ::SRSTLoop: 8709 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8710 case SystemZ::TBEGIN: 8711 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8712 case SystemZ::TBEGIN_nofloat: 8713 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8714 case SystemZ::TBEGINC: 8715 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8716 case SystemZ::LTEBRCompare_VecPseudo: 8717 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8718 case SystemZ::LTDBRCompare_VecPseudo: 8719 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8720 case SystemZ::LTXBRCompare_VecPseudo: 8721 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8722 8723 case SystemZ::PROBED_ALLOCA: 8724 return emitProbedAlloca(MI, MBB); 8725 8726 case TargetOpcode::STACKMAP: 8727 case TargetOpcode::PATCHPOINT: 8728 return emitPatchPoint(MI, MBB); 8729 8730 default: 8731 llvm_unreachable("Unexpected instr type to insert"); 8732 } 8733 } 8734 8735 // This is only used by the isel schedulers, and is needed only to prevent 8736 // compiler from crashing when list-ilp is used. 8737 const TargetRegisterClass * 8738 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8739 if (VT == MVT::Untyped) 8740 return &SystemZ::ADDR128BitRegClass; 8741 return TargetLowering::getRepRegClassFor(VT); 8742 } 8743