xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasVInstructions()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs) {
132       if (VT.getVectorElementType() == MVT::i64 &&
133           !Subtarget.hasVInstructionsI64())
134         continue;
135       addRegClassForRVV(VT);
136     }
137 
138     if (Subtarget.hasVInstructionsF16())
139       for (MVT VT : F16VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasVInstructionsF32())
143       for (MVT VT : F32VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.hasVInstructionsF64())
147       for (MVT VT : F64VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.useRVVForFixedLengthVectors()) {
151       auto addRegClassForFixedVectors = [this](MVT VT) {
152         MVT ContainerVT = getContainerForFixedLengthVector(VT);
153         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
154         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
155         addRegisterClass(VT, TRI.getRegClass(RCID));
156       };
157       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160 
161       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164     }
165   }
166 
167   // Compute derived properties from the register classes.
168   computeRegisterProperties(STI.getRegisterInfo());
169 
170   setStackPointerRegisterToSaveRestore(RISCV::X2);
171 
172   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
173     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
174 
175   // TODO: add all necessary setOperationAction calls.
176   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
177 
178   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179   setOperationAction(ISD::BR_CC, XLenVT, Expand);
180   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
181   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
182 
183   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
184   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction(ISD::VAARG, MVT::Other, Expand);
188   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
189   setOperationAction(ISD::VAEND, MVT::Other, Expand);
190 
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget.hasStdExtZbb()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
195   }
196 
197   if (Subtarget.is64Bit()) {
198     setOperationAction(ISD::ADD, MVT::i32, Custom);
199     setOperationAction(ISD::SUB, MVT::i32, Custom);
200     setOperationAction(ISD::SHL, MVT::i32, Custom);
201     setOperationAction(ISD::SRA, MVT::i32, Custom);
202     setOperationAction(ISD::SRL, MVT::i32, Custom);
203 
204     setOperationAction(ISD::UADDO, MVT::i32, Custom);
205     setOperationAction(ISD::USUBO, MVT::i32, Custom);
206     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
207     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
208   } else {
209     setLibcallName(RTLIB::SHL_I128, nullptr);
210     setLibcallName(RTLIB::SRL_I128, nullptr);
211     setLibcallName(RTLIB::SRA_I128, nullptr);
212     setLibcallName(RTLIB::MUL_I128, nullptr);
213     setLibcallName(RTLIB::MULO_I64, nullptr);
214   }
215 
216   if (!Subtarget.hasStdExtM()) {
217     setOperationAction(ISD::MUL, XLenVT, Expand);
218     setOperationAction(ISD::MULHS, XLenVT, Expand);
219     setOperationAction(ISD::MULHU, XLenVT, Expand);
220     setOperationAction(ISD::SDIV, XLenVT, Expand);
221     setOperationAction(ISD::UDIV, XLenVT, Expand);
222     setOperationAction(ISD::SREM, XLenVT, Expand);
223     setOperationAction(ISD::UREM, XLenVT, Expand);
224   } else {
225     if (Subtarget.is64Bit()) {
226       setOperationAction(ISD::MUL, MVT::i32, Custom);
227       setOperationAction(ISD::MUL, MVT::i128, Custom);
228 
229       setOperationAction(ISD::SDIV, MVT::i8, Custom);
230       setOperationAction(ISD::UDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UREM, MVT::i8, Custom);
232       setOperationAction(ISD::SDIV, MVT::i16, Custom);
233       setOperationAction(ISD::UDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UREM, MVT::i16, Custom);
235       setOperationAction(ISD::SDIV, MVT::i32, Custom);
236       setOperationAction(ISD::UDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UREM, MVT::i32, Custom);
238     } else {
239       setOperationAction(ISD::MUL, MVT::i64, Custom);
240     }
241   }
242 
243   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
244   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
246   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
247 
248   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
249   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
251 
252   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::ROTL, MVT::i32, Custom);
255       setOperationAction(ISD::ROTR, MVT::i32, Custom);
256     }
257   } else {
258     setOperationAction(ISD::ROTL, XLenVT, Expand);
259     setOperationAction(ISD::ROTR, XLenVT, Expand);
260   }
261 
262   if (Subtarget.hasStdExtZbp()) {
263     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
264     // more combining.
265     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
266     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
267     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
268     // BSWAP i8 doesn't exist.
269     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
270     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
271 
272     if (Subtarget.is64Bit()) {
273       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
274       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
275     }
276   } else {
277     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
278     // pattern match it directly in isel.
279     setOperationAction(ISD::BSWAP, XLenVT,
280                        Subtarget.hasStdExtZbb() ? Legal : Expand);
281   }
282 
283   if (Subtarget.hasStdExtZbb()) {
284     setOperationAction(ISD::SMIN, XLenVT, Legal);
285     setOperationAction(ISD::SMAX, XLenVT, Legal);
286     setOperationAction(ISD::UMIN, XLenVT, Legal);
287     setOperationAction(ISD::UMAX, XLenVT, Legal);
288 
289     if (Subtarget.is64Bit()) {
290       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
291       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
292       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
294     }
295   } else {
296     setOperationAction(ISD::CTTZ, XLenVT, Expand);
297     setOperationAction(ISD::CTLZ, XLenVT, Expand);
298     setOperationAction(ISD::CTPOP, XLenVT, Expand);
299   }
300 
301   if (Subtarget.hasStdExtZbt()) {
302     setOperationAction(ISD::FSHL, XLenVT, Custom);
303     setOperationAction(ISD::FSHR, XLenVT, Custom);
304     setOperationAction(ISD::SELECT, XLenVT, Legal);
305 
306     if (Subtarget.is64Bit()) {
307       setOperationAction(ISD::FSHL, MVT::i32, Custom);
308       setOperationAction(ISD::FSHR, MVT::i32, Custom);
309     }
310   } else {
311     setOperationAction(ISD::SELECT, XLenVT, Custom);
312   }
313 
314   static const ISD::CondCode FPCCToExpand[] = {
315       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
316       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
317       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
318 
319   static const ISD::NodeType FPOpToExpand[] = {
320       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
321       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
322 
323   if (Subtarget.hasStdExtZfh())
324     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
325 
326   if (Subtarget.hasStdExtZfh()) {
327     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
329     setOperationAction(ISD::LRINT, MVT::f16, Legal);
330     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LROUND, MVT::f16, Legal);
332     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
333     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
334     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
335     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
336     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
337     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
338     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
339     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
340     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
341     for (auto CC : FPCCToExpand)
342       setCondCodeAction(CC, MVT::f16, Expand);
343     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
344     setOperationAction(ISD::SELECT, MVT::f16, Custom);
345     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
346 
347     setOperationAction(ISD::FREM,       MVT::f16, Promote);
348     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
349     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
350     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
351     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
352     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
353     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
354     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
355     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
356     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
357     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
358     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
359     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
360     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
361     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
362     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
363     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
364     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
365 
366     // We need to custom promote this.
367     if (Subtarget.is64Bit())
368       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
369   }
370 
371   if (Subtarget.hasStdExtF()) {
372     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
373     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
374     setOperationAction(ISD::LRINT, MVT::f32, Legal);
375     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
376     setOperationAction(ISD::LROUND, MVT::f32, Legal);
377     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
378     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
379     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
380     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
381     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
382     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
383     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
384     for (auto CC : FPCCToExpand)
385       setCondCodeAction(CC, MVT::f32, Expand);
386     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT, MVT::f32, Custom);
388     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
389     for (auto Op : FPOpToExpand)
390       setOperationAction(Op, MVT::f32, Expand);
391     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
392     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
393   }
394 
395   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
396     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
397 
398   if (Subtarget.hasStdExtD()) {
399     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
400     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
401     setOperationAction(ISD::LRINT, MVT::f64, Legal);
402     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
403     setOperationAction(ISD::LROUND, MVT::f64, Legal);
404     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
405     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
406     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
407     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
408     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
409     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
410     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
411     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
412     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
413     for (auto CC : FPCCToExpand)
414       setCondCodeAction(CC, MVT::f64, Expand);
415     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
416     setOperationAction(ISD::SELECT, MVT::f64, Custom);
417     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
418     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
419     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
420     for (auto Op : FPOpToExpand)
421       setOperationAction(Op, MVT::f64, Expand);
422     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
423     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
424   }
425 
426   if (Subtarget.is64Bit()) {
427     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
428     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
429     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
431   }
432 
433   if (Subtarget.hasStdExtF()) {
434     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
435     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
436 
437     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
438     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
439     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
440     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
441 
442     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
443     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
444   }
445 
446   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
447   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
448   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
449   setOperationAction(ISD::JumpTable, XLenVT, Custom);
450 
451   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
452 
453   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
454   // Unfortunately this can't be determined just from the ISA naming string.
455   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
456                      Subtarget.is64Bit() ? Legal : Custom);
457 
458   setOperationAction(ISD::TRAP, MVT::Other, Legal);
459   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
460   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
461   if (Subtarget.is64Bit())
462     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
463 
464   if (Subtarget.hasStdExtA()) {
465     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
466     setMinCmpXchgSizeInBits(32);
467   } else {
468     setMaxAtomicSizeInBitsSupported(0);
469   }
470 
471   setBooleanContents(ZeroOrOneBooleanContent);
472 
473   if (Subtarget.hasVInstructions()) {
474     setBooleanVectorContents(ZeroOrOneBooleanContent);
475 
476     setOperationAction(ISD::VSCALE, XLenVT, Custom);
477 
478     // RVV intrinsics may have illegal operands.
479     // We also need to custom legalize vmv.x.s.
480     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
481     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
483     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
484     if (Subtarget.is64Bit()) {
485       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
486     } else {
487       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
488       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
489     }
490 
491     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
492     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
493 
494     static const unsigned IntegerVPOps[] = {
495         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
496         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
497         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
498         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
499         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
500         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
501         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
502         ISD::VP_SELECT};
503 
504     static const unsigned FloatingPointVPOps[] = {
505         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
506         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
507         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT};
508 
509     if (!Subtarget.is64Bit()) {
510       // We must custom-lower certain vXi64 operations on RV32 due to the vector
511       // element type being illegal.
512       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
513       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
514 
515       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
516       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
517       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
518       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
519       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
520       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
521       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
522       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
523 
524       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
525       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
526       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
527       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
528       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
529       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
530       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
531       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
532     }
533 
534     for (MVT VT : BoolVecVTs) {
535       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
536 
537       // Mask VTs are custom-expanded into a series of standard nodes
538       setOperationAction(ISD::TRUNCATE, VT, Custom);
539       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
540       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
541       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
542 
543       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
544       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
545 
546       setOperationAction(ISD::SELECT, VT, Custom);
547       setOperationAction(ISD::SELECT_CC, VT, Expand);
548       setOperationAction(ISD::VSELECT, VT, Expand);
549 
550       setOperationAction(ISD::VP_AND, VT, Custom);
551       setOperationAction(ISD::VP_OR, VT, Custom);
552       setOperationAction(ISD::VP_XOR, VT, Custom);
553 
554       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
555       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
556       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
557 
558       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
559       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
560       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
561 
562       // RVV has native int->float & float->int conversions where the
563       // element type sizes are within one power-of-two of each other. Any
564       // wider distances between type sizes have to be lowered as sequences
565       // which progressively narrow the gap in stages.
566       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
567       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
568       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
569       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
570 
571       // Expand all extending loads to types larger than this, and truncating
572       // stores from types larger than this.
573       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
574         setTruncStoreAction(OtherVT, VT, Expand);
575         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
576         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
577         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
578       }
579     }
580 
581     for (MVT VT : IntVecVTs) {
582       if (VT.getVectorElementType() == MVT::i64 &&
583           !Subtarget.hasVInstructionsI64())
584         continue;
585 
586       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
587       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
588 
589       // Vectors implement MULHS/MULHU.
590       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
591       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
679       // type that can represent the value exactly.
680       if (VT.getVectorElementType() != MVT::i64) {
681         MVT FloatEltVT =
682             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
683         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
684         if (isTypeLegal(FloatVT)) {
685           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
686           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
687         }
688       }
689     }
690 
691     // Expand various CCs to best match the RVV ISA, which natively supports UNE
692     // but no other unordered comparisons, and supports all ordered comparisons
693     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
694     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
695     // and we pattern-match those back to the "original", swapping operands once
696     // more. This way we catch both operations and both "vf" and "fv" forms with
697     // fewer patterns.
698     static const ISD::CondCode VFPCCToExpand[] = {
699         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
700         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
701         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
702     };
703 
704     // Sets common operation actions on RVV floating-point vector types.
705     const auto SetCommonVFPActions = [&](MVT VT) {
706       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
707       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
708       // sizes are within one power-of-two of each other. Therefore conversions
709       // between vXf16 and vXf64 must be lowered as sequences which convert via
710       // vXf32.
711       setOperationAction(ISD::FP_ROUND, VT, Custom);
712       setOperationAction(ISD::FP_EXTEND, VT, Custom);
713       // Custom-lower insert/extract operations to simplify patterns.
714       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
715       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
716       // Expand various condition codes (explained above).
717       for (auto CC : VFPCCToExpand)
718         setCondCodeAction(CC, VT, Expand);
719 
720       setOperationAction(ISD::FMINNUM, VT, Legal);
721       setOperationAction(ISD::FMAXNUM, VT, Legal);
722 
723       setOperationAction(ISD::FTRUNC, VT, Custom);
724       setOperationAction(ISD::FCEIL, VT, Custom);
725       setOperationAction(ISD::FFLOOR, VT, Custom);
726 
727       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
728       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
729       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
730       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
731 
732       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
733 
734       setOperationAction(ISD::LOAD, VT, Custom);
735       setOperationAction(ISD::STORE, VT, Custom);
736 
737       setOperationAction(ISD::MLOAD, VT, Custom);
738       setOperationAction(ISD::MSTORE, VT, Custom);
739       setOperationAction(ISD::MGATHER, VT, Custom);
740       setOperationAction(ISD::MSCATTER, VT, Custom);
741 
742       setOperationAction(ISD::VP_LOAD, VT, Custom);
743       setOperationAction(ISD::VP_STORE, VT, Custom);
744       setOperationAction(ISD::VP_GATHER, VT, Custom);
745       setOperationAction(ISD::VP_SCATTER, VT, Custom);
746 
747       setOperationAction(ISD::SELECT, VT, Custom);
748       setOperationAction(ISD::SELECT_CC, VT, Expand);
749 
750       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
751       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
752       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
753 
754       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
755 
756       for (unsigned VPOpc : FloatingPointVPOps)
757         setOperationAction(VPOpc, VT, Custom);
758     };
759 
760     // Sets common extload/truncstore actions on RVV floating-point vector
761     // types.
762     const auto SetCommonVFPExtLoadTruncStoreActions =
763         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
764           for (auto SmallVT : SmallerVTs) {
765             setTruncStoreAction(VT, SmallVT, Expand);
766             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
767           }
768         };
769 
770     if (Subtarget.hasVInstructionsF16())
771       for (MVT VT : F16VecVTs)
772         SetCommonVFPActions(VT);
773 
774     for (MVT VT : F32VecVTs) {
775       if (Subtarget.hasVInstructionsF32())
776         SetCommonVFPActions(VT);
777       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
778     }
779 
780     for (MVT VT : F64VecVTs) {
781       if (Subtarget.hasVInstructionsF64())
782         SetCommonVFPActions(VT);
783       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
784       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
785     }
786 
787     if (Subtarget.useRVVForFixedLengthVectors()) {
788       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
789         if (!useRVVForFixedLengthVectorVT(VT))
790           continue;
791 
792         // By default everything must be expanded.
793         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
794           setOperationAction(Op, VT, Expand);
795         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
796           setTruncStoreAction(VT, OtherVT, Expand);
797           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
798           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
799           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
800         }
801 
802         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
803         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
804         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
805 
806         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
807         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
808 
809         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
810         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
811 
812         setOperationAction(ISD::LOAD, VT, Custom);
813         setOperationAction(ISD::STORE, VT, Custom);
814 
815         setOperationAction(ISD::SETCC, VT, Custom);
816 
817         setOperationAction(ISD::SELECT, VT, Custom);
818 
819         setOperationAction(ISD::TRUNCATE, VT, Custom);
820 
821         setOperationAction(ISD::BITCAST, VT, Custom);
822 
823         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
824         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
825         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
826 
827         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
828         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
829         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
830 
831         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
832         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
833         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
834         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
835 
836         // Operations below are different for between masks and other vectors.
837         if (VT.getVectorElementType() == MVT::i1) {
838           setOperationAction(ISD::VP_AND, VT, Custom);
839           setOperationAction(ISD::VP_OR, VT, Custom);
840           setOperationAction(ISD::VP_XOR, VT, Custom);
841           setOperationAction(ISD::AND, VT, Custom);
842           setOperationAction(ISD::OR, VT, Custom);
843           setOperationAction(ISD::XOR, VT, Custom);
844           continue;
845         }
846 
847         // Use SPLAT_VECTOR to prevent type legalization from destroying the
848         // splats when type legalizing i64 scalar on RV32.
849         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
850         // improvements first.
851         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
852           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
853           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
854         }
855 
856         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
857         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
858 
859         setOperationAction(ISD::MLOAD, VT, Custom);
860         setOperationAction(ISD::MSTORE, VT, Custom);
861         setOperationAction(ISD::MGATHER, VT, Custom);
862         setOperationAction(ISD::MSCATTER, VT, Custom);
863 
864         setOperationAction(ISD::VP_LOAD, VT, Custom);
865         setOperationAction(ISD::VP_STORE, VT, Custom);
866         setOperationAction(ISD::VP_GATHER, VT, Custom);
867         setOperationAction(ISD::VP_SCATTER, VT, Custom);
868 
869         setOperationAction(ISD::ADD, VT, Custom);
870         setOperationAction(ISD::MUL, VT, Custom);
871         setOperationAction(ISD::SUB, VT, Custom);
872         setOperationAction(ISD::AND, VT, Custom);
873         setOperationAction(ISD::OR, VT, Custom);
874         setOperationAction(ISD::XOR, VT, Custom);
875         setOperationAction(ISD::SDIV, VT, Custom);
876         setOperationAction(ISD::SREM, VT, Custom);
877         setOperationAction(ISD::UDIV, VT, Custom);
878         setOperationAction(ISD::UREM, VT, Custom);
879         setOperationAction(ISD::SHL, VT, Custom);
880         setOperationAction(ISD::SRA, VT, Custom);
881         setOperationAction(ISD::SRL, VT, Custom);
882 
883         setOperationAction(ISD::SMIN, VT, Custom);
884         setOperationAction(ISD::SMAX, VT, Custom);
885         setOperationAction(ISD::UMIN, VT, Custom);
886         setOperationAction(ISD::UMAX, VT, Custom);
887         setOperationAction(ISD::ABS,  VT, Custom);
888 
889         setOperationAction(ISD::MULHS, VT, Custom);
890         setOperationAction(ISD::MULHU, VT, Custom);
891 
892         setOperationAction(ISD::SADDSAT, VT, Custom);
893         setOperationAction(ISD::UADDSAT, VT, Custom);
894         setOperationAction(ISD::SSUBSAT, VT, Custom);
895         setOperationAction(ISD::USUBSAT, VT, Custom);
896 
897         setOperationAction(ISD::VSELECT, VT, Custom);
898         setOperationAction(ISD::SELECT_CC, VT, Expand);
899 
900         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
901         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
902         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
903 
904         // Custom-lower reduction operations to set up the corresponding custom
905         // nodes' operands.
906         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
907         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
908         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
909         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
910         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
911 
912         for (unsigned VPOpc : IntegerVPOps)
913           setOperationAction(VPOpc, VT, Custom);
914 
915         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
916         // type that can represent the value exactly.
917         if (VT.getVectorElementType() != MVT::i64) {
918           MVT FloatEltVT =
919               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
920           EVT FloatVT =
921               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
922           if (isTypeLegal(FloatVT)) {
923             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
924             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
925           }
926         }
927       }
928 
929       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
930         if (!useRVVForFixedLengthVectorVT(VT))
931           continue;
932 
933         // By default everything must be expanded.
934         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
935           setOperationAction(Op, VT, Expand);
936         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
937           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
938           setTruncStoreAction(VT, OtherVT, Expand);
939         }
940 
941         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
942         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
943         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
944 
945         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
946         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
947         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
948         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
949         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
950 
951         setOperationAction(ISD::LOAD, VT, Custom);
952         setOperationAction(ISD::STORE, VT, Custom);
953         setOperationAction(ISD::MLOAD, VT, Custom);
954         setOperationAction(ISD::MSTORE, VT, Custom);
955         setOperationAction(ISD::MGATHER, VT, Custom);
956         setOperationAction(ISD::MSCATTER, VT, Custom);
957 
958         setOperationAction(ISD::VP_LOAD, VT, Custom);
959         setOperationAction(ISD::VP_STORE, VT, Custom);
960         setOperationAction(ISD::VP_GATHER, VT, Custom);
961         setOperationAction(ISD::VP_SCATTER, VT, Custom);
962 
963         setOperationAction(ISD::FADD, VT, Custom);
964         setOperationAction(ISD::FSUB, VT, Custom);
965         setOperationAction(ISD::FMUL, VT, Custom);
966         setOperationAction(ISD::FDIV, VT, Custom);
967         setOperationAction(ISD::FNEG, VT, Custom);
968         setOperationAction(ISD::FABS, VT, Custom);
969         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
970         setOperationAction(ISD::FSQRT, VT, Custom);
971         setOperationAction(ISD::FMA, VT, Custom);
972         setOperationAction(ISD::FMINNUM, VT, Custom);
973         setOperationAction(ISD::FMAXNUM, VT, Custom);
974 
975         setOperationAction(ISD::FP_ROUND, VT, Custom);
976         setOperationAction(ISD::FP_EXTEND, VT, Custom);
977 
978         setOperationAction(ISD::FTRUNC, VT, Custom);
979         setOperationAction(ISD::FCEIL, VT, Custom);
980         setOperationAction(ISD::FFLOOR, VT, Custom);
981 
982         for (auto CC : VFPCCToExpand)
983           setCondCodeAction(CC, VT, Expand);
984 
985         setOperationAction(ISD::VSELECT, VT, Custom);
986         setOperationAction(ISD::SELECT, VT, Custom);
987         setOperationAction(ISD::SELECT_CC, VT, Expand);
988 
989         setOperationAction(ISD::BITCAST, VT, Custom);
990 
991         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
992         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
993         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
994         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
995 
996         for (unsigned VPOpc : FloatingPointVPOps)
997           setOperationAction(VPOpc, VT, Custom);
998       }
999 
1000       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1001       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1002       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1003       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1004       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1005       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1006       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1007       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1008     }
1009   }
1010 
1011   // Function alignments.
1012   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1013   setMinFunctionAlignment(FunctionAlignment);
1014   setPrefFunctionAlignment(FunctionAlignment);
1015 
1016   setMinimumJumpTableEntries(5);
1017 
1018   // Jumps are expensive, compared to logic
1019   setJumpIsExpensive();
1020 
1021   setTargetDAGCombine(ISD::ADD);
1022   setTargetDAGCombine(ISD::SUB);
1023   setTargetDAGCombine(ISD::AND);
1024   setTargetDAGCombine(ISD::OR);
1025   setTargetDAGCombine(ISD::XOR);
1026   setTargetDAGCombine(ISD::ANY_EXTEND);
1027   setTargetDAGCombine(ISD::ZERO_EXTEND);
1028   if (Subtarget.hasVInstructions()) {
1029     setTargetDAGCombine(ISD::FCOPYSIGN);
1030     setTargetDAGCombine(ISD::MGATHER);
1031     setTargetDAGCombine(ISD::MSCATTER);
1032     setTargetDAGCombine(ISD::VP_GATHER);
1033     setTargetDAGCombine(ISD::VP_SCATTER);
1034     setTargetDAGCombine(ISD::SRA);
1035     setTargetDAGCombine(ISD::SRL);
1036     setTargetDAGCombine(ISD::SHL);
1037     setTargetDAGCombine(ISD::STORE);
1038   }
1039 }
1040 
1041 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1042                                             LLVMContext &Context,
1043                                             EVT VT) const {
1044   if (!VT.isVector())
1045     return getPointerTy(DL);
1046   if (Subtarget.hasVInstructions() &&
1047       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1048     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1049   return VT.changeVectorElementTypeToInteger();
1050 }
1051 
1052 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1053   return Subtarget.getXLenVT();
1054 }
1055 
1056 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1057                                              const CallInst &I,
1058                                              MachineFunction &MF,
1059                                              unsigned Intrinsic) const {
1060   auto &DL = I.getModule()->getDataLayout();
1061   switch (Intrinsic) {
1062   default:
1063     return false;
1064   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1065   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1066   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1067   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1068   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1069   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1070   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1071   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1072   case Intrinsic::riscv_masked_cmpxchg_i32: {
1073     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1074     Info.opc = ISD::INTRINSIC_W_CHAIN;
1075     Info.memVT = MVT::getVT(PtrTy->getElementType());
1076     Info.ptrVal = I.getArgOperand(0);
1077     Info.offset = 0;
1078     Info.align = Align(4);
1079     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1080                  MachineMemOperand::MOVolatile;
1081     return true;
1082   }
1083   case Intrinsic::riscv_masked_strided_load:
1084     Info.opc = ISD::INTRINSIC_W_CHAIN;
1085     Info.ptrVal = I.getArgOperand(1);
1086     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1087     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1088     Info.size = MemoryLocation::UnknownSize;
1089     Info.flags |= MachineMemOperand::MOLoad;
1090     return true;
1091   case Intrinsic::riscv_masked_strided_store:
1092     Info.opc = ISD::INTRINSIC_VOID;
1093     Info.ptrVal = I.getArgOperand(1);
1094     Info.memVT =
1095         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1096     Info.align = Align(
1097         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1098         8);
1099     Info.size = MemoryLocation::UnknownSize;
1100     Info.flags |= MachineMemOperand::MOStore;
1101     return true;
1102   }
1103 }
1104 
1105 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1106                                                 const AddrMode &AM, Type *Ty,
1107                                                 unsigned AS,
1108                                                 Instruction *I) const {
1109   // No global is ever allowed as a base.
1110   if (AM.BaseGV)
1111     return false;
1112 
1113   // Require a 12-bit signed offset.
1114   if (!isInt<12>(AM.BaseOffs))
1115     return false;
1116 
1117   switch (AM.Scale) {
1118   case 0: // "r+i" or just "i", depending on HasBaseReg.
1119     break;
1120   case 1:
1121     if (!AM.HasBaseReg) // allow "r+i".
1122       break;
1123     return false; // disallow "r+r" or "r+r+i".
1124   default:
1125     return false;
1126   }
1127 
1128   return true;
1129 }
1130 
1131 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1132   return isInt<12>(Imm);
1133 }
1134 
1135 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1136   return isInt<12>(Imm);
1137 }
1138 
1139 // On RV32, 64-bit integers are split into their high and low parts and held
1140 // in two different registers, so the trunc is free since the low register can
1141 // just be used.
1142 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1143   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1144     return false;
1145   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1146   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1147   return (SrcBits == 64 && DestBits == 32);
1148 }
1149 
1150 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1151   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1152       !SrcVT.isInteger() || !DstVT.isInteger())
1153     return false;
1154   unsigned SrcBits = SrcVT.getSizeInBits();
1155   unsigned DestBits = DstVT.getSizeInBits();
1156   return (SrcBits == 64 && DestBits == 32);
1157 }
1158 
1159 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1160   // Zexts are free if they can be combined with a load.
1161   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1162     EVT MemVT = LD->getMemoryVT();
1163     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1164          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1165         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1166          LD->getExtensionType() == ISD::ZEXTLOAD))
1167       return true;
1168   }
1169 
1170   return TargetLowering::isZExtFree(Val, VT2);
1171 }
1172 
1173 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1174   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1175 }
1176 
1177 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1178   return Subtarget.hasStdExtZbb();
1179 }
1180 
1181 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1182   return Subtarget.hasStdExtZbb();
1183 }
1184 
1185 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1186   EVT VT = Y.getValueType();
1187 
1188   // FIXME: Support vectors once we have tests.
1189   if (VT.isVector())
1190     return false;
1191 
1192   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1193 }
1194 
1195 /// Check if sinking \p I's operands to I's basic block is profitable, because
1196 /// the operands can be folded into a target instruction, e.g.
1197 /// splats of scalars can fold into vector instructions.
1198 bool RISCVTargetLowering::shouldSinkOperands(
1199     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1200   using namespace llvm::PatternMatch;
1201 
1202   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1203     return false;
1204 
1205   auto IsSinker = [&](Instruction *I, int Operand) {
1206     switch (I->getOpcode()) {
1207     case Instruction::Add:
1208     case Instruction::Sub:
1209     case Instruction::Mul:
1210     case Instruction::And:
1211     case Instruction::Or:
1212     case Instruction::Xor:
1213     case Instruction::FAdd:
1214     case Instruction::FSub:
1215     case Instruction::FMul:
1216     case Instruction::FDiv:
1217     case Instruction::ICmp:
1218     case Instruction::FCmp:
1219       return true;
1220     case Instruction::Shl:
1221     case Instruction::LShr:
1222     case Instruction::AShr:
1223     case Instruction::UDiv:
1224     case Instruction::SDiv:
1225     case Instruction::URem:
1226     case Instruction::SRem:
1227       return Operand == 1;
1228     case Instruction::Call:
1229       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1230         switch (II->getIntrinsicID()) {
1231         case Intrinsic::fma:
1232           return Operand == 0 || Operand == 1;
1233         default:
1234           return false;
1235         }
1236       }
1237       return false;
1238     default:
1239       return false;
1240     }
1241   };
1242 
1243   for (auto OpIdx : enumerate(I->operands())) {
1244     if (!IsSinker(I, OpIdx.index()))
1245       continue;
1246 
1247     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1248     // Make sure we are not already sinking this operand
1249     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1250       continue;
1251 
1252     // We are looking for a splat that can be sunk.
1253     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1254                              m_Undef(), m_ZeroMask())))
1255       continue;
1256 
1257     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1258     // and vector registers
1259     for (Use &U : Op->uses()) {
1260       Instruction *Insn = cast<Instruction>(U.getUser());
1261       if (!IsSinker(Insn, U.getOperandNo()))
1262         return false;
1263     }
1264 
1265     Ops.push_back(&Op->getOperandUse(0));
1266     Ops.push_back(&OpIdx.value());
1267   }
1268   return true;
1269 }
1270 
1271 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1272                                        bool ForCodeSize) const {
1273   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1274   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1275     return false;
1276   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1277     return false;
1278   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1279     return false;
1280   if (Imm.isNegZero())
1281     return false;
1282   return Imm.isZero();
1283 }
1284 
1285 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1286   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1287          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1288          (VT == MVT::f64 && Subtarget.hasStdExtD());
1289 }
1290 
1291 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1292                                                       CallingConv::ID CC,
1293                                                       EVT VT) const {
1294   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1295   // We might still end up using a GPR but that will be decided based on ABI.
1296   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1297   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1298     return MVT::f32;
1299 
1300   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1301 }
1302 
1303 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1304                                                            CallingConv::ID CC,
1305                                                            EVT VT) const {
1306   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1307   // We might still end up using a GPR but that will be decided based on ABI.
1308   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1309   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1310     return 1;
1311 
1312   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1313 }
1314 
1315 // Changes the condition code and swaps operands if necessary, so the SetCC
1316 // operation matches one of the comparisons supported directly by branches
1317 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1318 // with 1/-1.
1319 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1320                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1321   // Convert X > -1 to X >= 0.
1322   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1323     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1324     CC = ISD::SETGE;
1325     return;
1326   }
1327   // Convert X < 1 to 0 >= X.
1328   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1329     RHS = LHS;
1330     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1331     CC = ISD::SETGE;
1332     return;
1333   }
1334 
1335   switch (CC) {
1336   default:
1337     break;
1338   case ISD::SETGT:
1339   case ISD::SETLE:
1340   case ISD::SETUGT:
1341   case ISD::SETULE:
1342     CC = ISD::getSetCCSwappedOperands(CC);
1343     std::swap(LHS, RHS);
1344     break;
1345   }
1346 }
1347 
1348 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1349   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1350   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1351   if (VT.getVectorElementType() == MVT::i1)
1352     KnownSize *= 8;
1353 
1354   switch (KnownSize) {
1355   default:
1356     llvm_unreachable("Invalid LMUL.");
1357   case 8:
1358     return RISCVII::VLMUL::LMUL_F8;
1359   case 16:
1360     return RISCVII::VLMUL::LMUL_F4;
1361   case 32:
1362     return RISCVII::VLMUL::LMUL_F2;
1363   case 64:
1364     return RISCVII::VLMUL::LMUL_1;
1365   case 128:
1366     return RISCVII::VLMUL::LMUL_2;
1367   case 256:
1368     return RISCVII::VLMUL::LMUL_4;
1369   case 512:
1370     return RISCVII::VLMUL::LMUL_8;
1371   }
1372 }
1373 
1374 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1375   switch (LMul) {
1376   default:
1377     llvm_unreachable("Invalid LMUL.");
1378   case RISCVII::VLMUL::LMUL_F8:
1379   case RISCVII::VLMUL::LMUL_F4:
1380   case RISCVII::VLMUL::LMUL_F2:
1381   case RISCVII::VLMUL::LMUL_1:
1382     return RISCV::VRRegClassID;
1383   case RISCVII::VLMUL::LMUL_2:
1384     return RISCV::VRM2RegClassID;
1385   case RISCVII::VLMUL::LMUL_4:
1386     return RISCV::VRM4RegClassID;
1387   case RISCVII::VLMUL::LMUL_8:
1388     return RISCV::VRM8RegClassID;
1389   }
1390 }
1391 
1392 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1393   RISCVII::VLMUL LMUL = getLMUL(VT);
1394   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1395       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1396       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1397       LMUL == RISCVII::VLMUL::LMUL_1) {
1398     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1399                   "Unexpected subreg numbering");
1400     return RISCV::sub_vrm1_0 + Index;
1401   }
1402   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1403     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1404                   "Unexpected subreg numbering");
1405     return RISCV::sub_vrm2_0 + Index;
1406   }
1407   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1408     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1409                   "Unexpected subreg numbering");
1410     return RISCV::sub_vrm4_0 + Index;
1411   }
1412   llvm_unreachable("Invalid vector type.");
1413 }
1414 
1415 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1416   if (VT.getVectorElementType() == MVT::i1)
1417     return RISCV::VRRegClassID;
1418   return getRegClassIDForLMUL(getLMUL(VT));
1419 }
1420 
1421 // Attempt to decompose a subvector insert/extract between VecVT and
1422 // SubVecVT via subregister indices. Returns the subregister index that
1423 // can perform the subvector insert/extract with the given element index, as
1424 // well as the index corresponding to any leftover subvectors that must be
1425 // further inserted/extracted within the register class for SubVecVT.
1426 std::pair<unsigned, unsigned>
1427 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1428     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1429     const RISCVRegisterInfo *TRI) {
1430   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1431                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1432                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1433                 "Register classes not ordered");
1434   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1435   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1436   // Try to compose a subregister index that takes us from the incoming
1437   // LMUL>1 register class down to the outgoing one. At each step we half
1438   // the LMUL:
1439   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1440   // Note that this is not guaranteed to find a subregister index, such as
1441   // when we are extracting from one VR type to another.
1442   unsigned SubRegIdx = RISCV::NoSubRegister;
1443   for (const unsigned RCID :
1444        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1445     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1446       VecVT = VecVT.getHalfNumVectorElementsVT();
1447       bool IsHi =
1448           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1449       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1450                                             getSubregIndexByMVT(VecVT, IsHi));
1451       if (IsHi)
1452         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1453     }
1454   return {SubRegIdx, InsertExtractIdx};
1455 }
1456 
1457 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1458 // stores for those types.
1459 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1460   return !Subtarget.useRVVForFixedLengthVectors() ||
1461          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1462 }
1463 
1464 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1465   if (ScalarTy->isPointerTy())
1466     return true;
1467 
1468   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1469       ScalarTy->isIntegerTy(32))
1470     return true;
1471 
1472   if (ScalarTy->isIntegerTy(64))
1473     return Subtarget.hasVInstructionsI64();
1474 
1475   if (ScalarTy->isHalfTy())
1476     return Subtarget.hasVInstructionsF16();
1477   if (ScalarTy->isFloatTy())
1478     return Subtarget.hasVInstructionsF32();
1479   if (ScalarTy->isDoubleTy())
1480     return Subtarget.hasVInstructionsF64();
1481 
1482   return false;
1483 }
1484 
1485 static bool useRVVForFixedLengthVectorVT(MVT VT,
1486                                          const RISCVSubtarget &Subtarget) {
1487   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1488   if (!Subtarget.useRVVForFixedLengthVectors())
1489     return false;
1490 
1491   // We only support a set of vector types with a consistent maximum fixed size
1492   // across all supported vector element types to avoid legalization issues.
1493   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1494   // fixed-length vector type we support is 1024 bytes.
1495   if (VT.getFixedSizeInBits() > 1024 * 8)
1496     return false;
1497 
1498   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1499 
1500   MVT EltVT = VT.getVectorElementType();
1501 
1502   // Don't use RVV for vectors we cannot scalarize if required.
1503   switch (EltVT.SimpleTy) {
1504   // i1 is supported but has different rules.
1505   default:
1506     return false;
1507   case MVT::i1:
1508     // Masks can only use a single register.
1509     if (VT.getVectorNumElements() > MinVLen)
1510       return false;
1511     MinVLen /= 8;
1512     break;
1513   case MVT::i8:
1514   case MVT::i16:
1515   case MVT::i32:
1516     break;
1517   case MVT::i64:
1518     if (!Subtarget.hasVInstructionsI64())
1519       return false;
1520     break;
1521   case MVT::f16:
1522     if (!Subtarget.hasVInstructionsF16())
1523       return false;
1524     break;
1525   case MVT::f32:
1526     if (!Subtarget.hasVInstructionsF32())
1527       return false;
1528     break;
1529   case MVT::f64:
1530     if (!Subtarget.hasVInstructionsF64())
1531       return false;
1532     break;
1533   }
1534 
1535   // Reject elements larger than ELEN.
1536   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1537     return false;
1538 
1539   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1540   // Don't use RVV for types that don't fit.
1541   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1542     return false;
1543 
1544   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1545   // the base fixed length RVV support in place.
1546   if (!VT.isPow2VectorType())
1547     return false;
1548 
1549   return true;
1550 }
1551 
1552 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1553   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1554 }
1555 
1556 // Return the largest legal scalable vector type that matches VT's element type.
1557 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1558                                             const RISCVSubtarget &Subtarget) {
1559   // This may be called before legal types are setup.
1560   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1561           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1562          "Expected legal fixed length vector!");
1563 
1564   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1565   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1566 
1567   MVT EltVT = VT.getVectorElementType();
1568   switch (EltVT.SimpleTy) {
1569   default:
1570     llvm_unreachable("unexpected element type for RVV container");
1571   case MVT::i1:
1572   case MVT::i8:
1573   case MVT::i16:
1574   case MVT::i32:
1575   case MVT::i64:
1576   case MVT::f16:
1577   case MVT::f32:
1578   case MVT::f64: {
1579     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1580     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1581     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1582     unsigned NumElts =
1583         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1584     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1585     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1586     return MVT::getScalableVectorVT(EltVT, NumElts);
1587   }
1588   }
1589 }
1590 
1591 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1592                                             const RISCVSubtarget &Subtarget) {
1593   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1594                                           Subtarget);
1595 }
1596 
1597 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1598   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1599 }
1600 
1601 // Grow V to consume an entire RVV register.
1602 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1603                                        const RISCVSubtarget &Subtarget) {
1604   assert(VT.isScalableVector() &&
1605          "Expected to convert into a scalable vector!");
1606   assert(V.getValueType().isFixedLengthVector() &&
1607          "Expected a fixed length vector operand!");
1608   SDLoc DL(V);
1609   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1610   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1611 }
1612 
1613 // Shrink V so it's just big enough to maintain a VT's worth of data.
1614 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1615                                          const RISCVSubtarget &Subtarget) {
1616   assert(VT.isFixedLengthVector() &&
1617          "Expected to convert into a fixed length vector!");
1618   assert(V.getValueType().isScalableVector() &&
1619          "Expected a scalable vector operand!");
1620   SDLoc DL(V);
1621   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1622   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1623 }
1624 
1625 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1626 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1627 // the vector type that it is contained in.
1628 static std::pair<SDValue, SDValue>
1629 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1630                 const RISCVSubtarget &Subtarget) {
1631   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1632   MVT XLenVT = Subtarget.getXLenVT();
1633   SDValue VL = VecVT.isFixedLengthVector()
1634                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1635                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1636   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1637   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1638   return {Mask, VL};
1639 }
1640 
1641 // As above but assuming the given type is a scalable vector type.
1642 static std::pair<SDValue, SDValue>
1643 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1644                         const RISCVSubtarget &Subtarget) {
1645   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1646   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1647 }
1648 
1649 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1650 // of either is (currently) supported. This can get us into an infinite loop
1651 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1652 // as a ..., etc.
1653 // Until either (or both) of these can reliably lower any node, reporting that
1654 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1655 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1656 // which is not desirable.
1657 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1658     EVT VT, unsigned DefinedValues) const {
1659   return false;
1660 }
1661 
1662 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1663   // Only splats are currently supported.
1664   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1665     return true;
1666 
1667   return false;
1668 }
1669 
1670 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1671   // RISCV FP-to-int conversions saturate to the destination register size, but
1672   // don't produce 0 for nan. We can use a conversion instruction and fix the
1673   // nan case with a compare and a select.
1674   SDValue Src = Op.getOperand(0);
1675 
1676   EVT DstVT = Op.getValueType();
1677   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1678 
1679   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1680   unsigned Opc;
1681   if (SatVT == DstVT)
1682     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1683   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1684     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1685   else
1686     return SDValue();
1687   // FIXME: Support other SatVTs by clamping before or after the conversion.
1688 
1689   SDLoc DL(Op);
1690   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1691 
1692   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1693   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1694 }
1695 
1696 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1697 // and back. Taking care to avoid converting values that are nan or already
1698 // correct.
1699 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1700 // have FRM dependencies modeled yet.
1701 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1702   MVT VT = Op.getSimpleValueType();
1703   assert(VT.isVector() && "Unexpected type");
1704 
1705   SDLoc DL(Op);
1706 
1707   // Freeze the source since we are increasing the number of uses.
1708   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1709 
1710   // Truncate to integer and convert back to FP.
1711   MVT IntVT = VT.changeVectorElementTypeToInteger();
1712   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1713   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1714 
1715   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1716 
1717   if (Op.getOpcode() == ISD::FCEIL) {
1718     // If the truncated value is the greater than or equal to the original
1719     // value, we've computed the ceil. Otherwise, we went the wrong way and
1720     // need to increase by 1.
1721     // FIXME: This should use a masked operation. Handle here or in isel?
1722     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1723                                  DAG.getConstantFP(1.0, DL, VT));
1724     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1725     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1726   } else if (Op.getOpcode() == ISD::FFLOOR) {
1727     // If the truncated value is the less than or equal to the original value,
1728     // we've computed the floor. Otherwise, we went the wrong way and need to
1729     // decrease by 1.
1730     // FIXME: This should use a masked operation. Handle here or in isel?
1731     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1732                                  DAG.getConstantFP(1.0, DL, VT));
1733     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1734     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1735   }
1736 
1737   // Restore the original sign so that -0.0 is preserved.
1738   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1739 
1740   // Determine the largest integer that can be represented exactly. This and
1741   // values larger than it don't have any fractional bits so don't need to
1742   // be converted.
1743   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1744   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1745   APFloat MaxVal = APFloat(FltSem);
1746   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1747                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1748   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1749 
1750   // If abs(Src) was larger than MaxVal or nan, keep it.
1751   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1752   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1753   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1754 }
1755 
1756 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1757                                  const RISCVSubtarget &Subtarget) {
1758   MVT VT = Op.getSimpleValueType();
1759   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1760 
1761   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1762 
1763   SDLoc DL(Op);
1764   SDValue Mask, VL;
1765   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1766 
1767   unsigned Opc =
1768       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1769   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1770   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1771 }
1772 
1773 struct VIDSequence {
1774   int64_t StepNumerator;
1775   unsigned StepDenominator;
1776   int64_t Addend;
1777 };
1778 
1779 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1780 // to the (non-zero) step S and start value X. This can be then lowered as the
1781 // RVV sequence (VID * S) + X, for example.
1782 // The step S is represented as an integer numerator divided by a positive
1783 // denominator. Note that the implementation currently only identifies
1784 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1785 // cannot detect 2/3, for example.
1786 // Note that this method will also match potentially unappealing index
1787 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1788 // determine whether this is worth generating code for.
1789 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1790   unsigned NumElts = Op.getNumOperands();
1791   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1792   if (!Op.getValueType().isInteger())
1793     return None;
1794 
1795   Optional<unsigned> SeqStepDenom;
1796   Optional<int64_t> SeqStepNum, SeqAddend;
1797   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1798   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1799   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1800     // Assume undef elements match the sequence; we just have to be careful
1801     // when interpolating across them.
1802     if (Op.getOperand(Idx).isUndef())
1803       continue;
1804     // The BUILD_VECTOR must be all constants.
1805     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1806       return None;
1807 
1808     uint64_t Val = Op.getConstantOperandVal(Idx) &
1809                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1810 
1811     if (PrevElt) {
1812       // Calculate the step since the last non-undef element, and ensure
1813       // it's consistent across the entire sequence.
1814       unsigned IdxDiff = Idx - PrevElt->second;
1815       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1816 
1817       // A zero-value value difference means that we're somewhere in the middle
1818       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1819       // step change before evaluating the sequence.
1820       if (ValDiff != 0) {
1821         int64_t Remainder = ValDiff % IdxDiff;
1822         // Normalize the step if it's greater than 1.
1823         if (Remainder != ValDiff) {
1824           // The difference must cleanly divide the element span.
1825           if (Remainder != 0)
1826             return None;
1827           ValDiff /= IdxDiff;
1828           IdxDiff = 1;
1829         }
1830 
1831         if (!SeqStepNum)
1832           SeqStepNum = ValDiff;
1833         else if (ValDiff != SeqStepNum)
1834           return None;
1835 
1836         if (!SeqStepDenom)
1837           SeqStepDenom = IdxDiff;
1838         else if (IdxDiff != *SeqStepDenom)
1839           return None;
1840       }
1841     }
1842 
1843     // Record and/or check any addend.
1844     if (SeqStepNum && SeqStepDenom) {
1845       uint64_t ExpectedVal =
1846           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1847       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1848       if (!SeqAddend)
1849         SeqAddend = Addend;
1850       else if (SeqAddend != Addend)
1851         return None;
1852     }
1853 
1854     // Record this non-undef element for later.
1855     if (!PrevElt || PrevElt->first != Val)
1856       PrevElt = std::make_pair(Val, Idx);
1857   }
1858   // We need to have logged both a step and an addend for this to count as
1859   // a legal index sequence.
1860   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1861     return None;
1862 
1863   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1864 }
1865 
1866 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1867                                  const RISCVSubtarget &Subtarget) {
1868   MVT VT = Op.getSimpleValueType();
1869   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1870 
1871   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1872 
1873   SDLoc DL(Op);
1874   SDValue Mask, VL;
1875   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1876 
1877   MVT XLenVT = Subtarget.getXLenVT();
1878   unsigned NumElts = Op.getNumOperands();
1879 
1880   if (VT.getVectorElementType() == MVT::i1) {
1881     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1882       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1883       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1884     }
1885 
1886     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1887       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1888       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1889     }
1890 
1891     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1892     // scalar integer chunks whose bit-width depends on the number of mask
1893     // bits and XLEN.
1894     // First, determine the most appropriate scalar integer type to use. This
1895     // is at most XLenVT, but may be shrunk to a smaller vector element type
1896     // according to the size of the final vector - use i8 chunks rather than
1897     // XLenVT if we're producing a v8i1. This results in more consistent
1898     // codegen across RV32 and RV64.
1899     unsigned NumViaIntegerBits =
1900         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1901     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1902       // If we have to use more than one INSERT_VECTOR_ELT then this
1903       // optimization is likely to increase code size; avoid peforming it in
1904       // such a case. We can use a load from a constant pool in this case.
1905       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1906         return SDValue();
1907       // Now we can create our integer vector type. Note that it may be larger
1908       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1909       MVT IntegerViaVecVT =
1910           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1911                            divideCeil(NumElts, NumViaIntegerBits));
1912 
1913       uint64_t Bits = 0;
1914       unsigned BitPos = 0, IntegerEltIdx = 0;
1915       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1916 
1917       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1918         // Once we accumulate enough bits to fill our scalar type, insert into
1919         // our vector and clear our accumulated data.
1920         if (I != 0 && I % NumViaIntegerBits == 0) {
1921           if (NumViaIntegerBits <= 32)
1922             Bits = SignExtend64(Bits, 32);
1923           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1924           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1925                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1926           Bits = 0;
1927           BitPos = 0;
1928           IntegerEltIdx++;
1929         }
1930         SDValue V = Op.getOperand(I);
1931         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1932         Bits |= ((uint64_t)BitValue << BitPos);
1933       }
1934 
1935       // Insert the (remaining) scalar value into position in our integer
1936       // vector type.
1937       if (NumViaIntegerBits <= 32)
1938         Bits = SignExtend64(Bits, 32);
1939       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1940       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1941                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1942 
1943       if (NumElts < NumViaIntegerBits) {
1944         // If we're producing a smaller vector than our minimum legal integer
1945         // type, bitcast to the equivalent (known-legal) mask type, and extract
1946         // our final mask.
1947         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1948         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1949         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1950                           DAG.getConstant(0, DL, XLenVT));
1951       } else {
1952         // Else we must have produced an integer type with the same size as the
1953         // mask type; bitcast for the final result.
1954         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1955         Vec = DAG.getBitcast(VT, Vec);
1956       }
1957 
1958       return Vec;
1959     }
1960 
1961     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1962     // vector type, we have a legal equivalently-sized i8 type, so we can use
1963     // that.
1964     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1965     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1966 
1967     SDValue WideVec;
1968     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1969       // For a splat, perform a scalar truncate before creating the wider
1970       // vector.
1971       assert(Splat.getValueType() == XLenVT &&
1972              "Unexpected type for i1 splat value");
1973       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1974                           DAG.getConstant(1, DL, XLenVT));
1975       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1976     } else {
1977       SmallVector<SDValue, 8> Ops(Op->op_values());
1978       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1979       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1980       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1981     }
1982 
1983     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1984   }
1985 
1986   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1987     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1988                                         : RISCVISD::VMV_V_X_VL;
1989     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1990     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1991   }
1992 
1993   // Try and match index sequences, which we can lower to the vid instruction
1994   // with optional modifications. An all-undef vector is matched by
1995   // getSplatValue, above.
1996   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1997     int64_t StepNumerator = SimpleVID->StepNumerator;
1998     unsigned StepDenominator = SimpleVID->StepDenominator;
1999     int64_t Addend = SimpleVID->Addend;
2000 
2001     assert(StepNumerator != 0 && "Invalid step");
2002     bool Negate = false;
2003     int64_t SplatStepVal = StepNumerator;
2004     unsigned StepOpcode = ISD::MUL;
2005     if (StepNumerator != 1) {
2006       if (isPowerOf2_64(std::abs(StepNumerator))) {
2007         Negate = StepNumerator < 0;
2008         StepOpcode = ISD::SHL;
2009         SplatStepVal = Log2_64(std::abs(StepNumerator));
2010       }
2011     }
2012 
2013     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2014     // threshold since it's the immediate value many RVV instructions accept.
2015     // There is no vmul.vi instruction so ensure multiply constant can fit in
2016     // a single addi instruction.
2017     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2018          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2019         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2020       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2021       // Convert right out of the scalable type so we can use standard ISD
2022       // nodes for the rest of the computation. If we used scalable types with
2023       // these, we'd lose the fixed-length vector info and generate worse
2024       // vsetvli code.
2025       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2026       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2027           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2028         SDValue SplatStep = DAG.getSplatVector(
2029             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2030         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2031       }
2032       if (StepDenominator != 1) {
2033         SDValue SplatStep = DAG.getSplatVector(
2034             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2035         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2036       }
2037       if (Addend != 0 || Negate) {
2038         SDValue SplatAddend =
2039             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2040         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2041       }
2042       return VID;
2043     }
2044   }
2045 
2046   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2047   // when re-interpreted as a vector with a larger element type. For example,
2048   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2049   // could be instead splat as
2050   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2051   // TODO: This optimization could also work on non-constant splats, but it
2052   // would require bit-manipulation instructions to construct the splat value.
2053   SmallVector<SDValue> Sequence;
2054   unsigned EltBitSize = VT.getScalarSizeInBits();
2055   const auto *BV = cast<BuildVectorSDNode>(Op);
2056   if (VT.isInteger() && EltBitSize < 64 &&
2057       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2058       BV->getRepeatedSequence(Sequence) &&
2059       (Sequence.size() * EltBitSize) <= 64) {
2060     unsigned SeqLen = Sequence.size();
2061     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2062     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2063     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2064             ViaIntVT == MVT::i64) &&
2065            "Unexpected sequence type");
2066 
2067     unsigned EltIdx = 0;
2068     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2069     uint64_t SplatValue = 0;
2070     // Construct the amalgamated value which can be splatted as this larger
2071     // vector type.
2072     for (const auto &SeqV : Sequence) {
2073       if (!SeqV.isUndef())
2074         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2075                        << (EltIdx * EltBitSize));
2076       EltIdx++;
2077     }
2078 
2079     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2080     // achieve better constant materializion.
2081     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2082       SplatValue = SignExtend64(SplatValue, 32);
2083 
2084     // Since we can't introduce illegal i64 types at this stage, we can only
2085     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2086     // way we can use RVV instructions to splat.
2087     assert((ViaIntVT.bitsLE(XLenVT) ||
2088             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2089            "Unexpected bitcast sequence");
2090     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2091       SDValue ViaVL =
2092           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2093       MVT ViaContainerVT =
2094           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2095       SDValue Splat =
2096           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2097                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2098       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2099       return DAG.getBitcast(VT, Splat);
2100     }
2101   }
2102 
2103   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2104   // which constitute a large proportion of the elements. In such cases we can
2105   // splat a vector with the dominant element and make up the shortfall with
2106   // INSERT_VECTOR_ELTs.
2107   // Note that this includes vectors of 2 elements by association. The
2108   // upper-most element is the "dominant" one, allowing us to use a splat to
2109   // "insert" the upper element, and an insert of the lower element at position
2110   // 0, which improves codegen.
2111   SDValue DominantValue;
2112   unsigned MostCommonCount = 0;
2113   DenseMap<SDValue, unsigned> ValueCounts;
2114   unsigned NumUndefElts =
2115       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2116 
2117   // Track the number of scalar loads we know we'd be inserting, estimated as
2118   // any non-zero floating-point constant. Other kinds of element are either
2119   // already in registers or are materialized on demand. The threshold at which
2120   // a vector load is more desirable than several scalar materializion and
2121   // vector-insertion instructions is not known.
2122   unsigned NumScalarLoads = 0;
2123 
2124   for (SDValue V : Op->op_values()) {
2125     if (V.isUndef())
2126       continue;
2127 
2128     ValueCounts.insert(std::make_pair(V, 0));
2129     unsigned &Count = ValueCounts[V];
2130 
2131     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2132       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2133 
2134     // Is this value dominant? In case of a tie, prefer the highest element as
2135     // it's cheaper to insert near the beginning of a vector than it is at the
2136     // end.
2137     if (++Count >= MostCommonCount) {
2138       DominantValue = V;
2139       MostCommonCount = Count;
2140     }
2141   }
2142 
2143   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2144   unsigned NumDefElts = NumElts - NumUndefElts;
2145   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2146 
2147   // Don't perform this optimization when optimizing for size, since
2148   // materializing elements and inserting them tends to cause code bloat.
2149   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2150       ((MostCommonCount > DominantValueCountThreshold) ||
2151        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2152     // Start by splatting the most common element.
2153     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2154 
2155     DenseSet<SDValue> Processed{DominantValue};
2156     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2157     for (const auto &OpIdx : enumerate(Op->ops())) {
2158       const SDValue &V = OpIdx.value();
2159       if (V.isUndef() || !Processed.insert(V).second)
2160         continue;
2161       if (ValueCounts[V] == 1) {
2162         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2163                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2164       } else {
2165         // Blend in all instances of this value using a VSELECT, using a
2166         // mask where each bit signals whether that element is the one
2167         // we're after.
2168         SmallVector<SDValue> Ops;
2169         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2170           return DAG.getConstant(V == V1, DL, XLenVT);
2171         });
2172         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2173                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2174                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2175       }
2176     }
2177 
2178     return Vec;
2179   }
2180 
2181   return SDValue();
2182 }
2183 
2184 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2185                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2186   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2187     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2188     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2189     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2190     // node in order to try and match RVV vector/scalar instructions.
2191     if ((LoC >> 31) == HiC)
2192       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2193   }
2194 
2195   // Fall back to a stack store and stride x0 vector load.
2196   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2197 }
2198 
2199 // Called by type legalization to handle splat of i64 on RV32.
2200 // FIXME: We can optimize this when the type has sign or zero bits in one
2201 // of the halves.
2202 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2203                                    SDValue VL, SelectionDAG &DAG) {
2204   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2205   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2206                            DAG.getConstant(0, DL, MVT::i32));
2207   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2208                            DAG.getConstant(1, DL, MVT::i32));
2209   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2210 }
2211 
2212 // This function lowers a splat of a scalar operand Splat with the vector
2213 // length VL. It ensures the final sequence is type legal, which is useful when
2214 // lowering a splat after type legalization.
2215 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2216                                 SelectionDAG &DAG,
2217                                 const RISCVSubtarget &Subtarget) {
2218   if (VT.isFloatingPoint())
2219     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2220 
2221   MVT XLenVT = Subtarget.getXLenVT();
2222 
2223   // Simplest case is that the operand needs to be promoted to XLenVT.
2224   if (Scalar.getValueType().bitsLE(XLenVT)) {
2225     // If the operand is a constant, sign extend to increase our chances
2226     // of being able to use a .vi instruction. ANY_EXTEND would become a
2227     // a zero extend and the simm5 check in isel would fail.
2228     // FIXME: Should we ignore the upper bits in isel instead?
2229     unsigned ExtOpc =
2230         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2231     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2232     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2233   }
2234 
2235   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2236          "Unexpected scalar for splat lowering!");
2237 
2238   // Otherwise use the more complicated splatting algorithm.
2239   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2240 }
2241 
2242 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2243                                    const RISCVSubtarget &Subtarget) {
2244   SDValue V1 = Op.getOperand(0);
2245   SDValue V2 = Op.getOperand(1);
2246   SDLoc DL(Op);
2247   MVT XLenVT = Subtarget.getXLenVT();
2248   MVT VT = Op.getSimpleValueType();
2249   unsigned NumElts = VT.getVectorNumElements();
2250   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2251 
2252   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2253 
2254   SDValue TrueMask, VL;
2255   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2256 
2257   if (SVN->isSplat()) {
2258     const int Lane = SVN->getSplatIndex();
2259     if (Lane >= 0) {
2260       MVT SVT = VT.getVectorElementType();
2261 
2262       // Turn splatted vector load into a strided load with an X0 stride.
2263       SDValue V = V1;
2264       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2265       // with undef.
2266       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2267       int Offset = Lane;
2268       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2269         int OpElements =
2270             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2271         V = V.getOperand(Offset / OpElements);
2272         Offset %= OpElements;
2273       }
2274 
2275       // We need to ensure the load isn't atomic or volatile.
2276       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2277         auto *Ld = cast<LoadSDNode>(V);
2278         Offset *= SVT.getStoreSize();
2279         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2280                                                    TypeSize::Fixed(Offset), DL);
2281 
2282         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2283         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2284           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2285           SDValue IntID =
2286               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2287           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2288                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2289           SDValue NewLoad = DAG.getMemIntrinsicNode(
2290               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2291               DAG.getMachineFunction().getMachineMemOperand(
2292                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2293           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2294           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2295         }
2296 
2297         // Otherwise use a scalar load and splat. This will give the best
2298         // opportunity to fold a splat into the operation. ISel can turn it into
2299         // the x0 strided load if we aren't able to fold away the select.
2300         if (SVT.isFloatingPoint())
2301           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2302                           Ld->getPointerInfo().getWithOffset(Offset),
2303                           Ld->getOriginalAlign(),
2304                           Ld->getMemOperand()->getFlags());
2305         else
2306           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2307                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2308                              Ld->getOriginalAlign(),
2309                              Ld->getMemOperand()->getFlags());
2310         DAG.makeEquivalentMemoryOrdering(Ld, V);
2311 
2312         unsigned Opc =
2313             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2314         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2315         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2316       }
2317 
2318       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2319       assert(Lane < (int)NumElts && "Unexpected lane!");
2320       SDValue Gather =
2321           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2322                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2323       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2324     }
2325   }
2326 
2327   // Detect shuffles which can be re-expressed as vector selects; these are
2328   // shuffles in which each element in the destination is taken from an element
2329   // at the corresponding index in either source vectors.
2330   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2331     int MaskIndex = MaskIdx.value();
2332     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2333   });
2334 
2335   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2336 
2337   SmallVector<SDValue> MaskVals;
2338   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2339   // merged with a second vrgather.
2340   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2341 
2342   // By default we preserve the original operand order, and use a mask to
2343   // select LHS as true and RHS as false. However, since RVV vector selects may
2344   // feature splats but only on the LHS, we may choose to invert our mask and
2345   // instead select between RHS and LHS.
2346   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2347   bool InvertMask = IsSelect == SwapOps;
2348 
2349   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2350   // half.
2351   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2352 
2353   // Now construct the mask that will be used by the vselect or blended
2354   // vrgather operation. For vrgathers, construct the appropriate indices into
2355   // each vector.
2356   for (int MaskIndex : SVN->getMask()) {
2357     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2358     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2359     if (!IsSelect) {
2360       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2361       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2362                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2363                                      : DAG.getUNDEF(XLenVT));
2364       GatherIndicesRHS.push_back(
2365           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2366                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2367       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2368         ++LHSIndexCounts[MaskIndex];
2369       if (!IsLHSOrUndefIndex)
2370         ++RHSIndexCounts[MaskIndex - NumElts];
2371     }
2372   }
2373 
2374   if (SwapOps) {
2375     std::swap(V1, V2);
2376     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2377   }
2378 
2379   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2380   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2381   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2382 
2383   if (IsSelect)
2384     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2385 
2386   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2387     // On such a large vector we're unable to use i8 as the index type.
2388     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2389     // may involve vector splitting if we're already at LMUL=8, or our
2390     // user-supplied maximum fixed-length LMUL.
2391     return SDValue();
2392   }
2393 
2394   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2395   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2396   MVT IndexVT = VT.changeTypeToInteger();
2397   // Since we can't introduce illegal index types at this stage, use i16 and
2398   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2399   // than XLenVT.
2400   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2401     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2402     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2403   }
2404 
2405   MVT IndexContainerVT =
2406       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2407 
2408   SDValue Gather;
2409   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2410   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2411   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2412     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2413   } else {
2414     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2415     // If only one index is used, we can use a "splat" vrgather.
2416     // TODO: We can splat the most-common index and fix-up any stragglers, if
2417     // that's beneficial.
2418     if (LHSIndexCounts.size() == 1) {
2419       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2420       Gather =
2421           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2422                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2423     } else {
2424       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2425       LHSIndices =
2426           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2427 
2428       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2429                            TrueMask, VL);
2430     }
2431   }
2432 
2433   // If a second vector operand is used by this shuffle, blend it in with an
2434   // additional vrgather.
2435   if (!V2.isUndef()) {
2436     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2437     // If only one index is used, we can use a "splat" vrgather.
2438     // TODO: We can splat the most-common index and fix-up any stragglers, if
2439     // that's beneficial.
2440     if (RHSIndexCounts.size() == 1) {
2441       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2442       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2443                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2444     } else {
2445       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2446       RHSIndices =
2447           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2448       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2449                        VL);
2450     }
2451 
2452     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2453     SelectMask =
2454         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2455 
2456     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2457                          Gather, VL);
2458   }
2459 
2460   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2461 }
2462 
2463 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2464                                      SDLoc DL, SelectionDAG &DAG,
2465                                      const RISCVSubtarget &Subtarget) {
2466   if (VT.isScalableVector())
2467     return DAG.getFPExtendOrRound(Op, DL, VT);
2468   assert(VT.isFixedLengthVector() &&
2469          "Unexpected value type for RVV FP extend/round lowering");
2470   SDValue Mask, VL;
2471   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2472   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2473                         ? RISCVISD::FP_EXTEND_VL
2474                         : RISCVISD::FP_ROUND_VL;
2475   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2476 }
2477 
2478 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2479 // the exponent.
2480 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2481   MVT VT = Op.getSimpleValueType();
2482   unsigned EltSize = VT.getScalarSizeInBits();
2483   SDValue Src = Op.getOperand(0);
2484   SDLoc DL(Op);
2485 
2486   // We need a FP type that can represent the value.
2487   // TODO: Use f16 for i8 when possible?
2488   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2489   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2490 
2491   // Legal types should have been checked in the RISCVTargetLowering
2492   // constructor.
2493   // TODO: Splitting may make sense in some cases.
2494   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2495          "Expected legal float type!");
2496 
2497   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2498   // The trailing zero count is equal to log2 of this single bit value.
2499   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2500     SDValue Neg =
2501         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2502     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2503   }
2504 
2505   // We have a legal FP type, convert to it.
2506   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2507   // Bitcast to integer and shift the exponent to the LSB.
2508   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2509   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2510   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2511   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2512                               DAG.getConstant(ShiftAmt, DL, IntVT));
2513   // Truncate back to original type to allow vnsrl.
2514   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2515   // The exponent contains log2 of the value in biased form.
2516   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2517 
2518   // For trailing zeros, we just need to subtract the bias.
2519   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2520     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2521                        DAG.getConstant(ExponentBias, DL, VT));
2522 
2523   // For leading zeros, we need to remove the bias and convert from log2 to
2524   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2525   unsigned Adjust = ExponentBias + (EltSize - 1);
2526   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2527 }
2528 
2529 // While RVV has alignment restrictions, we should always be able to load as a
2530 // legal equivalently-sized byte-typed vector instead. This method is
2531 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2532 // the load is already correctly-aligned, it returns SDValue().
2533 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2534                                                     SelectionDAG &DAG) const {
2535   auto *Load = cast<LoadSDNode>(Op);
2536   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2537 
2538   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2539                                      Load->getMemoryVT(),
2540                                      *Load->getMemOperand()))
2541     return SDValue();
2542 
2543   SDLoc DL(Op);
2544   MVT VT = Op.getSimpleValueType();
2545   unsigned EltSizeBits = VT.getScalarSizeInBits();
2546   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2547          "Unexpected unaligned RVV load type");
2548   MVT NewVT =
2549       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2550   assert(NewVT.isValid() &&
2551          "Expecting equally-sized RVV vector types to be legal");
2552   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2553                           Load->getPointerInfo(), Load->getOriginalAlign(),
2554                           Load->getMemOperand()->getFlags());
2555   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2556 }
2557 
2558 // While RVV has alignment restrictions, we should always be able to store as a
2559 // legal equivalently-sized byte-typed vector instead. This method is
2560 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2561 // returns SDValue() if the store is already correctly aligned.
2562 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2563                                                      SelectionDAG &DAG) const {
2564   auto *Store = cast<StoreSDNode>(Op);
2565   assert(Store && Store->getValue().getValueType().isVector() &&
2566          "Expected vector store");
2567 
2568   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2569                                      Store->getMemoryVT(),
2570                                      *Store->getMemOperand()))
2571     return SDValue();
2572 
2573   SDLoc DL(Op);
2574   SDValue StoredVal = Store->getValue();
2575   MVT VT = StoredVal.getSimpleValueType();
2576   unsigned EltSizeBits = VT.getScalarSizeInBits();
2577   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2578          "Unexpected unaligned RVV store type");
2579   MVT NewVT =
2580       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2581   assert(NewVT.isValid() &&
2582          "Expecting equally-sized RVV vector types to be legal");
2583   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2584   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2585                       Store->getPointerInfo(), Store->getOriginalAlign(),
2586                       Store->getMemOperand()->getFlags());
2587 }
2588 
2589 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2590                                             SelectionDAG &DAG) const {
2591   switch (Op.getOpcode()) {
2592   default:
2593     report_fatal_error("unimplemented operand");
2594   case ISD::GlobalAddress:
2595     return lowerGlobalAddress(Op, DAG);
2596   case ISD::BlockAddress:
2597     return lowerBlockAddress(Op, DAG);
2598   case ISD::ConstantPool:
2599     return lowerConstantPool(Op, DAG);
2600   case ISD::JumpTable:
2601     return lowerJumpTable(Op, DAG);
2602   case ISD::GlobalTLSAddress:
2603     return lowerGlobalTLSAddress(Op, DAG);
2604   case ISD::SELECT:
2605     return lowerSELECT(Op, DAG);
2606   case ISD::BRCOND:
2607     return lowerBRCOND(Op, DAG);
2608   case ISD::VASTART:
2609     return lowerVASTART(Op, DAG);
2610   case ISD::FRAMEADDR:
2611     return lowerFRAMEADDR(Op, DAG);
2612   case ISD::RETURNADDR:
2613     return lowerRETURNADDR(Op, DAG);
2614   case ISD::SHL_PARTS:
2615     return lowerShiftLeftParts(Op, DAG);
2616   case ISD::SRA_PARTS:
2617     return lowerShiftRightParts(Op, DAG, true);
2618   case ISD::SRL_PARTS:
2619     return lowerShiftRightParts(Op, DAG, false);
2620   case ISD::BITCAST: {
2621     SDLoc DL(Op);
2622     EVT VT = Op.getValueType();
2623     SDValue Op0 = Op.getOperand(0);
2624     EVT Op0VT = Op0.getValueType();
2625     MVT XLenVT = Subtarget.getXLenVT();
2626     if (VT.isFixedLengthVector()) {
2627       // We can handle fixed length vector bitcasts with a simple replacement
2628       // in isel.
2629       if (Op0VT.isFixedLengthVector())
2630         return Op;
2631       // When bitcasting from scalar to fixed-length vector, insert the scalar
2632       // into a one-element vector of the result type, and perform a vector
2633       // bitcast.
2634       if (!Op0VT.isVector()) {
2635         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2636         if (!isTypeLegal(BVT))
2637           return SDValue();
2638         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2639                                               DAG.getUNDEF(BVT), Op0,
2640                                               DAG.getConstant(0, DL, XLenVT)));
2641       }
2642       return SDValue();
2643     }
2644     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2645     // thus: bitcast the vector to a one-element vector type whose element type
2646     // is the same as the result type, and extract the first element.
2647     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2648       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2649       if (!isTypeLegal(BVT))
2650         return SDValue();
2651       SDValue BVec = DAG.getBitcast(BVT, Op0);
2652       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2653                          DAG.getConstant(0, DL, XLenVT));
2654     }
2655     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2656       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2657       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2658       return FPConv;
2659     }
2660     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2661         Subtarget.hasStdExtF()) {
2662       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2663       SDValue FPConv =
2664           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2665       return FPConv;
2666     }
2667     return SDValue();
2668   }
2669   case ISD::INTRINSIC_WO_CHAIN:
2670     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2671   case ISD::INTRINSIC_W_CHAIN:
2672     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2673   case ISD::INTRINSIC_VOID:
2674     return LowerINTRINSIC_VOID(Op, DAG);
2675   case ISD::BSWAP:
2676   case ISD::BITREVERSE: {
2677     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2678     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2679     MVT VT = Op.getSimpleValueType();
2680     SDLoc DL(Op);
2681     // Start with the maximum immediate value which is the bitwidth - 1.
2682     unsigned Imm = VT.getSizeInBits() - 1;
2683     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2684     if (Op.getOpcode() == ISD::BSWAP)
2685       Imm &= ~0x7U;
2686     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2687                        DAG.getConstant(Imm, DL, VT));
2688   }
2689   case ISD::FSHL:
2690   case ISD::FSHR: {
2691     MVT VT = Op.getSimpleValueType();
2692     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2693     SDLoc DL(Op);
2694     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2695       return Op;
2696     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2697     // use log(XLen) bits. Mask the shift amount accordingly.
2698     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2699     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2700                                 DAG.getConstant(ShAmtWidth, DL, VT));
2701     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2702     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2703   }
2704   case ISD::TRUNCATE: {
2705     SDLoc DL(Op);
2706     MVT VT = Op.getSimpleValueType();
2707     // Only custom-lower vector truncates
2708     if (!VT.isVector())
2709       return Op;
2710 
2711     // Truncates to mask types are handled differently
2712     if (VT.getVectorElementType() == MVT::i1)
2713       return lowerVectorMaskTrunc(Op, DAG);
2714 
2715     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2716     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2717     // truncate by one power of two at a time.
2718     MVT DstEltVT = VT.getVectorElementType();
2719 
2720     SDValue Src = Op.getOperand(0);
2721     MVT SrcVT = Src.getSimpleValueType();
2722     MVT SrcEltVT = SrcVT.getVectorElementType();
2723 
2724     assert(DstEltVT.bitsLT(SrcEltVT) &&
2725            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2726            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2727            "Unexpected vector truncate lowering");
2728 
2729     MVT ContainerVT = SrcVT;
2730     if (SrcVT.isFixedLengthVector()) {
2731       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2732       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2733     }
2734 
2735     SDValue Result = Src;
2736     SDValue Mask, VL;
2737     std::tie(Mask, VL) =
2738         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2739     LLVMContext &Context = *DAG.getContext();
2740     const ElementCount Count = ContainerVT.getVectorElementCount();
2741     do {
2742       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2743       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2744       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2745                            Mask, VL);
2746     } while (SrcEltVT != DstEltVT);
2747 
2748     if (SrcVT.isFixedLengthVector())
2749       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2750 
2751     return Result;
2752   }
2753   case ISD::ANY_EXTEND:
2754   case ISD::ZERO_EXTEND:
2755     if (Op.getOperand(0).getValueType().isVector() &&
2756         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2757       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2758     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2759   case ISD::SIGN_EXTEND:
2760     if (Op.getOperand(0).getValueType().isVector() &&
2761         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2762       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2763     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2764   case ISD::SPLAT_VECTOR_PARTS:
2765     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2766   case ISD::INSERT_VECTOR_ELT:
2767     return lowerINSERT_VECTOR_ELT(Op, DAG);
2768   case ISD::EXTRACT_VECTOR_ELT:
2769     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2770   case ISD::VSCALE: {
2771     MVT VT = Op.getSimpleValueType();
2772     SDLoc DL(Op);
2773     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2774     // We define our scalable vector types for lmul=1 to use a 64 bit known
2775     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2776     // vscale as VLENB / 8.
2777     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2778     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2779       // We assume VLENB is a multiple of 8. We manually choose the best shift
2780       // here because SimplifyDemandedBits isn't always able to simplify it.
2781       uint64_t Val = Op.getConstantOperandVal(0);
2782       if (isPowerOf2_64(Val)) {
2783         uint64_t Log2 = Log2_64(Val);
2784         if (Log2 < 3)
2785           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2786                              DAG.getConstant(3 - Log2, DL, VT));
2787         if (Log2 > 3)
2788           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2789                              DAG.getConstant(Log2 - 3, DL, VT));
2790         return VLENB;
2791       }
2792       // If the multiplier is a multiple of 8, scale it down to avoid needing
2793       // to shift the VLENB value.
2794       if ((Val % 8) == 0)
2795         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2796                            DAG.getConstant(Val / 8, DL, VT));
2797     }
2798 
2799     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2800                                  DAG.getConstant(3, DL, VT));
2801     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2802   }
2803   case ISD::FPOWI: {
2804     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
2805     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
2806     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
2807         Op.getOperand(1).getValueType() == MVT::i32) {
2808       SDLoc DL(Op);
2809       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
2810       SDValue Powi =
2811           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
2812       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
2813                          DAG.getIntPtrConstant(0, DL));
2814     }
2815     return SDValue();
2816   }
2817   case ISD::FP_EXTEND: {
2818     // RVV can only do fp_extend to types double the size as the source. We
2819     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2820     // via f32.
2821     SDLoc DL(Op);
2822     MVT VT = Op.getSimpleValueType();
2823     SDValue Src = Op.getOperand(0);
2824     MVT SrcVT = Src.getSimpleValueType();
2825 
2826     // Prepare any fixed-length vector operands.
2827     MVT ContainerVT = VT;
2828     if (SrcVT.isFixedLengthVector()) {
2829       ContainerVT = getContainerForFixedLengthVector(VT);
2830       MVT SrcContainerVT =
2831           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2832       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2833     }
2834 
2835     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2836         SrcVT.getVectorElementType() != MVT::f16) {
2837       // For scalable vectors, we only need to close the gap between
2838       // vXf16->vXf64.
2839       if (!VT.isFixedLengthVector())
2840         return Op;
2841       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2842       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2843       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2844     }
2845 
2846     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2847     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2848     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2849         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2850 
2851     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2852                                            DL, DAG, Subtarget);
2853     if (VT.isFixedLengthVector())
2854       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2855     return Extend;
2856   }
2857   case ISD::FP_ROUND: {
2858     // RVV can only do fp_round to types half the size as the source. We
2859     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2860     // conversion instruction.
2861     SDLoc DL(Op);
2862     MVT VT = Op.getSimpleValueType();
2863     SDValue Src = Op.getOperand(0);
2864     MVT SrcVT = Src.getSimpleValueType();
2865 
2866     // Prepare any fixed-length vector operands.
2867     MVT ContainerVT = VT;
2868     if (VT.isFixedLengthVector()) {
2869       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2870       ContainerVT =
2871           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2872       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2873     }
2874 
2875     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2876         SrcVT.getVectorElementType() != MVT::f64) {
2877       // For scalable vectors, we only need to close the gap between
2878       // vXf64<->vXf16.
2879       if (!VT.isFixedLengthVector())
2880         return Op;
2881       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2882       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2883       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2884     }
2885 
2886     SDValue Mask, VL;
2887     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2888 
2889     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2890     SDValue IntermediateRound =
2891         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2892     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2893                                           DL, DAG, Subtarget);
2894 
2895     if (VT.isFixedLengthVector())
2896       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2897     return Round;
2898   }
2899   case ISD::FP_TO_SINT:
2900   case ISD::FP_TO_UINT:
2901   case ISD::SINT_TO_FP:
2902   case ISD::UINT_TO_FP: {
2903     // RVV can only do fp<->int conversions to types half/double the size as
2904     // the source. We custom-lower any conversions that do two hops into
2905     // sequences.
2906     MVT VT = Op.getSimpleValueType();
2907     if (!VT.isVector())
2908       return Op;
2909     SDLoc DL(Op);
2910     SDValue Src = Op.getOperand(0);
2911     MVT EltVT = VT.getVectorElementType();
2912     MVT SrcVT = Src.getSimpleValueType();
2913     MVT SrcEltVT = SrcVT.getVectorElementType();
2914     unsigned EltSize = EltVT.getSizeInBits();
2915     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2916     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2917            "Unexpected vector element types");
2918 
2919     bool IsInt2FP = SrcEltVT.isInteger();
2920     // Widening conversions
2921     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2922       if (IsInt2FP) {
2923         // Do a regular integer sign/zero extension then convert to float.
2924         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2925                                       VT.getVectorElementCount());
2926         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2927                                  ? ISD::ZERO_EXTEND
2928                                  : ISD::SIGN_EXTEND;
2929         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2930         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2931       }
2932       // FP2Int
2933       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2934       // Do one doubling fp_extend then complete the operation by converting
2935       // to int.
2936       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2937       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2938       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2939     }
2940 
2941     // Narrowing conversions
2942     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2943       if (IsInt2FP) {
2944         // One narrowing int_to_fp, then an fp_round.
2945         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2946         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2947         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2948         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2949       }
2950       // FP2Int
2951       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2952       // representable by the integer, the result is poison.
2953       MVT IVecVT =
2954           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2955                            VT.getVectorElementCount());
2956       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2957       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2958     }
2959 
2960     // Scalable vectors can exit here. Patterns will handle equally-sized
2961     // conversions halving/doubling ones.
2962     if (!VT.isFixedLengthVector())
2963       return Op;
2964 
2965     // For fixed-length vectors we lower to a custom "VL" node.
2966     unsigned RVVOpc = 0;
2967     switch (Op.getOpcode()) {
2968     default:
2969       llvm_unreachable("Impossible opcode");
2970     case ISD::FP_TO_SINT:
2971       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2972       break;
2973     case ISD::FP_TO_UINT:
2974       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2975       break;
2976     case ISD::SINT_TO_FP:
2977       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2978       break;
2979     case ISD::UINT_TO_FP:
2980       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2981       break;
2982     }
2983 
2984     MVT ContainerVT, SrcContainerVT;
2985     // Derive the reference container type from the larger vector type.
2986     if (SrcEltSize > EltSize) {
2987       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2988       ContainerVT =
2989           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2990     } else {
2991       ContainerVT = getContainerForFixedLengthVector(VT);
2992       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2993     }
2994 
2995     SDValue Mask, VL;
2996     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2997 
2998     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2999     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3000     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3001   }
3002   case ISD::FP_TO_SINT_SAT:
3003   case ISD::FP_TO_UINT_SAT:
3004     return lowerFP_TO_INT_SAT(Op, DAG);
3005   case ISD::FTRUNC:
3006   case ISD::FCEIL:
3007   case ISD::FFLOOR:
3008     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3009   case ISD::VECREDUCE_ADD:
3010   case ISD::VECREDUCE_UMAX:
3011   case ISD::VECREDUCE_SMAX:
3012   case ISD::VECREDUCE_UMIN:
3013   case ISD::VECREDUCE_SMIN:
3014     return lowerVECREDUCE(Op, DAG);
3015   case ISD::VECREDUCE_AND:
3016   case ISD::VECREDUCE_OR:
3017   case ISD::VECREDUCE_XOR:
3018     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3019       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3020     return lowerVECREDUCE(Op, DAG);
3021   case ISD::VECREDUCE_FADD:
3022   case ISD::VECREDUCE_SEQ_FADD:
3023   case ISD::VECREDUCE_FMIN:
3024   case ISD::VECREDUCE_FMAX:
3025     return lowerFPVECREDUCE(Op, DAG);
3026   case ISD::VP_REDUCE_ADD:
3027   case ISD::VP_REDUCE_UMAX:
3028   case ISD::VP_REDUCE_SMAX:
3029   case ISD::VP_REDUCE_UMIN:
3030   case ISD::VP_REDUCE_SMIN:
3031   case ISD::VP_REDUCE_FADD:
3032   case ISD::VP_REDUCE_SEQ_FADD:
3033   case ISD::VP_REDUCE_FMIN:
3034   case ISD::VP_REDUCE_FMAX:
3035     return lowerVPREDUCE(Op, DAG);
3036   case ISD::VP_REDUCE_AND:
3037   case ISD::VP_REDUCE_OR:
3038   case ISD::VP_REDUCE_XOR:
3039     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3040       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3041     return lowerVPREDUCE(Op, DAG);
3042   case ISD::INSERT_SUBVECTOR:
3043     return lowerINSERT_SUBVECTOR(Op, DAG);
3044   case ISD::EXTRACT_SUBVECTOR:
3045     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3046   case ISD::STEP_VECTOR:
3047     return lowerSTEP_VECTOR(Op, DAG);
3048   case ISD::VECTOR_REVERSE:
3049     return lowerVECTOR_REVERSE(Op, DAG);
3050   case ISD::BUILD_VECTOR:
3051     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3052   case ISD::SPLAT_VECTOR:
3053     if (Op.getValueType().getVectorElementType() == MVT::i1)
3054       return lowerVectorMaskSplat(Op, DAG);
3055     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3056   case ISD::VECTOR_SHUFFLE:
3057     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3058   case ISD::CONCAT_VECTORS: {
3059     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3060     // better than going through the stack, as the default expansion does.
3061     SDLoc DL(Op);
3062     MVT VT = Op.getSimpleValueType();
3063     unsigned NumOpElts =
3064         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3065     SDValue Vec = DAG.getUNDEF(VT);
3066     for (const auto &OpIdx : enumerate(Op->ops()))
3067       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
3068                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3069     return Vec;
3070   }
3071   case ISD::LOAD:
3072     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3073       return V;
3074     if (Op.getValueType().isFixedLengthVector())
3075       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3076     return Op;
3077   case ISD::STORE:
3078     if (auto V = expandUnalignedRVVStore(Op, DAG))
3079       return V;
3080     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3081       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3082     return Op;
3083   case ISD::MLOAD:
3084   case ISD::VP_LOAD:
3085     return lowerMaskedLoad(Op, DAG);
3086   case ISD::MSTORE:
3087   case ISD::VP_STORE:
3088     return lowerMaskedStore(Op, DAG);
3089   case ISD::SETCC:
3090     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3091   case ISD::ADD:
3092     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3093   case ISD::SUB:
3094     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3095   case ISD::MUL:
3096     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3097   case ISD::MULHS:
3098     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3099   case ISD::MULHU:
3100     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3101   case ISD::AND:
3102     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3103                                               RISCVISD::AND_VL);
3104   case ISD::OR:
3105     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3106                                               RISCVISD::OR_VL);
3107   case ISD::XOR:
3108     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3109                                               RISCVISD::XOR_VL);
3110   case ISD::SDIV:
3111     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3112   case ISD::SREM:
3113     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3114   case ISD::UDIV:
3115     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3116   case ISD::UREM:
3117     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3118   case ISD::SHL:
3119   case ISD::SRA:
3120   case ISD::SRL:
3121     if (Op.getSimpleValueType().isFixedLengthVector())
3122       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3123     // This can be called for an i32 shift amount that needs to be promoted.
3124     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3125            "Unexpected custom legalisation");
3126     return SDValue();
3127   case ISD::SADDSAT:
3128     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3129   case ISD::UADDSAT:
3130     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3131   case ISD::SSUBSAT:
3132     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3133   case ISD::USUBSAT:
3134     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3135   case ISD::FADD:
3136     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3137   case ISD::FSUB:
3138     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3139   case ISD::FMUL:
3140     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3141   case ISD::FDIV:
3142     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3143   case ISD::FNEG:
3144     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3145   case ISD::FABS:
3146     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3147   case ISD::FSQRT:
3148     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3149   case ISD::FMA:
3150     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3151   case ISD::SMIN:
3152     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3153   case ISD::SMAX:
3154     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3155   case ISD::UMIN:
3156     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3157   case ISD::UMAX:
3158     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3159   case ISD::FMINNUM:
3160     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3161   case ISD::FMAXNUM:
3162     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3163   case ISD::ABS:
3164     return lowerABS(Op, DAG);
3165   case ISD::CTLZ_ZERO_UNDEF:
3166   case ISD::CTTZ_ZERO_UNDEF:
3167     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3168   case ISD::VSELECT:
3169     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3170   case ISD::FCOPYSIGN:
3171     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3172   case ISD::MGATHER:
3173   case ISD::VP_GATHER:
3174     return lowerMaskedGather(Op, DAG);
3175   case ISD::MSCATTER:
3176   case ISD::VP_SCATTER:
3177     return lowerMaskedScatter(Op, DAG);
3178   case ISD::FLT_ROUNDS_:
3179     return lowerGET_ROUNDING(Op, DAG);
3180   case ISD::SET_ROUNDING:
3181     return lowerSET_ROUNDING(Op, DAG);
3182   case ISD::VP_SELECT:
3183     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3184   case ISD::VP_ADD:
3185     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3186   case ISD::VP_SUB:
3187     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3188   case ISD::VP_MUL:
3189     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3190   case ISD::VP_SDIV:
3191     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3192   case ISD::VP_UDIV:
3193     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3194   case ISD::VP_SREM:
3195     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3196   case ISD::VP_UREM:
3197     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3198   case ISD::VP_AND:
3199     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3200   case ISD::VP_OR:
3201     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3202   case ISD::VP_XOR:
3203     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3204   case ISD::VP_ASHR:
3205     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3206   case ISD::VP_LSHR:
3207     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3208   case ISD::VP_SHL:
3209     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3210   case ISD::VP_FADD:
3211     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3212   case ISD::VP_FSUB:
3213     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3214   case ISD::VP_FMUL:
3215     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3216   case ISD::VP_FDIV:
3217     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3218   }
3219 }
3220 
3221 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3222                              SelectionDAG &DAG, unsigned Flags) {
3223   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3224 }
3225 
3226 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3227                              SelectionDAG &DAG, unsigned Flags) {
3228   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3229                                    Flags);
3230 }
3231 
3232 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3233                              SelectionDAG &DAG, unsigned Flags) {
3234   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3235                                    N->getOffset(), Flags);
3236 }
3237 
3238 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3239                              SelectionDAG &DAG, unsigned Flags) {
3240   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3241 }
3242 
3243 template <class NodeTy>
3244 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3245                                      bool IsLocal) const {
3246   SDLoc DL(N);
3247   EVT Ty = getPointerTy(DAG.getDataLayout());
3248 
3249   if (isPositionIndependent()) {
3250     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3251     if (IsLocal)
3252       // Use PC-relative addressing to access the symbol. This generates the
3253       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3254       // %pcrel_lo(auipc)).
3255       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3256 
3257     // Use PC-relative addressing to access the GOT for this symbol, then load
3258     // the address from the GOT. This generates the pattern (PseudoLA sym),
3259     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3260     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3261   }
3262 
3263   switch (getTargetMachine().getCodeModel()) {
3264   default:
3265     report_fatal_error("Unsupported code model for lowering");
3266   case CodeModel::Small: {
3267     // Generate a sequence for accessing addresses within the first 2 GiB of
3268     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3269     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3270     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3271     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3272     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3273   }
3274   case CodeModel::Medium: {
3275     // Generate a sequence for accessing addresses within any 2GiB range within
3276     // the address space. This generates the pattern (PseudoLLA sym), which
3277     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3278     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3279     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3280   }
3281   }
3282 }
3283 
3284 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3285                                                 SelectionDAG &DAG) const {
3286   SDLoc DL(Op);
3287   EVT Ty = Op.getValueType();
3288   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3289   int64_t Offset = N->getOffset();
3290   MVT XLenVT = Subtarget.getXLenVT();
3291 
3292   const GlobalValue *GV = N->getGlobal();
3293   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3294   SDValue Addr = getAddr(N, DAG, IsLocal);
3295 
3296   // In order to maximise the opportunity for common subexpression elimination,
3297   // emit a separate ADD node for the global address offset instead of folding
3298   // it in the global address node. Later peephole optimisations may choose to
3299   // fold it back in when profitable.
3300   if (Offset != 0)
3301     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3302                        DAG.getConstant(Offset, DL, XLenVT));
3303   return Addr;
3304 }
3305 
3306 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3307                                                SelectionDAG &DAG) const {
3308   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3309 
3310   return getAddr(N, DAG);
3311 }
3312 
3313 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3314                                                SelectionDAG &DAG) const {
3315   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3316 
3317   return getAddr(N, DAG);
3318 }
3319 
3320 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3321                                             SelectionDAG &DAG) const {
3322   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3323 
3324   return getAddr(N, DAG);
3325 }
3326 
3327 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3328                                               SelectionDAG &DAG,
3329                                               bool UseGOT) const {
3330   SDLoc DL(N);
3331   EVT Ty = getPointerTy(DAG.getDataLayout());
3332   const GlobalValue *GV = N->getGlobal();
3333   MVT XLenVT = Subtarget.getXLenVT();
3334 
3335   if (UseGOT) {
3336     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3337     // load the address from the GOT and add the thread pointer. This generates
3338     // the pattern (PseudoLA_TLS_IE sym), which expands to
3339     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3340     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3341     SDValue Load =
3342         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3343 
3344     // Add the thread pointer.
3345     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3346     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3347   }
3348 
3349   // Generate a sequence for accessing the address relative to the thread
3350   // pointer, with the appropriate adjustment for the thread pointer offset.
3351   // This generates the pattern
3352   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3353   SDValue AddrHi =
3354       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3355   SDValue AddrAdd =
3356       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3357   SDValue AddrLo =
3358       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3359 
3360   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3361   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3362   SDValue MNAdd = SDValue(
3363       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3364       0);
3365   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3366 }
3367 
3368 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3369                                                SelectionDAG &DAG) const {
3370   SDLoc DL(N);
3371   EVT Ty = getPointerTy(DAG.getDataLayout());
3372   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3373   const GlobalValue *GV = N->getGlobal();
3374 
3375   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3376   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3377   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3378   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3379   SDValue Load =
3380       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3381 
3382   // Prepare argument list to generate call.
3383   ArgListTy Args;
3384   ArgListEntry Entry;
3385   Entry.Node = Load;
3386   Entry.Ty = CallTy;
3387   Args.push_back(Entry);
3388 
3389   // Setup call to __tls_get_addr.
3390   TargetLowering::CallLoweringInfo CLI(DAG);
3391   CLI.setDebugLoc(DL)
3392       .setChain(DAG.getEntryNode())
3393       .setLibCallee(CallingConv::C, CallTy,
3394                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3395                     std::move(Args));
3396 
3397   return LowerCallTo(CLI).first;
3398 }
3399 
3400 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3401                                                    SelectionDAG &DAG) const {
3402   SDLoc DL(Op);
3403   EVT Ty = Op.getValueType();
3404   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3405   int64_t Offset = N->getOffset();
3406   MVT XLenVT = Subtarget.getXLenVT();
3407 
3408   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3409 
3410   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3411       CallingConv::GHC)
3412     report_fatal_error("In GHC calling convention TLS is not supported");
3413 
3414   SDValue Addr;
3415   switch (Model) {
3416   case TLSModel::LocalExec:
3417     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3418     break;
3419   case TLSModel::InitialExec:
3420     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3421     break;
3422   case TLSModel::LocalDynamic:
3423   case TLSModel::GeneralDynamic:
3424     Addr = getDynamicTLSAddr(N, DAG);
3425     break;
3426   }
3427 
3428   // In order to maximise the opportunity for common subexpression elimination,
3429   // emit a separate ADD node for the global address offset instead of folding
3430   // it in the global address node. Later peephole optimisations may choose to
3431   // fold it back in when profitable.
3432   if (Offset != 0)
3433     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3434                        DAG.getConstant(Offset, DL, XLenVT));
3435   return Addr;
3436 }
3437 
3438 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3439   SDValue CondV = Op.getOperand(0);
3440   SDValue TrueV = Op.getOperand(1);
3441   SDValue FalseV = Op.getOperand(2);
3442   SDLoc DL(Op);
3443   MVT VT = Op.getSimpleValueType();
3444   MVT XLenVT = Subtarget.getXLenVT();
3445 
3446   // Lower vector SELECTs to VSELECTs by splatting the condition.
3447   if (VT.isVector()) {
3448     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3449     SDValue CondSplat = VT.isScalableVector()
3450                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3451                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3452     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3453   }
3454 
3455   // If the result type is XLenVT and CondV is the output of a SETCC node
3456   // which also operated on XLenVT inputs, then merge the SETCC node into the
3457   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3458   // compare+branch instructions. i.e.:
3459   // (select (setcc lhs, rhs, cc), truev, falsev)
3460   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3461   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3462       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3463     SDValue LHS = CondV.getOperand(0);
3464     SDValue RHS = CondV.getOperand(1);
3465     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3466     ISD::CondCode CCVal = CC->get();
3467 
3468     // Special case for a select of 2 constants that have a diffence of 1.
3469     // Normally this is done by DAGCombine, but if the select is introduced by
3470     // type legalization or op legalization, we miss it. Restricting to SETLT
3471     // case for now because that is what signed saturating add/sub need.
3472     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3473     // but we would probably want to swap the true/false values if the condition
3474     // is SETGE/SETLE to avoid an XORI.
3475     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3476         CCVal == ISD::SETLT) {
3477       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3478       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3479       if (TrueVal - 1 == FalseVal)
3480         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3481       if (TrueVal + 1 == FalseVal)
3482         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3483     }
3484 
3485     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3486 
3487     SDValue TargetCC = DAG.getCondCode(CCVal);
3488     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3489     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3490   }
3491 
3492   // Otherwise:
3493   // (select condv, truev, falsev)
3494   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3495   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3496   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3497 
3498   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3499 
3500   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3501 }
3502 
3503 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3504   SDValue CondV = Op.getOperand(1);
3505   SDLoc DL(Op);
3506   MVT XLenVT = Subtarget.getXLenVT();
3507 
3508   if (CondV.getOpcode() == ISD::SETCC &&
3509       CondV.getOperand(0).getValueType() == XLenVT) {
3510     SDValue LHS = CondV.getOperand(0);
3511     SDValue RHS = CondV.getOperand(1);
3512     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3513 
3514     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3515 
3516     SDValue TargetCC = DAG.getCondCode(CCVal);
3517     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3518                        LHS, RHS, TargetCC, Op.getOperand(2));
3519   }
3520 
3521   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3522                      CondV, DAG.getConstant(0, DL, XLenVT),
3523                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3524 }
3525 
3526 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3527   MachineFunction &MF = DAG.getMachineFunction();
3528   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3529 
3530   SDLoc DL(Op);
3531   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3532                                  getPointerTy(MF.getDataLayout()));
3533 
3534   // vastart just stores the address of the VarArgsFrameIndex slot into the
3535   // memory location argument.
3536   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3537   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3538                       MachinePointerInfo(SV));
3539 }
3540 
3541 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3542                                             SelectionDAG &DAG) const {
3543   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3544   MachineFunction &MF = DAG.getMachineFunction();
3545   MachineFrameInfo &MFI = MF.getFrameInfo();
3546   MFI.setFrameAddressIsTaken(true);
3547   Register FrameReg = RI.getFrameRegister(MF);
3548   int XLenInBytes = Subtarget.getXLen() / 8;
3549 
3550   EVT VT = Op.getValueType();
3551   SDLoc DL(Op);
3552   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3553   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3554   while (Depth--) {
3555     int Offset = -(XLenInBytes * 2);
3556     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3557                               DAG.getIntPtrConstant(Offset, DL));
3558     FrameAddr =
3559         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3560   }
3561   return FrameAddr;
3562 }
3563 
3564 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3565                                              SelectionDAG &DAG) const {
3566   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3567   MachineFunction &MF = DAG.getMachineFunction();
3568   MachineFrameInfo &MFI = MF.getFrameInfo();
3569   MFI.setReturnAddressIsTaken(true);
3570   MVT XLenVT = Subtarget.getXLenVT();
3571   int XLenInBytes = Subtarget.getXLen() / 8;
3572 
3573   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3574     return SDValue();
3575 
3576   EVT VT = Op.getValueType();
3577   SDLoc DL(Op);
3578   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3579   if (Depth) {
3580     int Off = -XLenInBytes;
3581     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3582     SDValue Offset = DAG.getConstant(Off, DL, VT);
3583     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3584                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3585                        MachinePointerInfo());
3586   }
3587 
3588   // Return the value of the return address register, marking it an implicit
3589   // live-in.
3590   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3591   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3592 }
3593 
3594 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3595                                                  SelectionDAG &DAG) const {
3596   SDLoc DL(Op);
3597   SDValue Lo = Op.getOperand(0);
3598   SDValue Hi = Op.getOperand(1);
3599   SDValue Shamt = Op.getOperand(2);
3600   EVT VT = Lo.getValueType();
3601 
3602   // if Shamt-XLEN < 0: // Shamt < XLEN
3603   //   Lo = Lo << Shamt
3604   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3605   // else:
3606   //   Lo = 0
3607   //   Hi = Lo << (Shamt-XLEN)
3608 
3609   SDValue Zero = DAG.getConstant(0, DL, VT);
3610   SDValue One = DAG.getConstant(1, DL, VT);
3611   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3612   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3613   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3614   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3615 
3616   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3617   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3618   SDValue ShiftRightLo =
3619       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3620   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3621   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3622   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3623 
3624   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3625 
3626   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3627   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3628 
3629   SDValue Parts[2] = {Lo, Hi};
3630   return DAG.getMergeValues(Parts, DL);
3631 }
3632 
3633 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3634                                                   bool IsSRA) const {
3635   SDLoc DL(Op);
3636   SDValue Lo = Op.getOperand(0);
3637   SDValue Hi = Op.getOperand(1);
3638   SDValue Shamt = Op.getOperand(2);
3639   EVT VT = Lo.getValueType();
3640 
3641   // SRA expansion:
3642   //   if Shamt-XLEN < 0: // Shamt < XLEN
3643   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3644   //     Hi = Hi >>s Shamt
3645   //   else:
3646   //     Lo = Hi >>s (Shamt-XLEN);
3647   //     Hi = Hi >>s (XLEN-1)
3648   //
3649   // SRL expansion:
3650   //   if Shamt-XLEN < 0: // Shamt < XLEN
3651   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3652   //     Hi = Hi >>u Shamt
3653   //   else:
3654   //     Lo = Hi >>u (Shamt-XLEN);
3655   //     Hi = 0;
3656 
3657   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3658 
3659   SDValue Zero = DAG.getConstant(0, DL, VT);
3660   SDValue One = DAG.getConstant(1, DL, VT);
3661   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3662   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3663   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3664   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3665 
3666   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3667   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3668   SDValue ShiftLeftHi =
3669       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3670   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3671   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3672   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3673   SDValue HiFalse =
3674       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3675 
3676   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3677 
3678   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3679   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3680 
3681   SDValue Parts[2] = {Lo, Hi};
3682   return DAG.getMergeValues(Parts, DL);
3683 }
3684 
3685 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3686 // legal equivalently-sized i8 type, so we can use that as a go-between.
3687 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3688                                                   SelectionDAG &DAG) const {
3689   SDLoc DL(Op);
3690   MVT VT = Op.getSimpleValueType();
3691   SDValue SplatVal = Op.getOperand(0);
3692   // All-zeros or all-ones splats are handled specially.
3693   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3694     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3695     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3696   }
3697   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3698     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3699     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3700   }
3701   MVT XLenVT = Subtarget.getXLenVT();
3702   assert(SplatVal.getValueType() == XLenVT &&
3703          "Unexpected type for i1 splat value");
3704   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3705   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3706                          DAG.getConstant(1, DL, XLenVT));
3707   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3708   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3709   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3710 }
3711 
3712 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3713 // illegal (currently only vXi64 RV32).
3714 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3715 // them to SPLAT_VECTOR_I64
3716 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3717                                                      SelectionDAG &DAG) const {
3718   SDLoc DL(Op);
3719   MVT VecVT = Op.getSimpleValueType();
3720   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3721          "Unexpected SPLAT_VECTOR_PARTS lowering");
3722 
3723   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3724   SDValue Lo = Op.getOperand(0);
3725   SDValue Hi = Op.getOperand(1);
3726 
3727   if (VecVT.isFixedLengthVector()) {
3728     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3729     SDLoc DL(Op);
3730     SDValue Mask, VL;
3731     std::tie(Mask, VL) =
3732         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3733 
3734     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3735     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3736   }
3737 
3738   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3739     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3740     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3741     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3742     // node in order to try and match RVV vector/scalar instructions.
3743     if ((LoC >> 31) == HiC)
3744       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3745   }
3746 
3747   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3748   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3749       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3750       Hi.getConstantOperandVal(1) == 31)
3751     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3752 
3753   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3754   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3755                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3756 }
3757 
3758 // Custom-lower extensions from mask vectors by using a vselect either with 1
3759 // for zero/any-extension or -1 for sign-extension:
3760 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3761 // Note that any-extension is lowered identically to zero-extension.
3762 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3763                                                 int64_t ExtTrueVal) const {
3764   SDLoc DL(Op);
3765   MVT VecVT = Op.getSimpleValueType();
3766   SDValue Src = Op.getOperand(0);
3767   // Only custom-lower extensions from mask types
3768   assert(Src.getValueType().isVector() &&
3769          Src.getValueType().getVectorElementType() == MVT::i1);
3770 
3771   MVT XLenVT = Subtarget.getXLenVT();
3772   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3773   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3774 
3775   if (VecVT.isScalableVector()) {
3776     // Be careful not to introduce illegal scalar types at this stage, and be
3777     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3778     // illegal and must be expanded. Since we know that the constants are
3779     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3780     bool IsRV32E64 =
3781         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3782 
3783     if (!IsRV32E64) {
3784       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3785       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3786     } else {
3787       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3788       SplatTrueVal =
3789           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3790     }
3791 
3792     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3793   }
3794 
3795   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3796   MVT I1ContainerVT =
3797       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3798 
3799   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3800 
3801   SDValue Mask, VL;
3802   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3803 
3804   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3805   SplatTrueVal =
3806       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3807   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3808                                SplatTrueVal, SplatZero, VL);
3809 
3810   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3811 }
3812 
3813 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3814     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3815   MVT ExtVT = Op.getSimpleValueType();
3816   // Only custom-lower extensions from fixed-length vector types.
3817   if (!ExtVT.isFixedLengthVector())
3818     return Op;
3819   MVT VT = Op.getOperand(0).getSimpleValueType();
3820   // Grab the canonical container type for the extended type. Infer the smaller
3821   // type from that to ensure the same number of vector elements, as we know
3822   // the LMUL will be sufficient to hold the smaller type.
3823   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3824   // Get the extended container type manually to ensure the same number of
3825   // vector elements between source and dest.
3826   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3827                                      ContainerExtVT.getVectorElementCount());
3828 
3829   SDValue Op1 =
3830       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3831 
3832   SDLoc DL(Op);
3833   SDValue Mask, VL;
3834   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3835 
3836   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3837 
3838   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3839 }
3840 
3841 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3842 // setcc operation:
3843 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3844 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3845                                                   SelectionDAG &DAG) const {
3846   SDLoc DL(Op);
3847   EVT MaskVT = Op.getValueType();
3848   // Only expect to custom-lower truncations to mask types
3849   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3850          "Unexpected type for vector mask lowering");
3851   SDValue Src = Op.getOperand(0);
3852   MVT VecVT = Src.getSimpleValueType();
3853 
3854   // If this is a fixed vector, we need to convert it to a scalable vector.
3855   MVT ContainerVT = VecVT;
3856   if (VecVT.isFixedLengthVector()) {
3857     ContainerVT = getContainerForFixedLengthVector(VecVT);
3858     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3859   }
3860 
3861   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3862   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3863 
3864   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3865   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3866 
3867   if (VecVT.isScalableVector()) {
3868     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3869     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3870   }
3871 
3872   SDValue Mask, VL;
3873   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3874 
3875   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3876   SDValue Trunc =
3877       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3878   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3879                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3880   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3881 }
3882 
3883 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3884 // first position of a vector, and that vector is slid up to the insert index.
3885 // By limiting the active vector length to index+1 and merging with the
3886 // original vector (with an undisturbed tail policy for elements >= VL), we
3887 // achieve the desired result of leaving all elements untouched except the one
3888 // at VL-1, which is replaced with the desired value.
3889 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3890                                                     SelectionDAG &DAG) const {
3891   SDLoc DL(Op);
3892   MVT VecVT = Op.getSimpleValueType();
3893   SDValue Vec = Op.getOperand(0);
3894   SDValue Val = Op.getOperand(1);
3895   SDValue Idx = Op.getOperand(2);
3896 
3897   if (VecVT.getVectorElementType() == MVT::i1) {
3898     // FIXME: For now we just promote to an i8 vector and insert into that,
3899     // but this is probably not optimal.
3900     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3901     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3902     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3903     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3904   }
3905 
3906   MVT ContainerVT = VecVT;
3907   // If the operand is a fixed-length vector, convert to a scalable one.
3908   if (VecVT.isFixedLengthVector()) {
3909     ContainerVT = getContainerForFixedLengthVector(VecVT);
3910     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3911   }
3912 
3913   MVT XLenVT = Subtarget.getXLenVT();
3914 
3915   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3916   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3917   // Even i64-element vectors on RV32 can be lowered without scalar
3918   // legalization if the most-significant 32 bits of the value are not affected
3919   // by the sign-extension of the lower 32 bits.
3920   // TODO: We could also catch sign extensions of a 32-bit value.
3921   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3922     const auto *CVal = cast<ConstantSDNode>(Val);
3923     if (isInt<32>(CVal->getSExtValue())) {
3924       IsLegalInsert = true;
3925       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3926     }
3927   }
3928 
3929   SDValue Mask, VL;
3930   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3931 
3932   SDValue ValInVec;
3933 
3934   if (IsLegalInsert) {
3935     unsigned Opc =
3936         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3937     if (isNullConstant(Idx)) {
3938       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3939       if (!VecVT.isFixedLengthVector())
3940         return Vec;
3941       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3942     }
3943     ValInVec =
3944         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3945   } else {
3946     // On RV32, i64-element vectors must be specially handled to place the
3947     // value at element 0, by using two vslide1up instructions in sequence on
3948     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3949     // this.
3950     SDValue One = DAG.getConstant(1, DL, XLenVT);
3951     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3952     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3953     MVT I32ContainerVT =
3954         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3955     SDValue I32Mask =
3956         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3957     // Limit the active VL to two.
3958     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3959     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3960     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3961     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3962                            InsertI64VL);
3963     // First slide in the hi value, then the lo in underneath it.
3964     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3965                            ValHi, I32Mask, InsertI64VL);
3966     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3967                            ValLo, I32Mask, InsertI64VL);
3968     // Bitcast back to the right container type.
3969     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3970   }
3971 
3972   // Now that the value is in a vector, slide it into position.
3973   SDValue InsertVL =
3974       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3975   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3976                                 ValInVec, Idx, Mask, InsertVL);
3977   if (!VecVT.isFixedLengthVector())
3978     return Slideup;
3979   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3980 }
3981 
3982 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3983 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3984 // types this is done using VMV_X_S to allow us to glean information about the
3985 // sign bits of the result.
3986 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3987                                                      SelectionDAG &DAG) const {
3988   SDLoc DL(Op);
3989   SDValue Idx = Op.getOperand(1);
3990   SDValue Vec = Op.getOperand(0);
3991   EVT EltVT = Op.getValueType();
3992   MVT VecVT = Vec.getSimpleValueType();
3993   MVT XLenVT = Subtarget.getXLenVT();
3994 
3995   if (VecVT.getVectorElementType() == MVT::i1) {
3996     // FIXME: For now we just promote to an i8 vector and extract from that,
3997     // but this is probably not optimal.
3998     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3999     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4000     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4001   }
4002 
4003   // If this is a fixed vector, we need to convert it to a scalable vector.
4004   MVT ContainerVT = VecVT;
4005   if (VecVT.isFixedLengthVector()) {
4006     ContainerVT = getContainerForFixedLengthVector(VecVT);
4007     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4008   }
4009 
4010   // If the index is 0, the vector is already in the right position.
4011   if (!isNullConstant(Idx)) {
4012     // Use a VL of 1 to avoid processing more elements than we need.
4013     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4014     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4015     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4016     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4017                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4018   }
4019 
4020   if (!EltVT.isInteger()) {
4021     // Floating-point extracts are handled in TableGen.
4022     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4023                        DAG.getConstant(0, DL, XLenVT));
4024   }
4025 
4026   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4027   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4028 }
4029 
4030 // Some RVV intrinsics may claim that they want an integer operand to be
4031 // promoted or expanded.
4032 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4033                                           const RISCVSubtarget &Subtarget) {
4034   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4035           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4036          "Unexpected opcode");
4037 
4038   if (!Subtarget.hasVInstructions())
4039     return SDValue();
4040 
4041   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4042   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4043   SDLoc DL(Op);
4044 
4045   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4046       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4047   if (!II || !II->SplatOperand)
4048     return SDValue();
4049 
4050   unsigned SplatOp = II->SplatOperand + HasChain;
4051   assert(SplatOp < Op.getNumOperands());
4052 
4053   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4054   SDValue &ScalarOp = Operands[SplatOp];
4055   MVT OpVT = ScalarOp.getSimpleValueType();
4056   MVT XLenVT = Subtarget.getXLenVT();
4057 
4058   // If this isn't a scalar, or its type is XLenVT we're done.
4059   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4060     return SDValue();
4061 
4062   // Simplest case is that the operand needs to be promoted to XLenVT.
4063   if (OpVT.bitsLT(XLenVT)) {
4064     // If the operand is a constant, sign extend to increase our chances
4065     // of being able to use a .vi instruction. ANY_EXTEND would become a
4066     // a zero extend and the simm5 check in isel would fail.
4067     // FIXME: Should we ignore the upper bits in isel instead?
4068     unsigned ExtOpc =
4069         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4070     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4071     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4072   }
4073 
4074   // Use the previous operand to get the vXi64 VT. The result might be a mask
4075   // VT for compares. Using the previous operand assumes that the previous
4076   // operand will never have a smaller element size than a scalar operand and
4077   // that a widening operation never uses SEW=64.
4078   // NOTE: If this fails the below assert, we can probably just find the
4079   // element count from any operand or result and use it to construct the VT.
4080   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
4081   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4082 
4083   // The more complex case is when the scalar is larger than XLenVT.
4084   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4085          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4086 
4087   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4088   // on the instruction to sign-extend since SEW>XLEN.
4089   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4090     if (isInt<32>(CVal->getSExtValue())) {
4091       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4092       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4093     }
4094   }
4095 
4096   // We need to convert the scalar to a splat vector.
4097   // FIXME: Can we implicitly truncate the scalar if it is known to
4098   // be sign extended?
4099   // VL should be the last operand.
4100   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
4101   assert(VL.getValueType() == XLenVT);
4102   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4103   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4104 }
4105 
4106 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4107                                                      SelectionDAG &DAG) const {
4108   unsigned IntNo = Op.getConstantOperandVal(0);
4109   SDLoc DL(Op);
4110   MVT XLenVT = Subtarget.getXLenVT();
4111 
4112   switch (IntNo) {
4113   default:
4114     break; // Don't custom lower most intrinsics.
4115   case Intrinsic::thread_pointer: {
4116     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4117     return DAG.getRegister(RISCV::X4, PtrVT);
4118   }
4119   case Intrinsic::riscv_orc_b:
4120     // Lower to the GORCI encoding for orc.b.
4121     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
4122                        DAG.getConstant(7, DL, XLenVT));
4123   case Intrinsic::riscv_grev:
4124   case Intrinsic::riscv_gorc: {
4125     unsigned Opc =
4126         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4127     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4128   }
4129   case Intrinsic::riscv_shfl:
4130   case Intrinsic::riscv_unshfl: {
4131     unsigned Opc =
4132         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4133     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4134   }
4135   case Intrinsic::riscv_bcompress:
4136   case Intrinsic::riscv_bdecompress: {
4137     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4138                                                        : RISCVISD::BDECOMPRESS;
4139     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4140   }
4141   case Intrinsic::riscv_vmv_x_s:
4142     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4143     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4144                        Op.getOperand(1));
4145   case Intrinsic::riscv_vmv_v_x:
4146     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4147                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4148   case Intrinsic::riscv_vfmv_v_f:
4149     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4150                        Op.getOperand(1), Op.getOperand(2));
4151   case Intrinsic::riscv_vmv_s_x: {
4152     SDValue Scalar = Op.getOperand(2);
4153 
4154     if (Scalar.getValueType().bitsLE(XLenVT)) {
4155       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4156       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4157                          Op.getOperand(1), Scalar, Op.getOperand(3));
4158     }
4159 
4160     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4161 
4162     // This is an i64 value that lives in two scalar registers. We have to
4163     // insert this in a convoluted way. First we build vXi64 splat containing
4164     // the/ two values that we assemble using some bit math. Next we'll use
4165     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4166     // to merge element 0 from our splat into the source vector.
4167     // FIXME: This is probably not the best way to do this, but it is
4168     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4169     // point.
4170     //   sw lo, (a0)
4171     //   sw hi, 4(a0)
4172     //   vlse vX, (a0)
4173     //
4174     //   vid.v      vVid
4175     //   vmseq.vx   mMask, vVid, 0
4176     //   vmerge.vvm vDest, vSrc, vVal, mMask
4177     MVT VT = Op.getSimpleValueType();
4178     SDValue Vec = Op.getOperand(1);
4179     SDValue VL = Op.getOperand(3);
4180 
4181     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4182     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4183                                       DAG.getConstant(0, DL, MVT::i32), VL);
4184 
4185     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4186     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4187     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4188     SDValue SelectCond =
4189         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4190                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4191     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4192                        Vec, VL);
4193   }
4194   case Intrinsic::riscv_vslide1up:
4195   case Intrinsic::riscv_vslide1down:
4196   case Intrinsic::riscv_vslide1up_mask:
4197   case Intrinsic::riscv_vslide1down_mask: {
4198     // We need to special case these when the scalar is larger than XLen.
4199     unsigned NumOps = Op.getNumOperands();
4200     bool IsMasked = NumOps == 7;
4201     unsigned OpOffset = IsMasked ? 1 : 0;
4202     SDValue Scalar = Op.getOperand(2 + OpOffset);
4203     if (Scalar.getValueType().bitsLE(XLenVT))
4204       break;
4205 
4206     // Splatting a sign extended constant is fine.
4207     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4208       if (isInt<32>(CVal->getSExtValue()))
4209         break;
4210 
4211     MVT VT = Op.getSimpleValueType();
4212     assert(VT.getVectorElementType() == MVT::i64 &&
4213            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4214 
4215     // Convert the vector source to the equivalent nxvXi32 vector.
4216     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4217     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4218 
4219     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4220                                    DAG.getConstant(0, DL, XLenVT));
4221     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4222                                    DAG.getConstant(1, DL, XLenVT));
4223 
4224     // Double the VL since we halved SEW.
4225     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4226     SDValue I32VL =
4227         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4228 
4229     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4230     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4231 
4232     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4233     // instructions.
4234     if (IntNo == Intrinsic::riscv_vslide1up ||
4235         IntNo == Intrinsic::riscv_vslide1up_mask) {
4236       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4237                         I32Mask, I32VL);
4238       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4239                         I32Mask, I32VL);
4240     } else {
4241       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4242                         I32Mask, I32VL);
4243       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4244                         I32Mask, I32VL);
4245     }
4246 
4247     // Convert back to nxvXi64.
4248     Vec = DAG.getBitcast(VT, Vec);
4249 
4250     if (!IsMasked)
4251       return Vec;
4252 
4253     // Apply mask after the operation.
4254     SDValue Mask = Op.getOperand(NumOps - 3);
4255     SDValue MaskedOff = Op.getOperand(1);
4256     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4257   }
4258   }
4259 
4260   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4261 }
4262 
4263 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4264                                                     SelectionDAG &DAG) const {
4265   unsigned IntNo = Op.getConstantOperandVal(1);
4266   switch (IntNo) {
4267   default:
4268     break;
4269   case Intrinsic::riscv_masked_strided_load: {
4270     SDLoc DL(Op);
4271     MVT XLenVT = Subtarget.getXLenVT();
4272 
4273     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4274     // the selection of the masked intrinsics doesn't do this for us.
4275     SDValue Mask = Op.getOperand(5);
4276     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4277 
4278     MVT VT = Op->getSimpleValueType(0);
4279     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4280 
4281     SDValue PassThru = Op.getOperand(2);
4282     if (!IsUnmasked) {
4283       MVT MaskVT =
4284           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4285       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4286       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4287     }
4288 
4289     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4290 
4291     SDValue IntID = DAG.getTargetConstant(
4292         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4293         XLenVT);
4294 
4295     auto *Load = cast<MemIntrinsicSDNode>(Op);
4296     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4297     if (!IsUnmasked)
4298       Ops.push_back(PassThru);
4299     Ops.push_back(Op.getOperand(3)); // Ptr
4300     Ops.push_back(Op.getOperand(4)); // Stride
4301     if (!IsUnmasked)
4302       Ops.push_back(Mask);
4303     Ops.push_back(VL);
4304     if (!IsUnmasked) {
4305       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4306       Ops.push_back(Policy);
4307     }
4308 
4309     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4310     SDValue Result =
4311         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4312                                 Load->getMemoryVT(), Load->getMemOperand());
4313     SDValue Chain = Result.getValue(1);
4314     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4315     return DAG.getMergeValues({Result, Chain}, DL);
4316   }
4317   }
4318 
4319   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4320 }
4321 
4322 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4323                                                  SelectionDAG &DAG) const {
4324   unsigned IntNo = Op.getConstantOperandVal(1);
4325   switch (IntNo) {
4326   default:
4327     break;
4328   case Intrinsic::riscv_masked_strided_store: {
4329     SDLoc DL(Op);
4330     MVT XLenVT = Subtarget.getXLenVT();
4331 
4332     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4333     // the selection of the masked intrinsics doesn't do this for us.
4334     SDValue Mask = Op.getOperand(5);
4335     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4336 
4337     SDValue Val = Op.getOperand(2);
4338     MVT VT = Val.getSimpleValueType();
4339     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4340 
4341     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4342     if (!IsUnmasked) {
4343       MVT MaskVT =
4344           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4345       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4346     }
4347 
4348     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4349 
4350     SDValue IntID = DAG.getTargetConstant(
4351         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4352         XLenVT);
4353 
4354     auto *Store = cast<MemIntrinsicSDNode>(Op);
4355     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4356     Ops.push_back(Val);
4357     Ops.push_back(Op.getOperand(3)); // Ptr
4358     Ops.push_back(Op.getOperand(4)); // Stride
4359     if (!IsUnmasked)
4360       Ops.push_back(Mask);
4361     Ops.push_back(VL);
4362 
4363     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4364                                    Ops, Store->getMemoryVT(),
4365                                    Store->getMemOperand());
4366   }
4367   }
4368 
4369   return SDValue();
4370 }
4371 
4372 static MVT getLMUL1VT(MVT VT) {
4373   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4374          "Unexpected vector MVT");
4375   return MVT::getScalableVectorVT(
4376       VT.getVectorElementType(),
4377       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4378 }
4379 
4380 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4381   switch (ISDOpcode) {
4382   default:
4383     llvm_unreachable("Unhandled reduction");
4384   case ISD::VECREDUCE_ADD:
4385     return RISCVISD::VECREDUCE_ADD_VL;
4386   case ISD::VECREDUCE_UMAX:
4387     return RISCVISD::VECREDUCE_UMAX_VL;
4388   case ISD::VECREDUCE_SMAX:
4389     return RISCVISD::VECREDUCE_SMAX_VL;
4390   case ISD::VECREDUCE_UMIN:
4391     return RISCVISD::VECREDUCE_UMIN_VL;
4392   case ISD::VECREDUCE_SMIN:
4393     return RISCVISD::VECREDUCE_SMIN_VL;
4394   case ISD::VECREDUCE_AND:
4395     return RISCVISD::VECREDUCE_AND_VL;
4396   case ISD::VECREDUCE_OR:
4397     return RISCVISD::VECREDUCE_OR_VL;
4398   case ISD::VECREDUCE_XOR:
4399     return RISCVISD::VECREDUCE_XOR_VL;
4400   }
4401 }
4402 
4403 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4404                                                          SelectionDAG &DAG,
4405                                                          bool IsVP) const {
4406   SDLoc DL(Op);
4407   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4408   MVT VecVT = Vec.getSimpleValueType();
4409   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4410           Op.getOpcode() == ISD::VECREDUCE_OR ||
4411           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4412           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4413           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4414           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4415          "Unexpected reduction lowering");
4416 
4417   MVT XLenVT = Subtarget.getXLenVT();
4418   assert(Op.getValueType() == XLenVT &&
4419          "Expected reduction output to be legalized to XLenVT");
4420 
4421   MVT ContainerVT = VecVT;
4422   if (VecVT.isFixedLengthVector()) {
4423     ContainerVT = getContainerForFixedLengthVector(VecVT);
4424     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4425   }
4426 
4427   SDValue Mask, VL;
4428   if (IsVP) {
4429     Mask = Op.getOperand(2);
4430     VL = Op.getOperand(3);
4431   } else {
4432     std::tie(Mask, VL) =
4433         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4434   }
4435 
4436   unsigned BaseOpc;
4437   ISD::CondCode CC;
4438   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4439 
4440   switch (Op.getOpcode()) {
4441   default:
4442     llvm_unreachable("Unhandled reduction");
4443   case ISD::VECREDUCE_AND:
4444   case ISD::VP_REDUCE_AND: {
4445     // vcpop ~x == 0
4446     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4447     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4448     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4449     CC = ISD::SETEQ;
4450     BaseOpc = ISD::AND;
4451     break;
4452   }
4453   case ISD::VECREDUCE_OR:
4454   case ISD::VP_REDUCE_OR:
4455     // vcpop x != 0
4456     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4457     CC = ISD::SETNE;
4458     BaseOpc = ISD::OR;
4459     break;
4460   case ISD::VECREDUCE_XOR:
4461   case ISD::VP_REDUCE_XOR: {
4462     // ((vcpop x) & 1) != 0
4463     SDValue One = DAG.getConstant(1, DL, XLenVT);
4464     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4465     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4466     CC = ISD::SETNE;
4467     BaseOpc = ISD::XOR;
4468     break;
4469   }
4470   }
4471 
4472   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4473 
4474   if (!IsVP)
4475     return SetCC;
4476 
4477   // Now include the start value in the operation.
4478   // Note that we must return the start value when no elements are operated
4479   // upon. The vcpop instructions we've emitted in each case above will return
4480   // 0 for an inactive vector, and so we've already received the neutral value:
4481   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4482   // can simply include the start value.
4483   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4484 }
4485 
4486 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4487                                             SelectionDAG &DAG) const {
4488   SDLoc DL(Op);
4489   SDValue Vec = Op.getOperand(0);
4490   EVT VecEVT = Vec.getValueType();
4491 
4492   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4493 
4494   // Due to ordering in legalize types we may have a vector type that needs to
4495   // be split. Do that manually so we can get down to a legal type.
4496   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4497          TargetLowering::TypeSplitVector) {
4498     SDValue Lo, Hi;
4499     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4500     VecEVT = Lo.getValueType();
4501     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4502   }
4503 
4504   // TODO: The type may need to be widened rather than split. Or widened before
4505   // it can be split.
4506   if (!isTypeLegal(VecEVT))
4507     return SDValue();
4508 
4509   MVT VecVT = VecEVT.getSimpleVT();
4510   MVT VecEltVT = VecVT.getVectorElementType();
4511   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4512 
4513   MVT ContainerVT = VecVT;
4514   if (VecVT.isFixedLengthVector()) {
4515     ContainerVT = getContainerForFixedLengthVector(VecVT);
4516     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4517   }
4518 
4519   MVT M1VT = getLMUL1VT(ContainerVT);
4520   MVT XLenVT = Subtarget.getXLenVT();
4521 
4522   SDValue Mask, VL;
4523   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4524 
4525   SDValue NeutralElem =
4526       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4527   SDValue IdentitySplat = lowerScalarSplat(
4528       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4529   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4530                                   IdentitySplat, Mask, VL);
4531   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4532                              DAG.getConstant(0, DL, XLenVT));
4533   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4534 }
4535 
4536 // Given a reduction op, this function returns the matching reduction opcode,
4537 // the vector SDValue and the scalar SDValue required to lower this to a
4538 // RISCVISD node.
4539 static std::tuple<unsigned, SDValue, SDValue>
4540 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4541   SDLoc DL(Op);
4542   auto Flags = Op->getFlags();
4543   unsigned Opcode = Op.getOpcode();
4544   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4545   switch (Opcode) {
4546   default:
4547     llvm_unreachable("Unhandled reduction");
4548   case ISD::VECREDUCE_FADD: {
4549     // Use positive zero if we can. It is cheaper to materialize.
4550     SDValue Zero =
4551         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4552     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4553   }
4554   case ISD::VECREDUCE_SEQ_FADD:
4555     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4556                            Op.getOperand(0));
4557   case ISD::VECREDUCE_FMIN:
4558     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4559                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4560   case ISD::VECREDUCE_FMAX:
4561     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4562                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4563   }
4564 }
4565 
4566 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4567                                               SelectionDAG &DAG) const {
4568   SDLoc DL(Op);
4569   MVT VecEltVT = Op.getSimpleValueType();
4570 
4571   unsigned RVVOpcode;
4572   SDValue VectorVal, ScalarVal;
4573   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4574       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4575   MVT VecVT = VectorVal.getSimpleValueType();
4576 
4577   MVT ContainerVT = VecVT;
4578   if (VecVT.isFixedLengthVector()) {
4579     ContainerVT = getContainerForFixedLengthVector(VecVT);
4580     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4581   }
4582 
4583   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4584   MVT XLenVT = Subtarget.getXLenVT();
4585 
4586   SDValue Mask, VL;
4587   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4588 
4589   SDValue ScalarSplat = lowerScalarSplat(
4590       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4591   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4592                                   VectorVal, ScalarSplat, Mask, VL);
4593   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4594                      DAG.getConstant(0, DL, XLenVT));
4595 }
4596 
4597 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4598   switch (ISDOpcode) {
4599   default:
4600     llvm_unreachable("Unhandled reduction");
4601   case ISD::VP_REDUCE_ADD:
4602     return RISCVISD::VECREDUCE_ADD_VL;
4603   case ISD::VP_REDUCE_UMAX:
4604     return RISCVISD::VECREDUCE_UMAX_VL;
4605   case ISD::VP_REDUCE_SMAX:
4606     return RISCVISD::VECREDUCE_SMAX_VL;
4607   case ISD::VP_REDUCE_UMIN:
4608     return RISCVISD::VECREDUCE_UMIN_VL;
4609   case ISD::VP_REDUCE_SMIN:
4610     return RISCVISD::VECREDUCE_SMIN_VL;
4611   case ISD::VP_REDUCE_AND:
4612     return RISCVISD::VECREDUCE_AND_VL;
4613   case ISD::VP_REDUCE_OR:
4614     return RISCVISD::VECREDUCE_OR_VL;
4615   case ISD::VP_REDUCE_XOR:
4616     return RISCVISD::VECREDUCE_XOR_VL;
4617   case ISD::VP_REDUCE_FADD:
4618     return RISCVISD::VECREDUCE_FADD_VL;
4619   case ISD::VP_REDUCE_SEQ_FADD:
4620     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4621   case ISD::VP_REDUCE_FMAX:
4622     return RISCVISD::VECREDUCE_FMAX_VL;
4623   case ISD::VP_REDUCE_FMIN:
4624     return RISCVISD::VECREDUCE_FMIN_VL;
4625   }
4626 }
4627 
4628 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4629                                            SelectionDAG &DAG) const {
4630   SDLoc DL(Op);
4631   SDValue Vec = Op.getOperand(1);
4632   EVT VecEVT = Vec.getValueType();
4633 
4634   // TODO: The type may need to be widened rather than split. Or widened before
4635   // it can be split.
4636   if (!isTypeLegal(VecEVT))
4637     return SDValue();
4638 
4639   MVT VecVT = VecEVT.getSimpleVT();
4640   MVT VecEltVT = VecVT.getVectorElementType();
4641   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4642 
4643   MVT ContainerVT = VecVT;
4644   if (VecVT.isFixedLengthVector()) {
4645     ContainerVT = getContainerForFixedLengthVector(VecVT);
4646     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4647   }
4648 
4649   SDValue VL = Op.getOperand(3);
4650   SDValue Mask = Op.getOperand(2);
4651 
4652   MVT M1VT = getLMUL1VT(ContainerVT);
4653   MVT XLenVT = Subtarget.getXLenVT();
4654   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4655 
4656   SDValue StartSplat =
4657       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
4658                        DL, DAG, Subtarget);
4659   SDValue Reduction =
4660       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4661   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4662                              DAG.getConstant(0, DL, XLenVT));
4663   if (!VecVT.isInteger())
4664     return Elt0;
4665   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4666 }
4667 
4668 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4669                                                    SelectionDAG &DAG) const {
4670   SDValue Vec = Op.getOperand(0);
4671   SDValue SubVec = Op.getOperand(1);
4672   MVT VecVT = Vec.getSimpleValueType();
4673   MVT SubVecVT = SubVec.getSimpleValueType();
4674 
4675   SDLoc DL(Op);
4676   MVT XLenVT = Subtarget.getXLenVT();
4677   unsigned OrigIdx = Op.getConstantOperandVal(2);
4678   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4679 
4680   // We don't have the ability to slide mask vectors up indexed by their i1
4681   // elements; the smallest we can do is i8. Often we are able to bitcast to
4682   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4683   // into a scalable one, we might not necessarily have enough scalable
4684   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4685   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4686       (OrigIdx != 0 || !Vec.isUndef())) {
4687     if (VecVT.getVectorMinNumElements() >= 8 &&
4688         SubVecVT.getVectorMinNumElements() >= 8) {
4689       assert(OrigIdx % 8 == 0 && "Invalid index");
4690       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4691              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4692              "Unexpected mask vector lowering");
4693       OrigIdx /= 8;
4694       SubVecVT =
4695           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4696                            SubVecVT.isScalableVector());
4697       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4698                                VecVT.isScalableVector());
4699       Vec = DAG.getBitcast(VecVT, Vec);
4700       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4701     } else {
4702       // We can't slide this mask vector up indexed by its i1 elements.
4703       // This poses a problem when we wish to insert a scalable vector which
4704       // can't be re-expressed as a larger type. Just choose the slow path and
4705       // extend to a larger type, then truncate back down.
4706       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4707       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4708       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4709       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4710       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4711                         Op.getOperand(2));
4712       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4713       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4714     }
4715   }
4716 
4717   // If the subvector vector is a fixed-length type, we cannot use subregister
4718   // manipulation to simplify the codegen; we don't know which register of a
4719   // LMUL group contains the specific subvector as we only know the minimum
4720   // register size. Therefore we must slide the vector group up the full
4721   // amount.
4722   if (SubVecVT.isFixedLengthVector()) {
4723     if (OrigIdx == 0 && Vec.isUndef())
4724       return Op;
4725     MVT ContainerVT = VecVT;
4726     if (VecVT.isFixedLengthVector()) {
4727       ContainerVT = getContainerForFixedLengthVector(VecVT);
4728       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4729     }
4730     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4731                          DAG.getUNDEF(ContainerVT), SubVec,
4732                          DAG.getConstant(0, DL, XLenVT));
4733     SDValue Mask =
4734         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4735     // Set the vector length to only the number of elements we care about. Note
4736     // that for slideup this includes the offset.
4737     SDValue VL =
4738         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4739     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4740     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4741                                   SubVec, SlideupAmt, Mask, VL);
4742     if (VecVT.isFixedLengthVector())
4743       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4744     return DAG.getBitcast(Op.getValueType(), Slideup);
4745   }
4746 
4747   unsigned SubRegIdx, RemIdx;
4748   std::tie(SubRegIdx, RemIdx) =
4749       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4750           VecVT, SubVecVT, OrigIdx, TRI);
4751 
4752   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4753   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4754                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4755                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4756 
4757   // 1. If the Idx has been completely eliminated and this subvector's size is
4758   // a vector register or a multiple thereof, or the surrounding elements are
4759   // undef, then this is a subvector insert which naturally aligns to a vector
4760   // register. These can easily be handled using subregister manipulation.
4761   // 2. If the subvector is smaller than a vector register, then the insertion
4762   // must preserve the undisturbed elements of the register. We do this by
4763   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4764   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4765   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4766   // LMUL=1 type back into the larger vector (resolving to another subregister
4767   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4768   // to avoid allocating a large register group to hold our subvector.
4769   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4770     return Op;
4771 
4772   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4773   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4774   // (in our case undisturbed). This means we can set up a subvector insertion
4775   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4776   // size of the subvector.
4777   MVT InterSubVT = VecVT;
4778   SDValue AlignedExtract = Vec;
4779   unsigned AlignedIdx = OrigIdx - RemIdx;
4780   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4781     InterSubVT = getLMUL1VT(VecVT);
4782     // Extract a subvector equal to the nearest full vector register type. This
4783     // should resolve to a EXTRACT_SUBREG instruction.
4784     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4785                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4786   }
4787 
4788   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4789   // For scalable vectors this must be further multiplied by vscale.
4790   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4791 
4792   SDValue Mask, VL;
4793   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4794 
4795   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4796   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4797   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4798   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4799 
4800   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4801                        DAG.getUNDEF(InterSubVT), SubVec,
4802                        DAG.getConstant(0, DL, XLenVT));
4803 
4804   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4805                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4806 
4807   // If required, insert this subvector back into the correct vector register.
4808   // This should resolve to an INSERT_SUBREG instruction.
4809   if (VecVT.bitsGT(InterSubVT))
4810     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4811                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4812 
4813   // We might have bitcast from a mask type: cast back to the original type if
4814   // required.
4815   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4816 }
4817 
4818 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4819                                                     SelectionDAG &DAG) const {
4820   SDValue Vec = Op.getOperand(0);
4821   MVT SubVecVT = Op.getSimpleValueType();
4822   MVT VecVT = Vec.getSimpleValueType();
4823 
4824   SDLoc DL(Op);
4825   MVT XLenVT = Subtarget.getXLenVT();
4826   unsigned OrigIdx = Op.getConstantOperandVal(1);
4827   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4828 
4829   // We don't have the ability to slide mask vectors down indexed by their i1
4830   // elements; the smallest we can do is i8. Often we are able to bitcast to
4831   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4832   // from a scalable one, we might not necessarily have enough scalable
4833   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4834   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4835     if (VecVT.getVectorMinNumElements() >= 8 &&
4836         SubVecVT.getVectorMinNumElements() >= 8) {
4837       assert(OrigIdx % 8 == 0 && "Invalid index");
4838       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4839              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4840              "Unexpected mask vector lowering");
4841       OrigIdx /= 8;
4842       SubVecVT =
4843           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4844                            SubVecVT.isScalableVector());
4845       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4846                                VecVT.isScalableVector());
4847       Vec = DAG.getBitcast(VecVT, Vec);
4848     } else {
4849       // We can't slide this mask vector down, indexed by its i1 elements.
4850       // This poses a problem when we wish to extract a scalable vector which
4851       // can't be re-expressed as a larger type. Just choose the slow path and
4852       // extend to a larger type, then truncate back down.
4853       // TODO: We could probably improve this when extracting certain fixed
4854       // from fixed, where we can extract as i8 and shift the correct element
4855       // right to reach the desired subvector?
4856       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4857       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4858       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4859       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4860                         Op.getOperand(1));
4861       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4862       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4863     }
4864   }
4865 
4866   // If the subvector vector is a fixed-length type, we cannot use subregister
4867   // manipulation to simplify the codegen; we don't know which register of a
4868   // LMUL group contains the specific subvector as we only know the minimum
4869   // register size. Therefore we must slide the vector group down the full
4870   // amount.
4871   if (SubVecVT.isFixedLengthVector()) {
4872     // With an index of 0 this is a cast-like subvector, which can be performed
4873     // with subregister operations.
4874     if (OrigIdx == 0)
4875       return Op;
4876     MVT ContainerVT = VecVT;
4877     if (VecVT.isFixedLengthVector()) {
4878       ContainerVT = getContainerForFixedLengthVector(VecVT);
4879       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4880     }
4881     SDValue Mask =
4882         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4883     // Set the vector length to only the number of elements we care about. This
4884     // avoids sliding down elements we're going to discard straight away.
4885     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4886     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4887     SDValue Slidedown =
4888         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4889                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4890     // Now we can use a cast-like subvector extract to get the result.
4891     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4892                             DAG.getConstant(0, DL, XLenVT));
4893     return DAG.getBitcast(Op.getValueType(), Slidedown);
4894   }
4895 
4896   unsigned SubRegIdx, RemIdx;
4897   std::tie(SubRegIdx, RemIdx) =
4898       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4899           VecVT, SubVecVT, OrigIdx, TRI);
4900 
4901   // If the Idx has been completely eliminated then this is a subvector extract
4902   // which naturally aligns to a vector register. These can easily be handled
4903   // using subregister manipulation.
4904   if (RemIdx == 0)
4905     return Op;
4906 
4907   // Else we must shift our vector register directly to extract the subvector.
4908   // Do this using VSLIDEDOWN.
4909 
4910   // If the vector type is an LMUL-group type, extract a subvector equal to the
4911   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4912   // instruction.
4913   MVT InterSubVT = VecVT;
4914   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4915     InterSubVT = getLMUL1VT(VecVT);
4916     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4917                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4918   }
4919 
4920   // Slide this vector register down by the desired number of elements in order
4921   // to place the desired subvector starting at element 0.
4922   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4923   // For scalable vectors this must be further multiplied by vscale.
4924   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4925 
4926   SDValue Mask, VL;
4927   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4928   SDValue Slidedown =
4929       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4930                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4931 
4932   // Now the vector is in the right position, extract our final subvector. This
4933   // should resolve to a COPY.
4934   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4935                           DAG.getConstant(0, DL, XLenVT));
4936 
4937   // We might have bitcast from a mask type: cast back to the original type if
4938   // required.
4939   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4940 }
4941 
4942 // Lower step_vector to the vid instruction. Any non-identity step value must
4943 // be accounted for my manual expansion.
4944 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4945                                               SelectionDAG &DAG) const {
4946   SDLoc DL(Op);
4947   MVT VT = Op.getSimpleValueType();
4948   MVT XLenVT = Subtarget.getXLenVT();
4949   SDValue Mask, VL;
4950   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4951   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4952   uint64_t StepValImm = Op.getConstantOperandVal(0);
4953   if (StepValImm != 1) {
4954     if (isPowerOf2_64(StepValImm)) {
4955       SDValue StepVal =
4956           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4957                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4958       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4959     } else {
4960       SDValue StepVal = lowerScalarSplat(
4961           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4962           DL, DAG, Subtarget);
4963       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4964     }
4965   }
4966   return StepVec;
4967 }
4968 
4969 // Implement vector_reverse using vrgather.vv with indices determined by
4970 // subtracting the id of each element from (VLMAX-1). This will convert
4971 // the indices like so:
4972 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4973 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4974 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4975                                                  SelectionDAG &DAG) const {
4976   SDLoc DL(Op);
4977   MVT VecVT = Op.getSimpleValueType();
4978   unsigned EltSize = VecVT.getScalarSizeInBits();
4979   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4980 
4981   unsigned MaxVLMAX = 0;
4982   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4983   if (VectorBitsMax != 0)
4984     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4985 
4986   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4987   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4988 
4989   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4990   // to use vrgatherei16.vv.
4991   // TODO: It's also possible to use vrgatherei16.vv for other types to
4992   // decrease register width for the index calculation.
4993   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4994     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4995     // Reverse each half, then reassemble them in reverse order.
4996     // NOTE: It's also possible that after splitting that VLMAX no longer
4997     // requires vrgatherei16.vv.
4998     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4999       SDValue Lo, Hi;
5000       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5001       EVT LoVT, HiVT;
5002       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5003       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5004       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5005       // Reassemble the low and high pieces reversed.
5006       // FIXME: This is a CONCAT_VECTORS.
5007       SDValue Res =
5008           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5009                       DAG.getIntPtrConstant(0, DL));
5010       return DAG.getNode(
5011           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5012           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5013     }
5014 
5015     // Just promote the int type to i16 which will double the LMUL.
5016     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5017     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5018   }
5019 
5020   MVT XLenVT = Subtarget.getXLenVT();
5021   SDValue Mask, VL;
5022   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5023 
5024   // Calculate VLMAX-1 for the desired SEW.
5025   unsigned MinElts = VecVT.getVectorMinNumElements();
5026   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5027                               DAG.getConstant(MinElts, DL, XLenVT));
5028   SDValue VLMinus1 =
5029       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5030 
5031   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5032   bool IsRV32E64 =
5033       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5034   SDValue SplatVL;
5035   if (!IsRV32E64)
5036     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5037   else
5038     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5039 
5040   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5041   SDValue Indices =
5042       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5043 
5044   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5045 }
5046 
5047 SDValue
5048 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5049                                                      SelectionDAG &DAG) const {
5050   SDLoc DL(Op);
5051   auto *Load = cast<LoadSDNode>(Op);
5052 
5053   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5054                                         Load->getMemoryVT(),
5055                                         *Load->getMemOperand()) &&
5056          "Expecting a correctly-aligned load");
5057 
5058   MVT VT = Op.getSimpleValueType();
5059   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5060 
5061   SDValue VL =
5062       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5063 
5064   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5065   SDValue NewLoad = DAG.getMemIntrinsicNode(
5066       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5067       Load->getMemoryVT(), Load->getMemOperand());
5068 
5069   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5070   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5071 }
5072 
5073 SDValue
5074 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5075                                                       SelectionDAG &DAG) const {
5076   SDLoc DL(Op);
5077   auto *Store = cast<StoreSDNode>(Op);
5078 
5079   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5080                                         Store->getMemoryVT(),
5081                                         *Store->getMemOperand()) &&
5082          "Expecting a correctly-aligned store");
5083 
5084   SDValue StoreVal = Store->getValue();
5085   MVT VT = StoreVal.getSimpleValueType();
5086 
5087   // If the size less than a byte, we need to pad with zeros to make a byte.
5088   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5089     VT = MVT::v8i1;
5090     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5091                            DAG.getConstant(0, DL, VT), StoreVal,
5092                            DAG.getIntPtrConstant(0, DL));
5093   }
5094 
5095   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5096 
5097   SDValue VL =
5098       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5099 
5100   SDValue NewValue =
5101       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5102   return DAG.getMemIntrinsicNode(
5103       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5104       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5105       Store->getMemoryVT(), Store->getMemOperand());
5106 }
5107 
5108 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5109                                              SelectionDAG &DAG) const {
5110   SDLoc DL(Op);
5111   MVT VT = Op.getSimpleValueType();
5112 
5113   const auto *MemSD = cast<MemSDNode>(Op);
5114   EVT MemVT = MemSD->getMemoryVT();
5115   MachineMemOperand *MMO = MemSD->getMemOperand();
5116   SDValue Chain = MemSD->getChain();
5117   SDValue BasePtr = MemSD->getBasePtr();
5118 
5119   SDValue Mask, PassThru, VL;
5120   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5121     Mask = VPLoad->getMask();
5122     PassThru = DAG.getUNDEF(VT);
5123     VL = VPLoad->getVectorLength();
5124   } else {
5125     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5126     Mask = MLoad->getMask();
5127     PassThru = MLoad->getPassThru();
5128   }
5129 
5130   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5131 
5132   MVT XLenVT = Subtarget.getXLenVT();
5133 
5134   MVT ContainerVT = VT;
5135   if (VT.isFixedLengthVector()) {
5136     ContainerVT = getContainerForFixedLengthVector(VT);
5137     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5138     if (!IsUnmasked) {
5139       MVT MaskVT =
5140           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5141       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5142     }
5143   }
5144 
5145   if (!VL)
5146     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5147 
5148   unsigned IntID =
5149       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5150   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5151   if (!IsUnmasked)
5152     Ops.push_back(PassThru);
5153   Ops.push_back(BasePtr);
5154   if (!IsUnmasked)
5155     Ops.push_back(Mask);
5156   Ops.push_back(VL);
5157   if (!IsUnmasked)
5158     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5159 
5160   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5161 
5162   SDValue Result =
5163       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5164   Chain = Result.getValue(1);
5165 
5166   if (VT.isFixedLengthVector())
5167     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5168 
5169   return DAG.getMergeValues({Result, Chain}, DL);
5170 }
5171 
5172 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5173                                               SelectionDAG &DAG) const {
5174   SDLoc DL(Op);
5175 
5176   const auto *MemSD = cast<MemSDNode>(Op);
5177   EVT MemVT = MemSD->getMemoryVT();
5178   MachineMemOperand *MMO = MemSD->getMemOperand();
5179   SDValue Chain = MemSD->getChain();
5180   SDValue BasePtr = MemSD->getBasePtr();
5181   SDValue Val, Mask, VL;
5182 
5183   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5184     Val = VPStore->getValue();
5185     Mask = VPStore->getMask();
5186     VL = VPStore->getVectorLength();
5187   } else {
5188     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5189     Val = MStore->getValue();
5190     Mask = MStore->getMask();
5191   }
5192 
5193   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5194 
5195   MVT VT = Val.getSimpleValueType();
5196   MVT XLenVT = Subtarget.getXLenVT();
5197 
5198   MVT ContainerVT = VT;
5199   if (VT.isFixedLengthVector()) {
5200     ContainerVT = getContainerForFixedLengthVector(VT);
5201 
5202     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5203     if (!IsUnmasked) {
5204       MVT MaskVT =
5205           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5206       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5207     }
5208   }
5209 
5210   if (!VL)
5211     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5212 
5213   unsigned IntID =
5214       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5215   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5216   Ops.push_back(Val);
5217   Ops.push_back(BasePtr);
5218   if (!IsUnmasked)
5219     Ops.push_back(Mask);
5220   Ops.push_back(VL);
5221 
5222   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5223                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5224 }
5225 
5226 SDValue
5227 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5228                                                       SelectionDAG &DAG) const {
5229   MVT InVT = Op.getOperand(0).getSimpleValueType();
5230   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5231 
5232   MVT VT = Op.getSimpleValueType();
5233 
5234   SDValue Op1 =
5235       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5236   SDValue Op2 =
5237       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5238 
5239   SDLoc DL(Op);
5240   SDValue VL =
5241       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5242 
5243   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5244   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5245 
5246   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5247                             Op.getOperand(2), Mask, VL);
5248 
5249   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5250 }
5251 
5252 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5253     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5254   MVT VT = Op.getSimpleValueType();
5255 
5256   if (VT.getVectorElementType() == MVT::i1)
5257     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5258 
5259   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5260 }
5261 
5262 SDValue
5263 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5264                                                       SelectionDAG &DAG) const {
5265   unsigned Opc;
5266   switch (Op.getOpcode()) {
5267   default: llvm_unreachable("Unexpected opcode!");
5268   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5269   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5270   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5271   }
5272 
5273   return lowerToScalableOp(Op, DAG, Opc);
5274 }
5275 
5276 // Lower vector ABS to smax(X, sub(0, X)).
5277 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5278   SDLoc DL(Op);
5279   MVT VT = Op.getSimpleValueType();
5280   SDValue X = Op.getOperand(0);
5281 
5282   assert(VT.isFixedLengthVector() && "Unexpected type");
5283 
5284   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5285   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5286 
5287   SDValue Mask, VL;
5288   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5289 
5290   SDValue SplatZero =
5291       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5292                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5293   SDValue NegX =
5294       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5295   SDValue Max =
5296       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5297 
5298   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5299 }
5300 
5301 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5302     SDValue Op, SelectionDAG &DAG) const {
5303   SDLoc DL(Op);
5304   MVT VT = Op.getSimpleValueType();
5305   SDValue Mag = Op.getOperand(0);
5306   SDValue Sign = Op.getOperand(1);
5307   assert(Mag.getValueType() == Sign.getValueType() &&
5308          "Can only handle COPYSIGN with matching types.");
5309 
5310   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5311   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5312   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5313 
5314   SDValue Mask, VL;
5315   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5316 
5317   SDValue CopySign =
5318       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5319 
5320   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5321 }
5322 
5323 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5324     SDValue Op, SelectionDAG &DAG) const {
5325   MVT VT = Op.getSimpleValueType();
5326   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5327 
5328   MVT I1ContainerVT =
5329       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5330 
5331   SDValue CC =
5332       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5333   SDValue Op1 =
5334       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5335   SDValue Op2 =
5336       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5337 
5338   SDLoc DL(Op);
5339   SDValue Mask, VL;
5340   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5341 
5342   SDValue Select =
5343       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5344 
5345   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5346 }
5347 
5348 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5349                                                unsigned NewOpc,
5350                                                bool HasMask) const {
5351   MVT VT = Op.getSimpleValueType();
5352   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5353 
5354   // Create list of operands by converting existing ones to scalable types.
5355   SmallVector<SDValue, 6> Ops;
5356   for (const SDValue &V : Op->op_values()) {
5357     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5358 
5359     // Pass through non-vector operands.
5360     if (!V.getValueType().isVector()) {
5361       Ops.push_back(V);
5362       continue;
5363     }
5364 
5365     // "cast" fixed length vector to a scalable vector.
5366     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5367            "Only fixed length vectors are supported!");
5368     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5369   }
5370 
5371   SDLoc DL(Op);
5372   SDValue Mask, VL;
5373   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5374   if (HasMask)
5375     Ops.push_back(Mask);
5376   Ops.push_back(VL);
5377 
5378   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5379   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5380 }
5381 
5382 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5383 // * Operands of each node are assumed to be in the same order.
5384 // * The EVL operand is promoted from i32 to i64 on RV64.
5385 // * Fixed-length vectors are converted to their scalable-vector container
5386 //   types.
5387 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5388                                        unsigned RISCVISDOpc) const {
5389   SDLoc DL(Op);
5390   MVT VT = Op.getSimpleValueType();
5391   SmallVector<SDValue, 4> Ops;
5392 
5393   for (const auto &OpIdx : enumerate(Op->ops())) {
5394     SDValue V = OpIdx.value();
5395     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5396     // Pass through operands which aren't fixed-length vectors.
5397     if (!V.getValueType().isFixedLengthVector()) {
5398       Ops.push_back(V);
5399       continue;
5400     }
5401     // "cast" fixed length vector to a scalable vector.
5402     MVT OpVT = V.getSimpleValueType();
5403     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5404     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5405            "Only fixed length vectors are supported!");
5406     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5407   }
5408 
5409   if (!VT.isFixedLengthVector())
5410     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5411 
5412   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5413 
5414   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5415 
5416   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5417 }
5418 
5419 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5420                                             unsigned MaskOpc,
5421                                             unsigned VecOpc) const {
5422   MVT VT = Op.getSimpleValueType();
5423   if (VT.getVectorElementType() != MVT::i1)
5424     return lowerVPOp(Op, DAG, VecOpc);
5425 
5426   // It is safe to drop mask parameter as masked-off elements are undef.
5427   SDValue Op1 = Op->getOperand(0);
5428   SDValue Op2 = Op->getOperand(1);
5429   SDValue VL = Op->getOperand(3);
5430 
5431   MVT ContainerVT = VT;
5432   const bool IsFixed = VT.isFixedLengthVector();
5433   if (IsFixed) {
5434     ContainerVT = getContainerForFixedLengthVector(VT);
5435     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5436     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5437   }
5438 
5439   SDLoc DL(Op);
5440   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5441   if (!IsFixed)
5442     return Val;
5443   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5444 }
5445 
5446 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5447 // matched to a RVV indexed load. The RVV indexed load instructions only
5448 // support the "unsigned unscaled" addressing mode; indices are implicitly
5449 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5450 // signed or scaled indexing is extended to the XLEN value type and scaled
5451 // accordingly.
5452 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5453                                                SelectionDAG &DAG) const {
5454   SDLoc DL(Op);
5455   MVT VT = Op.getSimpleValueType();
5456 
5457   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5458   EVT MemVT = MemSD->getMemoryVT();
5459   MachineMemOperand *MMO = MemSD->getMemOperand();
5460   SDValue Chain = MemSD->getChain();
5461   SDValue BasePtr = MemSD->getBasePtr();
5462 
5463   ISD::LoadExtType LoadExtType;
5464   SDValue Index, Mask, PassThru, VL;
5465 
5466   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5467     Index = VPGN->getIndex();
5468     Mask = VPGN->getMask();
5469     PassThru = DAG.getUNDEF(VT);
5470     VL = VPGN->getVectorLength();
5471     // VP doesn't support extending loads.
5472     LoadExtType = ISD::NON_EXTLOAD;
5473   } else {
5474     // Else it must be a MGATHER.
5475     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5476     Index = MGN->getIndex();
5477     Mask = MGN->getMask();
5478     PassThru = MGN->getPassThru();
5479     LoadExtType = MGN->getExtensionType();
5480   }
5481 
5482   MVT IndexVT = Index.getSimpleValueType();
5483   MVT XLenVT = Subtarget.getXLenVT();
5484 
5485   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5486          "Unexpected VTs!");
5487   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5488   // Targets have to explicitly opt-in for extending vector loads.
5489   assert(LoadExtType == ISD::NON_EXTLOAD &&
5490          "Unexpected extending MGATHER/VP_GATHER");
5491   (void)LoadExtType;
5492 
5493   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5494   // the selection of the masked intrinsics doesn't do this for us.
5495   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5496 
5497   MVT ContainerVT = VT;
5498   if (VT.isFixedLengthVector()) {
5499     // We need to use the larger of the result and index type to determine the
5500     // scalable type to use so we don't increase LMUL for any operand/result.
5501     if (VT.bitsGE(IndexVT)) {
5502       ContainerVT = getContainerForFixedLengthVector(VT);
5503       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5504                                  ContainerVT.getVectorElementCount());
5505     } else {
5506       IndexVT = getContainerForFixedLengthVector(IndexVT);
5507       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5508                                      IndexVT.getVectorElementCount());
5509     }
5510 
5511     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5512 
5513     if (!IsUnmasked) {
5514       MVT MaskVT =
5515           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5516       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5517       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5518     }
5519   }
5520 
5521   if (!VL)
5522     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5523 
5524   unsigned IntID =
5525       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5526   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5527   if (!IsUnmasked)
5528     Ops.push_back(PassThru);
5529   Ops.push_back(BasePtr);
5530   Ops.push_back(Index);
5531   if (!IsUnmasked)
5532     Ops.push_back(Mask);
5533   Ops.push_back(VL);
5534   if (!IsUnmasked)
5535     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5536 
5537   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5538   SDValue Result =
5539       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5540   Chain = Result.getValue(1);
5541 
5542   if (VT.isFixedLengthVector())
5543     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5544 
5545   return DAG.getMergeValues({Result, Chain}, DL);
5546 }
5547 
5548 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5549 // matched to a RVV indexed store. The RVV indexed store instructions only
5550 // support the "unsigned unscaled" addressing mode; indices are implicitly
5551 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5552 // signed or scaled indexing is extended to the XLEN value type and scaled
5553 // accordingly.
5554 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5555                                                 SelectionDAG &DAG) const {
5556   SDLoc DL(Op);
5557   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5558   EVT MemVT = MemSD->getMemoryVT();
5559   MachineMemOperand *MMO = MemSD->getMemOperand();
5560   SDValue Chain = MemSD->getChain();
5561   SDValue BasePtr = MemSD->getBasePtr();
5562 
5563   bool IsTruncatingStore = false;
5564   SDValue Index, Mask, Val, VL;
5565 
5566   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5567     Index = VPSN->getIndex();
5568     Mask = VPSN->getMask();
5569     Val = VPSN->getValue();
5570     VL = VPSN->getVectorLength();
5571     // VP doesn't support truncating stores.
5572     IsTruncatingStore = false;
5573   } else {
5574     // Else it must be a MSCATTER.
5575     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5576     Index = MSN->getIndex();
5577     Mask = MSN->getMask();
5578     Val = MSN->getValue();
5579     IsTruncatingStore = MSN->isTruncatingStore();
5580   }
5581 
5582   MVT VT = Val.getSimpleValueType();
5583   MVT IndexVT = Index.getSimpleValueType();
5584   MVT XLenVT = Subtarget.getXLenVT();
5585 
5586   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5587          "Unexpected VTs!");
5588   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5589   // Targets have to explicitly opt-in for extending vector loads and
5590   // truncating vector stores.
5591   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5592   (void)IsTruncatingStore;
5593 
5594   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5595   // the selection of the masked intrinsics doesn't do this for us.
5596   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5597 
5598   MVT ContainerVT = VT;
5599   if (VT.isFixedLengthVector()) {
5600     // We need to use the larger of the value and index type to determine the
5601     // scalable type to use so we don't increase LMUL for any operand/result.
5602     if (VT.bitsGE(IndexVT)) {
5603       ContainerVT = getContainerForFixedLengthVector(VT);
5604       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5605                                  ContainerVT.getVectorElementCount());
5606     } else {
5607       IndexVT = getContainerForFixedLengthVector(IndexVT);
5608       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5609                                      IndexVT.getVectorElementCount());
5610     }
5611 
5612     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5613     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5614 
5615     if (!IsUnmasked) {
5616       MVT MaskVT =
5617           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5618       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5619     }
5620   }
5621 
5622   if (!VL)
5623     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5624 
5625   unsigned IntID =
5626       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5627   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5628   Ops.push_back(Val);
5629   Ops.push_back(BasePtr);
5630   Ops.push_back(Index);
5631   if (!IsUnmasked)
5632     Ops.push_back(Mask);
5633   Ops.push_back(VL);
5634 
5635   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5636                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5637 }
5638 
5639 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5640                                                SelectionDAG &DAG) const {
5641   const MVT XLenVT = Subtarget.getXLenVT();
5642   SDLoc DL(Op);
5643   SDValue Chain = Op->getOperand(0);
5644   SDValue SysRegNo = DAG.getTargetConstant(
5645       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5646   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5647   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5648 
5649   // Encoding used for rounding mode in RISCV differs from that used in
5650   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5651   // table, which consists of a sequence of 4-bit fields, each representing
5652   // corresponding FLT_ROUNDS mode.
5653   static const int Table =
5654       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5655       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5656       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5657       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5658       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5659 
5660   SDValue Shift =
5661       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5662   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5663                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5664   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5665                                DAG.getConstant(7, DL, XLenVT));
5666 
5667   return DAG.getMergeValues({Masked, Chain}, DL);
5668 }
5669 
5670 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5671                                                SelectionDAG &DAG) const {
5672   const MVT XLenVT = Subtarget.getXLenVT();
5673   SDLoc DL(Op);
5674   SDValue Chain = Op->getOperand(0);
5675   SDValue RMValue = Op->getOperand(1);
5676   SDValue SysRegNo = DAG.getTargetConstant(
5677       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5678 
5679   // Encoding used for rounding mode in RISCV differs from that used in
5680   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5681   // a table, which consists of a sequence of 4-bit fields, each representing
5682   // corresponding RISCV mode.
5683   static const unsigned Table =
5684       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5685       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5686       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5687       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5688       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5689 
5690   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5691                               DAG.getConstant(2, DL, XLenVT));
5692   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5693                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5694   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5695                         DAG.getConstant(0x7, DL, XLenVT));
5696   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5697                      RMValue);
5698 }
5699 
5700 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5701 // form of the given Opcode.
5702 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5703   switch (Opcode) {
5704   default:
5705     llvm_unreachable("Unexpected opcode");
5706   case ISD::SHL:
5707     return RISCVISD::SLLW;
5708   case ISD::SRA:
5709     return RISCVISD::SRAW;
5710   case ISD::SRL:
5711     return RISCVISD::SRLW;
5712   case ISD::SDIV:
5713     return RISCVISD::DIVW;
5714   case ISD::UDIV:
5715     return RISCVISD::DIVUW;
5716   case ISD::UREM:
5717     return RISCVISD::REMUW;
5718   case ISD::ROTL:
5719     return RISCVISD::ROLW;
5720   case ISD::ROTR:
5721     return RISCVISD::RORW;
5722   case RISCVISD::GREV:
5723     return RISCVISD::GREVW;
5724   case RISCVISD::GORC:
5725     return RISCVISD::GORCW;
5726   }
5727 }
5728 
5729 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5730 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5731 // otherwise be promoted to i64, making it difficult to select the
5732 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5733 // type i8/i16/i32 is lost.
5734 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5735                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5736   SDLoc DL(N);
5737   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5738   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5739   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5740   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5741   // ReplaceNodeResults requires we maintain the same type for the return value.
5742   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5743 }
5744 
5745 // Converts the given 32-bit operation to a i64 operation with signed extension
5746 // semantic to reduce the signed extension instructions.
5747 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5748   SDLoc DL(N);
5749   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5750   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5751   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5752   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5753                                DAG.getValueType(MVT::i32));
5754   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5755 }
5756 
5757 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5758                                              SmallVectorImpl<SDValue> &Results,
5759                                              SelectionDAG &DAG) const {
5760   SDLoc DL(N);
5761   switch (N->getOpcode()) {
5762   default:
5763     llvm_unreachable("Don't know how to custom type legalize this operation!");
5764   case ISD::STRICT_FP_TO_SINT:
5765   case ISD::STRICT_FP_TO_UINT:
5766   case ISD::FP_TO_SINT:
5767   case ISD::FP_TO_UINT: {
5768     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5769            "Unexpected custom legalisation");
5770     bool IsStrict = N->isStrictFPOpcode();
5771     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5772                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5773     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5774     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5775         TargetLowering::TypeSoftenFloat) {
5776       if (!isTypeLegal(Op0.getValueType()))
5777         return;
5778       if (IsStrict) {
5779         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RTZ_RV64
5780                                 : RISCVISD::STRICT_FCVT_WU_RTZ_RV64;
5781         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
5782         SDValue Res = DAG.getNode(Opc, DL, VTs, N->getOperand(0), Op0);
5783         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5784         Results.push_back(Res.getValue(1));
5785         return;
5786       }
5787       unsigned Opc =
5788           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5789       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5790       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5791       return;
5792     }
5793     // If the FP type needs to be softened, emit a library call using the 'si'
5794     // version. If we left it to default legalization we'd end up with 'di'. If
5795     // the FP type doesn't need to be softened just let generic type
5796     // legalization promote the result type.
5797     RTLIB::Libcall LC;
5798     if (IsSigned)
5799       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5800     else
5801       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5802     MakeLibCallOptions CallOptions;
5803     EVT OpVT = Op0.getValueType();
5804     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5805     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5806     SDValue Result;
5807     std::tie(Result, Chain) =
5808         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5809     Results.push_back(Result);
5810     if (IsStrict)
5811       Results.push_back(Chain);
5812     break;
5813   }
5814   case ISD::READCYCLECOUNTER: {
5815     assert(!Subtarget.is64Bit() &&
5816            "READCYCLECOUNTER only has custom type legalization on riscv32");
5817 
5818     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5819     SDValue RCW =
5820         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5821 
5822     Results.push_back(
5823         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5824     Results.push_back(RCW.getValue(2));
5825     break;
5826   }
5827   case ISD::MUL: {
5828     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5829     unsigned XLen = Subtarget.getXLen();
5830     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5831     if (Size > XLen) {
5832       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5833       SDValue LHS = N->getOperand(0);
5834       SDValue RHS = N->getOperand(1);
5835       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5836 
5837       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5838       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5839       // We need exactly one side to be unsigned.
5840       if (LHSIsU == RHSIsU)
5841         return;
5842 
5843       auto MakeMULPair = [&](SDValue S, SDValue U) {
5844         MVT XLenVT = Subtarget.getXLenVT();
5845         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5846         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5847         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5848         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5849         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5850       };
5851 
5852       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5853       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5854 
5855       // The other operand should be signed, but still prefer MULH when
5856       // possible.
5857       if (RHSIsU && LHSIsS && !RHSIsS)
5858         Results.push_back(MakeMULPair(LHS, RHS));
5859       else if (LHSIsU && RHSIsS && !LHSIsS)
5860         Results.push_back(MakeMULPair(RHS, LHS));
5861 
5862       return;
5863     }
5864     LLVM_FALLTHROUGH;
5865   }
5866   case ISD::ADD:
5867   case ISD::SUB:
5868     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5869            "Unexpected custom legalisation");
5870     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5871     break;
5872   case ISD::SHL:
5873   case ISD::SRA:
5874   case ISD::SRL:
5875     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5876            "Unexpected custom legalisation");
5877     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5878       Results.push_back(customLegalizeToWOp(N, DAG));
5879       break;
5880     }
5881 
5882     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5883     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5884     // shift amount.
5885     if (N->getOpcode() == ISD::SHL) {
5886       SDLoc DL(N);
5887       SDValue NewOp0 =
5888           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5889       SDValue NewOp1 =
5890           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5891       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5892       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5893                                    DAG.getValueType(MVT::i32));
5894       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5895     }
5896 
5897     break;
5898   case ISD::ROTL:
5899   case ISD::ROTR:
5900     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5901            "Unexpected custom legalisation");
5902     Results.push_back(customLegalizeToWOp(N, DAG));
5903     break;
5904   case ISD::CTTZ:
5905   case ISD::CTTZ_ZERO_UNDEF:
5906   case ISD::CTLZ:
5907   case ISD::CTLZ_ZERO_UNDEF: {
5908     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5909            "Unexpected custom legalisation");
5910 
5911     SDValue NewOp0 =
5912         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5913     bool IsCTZ =
5914         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5915     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5916     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5917     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5918     return;
5919   }
5920   case ISD::SDIV:
5921   case ISD::UDIV:
5922   case ISD::UREM: {
5923     MVT VT = N->getSimpleValueType(0);
5924     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5925            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5926            "Unexpected custom legalisation");
5927     // Don't promote division/remainder by constant since we should expand those
5928     // to multiply by magic constant.
5929     // FIXME: What if the expansion is disabled for minsize.
5930     if (N->getOperand(1).getOpcode() == ISD::Constant)
5931       return;
5932 
5933     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5934     // the upper 32 bits. For other types we need to sign or zero extend
5935     // based on the opcode.
5936     unsigned ExtOpc = ISD::ANY_EXTEND;
5937     if (VT != MVT::i32)
5938       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5939                                            : ISD::ZERO_EXTEND;
5940 
5941     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5942     break;
5943   }
5944   case ISD::UADDO:
5945   case ISD::USUBO: {
5946     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5947            "Unexpected custom legalisation");
5948     bool IsAdd = N->getOpcode() == ISD::UADDO;
5949     // Create an ADDW or SUBW.
5950     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5951     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5952     SDValue Res =
5953         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5954     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5955                       DAG.getValueType(MVT::i32));
5956 
5957     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5958     // Since the inputs are sign extended from i32, this is equivalent to
5959     // comparing the lower 32 bits.
5960     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5961     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5962                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5963 
5964     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5965     Results.push_back(Overflow);
5966     return;
5967   }
5968   case ISD::UADDSAT:
5969   case ISD::USUBSAT: {
5970     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5971            "Unexpected custom legalisation");
5972     if (Subtarget.hasStdExtZbb()) {
5973       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5974       // sign extend allows overflow of the lower 32 bits to be detected on
5975       // the promoted size.
5976       SDValue LHS =
5977           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5978       SDValue RHS =
5979           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5980       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5981       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5982       return;
5983     }
5984 
5985     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5986     // promotion for UADDO/USUBO.
5987     Results.push_back(expandAddSubSat(N, DAG));
5988     return;
5989   }
5990   case ISD::BITCAST: {
5991     EVT VT = N->getValueType(0);
5992     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5993     SDValue Op0 = N->getOperand(0);
5994     EVT Op0VT = Op0.getValueType();
5995     MVT XLenVT = Subtarget.getXLenVT();
5996     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5997       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5998       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5999     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6000                Subtarget.hasStdExtF()) {
6001       SDValue FPConv =
6002           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6003       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6004     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6005                isTypeLegal(Op0VT)) {
6006       // Custom-legalize bitcasts from fixed-length vector types to illegal
6007       // scalar types in order to improve codegen. Bitcast the vector to a
6008       // one-element vector type whose element type is the same as the result
6009       // type, and extract the first element.
6010       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6011       if (isTypeLegal(BVT)) {
6012         SDValue BVec = DAG.getBitcast(BVT, Op0);
6013         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6014                                       DAG.getConstant(0, DL, XLenVT)));
6015       }
6016     }
6017     break;
6018   }
6019   case RISCVISD::GREV:
6020   case RISCVISD::GORC: {
6021     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6022            "Unexpected custom legalisation");
6023     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6024     // This is similar to customLegalizeToWOp, except that we pass the second
6025     // operand (a TargetConstant) straight through: it is already of type
6026     // XLenVT.
6027     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6028     SDValue NewOp0 =
6029         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6030     SDValue NewOp1 =
6031         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6032     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6033     // ReplaceNodeResults requires we maintain the same type for the return
6034     // value.
6035     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6036     break;
6037   }
6038   case RISCVISD::SHFL: {
6039     // There is no SHFLIW instruction, but we can just promote the operation.
6040     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6041            "Unexpected custom legalisation");
6042     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6043     SDValue NewOp0 =
6044         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6045     SDValue NewOp1 =
6046         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6047     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6048     // ReplaceNodeResults requires we maintain the same type for the return
6049     // value.
6050     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6051     break;
6052   }
6053   case ISD::BSWAP:
6054   case ISD::BITREVERSE: {
6055     MVT VT = N->getSimpleValueType(0);
6056     MVT XLenVT = Subtarget.getXLenVT();
6057     assert((VT == MVT::i8 || VT == MVT::i16 ||
6058             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6059            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6060     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6061     unsigned Imm = VT.getSizeInBits() - 1;
6062     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6063     if (N->getOpcode() == ISD::BSWAP)
6064       Imm &= ~0x7U;
6065     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6066     SDValue GREVI =
6067         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6068     // ReplaceNodeResults requires we maintain the same type for the return
6069     // value.
6070     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6071     break;
6072   }
6073   case ISD::FSHL:
6074   case ISD::FSHR: {
6075     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6076            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6077     SDValue NewOp0 =
6078         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6079     SDValue NewOp1 =
6080         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6081     SDValue NewOp2 =
6082         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6083     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6084     // Mask the shift amount to 5 bits.
6085     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6086                          DAG.getConstant(0x1f, DL, MVT::i64));
6087     unsigned Opc =
6088         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
6089     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
6090     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6091     break;
6092   }
6093   case ISD::EXTRACT_VECTOR_ELT: {
6094     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6095     // type is illegal (currently only vXi64 RV32).
6096     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6097     // transferred to the destination register. We issue two of these from the
6098     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6099     // first element.
6100     SDValue Vec = N->getOperand(0);
6101     SDValue Idx = N->getOperand(1);
6102 
6103     // The vector type hasn't been legalized yet so we can't issue target
6104     // specific nodes if it needs legalization.
6105     // FIXME: We would manually legalize if it's important.
6106     if (!isTypeLegal(Vec.getValueType()))
6107       return;
6108 
6109     MVT VecVT = Vec.getSimpleValueType();
6110 
6111     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6112            VecVT.getVectorElementType() == MVT::i64 &&
6113            "Unexpected EXTRACT_VECTOR_ELT legalization");
6114 
6115     // If this is a fixed vector, we need to convert it to a scalable vector.
6116     MVT ContainerVT = VecVT;
6117     if (VecVT.isFixedLengthVector()) {
6118       ContainerVT = getContainerForFixedLengthVector(VecVT);
6119       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6120     }
6121 
6122     MVT XLenVT = Subtarget.getXLenVT();
6123 
6124     // Use a VL of 1 to avoid processing more elements than we need.
6125     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6126     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6127     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6128 
6129     // Unless the index is known to be 0, we must slide the vector down to get
6130     // the desired element into index 0.
6131     if (!isNullConstant(Idx)) {
6132       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6133                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6134     }
6135 
6136     // Extract the lower XLEN bits of the correct vector element.
6137     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6138 
6139     // To extract the upper XLEN bits of the vector element, shift the first
6140     // element right by 32 bits and re-extract the lower XLEN bits.
6141     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6142                                      DAG.getConstant(32, DL, XLenVT), VL);
6143     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6144                                  ThirtyTwoV, Mask, VL);
6145 
6146     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6147 
6148     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6149     break;
6150   }
6151   case ISD::INTRINSIC_WO_CHAIN: {
6152     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6153     switch (IntNo) {
6154     default:
6155       llvm_unreachable(
6156           "Don't know how to custom type legalize this intrinsic!");
6157     case Intrinsic::riscv_orc_b: {
6158       // Lower to the GORCI encoding for orc.b with the operand extended.
6159       SDValue NewOp =
6160           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6161       // If Zbp is enabled, use GORCIW which will sign extend the result.
6162       unsigned Opc =
6163           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6164       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6165                                 DAG.getConstant(7, DL, MVT::i64));
6166       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6167       return;
6168     }
6169     case Intrinsic::riscv_grev:
6170     case Intrinsic::riscv_gorc: {
6171       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6172              "Unexpected custom legalisation");
6173       SDValue NewOp1 =
6174           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6175       SDValue NewOp2 =
6176           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6177       unsigned Opc =
6178           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6179       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6180       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6181       break;
6182     }
6183     case Intrinsic::riscv_shfl:
6184     case Intrinsic::riscv_unshfl: {
6185       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6186              "Unexpected custom legalisation");
6187       SDValue NewOp1 =
6188           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6189       SDValue NewOp2 =
6190           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6191       unsigned Opc =
6192           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6193       if (isa<ConstantSDNode>(N->getOperand(2))) {
6194         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6195                              DAG.getConstant(0xf, DL, MVT::i64));
6196         Opc =
6197             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6198       }
6199       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6200       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6201       break;
6202     }
6203     case Intrinsic::riscv_bcompress:
6204     case Intrinsic::riscv_bdecompress: {
6205       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6206              "Unexpected custom legalisation");
6207       SDValue NewOp1 =
6208           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6209       SDValue NewOp2 =
6210           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6211       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6212                          ? RISCVISD::BCOMPRESSW
6213                          : RISCVISD::BDECOMPRESSW;
6214       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6215       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6216       break;
6217     }
6218     case Intrinsic::riscv_vmv_x_s: {
6219       EVT VT = N->getValueType(0);
6220       MVT XLenVT = Subtarget.getXLenVT();
6221       if (VT.bitsLT(XLenVT)) {
6222         // Simple case just extract using vmv.x.s and truncate.
6223         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6224                                       Subtarget.getXLenVT(), N->getOperand(1));
6225         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6226         return;
6227       }
6228 
6229       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6230              "Unexpected custom legalization");
6231 
6232       // We need to do the move in two steps.
6233       SDValue Vec = N->getOperand(1);
6234       MVT VecVT = Vec.getSimpleValueType();
6235 
6236       // First extract the lower XLEN bits of the element.
6237       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6238 
6239       // To extract the upper XLEN bits of the vector element, shift the first
6240       // element right by 32 bits and re-extract the lower XLEN bits.
6241       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6242       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6243       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6244       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6245                                        DAG.getConstant(32, DL, XLenVT), VL);
6246       SDValue LShr32 =
6247           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6248       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6249 
6250       Results.push_back(
6251           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6252       break;
6253     }
6254     }
6255     break;
6256   }
6257   case ISD::VECREDUCE_ADD:
6258   case ISD::VECREDUCE_AND:
6259   case ISD::VECREDUCE_OR:
6260   case ISD::VECREDUCE_XOR:
6261   case ISD::VECREDUCE_SMAX:
6262   case ISD::VECREDUCE_UMAX:
6263   case ISD::VECREDUCE_SMIN:
6264   case ISD::VECREDUCE_UMIN:
6265     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6266       Results.push_back(V);
6267     break;
6268   case ISD::VP_REDUCE_ADD:
6269   case ISD::VP_REDUCE_AND:
6270   case ISD::VP_REDUCE_OR:
6271   case ISD::VP_REDUCE_XOR:
6272   case ISD::VP_REDUCE_SMAX:
6273   case ISD::VP_REDUCE_UMAX:
6274   case ISD::VP_REDUCE_SMIN:
6275   case ISD::VP_REDUCE_UMIN:
6276     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6277       Results.push_back(V);
6278     break;
6279   case ISD::FLT_ROUNDS_: {
6280     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6281     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6282     Results.push_back(Res.getValue(0));
6283     Results.push_back(Res.getValue(1));
6284     break;
6285   }
6286   }
6287 }
6288 
6289 // A structure to hold one of the bit-manipulation patterns below. Together, a
6290 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6291 //   (or (and (shl x, 1), 0xAAAAAAAA),
6292 //       (and (srl x, 1), 0x55555555))
6293 struct RISCVBitmanipPat {
6294   SDValue Op;
6295   unsigned ShAmt;
6296   bool IsSHL;
6297 
6298   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6299     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6300   }
6301 };
6302 
6303 // Matches patterns of the form
6304 //   (and (shl x, C2), (C1 << C2))
6305 //   (and (srl x, C2), C1)
6306 //   (shl (and x, C1), C2)
6307 //   (srl (and x, (C1 << C2)), C2)
6308 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6309 // The expected masks for each shift amount are specified in BitmanipMasks where
6310 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6311 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6312 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6313 // XLen is 64.
6314 static Optional<RISCVBitmanipPat>
6315 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6316   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6317          "Unexpected number of masks");
6318   Optional<uint64_t> Mask;
6319   // Optionally consume a mask around the shift operation.
6320   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6321     Mask = Op.getConstantOperandVal(1);
6322     Op = Op.getOperand(0);
6323   }
6324   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6325     return None;
6326   bool IsSHL = Op.getOpcode() == ISD::SHL;
6327 
6328   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6329     return None;
6330   uint64_t ShAmt = Op.getConstantOperandVal(1);
6331 
6332   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6333   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6334     return None;
6335   // If we don't have enough masks for 64 bit, then we must be trying to
6336   // match SHFL so we're only allowed to shift 1/4 of the width.
6337   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6338     return None;
6339 
6340   SDValue Src = Op.getOperand(0);
6341 
6342   // The expected mask is shifted left when the AND is found around SHL
6343   // patterns.
6344   //   ((x >> 1) & 0x55555555)
6345   //   ((x << 1) & 0xAAAAAAAA)
6346   bool SHLExpMask = IsSHL;
6347 
6348   if (!Mask) {
6349     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6350     // the mask is all ones: consume that now.
6351     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6352       Mask = Src.getConstantOperandVal(1);
6353       Src = Src.getOperand(0);
6354       // The expected mask is now in fact shifted left for SRL, so reverse the
6355       // decision.
6356       //   ((x & 0xAAAAAAAA) >> 1)
6357       //   ((x & 0x55555555) << 1)
6358       SHLExpMask = !SHLExpMask;
6359     } else {
6360       // Use a default shifted mask of all-ones if there's no AND, truncated
6361       // down to the expected width. This simplifies the logic later on.
6362       Mask = maskTrailingOnes<uint64_t>(Width);
6363       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6364     }
6365   }
6366 
6367   unsigned MaskIdx = Log2_32(ShAmt);
6368   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6369 
6370   if (SHLExpMask)
6371     ExpMask <<= ShAmt;
6372 
6373   if (Mask != ExpMask)
6374     return None;
6375 
6376   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6377 }
6378 
6379 // Matches any of the following bit-manipulation patterns:
6380 //   (and (shl x, 1), (0x55555555 << 1))
6381 //   (and (srl x, 1), 0x55555555)
6382 //   (shl (and x, 0x55555555), 1)
6383 //   (srl (and x, (0x55555555 << 1)), 1)
6384 // where the shift amount and mask may vary thus:
6385 //   [1]  = 0x55555555 / 0xAAAAAAAA
6386 //   [2]  = 0x33333333 / 0xCCCCCCCC
6387 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6388 //   [8]  = 0x00FF00FF / 0xFF00FF00
6389 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6390 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6391 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6392   // These are the unshifted masks which we use to match bit-manipulation
6393   // patterns. They may be shifted left in certain circumstances.
6394   static const uint64_t BitmanipMasks[] = {
6395       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6396       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6397 
6398   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6399 }
6400 
6401 // Match the following pattern as a GREVI(W) operation
6402 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6403 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6404                                const RISCVSubtarget &Subtarget) {
6405   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6406   EVT VT = Op.getValueType();
6407 
6408   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6409     auto LHS = matchGREVIPat(Op.getOperand(0));
6410     auto RHS = matchGREVIPat(Op.getOperand(1));
6411     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6412       SDLoc DL(Op);
6413       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6414                          DAG.getConstant(LHS->ShAmt, DL, VT));
6415     }
6416   }
6417   return SDValue();
6418 }
6419 
6420 // Matches any the following pattern as a GORCI(W) operation
6421 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6422 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6423 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6424 // Note that with the variant of 3.,
6425 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6426 // the inner pattern will first be matched as GREVI and then the outer
6427 // pattern will be matched to GORC via the first rule above.
6428 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6429 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6430                                const RISCVSubtarget &Subtarget) {
6431   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6432   EVT VT = Op.getValueType();
6433 
6434   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6435     SDLoc DL(Op);
6436     SDValue Op0 = Op.getOperand(0);
6437     SDValue Op1 = Op.getOperand(1);
6438 
6439     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6440       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6441           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6442           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6443         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6444       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6445       if ((Reverse.getOpcode() == ISD::ROTL ||
6446            Reverse.getOpcode() == ISD::ROTR) &&
6447           Reverse.getOperand(0) == X &&
6448           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6449         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6450         if (RotAmt == (VT.getSizeInBits() / 2))
6451           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6452                              DAG.getConstant(RotAmt, DL, VT));
6453       }
6454       return SDValue();
6455     };
6456 
6457     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6458     if (SDValue V = MatchOROfReverse(Op0, Op1))
6459       return V;
6460     if (SDValue V = MatchOROfReverse(Op1, Op0))
6461       return V;
6462 
6463     // OR is commutable so canonicalize its OR operand to the left
6464     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6465       std::swap(Op0, Op1);
6466     if (Op0.getOpcode() != ISD::OR)
6467       return SDValue();
6468     SDValue OrOp0 = Op0.getOperand(0);
6469     SDValue OrOp1 = Op0.getOperand(1);
6470     auto LHS = matchGREVIPat(OrOp0);
6471     // OR is commutable so swap the operands and try again: x might have been
6472     // on the left
6473     if (!LHS) {
6474       std::swap(OrOp0, OrOp1);
6475       LHS = matchGREVIPat(OrOp0);
6476     }
6477     auto RHS = matchGREVIPat(Op1);
6478     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6479       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6480                          DAG.getConstant(LHS->ShAmt, DL, VT));
6481     }
6482   }
6483   return SDValue();
6484 }
6485 
6486 // Matches any of the following bit-manipulation patterns:
6487 //   (and (shl x, 1), (0x22222222 << 1))
6488 //   (and (srl x, 1), 0x22222222)
6489 //   (shl (and x, 0x22222222), 1)
6490 //   (srl (and x, (0x22222222 << 1)), 1)
6491 // where the shift amount and mask may vary thus:
6492 //   [1]  = 0x22222222 / 0x44444444
6493 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6494 //   [4]  = 0x00F000F0 / 0x0F000F00
6495 //   [8]  = 0x0000FF00 / 0x00FF0000
6496 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6497 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6498   // These are the unshifted masks which we use to match bit-manipulation
6499   // patterns. They may be shifted left in certain circumstances.
6500   static const uint64_t BitmanipMasks[] = {
6501       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6502       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6503 
6504   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6505 }
6506 
6507 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6508 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6509                                const RISCVSubtarget &Subtarget) {
6510   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6511   EVT VT = Op.getValueType();
6512 
6513   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6514     return SDValue();
6515 
6516   SDValue Op0 = Op.getOperand(0);
6517   SDValue Op1 = Op.getOperand(1);
6518 
6519   // Or is commutable so canonicalize the second OR to the LHS.
6520   if (Op0.getOpcode() != ISD::OR)
6521     std::swap(Op0, Op1);
6522   if (Op0.getOpcode() != ISD::OR)
6523     return SDValue();
6524 
6525   // We found an inner OR, so our operands are the operands of the inner OR
6526   // and the other operand of the outer OR.
6527   SDValue A = Op0.getOperand(0);
6528   SDValue B = Op0.getOperand(1);
6529   SDValue C = Op1;
6530 
6531   auto Match1 = matchSHFLPat(A);
6532   auto Match2 = matchSHFLPat(B);
6533 
6534   // If neither matched, we failed.
6535   if (!Match1 && !Match2)
6536     return SDValue();
6537 
6538   // We had at least one match. if one failed, try the remaining C operand.
6539   if (!Match1) {
6540     std::swap(A, C);
6541     Match1 = matchSHFLPat(A);
6542     if (!Match1)
6543       return SDValue();
6544   } else if (!Match2) {
6545     std::swap(B, C);
6546     Match2 = matchSHFLPat(B);
6547     if (!Match2)
6548       return SDValue();
6549   }
6550   assert(Match1 && Match2);
6551 
6552   // Make sure our matches pair up.
6553   if (!Match1->formsPairWith(*Match2))
6554     return SDValue();
6555 
6556   // All the remains is to make sure C is an AND with the same input, that masks
6557   // out the bits that are being shuffled.
6558   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6559       C.getOperand(0) != Match1->Op)
6560     return SDValue();
6561 
6562   uint64_t Mask = C.getConstantOperandVal(1);
6563 
6564   static const uint64_t BitmanipMasks[] = {
6565       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6566       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6567   };
6568 
6569   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6570   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6571   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6572 
6573   if (Mask != ExpMask)
6574     return SDValue();
6575 
6576   SDLoc DL(Op);
6577   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6578                      DAG.getConstant(Match1->ShAmt, DL, VT));
6579 }
6580 
6581 // Optimize (add (shl x, c0), (shl y, c1)) ->
6582 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6583 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6584                                   const RISCVSubtarget &Subtarget) {
6585   // Perform this optimization only in the zba extension.
6586   if (!Subtarget.hasStdExtZba())
6587     return SDValue();
6588 
6589   // Skip for vector types and larger types.
6590   EVT VT = N->getValueType(0);
6591   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6592     return SDValue();
6593 
6594   // The two operand nodes must be SHL and have no other use.
6595   SDValue N0 = N->getOperand(0);
6596   SDValue N1 = N->getOperand(1);
6597   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6598       !N0->hasOneUse() || !N1->hasOneUse())
6599     return SDValue();
6600 
6601   // Check c0 and c1.
6602   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6603   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6604   if (!N0C || !N1C)
6605     return SDValue();
6606   int64_t C0 = N0C->getSExtValue();
6607   int64_t C1 = N1C->getSExtValue();
6608   if (C0 <= 0 || C1 <= 0)
6609     return SDValue();
6610 
6611   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6612   int64_t Bits = std::min(C0, C1);
6613   int64_t Diff = std::abs(C0 - C1);
6614   if (Diff != 1 && Diff != 2 && Diff != 3)
6615     return SDValue();
6616 
6617   // Build nodes.
6618   SDLoc DL(N);
6619   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6620   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6621   SDValue NA0 =
6622       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6623   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6624   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6625 }
6626 
6627 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6628 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6629 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6630 // not undo itself, but they are redundant.
6631 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6632   SDValue Src = N->getOperand(0);
6633 
6634   if (Src.getOpcode() != N->getOpcode())
6635     return SDValue();
6636 
6637   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6638       !isa<ConstantSDNode>(Src.getOperand(1)))
6639     return SDValue();
6640 
6641   unsigned ShAmt1 = N->getConstantOperandVal(1);
6642   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6643   Src = Src.getOperand(0);
6644 
6645   unsigned CombinedShAmt;
6646   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6647     CombinedShAmt = ShAmt1 | ShAmt2;
6648   else
6649     CombinedShAmt = ShAmt1 ^ ShAmt2;
6650 
6651   if (CombinedShAmt == 0)
6652     return Src;
6653 
6654   SDLoc DL(N);
6655   return DAG.getNode(
6656       N->getOpcode(), DL, N->getValueType(0), Src,
6657       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6658 }
6659 
6660 // Combine a constant select operand into its use:
6661 //
6662 // (and (select cond, -1, c), x)
6663 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6664 // (or  (select cond, 0, c), x)
6665 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6666 // (xor (select cond, 0, c), x)
6667 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6668 // (add (select cond, 0, c), x)
6669 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6670 // (sub x, (select cond, 0, c))
6671 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6672 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6673                                    SelectionDAG &DAG, bool AllOnes) {
6674   EVT VT = N->getValueType(0);
6675 
6676   // Skip vectors.
6677   if (VT.isVector())
6678     return SDValue();
6679 
6680   if ((Slct.getOpcode() != ISD::SELECT &&
6681        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6682       !Slct.hasOneUse())
6683     return SDValue();
6684 
6685   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6686     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6687   };
6688 
6689   bool SwapSelectOps;
6690   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6691   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6692   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6693   SDValue NonConstantVal;
6694   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6695     SwapSelectOps = false;
6696     NonConstantVal = FalseVal;
6697   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6698     SwapSelectOps = true;
6699     NonConstantVal = TrueVal;
6700   } else
6701     return SDValue();
6702 
6703   // Slct is now know to be the desired identity constant when CC is true.
6704   TrueVal = OtherOp;
6705   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6706   // Unless SwapSelectOps says the condition should be false.
6707   if (SwapSelectOps)
6708     std::swap(TrueVal, FalseVal);
6709 
6710   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6711     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6712                        {Slct.getOperand(0), Slct.getOperand(1),
6713                         Slct.getOperand(2), TrueVal, FalseVal});
6714 
6715   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6716                      {Slct.getOperand(0), TrueVal, FalseVal});
6717 }
6718 
6719 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6720 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6721                                               bool AllOnes) {
6722   SDValue N0 = N->getOperand(0);
6723   SDValue N1 = N->getOperand(1);
6724   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6725     return Result;
6726   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6727     return Result;
6728   return SDValue();
6729 }
6730 
6731 // Transform (add (mul x, c0), c1) ->
6732 //           (add (mul (add x, c1/c0), c0), c1%c0).
6733 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6734 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6735 // to an infinite loop in DAGCombine if transformed.
6736 // Or transform (add (mul x, c0), c1) ->
6737 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6738 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6739 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6740 // lead to an infinite loop in DAGCombine if transformed.
6741 // Or transform (add (mul x, c0), c1) ->
6742 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6743 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6744 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6745 // lead to an infinite loop in DAGCombine if transformed.
6746 // Or transform (add (mul x, c0), c1) ->
6747 //              (mul (add x, c1/c0), c0).
6748 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6749 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6750                                      const RISCVSubtarget &Subtarget) {
6751   // Skip for vector types and larger types.
6752   EVT VT = N->getValueType(0);
6753   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6754     return SDValue();
6755   // The first operand node must be a MUL and has no other use.
6756   SDValue N0 = N->getOperand(0);
6757   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6758     return SDValue();
6759   // Check if c0 and c1 match above conditions.
6760   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6761   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6762   if (!N0C || !N1C)
6763     return SDValue();
6764   int64_t C0 = N0C->getSExtValue();
6765   int64_t C1 = N1C->getSExtValue();
6766   int64_t CA, CB;
6767   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6768     return SDValue();
6769   // Search for proper CA (non-zero) and CB that both are simm12.
6770   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6771       !isInt<12>(C0 * (C1 / C0))) {
6772     CA = C1 / C0;
6773     CB = C1 % C0;
6774   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6775              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6776     CA = C1 / C0 + 1;
6777     CB = C1 % C0 - C0;
6778   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6779              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6780     CA = C1 / C0 - 1;
6781     CB = C1 % C0 + C0;
6782   } else
6783     return SDValue();
6784   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6785   SDLoc DL(N);
6786   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6787                              DAG.getConstant(CA, DL, VT));
6788   SDValue New1 =
6789       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6790   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6791 }
6792 
6793 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6794                                  const RISCVSubtarget &Subtarget) {
6795   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6796     return V;
6797   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6798     return V;
6799   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6800   //      (select lhs, rhs, cc, x, (add x, y))
6801   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6802 }
6803 
6804 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6805   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6806   //      (select lhs, rhs, cc, x, (sub x, y))
6807   SDValue N0 = N->getOperand(0);
6808   SDValue N1 = N->getOperand(1);
6809   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6810 }
6811 
6812 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6813   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6814   //      (select lhs, rhs, cc, x, (and x, y))
6815   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6816 }
6817 
6818 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6819                                 const RISCVSubtarget &Subtarget) {
6820   if (Subtarget.hasStdExtZbp()) {
6821     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6822       return GREV;
6823     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6824       return GORC;
6825     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6826       return SHFL;
6827   }
6828 
6829   // fold (or (select cond, 0, y), x) ->
6830   //      (select cond, x, (or x, y))
6831   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6832 }
6833 
6834 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6835   // fold (xor (select cond, 0, y), x) ->
6836   //      (select cond, x, (xor x, y))
6837   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6838 }
6839 
6840 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6841 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6842 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6843 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6844 // ADDW/SUBW/MULW.
6845 static SDValue performANY_EXTENDCombine(SDNode *N,
6846                                         TargetLowering::DAGCombinerInfo &DCI,
6847                                         const RISCVSubtarget &Subtarget) {
6848   if (!Subtarget.is64Bit())
6849     return SDValue();
6850 
6851   SelectionDAG &DAG = DCI.DAG;
6852 
6853   SDValue Src = N->getOperand(0);
6854   EVT VT = N->getValueType(0);
6855   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6856     return SDValue();
6857 
6858   // The opcode must be one that can implicitly sign_extend.
6859   // FIXME: Additional opcodes.
6860   switch (Src.getOpcode()) {
6861   default:
6862     return SDValue();
6863   case ISD::MUL:
6864     if (!Subtarget.hasStdExtM())
6865       return SDValue();
6866     LLVM_FALLTHROUGH;
6867   case ISD::ADD:
6868   case ISD::SUB:
6869     break;
6870   }
6871 
6872   // Only handle cases where the result is used by a CopyToReg. That likely
6873   // means the value is a liveout of the basic block. This helps prevent
6874   // infinite combine loops like PR51206.
6875   if (none_of(N->uses(),
6876               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6877     return SDValue();
6878 
6879   SmallVector<SDNode *, 4> SetCCs;
6880   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6881                             UE = Src.getNode()->use_end();
6882        UI != UE; ++UI) {
6883     SDNode *User = *UI;
6884     if (User == N)
6885       continue;
6886     if (UI.getUse().getResNo() != Src.getResNo())
6887       continue;
6888     // All i32 setccs are legalized by sign extending operands.
6889     if (User->getOpcode() == ISD::SETCC) {
6890       SetCCs.push_back(User);
6891       continue;
6892     }
6893     // We don't know if we can extend this user.
6894     break;
6895   }
6896 
6897   // If we don't have any SetCCs, this isn't worthwhile.
6898   if (SetCCs.empty())
6899     return SDValue();
6900 
6901   SDLoc DL(N);
6902   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6903   DCI.CombineTo(N, SExt);
6904 
6905   // Promote all the setccs.
6906   for (SDNode *SetCC : SetCCs) {
6907     SmallVector<SDValue, 4> Ops;
6908 
6909     for (unsigned j = 0; j != 2; ++j) {
6910       SDValue SOp = SetCC->getOperand(j);
6911       if (SOp == Src)
6912         Ops.push_back(SExt);
6913       else
6914         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6915     }
6916 
6917     Ops.push_back(SetCC->getOperand(2));
6918     DCI.CombineTo(SetCC,
6919                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6920   }
6921   return SDValue(N, 0);
6922 }
6923 
6924 // Try to form VWMUL or VWMULU.
6925 // FIXME: Support VWMULSU.
6926 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6927                                     SelectionDAG &DAG) {
6928   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6929   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6930   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6931   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6932     return SDValue();
6933 
6934   SDValue Mask = N->getOperand(2);
6935   SDValue VL = N->getOperand(3);
6936 
6937   // Make sure the mask and VL match.
6938   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6939     return SDValue();
6940 
6941   MVT VT = N->getSimpleValueType(0);
6942 
6943   // Determine the narrow size for a widening multiply.
6944   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6945   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6946                                   VT.getVectorElementCount());
6947 
6948   SDLoc DL(N);
6949 
6950   // See if the other operand is the same opcode.
6951   if (Op0.getOpcode() == Op1.getOpcode()) {
6952     if (!Op1.hasOneUse())
6953       return SDValue();
6954 
6955     // Make sure the mask and VL match.
6956     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6957       return SDValue();
6958 
6959     Op1 = Op1.getOperand(0);
6960   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6961     // The operand is a splat of a scalar.
6962 
6963     // The VL must be the same.
6964     if (Op1.getOperand(1) != VL)
6965       return SDValue();
6966 
6967     // Get the scalar value.
6968     Op1 = Op1.getOperand(0);
6969 
6970     // See if have enough sign bits or zero bits in the scalar to use a
6971     // widening multiply by splatting to smaller element size.
6972     unsigned EltBits = VT.getScalarSizeInBits();
6973     unsigned ScalarBits = Op1.getValueSizeInBits();
6974     // Make sure we're getting all element bits from the scalar register.
6975     // FIXME: Support implicit sign extension of vmv.v.x?
6976     if (ScalarBits < EltBits)
6977       return SDValue();
6978 
6979     if (IsSignExt) {
6980       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6981         return SDValue();
6982     } else {
6983       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6984       if (!DAG.MaskedValueIsZero(Op1, Mask))
6985         return SDValue();
6986     }
6987 
6988     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
6989   } else
6990     return SDValue();
6991 
6992   Op0 = Op0.getOperand(0);
6993 
6994   // Re-introduce narrower extends if needed.
6995   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6996   if (Op0.getValueType() != NarrowVT)
6997     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6998   if (Op1.getValueType() != NarrowVT)
6999     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7000 
7001   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7002   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7003 }
7004 
7005 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7006                                                DAGCombinerInfo &DCI) const {
7007   SelectionDAG &DAG = DCI.DAG;
7008 
7009   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7010   // bits are demanded. N will be added to the Worklist if it was not deleted.
7011   // Caller should return SDValue(N, 0) if this returns true.
7012   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7013     SDValue Op = N->getOperand(OpNo);
7014     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7015     if (!SimplifyDemandedBits(Op, Mask, DCI))
7016       return false;
7017 
7018     if (N->getOpcode() != ISD::DELETED_NODE)
7019       DCI.AddToWorklist(N);
7020     return true;
7021   };
7022 
7023   switch (N->getOpcode()) {
7024   default:
7025     break;
7026   case RISCVISD::SplitF64: {
7027     SDValue Op0 = N->getOperand(0);
7028     // If the input to SplitF64 is just BuildPairF64 then the operation is
7029     // redundant. Instead, use BuildPairF64's operands directly.
7030     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7031       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7032 
7033     SDLoc DL(N);
7034 
7035     // It's cheaper to materialise two 32-bit integers than to load a double
7036     // from the constant pool and transfer it to integer registers through the
7037     // stack.
7038     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7039       APInt V = C->getValueAPF().bitcastToAPInt();
7040       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7041       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7042       return DCI.CombineTo(N, Lo, Hi);
7043     }
7044 
7045     // This is a target-specific version of a DAGCombine performed in
7046     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7047     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7048     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7049     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7050         !Op0.getNode()->hasOneUse())
7051       break;
7052     SDValue NewSplitF64 =
7053         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7054                     Op0.getOperand(0));
7055     SDValue Lo = NewSplitF64.getValue(0);
7056     SDValue Hi = NewSplitF64.getValue(1);
7057     APInt SignBit = APInt::getSignMask(32);
7058     if (Op0.getOpcode() == ISD::FNEG) {
7059       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7060                                   DAG.getConstant(SignBit, DL, MVT::i32));
7061       return DCI.CombineTo(N, Lo, NewHi);
7062     }
7063     assert(Op0.getOpcode() == ISD::FABS);
7064     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7065                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7066     return DCI.CombineTo(N, Lo, NewHi);
7067   }
7068   case RISCVISD::SLLW:
7069   case RISCVISD::SRAW:
7070   case RISCVISD::SRLW:
7071   case RISCVISD::ROLW:
7072   case RISCVISD::RORW: {
7073     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7074     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7075         SimplifyDemandedLowBitsHelper(1, 5))
7076       return SDValue(N, 0);
7077     break;
7078   }
7079   case RISCVISD::CLZW:
7080   case RISCVISD::CTZW: {
7081     // Only the lower 32 bits of the first operand are read
7082     if (SimplifyDemandedLowBitsHelper(0, 32))
7083       return SDValue(N, 0);
7084     break;
7085   }
7086   case RISCVISD::FSL:
7087   case RISCVISD::FSR: {
7088     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
7089     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
7090     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7091     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
7092       return SDValue(N, 0);
7093     break;
7094   }
7095   case RISCVISD::FSLW:
7096   case RISCVISD::FSRW: {
7097     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
7098     // read.
7099     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7100         SimplifyDemandedLowBitsHelper(1, 32) ||
7101         SimplifyDemandedLowBitsHelper(2, 6))
7102       return SDValue(N, 0);
7103     break;
7104   }
7105   case RISCVISD::GREV:
7106   case RISCVISD::GORC: {
7107     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7108     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7109     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7110     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7111       return SDValue(N, 0);
7112 
7113     return combineGREVI_GORCI(N, DAG);
7114   }
7115   case RISCVISD::GREVW:
7116   case RISCVISD::GORCW: {
7117     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7118     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7119         SimplifyDemandedLowBitsHelper(1, 5))
7120       return SDValue(N, 0);
7121 
7122     return combineGREVI_GORCI(N, DAG);
7123   }
7124   case RISCVISD::SHFL:
7125   case RISCVISD::UNSHFL: {
7126     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7127     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7128     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7129     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7130       return SDValue(N, 0);
7131 
7132     break;
7133   }
7134   case RISCVISD::SHFLW:
7135   case RISCVISD::UNSHFLW: {
7136     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7137     SDValue LHS = N->getOperand(0);
7138     SDValue RHS = N->getOperand(1);
7139     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7140     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7141     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7142         SimplifyDemandedLowBitsHelper(1, 4))
7143       return SDValue(N, 0);
7144 
7145     break;
7146   }
7147   case RISCVISD::BCOMPRESSW:
7148   case RISCVISD::BDECOMPRESSW: {
7149     // Only the lower 32 bits of LHS and RHS are read.
7150     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7151         SimplifyDemandedLowBitsHelper(1, 32))
7152       return SDValue(N, 0);
7153 
7154     break;
7155   }
7156   case RISCVISD::FMV_X_ANYEXTH:
7157   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7158     SDLoc DL(N);
7159     SDValue Op0 = N->getOperand(0);
7160     MVT VT = N->getSimpleValueType(0);
7161     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7162     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7163     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7164     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7165          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7166         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7167          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7168       assert(Op0.getOperand(0).getValueType() == VT &&
7169              "Unexpected value type!");
7170       return Op0.getOperand(0);
7171     }
7172 
7173     // This is a target-specific version of a DAGCombine performed in
7174     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7175     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7176     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7177     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7178         !Op0.getNode()->hasOneUse())
7179       break;
7180     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7181     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7182     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7183     if (Op0.getOpcode() == ISD::FNEG)
7184       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7185                          DAG.getConstant(SignBit, DL, VT));
7186 
7187     assert(Op0.getOpcode() == ISD::FABS);
7188     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7189                        DAG.getConstant(~SignBit, DL, VT));
7190   }
7191   case ISD::ADD:
7192     return performADDCombine(N, DAG, Subtarget);
7193   case ISD::SUB:
7194     return performSUBCombine(N, DAG);
7195   case ISD::AND:
7196     return performANDCombine(N, DAG);
7197   case ISD::OR:
7198     return performORCombine(N, DAG, Subtarget);
7199   case ISD::XOR:
7200     return performXORCombine(N, DAG);
7201   case ISD::ANY_EXTEND:
7202     return performANY_EXTENDCombine(N, DCI, Subtarget);
7203   case ISD::ZERO_EXTEND:
7204     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7205     // type legalization. This is safe because fp_to_uint produces poison if
7206     // it overflows.
7207     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7208       SDValue Src = N->getOperand(0);
7209       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7210           isTypeLegal(Src.getOperand(0).getValueType()))
7211         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7212                            Src.getOperand(0));
7213       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7214           isTypeLegal(Src.getOperand(1).getValueType())) {
7215         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7216         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7217                                   Src.getOperand(0), Src.getOperand(1));
7218         DCI.CombineTo(N, Res);
7219         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7220         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7221         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7222       }
7223     }
7224     return SDValue();
7225   case RISCVISD::SELECT_CC: {
7226     // Transform
7227     SDValue LHS = N->getOperand(0);
7228     SDValue RHS = N->getOperand(1);
7229     SDValue TrueV = N->getOperand(3);
7230     SDValue FalseV = N->getOperand(4);
7231 
7232     // If the True and False values are the same, we don't need a select_cc.
7233     if (TrueV == FalseV)
7234       return TrueV;
7235 
7236     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7237     if (!ISD::isIntEqualitySetCC(CCVal))
7238       break;
7239 
7240     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7241     //      (select_cc X, Y, lt, trueV, falseV)
7242     // Sometimes the setcc is introduced after select_cc has been formed.
7243     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7244         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7245       // If we're looking for eq 0 instead of ne 0, we need to invert the
7246       // condition.
7247       bool Invert = CCVal == ISD::SETEQ;
7248       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7249       if (Invert)
7250         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7251 
7252       SDLoc DL(N);
7253       RHS = LHS.getOperand(1);
7254       LHS = LHS.getOperand(0);
7255       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7256 
7257       SDValue TargetCC = DAG.getCondCode(CCVal);
7258       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7259                          {LHS, RHS, TargetCC, TrueV, FalseV});
7260     }
7261 
7262     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7263     //      (select_cc X, Y, eq/ne, trueV, falseV)
7264     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7265       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7266                          {LHS.getOperand(0), LHS.getOperand(1),
7267                           N->getOperand(2), TrueV, FalseV});
7268     // (select_cc X, 1, setne, trueV, falseV) ->
7269     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7270     // This can occur when legalizing some floating point comparisons.
7271     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7272     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7273       SDLoc DL(N);
7274       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7275       SDValue TargetCC = DAG.getCondCode(CCVal);
7276       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7277       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7278                          {LHS, RHS, TargetCC, TrueV, FalseV});
7279     }
7280 
7281     break;
7282   }
7283   case RISCVISD::BR_CC: {
7284     SDValue LHS = N->getOperand(1);
7285     SDValue RHS = N->getOperand(2);
7286     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7287     if (!ISD::isIntEqualitySetCC(CCVal))
7288       break;
7289 
7290     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7291     //      (br_cc X, Y, lt, dest)
7292     // Sometimes the setcc is introduced after br_cc has been formed.
7293     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7294         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7295       // If we're looking for eq 0 instead of ne 0, we need to invert the
7296       // condition.
7297       bool Invert = CCVal == ISD::SETEQ;
7298       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7299       if (Invert)
7300         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7301 
7302       SDLoc DL(N);
7303       RHS = LHS.getOperand(1);
7304       LHS = LHS.getOperand(0);
7305       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7306 
7307       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7308                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7309                          N->getOperand(4));
7310     }
7311 
7312     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7313     //      (br_cc X, Y, eq/ne, trueV, falseV)
7314     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7315       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7316                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7317                          N->getOperand(3), N->getOperand(4));
7318 
7319     // (br_cc X, 1, setne, br_cc) ->
7320     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7321     // This can occur when legalizing some floating point comparisons.
7322     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7323     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7324       SDLoc DL(N);
7325       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7326       SDValue TargetCC = DAG.getCondCode(CCVal);
7327       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7328       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7329                          N->getOperand(0), LHS, RHS, TargetCC,
7330                          N->getOperand(4));
7331     }
7332     break;
7333   }
7334   case ISD::FCOPYSIGN: {
7335     EVT VT = N->getValueType(0);
7336     if (!VT.isVector())
7337       break;
7338     // There is a form of VFSGNJ which injects the negated sign of its second
7339     // operand. Try and bubble any FNEG up after the extend/round to produce
7340     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7341     // TRUNC=1.
7342     SDValue In2 = N->getOperand(1);
7343     // Avoid cases where the extend/round has multiple uses, as duplicating
7344     // those is typically more expensive than removing a fneg.
7345     if (!In2.hasOneUse())
7346       break;
7347     if (In2.getOpcode() != ISD::FP_EXTEND &&
7348         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7349       break;
7350     In2 = In2.getOperand(0);
7351     if (In2.getOpcode() != ISD::FNEG)
7352       break;
7353     SDLoc DL(N);
7354     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7355     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7356                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7357   }
7358   case ISD::MGATHER:
7359   case ISD::MSCATTER:
7360   case ISD::VP_GATHER:
7361   case ISD::VP_SCATTER: {
7362     if (!DCI.isBeforeLegalize())
7363       break;
7364     SDValue Index, ScaleOp;
7365     bool IsIndexScaled = false;
7366     bool IsIndexSigned = false;
7367     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7368       Index = VPGSN->getIndex();
7369       ScaleOp = VPGSN->getScale();
7370       IsIndexScaled = VPGSN->isIndexScaled();
7371       IsIndexSigned = VPGSN->isIndexSigned();
7372     } else {
7373       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7374       Index = MGSN->getIndex();
7375       ScaleOp = MGSN->getScale();
7376       IsIndexScaled = MGSN->isIndexScaled();
7377       IsIndexSigned = MGSN->isIndexSigned();
7378     }
7379     EVT IndexVT = Index.getValueType();
7380     MVT XLenVT = Subtarget.getXLenVT();
7381     // RISCV indexed loads only support the "unsigned unscaled" addressing
7382     // mode, so anything else must be manually legalized.
7383     bool NeedsIdxLegalization =
7384         IsIndexScaled ||
7385         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7386     if (!NeedsIdxLegalization)
7387       break;
7388 
7389     SDLoc DL(N);
7390 
7391     // Any index legalization should first promote to XLenVT, so we don't lose
7392     // bits when scaling. This may create an illegal index type so we let
7393     // LLVM's legalization take care of the splitting.
7394     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7395     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7396       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7397       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7398                           DL, IndexVT, Index);
7399     }
7400 
7401     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7402     if (IsIndexScaled && Scale != 1) {
7403       // Manually scale the indices by the element size.
7404       // TODO: Sanitize the scale operand here?
7405       // TODO: For VP nodes, should we use VP_SHL here?
7406       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7407       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7408       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7409     }
7410 
7411     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7412     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7413       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7414                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7415                               VPGN->getScale(), VPGN->getMask(),
7416                               VPGN->getVectorLength()},
7417                              VPGN->getMemOperand(), NewIndexTy);
7418     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7419       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7420                               {VPSN->getChain(), VPSN->getValue(),
7421                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7422                                VPSN->getMask(), VPSN->getVectorLength()},
7423                               VPSN->getMemOperand(), NewIndexTy);
7424     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7425       return DAG.getMaskedGather(
7426           N->getVTList(), MGN->getMemoryVT(), DL,
7427           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7428            MGN->getBasePtr(), Index, MGN->getScale()},
7429           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7430     const auto *MSN = cast<MaskedScatterSDNode>(N);
7431     return DAG.getMaskedScatter(
7432         N->getVTList(), MSN->getMemoryVT(), DL,
7433         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7434          Index, MSN->getScale()},
7435         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7436   }
7437   case RISCVISD::SRA_VL:
7438   case RISCVISD::SRL_VL:
7439   case RISCVISD::SHL_VL: {
7440     SDValue ShAmt = N->getOperand(1);
7441     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7442       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7443       SDLoc DL(N);
7444       SDValue VL = N->getOperand(3);
7445       EVT VT = N->getValueType(0);
7446       ShAmt =
7447           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7448       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7449                          N->getOperand(2), N->getOperand(3));
7450     }
7451     break;
7452   }
7453   case ISD::SRA:
7454   case ISD::SRL:
7455   case ISD::SHL: {
7456     SDValue ShAmt = N->getOperand(1);
7457     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7458       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7459       SDLoc DL(N);
7460       EVT VT = N->getValueType(0);
7461       ShAmt =
7462           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7463       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7464     }
7465     break;
7466   }
7467   case RISCVISD::MUL_VL: {
7468     SDValue Op0 = N->getOperand(0);
7469     SDValue Op1 = N->getOperand(1);
7470     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7471       return V;
7472     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7473       return V;
7474     return SDValue();
7475   }
7476   case ISD::STORE: {
7477     auto *Store = cast<StoreSDNode>(N);
7478     SDValue Val = Store->getValue();
7479     // Combine store of vmv.x.s to vse with VL of 1.
7480     // FIXME: Support FP.
7481     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7482       SDValue Src = Val.getOperand(0);
7483       EVT VecVT = Src.getValueType();
7484       EVT MemVT = Store->getMemoryVT();
7485       // The memory VT and the element type must match.
7486       if (VecVT.getVectorElementType() == MemVT) {
7487         SDLoc DL(N);
7488         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7489         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7490                               DAG.getConstant(1, DL, MaskVT),
7491                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7492                               Store->getPointerInfo(),
7493                               Store->getOriginalAlign(),
7494                               Store->getMemOperand()->getFlags());
7495       }
7496     }
7497 
7498     break;
7499   }
7500   }
7501 
7502   return SDValue();
7503 }
7504 
7505 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7506     const SDNode *N, CombineLevel Level) const {
7507   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7508   // materialised in fewer instructions than `(OP _, c1)`:
7509   //
7510   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7511   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7512   SDValue N0 = N->getOperand(0);
7513   EVT Ty = N0.getValueType();
7514   if (Ty.isScalarInteger() &&
7515       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7516     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7517     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7518     if (C1 && C2) {
7519       const APInt &C1Int = C1->getAPIntValue();
7520       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7521 
7522       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7523       // and the combine should happen, to potentially allow further combines
7524       // later.
7525       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7526           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7527         return true;
7528 
7529       // We can materialise `c1` in an add immediate, so it's "free", and the
7530       // combine should be prevented.
7531       if (C1Int.getMinSignedBits() <= 64 &&
7532           isLegalAddImmediate(C1Int.getSExtValue()))
7533         return false;
7534 
7535       // Neither constant will fit into an immediate, so find materialisation
7536       // costs.
7537       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7538                                               Subtarget.getFeatureBits(),
7539                                               /*CompressionCost*/true);
7540       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7541           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7542           /*CompressionCost*/true);
7543 
7544       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7545       // combine should be prevented.
7546       if (C1Cost < ShiftedC1Cost)
7547         return false;
7548     }
7549   }
7550   return true;
7551 }
7552 
7553 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7554     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7555     TargetLoweringOpt &TLO) const {
7556   // Delay this optimization as late as possible.
7557   if (!TLO.LegalOps)
7558     return false;
7559 
7560   EVT VT = Op.getValueType();
7561   if (VT.isVector())
7562     return false;
7563 
7564   // Only handle AND for now.
7565   if (Op.getOpcode() != ISD::AND)
7566     return false;
7567 
7568   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7569   if (!C)
7570     return false;
7571 
7572   const APInt &Mask = C->getAPIntValue();
7573 
7574   // Clear all non-demanded bits initially.
7575   APInt ShrunkMask = Mask & DemandedBits;
7576 
7577   // Try to make a smaller immediate by setting undemanded bits.
7578 
7579   APInt ExpandedMask = Mask | ~DemandedBits;
7580 
7581   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7582     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7583   };
7584   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7585     if (NewMask == Mask)
7586       return true;
7587     SDLoc DL(Op);
7588     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7589     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7590     return TLO.CombineTo(Op, NewOp);
7591   };
7592 
7593   // If the shrunk mask fits in sign extended 12 bits, let the target
7594   // independent code apply it.
7595   if (ShrunkMask.isSignedIntN(12))
7596     return false;
7597 
7598   // Preserve (and X, 0xffff) when zext.h is supported.
7599   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7600     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7601     if (IsLegalMask(NewMask))
7602       return UseMask(NewMask);
7603   }
7604 
7605   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7606   if (VT == MVT::i64) {
7607     APInt NewMask = APInt(64, 0xffffffff);
7608     if (IsLegalMask(NewMask))
7609       return UseMask(NewMask);
7610   }
7611 
7612   // For the remaining optimizations, we need to be able to make a negative
7613   // number through a combination of mask and undemanded bits.
7614   if (!ExpandedMask.isNegative())
7615     return false;
7616 
7617   // What is the fewest number of bits we need to represent the negative number.
7618   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7619 
7620   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7621   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7622   APInt NewMask = ShrunkMask;
7623   if (MinSignedBits <= 12)
7624     NewMask.setBitsFrom(11);
7625   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7626     NewMask.setBitsFrom(31);
7627   else
7628     return false;
7629 
7630   // Check that our new mask is a subset of the demanded mask.
7631   assert(IsLegalMask(NewMask));
7632   return UseMask(NewMask);
7633 }
7634 
7635 static void computeGREV(APInt &Src, unsigned ShAmt) {
7636   ShAmt &= Src.getBitWidth() - 1;
7637   uint64_t x = Src.getZExtValue();
7638   if (ShAmt & 1)
7639     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7640   if (ShAmt & 2)
7641     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7642   if (ShAmt & 4)
7643     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7644   if (ShAmt & 8)
7645     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7646   if (ShAmt & 16)
7647     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7648   if (ShAmt & 32)
7649     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7650   Src = x;
7651 }
7652 
7653 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7654                                                         KnownBits &Known,
7655                                                         const APInt &DemandedElts,
7656                                                         const SelectionDAG &DAG,
7657                                                         unsigned Depth) const {
7658   unsigned BitWidth = Known.getBitWidth();
7659   unsigned Opc = Op.getOpcode();
7660   assert((Opc >= ISD::BUILTIN_OP_END ||
7661           Opc == ISD::INTRINSIC_WO_CHAIN ||
7662           Opc == ISD::INTRINSIC_W_CHAIN ||
7663           Opc == ISD::INTRINSIC_VOID) &&
7664          "Should use MaskedValueIsZero if you don't know whether Op"
7665          " is a target node!");
7666 
7667   Known.resetAll();
7668   switch (Opc) {
7669   default: break;
7670   case RISCVISD::SELECT_CC: {
7671     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7672     // If we don't know any bits, early out.
7673     if (Known.isUnknown())
7674       break;
7675     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7676 
7677     // Only known if known in both the LHS and RHS.
7678     Known = KnownBits::commonBits(Known, Known2);
7679     break;
7680   }
7681   case RISCVISD::REMUW: {
7682     KnownBits Known2;
7683     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7684     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7685     // We only care about the lower 32 bits.
7686     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7687     // Restore the original width by sign extending.
7688     Known = Known.sext(BitWidth);
7689     break;
7690   }
7691   case RISCVISD::DIVUW: {
7692     KnownBits Known2;
7693     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7694     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7695     // We only care about the lower 32 bits.
7696     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7697     // Restore the original width by sign extending.
7698     Known = Known.sext(BitWidth);
7699     break;
7700   }
7701   case RISCVISD::CTZW: {
7702     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7703     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7704     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7705     Known.Zero.setBitsFrom(LowBits);
7706     break;
7707   }
7708   case RISCVISD::CLZW: {
7709     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7710     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7711     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7712     Known.Zero.setBitsFrom(LowBits);
7713     break;
7714   }
7715   case RISCVISD::GREV:
7716   case RISCVISD::GREVW: {
7717     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7718       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7719       if (Opc == RISCVISD::GREVW)
7720         Known = Known.trunc(32);
7721       unsigned ShAmt = C->getZExtValue();
7722       computeGREV(Known.Zero, ShAmt);
7723       computeGREV(Known.One, ShAmt);
7724       if (Opc == RISCVISD::GREVW)
7725         Known = Known.sext(BitWidth);
7726     }
7727     break;
7728   }
7729   case RISCVISD::READ_VLENB:
7730     // We assume VLENB is at least 16 bytes.
7731     Known.Zero.setLowBits(4);
7732     // We assume VLENB is no more than 65536 / 8 bytes.
7733     Known.Zero.setBitsFrom(14);
7734     break;
7735   case ISD::INTRINSIC_W_CHAIN: {
7736     unsigned IntNo = Op.getConstantOperandVal(1);
7737     switch (IntNo) {
7738     default:
7739       // We can't do anything for most intrinsics.
7740       break;
7741     case Intrinsic::riscv_vsetvli:
7742     case Intrinsic::riscv_vsetvlimax:
7743       // Assume that VL output is positive and would fit in an int32_t.
7744       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7745       if (BitWidth >= 32)
7746         Known.Zero.setBitsFrom(31);
7747       break;
7748     }
7749     break;
7750   }
7751   }
7752 }
7753 
7754 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7755     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7756     unsigned Depth) const {
7757   switch (Op.getOpcode()) {
7758   default:
7759     break;
7760   case RISCVISD::SELECT_CC: {
7761     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7762     if (Tmp == 1) return 1;  // Early out.
7763     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7764     return std::min(Tmp, Tmp2);
7765   }
7766   case RISCVISD::SLLW:
7767   case RISCVISD::SRAW:
7768   case RISCVISD::SRLW:
7769   case RISCVISD::DIVW:
7770   case RISCVISD::DIVUW:
7771   case RISCVISD::REMUW:
7772   case RISCVISD::ROLW:
7773   case RISCVISD::RORW:
7774   case RISCVISD::GREVW:
7775   case RISCVISD::GORCW:
7776   case RISCVISD::FSLW:
7777   case RISCVISD::FSRW:
7778   case RISCVISD::SHFLW:
7779   case RISCVISD::UNSHFLW:
7780   case RISCVISD::BCOMPRESSW:
7781   case RISCVISD::BDECOMPRESSW:
7782   case RISCVISD::FCVT_W_RTZ_RV64:
7783   case RISCVISD::FCVT_WU_RTZ_RV64:
7784   case RISCVISD::STRICT_FCVT_W_RTZ_RV64:
7785   case RISCVISD::STRICT_FCVT_WU_RTZ_RV64:
7786     // TODO: As the result is sign-extended, this is conservatively correct. A
7787     // more precise answer could be calculated for SRAW depending on known
7788     // bits in the shift amount.
7789     return 33;
7790   case RISCVISD::SHFL:
7791   case RISCVISD::UNSHFL: {
7792     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7793     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7794     // will stay within the upper 32 bits. If there were more than 32 sign bits
7795     // before there will be at least 33 sign bits after.
7796     if (Op.getValueType() == MVT::i64 &&
7797         isa<ConstantSDNode>(Op.getOperand(1)) &&
7798         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7799       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7800       if (Tmp > 32)
7801         return 33;
7802     }
7803     break;
7804   }
7805   case RISCVISD::VMV_X_S:
7806     // The number of sign bits of the scalar result is computed by obtaining the
7807     // element type of the input vector operand, subtracting its width from the
7808     // XLEN, and then adding one (sign bit within the element type). If the
7809     // element type is wider than XLen, the least-significant XLEN bits are
7810     // taken.
7811     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7812       return 1;
7813     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7814   }
7815 
7816   return 1;
7817 }
7818 
7819 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7820                                                   MachineBasicBlock *BB) {
7821   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7822 
7823   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7824   // Should the count have wrapped while it was being read, we need to try
7825   // again.
7826   // ...
7827   // read:
7828   // rdcycleh x3 # load high word of cycle
7829   // rdcycle  x2 # load low word of cycle
7830   // rdcycleh x4 # load high word of cycle
7831   // bne x3, x4, read # check if high word reads match, otherwise try again
7832   // ...
7833 
7834   MachineFunction &MF = *BB->getParent();
7835   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7836   MachineFunction::iterator It = ++BB->getIterator();
7837 
7838   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7839   MF.insert(It, LoopMBB);
7840 
7841   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7842   MF.insert(It, DoneMBB);
7843 
7844   // Transfer the remainder of BB and its successor edges to DoneMBB.
7845   DoneMBB->splice(DoneMBB->begin(), BB,
7846                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7847   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7848 
7849   BB->addSuccessor(LoopMBB);
7850 
7851   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7852   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7853   Register LoReg = MI.getOperand(0).getReg();
7854   Register HiReg = MI.getOperand(1).getReg();
7855   DebugLoc DL = MI.getDebugLoc();
7856 
7857   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7858   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7859       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7860       .addReg(RISCV::X0);
7861   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7862       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7863       .addReg(RISCV::X0);
7864   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7865       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7866       .addReg(RISCV::X0);
7867 
7868   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7869       .addReg(HiReg)
7870       .addReg(ReadAgainReg)
7871       .addMBB(LoopMBB);
7872 
7873   LoopMBB->addSuccessor(LoopMBB);
7874   LoopMBB->addSuccessor(DoneMBB);
7875 
7876   MI.eraseFromParent();
7877 
7878   return DoneMBB;
7879 }
7880 
7881 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7882                                              MachineBasicBlock *BB) {
7883   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7884 
7885   MachineFunction &MF = *BB->getParent();
7886   DebugLoc DL = MI.getDebugLoc();
7887   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7888   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7889   Register LoReg = MI.getOperand(0).getReg();
7890   Register HiReg = MI.getOperand(1).getReg();
7891   Register SrcReg = MI.getOperand(2).getReg();
7892   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7893   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7894 
7895   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7896                           RI);
7897   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7898   MachineMemOperand *MMOLo =
7899       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7900   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7901       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7902   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7903       .addFrameIndex(FI)
7904       .addImm(0)
7905       .addMemOperand(MMOLo);
7906   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7907       .addFrameIndex(FI)
7908       .addImm(4)
7909       .addMemOperand(MMOHi);
7910   MI.eraseFromParent(); // The pseudo instruction is gone now.
7911   return BB;
7912 }
7913 
7914 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7915                                                  MachineBasicBlock *BB) {
7916   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7917          "Unexpected instruction");
7918 
7919   MachineFunction &MF = *BB->getParent();
7920   DebugLoc DL = MI.getDebugLoc();
7921   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7922   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7923   Register DstReg = MI.getOperand(0).getReg();
7924   Register LoReg = MI.getOperand(1).getReg();
7925   Register HiReg = MI.getOperand(2).getReg();
7926   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7927   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7928 
7929   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7930   MachineMemOperand *MMOLo =
7931       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7932   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7933       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7934   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7935       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7936       .addFrameIndex(FI)
7937       .addImm(0)
7938       .addMemOperand(MMOLo);
7939   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7940       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7941       .addFrameIndex(FI)
7942       .addImm(4)
7943       .addMemOperand(MMOHi);
7944   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7945   MI.eraseFromParent(); // The pseudo instruction is gone now.
7946   return BB;
7947 }
7948 
7949 static bool isSelectPseudo(MachineInstr &MI) {
7950   switch (MI.getOpcode()) {
7951   default:
7952     return false;
7953   case RISCV::Select_GPR_Using_CC_GPR:
7954   case RISCV::Select_FPR16_Using_CC_GPR:
7955   case RISCV::Select_FPR32_Using_CC_GPR:
7956   case RISCV::Select_FPR64_Using_CC_GPR:
7957     return true;
7958   }
7959 }
7960 
7961 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7962                                            MachineBasicBlock *BB,
7963                                            const RISCVSubtarget &Subtarget) {
7964   // To "insert" Select_* instructions, we actually have to insert the triangle
7965   // control-flow pattern.  The incoming instructions know the destination vreg
7966   // to set, the condition code register to branch on, the true/false values to
7967   // select between, and the condcode to use to select the appropriate branch.
7968   //
7969   // We produce the following control flow:
7970   //     HeadMBB
7971   //     |  \
7972   //     |  IfFalseMBB
7973   //     | /
7974   //    TailMBB
7975   //
7976   // When we find a sequence of selects we attempt to optimize their emission
7977   // by sharing the control flow. Currently we only handle cases where we have
7978   // multiple selects with the exact same condition (same LHS, RHS and CC).
7979   // The selects may be interleaved with other instructions if the other
7980   // instructions meet some requirements we deem safe:
7981   // - They are debug instructions. Otherwise,
7982   // - They do not have side-effects, do not access memory and their inputs do
7983   //   not depend on the results of the select pseudo-instructions.
7984   // The TrueV/FalseV operands of the selects cannot depend on the result of
7985   // previous selects in the sequence.
7986   // These conditions could be further relaxed. See the X86 target for a
7987   // related approach and more information.
7988   Register LHS = MI.getOperand(1).getReg();
7989   Register RHS = MI.getOperand(2).getReg();
7990   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
7991 
7992   SmallVector<MachineInstr *, 4> SelectDebugValues;
7993   SmallSet<Register, 4> SelectDests;
7994   SelectDests.insert(MI.getOperand(0).getReg());
7995 
7996   MachineInstr *LastSelectPseudo = &MI;
7997 
7998   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
7999        SequenceMBBI != E; ++SequenceMBBI) {
8000     if (SequenceMBBI->isDebugInstr())
8001       continue;
8002     else if (isSelectPseudo(*SequenceMBBI)) {
8003       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8004           SequenceMBBI->getOperand(2).getReg() != RHS ||
8005           SequenceMBBI->getOperand(3).getImm() != CC ||
8006           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8007           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8008         break;
8009       LastSelectPseudo = &*SequenceMBBI;
8010       SequenceMBBI->collectDebugValues(SelectDebugValues);
8011       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8012     } else {
8013       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8014           SequenceMBBI->mayLoadOrStore())
8015         break;
8016       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8017             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8018           }))
8019         break;
8020     }
8021   }
8022 
8023   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8024   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8025   DebugLoc DL = MI.getDebugLoc();
8026   MachineFunction::iterator I = ++BB->getIterator();
8027 
8028   MachineBasicBlock *HeadMBB = BB;
8029   MachineFunction *F = BB->getParent();
8030   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8031   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8032 
8033   F->insert(I, IfFalseMBB);
8034   F->insert(I, TailMBB);
8035 
8036   // Transfer debug instructions associated with the selects to TailMBB.
8037   for (MachineInstr *DebugInstr : SelectDebugValues) {
8038     TailMBB->push_back(DebugInstr->removeFromParent());
8039   }
8040 
8041   // Move all instructions after the sequence to TailMBB.
8042   TailMBB->splice(TailMBB->end(), HeadMBB,
8043                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8044   // Update machine-CFG edges by transferring all successors of the current
8045   // block to the new block which will contain the Phi nodes for the selects.
8046   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8047   // Set the successors for HeadMBB.
8048   HeadMBB->addSuccessor(IfFalseMBB);
8049   HeadMBB->addSuccessor(TailMBB);
8050 
8051   // Insert appropriate branch.
8052   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8053     .addReg(LHS)
8054     .addReg(RHS)
8055     .addMBB(TailMBB);
8056 
8057   // IfFalseMBB just falls through to TailMBB.
8058   IfFalseMBB->addSuccessor(TailMBB);
8059 
8060   // Create PHIs for all of the select pseudo-instructions.
8061   auto SelectMBBI = MI.getIterator();
8062   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8063   auto InsertionPoint = TailMBB->begin();
8064   while (SelectMBBI != SelectEnd) {
8065     auto Next = std::next(SelectMBBI);
8066     if (isSelectPseudo(*SelectMBBI)) {
8067       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8068       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8069               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8070           .addReg(SelectMBBI->getOperand(4).getReg())
8071           .addMBB(HeadMBB)
8072           .addReg(SelectMBBI->getOperand(5).getReg())
8073           .addMBB(IfFalseMBB);
8074       SelectMBBI->eraseFromParent();
8075     }
8076     SelectMBBI = Next;
8077   }
8078 
8079   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8080   return TailMBB;
8081 }
8082 
8083 MachineBasicBlock *
8084 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8085                                                  MachineBasicBlock *BB) const {
8086   switch (MI.getOpcode()) {
8087   default:
8088     llvm_unreachable("Unexpected instr type to insert");
8089   case RISCV::ReadCycleWide:
8090     assert(!Subtarget.is64Bit() &&
8091            "ReadCycleWrite is only to be used on riscv32");
8092     return emitReadCycleWidePseudo(MI, BB);
8093   case RISCV::Select_GPR_Using_CC_GPR:
8094   case RISCV::Select_FPR16_Using_CC_GPR:
8095   case RISCV::Select_FPR32_Using_CC_GPR:
8096   case RISCV::Select_FPR64_Using_CC_GPR:
8097     return emitSelectPseudo(MI, BB, Subtarget);
8098   case RISCV::BuildPairF64Pseudo:
8099     return emitBuildPairF64Pseudo(MI, BB);
8100   case RISCV::SplitF64Pseudo:
8101     return emitSplitF64Pseudo(MI, BB);
8102   }
8103 }
8104 
8105 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8106                                                         SDNode *Node) const {
8107   // Add FRM dependency to any instructions with dynamic rounding mode.
8108   unsigned Opc = MI.getOpcode();
8109   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8110   if (Idx < 0)
8111     return;
8112   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8113     return;
8114   // If the instruction already reads FRM, don't add another read.
8115   if (MI.readsRegister(RISCV::FRM))
8116     return;
8117   MI.addOperand(
8118       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8119 }
8120 
8121 // Calling Convention Implementation.
8122 // The expectations for frontend ABI lowering vary from target to target.
8123 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8124 // details, but this is a longer term goal. For now, we simply try to keep the
8125 // role of the frontend as simple and well-defined as possible. The rules can
8126 // be summarised as:
8127 // * Never split up large scalar arguments. We handle them here.
8128 // * If a hardfloat calling convention is being used, and the struct may be
8129 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8130 // available, then pass as two separate arguments. If either the GPRs or FPRs
8131 // are exhausted, then pass according to the rule below.
8132 // * If a struct could never be passed in registers or directly in a stack
8133 // slot (as it is larger than 2*XLEN and the floating point rules don't
8134 // apply), then pass it using a pointer with the byval attribute.
8135 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8136 // word-sized array or a 2*XLEN scalar (depending on alignment).
8137 // * The frontend can determine whether a struct is returned by reference or
8138 // not based on its size and fields. If it will be returned by reference, the
8139 // frontend must modify the prototype so a pointer with the sret annotation is
8140 // passed as the first argument. This is not necessary for large scalar
8141 // returns.
8142 // * Struct return values and varargs should be coerced to structs containing
8143 // register-size fields in the same situations they would be for fixed
8144 // arguments.
8145 
8146 static const MCPhysReg ArgGPRs[] = {
8147   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8148   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8149 };
8150 static const MCPhysReg ArgFPR16s[] = {
8151   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8152   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8153 };
8154 static const MCPhysReg ArgFPR32s[] = {
8155   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8156   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8157 };
8158 static const MCPhysReg ArgFPR64s[] = {
8159   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8160   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8161 };
8162 // This is an interim calling convention and it may be changed in the future.
8163 static const MCPhysReg ArgVRs[] = {
8164     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8165     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8166     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8167 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8168                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8169                                      RISCV::V20M2, RISCV::V22M2};
8170 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8171                                      RISCV::V20M4};
8172 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8173 
8174 // Pass a 2*XLEN argument that has been split into two XLEN values through
8175 // registers or the stack as necessary.
8176 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8177                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8178                                 MVT ValVT2, MVT LocVT2,
8179                                 ISD::ArgFlagsTy ArgFlags2) {
8180   unsigned XLenInBytes = XLen / 8;
8181   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8182     // At least one half can be passed via register.
8183     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8184                                      VA1.getLocVT(), CCValAssign::Full));
8185   } else {
8186     // Both halves must be passed on the stack, with proper alignment.
8187     Align StackAlign =
8188         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8189     State.addLoc(
8190         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8191                             State.AllocateStack(XLenInBytes, StackAlign),
8192                             VA1.getLocVT(), CCValAssign::Full));
8193     State.addLoc(CCValAssign::getMem(
8194         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8195         LocVT2, CCValAssign::Full));
8196     return false;
8197   }
8198 
8199   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8200     // The second half can also be passed via register.
8201     State.addLoc(
8202         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8203   } else {
8204     // The second half is passed via the stack, without additional alignment.
8205     State.addLoc(CCValAssign::getMem(
8206         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8207         LocVT2, CCValAssign::Full));
8208   }
8209 
8210   return false;
8211 }
8212 
8213 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8214                                Optional<unsigned> FirstMaskArgument,
8215                                CCState &State, const RISCVTargetLowering &TLI) {
8216   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8217   if (RC == &RISCV::VRRegClass) {
8218     // Assign the first mask argument to V0.
8219     // This is an interim calling convention and it may be changed in the
8220     // future.
8221     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8222       return State.AllocateReg(RISCV::V0);
8223     return State.AllocateReg(ArgVRs);
8224   }
8225   if (RC == &RISCV::VRM2RegClass)
8226     return State.AllocateReg(ArgVRM2s);
8227   if (RC == &RISCV::VRM4RegClass)
8228     return State.AllocateReg(ArgVRM4s);
8229   if (RC == &RISCV::VRM8RegClass)
8230     return State.AllocateReg(ArgVRM8s);
8231   llvm_unreachable("Unhandled register class for ValueType");
8232 }
8233 
8234 // Implements the RISC-V calling convention. Returns true upon failure.
8235 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8236                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8237                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8238                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8239                      Optional<unsigned> FirstMaskArgument) {
8240   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8241   assert(XLen == 32 || XLen == 64);
8242   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8243 
8244   // Any return value split in to more than two values can't be returned
8245   // directly. Vectors are returned via the available vector registers.
8246   if (!LocVT.isVector() && IsRet && ValNo > 1)
8247     return true;
8248 
8249   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8250   // variadic argument, or if no F16/F32 argument registers are available.
8251   bool UseGPRForF16_F32 = true;
8252   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8253   // variadic argument, or if no F64 argument registers are available.
8254   bool UseGPRForF64 = true;
8255 
8256   switch (ABI) {
8257   default:
8258     llvm_unreachable("Unexpected ABI");
8259   case RISCVABI::ABI_ILP32:
8260   case RISCVABI::ABI_LP64:
8261     break;
8262   case RISCVABI::ABI_ILP32F:
8263   case RISCVABI::ABI_LP64F:
8264     UseGPRForF16_F32 = !IsFixed;
8265     break;
8266   case RISCVABI::ABI_ILP32D:
8267   case RISCVABI::ABI_LP64D:
8268     UseGPRForF16_F32 = !IsFixed;
8269     UseGPRForF64 = !IsFixed;
8270     break;
8271   }
8272 
8273   // FPR16, FPR32, and FPR64 alias each other.
8274   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8275     UseGPRForF16_F32 = true;
8276     UseGPRForF64 = true;
8277   }
8278 
8279   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8280   // similar local variables rather than directly checking against the target
8281   // ABI.
8282 
8283   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8284     LocVT = XLenVT;
8285     LocInfo = CCValAssign::BCvt;
8286   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8287     LocVT = MVT::i64;
8288     LocInfo = CCValAssign::BCvt;
8289   }
8290 
8291   // If this is a variadic argument, the RISC-V calling convention requires
8292   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8293   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8294   // be used regardless of whether the original argument was split during
8295   // legalisation or not. The argument will not be passed by registers if the
8296   // original type is larger than 2*XLEN, so the register alignment rule does
8297   // not apply.
8298   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8299   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8300       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8301     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8302     // Skip 'odd' register if necessary.
8303     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8304       State.AllocateReg(ArgGPRs);
8305   }
8306 
8307   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8308   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8309       State.getPendingArgFlags();
8310 
8311   assert(PendingLocs.size() == PendingArgFlags.size() &&
8312          "PendingLocs and PendingArgFlags out of sync");
8313 
8314   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8315   // registers are exhausted.
8316   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8317     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8318            "Can't lower f64 if it is split");
8319     // Depending on available argument GPRS, f64 may be passed in a pair of
8320     // GPRs, split between a GPR and the stack, or passed completely on the
8321     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8322     // cases.
8323     Register Reg = State.AllocateReg(ArgGPRs);
8324     LocVT = MVT::i32;
8325     if (!Reg) {
8326       unsigned StackOffset = State.AllocateStack(8, Align(8));
8327       State.addLoc(
8328           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8329       return false;
8330     }
8331     if (!State.AllocateReg(ArgGPRs))
8332       State.AllocateStack(4, Align(4));
8333     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8334     return false;
8335   }
8336 
8337   // Fixed-length vectors are located in the corresponding scalable-vector
8338   // container types.
8339   if (ValVT.isFixedLengthVector())
8340     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8341 
8342   // Split arguments might be passed indirectly, so keep track of the pending
8343   // values. Split vectors are passed via a mix of registers and indirectly, so
8344   // treat them as we would any other argument.
8345   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8346     LocVT = XLenVT;
8347     LocInfo = CCValAssign::Indirect;
8348     PendingLocs.push_back(
8349         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8350     PendingArgFlags.push_back(ArgFlags);
8351     if (!ArgFlags.isSplitEnd()) {
8352       return false;
8353     }
8354   }
8355 
8356   // If the split argument only had two elements, it should be passed directly
8357   // in registers or on the stack.
8358   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8359       PendingLocs.size() <= 2) {
8360     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8361     // Apply the normal calling convention rules to the first half of the
8362     // split argument.
8363     CCValAssign VA = PendingLocs[0];
8364     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8365     PendingLocs.clear();
8366     PendingArgFlags.clear();
8367     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8368                                ArgFlags);
8369   }
8370 
8371   // Allocate to a register if possible, or else a stack slot.
8372   Register Reg;
8373   unsigned StoreSizeBytes = XLen / 8;
8374   Align StackAlign = Align(XLen / 8);
8375 
8376   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8377     Reg = State.AllocateReg(ArgFPR16s);
8378   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8379     Reg = State.AllocateReg(ArgFPR32s);
8380   else if (ValVT == MVT::f64 && !UseGPRForF64)
8381     Reg = State.AllocateReg(ArgFPR64s);
8382   else if (ValVT.isVector()) {
8383     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8384     if (!Reg) {
8385       // For return values, the vector must be passed fully via registers or
8386       // via the stack.
8387       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8388       // but we're using all of them.
8389       if (IsRet)
8390         return true;
8391       // Try using a GPR to pass the address
8392       if ((Reg = State.AllocateReg(ArgGPRs))) {
8393         LocVT = XLenVT;
8394         LocInfo = CCValAssign::Indirect;
8395       } else if (ValVT.isScalableVector()) {
8396         report_fatal_error("Unable to pass scalable vector types on the stack");
8397       } else {
8398         // Pass fixed-length vectors on the stack.
8399         LocVT = ValVT;
8400         StoreSizeBytes = ValVT.getStoreSize();
8401         // Align vectors to their element sizes, being careful for vXi1
8402         // vectors.
8403         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8404       }
8405     }
8406   } else {
8407     Reg = State.AllocateReg(ArgGPRs);
8408   }
8409 
8410   unsigned StackOffset =
8411       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8412 
8413   // If we reach this point and PendingLocs is non-empty, we must be at the
8414   // end of a split argument that must be passed indirectly.
8415   if (!PendingLocs.empty()) {
8416     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8417     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8418 
8419     for (auto &It : PendingLocs) {
8420       if (Reg)
8421         It.convertToReg(Reg);
8422       else
8423         It.convertToMem(StackOffset);
8424       State.addLoc(It);
8425     }
8426     PendingLocs.clear();
8427     PendingArgFlags.clear();
8428     return false;
8429   }
8430 
8431   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8432           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8433          "Expected an XLenVT or vector types at this stage");
8434 
8435   if (Reg) {
8436     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8437     return false;
8438   }
8439 
8440   // When a floating-point value is passed on the stack, no bit-conversion is
8441   // needed.
8442   if (ValVT.isFloatingPoint()) {
8443     LocVT = ValVT;
8444     LocInfo = CCValAssign::Full;
8445   }
8446   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8447   return false;
8448 }
8449 
8450 template <typename ArgTy>
8451 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8452   for (const auto &ArgIdx : enumerate(Args)) {
8453     MVT ArgVT = ArgIdx.value().VT;
8454     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8455       return ArgIdx.index();
8456   }
8457   return None;
8458 }
8459 
8460 void RISCVTargetLowering::analyzeInputArgs(
8461     MachineFunction &MF, CCState &CCInfo,
8462     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8463     RISCVCCAssignFn Fn) const {
8464   unsigned NumArgs = Ins.size();
8465   FunctionType *FType = MF.getFunction().getFunctionType();
8466 
8467   Optional<unsigned> FirstMaskArgument;
8468   if (Subtarget.hasVInstructions())
8469     FirstMaskArgument = preAssignMask(Ins);
8470 
8471   for (unsigned i = 0; i != NumArgs; ++i) {
8472     MVT ArgVT = Ins[i].VT;
8473     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8474 
8475     Type *ArgTy = nullptr;
8476     if (IsRet)
8477       ArgTy = FType->getReturnType();
8478     else if (Ins[i].isOrigArg())
8479       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8480 
8481     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8482     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8483            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8484            FirstMaskArgument)) {
8485       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8486                         << EVT(ArgVT).getEVTString() << '\n');
8487       llvm_unreachable(nullptr);
8488     }
8489   }
8490 }
8491 
8492 void RISCVTargetLowering::analyzeOutputArgs(
8493     MachineFunction &MF, CCState &CCInfo,
8494     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8495     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8496   unsigned NumArgs = Outs.size();
8497 
8498   Optional<unsigned> FirstMaskArgument;
8499   if (Subtarget.hasVInstructions())
8500     FirstMaskArgument = preAssignMask(Outs);
8501 
8502   for (unsigned i = 0; i != NumArgs; i++) {
8503     MVT ArgVT = Outs[i].VT;
8504     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8505     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8506 
8507     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8508     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8509            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8510            FirstMaskArgument)) {
8511       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8512                         << EVT(ArgVT).getEVTString() << "\n");
8513       llvm_unreachable(nullptr);
8514     }
8515   }
8516 }
8517 
8518 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8519 // values.
8520 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8521                                    const CCValAssign &VA, const SDLoc &DL,
8522                                    const RISCVSubtarget &Subtarget) {
8523   switch (VA.getLocInfo()) {
8524   default:
8525     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8526   case CCValAssign::Full:
8527     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8528       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8529     break;
8530   case CCValAssign::BCvt:
8531     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8532       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8533     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8534       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8535     else
8536       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8537     break;
8538   }
8539   return Val;
8540 }
8541 
8542 // The caller is responsible for loading the full value if the argument is
8543 // passed with CCValAssign::Indirect.
8544 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8545                                 const CCValAssign &VA, const SDLoc &DL,
8546                                 const RISCVTargetLowering &TLI) {
8547   MachineFunction &MF = DAG.getMachineFunction();
8548   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8549   EVT LocVT = VA.getLocVT();
8550   SDValue Val;
8551   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8552   Register VReg = RegInfo.createVirtualRegister(RC);
8553   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8554   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8555 
8556   if (VA.getLocInfo() == CCValAssign::Indirect)
8557     return Val;
8558 
8559   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8560 }
8561 
8562 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8563                                    const CCValAssign &VA, const SDLoc &DL,
8564                                    const RISCVSubtarget &Subtarget) {
8565   EVT LocVT = VA.getLocVT();
8566 
8567   switch (VA.getLocInfo()) {
8568   default:
8569     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8570   case CCValAssign::Full:
8571     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8572       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8573     break;
8574   case CCValAssign::BCvt:
8575     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8576       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8577     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8578       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8579     else
8580       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8581     break;
8582   }
8583   return Val;
8584 }
8585 
8586 // The caller is responsible for loading the full value if the argument is
8587 // passed with CCValAssign::Indirect.
8588 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8589                                 const CCValAssign &VA, const SDLoc &DL) {
8590   MachineFunction &MF = DAG.getMachineFunction();
8591   MachineFrameInfo &MFI = MF.getFrameInfo();
8592   EVT LocVT = VA.getLocVT();
8593   EVT ValVT = VA.getValVT();
8594   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8595   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8596                                  /*Immutable=*/true);
8597   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8598   SDValue Val;
8599 
8600   ISD::LoadExtType ExtType;
8601   switch (VA.getLocInfo()) {
8602   default:
8603     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8604   case CCValAssign::Full:
8605   case CCValAssign::Indirect:
8606   case CCValAssign::BCvt:
8607     ExtType = ISD::NON_EXTLOAD;
8608     break;
8609   }
8610   Val = DAG.getExtLoad(
8611       ExtType, DL, LocVT, Chain, FIN,
8612       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8613   return Val;
8614 }
8615 
8616 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8617                                        const CCValAssign &VA, const SDLoc &DL) {
8618   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8619          "Unexpected VA");
8620   MachineFunction &MF = DAG.getMachineFunction();
8621   MachineFrameInfo &MFI = MF.getFrameInfo();
8622   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8623 
8624   if (VA.isMemLoc()) {
8625     // f64 is passed on the stack.
8626     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8627     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8628     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8629                        MachinePointerInfo::getFixedStack(MF, FI));
8630   }
8631 
8632   assert(VA.isRegLoc() && "Expected register VA assignment");
8633 
8634   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8635   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8636   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8637   SDValue Hi;
8638   if (VA.getLocReg() == RISCV::X17) {
8639     // Second half of f64 is passed on the stack.
8640     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8641     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8642     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8643                      MachinePointerInfo::getFixedStack(MF, FI));
8644   } else {
8645     // Second half of f64 is passed in another GPR.
8646     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8647     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8648     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8649   }
8650   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8651 }
8652 
8653 // FastCC has less than 1% performance improvement for some particular
8654 // benchmark. But theoretically, it may has benenfit for some cases.
8655 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8656                             unsigned ValNo, MVT ValVT, MVT LocVT,
8657                             CCValAssign::LocInfo LocInfo,
8658                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8659                             bool IsFixed, bool IsRet, Type *OrigTy,
8660                             const RISCVTargetLowering &TLI,
8661                             Optional<unsigned> FirstMaskArgument) {
8662 
8663   // X5 and X6 might be used for save-restore libcall.
8664   static const MCPhysReg GPRList[] = {
8665       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8666       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8667       RISCV::X29, RISCV::X30, RISCV::X31};
8668 
8669   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8670     if (unsigned Reg = State.AllocateReg(GPRList)) {
8671       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8672       return false;
8673     }
8674   }
8675 
8676   if (LocVT == MVT::f16) {
8677     static const MCPhysReg FPR16List[] = {
8678         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8679         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8680         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8681         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8682     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8683       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8684       return false;
8685     }
8686   }
8687 
8688   if (LocVT == MVT::f32) {
8689     static const MCPhysReg FPR32List[] = {
8690         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8691         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8692         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8693         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8694     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8695       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8696       return false;
8697     }
8698   }
8699 
8700   if (LocVT == MVT::f64) {
8701     static const MCPhysReg FPR64List[] = {
8702         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8703         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8704         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8705         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8706     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8707       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8708       return false;
8709     }
8710   }
8711 
8712   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8713     unsigned Offset4 = State.AllocateStack(4, Align(4));
8714     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8715     return false;
8716   }
8717 
8718   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8719     unsigned Offset5 = State.AllocateStack(8, Align(8));
8720     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8721     return false;
8722   }
8723 
8724   if (LocVT.isVector()) {
8725     if (unsigned Reg =
8726             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8727       // Fixed-length vectors are located in the corresponding scalable-vector
8728       // container types.
8729       if (ValVT.isFixedLengthVector())
8730         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8731       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8732     } else {
8733       // Try and pass the address via a "fast" GPR.
8734       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8735         LocInfo = CCValAssign::Indirect;
8736         LocVT = TLI.getSubtarget().getXLenVT();
8737         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8738       } else if (ValVT.isFixedLengthVector()) {
8739         auto StackAlign =
8740             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8741         unsigned StackOffset =
8742             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8743         State.addLoc(
8744             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8745       } else {
8746         // Can't pass scalable vectors on the stack.
8747         return true;
8748       }
8749     }
8750 
8751     return false;
8752   }
8753 
8754   return true; // CC didn't match.
8755 }
8756 
8757 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8758                          CCValAssign::LocInfo LocInfo,
8759                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8760 
8761   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8762     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8763     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8764     static const MCPhysReg GPRList[] = {
8765         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8766         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8767     if (unsigned Reg = State.AllocateReg(GPRList)) {
8768       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8769       return false;
8770     }
8771   }
8772 
8773   if (LocVT == MVT::f32) {
8774     // Pass in STG registers: F1, ..., F6
8775     //                        fs0 ... fs5
8776     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8777                                           RISCV::F18_F, RISCV::F19_F,
8778                                           RISCV::F20_F, RISCV::F21_F};
8779     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8780       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8781       return false;
8782     }
8783   }
8784 
8785   if (LocVT == MVT::f64) {
8786     // Pass in STG registers: D1, ..., D6
8787     //                        fs6 ... fs11
8788     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8789                                           RISCV::F24_D, RISCV::F25_D,
8790                                           RISCV::F26_D, RISCV::F27_D};
8791     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8792       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8793       return false;
8794     }
8795   }
8796 
8797   report_fatal_error("No registers left in GHC calling convention");
8798   return true;
8799 }
8800 
8801 // Transform physical registers into virtual registers.
8802 SDValue RISCVTargetLowering::LowerFormalArguments(
8803     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8804     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8805     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8806 
8807   MachineFunction &MF = DAG.getMachineFunction();
8808 
8809   switch (CallConv) {
8810   default:
8811     report_fatal_error("Unsupported calling convention");
8812   case CallingConv::C:
8813   case CallingConv::Fast:
8814     break;
8815   case CallingConv::GHC:
8816     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8817         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8818       report_fatal_error(
8819         "GHC calling convention requires the F and D instruction set extensions");
8820   }
8821 
8822   const Function &Func = MF.getFunction();
8823   if (Func.hasFnAttribute("interrupt")) {
8824     if (!Func.arg_empty())
8825       report_fatal_error(
8826         "Functions with the interrupt attribute cannot have arguments!");
8827 
8828     StringRef Kind =
8829       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8830 
8831     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8832       report_fatal_error(
8833         "Function interrupt attribute argument not supported!");
8834   }
8835 
8836   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8837   MVT XLenVT = Subtarget.getXLenVT();
8838   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8839   // Used with vargs to acumulate store chains.
8840   std::vector<SDValue> OutChains;
8841 
8842   // Assign locations to all of the incoming arguments.
8843   SmallVector<CCValAssign, 16> ArgLocs;
8844   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8845 
8846   if (CallConv == CallingConv::GHC)
8847     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8848   else
8849     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8850                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8851                                                    : CC_RISCV);
8852 
8853   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8854     CCValAssign &VA = ArgLocs[i];
8855     SDValue ArgValue;
8856     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8857     // case.
8858     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8859       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8860     else if (VA.isRegLoc())
8861       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8862     else
8863       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8864 
8865     if (VA.getLocInfo() == CCValAssign::Indirect) {
8866       // If the original argument was split and passed by reference (e.g. i128
8867       // on RV32), we need to load all parts of it here (using the same
8868       // address). Vectors may be partly split to registers and partly to the
8869       // stack, in which case the base address is partly offset and subsequent
8870       // stores are relative to that.
8871       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8872                                    MachinePointerInfo()));
8873       unsigned ArgIndex = Ins[i].OrigArgIndex;
8874       unsigned ArgPartOffset = Ins[i].PartOffset;
8875       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8876       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8877         CCValAssign &PartVA = ArgLocs[i + 1];
8878         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8879         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8880         if (PartVA.getValVT().isScalableVector())
8881           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8882         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8883         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8884                                      MachinePointerInfo()));
8885         ++i;
8886       }
8887       continue;
8888     }
8889     InVals.push_back(ArgValue);
8890   }
8891 
8892   if (IsVarArg) {
8893     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8894     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8895     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8896     MachineFrameInfo &MFI = MF.getFrameInfo();
8897     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8898     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8899 
8900     // Offset of the first variable argument from stack pointer, and size of
8901     // the vararg save area. For now, the varargs save area is either zero or
8902     // large enough to hold a0-a7.
8903     int VaArgOffset, VarArgsSaveSize;
8904 
8905     // If all registers are allocated, then all varargs must be passed on the
8906     // stack and we don't need to save any argregs.
8907     if (ArgRegs.size() == Idx) {
8908       VaArgOffset = CCInfo.getNextStackOffset();
8909       VarArgsSaveSize = 0;
8910     } else {
8911       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8912       VaArgOffset = -VarArgsSaveSize;
8913     }
8914 
8915     // Record the frame index of the first variable argument
8916     // which is a value necessary to VASTART.
8917     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8918     RVFI->setVarArgsFrameIndex(FI);
8919 
8920     // If saving an odd number of registers then create an extra stack slot to
8921     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8922     // offsets to even-numbered registered remain 2*XLEN-aligned.
8923     if (Idx % 2) {
8924       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8925       VarArgsSaveSize += XLenInBytes;
8926     }
8927 
8928     // Copy the integer registers that may have been used for passing varargs
8929     // to the vararg save area.
8930     for (unsigned I = Idx; I < ArgRegs.size();
8931          ++I, VaArgOffset += XLenInBytes) {
8932       const Register Reg = RegInfo.createVirtualRegister(RC);
8933       RegInfo.addLiveIn(ArgRegs[I], Reg);
8934       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8935       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8936       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8937       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8938                                    MachinePointerInfo::getFixedStack(MF, FI));
8939       cast<StoreSDNode>(Store.getNode())
8940           ->getMemOperand()
8941           ->setValue((Value *)nullptr);
8942       OutChains.push_back(Store);
8943     }
8944     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8945   }
8946 
8947   // All stores are grouped in one node to allow the matching between
8948   // the size of Ins and InVals. This only happens for vararg functions.
8949   if (!OutChains.empty()) {
8950     OutChains.push_back(Chain);
8951     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8952   }
8953 
8954   return Chain;
8955 }
8956 
8957 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8958 /// for tail call optimization.
8959 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8960 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8961     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8962     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8963 
8964   auto &Callee = CLI.Callee;
8965   auto CalleeCC = CLI.CallConv;
8966   auto &Outs = CLI.Outs;
8967   auto &Caller = MF.getFunction();
8968   auto CallerCC = Caller.getCallingConv();
8969 
8970   // Exception-handling functions need a special set of instructions to
8971   // indicate a return to the hardware. Tail-calling another function would
8972   // probably break this.
8973   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8974   // should be expanded as new function attributes are introduced.
8975   if (Caller.hasFnAttribute("interrupt"))
8976     return false;
8977 
8978   // Do not tail call opt if the stack is used to pass parameters.
8979   if (CCInfo.getNextStackOffset() != 0)
8980     return false;
8981 
8982   // Do not tail call opt if any parameters need to be passed indirectly.
8983   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
8984   // passed indirectly. So the address of the value will be passed in a
8985   // register, or if not available, then the address is put on the stack. In
8986   // order to pass indirectly, space on the stack often needs to be allocated
8987   // in order to store the value. In this case the CCInfo.getNextStackOffset()
8988   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
8989   // are passed CCValAssign::Indirect.
8990   for (auto &VA : ArgLocs)
8991     if (VA.getLocInfo() == CCValAssign::Indirect)
8992       return false;
8993 
8994   // Do not tail call opt if either caller or callee uses struct return
8995   // semantics.
8996   auto IsCallerStructRet = Caller.hasStructRetAttr();
8997   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
8998   if (IsCallerStructRet || IsCalleeStructRet)
8999     return false;
9000 
9001   // Externally-defined functions with weak linkage should not be
9002   // tail-called. The behaviour of branch instructions in this situation (as
9003   // used for tail calls) is implementation-defined, so we cannot rely on the
9004   // linker replacing the tail call with a return.
9005   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9006     const GlobalValue *GV = G->getGlobal();
9007     if (GV->hasExternalWeakLinkage())
9008       return false;
9009   }
9010 
9011   // The callee has to preserve all registers the caller needs to preserve.
9012   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9013   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9014   if (CalleeCC != CallerCC) {
9015     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9016     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9017       return false;
9018   }
9019 
9020   // Byval parameters hand the function a pointer directly into the stack area
9021   // we want to reuse during a tail call. Working around this *is* possible
9022   // but less efficient and uglier in LowerCall.
9023   for (auto &Arg : Outs)
9024     if (Arg.Flags.isByVal())
9025       return false;
9026 
9027   return true;
9028 }
9029 
9030 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9031   return DAG.getDataLayout().getPrefTypeAlign(
9032       VT.getTypeForEVT(*DAG.getContext()));
9033 }
9034 
9035 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9036 // and output parameter nodes.
9037 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9038                                        SmallVectorImpl<SDValue> &InVals) const {
9039   SelectionDAG &DAG = CLI.DAG;
9040   SDLoc &DL = CLI.DL;
9041   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9042   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9043   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9044   SDValue Chain = CLI.Chain;
9045   SDValue Callee = CLI.Callee;
9046   bool &IsTailCall = CLI.IsTailCall;
9047   CallingConv::ID CallConv = CLI.CallConv;
9048   bool IsVarArg = CLI.IsVarArg;
9049   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9050   MVT XLenVT = Subtarget.getXLenVT();
9051 
9052   MachineFunction &MF = DAG.getMachineFunction();
9053 
9054   // Analyze the operands of the call, assigning locations to each operand.
9055   SmallVector<CCValAssign, 16> ArgLocs;
9056   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9057 
9058   if (CallConv == CallingConv::GHC)
9059     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9060   else
9061     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9062                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9063                                                     : CC_RISCV);
9064 
9065   // Check if it's really possible to do a tail call.
9066   if (IsTailCall)
9067     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9068 
9069   if (IsTailCall)
9070     ++NumTailCalls;
9071   else if (CLI.CB && CLI.CB->isMustTailCall())
9072     report_fatal_error("failed to perform tail call elimination on a call "
9073                        "site marked musttail");
9074 
9075   // Get a count of how many bytes are to be pushed on the stack.
9076   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9077 
9078   // Create local copies for byval args
9079   SmallVector<SDValue, 8> ByValArgs;
9080   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9081     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9082     if (!Flags.isByVal())
9083       continue;
9084 
9085     SDValue Arg = OutVals[i];
9086     unsigned Size = Flags.getByValSize();
9087     Align Alignment = Flags.getNonZeroByValAlign();
9088 
9089     int FI =
9090         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9091     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9092     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9093 
9094     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9095                           /*IsVolatile=*/false,
9096                           /*AlwaysInline=*/false, IsTailCall,
9097                           MachinePointerInfo(), MachinePointerInfo());
9098     ByValArgs.push_back(FIPtr);
9099   }
9100 
9101   if (!IsTailCall)
9102     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9103 
9104   // Copy argument values to their designated locations.
9105   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9106   SmallVector<SDValue, 8> MemOpChains;
9107   SDValue StackPtr;
9108   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9109     CCValAssign &VA = ArgLocs[i];
9110     SDValue ArgValue = OutVals[i];
9111     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9112 
9113     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9114     bool IsF64OnRV32DSoftABI =
9115         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9116     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9117       SDValue SplitF64 = DAG.getNode(
9118           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9119       SDValue Lo = SplitF64.getValue(0);
9120       SDValue Hi = SplitF64.getValue(1);
9121 
9122       Register RegLo = VA.getLocReg();
9123       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9124 
9125       if (RegLo == RISCV::X17) {
9126         // Second half of f64 is passed on the stack.
9127         // Work out the address of the stack slot.
9128         if (!StackPtr.getNode())
9129           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9130         // Emit the store.
9131         MemOpChains.push_back(
9132             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9133       } else {
9134         // Second half of f64 is passed in another GPR.
9135         assert(RegLo < RISCV::X31 && "Invalid register pair");
9136         Register RegHigh = RegLo + 1;
9137         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9138       }
9139       continue;
9140     }
9141 
9142     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9143     // as any other MemLoc.
9144 
9145     // Promote the value if needed.
9146     // For now, only handle fully promoted and indirect arguments.
9147     if (VA.getLocInfo() == CCValAssign::Indirect) {
9148       // Store the argument in a stack slot and pass its address.
9149       Align StackAlign =
9150           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9151                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9152       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9153       // If the original argument was split (e.g. i128), we need
9154       // to store the required parts of it here (and pass just one address).
9155       // Vectors may be partly split to registers and partly to the stack, in
9156       // which case the base address is partly offset and subsequent stores are
9157       // relative to that.
9158       unsigned ArgIndex = Outs[i].OrigArgIndex;
9159       unsigned ArgPartOffset = Outs[i].PartOffset;
9160       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9161       // Calculate the total size to store. We don't have access to what we're
9162       // actually storing other than performing the loop and collecting the
9163       // info.
9164       SmallVector<std::pair<SDValue, SDValue>> Parts;
9165       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9166         SDValue PartValue = OutVals[i + 1];
9167         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9168         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9169         EVT PartVT = PartValue.getValueType();
9170         if (PartVT.isScalableVector())
9171           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9172         StoredSize += PartVT.getStoreSize();
9173         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9174         Parts.push_back(std::make_pair(PartValue, Offset));
9175         ++i;
9176       }
9177       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9178       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9179       MemOpChains.push_back(
9180           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9181                        MachinePointerInfo::getFixedStack(MF, FI)));
9182       for (const auto &Part : Parts) {
9183         SDValue PartValue = Part.first;
9184         SDValue PartOffset = Part.second;
9185         SDValue Address =
9186             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9187         MemOpChains.push_back(
9188             DAG.getStore(Chain, DL, PartValue, Address,
9189                          MachinePointerInfo::getFixedStack(MF, FI)));
9190       }
9191       ArgValue = SpillSlot;
9192     } else {
9193       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9194     }
9195 
9196     // Use local copy if it is a byval arg.
9197     if (Flags.isByVal())
9198       ArgValue = ByValArgs[j++];
9199 
9200     if (VA.isRegLoc()) {
9201       // Queue up the argument copies and emit them at the end.
9202       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9203     } else {
9204       assert(VA.isMemLoc() && "Argument not register or memory");
9205       assert(!IsTailCall && "Tail call not allowed if stack is used "
9206                             "for passing parameters");
9207 
9208       // Work out the address of the stack slot.
9209       if (!StackPtr.getNode())
9210         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9211       SDValue Address =
9212           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9213                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9214 
9215       // Emit the store.
9216       MemOpChains.push_back(
9217           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9218     }
9219   }
9220 
9221   // Join the stores, which are independent of one another.
9222   if (!MemOpChains.empty())
9223     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9224 
9225   SDValue Glue;
9226 
9227   // Build a sequence of copy-to-reg nodes, chained and glued together.
9228   for (auto &Reg : RegsToPass) {
9229     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9230     Glue = Chain.getValue(1);
9231   }
9232 
9233   // Validate that none of the argument registers have been marked as
9234   // reserved, if so report an error. Do the same for the return address if this
9235   // is not a tailcall.
9236   validateCCReservedRegs(RegsToPass, MF);
9237   if (!IsTailCall &&
9238       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9239     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9240         MF.getFunction(),
9241         "Return address register required, but has been reserved."});
9242 
9243   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9244   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9245   // split it and then direct call can be matched by PseudoCALL.
9246   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9247     const GlobalValue *GV = S->getGlobal();
9248 
9249     unsigned OpFlags = RISCVII::MO_CALL;
9250     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9251       OpFlags = RISCVII::MO_PLT;
9252 
9253     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9254   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9255     unsigned OpFlags = RISCVII::MO_CALL;
9256 
9257     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9258                                                  nullptr))
9259       OpFlags = RISCVII::MO_PLT;
9260 
9261     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9262   }
9263 
9264   // The first call operand is the chain and the second is the target address.
9265   SmallVector<SDValue, 8> Ops;
9266   Ops.push_back(Chain);
9267   Ops.push_back(Callee);
9268 
9269   // Add argument registers to the end of the list so that they are
9270   // known live into the call.
9271   for (auto &Reg : RegsToPass)
9272     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9273 
9274   if (!IsTailCall) {
9275     // Add a register mask operand representing the call-preserved registers.
9276     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9277     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9278     assert(Mask && "Missing call preserved mask for calling convention");
9279     Ops.push_back(DAG.getRegisterMask(Mask));
9280   }
9281 
9282   // Glue the call to the argument copies, if any.
9283   if (Glue.getNode())
9284     Ops.push_back(Glue);
9285 
9286   // Emit the call.
9287   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9288 
9289   if (IsTailCall) {
9290     MF.getFrameInfo().setHasTailCall();
9291     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9292   }
9293 
9294   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9295   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9296   Glue = Chain.getValue(1);
9297 
9298   // Mark the end of the call, which is glued to the call itself.
9299   Chain = DAG.getCALLSEQ_END(Chain,
9300                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9301                              DAG.getConstant(0, DL, PtrVT, true),
9302                              Glue, DL);
9303   Glue = Chain.getValue(1);
9304 
9305   // Assign locations to each value returned by this call.
9306   SmallVector<CCValAssign, 16> RVLocs;
9307   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9308   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9309 
9310   // Copy all of the result registers out of their specified physreg.
9311   for (auto &VA : RVLocs) {
9312     // Copy the value out
9313     SDValue RetValue =
9314         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9315     // Glue the RetValue to the end of the call sequence
9316     Chain = RetValue.getValue(1);
9317     Glue = RetValue.getValue(2);
9318 
9319     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9320       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9321       SDValue RetValue2 =
9322           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9323       Chain = RetValue2.getValue(1);
9324       Glue = RetValue2.getValue(2);
9325       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9326                              RetValue2);
9327     }
9328 
9329     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9330 
9331     InVals.push_back(RetValue);
9332   }
9333 
9334   return Chain;
9335 }
9336 
9337 bool RISCVTargetLowering::CanLowerReturn(
9338     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9339     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9340   SmallVector<CCValAssign, 16> RVLocs;
9341   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9342 
9343   Optional<unsigned> FirstMaskArgument;
9344   if (Subtarget.hasVInstructions())
9345     FirstMaskArgument = preAssignMask(Outs);
9346 
9347   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9348     MVT VT = Outs[i].VT;
9349     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9350     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9351     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9352                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9353                  *this, FirstMaskArgument))
9354       return false;
9355   }
9356   return true;
9357 }
9358 
9359 SDValue
9360 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9361                                  bool IsVarArg,
9362                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9363                                  const SmallVectorImpl<SDValue> &OutVals,
9364                                  const SDLoc &DL, SelectionDAG &DAG) const {
9365   const MachineFunction &MF = DAG.getMachineFunction();
9366   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9367 
9368   // Stores the assignment of the return value to a location.
9369   SmallVector<CCValAssign, 16> RVLocs;
9370 
9371   // Info about the registers and stack slot.
9372   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9373                  *DAG.getContext());
9374 
9375   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9376                     nullptr, CC_RISCV);
9377 
9378   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9379     report_fatal_error("GHC functions return void only");
9380 
9381   SDValue Glue;
9382   SmallVector<SDValue, 4> RetOps(1, Chain);
9383 
9384   // Copy the result values into the output registers.
9385   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9386     SDValue Val = OutVals[i];
9387     CCValAssign &VA = RVLocs[i];
9388     assert(VA.isRegLoc() && "Can only return in registers!");
9389 
9390     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9391       // Handle returning f64 on RV32D with a soft float ABI.
9392       assert(VA.isRegLoc() && "Expected return via registers");
9393       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9394                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9395       SDValue Lo = SplitF64.getValue(0);
9396       SDValue Hi = SplitF64.getValue(1);
9397       Register RegLo = VA.getLocReg();
9398       assert(RegLo < RISCV::X31 && "Invalid register pair");
9399       Register RegHi = RegLo + 1;
9400 
9401       if (STI.isRegisterReservedByUser(RegLo) ||
9402           STI.isRegisterReservedByUser(RegHi))
9403         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9404             MF.getFunction(),
9405             "Return value register required, but has been reserved."});
9406 
9407       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9408       Glue = Chain.getValue(1);
9409       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9410       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9411       Glue = Chain.getValue(1);
9412       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9413     } else {
9414       // Handle a 'normal' return.
9415       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9416       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9417 
9418       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9419         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9420             MF.getFunction(),
9421             "Return value register required, but has been reserved."});
9422 
9423       // Guarantee that all emitted copies are stuck together.
9424       Glue = Chain.getValue(1);
9425       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9426     }
9427   }
9428 
9429   RetOps[0] = Chain; // Update chain.
9430 
9431   // Add the glue node if we have it.
9432   if (Glue.getNode()) {
9433     RetOps.push_back(Glue);
9434   }
9435 
9436   unsigned RetOpc = RISCVISD::RET_FLAG;
9437   // Interrupt service routines use different return instructions.
9438   const Function &Func = DAG.getMachineFunction().getFunction();
9439   if (Func.hasFnAttribute("interrupt")) {
9440     if (!Func.getReturnType()->isVoidTy())
9441       report_fatal_error(
9442           "Functions with the interrupt attribute must have void return type!");
9443 
9444     MachineFunction &MF = DAG.getMachineFunction();
9445     StringRef Kind =
9446       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9447 
9448     if (Kind == "user")
9449       RetOpc = RISCVISD::URET_FLAG;
9450     else if (Kind == "supervisor")
9451       RetOpc = RISCVISD::SRET_FLAG;
9452     else
9453       RetOpc = RISCVISD::MRET_FLAG;
9454   }
9455 
9456   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9457 }
9458 
9459 void RISCVTargetLowering::validateCCReservedRegs(
9460     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9461     MachineFunction &MF) const {
9462   const Function &F = MF.getFunction();
9463   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9464 
9465   if (llvm::any_of(Regs, [&STI](auto Reg) {
9466         return STI.isRegisterReservedByUser(Reg.first);
9467       }))
9468     F.getContext().diagnose(DiagnosticInfoUnsupported{
9469         F, "Argument register required, but has been reserved."});
9470 }
9471 
9472 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9473   return CI->isTailCall();
9474 }
9475 
9476 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9477 #define NODE_NAME_CASE(NODE)                                                   \
9478   case RISCVISD::NODE:                                                         \
9479     return "RISCVISD::" #NODE;
9480   // clang-format off
9481   switch ((RISCVISD::NodeType)Opcode) {
9482   case RISCVISD::FIRST_NUMBER:
9483     break;
9484   NODE_NAME_CASE(RET_FLAG)
9485   NODE_NAME_CASE(URET_FLAG)
9486   NODE_NAME_CASE(SRET_FLAG)
9487   NODE_NAME_CASE(MRET_FLAG)
9488   NODE_NAME_CASE(CALL)
9489   NODE_NAME_CASE(SELECT_CC)
9490   NODE_NAME_CASE(BR_CC)
9491   NODE_NAME_CASE(BuildPairF64)
9492   NODE_NAME_CASE(SplitF64)
9493   NODE_NAME_CASE(TAIL)
9494   NODE_NAME_CASE(MULHSU)
9495   NODE_NAME_CASE(SLLW)
9496   NODE_NAME_CASE(SRAW)
9497   NODE_NAME_CASE(SRLW)
9498   NODE_NAME_CASE(DIVW)
9499   NODE_NAME_CASE(DIVUW)
9500   NODE_NAME_CASE(REMUW)
9501   NODE_NAME_CASE(ROLW)
9502   NODE_NAME_CASE(RORW)
9503   NODE_NAME_CASE(CLZW)
9504   NODE_NAME_CASE(CTZW)
9505   NODE_NAME_CASE(FSLW)
9506   NODE_NAME_CASE(FSRW)
9507   NODE_NAME_CASE(FSL)
9508   NODE_NAME_CASE(FSR)
9509   NODE_NAME_CASE(FMV_H_X)
9510   NODE_NAME_CASE(FMV_X_ANYEXTH)
9511   NODE_NAME_CASE(FMV_W_X_RV64)
9512   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9513   NODE_NAME_CASE(FCVT_X_RTZ)
9514   NODE_NAME_CASE(FCVT_XU_RTZ)
9515   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9516   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9517   NODE_NAME_CASE(STRICT_FCVT_W_RTZ_RV64)
9518   NODE_NAME_CASE(STRICT_FCVT_WU_RTZ_RV64)
9519   NODE_NAME_CASE(READ_CYCLE_WIDE)
9520   NODE_NAME_CASE(GREV)
9521   NODE_NAME_CASE(GREVW)
9522   NODE_NAME_CASE(GORC)
9523   NODE_NAME_CASE(GORCW)
9524   NODE_NAME_CASE(SHFL)
9525   NODE_NAME_CASE(SHFLW)
9526   NODE_NAME_CASE(UNSHFL)
9527   NODE_NAME_CASE(UNSHFLW)
9528   NODE_NAME_CASE(BCOMPRESS)
9529   NODE_NAME_CASE(BCOMPRESSW)
9530   NODE_NAME_CASE(BDECOMPRESS)
9531   NODE_NAME_CASE(BDECOMPRESSW)
9532   NODE_NAME_CASE(VMV_V_X_VL)
9533   NODE_NAME_CASE(VFMV_V_F_VL)
9534   NODE_NAME_CASE(VMV_X_S)
9535   NODE_NAME_CASE(VMV_S_X_VL)
9536   NODE_NAME_CASE(VFMV_S_F_VL)
9537   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9538   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9539   NODE_NAME_CASE(READ_VLENB)
9540   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9541   NODE_NAME_CASE(VSLIDEUP_VL)
9542   NODE_NAME_CASE(VSLIDE1UP_VL)
9543   NODE_NAME_CASE(VSLIDEDOWN_VL)
9544   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9545   NODE_NAME_CASE(VID_VL)
9546   NODE_NAME_CASE(VFNCVT_ROD_VL)
9547   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9548   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9549   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9550   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9551   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9552   NODE_NAME_CASE(VECREDUCE_AND_VL)
9553   NODE_NAME_CASE(VECREDUCE_OR_VL)
9554   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9555   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9556   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9557   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9558   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9559   NODE_NAME_CASE(ADD_VL)
9560   NODE_NAME_CASE(AND_VL)
9561   NODE_NAME_CASE(MUL_VL)
9562   NODE_NAME_CASE(OR_VL)
9563   NODE_NAME_CASE(SDIV_VL)
9564   NODE_NAME_CASE(SHL_VL)
9565   NODE_NAME_CASE(SREM_VL)
9566   NODE_NAME_CASE(SRA_VL)
9567   NODE_NAME_CASE(SRL_VL)
9568   NODE_NAME_CASE(SUB_VL)
9569   NODE_NAME_CASE(UDIV_VL)
9570   NODE_NAME_CASE(UREM_VL)
9571   NODE_NAME_CASE(XOR_VL)
9572   NODE_NAME_CASE(SADDSAT_VL)
9573   NODE_NAME_CASE(UADDSAT_VL)
9574   NODE_NAME_CASE(SSUBSAT_VL)
9575   NODE_NAME_CASE(USUBSAT_VL)
9576   NODE_NAME_CASE(FADD_VL)
9577   NODE_NAME_CASE(FSUB_VL)
9578   NODE_NAME_CASE(FMUL_VL)
9579   NODE_NAME_CASE(FDIV_VL)
9580   NODE_NAME_CASE(FNEG_VL)
9581   NODE_NAME_CASE(FABS_VL)
9582   NODE_NAME_CASE(FSQRT_VL)
9583   NODE_NAME_CASE(FMA_VL)
9584   NODE_NAME_CASE(FCOPYSIGN_VL)
9585   NODE_NAME_CASE(SMIN_VL)
9586   NODE_NAME_CASE(SMAX_VL)
9587   NODE_NAME_CASE(UMIN_VL)
9588   NODE_NAME_CASE(UMAX_VL)
9589   NODE_NAME_CASE(FMINNUM_VL)
9590   NODE_NAME_CASE(FMAXNUM_VL)
9591   NODE_NAME_CASE(MULHS_VL)
9592   NODE_NAME_CASE(MULHU_VL)
9593   NODE_NAME_CASE(FP_TO_SINT_VL)
9594   NODE_NAME_CASE(FP_TO_UINT_VL)
9595   NODE_NAME_CASE(SINT_TO_FP_VL)
9596   NODE_NAME_CASE(UINT_TO_FP_VL)
9597   NODE_NAME_CASE(FP_EXTEND_VL)
9598   NODE_NAME_CASE(FP_ROUND_VL)
9599   NODE_NAME_CASE(VWMUL_VL)
9600   NODE_NAME_CASE(VWMULU_VL)
9601   NODE_NAME_CASE(SETCC_VL)
9602   NODE_NAME_CASE(VSELECT_VL)
9603   NODE_NAME_CASE(VMAND_VL)
9604   NODE_NAME_CASE(VMOR_VL)
9605   NODE_NAME_CASE(VMXOR_VL)
9606   NODE_NAME_CASE(VMCLR_VL)
9607   NODE_NAME_CASE(VMSET_VL)
9608   NODE_NAME_CASE(VRGATHER_VX_VL)
9609   NODE_NAME_CASE(VRGATHER_VV_VL)
9610   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9611   NODE_NAME_CASE(VSEXT_VL)
9612   NODE_NAME_CASE(VZEXT_VL)
9613   NODE_NAME_CASE(VCPOP_VL)
9614   NODE_NAME_CASE(VLE_VL)
9615   NODE_NAME_CASE(VSE_VL)
9616   NODE_NAME_CASE(READ_CSR)
9617   NODE_NAME_CASE(WRITE_CSR)
9618   NODE_NAME_CASE(SWAP_CSR)
9619   }
9620   // clang-format on
9621   return nullptr;
9622 #undef NODE_NAME_CASE
9623 }
9624 
9625 /// getConstraintType - Given a constraint letter, return the type of
9626 /// constraint it is for this target.
9627 RISCVTargetLowering::ConstraintType
9628 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9629   if (Constraint.size() == 1) {
9630     switch (Constraint[0]) {
9631     default:
9632       break;
9633     case 'f':
9634       return C_RegisterClass;
9635     case 'I':
9636     case 'J':
9637     case 'K':
9638       return C_Immediate;
9639     case 'A':
9640       return C_Memory;
9641     case 'S': // A symbolic address
9642       return C_Other;
9643     }
9644   } else {
9645     if (Constraint == "vr" || Constraint == "vm")
9646       return C_RegisterClass;
9647   }
9648   return TargetLowering::getConstraintType(Constraint);
9649 }
9650 
9651 std::pair<unsigned, const TargetRegisterClass *>
9652 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9653                                                   StringRef Constraint,
9654                                                   MVT VT) const {
9655   // First, see if this is a constraint that directly corresponds to a
9656   // RISCV register class.
9657   if (Constraint.size() == 1) {
9658     switch (Constraint[0]) {
9659     case 'r':
9660       // TODO: Support fixed vectors up to XLen for P extension?
9661       if (VT.isVector())
9662         break;
9663       return std::make_pair(0U, &RISCV::GPRRegClass);
9664     case 'f':
9665       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9666         return std::make_pair(0U, &RISCV::FPR16RegClass);
9667       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9668         return std::make_pair(0U, &RISCV::FPR32RegClass);
9669       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9670         return std::make_pair(0U, &RISCV::FPR64RegClass);
9671       break;
9672     default:
9673       break;
9674     }
9675   } else if (Constraint == "vr") {
9676     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9677                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9678       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9679         return std::make_pair(0U, RC);
9680     }
9681   } else if (Constraint == "vm") {
9682     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
9683       return std::make_pair(0U, &RISCV::VMV0RegClass);
9684   }
9685 
9686   // Clang will correctly decode the usage of register name aliases into their
9687   // official names. However, other frontends like `rustc` do not. This allows
9688   // users of these frontends to use the ABI names for registers in LLVM-style
9689   // register constraints.
9690   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9691                                .Case("{zero}", RISCV::X0)
9692                                .Case("{ra}", RISCV::X1)
9693                                .Case("{sp}", RISCV::X2)
9694                                .Case("{gp}", RISCV::X3)
9695                                .Case("{tp}", RISCV::X4)
9696                                .Case("{t0}", RISCV::X5)
9697                                .Case("{t1}", RISCV::X6)
9698                                .Case("{t2}", RISCV::X7)
9699                                .Cases("{s0}", "{fp}", RISCV::X8)
9700                                .Case("{s1}", RISCV::X9)
9701                                .Case("{a0}", RISCV::X10)
9702                                .Case("{a1}", RISCV::X11)
9703                                .Case("{a2}", RISCV::X12)
9704                                .Case("{a3}", RISCV::X13)
9705                                .Case("{a4}", RISCV::X14)
9706                                .Case("{a5}", RISCV::X15)
9707                                .Case("{a6}", RISCV::X16)
9708                                .Case("{a7}", RISCV::X17)
9709                                .Case("{s2}", RISCV::X18)
9710                                .Case("{s3}", RISCV::X19)
9711                                .Case("{s4}", RISCV::X20)
9712                                .Case("{s5}", RISCV::X21)
9713                                .Case("{s6}", RISCV::X22)
9714                                .Case("{s7}", RISCV::X23)
9715                                .Case("{s8}", RISCV::X24)
9716                                .Case("{s9}", RISCV::X25)
9717                                .Case("{s10}", RISCV::X26)
9718                                .Case("{s11}", RISCV::X27)
9719                                .Case("{t3}", RISCV::X28)
9720                                .Case("{t4}", RISCV::X29)
9721                                .Case("{t5}", RISCV::X30)
9722                                .Case("{t6}", RISCV::X31)
9723                                .Default(RISCV::NoRegister);
9724   if (XRegFromAlias != RISCV::NoRegister)
9725     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9726 
9727   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9728   // TableGen record rather than the AsmName to choose registers for InlineAsm
9729   // constraints, plus we want to match those names to the widest floating point
9730   // register type available, manually select floating point registers here.
9731   //
9732   // The second case is the ABI name of the register, so that frontends can also
9733   // use the ABI names in register constraint lists.
9734   if (Subtarget.hasStdExtF()) {
9735     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9736                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9737                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9738                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9739                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9740                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9741                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9742                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9743                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9744                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9745                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9746                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9747                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9748                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9749                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9750                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9751                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9752                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9753                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9754                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9755                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9756                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9757                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9758                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9759                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9760                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9761                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9762                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9763                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9764                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9765                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9766                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9767                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9768                         .Default(RISCV::NoRegister);
9769     if (FReg != RISCV::NoRegister) {
9770       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9771       if (Subtarget.hasStdExtD()) {
9772         unsigned RegNo = FReg - RISCV::F0_F;
9773         unsigned DReg = RISCV::F0_D + RegNo;
9774         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9775       }
9776       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9777     }
9778   }
9779 
9780   if (Subtarget.hasVInstructions()) {
9781     Register VReg = StringSwitch<Register>(Constraint.lower())
9782                         .Case("{v0}", RISCV::V0)
9783                         .Case("{v1}", RISCV::V1)
9784                         .Case("{v2}", RISCV::V2)
9785                         .Case("{v3}", RISCV::V3)
9786                         .Case("{v4}", RISCV::V4)
9787                         .Case("{v5}", RISCV::V5)
9788                         .Case("{v6}", RISCV::V6)
9789                         .Case("{v7}", RISCV::V7)
9790                         .Case("{v8}", RISCV::V8)
9791                         .Case("{v9}", RISCV::V9)
9792                         .Case("{v10}", RISCV::V10)
9793                         .Case("{v11}", RISCV::V11)
9794                         .Case("{v12}", RISCV::V12)
9795                         .Case("{v13}", RISCV::V13)
9796                         .Case("{v14}", RISCV::V14)
9797                         .Case("{v15}", RISCV::V15)
9798                         .Case("{v16}", RISCV::V16)
9799                         .Case("{v17}", RISCV::V17)
9800                         .Case("{v18}", RISCV::V18)
9801                         .Case("{v19}", RISCV::V19)
9802                         .Case("{v20}", RISCV::V20)
9803                         .Case("{v21}", RISCV::V21)
9804                         .Case("{v22}", RISCV::V22)
9805                         .Case("{v23}", RISCV::V23)
9806                         .Case("{v24}", RISCV::V24)
9807                         .Case("{v25}", RISCV::V25)
9808                         .Case("{v26}", RISCV::V26)
9809                         .Case("{v27}", RISCV::V27)
9810                         .Case("{v28}", RISCV::V28)
9811                         .Case("{v29}", RISCV::V29)
9812                         .Case("{v30}", RISCV::V30)
9813                         .Case("{v31}", RISCV::V31)
9814                         .Default(RISCV::NoRegister);
9815     if (VReg != RISCV::NoRegister) {
9816       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9817         return std::make_pair(VReg, &RISCV::VMRegClass);
9818       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9819         return std::make_pair(VReg, &RISCV::VRRegClass);
9820       for (const auto *RC :
9821            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9822         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9823           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9824           return std::make_pair(VReg, RC);
9825         }
9826       }
9827     }
9828   }
9829 
9830   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9831 }
9832 
9833 unsigned
9834 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9835   // Currently only support length 1 constraints.
9836   if (ConstraintCode.size() == 1) {
9837     switch (ConstraintCode[0]) {
9838     case 'A':
9839       return InlineAsm::Constraint_A;
9840     default:
9841       break;
9842     }
9843   }
9844 
9845   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9846 }
9847 
9848 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9849     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9850     SelectionDAG &DAG) const {
9851   // Currently only support length 1 constraints.
9852   if (Constraint.length() == 1) {
9853     switch (Constraint[0]) {
9854     case 'I':
9855       // Validate & create a 12-bit signed immediate operand.
9856       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9857         uint64_t CVal = C->getSExtValue();
9858         if (isInt<12>(CVal))
9859           Ops.push_back(
9860               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9861       }
9862       return;
9863     case 'J':
9864       // Validate & create an integer zero operand.
9865       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9866         if (C->getZExtValue() == 0)
9867           Ops.push_back(
9868               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9869       return;
9870     case 'K':
9871       // Validate & create a 5-bit unsigned immediate operand.
9872       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9873         uint64_t CVal = C->getZExtValue();
9874         if (isUInt<5>(CVal))
9875           Ops.push_back(
9876               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9877       }
9878       return;
9879     case 'S':
9880       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9881         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9882                                                  GA->getValueType(0)));
9883       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9884         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9885                                                 BA->getValueType(0)));
9886       }
9887       return;
9888     default:
9889       break;
9890     }
9891   }
9892   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9893 }
9894 
9895 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9896                                                    Instruction *Inst,
9897                                                    AtomicOrdering Ord) const {
9898   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9899     return Builder.CreateFence(Ord);
9900   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9901     return Builder.CreateFence(AtomicOrdering::Release);
9902   return nullptr;
9903 }
9904 
9905 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9906                                                     Instruction *Inst,
9907                                                     AtomicOrdering Ord) const {
9908   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9909     return Builder.CreateFence(AtomicOrdering::Acquire);
9910   return nullptr;
9911 }
9912 
9913 TargetLowering::AtomicExpansionKind
9914 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9915   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9916   // point operations can't be used in an lr/sc sequence without breaking the
9917   // forward-progress guarantee.
9918   if (AI->isFloatingPointOperation())
9919     return AtomicExpansionKind::CmpXChg;
9920 
9921   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9922   if (Size == 8 || Size == 16)
9923     return AtomicExpansionKind::MaskedIntrinsic;
9924   return AtomicExpansionKind::None;
9925 }
9926 
9927 static Intrinsic::ID
9928 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9929   if (XLen == 32) {
9930     switch (BinOp) {
9931     default:
9932       llvm_unreachable("Unexpected AtomicRMW BinOp");
9933     case AtomicRMWInst::Xchg:
9934       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9935     case AtomicRMWInst::Add:
9936       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9937     case AtomicRMWInst::Sub:
9938       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9939     case AtomicRMWInst::Nand:
9940       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9941     case AtomicRMWInst::Max:
9942       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9943     case AtomicRMWInst::Min:
9944       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9945     case AtomicRMWInst::UMax:
9946       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9947     case AtomicRMWInst::UMin:
9948       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9949     }
9950   }
9951 
9952   if (XLen == 64) {
9953     switch (BinOp) {
9954     default:
9955       llvm_unreachable("Unexpected AtomicRMW BinOp");
9956     case AtomicRMWInst::Xchg:
9957       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9958     case AtomicRMWInst::Add:
9959       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9960     case AtomicRMWInst::Sub:
9961       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9962     case AtomicRMWInst::Nand:
9963       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9964     case AtomicRMWInst::Max:
9965       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9966     case AtomicRMWInst::Min:
9967       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9968     case AtomicRMWInst::UMax:
9969       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9970     case AtomicRMWInst::UMin:
9971       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9972     }
9973   }
9974 
9975   llvm_unreachable("Unexpected XLen\n");
9976 }
9977 
9978 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
9979     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
9980     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
9981   unsigned XLen = Subtarget.getXLen();
9982   Value *Ordering =
9983       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
9984   Type *Tys[] = {AlignedAddr->getType()};
9985   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
9986       AI->getModule(),
9987       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
9988 
9989   if (XLen == 64) {
9990     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9991     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9992     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9993   }
9994 
9995   Value *Result;
9996 
9997   // Must pass the shift amount needed to sign extend the loaded value prior
9998   // to performing a signed comparison for min/max. ShiftAmt is the number of
9999   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10000   // is the number of bits to left+right shift the value in order to
10001   // sign-extend.
10002   if (AI->getOperation() == AtomicRMWInst::Min ||
10003       AI->getOperation() == AtomicRMWInst::Max) {
10004     const DataLayout &DL = AI->getModule()->getDataLayout();
10005     unsigned ValWidth =
10006         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10007     Value *SextShamt =
10008         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10009     Result = Builder.CreateCall(LrwOpScwLoop,
10010                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10011   } else {
10012     Result =
10013         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10014   }
10015 
10016   if (XLen == 64)
10017     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10018   return Result;
10019 }
10020 
10021 TargetLowering::AtomicExpansionKind
10022 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10023     AtomicCmpXchgInst *CI) const {
10024   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10025   if (Size == 8 || Size == 16)
10026     return AtomicExpansionKind::MaskedIntrinsic;
10027   return AtomicExpansionKind::None;
10028 }
10029 
10030 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10031     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10032     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10033   unsigned XLen = Subtarget.getXLen();
10034   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10035   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10036   if (XLen == 64) {
10037     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10038     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10039     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10040     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10041   }
10042   Type *Tys[] = {AlignedAddr->getType()};
10043   Function *MaskedCmpXchg =
10044       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10045   Value *Result = Builder.CreateCall(
10046       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10047   if (XLen == 64)
10048     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10049   return Result;
10050 }
10051 
10052 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10053   return false;
10054 }
10055 
10056 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10057                                                EVT VT) const {
10058   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10059     return false;
10060 
10061   switch (FPVT.getSimpleVT().SimpleTy) {
10062   case MVT::f16:
10063     return Subtarget.hasStdExtZfh();
10064   case MVT::f32:
10065     return Subtarget.hasStdExtF();
10066   case MVT::f64:
10067     return Subtarget.hasStdExtD();
10068   default:
10069     return false;
10070   }
10071 }
10072 
10073 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10074                                                      EVT VT) const {
10075   VT = VT.getScalarType();
10076 
10077   if (!VT.isSimple())
10078     return false;
10079 
10080   switch (VT.getSimpleVT().SimpleTy) {
10081   case MVT::f16:
10082     return Subtarget.hasStdExtZfh();
10083   case MVT::f32:
10084     return Subtarget.hasStdExtF();
10085   case MVT::f64:
10086     return Subtarget.hasStdExtD();
10087   default:
10088     break;
10089   }
10090 
10091   return false;
10092 }
10093 
10094 Register RISCVTargetLowering::getExceptionPointerRegister(
10095     const Constant *PersonalityFn) const {
10096   return RISCV::X10;
10097 }
10098 
10099 Register RISCVTargetLowering::getExceptionSelectorRegister(
10100     const Constant *PersonalityFn) const {
10101   return RISCV::X11;
10102 }
10103 
10104 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10105   // Return false to suppress the unnecessary extensions if the LibCall
10106   // arguments or return value is f32 type for LP64 ABI.
10107   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10108   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10109     return false;
10110 
10111   return true;
10112 }
10113 
10114 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10115   if (Subtarget.is64Bit() && Type == MVT::i32)
10116     return true;
10117 
10118   return IsSigned;
10119 }
10120 
10121 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10122                                                  SDValue C) const {
10123   // Check integral scalar types.
10124   if (VT.isScalarInteger()) {
10125     // Omit the optimization if the sub target has the M extension and the data
10126     // size exceeds XLen.
10127     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10128       return false;
10129     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10130       // Break the MUL to a SLLI and an ADD/SUB.
10131       const APInt &Imm = ConstNode->getAPIntValue();
10132       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10133           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10134         return true;
10135       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10136       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10137           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10138            (Imm - 8).isPowerOf2()))
10139         return true;
10140       // Omit the following optimization if the sub target has the M extension
10141       // and the data size >= XLen.
10142       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10143         return false;
10144       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10145       // a pair of LUI/ADDI.
10146       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10147         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10148         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10149             (1 - ImmS).isPowerOf2())
10150         return true;
10151       }
10152     }
10153   }
10154 
10155   return false;
10156 }
10157 
10158 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10159     const SDValue &AddNode, const SDValue &ConstNode) const {
10160   // Let the DAGCombiner decide for vectors.
10161   EVT VT = AddNode.getValueType();
10162   if (VT.isVector())
10163     return true;
10164 
10165   // Let the DAGCombiner decide for larger types.
10166   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10167     return true;
10168 
10169   // It is worse if c1 is simm12 while c1*c2 is not.
10170   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10171   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10172   const APInt &C1 = C1Node->getAPIntValue();
10173   const APInt &C2 = C2Node->getAPIntValue();
10174   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10175     return false;
10176 
10177   // Default to true and let the DAGCombiner decide.
10178   return true;
10179 }
10180 
10181 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10182     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10183     bool *Fast) const {
10184   if (!VT.isVector())
10185     return false;
10186 
10187   EVT ElemVT = VT.getVectorElementType();
10188   if (Alignment >= ElemVT.getStoreSize()) {
10189     if (Fast)
10190       *Fast = true;
10191     return true;
10192   }
10193 
10194   return false;
10195 }
10196 
10197 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10198     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10199     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10200   bool IsABIRegCopy = CC.hasValue();
10201   EVT ValueVT = Val.getValueType();
10202   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10203     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10204     // and cast to f32.
10205     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10206     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10207     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10208                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10209     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10210     Parts[0] = Val;
10211     return true;
10212   }
10213 
10214   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10215     LLVMContext &Context = *DAG.getContext();
10216     EVT ValueEltVT = ValueVT.getVectorElementType();
10217     EVT PartEltVT = PartVT.getVectorElementType();
10218     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10219     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10220     if (PartVTBitSize % ValueVTBitSize == 0) {
10221       assert(PartVTBitSize >= ValueVTBitSize);
10222       // If the element types are different, bitcast to the same element type of
10223       // PartVT first.
10224       // Give an example here, we want copy a <vscale x 1 x i8> value to
10225       // <vscale x 4 x i16>.
10226       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10227       // subvector, then we can bitcast to <vscale x 4 x i16>.
10228       if (ValueEltVT != PartEltVT) {
10229         if (PartVTBitSize > ValueVTBitSize) {
10230           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10231           assert(Count != 0 && "The number of element should not be zero.");
10232           EVT SameEltTypeVT =
10233               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10234           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10235                             DAG.getUNDEF(SameEltTypeVT), Val,
10236                             DAG.getVectorIdxConstant(0, DL));
10237         }
10238         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10239       } else {
10240         Val =
10241             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10242                         Val, DAG.getVectorIdxConstant(0, DL));
10243       }
10244       Parts[0] = Val;
10245       return true;
10246     }
10247   }
10248   return false;
10249 }
10250 
10251 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10252     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10253     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10254   bool IsABIRegCopy = CC.hasValue();
10255   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10256     SDValue Val = Parts[0];
10257 
10258     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10259     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10260     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10261     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10262     return Val;
10263   }
10264 
10265   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10266     LLVMContext &Context = *DAG.getContext();
10267     SDValue Val = Parts[0];
10268     EVT ValueEltVT = ValueVT.getVectorElementType();
10269     EVT PartEltVT = PartVT.getVectorElementType();
10270     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10271     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10272     if (PartVTBitSize % ValueVTBitSize == 0) {
10273       assert(PartVTBitSize >= ValueVTBitSize);
10274       EVT SameEltTypeVT = ValueVT;
10275       // If the element types are different, convert it to the same element type
10276       // of PartVT.
10277       // Give an example here, we want copy a <vscale x 1 x i8> value from
10278       // <vscale x 4 x i16>.
10279       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10280       // then we can extract <vscale x 1 x i8>.
10281       if (ValueEltVT != PartEltVT) {
10282         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10283         assert(Count != 0 && "The number of element should not be zero.");
10284         SameEltTypeVT =
10285             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10286         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10287       }
10288       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10289                         DAG.getVectorIdxConstant(0, DL));
10290       return Val;
10291     }
10292   }
10293   return SDValue();
10294 }
10295 
10296 #define GET_REGISTER_MATCHER
10297 #include "RISCVGenAsmMatcher.inc"
10298 
10299 Register
10300 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10301                                        const MachineFunction &MF) const {
10302   Register Reg = MatchRegisterAltName(RegName);
10303   if (Reg == RISCV::NoRegister)
10304     Reg = MatchRegisterName(RegName);
10305   if (Reg == RISCV::NoRegister)
10306     report_fatal_error(
10307         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10308   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10309   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10310     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10311                              StringRef(RegName) + "\"."));
10312   return Reg;
10313 }
10314 
10315 namespace llvm {
10316 namespace RISCVVIntrinsicsTable {
10317 
10318 #define GET_RISCVVIntrinsicsTable_IMPL
10319 #include "RISCVGenSearchableTables.inc"
10320 
10321 } // namespace RISCVVIntrinsicsTable
10322 
10323 } // namespace llvm
10324