xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "riscv-lower"
40 
41 STATISTIC(NumTailCalls, "Number of tail calls");
42 
43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
44                                          const RISCVSubtarget &STI)
45     : TargetLowering(TM), Subtarget(STI) {
46 
47   if (Subtarget.isRV32E())
48     report_fatal_error("Codegen not yet implemented for RV32E");
49 
50   RISCVABI::ABI ABI = Subtarget.getTargetABI();
51   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
52 
53   switch (ABI) {
54   default:
55     report_fatal_error("Don't know how to lower this ABI");
56   case RISCVABI::ABI_ILP32:
57   case RISCVABI::ABI_ILP32F:
58   case RISCVABI::ABI_ILP32D:
59   case RISCVABI::ABI_LP64:
60   case RISCVABI::ABI_LP64F:
61   case RISCVABI::ABI_LP64D:
62     break;
63   }
64 
65   MVT XLenVT = Subtarget.getXLenVT();
66 
67   // Set up the register classes.
68   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
69 
70   if (Subtarget.hasStdExtF())
71     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
72   if (Subtarget.hasStdExtD())
73     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
74 
75   // Compute derived properties from the register classes.
76   computeRegisterProperties(STI.getRegisterInfo());
77 
78   setStackPointerRegisterToSaveRestore(RISCV::X2);
79 
80   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
81     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
82 
83   // TODO: add all necessary setOperationAction calls.
84   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
85 
86   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87   setOperationAction(ISD::BR_CC, XLenVT, Expand);
88   setOperationAction(ISD::SELECT, XLenVT, Custom);
89   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
90 
91   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
92   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
93 
94   setOperationAction(ISD::VASTART, MVT::Other, Custom);
95   setOperationAction(ISD::VAARG, MVT::Other, Expand);
96   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
97   setOperationAction(ISD::VAEND, MVT::Other, Expand);
98 
99   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
100     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
101 
102   if (Subtarget.is64Bit()) {
103     setOperationAction(ISD::SHL, MVT::i32, Custom);
104     setOperationAction(ISD::SRA, MVT::i32, Custom);
105     setOperationAction(ISD::SRL, MVT::i32, Custom);
106   }
107 
108   if (!Subtarget.hasStdExtM()) {
109     setOperationAction(ISD::MUL, XLenVT, Expand);
110     setOperationAction(ISD::MULHS, XLenVT, Expand);
111     setOperationAction(ISD::MULHU, XLenVT, Expand);
112     setOperationAction(ISD::SDIV, XLenVT, Expand);
113     setOperationAction(ISD::UDIV, XLenVT, Expand);
114     setOperationAction(ISD::SREM, XLenVT, Expand);
115     setOperationAction(ISD::UREM, XLenVT, Expand);
116   }
117 
118   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
119     setOperationAction(ISD::SDIV, MVT::i32, Custom);
120     setOperationAction(ISD::UDIV, MVT::i32, Custom);
121     setOperationAction(ISD::UREM, MVT::i32, Custom);
122   }
123 
124   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
125   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
126   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
127   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
128 
129   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
130   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
131   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
132 
133   setOperationAction(ISD::ROTL, XLenVT, Expand);
134   setOperationAction(ISD::ROTR, XLenVT, Expand);
135   setOperationAction(ISD::BSWAP, XLenVT, Expand);
136   setOperationAction(ISD::CTTZ, XLenVT, Expand);
137   setOperationAction(ISD::CTLZ, XLenVT, Expand);
138   setOperationAction(ISD::CTPOP, XLenVT, Expand);
139 
140   ISD::CondCode FPCCToExtend[] = {
141       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
142       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
143       ISD::SETGE,  ISD::SETNE};
144 
145   ISD::NodeType FPOpToExtend[] = {
146       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM};
147 
148   if (Subtarget.hasStdExtF()) {
149     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
150     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
151     for (auto CC : FPCCToExtend)
152       setCondCodeAction(CC, MVT::f32, Expand);
153     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
154     setOperationAction(ISD::SELECT, MVT::f32, Custom);
155     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
156     for (auto Op : FPOpToExtend)
157       setOperationAction(Op, MVT::f32, Expand);
158   }
159 
160   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
161     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
162 
163   if (Subtarget.hasStdExtD()) {
164     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
165     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
166     for (auto CC : FPCCToExtend)
167       setCondCodeAction(CC, MVT::f64, Expand);
168     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
169     setOperationAction(ISD::SELECT, MVT::f64, Custom);
170     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
171     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
172     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
173     for (auto Op : FPOpToExtend)
174       setOperationAction(Op, MVT::f64, Expand);
175   }
176 
177   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
178   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
179   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
180 
181   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
182 
183   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
184   // Unfortunately this can't be determined just from the ISA naming string.
185   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
186                      Subtarget.is64Bit() ? Legal : Custom);
187 
188   if (Subtarget.hasStdExtA()) {
189     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
190     setMinCmpXchgSizeInBits(32);
191   } else {
192     setMaxAtomicSizeInBitsSupported(0);
193   }
194 
195   setBooleanContents(ZeroOrOneBooleanContent);
196 
197   // Function alignments (log2).
198   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
199   setMinFunctionAlignment(FunctionAlignment);
200   setPrefFunctionAlignment(FunctionAlignment);
201 
202   // Effectively disable jump table generation.
203   setMinimumJumpTableEntries(INT_MAX);
204 }
205 
206 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
207                                             EVT VT) const {
208   if (!VT.isVector())
209     return getPointerTy(DL);
210   return VT.changeVectorElementTypeToInteger();
211 }
212 
213 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
214                                              const CallInst &I,
215                                              MachineFunction &MF,
216                                              unsigned Intrinsic) const {
217   switch (Intrinsic) {
218   default:
219     return false;
220   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
221   case Intrinsic::riscv_masked_atomicrmw_add_i32:
222   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
223   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
224   case Intrinsic::riscv_masked_atomicrmw_max_i32:
225   case Intrinsic::riscv_masked_atomicrmw_min_i32:
226   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
227   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
228   case Intrinsic::riscv_masked_cmpxchg_i32:
229     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
230     Info.opc = ISD::INTRINSIC_W_CHAIN;
231     Info.memVT = MVT::getVT(PtrTy->getElementType());
232     Info.ptrVal = I.getArgOperand(0);
233     Info.offset = 0;
234     Info.align = 4;
235     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
236                  MachineMemOperand::MOVolatile;
237     return true;
238   }
239 }
240 
241 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
242                                                 const AddrMode &AM, Type *Ty,
243                                                 unsigned AS,
244                                                 Instruction *I) const {
245   // No global is ever allowed as a base.
246   if (AM.BaseGV)
247     return false;
248 
249   // Require a 12-bit signed offset.
250   if (!isInt<12>(AM.BaseOffs))
251     return false;
252 
253   switch (AM.Scale) {
254   case 0: // "r+i" or just "i", depending on HasBaseReg.
255     break;
256   case 1:
257     if (!AM.HasBaseReg) // allow "r+i".
258       break;
259     return false; // disallow "r+r" or "r+r+i".
260   default:
261     return false;
262   }
263 
264   return true;
265 }
266 
267 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
268   return isInt<12>(Imm);
269 }
270 
271 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
272   return isInt<12>(Imm);
273 }
274 
275 // On RV32, 64-bit integers are split into their high and low parts and held
276 // in two different registers, so the trunc is free since the low register can
277 // just be used.
278 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
279   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
280     return false;
281   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
282   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
283   return (SrcBits == 64 && DestBits == 32);
284 }
285 
286 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
287   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
288       !SrcVT.isInteger() || !DstVT.isInteger())
289     return false;
290   unsigned SrcBits = SrcVT.getSizeInBits();
291   unsigned DestBits = DstVT.getSizeInBits();
292   return (SrcBits == 64 && DestBits == 32);
293 }
294 
295 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
296   // Zexts are free if they can be combined with a load.
297   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
298     EVT MemVT = LD->getMemoryVT();
299     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
300          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
301         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
302          LD->getExtensionType() == ISD::ZEXTLOAD))
303       return true;
304   }
305 
306   return TargetLowering::isZExtFree(Val, VT2);
307 }
308 
309 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
310   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
311 }
312 
313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
314   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
315          (VT == MVT::f64 && Subtarget.hasStdExtD());
316 }
317 
318 // Changes the condition code and swaps operands if necessary, so the SetCC
319 // operation matches one of the comparisons supported directly in the RISC-V
320 // ISA.
321 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
322   switch (CC) {
323   default:
324     break;
325   case ISD::SETGT:
326   case ISD::SETLE:
327   case ISD::SETUGT:
328   case ISD::SETULE:
329     CC = ISD::getSetCCSwappedOperands(CC);
330     std::swap(LHS, RHS);
331     break;
332   }
333 }
334 
335 // Return the RISC-V branch opcode that matches the given DAG integer
336 // condition code. The CondCode must be one of those supported by the RISC-V
337 // ISA (see normaliseSetCC).
338 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
339   switch (CC) {
340   default:
341     llvm_unreachable("Unsupported CondCode");
342   case ISD::SETEQ:
343     return RISCV::BEQ;
344   case ISD::SETNE:
345     return RISCV::BNE;
346   case ISD::SETLT:
347     return RISCV::BLT;
348   case ISD::SETGE:
349     return RISCV::BGE;
350   case ISD::SETULT:
351     return RISCV::BLTU;
352   case ISD::SETUGE:
353     return RISCV::BGEU;
354   }
355 }
356 
357 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
358                                             SelectionDAG &DAG) const {
359   switch (Op.getOpcode()) {
360   default:
361     report_fatal_error("unimplemented operand");
362   case ISD::GlobalAddress:
363     return lowerGlobalAddress(Op, DAG);
364   case ISD::BlockAddress:
365     return lowerBlockAddress(Op, DAG);
366   case ISD::ConstantPool:
367     return lowerConstantPool(Op, DAG);
368   case ISD::GlobalTLSAddress:
369     return lowerGlobalTLSAddress(Op, DAG);
370   case ISD::SELECT:
371     return lowerSELECT(Op, DAG);
372   case ISD::VASTART:
373     return lowerVASTART(Op, DAG);
374   case ISD::FRAMEADDR:
375     return lowerFRAMEADDR(Op, DAG);
376   case ISD::RETURNADDR:
377     return lowerRETURNADDR(Op, DAG);
378   case ISD::SHL_PARTS:
379     return lowerShiftLeftParts(Op, DAG);
380   case ISD::SRA_PARTS:
381     return lowerShiftRightParts(Op, DAG, true);
382   case ISD::SRL_PARTS:
383     return lowerShiftRightParts(Op, DAG, false);
384   case ISD::BITCAST: {
385     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
386            "Unexpected custom legalisation");
387     SDLoc DL(Op);
388     SDValue Op0 = Op.getOperand(0);
389     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
390       return SDValue();
391     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
392     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
393     return FPConv;
394   }
395   }
396 }
397 
398 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
399                              SelectionDAG &DAG, unsigned Flags) {
400   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
401 }
402 
403 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
404                              SelectionDAG &DAG, unsigned Flags) {
405   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
406                                    Flags);
407 }
408 
409 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
410                              SelectionDAG &DAG, unsigned Flags) {
411   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
412                                    N->getOffset(), Flags);
413 }
414 
415 template <class NodeTy>
416 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
417                                      bool IsLocal) const {
418   SDLoc DL(N);
419   EVT Ty = getPointerTy(DAG.getDataLayout());
420 
421   if (isPositionIndependent()) {
422     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
423     if (IsLocal)
424       // Use PC-relative addressing to access the symbol. This generates the
425       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
426       // %pcrel_lo(auipc)).
427       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
428 
429     // Use PC-relative addressing to access the GOT for this symbol, then load
430     // the address from the GOT. This generates the pattern (PseudoLA sym),
431     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
432     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
433   }
434 
435   switch (getTargetMachine().getCodeModel()) {
436   default:
437     report_fatal_error("Unsupported code model for lowering");
438   case CodeModel::Small: {
439     // Generate a sequence for accessing addresses within the first 2 GiB of
440     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
441     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
442     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
443     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
444     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
445   }
446   case CodeModel::Medium: {
447     // Generate a sequence for accessing addresses within any 2GiB range within
448     // the address space. This generates the pattern (PseudoLLA sym), which
449     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
450     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
451     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
452   }
453   }
454 }
455 
456 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
457                                                 SelectionDAG &DAG) const {
458   SDLoc DL(Op);
459   EVT Ty = Op.getValueType();
460   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
461   int64_t Offset = N->getOffset();
462   MVT XLenVT = Subtarget.getXLenVT();
463 
464   const GlobalValue *GV = N->getGlobal();
465   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
466   SDValue Addr = getAddr(N, DAG, IsLocal);
467 
468   // In order to maximise the opportunity for common subexpression elimination,
469   // emit a separate ADD node for the global address offset instead of folding
470   // it in the global address node. Later peephole optimisations may choose to
471   // fold it back in when profitable.
472   if (Offset != 0)
473     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
474                        DAG.getConstant(Offset, DL, XLenVT));
475   return Addr;
476 }
477 
478 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
479                                                SelectionDAG &DAG) const {
480   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
481 
482   return getAddr(N, DAG);
483 }
484 
485 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
486                                                SelectionDAG &DAG) const {
487   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
488 
489   return getAddr(N, DAG);
490 }
491 
492 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
493                                               SelectionDAG &DAG,
494                                               bool UseGOT) const {
495   SDLoc DL(N);
496   EVT Ty = getPointerTy(DAG.getDataLayout());
497   const GlobalValue *GV = N->getGlobal();
498   MVT XLenVT = Subtarget.getXLenVT();
499 
500   if (UseGOT) {
501     // Use PC-relative addressing to access the GOT for this TLS symbol, then
502     // load the address from the GOT and add the thread pointer. This generates
503     // the pattern (PseudoLA_TLS_IE sym), which expands to
504     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
505     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
506     SDValue Load =
507         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
508 
509     // Add the thread pointer.
510     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
511     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
512   }
513 
514   // Generate a sequence for accessing the address relative to the thread
515   // pointer, with the appropriate adjustment for the thread pointer offset.
516   // This generates the pattern
517   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
518   SDValue AddrHi =
519       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
520   SDValue AddrAdd =
521       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
522   SDValue AddrLo =
523       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
524 
525   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
526   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
527   SDValue MNAdd = SDValue(
528       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
529       0);
530   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
531 }
532 
533 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
534                                                SelectionDAG &DAG) const {
535   SDLoc DL(N);
536   EVT Ty = getPointerTy(DAG.getDataLayout());
537   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
538   const GlobalValue *GV = N->getGlobal();
539 
540   // Use a PC-relative addressing mode to access the global dynamic GOT address.
541   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
542   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
543   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
544   SDValue Load =
545       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
546 
547   // Prepare argument list to generate call.
548   ArgListTy Args;
549   ArgListEntry Entry;
550   Entry.Node = Load;
551   Entry.Ty = CallTy;
552   Args.push_back(Entry);
553 
554   // Setup call to __tls_get_addr.
555   TargetLowering::CallLoweringInfo CLI(DAG);
556   CLI.setDebugLoc(DL)
557       .setChain(DAG.getEntryNode())
558       .setLibCallee(CallingConv::C, CallTy,
559                     DAG.getExternalSymbol("__tls_get_addr", Ty),
560                     std::move(Args));
561 
562   return LowerCallTo(CLI).first;
563 }
564 
565 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
566                                                    SelectionDAG &DAG) const {
567   SDLoc DL(Op);
568   EVT Ty = Op.getValueType();
569   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
570   int64_t Offset = N->getOffset();
571   MVT XLenVT = Subtarget.getXLenVT();
572 
573   // Non-PIC TLS lowering should always use the LocalExec model.
574   TLSModel::Model Model = isPositionIndependent()
575                               ? getTargetMachine().getTLSModel(N->getGlobal())
576                               : TLSModel::LocalExec;
577 
578   SDValue Addr;
579   switch (Model) {
580   case TLSModel::LocalExec:
581     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
582     break;
583   case TLSModel::InitialExec:
584     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
585     break;
586   case TLSModel::LocalDynamic:
587   case TLSModel::GeneralDynamic:
588     Addr = getDynamicTLSAddr(N, DAG);
589     break;
590   }
591 
592   // In order to maximise the opportunity for common subexpression elimination,
593   // emit a separate ADD node for the global address offset instead of folding
594   // it in the global address node. Later peephole optimisations may choose to
595   // fold it back in when profitable.
596   if (Offset != 0)
597     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
598                        DAG.getConstant(Offset, DL, XLenVT));
599   return Addr;
600 }
601 
602 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
603   SDValue CondV = Op.getOperand(0);
604   SDValue TrueV = Op.getOperand(1);
605   SDValue FalseV = Op.getOperand(2);
606   SDLoc DL(Op);
607   MVT XLenVT = Subtarget.getXLenVT();
608 
609   // If the result type is XLenVT and CondV is the output of a SETCC node
610   // which also operated on XLenVT inputs, then merge the SETCC node into the
611   // lowered RISCVISD::SELECT_CC to take advantage of the integer
612   // compare+branch instructions. i.e.:
613   // (select (setcc lhs, rhs, cc), truev, falsev)
614   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
615   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
616       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
617     SDValue LHS = CondV.getOperand(0);
618     SDValue RHS = CondV.getOperand(1);
619     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
620     ISD::CondCode CCVal = CC->get();
621 
622     normaliseSetCC(LHS, RHS, CCVal);
623 
624     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
625     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
626     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
627     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
628   }
629 
630   // Otherwise:
631   // (select condv, truev, falsev)
632   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
633   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
634   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
635 
636   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
637   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
638 
639   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
640 }
641 
642 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
643   MachineFunction &MF = DAG.getMachineFunction();
644   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
645 
646   SDLoc DL(Op);
647   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
648                                  getPointerTy(MF.getDataLayout()));
649 
650   // vastart just stores the address of the VarArgsFrameIndex slot into the
651   // memory location argument.
652   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
653   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
654                       MachinePointerInfo(SV));
655 }
656 
657 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
658                                             SelectionDAG &DAG) const {
659   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
660   MachineFunction &MF = DAG.getMachineFunction();
661   MachineFrameInfo &MFI = MF.getFrameInfo();
662   MFI.setFrameAddressIsTaken(true);
663   unsigned FrameReg = RI.getFrameRegister(MF);
664   int XLenInBytes = Subtarget.getXLen() / 8;
665 
666   EVT VT = Op.getValueType();
667   SDLoc DL(Op);
668   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
669   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
670   while (Depth--) {
671     int Offset = -(XLenInBytes * 2);
672     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
673                               DAG.getIntPtrConstant(Offset, DL));
674     FrameAddr =
675         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
676   }
677   return FrameAddr;
678 }
679 
680 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
681                                              SelectionDAG &DAG) const {
682   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
683   MachineFunction &MF = DAG.getMachineFunction();
684   MachineFrameInfo &MFI = MF.getFrameInfo();
685   MFI.setReturnAddressIsTaken(true);
686   MVT XLenVT = Subtarget.getXLenVT();
687   int XLenInBytes = Subtarget.getXLen() / 8;
688 
689   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
690     return SDValue();
691 
692   EVT VT = Op.getValueType();
693   SDLoc DL(Op);
694   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
695   if (Depth) {
696     int Off = -XLenInBytes;
697     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
698     SDValue Offset = DAG.getConstant(Off, DL, VT);
699     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
700                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
701                        MachinePointerInfo());
702   }
703 
704   // Return the value of the return address register, marking it an implicit
705   // live-in.
706   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
707   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
708 }
709 
710 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
711                                                  SelectionDAG &DAG) const {
712   SDLoc DL(Op);
713   SDValue Lo = Op.getOperand(0);
714   SDValue Hi = Op.getOperand(1);
715   SDValue Shamt = Op.getOperand(2);
716   EVT VT = Lo.getValueType();
717 
718   // if Shamt-XLEN < 0: // Shamt < XLEN
719   //   Lo = Lo << Shamt
720   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
721   // else:
722   //   Lo = 0
723   //   Hi = Lo << (Shamt-XLEN)
724 
725   SDValue Zero = DAG.getConstant(0, DL, VT);
726   SDValue One = DAG.getConstant(1, DL, VT);
727   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
728   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
729   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
730   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
731 
732   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
733   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
734   SDValue ShiftRightLo =
735       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
736   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
737   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
738   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
739 
740   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
741 
742   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
743   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
744 
745   SDValue Parts[2] = {Lo, Hi};
746   return DAG.getMergeValues(Parts, DL);
747 }
748 
749 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
750                                                   bool IsSRA) const {
751   SDLoc DL(Op);
752   SDValue Lo = Op.getOperand(0);
753   SDValue Hi = Op.getOperand(1);
754   SDValue Shamt = Op.getOperand(2);
755   EVT VT = Lo.getValueType();
756 
757   // SRA expansion:
758   //   if Shamt-XLEN < 0: // Shamt < XLEN
759   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
760   //     Hi = Hi >>s Shamt
761   //   else:
762   //     Lo = Hi >>s (Shamt-XLEN);
763   //     Hi = Hi >>s (XLEN-1)
764   //
765   // SRL expansion:
766   //   if Shamt-XLEN < 0: // Shamt < XLEN
767   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
768   //     Hi = Hi >>u Shamt
769   //   else:
770   //     Lo = Hi >>u (Shamt-XLEN);
771   //     Hi = 0;
772 
773   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
774 
775   SDValue Zero = DAG.getConstant(0, DL, VT);
776   SDValue One = DAG.getConstant(1, DL, VT);
777   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
778   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
779   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
780   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
781 
782   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
783   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
784   SDValue ShiftLeftHi =
785       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
786   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
787   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
788   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
789   SDValue HiFalse =
790       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
791 
792   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
793 
794   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
795   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
796 
797   SDValue Parts[2] = {Lo, Hi};
798   return DAG.getMergeValues(Parts, DL);
799 }
800 
801 // Returns the opcode of the target-specific SDNode that implements the 32-bit
802 // form of the given Opcode.
803 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
804   switch (Opcode) {
805   default:
806     llvm_unreachable("Unexpected opcode");
807   case ISD::SHL:
808     return RISCVISD::SLLW;
809   case ISD::SRA:
810     return RISCVISD::SRAW;
811   case ISD::SRL:
812     return RISCVISD::SRLW;
813   case ISD::SDIV:
814     return RISCVISD::DIVW;
815   case ISD::UDIV:
816     return RISCVISD::DIVUW;
817   case ISD::UREM:
818     return RISCVISD::REMUW;
819   }
820 }
821 
822 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
823 // Because i32 isn't a legal type for RV64, these operations would otherwise
824 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
825 // later one because the fact the operation was originally of type i32 is
826 // lost.
827 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
828   SDLoc DL(N);
829   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
830   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
831   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
832   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
833   // ReplaceNodeResults requires we maintain the same type for the return value.
834   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
835 }
836 
837 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
838                                              SmallVectorImpl<SDValue> &Results,
839                                              SelectionDAG &DAG) const {
840   SDLoc DL(N);
841   switch (N->getOpcode()) {
842   default:
843     llvm_unreachable("Don't know how to custom type legalize this operation!");
844   case ISD::READCYCLECOUNTER: {
845     assert(!Subtarget.is64Bit() &&
846            "READCYCLECOUNTER only has custom type legalization on riscv32");
847 
848     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
849     SDValue RCW =
850         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
851 
852     Results.push_back(RCW);
853     Results.push_back(RCW.getValue(1));
854     Results.push_back(RCW.getValue(2));
855     break;
856   }
857   case ISD::SHL:
858   case ISD::SRA:
859   case ISD::SRL:
860     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
861            "Unexpected custom legalisation");
862     if (N->getOperand(1).getOpcode() == ISD::Constant)
863       return;
864     Results.push_back(customLegalizeToWOp(N, DAG));
865     break;
866   case ISD::SDIV:
867   case ISD::UDIV:
868   case ISD::UREM:
869     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
870            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
871     if (N->getOperand(0).getOpcode() == ISD::Constant ||
872         N->getOperand(1).getOpcode() == ISD::Constant)
873       return;
874     Results.push_back(customLegalizeToWOp(N, DAG));
875     break;
876   case ISD::BITCAST: {
877     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
878            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
879     SDLoc DL(N);
880     SDValue Op0 = N->getOperand(0);
881     if (Op0.getValueType() != MVT::f32)
882       return;
883     SDValue FPConv =
884         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
885     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
886     break;
887   }
888   }
889 }
890 
891 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
892                                                DAGCombinerInfo &DCI) const {
893   SelectionDAG &DAG = DCI.DAG;
894 
895   switch (N->getOpcode()) {
896   default:
897     break;
898   case RISCVISD::SplitF64: {
899     SDValue Op0 = N->getOperand(0);
900     // If the input to SplitF64 is just BuildPairF64 then the operation is
901     // redundant. Instead, use BuildPairF64's operands directly.
902     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
903       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
904 
905     SDLoc DL(N);
906 
907     // It's cheaper to materialise two 32-bit integers than to load a double
908     // from the constant pool and transfer it to integer registers through the
909     // stack.
910     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
911       APInt V = C->getValueAPF().bitcastToAPInt();
912       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
913       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
914       return DCI.CombineTo(N, Lo, Hi);
915     }
916 
917     // This is a target-specific version of a DAGCombine performed in
918     // DAGCombiner::visitBITCAST. It performs the equivalent of:
919     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
920     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
921     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
922         !Op0.getNode()->hasOneUse())
923       break;
924     SDValue NewSplitF64 =
925         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
926                     Op0.getOperand(0));
927     SDValue Lo = NewSplitF64.getValue(0);
928     SDValue Hi = NewSplitF64.getValue(1);
929     APInt SignBit = APInt::getSignMask(32);
930     if (Op0.getOpcode() == ISD::FNEG) {
931       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
932                                   DAG.getConstant(SignBit, DL, MVT::i32));
933       return DCI.CombineTo(N, Lo, NewHi);
934     }
935     assert(Op0.getOpcode() == ISD::FABS);
936     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
937                                 DAG.getConstant(~SignBit, DL, MVT::i32));
938     return DCI.CombineTo(N, Lo, NewHi);
939   }
940   case RISCVISD::SLLW:
941   case RISCVISD::SRAW:
942   case RISCVISD::SRLW: {
943     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
944     SDValue LHS = N->getOperand(0);
945     SDValue RHS = N->getOperand(1);
946     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
947     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
948     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
949         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
950       return SDValue();
951     break;
952   }
953   case RISCVISD::FMV_X_ANYEXTW_RV64: {
954     SDLoc DL(N);
955     SDValue Op0 = N->getOperand(0);
956     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
957     // conversion is unnecessary and can be replaced with an ANY_EXTEND
958     // of the FMV_W_X_RV64 operand.
959     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
960       SDValue AExtOp =
961           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
962       return DCI.CombineTo(N, AExtOp);
963     }
964 
965     // This is a target-specific version of a DAGCombine performed in
966     // DAGCombiner::visitBITCAST. It performs the equivalent of:
967     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
968     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
969     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
970         !Op0.getNode()->hasOneUse())
971       break;
972     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
973                                  Op0.getOperand(0));
974     APInt SignBit = APInt::getSignMask(32).sext(64);
975     if (Op0.getOpcode() == ISD::FNEG) {
976       return DCI.CombineTo(N,
977                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
978                                        DAG.getConstant(SignBit, DL, MVT::i64)));
979     }
980     assert(Op0.getOpcode() == ISD::FABS);
981     return DCI.CombineTo(N,
982                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
983                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
984   }
985   }
986 
987   return SDValue();
988 }
989 
990 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
991     const SDNode *N, CombineLevel Level) const {
992   // The following folds are only desirable if `(OP _, c1 << c2)` can be
993   // materialised in fewer instructions than `(OP _, c1)`:
994   //
995   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
996   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
997   SDValue N0 = N->getOperand(0);
998   EVT Ty = N0.getValueType();
999   if (Ty.isScalarInteger() &&
1000       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1001     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1002     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1003     if (C1 && C2) {
1004       APInt C1Int = C1->getAPIntValue();
1005       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1006 
1007       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1008       // and the combine should happen, to potentially allow further combines
1009       // later.
1010       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1011           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1012         return true;
1013 
1014       // We can materialise `c1` in an add immediate, so it's "free", and the
1015       // combine should be prevented.
1016       if (C1Int.getMinSignedBits() <= 64 &&
1017           isLegalAddImmediate(C1Int.getSExtValue()))
1018         return false;
1019 
1020       // Neither constant will fit into an immediate, so find materialisation
1021       // costs.
1022       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1023                                               Subtarget.is64Bit());
1024       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1025           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1026 
1027       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1028       // combine should be prevented.
1029       if (C1Cost < ShiftedC1Cost)
1030         return false;
1031     }
1032   }
1033   return true;
1034 }
1035 
1036 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1037     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1038     unsigned Depth) const {
1039   switch (Op.getOpcode()) {
1040   default:
1041     break;
1042   case RISCVISD::SLLW:
1043   case RISCVISD::SRAW:
1044   case RISCVISD::SRLW:
1045   case RISCVISD::DIVW:
1046   case RISCVISD::DIVUW:
1047   case RISCVISD::REMUW:
1048     // TODO: As the result is sign-extended, this is conservatively correct. A
1049     // more precise answer could be calculated for SRAW depending on known
1050     // bits in the shift amount.
1051     return 33;
1052   }
1053 
1054   return 1;
1055 }
1056 
1057 MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1058                                            MachineBasicBlock *BB) {
1059   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1060 
1061   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1062   // Should the count have wrapped while it was being read, we need to try
1063   // again.
1064   // ...
1065   // read:
1066   // rdcycleh x3 # load high word of cycle
1067   // rdcycle  x2 # load low word of cycle
1068   // rdcycleh x4 # load high word of cycle
1069   // bne x3, x4, read # check if high word reads match, otherwise try again
1070   // ...
1071 
1072   MachineFunction &MF = *BB->getParent();
1073   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1074   MachineFunction::iterator It = ++BB->getIterator();
1075 
1076   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1077   MF.insert(It, LoopMBB);
1078 
1079   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1080   MF.insert(It, DoneMBB);
1081 
1082   // Transfer the remainder of BB and its successor edges to DoneMBB.
1083   DoneMBB->splice(DoneMBB->begin(), BB,
1084                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1085   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1086 
1087   BB->addSuccessor(LoopMBB);
1088 
1089   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1090   unsigned ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1091   unsigned LoReg = MI.getOperand(0).getReg();
1092   unsigned HiReg = MI.getOperand(1).getReg();
1093   DebugLoc DL = MI.getDebugLoc();
1094 
1095   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1096   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1097       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1098       .addReg(RISCV::X0);
1099   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1100       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1101       .addReg(RISCV::X0);
1102   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1103       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1104       .addReg(RISCV::X0);
1105 
1106   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1107       .addReg(HiReg)
1108       .addReg(ReadAgainReg)
1109       .addMBB(LoopMBB);
1110 
1111   LoopMBB->addSuccessor(LoopMBB);
1112   LoopMBB->addSuccessor(DoneMBB);
1113 
1114   MI.eraseFromParent();
1115 
1116   return DoneMBB;
1117 }
1118 
1119 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1120                                              MachineBasicBlock *BB) {
1121   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1122 
1123   MachineFunction &MF = *BB->getParent();
1124   DebugLoc DL = MI.getDebugLoc();
1125   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1126   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1127   unsigned LoReg = MI.getOperand(0).getReg();
1128   unsigned HiReg = MI.getOperand(1).getReg();
1129   unsigned SrcReg = MI.getOperand(2).getReg();
1130   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1131   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1132 
1133   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1134                           RI);
1135   MachineMemOperand *MMO =
1136       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1137                               MachineMemOperand::MOLoad, 8, 8);
1138   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1139       .addFrameIndex(FI)
1140       .addImm(0)
1141       .addMemOperand(MMO);
1142   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1143       .addFrameIndex(FI)
1144       .addImm(4)
1145       .addMemOperand(MMO);
1146   MI.eraseFromParent(); // The pseudo instruction is gone now.
1147   return BB;
1148 }
1149 
1150 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1151                                                  MachineBasicBlock *BB) {
1152   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1153          "Unexpected instruction");
1154 
1155   MachineFunction &MF = *BB->getParent();
1156   DebugLoc DL = MI.getDebugLoc();
1157   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1158   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1159   unsigned DstReg = MI.getOperand(0).getReg();
1160   unsigned LoReg = MI.getOperand(1).getReg();
1161   unsigned HiReg = MI.getOperand(2).getReg();
1162   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1163   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1164 
1165   MachineMemOperand *MMO =
1166       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1167                               MachineMemOperand::MOStore, 8, 8);
1168   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1169       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1170       .addFrameIndex(FI)
1171       .addImm(0)
1172       .addMemOperand(MMO);
1173   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1174       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1175       .addFrameIndex(FI)
1176       .addImm(4)
1177       .addMemOperand(MMO);
1178   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1179   MI.eraseFromParent(); // The pseudo instruction is gone now.
1180   return BB;
1181 }
1182 
1183 static bool isSelectPseudo(MachineInstr &MI) {
1184   switch (MI.getOpcode()) {
1185   default:
1186     return false;
1187   case RISCV::Select_GPR_Using_CC_GPR:
1188   case RISCV::Select_FPR32_Using_CC_GPR:
1189   case RISCV::Select_FPR64_Using_CC_GPR:
1190     return true;
1191   }
1192 }
1193 
1194 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1195                                            MachineBasicBlock *BB) {
1196   // To "insert" Select_* instructions, we actually have to insert the triangle
1197   // control-flow pattern.  The incoming instructions know the destination vreg
1198   // to set, the condition code register to branch on, the true/false values to
1199   // select between, and the condcode to use to select the appropriate branch.
1200   //
1201   // We produce the following control flow:
1202   //     HeadMBB
1203   //     |  \
1204   //     |  IfFalseMBB
1205   //     | /
1206   //    TailMBB
1207   //
1208   // When we find a sequence of selects we attempt to optimize their emission
1209   // by sharing the control flow. Currently we only handle cases where we have
1210   // multiple selects with the exact same condition (same LHS, RHS and CC).
1211   // The selects may be interleaved with other instructions if the other
1212   // instructions meet some requirements we deem safe:
1213   // - They are debug instructions. Otherwise,
1214   // - They do not have side-effects, do not access memory and their inputs do
1215   //   not depend on the results of the select pseudo-instructions.
1216   // The TrueV/FalseV operands of the selects cannot depend on the result of
1217   // previous selects in the sequence.
1218   // These conditions could be further relaxed. See the X86 target for a
1219   // related approach and more information.
1220   unsigned LHS = MI.getOperand(1).getReg();
1221   unsigned RHS = MI.getOperand(2).getReg();
1222   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1223 
1224   SmallVector<MachineInstr *, 4> SelectDebugValues;
1225   SmallSet<unsigned, 4> SelectDests;
1226   SelectDests.insert(MI.getOperand(0).getReg());
1227 
1228   MachineInstr *LastSelectPseudo = &MI;
1229 
1230   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1231        SequenceMBBI != E; ++SequenceMBBI) {
1232     if (SequenceMBBI->isDebugInstr())
1233       continue;
1234     else if (isSelectPseudo(*SequenceMBBI)) {
1235       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1236           SequenceMBBI->getOperand(2).getReg() != RHS ||
1237           SequenceMBBI->getOperand(3).getImm() != CC ||
1238           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1239           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1240         break;
1241       LastSelectPseudo = &*SequenceMBBI;
1242       SequenceMBBI->collectDebugValues(SelectDebugValues);
1243       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1244     } else {
1245       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1246           SequenceMBBI->mayLoadOrStore())
1247         break;
1248       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1249             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1250           }))
1251         break;
1252     }
1253   }
1254 
1255   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1256   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1257   DebugLoc DL = MI.getDebugLoc();
1258   MachineFunction::iterator I = ++BB->getIterator();
1259 
1260   MachineBasicBlock *HeadMBB = BB;
1261   MachineFunction *F = BB->getParent();
1262   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1263   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1264 
1265   F->insert(I, IfFalseMBB);
1266   F->insert(I, TailMBB);
1267 
1268   // Transfer debug instructions associated with the selects to TailMBB.
1269   for (MachineInstr *DebugInstr : SelectDebugValues) {
1270     TailMBB->push_back(DebugInstr->removeFromParent());
1271   }
1272 
1273   // Move all instructions after the sequence to TailMBB.
1274   TailMBB->splice(TailMBB->end(), HeadMBB,
1275                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1276   // Update machine-CFG edges by transferring all successors of the current
1277   // block to the new block which will contain the Phi nodes for the selects.
1278   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1279   // Set the successors for HeadMBB.
1280   HeadMBB->addSuccessor(IfFalseMBB);
1281   HeadMBB->addSuccessor(TailMBB);
1282 
1283   // Insert appropriate branch.
1284   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1285 
1286   BuildMI(HeadMBB, DL, TII.get(Opcode))
1287     .addReg(LHS)
1288     .addReg(RHS)
1289     .addMBB(TailMBB);
1290 
1291   // IfFalseMBB just falls through to TailMBB.
1292   IfFalseMBB->addSuccessor(TailMBB);
1293 
1294   // Create PHIs for all of the select pseudo-instructions.
1295   auto SelectMBBI = MI.getIterator();
1296   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1297   auto InsertionPoint = TailMBB->begin();
1298   while (SelectMBBI != SelectEnd) {
1299     auto Next = std::next(SelectMBBI);
1300     if (isSelectPseudo(*SelectMBBI)) {
1301       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1302       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1303               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1304           .addReg(SelectMBBI->getOperand(4).getReg())
1305           .addMBB(HeadMBB)
1306           .addReg(SelectMBBI->getOperand(5).getReg())
1307           .addMBB(IfFalseMBB);
1308       SelectMBBI->eraseFromParent();
1309     }
1310     SelectMBBI = Next;
1311   }
1312 
1313   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1314   return TailMBB;
1315 }
1316 
1317 MachineBasicBlock *
1318 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1319                                                  MachineBasicBlock *BB) const {
1320   switch (MI.getOpcode()) {
1321   default:
1322     llvm_unreachable("Unexpected instr type to insert");
1323   case RISCV::ReadCycleWide:
1324     assert(!Subtarget.is64Bit() &&
1325            "ReadCycleWrite is only to be used on riscv32");
1326     return emitReadCycleWidePseudo(MI, BB);
1327   case RISCV::Select_GPR_Using_CC_GPR:
1328   case RISCV::Select_FPR32_Using_CC_GPR:
1329   case RISCV::Select_FPR64_Using_CC_GPR:
1330     return emitSelectPseudo(MI, BB);
1331   case RISCV::BuildPairF64Pseudo:
1332     return emitBuildPairF64Pseudo(MI, BB);
1333   case RISCV::SplitF64Pseudo:
1334     return emitSplitF64Pseudo(MI, BB);
1335   }
1336 }
1337 
1338 // Calling Convention Implementation.
1339 // The expectations for frontend ABI lowering vary from target to target.
1340 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1341 // details, but this is a longer term goal. For now, we simply try to keep the
1342 // role of the frontend as simple and well-defined as possible. The rules can
1343 // be summarised as:
1344 // * Never split up large scalar arguments. We handle them here.
1345 // * If a hardfloat calling convention is being used, and the struct may be
1346 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1347 // available, then pass as two separate arguments. If either the GPRs or FPRs
1348 // are exhausted, then pass according to the rule below.
1349 // * If a struct could never be passed in registers or directly in a stack
1350 // slot (as it is larger than 2*XLEN and the floating point rules don't
1351 // apply), then pass it using a pointer with the byval attribute.
1352 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1353 // word-sized array or a 2*XLEN scalar (depending on alignment).
1354 // * The frontend can determine whether a struct is returned by reference or
1355 // not based on its size and fields. If it will be returned by reference, the
1356 // frontend must modify the prototype so a pointer with the sret annotation is
1357 // passed as the first argument. This is not necessary for large scalar
1358 // returns.
1359 // * Struct return values and varargs should be coerced to structs containing
1360 // register-size fields in the same situations they would be for fixed
1361 // arguments.
1362 
1363 static const MCPhysReg ArgGPRs[] = {
1364   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1365   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1366 };
1367 static const MCPhysReg ArgFPR32s[] = {
1368   RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32,
1369   RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32
1370 };
1371 static const MCPhysReg ArgFPR64s[] = {
1372   RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64,
1373   RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64
1374 };
1375 
1376 // Pass a 2*XLEN argument that has been split into two XLEN values through
1377 // registers or the stack as necessary.
1378 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1379                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1380                                 MVT ValVT2, MVT LocVT2,
1381                                 ISD::ArgFlagsTy ArgFlags2) {
1382   unsigned XLenInBytes = XLen / 8;
1383   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
1384     // At least one half can be passed via register.
1385     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1386                                      VA1.getLocVT(), CCValAssign::Full));
1387   } else {
1388     // Both halves must be passed on the stack, with proper alignment.
1389     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1390     State.addLoc(
1391         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1392                             State.AllocateStack(XLenInBytes, StackAlign),
1393                             VA1.getLocVT(), CCValAssign::Full));
1394     State.addLoc(CCValAssign::getMem(
1395         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1396         CCValAssign::Full));
1397     return false;
1398   }
1399 
1400   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
1401     // The second half can also be passed via register.
1402     State.addLoc(
1403         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1404   } else {
1405     // The second half is passed via the stack, without additional alignment.
1406     State.addLoc(CCValAssign::getMem(
1407         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1408         CCValAssign::Full));
1409   }
1410 
1411   return false;
1412 }
1413 
1414 // Implements the RISC-V calling convention. Returns true upon failure.
1415 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1416                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1417                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1418                      bool IsRet, Type *OrigTy) {
1419   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1420   assert(XLen == 32 || XLen == 64);
1421   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1422 
1423   // Any return value split in to more than two values can't be returned
1424   // directly.
1425   if (IsRet && ValNo > 1)
1426     return true;
1427 
1428   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1429   // variadic argument, or if no F32 argument registers are available.
1430   bool UseGPRForF32 = true;
1431   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1432   // variadic argument, or if no F64 argument registers are available.
1433   bool UseGPRForF64 = true;
1434 
1435   switch (ABI) {
1436   default:
1437     llvm_unreachable("Unexpected ABI");
1438   case RISCVABI::ABI_ILP32:
1439   case RISCVABI::ABI_LP64:
1440     break;
1441   case RISCVABI::ABI_ILP32F:
1442   case RISCVABI::ABI_LP64F:
1443     UseGPRForF32 = !IsFixed;
1444     break;
1445   case RISCVABI::ABI_ILP32D:
1446   case RISCVABI::ABI_LP64D:
1447     UseGPRForF32 = !IsFixed;
1448     UseGPRForF64 = !IsFixed;
1449     break;
1450   }
1451 
1452   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1453     UseGPRForF32 = true;
1454   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1455     UseGPRForF64 = true;
1456 
1457   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1458   // variables rather than directly checking against the target ABI.
1459 
1460   if (UseGPRForF32 && ValVT == MVT::f32) {
1461     LocVT = XLenVT;
1462     LocInfo = CCValAssign::BCvt;
1463   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1464     LocVT = MVT::i64;
1465     LocInfo = CCValAssign::BCvt;
1466   }
1467 
1468   // If this is a variadic argument, the RISC-V calling convention requires
1469   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1470   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1471   // be used regardless of whether the original argument was split during
1472   // legalisation or not. The argument will not be passed by registers if the
1473   // original type is larger than 2*XLEN, so the register alignment rule does
1474   // not apply.
1475   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1476   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1477       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1478     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1479     // Skip 'odd' register if necessary.
1480     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1481       State.AllocateReg(ArgGPRs);
1482   }
1483 
1484   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1485   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1486       State.getPendingArgFlags();
1487 
1488   assert(PendingLocs.size() == PendingArgFlags.size() &&
1489          "PendingLocs and PendingArgFlags out of sync");
1490 
1491   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1492   // registers are exhausted.
1493   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1494     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1495            "Can't lower f64 if it is split");
1496     // Depending on available argument GPRS, f64 may be passed in a pair of
1497     // GPRs, split between a GPR and the stack, or passed completely on the
1498     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1499     // cases.
1500     unsigned Reg = State.AllocateReg(ArgGPRs);
1501     LocVT = MVT::i32;
1502     if (!Reg) {
1503       unsigned StackOffset = State.AllocateStack(8, 8);
1504       State.addLoc(
1505           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1506       return false;
1507     }
1508     if (!State.AllocateReg(ArgGPRs))
1509       State.AllocateStack(4, 4);
1510     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1511     return false;
1512   }
1513 
1514   // Split arguments might be passed indirectly, so keep track of the pending
1515   // values.
1516   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1517     LocVT = XLenVT;
1518     LocInfo = CCValAssign::Indirect;
1519     PendingLocs.push_back(
1520         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1521     PendingArgFlags.push_back(ArgFlags);
1522     if (!ArgFlags.isSplitEnd()) {
1523       return false;
1524     }
1525   }
1526 
1527   // If the split argument only had two elements, it should be passed directly
1528   // in registers or on the stack.
1529   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1530     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1531     // Apply the normal calling convention rules to the first half of the
1532     // split argument.
1533     CCValAssign VA = PendingLocs[0];
1534     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1535     PendingLocs.clear();
1536     PendingArgFlags.clear();
1537     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1538                                ArgFlags);
1539   }
1540 
1541   // Allocate to a register if possible, or else a stack slot.
1542   unsigned Reg;
1543   if (ValVT == MVT::f32 && !UseGPRForF32)
1544     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1545   else if (ValVT == MVT::f64 && !UseGPRForF64)
1546     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1547   else
1548     Reg = State.AllocateReg(ArgGPRs);
1549   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1550 
1551   // If we reach this point and PendingLocs is non-empty, we must be at the
1552   // end of a split argument that must be passed indirectly.
1553   if (!PendingLocs.empty()) {
1554     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1555     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1556 
1557     for (auto &It : PendingLocs) {
1558       if (Reg)
1559         It.convertToReg(Reg);
1560       else
1561         It.convertToMem(StackOffset);
1562       State.addLoc(It);
1563     }
1564     PendingLocs.clear();
1565     PendingArgFlags.clear();
1566     return false;
1567   }
1568 
1569   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1570          "Expected an XLenVT at this stage");
1571 
1572   if (Reg) {
1573     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1574     return false;
1575   }
1576 
1577   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1578   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1579     LocVT = ValVT;
1580     LocInfo = CCValAssign::Full;
1581   }
1582   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1583   return false;
1584 }
1585 
1586 void RISCVTargetLowering::analyzeInputArgs(
1587     MachineFunction &MF, CCState &CCInfo,
1588     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1589   unsigned NumArgs = Ins.size();
1590   FunctionType *FType = MF.getFunction().getFunctionType();
1591 
1592   for (unsigned i = 0; i != NumArgs; ++i) {
1593     MVT ArgVT = Ins[i].VT;
1594     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1595 
1596     Type *ArgTy = nullptr;
1597     if (IsRet)
1598       ArgTy = FType->getReturnType();
1599     else if (Ins[i].isOrigArg())
1600       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1601 
1602     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1603     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1604                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1605       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1606                         << EVT(ArgVT).getEVTString() << '\n');
1607       llvm_unreachable(nullptr);
1608     }
1609   }
1610 }
1611 
1612 void RISCVTargetLowering::analyzeOutputArgs(
1613     MachineFunction &MF, CCState &CCInfo,
1614     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1615     CallLoweringInfo *CLI) const {
1616   unsigned NumArgs = Outs.size();
1617 
1618   for (unsigned i = 0; i != NumArgs; i++) {
1619     MVT ArgVT = Outs[i].VT;
1620     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1621     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1622 
1623     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1624     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1625                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1626       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1627                         << EVT(ArgVT).getEVTString() << "\n");
1628       llvm_unreachable(nullptr);
1629     }
1630   }
1631 }
1632 
1633 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1634 // values.
1635 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1636                                    const CCValAssign &VA, const SDLoc &DL) {
1637   switch (VA.getLocInfo()) {
1638   default:
1639     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1640   case CCValAssign::Full:
1641     break;
1642   case CCValAssign::BCvt:
1643     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1644       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1645       break;
1646     }
1647     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1648     break;
1649   }
1650   return Val;
1651 }
1652 
1653 // The caller is responsible for loading the full value if the argument is
1654 // passed with CCValAssign::Indirect.
1655 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1656                                 const CCValAssign &VA, const SDLoc &DL) {
1657   MachineFunction &MF = DAG.getMachineFunction();
1658   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1659   EVT LocVT = VA.getLocVT();
1660   SDValue Val;
1661   const TargetRegisterClass *RC;
1662 
1663   switch (LocVT.getSimpleVT().SimpleTy) {
1664   default:
1665     llvm_unreachable("Unexpected register type");
1666   case MVT::i32:
1667   case MVT::i64:
1668     RC = &RISCV::GPRRegClass;
1669     break;
1670   case MVT::f32:
1671     RC = &RISCV::FPR32RegClass;
1672     break;
1673   case MVT::f64:
1674     RC = &RISCV::FPR64RegClass;
1675     break;
1676   }
1677 
1678   unsigned VReg = RegInfo.createVirtualRegister(RC);
1679   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1680   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1681 
1682   if (VA.getLocInfo() == CCValAssign::Indirect)
1683     return Val;
1684 
1685   return convertLocVTToValVT(DAG, Val, VA, DL);
1686 }
1687 
1688 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1689                                    const CCValAssign &VA, const SDLoc &DL) {
1690   EVT LocVT = VA.getLocVT();
1691 
1692   switch (VA.getLocInfo()) {
1693   default:
1694     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1695   case CCValAssign::Full:
1696     break;
1697   case CCValAssign::BCvt:
1698     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1699       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1700       break;
1701     }
1702     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1703     break;
1704   }
1705   return Val;
1706 }
1707 
1708 // The caller is responsible for loading the full value if the argument is
1709 // passed with CCValAssign::Indirect.
1710 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1711                                 const CCValAssign &VA, const SDLoc &DL) {
1712   MachineFunction &MF = DAG.getMachineFunction();
1713   MachineFrameInfo &MFI = MF.getFrameInfo();
1714   EVT LocVT = VA.getLocVT();
1715   EVT ValVT = VA.getValVT();
1716   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1717   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1718                                  VA.getLocMemOffset(), /*Immutable=*/true);
1719   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1720   SDValue Val;
1721 
1722   ISD::LoadExtType ExtType;
1723   switch (VA.getLocInfo()) {
1724   default:
1725     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1726   case CCValAssign::Full:
1727   case CCValAssign::Indirect:
1728   case CCValAssign::BCvt:
1729     ExtType = ISD::NON_EXTLOAD;
1730     break;
1731   }
1732   Val = DAG.getExtLoad(
1733       ExtType, DL, LocVT, Chain, FIN,
1734       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1735   return Val;
1736 }
1737 
1738 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1739                                        const CCValAssign &VA, const SDLoc &DL) {
1740   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1741          "Unexpected VA");
1742   MachineFunction &MF = DAG.getMachineFunction();
1743   MachineFrameInfo &MFI = MF.getFrameInfo();
1744   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1745 
1746   if (VA.isMemLoc()) {
1747     // f64 is passed on the stack.
1748     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1749     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1750     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1751                        MachinePointerInfo::getFixedStack(MF, FI));
1752   }
1753 
1754   assert(VA.isRegLoc() && "Expected register VA assignment");
1755 
1756   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1757   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1758   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1759   SDValue Hi;
1760   if (VA.getLocReg() == RISCV::X17) {
1761     // Second half of f64 is passed on the stack.
1762     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1763     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1764     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1765                      MachinePointerInfo::getFixedStack(MF, FI));
1766   } else {
1767     // Second half of f64 is passed in another GPR.
1768     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1769     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1770     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1771   }
1772   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1773 }
1774 
1775 // Transform physical registers into virtual registers.
1776 SDValue RISCVTargetLowering::LowerFormalArguments(
1777     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1778     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1779     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1780 
1781   switch (CallConv) {
1782   default:
1783     report_fatal_error("Unsupported calling convention");
1784   case CallingConv::C:
1785   case CallingConv::Fast:
1786     break;
1787   }
1788 
1789   MachineFunction &MF = DAG.getMachineFunction();
1790 
1791   const Function &Func = MF.getFunction();
1792   if (Func.hasFnAttribute("interrupt")) {
1793     if (!Func.arg_empty())
1794       report_fatal_error(
1795         "Functions with the interrupt attribute cannot have arguments!");
1796 
1797     StringRef Kind =
1798       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1799 
1800     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1801       report_fatal_error(
1802         "Function interrupt attribute argument not supported!");
1803   }
1804 
1805   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1806   MVT XLenVT = Subtarget.getXLenVT();
1807   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1808   // Used with vargs to acumulate store chains.
1809   std::vector<SDValue> OutChains;
1810 
1811   // Assign locations to all of the incoming arguments.
1812   SmallVector<CCValAssign, 16> ArgLocs;
1813   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1814   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1815 
1816   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1817     CCValAssign &VA = ArgLocs[i];
1818     SDValue ArgValue;
1819     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1820     // case.
1821     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1822       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1823     else if (VA.isRegLoc())
1824       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1825     else
1826       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1827 
1828     if (VA.getLocInfo() == CCValAssign::Indirect) {
1829       // If the original argument was split and passed by reference (e.g. i128
1830       // on RV32), we need to load all parts of it here (using the same
1831       // address).
1832       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1833                                    MachinePointerInfo()));
1834       unsigned ArgIndex = Ins[i].OrigArgIndex;
1835       assert(Ins[i].PartOffset == 0);
1836       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1837         CCValAssign &PartVA = ArgLocs[i + 1];
1838         unsigned PartOffset = Ins[i + 1].PartOffset;
1839         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1840                                       DAG.getIntPtrConstant(PartOffset, DL));
1841         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1842                                      MachinePointerInfo()));
1843         ++i;
1844       }
1845       continue;
1846     }
1847     InVals.push_back(ArgValue);
1848   }
1849 
1850   if (IsVarArg) {
1851     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1852     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1853     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1854     MachineFrameInfo &MFI = MF.getFrameInfo();
1855     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1856     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1857 
1858     // Offset of the first variable argument from stack pointer, and size of
1859     // the vararg save area. For now, the varargs save area is either zero or
1860     // large enough to hold a0-a7.
1861     int VaArgOffset, VarArgsSaveSize;
1862 
1863     // If all registers are allocated, then all varargs must be passed on the
1864     // stack and we don't need to save any argregs.
1865     if (ArgRegs.size() == Idx) {
1866       VaArgOffset = CCInfo.getNextStackOffset();
1867       VarArgsSaveSize = 0;
1868     } else {
1869       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1870       VaArgOffset = -VarArgsSaveSize;
1871     }
1872 
1873     // Record the frame index of the first variable argument
1874     // which is a value necessary to VASTART.
1875     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1876     RVFI->setVarArgsFrameIndex(FI);
1877 
1878     // If saving an odd number of registers then create an extra stack slot to
1879     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1880     // offsets to even-numbered registered remain 2*XLEN-aligned.
1881     if (Idx % 2) {
1882       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
1883                                  true);
1884       VarArgsSaveSize += XLenInBytes;
1885     }
1886 
1887     // Copy the integer registers that may have been used for passing varargs
1888     // to the vararg save area.
1889     for (unsigned I = Idx; I < ArgRegs.size();
1890          ++I, VaArgOffset += XLenInBytes) {
1891       const unsigned Reg = RegInfo.createVirtualRegister(RC);
1892       RegInfo.addLiveIn(ArgRegs[I], Reg);
1893       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1894       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1895       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1896       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1897                                    MachinePointerInfo::getFixedStack(MF, FI));
1898       cast<StoreSDNode>(Store.getNode())
1899           ->getMemOperand()
1900           ->setValue((Value *)nullptr);
1901       OutChains.push_back(Store);
1902     }
1903     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1904   }
1905 
1906   // All stores are grouped in one node to allow the matching between
1907   // the size of Ins and InVals. This only happens for vararg functions.
1908   if (!OutChains.empty()) {
1909     OutChains.push_back(Chain);
1910     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1911   }
1912 
1913   return Chain;
1914 }
1915 
1916 /// isEligibleForTailCallOptimization - Check whether the call is eligible
1917 /// for tail call optimization.
1918 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
1919 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
1920     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
1921     const SmallVector<CCValAssign, 16> &ArgLocs) const {
1922 
1923   auto &Callee = CLI.Callee;
1924   auto CalleeCC = CLI.CallConv;
1925   auto IsVarArg = CLI.IsVarArg;
1926   auto &Outs = CLI.Outs;
1927   auto &Caller = MF.getFunction();
1928   auto CallerCC = Caller.getCallingConv();
1929 
1930   // Do not tail call opt functions with "disable-tail-calls" attribute.
1931   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
1932     return false;
1933 
1934   // Exception-handling functions need a special set of instructions to
1935   // indicate a return to the hardware. Tail-calling another function would
1936   // probably break this.
1937   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
1938   // should be expanded as new function attributes are introduced.
1939   if (Caller.hasFnAttribute("interrupt"))
1940     return false;
1941 
1942   // Do not tail call opt functions with varargs.
1943   if (IsVarArg)
1944     return false;
1945 
1946   // Do not tail call opt if the stack is used to pass parameters.
1947   if (CCInfo.getNextStackOffset() != 0)
1948     return false;
1949 
1950   // Do not tail call opt if any parameters need to be passed indirectly.
1951   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
1952   // passed indirectly. So the address of the value will be passed in a
1953   // register, or if not available, then the address is put on the stack. In
1954   // order to pass indirectly, space on the stack often needs to be allocated
1955   // in order to store the value. In this case the CCInfo.getNextStackOffset()
1956   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
1957   // are passed CCValAssign::Indirect.
1958   for (auto &VA : ArgLocs)
1959     if (VA.getLocInfo() == CCValAssign::Indirect)
1960       return false;
1961 
1962   // Do not tail call opt if either caller or callee uses struct return
1963   // semantics.
1964   auto IsCallerStructRet = Caller.hasStructRetAttr();
1965   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
1966   if (IsCallerStructRet || IsCalleeStructRet)
1967     return false;
1968 
1969   // Externally-defined functions with weak linkage should not be
1970   // tail-called. The behaviour of branch instructions in this situation (as
1971   // used for tail calls) is implementation-defined, so we cannot rely on the
1972   // linker replacing the tail call with a return.
1973   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1974     const GlobalValue *GV = G->getGlobal();
1975     if (GV->hasExternalWeakLinkage())
1976       return false;
1977   }
1978 
1979   // The callee has to preserve all registers the caller needs to preserve.
1980   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
1981   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1982   if (CalleeCC != CallerCC) {
1983     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1984     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1985       return false;
1986   }
1987 
1988   // Byval parameters hand the function a pointer directly into the stack area
1989   // we want to reuse during a tail call. Working around this *is* possible
1990   // but less efficient and uglier in LowerCall.
1991   for (auto &Arg : Outs)
1992     if (Arg.Flags.isByVal())
1993       return false;
1994 
1995   return true;
1996 }
1997 
1998 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
1999 // and output parameter nodes.
2000 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2001                                        SmallVectorImpl<SDValue> &InVals) const {
2002   SelectionDAG &DAG = CLI.DAG;
2003   SDLoc &DL = CLI.DL;
2004   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2005   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2006   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2007   SDValue Chain = CLI.Chain;
2008   SDValue Callee = CLI.Callee;
2009   bool &IsTailCall = CLI.IsTailCall;
2010   CallingConv::ID CallConv = CLI.CallConv;
2011   bool IsVarArg = CLI.IsVarArg;
2012   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2013   MVT XLenVT = Subtarget.getXLenVT();
2014 
2015   MachineFunction &MF = DAG.getMachineFunction();
2016 
2017   // Analyze the operands of the call, assigning locations to each operand.
2018   SmallVector<CCValAssign, 16> ArgLocs;
2019   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2020   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2021 
2022   // Check if it's really possible to do a tail call.
2023   if (IsTailCall)
2024     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2025 
2026   if (IsTailCall)
2027     ++NumTailCalls;
2028   else if (CLI.CS && CLI.CS.isMustTailCall())
2029     report_fatal_error("failed to perform tail call elimination on a call "
2030                        "site marked musttail");
2031 
2032   // Get a count of how many bytes are to be pushed on the stack.
2033   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2034 
2035   // Create local copies for byval args
2036   SmallVector<SDValue, 8> ByValArgs;
2037   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2038     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2039     if (!Flags.isByVal())
2040       continue;
2041 
2042     SDValue Arg = OutVals[i];
2043     unsigned Size = Flags.getByValSize();
2044     unsigned Align = Flags.getByValAlign();
2045 
2046     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2047     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2048     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2049 
2050     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2051                           /*IsVolatile=*/false,
2052                           /*AlwaysInline=*/false,
2053                           IsTailCall, MachinePointerInfo(),
2054                           MachinePointerInfo());
2055     ByValArgs.push_back(FIPtr);
2056   }
2057 
2058   if (!IsTailCall)
2059     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2060 
2061   // Copy argument values to their designated locations.
2062   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2063   SmallVector<SDValue, 8> MemOpChains;
2064   SDValue StackPtr;
2065   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2066     CCValAssign &VA = ArgLocs[i];
2067     SDValue ArgValue = OutVals[i];
2068     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2069 
2070     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2071     bool IsF64OnRV32DSoftABI =
2072         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2073     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2074       SDValue SplitF64 = DAG.getNode(
2075           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2076       SDValue Lo = SplitF64.getValue(0);
2077       SDValue Hi = SplitF64.getValue(1);
2078 
2079       unsigned RegLo = VA.getLocReg();
2080       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2081 
2082       if (RegLo == RISCV::X17) {
2083         // Second half of f64 is passed on the stack.
2084         // Work out the address of the stack slot.
2085         if (!StackPtr.getNode())
2086           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2087         // Emit the store.
2088         MemOpChains.push_back(
2089             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2090       } else {
2091         // Second half of f64 is passed in another GPR.
2092         unsigned RegHigh = RegLo + 1;
2093         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2094       }
2095       continue;
2096     }
2097 
2098     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2099     // as any other MemLoc.
2100 
2101     // Promote the value if needed.
2102     // For now, only handle fully promoted and indirect arguments.
2103     if (VA.getLocInfo() == CCValAssign::Indirect) {
2104       // Store the argument in a stack slot and pass its address.
2105       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2106       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2107       MemOpChains.push_back(
2108           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2109                        MachinePointerInfo::getFixedStack(MF, FI)));
2110       // If the original argument was split (e.g. i128), we need
2111       // to store all parts of it here (and pass just one address).
2112       unsigned ArgIndex = Outs[i].OrigArgIndex;
2113       assert(Outs[i].PartOffset == 0);
2114       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2115         SDValue PartValue = OutVals[i + 1];
2116         unsigned PartOffset = Outs[i + 1].PartOffset;
2117         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2118                                       DAG.getIntPtrConstant(PartOffset, DL));
2119         MemOpChains.push_back(
2120             DAG.getStore(Chain, DL, PartValue, Address,
2121                          MachinePointerInfo::getFixedStack(MF, FI)));
2122         ++i;
2123       }
2124       ArgValue = SpillSlot;
2125     } else {
2126       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2127     }
2128 
2129     // Use local copy if it is a byval arg.
2130     if (Flags.isByVal())
2131       ArgValue = ByValArgs[j++];
2132 
2133     if (VA.isRegLoc()) {
2134       // Queue up the argument copies and emit them at the end.
2135       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2136     } else {
2137       assert(VA.isMemLoc() && "Argument not register or memory");
2138       assert(!IsTailCall && "Tail call not allowed if stack is used "
2139                             "for passing parameters");
2140 
2141       // Work out the address of the stack slot.
2142       if (!StackPtr.getNode())
2143         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2144       SDValue Address =
2145           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2146                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2147 
2148       // Emit the store.
2149       MemOpChains.push_back(
2150           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2151     }
2152   }
2153 
2154   // Join the stores, which are independent of one another.
2155   if (!MemOpChains.empty())
2156     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2157 
2158   SDValue Glue;
2159 
2160   // Build a sequence of copy-to-reg nodes, chained and glued together.
2161   for (auto &Reg : RegsToPass) {
2162     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2163     Glue = Chain.getValue(1);
2164   }
2165 
2166   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2167   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2168   // split it and then direct call can be matched by PseudoCALL.
2169   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2170     const GlobalValue *GV = S->getGlobal();
2171 
2172     unsigned OpFlags = RISCVII::MO_CALL;
2173     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2174       OpFlags = RISCVII::MO_PLT;
2175 
2176     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2177   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2178     unsigned OpFlags = RISCVII::MO_CALL;
2179 
2180     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2181                                                  nullptr))
2182       OpFlags = RISCVII::MO_PLT;
2183 
2184     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2185   }
2186 
2187   // The first call operand is the chain and the second is the target address.
2188   SmallVector<SDValue, 8> Ops;
2189   Ops.push_back(Chain);
2190   Ops.push_back(Callee);
2191 
2192   // Add argument registers to the end of the list so that they are
2193   // known live into the call.
2194   for (auto &Reg : RegsToPass)
2195     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2196 
2197   if (!IsTailCall) {
2198     // Add a register mask operand representing the call-preserved registers.
2199     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2200     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2201     assert(Mask && "Missing call preserved mask for calling convention");
2202     Ops.push_back(DAG.getRegisterMask(Mask));
2203   }
2204 
2205   // Glue the call to the argument copies, if any.
2206   if (Glue.getNode())
2207     Ops.push_back(Glue);
2208 
2209   // Emit the call.
2210   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2211 
2212   if (IsTailCall) {
2213     MF.getFrameInfo().setHasTailCall();
2214     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2215   }
2216 
2217   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2218   Glue = Chain.getValue(1);
2219 
2220   // Mark the end of the call, which is glued to the call itself.
2221   Chain = DAG.getCALLSEQ_END(Chain,
2222                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2223                              DAG.getConstant(0, DL, PtrVT, true),
2224                              Glue, DL);
2225   Glue = Chain.getValue(1);
2226 
2227   // Assign locations to each value returned by this call.
2228   SmallVector<CCValAssign, 16> RVLocs;
2229   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2230   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2231 
2232   // Copy all of the result registers out of their specified physreg.
2233   for (auto &VA : RVLocs) {
2234     // Copy the value out
2235     SDValue RetValue =
2236         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2237     // Glue the RetValue to the end of the call sequence
2238     Chain = RetValue.getValue(1);
2239     Glue = RetValue.getValue(2);
2240 
2241     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2242       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2243       SDValue RetValue2 =
2244           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2245       Chain = RetValue2.getValue(1);
2246       Glue = RetValue2.getValue(2);
2247       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2248                              RetValue2);
2249     }
2250 
2251     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2252 
2253     InVals.push_back(RetValue);
2254   }
2255 
2256   return Chain;
2257 }
2258 
2259 bool RISCVTargetLowering::CanLowerReturn(
2260     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2261     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2262   SmallVector<CCValAssign, 16> RVLocs;
2263   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2264   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2265     MVT VT = Outs[i].VT;
2266     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2267     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2268     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2269                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2270       return false;
2271   }
2272   return true;
2273 }
2274 
2275 SDValue
2276 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2277                                  bool IsVarArg,
2278                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2279                                  const SmallVectorImpl<SDValue> &OutVals,
2280                                  const SDLoc &DL, SelectionDAG &DAG) const {
2281   // Stores the assignment of the return value to a location.
2282   SmallVector<CCValAssign, 16> RVLocs;
2283 
2284   // Info about the registers and stack slot.
2285   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2286                  *DAG.getContext());
2287 
2288   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2289                     nullptr);
2290 
2291   SDValue Glue;
2292   SmallVector<SDValue, 4> RetOps(1, Chain);
2293 
2294   // Copy the result values into the output registers.
2295   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2296     SDValue Val = OutVals[i];
2297     CCValAssign &VA = RVLocs[i];
2298     assert(VA.isRegLoc() && "Can only return in registers!");
2299 
2300     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2301       // Handle returning f64 on RV32D with a soft float ABI.
2302       assert(VA.isRegLoc() && "Expected return via registers");
2303       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2304                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2305       SDValue Lo = SplitF64.getValue(0);
2306       SDValue Hi = SplitF64.getValue(1);
2307       unsigned RegLo = VA.getLocReg();
2308       unsigned RegHi = RegLo + 1;
2309       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2310       Glue = Chain.getValue(1);
2311       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2312       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2313       Glue = Chain.getValue(1);
2314       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2315     } else {
2316       // Handle a 'normal' return.
2317       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2318       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2319 
2320       // Guarantee that all emitted copies are stuck together.
2321       Glue = Chain.getValue(1);
2322       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2323     }
2324   }
2325 
2326   RetOps[0] = Chain; // Update chain.
2327 
2328   // Add the glue node if we have it.
2329   if (Glue.getNode()) {
2330     RetOps.push_back(Glue);
2331   }
2332 
2333   // Interrupt service routines use different return instructions.
2334   const Function &Func = DAG.getMachineFunction().getFunction();
2335   if (Func.hasFnAttribute("interrupt")) {
2336     if (!Func.getReturnType()->isVoidTy())
2337       report_fatal_error(
2338           "Functions with the interrupt attribute must have void return type!");
2339 
2340     MachineFunction &MF = DAG.getMachineFunction();
2341     StringRef Kind =
2342       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2343 
2344     unsigned RetOpc;
2345     if (Kind == "user")
2346       RetOpc = RISCVISD::URET_FLAG;
2347     else if (Kind == "supervisor")
2348       RetOpc = RISCVISD::SRET_FLAG;
2349     else
2350       RetOpc = RISCVISD::MRET_FLAG;
2351 
2352     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2353   }
2354 
2355   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2356 }
2357 
2358 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2359   switch ((RISCVISD::NodeType)Opcode) {
2360   case RISCVISD::FIRST_NUMBER:
2361     break;
2362   case RISCVISD::RET_FLAG:
2363     return "RISCVISD::RET_FLAG";
2364   case RISCVISD::URET_FLAG:
2365     return "RISCVISD::URET_FLAG";
2366   case RISCVISD::SRET_FLAG:
2367     return "RISCVISD::SRET_FLAG";
2368   case RISCVISD::MRET_FLAG:
2369     return "RISCVISD::MRET_FLAG";
2370   case RISCVISD::CALL:
2371     return "RISCVISD::CALL";
2372   case RISCVISD::SELECT_CC:
2373     return "RISCVISD::SELECT_CC";
2374   case RISCVISD::BuildPairF64:
2375     return "RISCVISD::BuildPairF64";
2376   case RISCVISD::SplitF64:
2377     return "RISCVISD::SplitF64";
2378   case RISCVISD::TAIL:
2379     return "RISCVISD::TAIL";
2380   case RISCVISD::SLLW:
2381     return "RISCVISD::SLLW";
2382   case RISCVISD::SRAW:
2383     return "RISCVISD::SRAW";
2384   case RISCVISD::SRLW:
2385     return "RISCVISD::SRLW";
2386   case RISCVISD::DIVW:
2387     return "RISCVISD::DIVW";
2388   case RISCVISD::DIVUW:
2389     return "RISCVISD::DIVUW";
2390   case RISCVISD::REMUW:
2391     return "RISCVISD::REMUW";
2392   case RISCVISD::FMV_W_X_RV64:
2393     return "RISCVISD::FMV_W_X_RV64";
2394   case RISCVISD::FMV_X_ANYEXTW_RV64:
2395     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2396   case RISCVISD::READ_CYCLE_WIDE:
2397     return "RISCVISD::READ_CYCLE_WIDE";
2398   }
2399   return nullptr;
2400 }
2401 
2402 /// getConstraintType - Given a constraint letter, return the type of
2403 /// constraint it is for this target.
2404 RISCVTargetLowering::ConstraintType
2405 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2406   if (Constraint.size() == 1) {
2407     switch (Constraint[0]) {
2408     default:
2409       break;
2410     case 'f':
2411       return C_RegisterClass;
2412     case 'I':
2413     case 'J':
2414     case 'K':
2415       return C_Immediate;
2416     case 'A':
2417       return C_Memory;
2418     }
2419   }
2420   return TargetLowering::getConstraintType(Constraint);
2421 }
2422 
2423 std::pair<unsigned, const TargetRegisterClass *>
2424 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2425                                                   StringRef Constraint,
2426                                                   MVT VT) const {
2427   // First, see if this is a constraint that directly corresponds to a
2428   // RISCV register class.
2429   if (Constraint.size() == 1) {
2430     switch (Constraint[0]) {
2431     case 'r':
2432       return std::make_pair(0U, &RISCV::GPRRegClass);
2433     case 'f':
2434       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2435         return std::make_pair(0U, &RISCV::FPR32RegClass);
2436       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2437         return std::make_pair(0U, &RISCV::FPR64RegClass);
2438       break;
2439     default:
2440       break;
2441     }
2442   }
2443 
2444   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2445 }
2446 
2447 unsigned
2448 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2449   // Currently only support length 1 constraints.
2450   if (ConstraintCode.size() == 1) {
2451     switch (ConstraintCode[0]) {
2452     case 'A':
2453       return InlineAsm::Constraint_A;
2454     default:
2455       break;
2456     }
2457   }
2458 
2459   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2460 }
2461 
2462 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2463     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2464     SelectionDAG &DAG) const {
2465   // Currently only support length 1 constraints.
2466   if (Constraint.length() == 1) {
2467     switch (Constraint[0]) {
2468     case 'I':
2469       // Validate & create a 12-bit signed immediate operand.
2470       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2471         uint64_t CVal = C->getSExtValue();
2472         if (isInt<12>(CVal))
2473           Ops.push_back(
2474               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2475       }
2476       return;
2477     case 'J':
2478       // Validate & create an integer zero operand.
2479       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2480         if (C->getZExtValue() == 0)
2481           Ops.push_back(
2482               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2483       return;
2484     case 'K':
2485       // Validate & create a 5-bit unsigned immediate operand.
2486       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2487         uint64_t CVal = C->getZExtValue();
2488         if (isUInt<5>(CVal))
2489           Ops.push_back(
2490               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2491       }
2492       return;
2493     default:
2494       break;
2495     }
2496   }
2497   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2498 }
2499 
2500 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2501                                                    Instruction *Inst,
2502                                                    AtomicOrdering Ord) const {
2503   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2504     return Builder.CreateFence(Ord);
2505   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2506     return Builder.CreateFence(AtomicOrdering::Release);
2507   return nullptr;
2508 }
2509 
2510 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2511                                                     Instruction *Inst,
2512                                                     AtomicOrdering Ord) const {
2513   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2514     return Builder.CreateFence(AtomicOrdering::Acquire);
2515   return nullptr;
2516 }
2517 
2518 TargetLowering::AtomicExpansionKind
2519 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2520   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2521   // point operations can't be used in an lr/sc sequence without breaking the
2522   // forward-progress guarantee.
2523   if (AI->isFloatingPointOperation())
2524     return AtomicExpansionKind::CmpXChg;
2525 
2526   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2527   if (Size == 8 || Size == 16)
2528     return AtomicExpansionKind::MaskedIntrinsic;
2529   return AtomicExpansionKind::None;
2530 }
2531 
2532 static Intrinsic::ID
2533 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2534   if (XLen == 32) {
2535     switch (BinOp) {
2536     default:
2537       llvm_unreachable("Unexpected AtomicRMW BinOp");
2538     case AtomicRMWInst::Xchg:
2539       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2540     case AtomicRMWInst::Add:
2541       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2542     case AtomicRMWInst::Sub:
2543       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2544     case AtomicRMWInst::Nand:
2545       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2546     case AtomicRMWInst::Max:
2547       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2548     case AtomicRMWInst::Min:
2549       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2550     case AtomicRMWInst::UMax:
2551       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2552     case AtomicRMWInst::UMin:
2553       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2554     }
2555   }
2556 
2557   if (XLen == 64) {
2558     switch (BinOp) {
2559     default:
2560       llvm_unreachable("Unexpected AtomicRMW BinOp");
2561     case AtomicRMWInst::Xchg:
2562       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2563     case AtomicRMWInst::Add:
2564       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2565     case AtomicRMWInst::Sub:
2566       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2567     case AtomicRMWInst::Nand:
2568       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2569     case AtomicRMWInst::Max:
2570       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2571     case AtomicRMWInst::Min:
2572       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2573     case AtomicRMWInst::UMax:
2574       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2575     case AtomicRMWInst::UMin:
2576       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2577     }
2578   }
2579 
2580   llvm_unreachable("Unexpected XLen\n");
2581 }
2582 
2583 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2584     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2585     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2586   unsigned XLen = Subtarget.getXLen();
2587   Value *Ordering =
2588       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2589   Type *Tys[] = {AlignedAddr->getType()};
2590   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2591       AI->getModule(),
2592       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2593 
2594   if (XLen == 64) {
2595     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2596     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2597     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2598   }
2599 
2600   Value *Result;
2601 
2602   // Must pass the shift amount needed to sign extend the loaded value prior
2603   // to performing a signed comparison for min/max. ShiftAmt is the number of
2604   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2605   // is the number of bits to left+right shift the value in order to
2606   // sign-extend.
2607   if (AI->getOperation() == AtomicRMWInst::Min ||
2608       AI->getOperation() == AtomicRMWInst::Max) {
2609     const DataLayout &DL = AI->getModule()->getDataLayout();
2610     unsigned ValWidth =
2611         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2612     Value *SextShamt =
2613         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2614     Result = Builder.CreateCall(LrwOpScwLoop,
2615                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2616   } else {
2617     Result =
2618         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2619   }
2620 
2621   if (XLen == 64)
2622     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2623   return Result;
2624 }
2625 
2626 TargetLowering::AtomicExpansionKind
2627 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2628     AtomicCmpXchgInst *CI) const {
2629   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2630   if (Size == 8 || Size == 16)
2631     return AtomicExpansionKind::MaskedIntrinsic;
2632   return AtomicExpansionKind::None;
2633 }
2634 
2635 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2636     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2637     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2638   unsigned XLen = Subtarget.getXLen();
2639   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2640   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2641   if (XLen == 64) {
2642     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2643     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2644     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2645     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2646   }
2647   Type *Tys[] = {AlignedAddr->getType()};
2648   Function *MaskedCmpXchg =
2649       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2650   Value *Result = Builder.CreateCall(
2651       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2652   if (XLen == 64)
2653     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2654   return Result;
2655 }
2656 
2657 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2658     const Constant *PersonalityFn) const {
2659   return RISCV::X10;
2660 }
2661 
2662 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2663     const Constant *PersonalityFn) const {
2664   return RISCV::X11;
2665 }
2666