xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1e8d8bef9SDimitry Andric //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric 
9e8d8bef9SDimitry Andric #include "RISCVMatInt.h"
10e8d8bef9SDimitry Andric #include "MCTargetDesc/RISCVMCTargetDesc.h"
11e8d8bef9SDimitry Andric #include "llvm/ADT/APInt.h"
12e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h"
13fe6060f1SDimitry Andric using namespace llvm;
14e8d8bef9SDimitry Andric 
15fe6060f1SDimitry Andric static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16fe6060f1SDimitry Andric   if (!HasRVC)
17fe6060f1SDimitry Andric     return Res.size();
18e8d8bef9SDimitry Andric 
19fe6060f1SDimitry Andric   int Cost = 0;
20fe6060f1SDimitry Andric   for (auto Instr : Res) {
21fe6060f1SDimitry Andric     bool Compressed;
22fe6060f1SDimitry Andric     switch (Instr.Opc) {
23*349cc55cSDimitry Andric     default:
24*349cc55cSDimitry Andric       llvm_unreachable("Unexpected opcode");
25fe6060f1SDimitry Andric     case RISCV::SLLI:
26fe6060f1SDimitry Andric     case RISCV::SRLI:
27fe6060f1SDimitry Andric       Compressed = true;
28fe6060f1SDimitry Andric       break;
29fe6060f1SDimitry Andric     case RISCV::ADDI:
30fe6060f1SDimitry Andric     case RISCV::ADDIW:
31fe6060f1SDimitry Andric     case RISCV::LUI:
32fe6060f1SDimitry Andric       Compressed = isInt<6>(Instr.Imm);
33fe6060f1SDimitry Andric       break;
34fe6060f1SDimitry Andric     case RISCV::ADDUW:
35fe6060f1SDimitry Andric       Compressed = false;
36fe6060f1SDimitry Andric       break;
37fe6060f1SDimitry Andric     }
38fe6060f1SDimitry Andric     // Two RVC instructions take the same space as one RVI instruction, but
39fe6060f1SDimitry Andric     // can take longer to execute than the single RVI instruction. Thus, we
40fe6060f1SDimitry Andric     // consider that two RVC instruction are slightly more costly than one
41fe6060f1SDimitry Andric     // RVI instruction. For longer sequences of RVC instructions the space
42fe6060f1SDimitry Andric     // savings can be worth it, though. The costs below try to model that.
43fe6060f1SDimitry Andric     if (!Compressed)
44fe6060f1SDimitry Andric       Cost += 100; // Baseline cost of one RVI instruction: 100%.
45fe6060f1SDimitry Andric     else
46fe6060f1SDimitry Andric       Cost += 70; // 70% cost of baseline.
47fe6060f1SDimitry Andric   }
48fe6060f1SDimitry Andric   return Cost;
49fe6060f1SDimitry Andric }
50fe6060f1SDimitry Andric 
51fe6060f1SDimitry Andric // Recursively generate a sequence for materializing an integer.
52fe6060f1SDimitry Andric static void generateInstSeqImpl(int64_t Val,
53fe6060f1SDimitry Andric                                 const FeatureBitset &ActiveFeatures,
54fe6060f1SDimitry Andric                                 RISCVMatInt::InstSeq &Res) {
55fe6060f1SDimitry Andric   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
56fe6060f1SDimitry Andric 
57e8d8bef9SDimitry Andric   if (isInt<32>(Val)) {
58e8d8bef9SDimitry Andric     // Depending on the active bits in the immediate Value v, the following
59e8d8bef9SDimitry Andric     // instruction sequences are emitted:
60e8d8bef9SDimitry Andric     //
61e8d8bef9SDimitry Andric     // v == 0                        : ADDI
62e8d8bef9SDimitry Andric     // v[0,12) != 0 && v[12,32) == 0 : ADDI
63e8d8bef9SDimitry Andric     // v[0,12) == 0 && v[12,32) != 0 : LUI
64e8d8bef9SDimitry Andric     // v[0,32) != 0                  : LUI+ADDI(W)
65e8d8bef9SDimitry Andric     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
66e8d8bef9SDimitry Andric     int64_t Lo12 = SignExtend64<12>(Val);
67e8d8bef9SDimitry Andric 
68e8d8bef9SDimitry Andric     if (Hi20)
69fe6060f1SDimitry Andric       Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
70e8d8bef9SDimitry Andric 
71e8d8bef9SDimitry Andric     if (Lo12 || Hi20 == 0) {
72e8d8bef9SDimitry Andric       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
73fe6060f1SDimitry Andric       Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
74e8d8bef9SDimitry Andric     }
75e8d8bef9SDimitry Andric     return;
76e8d8bef9SDimitry Andric   }
77e8d8bef9SDimitry Andric 
78e8d8bef9SDimitry Andric   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
79e8d8bef9SDimitry Andric 
80e8d8bef9SDimitry Andric   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
81*349cc55cSDimitry Andric   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
82e8d8bef9SDimitry Andric   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
83e8d8bef9SDimitry Andric   // while the following ADDI instructions contribute up to 12 bits each.
84e8d8bef9SDimitry Andric   //
85e8d8bef9SDimitry Andric   // On the first glance, implementing this seems to be possible by simply
86e8d8bef9SDimitry Andric   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
87e8d8bef9SDimitry Andric   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
88e8d8bef9SDimitry Andric   // fact that ADDI performs a sign extended addition, doing it like that would
89e8d8bef9SDimitry Andric   // only be possible when at most 11 bits of the ADDI instructions are used.
90e8d8bef9SDimitry Andric   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
91e8d8bef9SDimitry Andric   // requires that the constant is processed starting with the least significant
92e8d8bef9SDimitry Andric   // bit.
93e8d8bef9SDimitry Andric   //
94e8d8bef9SDimitry Andric   // In the following, constants are processed from LSB to MSB but instruction
95e8d8bef9SDimitry Andric   // emission is performed from MSB to LSB by recursively calling
96e8d8bef9SDimitry Andric   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
97e8d8bef9SDimitry Andric   // from the constant and the optimal shift amount, which can be greater than
98e8d8bef9SDimitry Andric   // 12 bits if the constant is sparse, is determined. Then, the shifted
99e8d8bef9SDimitry Andric   // remaining constant is processed recursively and gets emitted as soon as it
100e8d8bef9SDimitry Andric   // fits into 32 bits. The emission of the shifts and additions is subsequently
101e8d8bef9SDimitry Andric   // performed when the recursion returns.
102e8d8bef9SDimitry Andric 
103e8d8bef9SDimitry Andric   int64_t Lo12 = SignExtend64<12>(Val);
104e8d8bef9SDimitry Andric   int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
105e8d8bef9SDimitry Andric   int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
106e8d8bef9SDimitry Andric   Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
107e8d8bef9SDimitry Andric 
108fe6060f1SDimitry Andric   // If the remaining bits don't fit in 12 bits, we might be able to reduce the
109fe6060f1SDimitry Andric   // shift amount in order to use LUI which will zero the lower 12 bits.
110*349cc55cSDimitry Andric   bool Unsigned = false;
111*349cc55cSDimitry Andric   if (ShiftAmount > 12 && !isInt<12>(Hi52)) {
112*349cc55cSDimitry Andric     if (isInt<32>((uint64_t)Hi52 << 12)) {
113fe6060f1SDimitry Andric       // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
114fe6060f1SDimitry Andric       ShiftAmount -= 12;
115fe6060f1SDimitry Andric       Hi52 = (uint64_t)Hi52 << 12;
116*349cc55cSDimitry Andric     } else if (isUInt<32>((uint64_t)Hi52 << 12) &&
117*349cc55cSDimitry Andric                ActiveFeatures[RISCV::FeatureStdExtZba]) {
118*349cc55cSDimitry Andric       // Reduce the shift amount and add zeros to the LSBs so it will match
119*349cc55cSDimitry Andric       // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
120*349cc55cSDimitry Andric       ShiftAmount -= 12;
121*349cc55cSDimitry Andric       Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32);
122*349cc55cSDimitry Andric       Unsigned = true;
123*349cc55cSDimitry Andric     }
124*349cc55cSDimitry Andric   }
125*349cc55cSDimitry Andric 
126*349cc55cSDimitry Andric   // Try to use SLLIUW for Hi52 when it is uint32 but not int32.
127*349cc55cSDimitry Andric   if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) &&
128*349cc55cSDimitry Andric       ActiveFeatures[RISCV::FeatureStdExtZba]) {
129*349cc55cSDimitry Andric     // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with SLLIUW.
130*349cc55cSDimitry Andric     Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32);
131*349cc55cSDimitry Andric     Unsigned = true;
132e8d8bef9SDimitry Andric   }
133e8d8bef9SDimitry Andric 
134fe6060f1SDimitry Andric   generateInstSeqImpl(Hi52, ActiveFeatures, Res);
135fe6060f1SDimitry Andric 
136*349cc55cSDimitry Andric   if (Unsigned)
137*349cc55cSDimitry Andric     Res.push_back(RISCVMatInt::Inst(RISCV::SLLIUW, ShiftAmount));
138*349cc55cSDimitry Andric   else
139fe6060f1SDimitry Andric     Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
140fe6060f1SDimitry Andric   if (Lo12)
141fe6060f1SDimitry Andric     Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
142fe6060f1SDimitry Andric }
143fe6060f1SDimitry Andric 
144fe6060f1SDimitry Andric namespace llvm {
145fe6060f1SDimitry Andric namespace RISCVMatInt {
146fe6060f1SDimitry Andric InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
147fe6060f1SDimitry Andric   RISCVMatInt::InstSeq Res;
148fe6060f1SDimitry Andric   generateInstSeqImpl(Val, ActiveFeatures, Res);
149fe6060f1SDimitry Andric 
150fe6060f1SDimitry Andric   // If the constant is positive we might be able to generate a shifted constant
151fe6060f1SDimitry Andric   // with no leading zeros and use a final SRLI to restore them.
152fe6060f1SDimitry Andric   if (Val > 0 && Res.size() > 2) {
153fe6060f1SDimitry Andric     assert(ActiveFeatures[RISCV::Feature64Bit] &&
154fe6060f1SDimitry Andric            "Expected RV32 to only need 2 instructions");
155fe6060f1SDimitry Andric     unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
156fe6060f1SDimitry Andric     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
157fe6060f1SDimitry Andric     // Fill in the bits that will be shifted out with 1s. An example where this
158fe6060f1SDimitry Andric     // helps is trailing one masks with 32 or more ones. This will generate
159fe6060f1SDimitry Andric     // ADDI -1 and an SRLI.
160fe6060f1SDimitry Andric     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
161fe6060f1SDimitry Andric 
162fe6060f1SDimitry Andric     RISCVMatInt::InstSeq TmpSeq;
163fe6060f1SDimitry Andric     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
164fe6060f1SDimitry Andric     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
165fe6060f1SDimitry Andric 
166fe6060f1SDimitry Andric     // Keep the new sequence if it is an improvement.
167fe6060f1SDimitry Andric     if (TmpSeq.size() < Res.size()) {
168fe6060f1SDimitry Andric       Res = TmpSeq;
169fe6060f1SDimitry Andric       // A 2 instruction sequence is the best we can do.
170fe6060f1SDimitry Andric       if (Res.size() <= 2)
171fe6060f1SDimitry Andric         return Res;
172fe6060f1SDimitry Andric     }
173fe6060f1SDimitry Andric 
174fe6060f1SDimitry Andric     // Some cases can benefit from filling the lower bits with zeros instead.
175fe6060f1SDimitry Andric     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
176fe6060f1SDimitry Andric     TmpSeq.clear();
177fe6060f1SDimitry Andric     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
178fe6060f1SDimitry Andric     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
179fe6060f1SDimitry Andric 
180fe6060f1SDimitry Andric     // Keep the new sequence if it is an improvement.
181fe6060f1SDimitry Andric     if (TmpSeq.size() < Res.size()) {
182fe6060f1SDimitry Andric       Res = TmpSeq;
183fe6060f1SDimitry Andric       // A 2 instruction sequence is the best we can do.
184fe6060f1SDimitry Andric       if (Res.size() <= 2)
185fe6060f1SDimitry Andric         return Res;
186fe6060f1SDimitry Andric     }
187fe6060f1SDimitry Andric 
188fe6060f1SDimitry Andric     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
189fe6060f1SDimitry Andric     // the end of the sequence.
190*349cc55cSDimitry Andric     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
191fe6060f1SDimitry Andric       // Try replacing upper bits with 1.
192fe6060f1SDimitry Andric       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
193fe6060f1SDimitry Andric       TmpSeq.clear();
194fe6060f1SDimitry Andric       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
195fe6060f1SDimitry Andric       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0));
196fe6060f1SDimitry Andric 
197fe6060f1SDimitry Andric       // Keep the new sequence if it is an improvement.
198fe6060f1SDimitry Andric       if (TmpSeq.size() < Res.size()) {
199fe6060f1SDimitry Andric         Res = TmpSeq;
200fe6060f1SDimitry Andric         // A 2 instruction sequence is the best we can do.
201fe6060f1SDimitry Andric         if (Res.size() <= 2)
202fe6060f1SDimitry Andric           return Res;
203fe6060f1SDimitry Andric       }
204fe6060f1SDimitry Andric     }
205fe6060f1SDimitry Andric   }
206fe6060f1SDimitry Andric 
207*349cc55cSDimitry Andric   // Perform optimization with BCLRI/BSETI in the Zbs extension.
208*349cc55cSDimitry Andric   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
209*349cc55cSDimitry Andric     assert(ActiveFeatures[RISCV::Feature64Bit] &&
210*349cc55cSDimitry Andric            "Expected RV32 to only need 2 instructions");
211*349cc55cSDimitry Andric 
212*349cc55cSDimitry Andric     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
213*349cc55cSDimitry Andric     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
214*349cc55cSDimitry Andric     //    an int32), then emit (BCLRI r, 31).
215*349cc55cSDimitry Andric     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
216*349cc55cSDimitry Andric     //    with Val&~0x80000000 (which is expected to be an int32), then
217*349cc55cSDimitry Andric     //    emit (BSETI r, 31).
218*349cc55cSDimitry Andric     int64_t NewVal;
219*349cc55cSDimitry Andric     unsigned Opc;
220*349cc55cSDimitry Andric     if (Val < 0) {
221*349cc55cSDimitry Andric       Opc = RISCV::BCLRI;
222*349cc55cSDimitry Andric       NewVal = Val | 0x80000000ll;
223*349cc55cSDimitry Andric     } else {
224*349cc55cSDimitry Andric       Opc = RISCV::BSETI;
225*349cc55cSDimitry Andric       NewVal = Val & ~0x80000000ll;
226*349cc55cSDimitry Andric     }
227*349cc55cSDimitry Andric     if (isInt<32>(NewVal)) {
228*349cc55cSDimitry Andric       RISCVMatInt::InstSeq TmpSeq;
229*349cc55cSDimitry Andric       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
230*349cc55cSDimitry Andric       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31));
231*349cc55cSDimitry Andric       if (TmpSeq.size() < Res.size())
232*349cc55cSDimitry Andric         Res = TmpSeq;
233*349cc55cSDimitry Andric     }
234*349cc55cSDimitry Andric 
235*349cc55cSDimitry Andric     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
236*349cc55cSDimitry Andric     // negative int32, or use BSETI for upper 32 bits if the original lower
237*349cc55cSDimitry Andric     // 32 bits are positive int32.
238*349cc55cSDimitry Andric     int32_t Lo = Val;
239*349cc55cSDimitry Andric     uint32_t Hi = Val >> 32;
240*349cc55cSDimitry Andric     Opc = 0;
241*349cc55cSDimitry Andric     RISCVMatInt::InstSeq TmpSeq;
242*349cc55cSDimitry Andric     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
243*349cc55cSDimitry Andric     // Check if it is profitable to use BCLRI/BSETI.
244*349cc55cSDimitry Andric     if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) {
245*349cc55cSDimitry Andric       Opc = RISCV::BSETI;
246*349cc55cSDimitry Andric     } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) {
247*349cc55cSDimitry Andric       Opc = RISCV::BCLRI;
248*349cc55cSDimitry Andric       Hi = ~Hi;
249*349cc55cSDimitry Andric     }
250*349cc55cSDimitry Andric     // Search for each bit and build corresponding BCLRI/BSETI.
251*349cc55cSDimitry Andric     if (Opc > 0) {
252*349cc55cSDimitry Andric       while (Hi != 0) {
253*349cc55cSDimitry Andric         unsigned Bit = countTrailingZeros(Hi);
254*349cc55cSDimitry Andric         TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32));
255*349cc55cSDimitry Andric         Hi &= ~(1 << Bit);
256*349cc55cSDimitry Andric       }
257*349cc55cSDimitry Andric       if (TmpSeq.size() < Res.size())
258*349cc55cSDimitry Andric         Res = TmpSeq;
259*349cc55cSDimitry Andric     }
260*349cc55cSDimitry Andric   }
261*349cc55cSDimitry Andric 
262*349cc55cSDimitry Andric   // Perform optimization with SH*ADD in the Zba extension.
263*349cc55cSDimitry Andric   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
264*349cc55cSDimitry Andric     assert(ActiveFeatures[RISCV::Feature64Bit] &&
265*349cc55cSDimitry Andric            "Expected RV32 to only need 2 instructions");
266*349cc55cSDimitry Andric     int64_t Div = 0;
267*349cc55cSDimitry Andric     unsigned Opc = 0;
268*349cc55cSDimitry Andric     RISCVMatInt::InstSeq TmpSeq;
269*349cc55cSDimitry Andric     // Select the opcode and divisor.
270*349cc55cSDimitry Andric     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
271*349cc55cSDimitry Andric       Div = 3;
272*349cc55cSDimitry Andric       Opc = RISCV::SH1ADD;
273*349cc55cSDimitry Andric     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
274*349cc55cSDimitry Andric       Div = 5;
275*349cc55cSDimitry Andric       Opc = RISCV::SH2ADD;
276*349cc55cSDimitry Andric     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
277*349cc55cSDimitry Andric       Div = 9;
278*349cc55cSDimitry Andric       Opc = RISCV::SH3ADD;
279*349cc55cSDimitry Andric     }
280*349cc55cSDimitry Andric     // Build the new instruction sequence.
281*349cc55cSDimitry Andric     if (Div > 0) {
282*349cc55cSDimitry Andric       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
283*349cc55cSDimitry Andric       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
284*349cc55cSDimitry Andric       if (TmpSeq.size() < Res.size())
285*349cc55cSDimitry Andric         Res = TmpSeq;
286*349cc55cSDimitry Andric     }
287*349cc55cSDimitry Andric     // Try to use LUI+SH*ADD+ADDI.
288*349cc55cSDimitry Andric     int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
289*349cc55cSDimitry Andric     int64_t Lo12 = SignExtend64<12>(Val);
290*349cc55cSDimitry Andric     Div = 0;
291*349cc55cSDimitry Andric     if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
292*349cc55cSDimitry Andric       Div = 3;
293*349cc55cSDimitry Andric       Opc = RISCV::SH1ADD;
294*349cc55cSDimitry Andric     } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
295*349cc55cSDimitry Andric       Div = 5;
296*349cc55cSDimitry Andric       Opc = RISCV::SH2ADD;
297*349cc55cSDimitry Andric     } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
298*349cc55cSDimitry Andric       Div = 9;
299*349cc55cSDimitry Andric       Opc = RISCV::SH3ADD;
300*349cc55cSDimitry Andric     }
301*349cc55cSDimitry Andric     // Build the new instruction sequence.
302*349cc55cSDimitry Andric     if (Div > 0) {
303*349cc55cSDimitry Andric       // For Val that has zero Lo12 (implies Val equals to Hi52) should has
304*349cc55cSDimitry Andric       // already been processed to LUI+SH*ADD by previous optimization.
305*349cc55cSDimitry Andric       assert(Lo12 != 0 &&
306*349cc55cSDimitry Andric              "unexpected instruction sequence for immediate materialisation");
307*349cc55cSDimitry Andric       generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
308*349cc55cSDimitry Andric       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
309*349cc55cSDimitry Andric       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
310*349cc55cSDimitry Andric       if (TmpSeq.size() < Res.size())
311*349cc55cSDimitry Andric         Res = TmpSeq;
312*349cc55cSDimitry Andric     }
313*349cc55cSDimitry Andric   }
314*349cc55cSDimitry Andric 
315fe6060f1SDimitry Andric   return Res;
316fe6060f1SDimitry Andric }
317fe6060f1SDimitry Andric 
318fe6060f1SDimitry Andric int getIntMatCost(const APInt &Val, unsigned Size,
319*349cc55cSDimitry Andric                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
320fe6060f1SDimitry Andric   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
321fe6060f1SDimitry Andric   bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
322e8d8bef9SDimitry Andric   int PlatRegSize = IsRV64 ? 64 : 32;
323e8d8bef9SDimitry Andric 
324e8d8bef9SDimitry Andric   // Split the constant into platform register sized chunks, and calculate cost
325e8d8bef9SDimitry Andric   // of each chunk.
326e8d8bef9SDimitry Andric   int Cost = 0;
327e8d8bef9SDimitry Andric   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
328e8d8bef9SDimitry Andric     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
329fe6060f1SDimitry Andric     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
330fe6060f1SDimitry Andric     Cost += getInstSeqCost(MatSeq, HasRVC);
331e8d8bef9SDimitry Andric   }
332e8d8bef9SDimitry Andric   return std::max(1, Cost);
333e8d8bef9SDimitry Andric }
334e8d8bef9SDimitry Andric } // namespace RISCVMatInt
335e8d8bef9SDimitry Andric } // namespace llvm
336