xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp (revision 46c59ea9b61755455ff6bf9f3e7b834e1af634ea)
1 //===-- RISCVAsmParser.cpp - Parse RISC-V assembly to MCInst instructions -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVBaseInfo.h"
11 #include "MCTargetDesc/RISCVInstPrinter.h"
12 #include "MCTargetDesc/RISCVMCExpr.h"
13 #include "MCTargetDesc/RISCVMCTargetDesc.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "MCTargetDesc/RISCVTargetStreamer.h"
16 #include "TargetInfo/RISCVTargetInfo.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCInst.h"
26 #include "llvm/MC/MCInstBuilder.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCObjectFileInfo.h"
29 #include "llvm/MC/MCParser/MCAsmLexer.h"
30 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
31 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/MC/MCValue.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/RISCVAttributes.h"
41 #include "llvm/Support/RISCVISAInfo.h"
42 
43 #include <limits>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "riscv-asm-parser"
48 
49 STATISTIC(RISCVNumInstrsCompressed,
50           "Number of RISC-V Compressed instructions emitted");
51 
52 static cl::opt<bool> AddBuildAttributes("riscv-add-build-attributes",
53                                         cl::init(false));
54 
55 namespace llvm {
56 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
57 } // namespace llvm
58 
59 namespace {
60 struct RISCVOperand;
61 
62 struct ParserOptionsSet {
63   bool IsPicEnabled;
64 };
65 
66 class RISCVAsmParser : public MCTargetAsmParser {
67   // This tracks the parsing of the 4 operands that make up the vtype portion
68   // of vset(i)vli instructions which are separated by commas. The state names
69   // represent the next expected operand with Done meaning no other operands are
70   // expected.
71   enum VTypeState {
72     VTypeState_SEW,
73     VTypeState_LMUL,
74     VTypeState_TailPolicy,
75     VTypeState_MaskPolicy,
76     VTypeState_Done,
77   };
78 
79   SmallVector<FeatureBitset, 4> FeatureBitStack;
80 
81   SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
82   ParserOptionsSet ParserOptions;
83 
84   SMLoc getLoc() const { return getParser().getTok().getLoc(); }
85   bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
86   bool isRVE() const { return getSTI().hasFeature(RISCV::FeatureRVE); }
87 
88   RISCVTargetStreamer &getTargetStreamer() {
89     assert(getParser().getStreamer().getTargetStreamer() &&
90            "do not have a target streamer");
91     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
92     return static_cast<RISCVTargetStreamer &>(TS);
93   }
94 
95   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
96                                       unsigned Kind) override;
97   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
98 
99   bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
100                                   int64_t Lower, int64_t Upper,
101                                   const Twine &Msg);
102   bool generateImmOutOfRangeError(SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
103                                   const Twine &Msg);
104 
105   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
106                                OperandVector &Operands, MCStreamer &Out,
107                                uint64_t &ErrorInfo,
108                                bool MatchingInlineAsm) override;
109 
110   bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
111   ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
112                                SMLoc &EndLoc) override;
113 
114   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
115                         SMLoc NameLoc, OperandVector &Operands) override;
116 
117   ParseStatus parseDirective(AsmToken DirectiveID) override;
118 
119   bool parseVTypeToken(StringRef Identifier, VTypeState &State, unsigned &Sew,
120                        unsigned &Lmul, bool &Fractional, bool &TailAgnostic,
121                        bool &MaskAgnostic);
122   bool generateVTypeError(SMLoc ErrorLoc);
123 
124   // Helper to actually emit an instruction to the MCStreamer. Also, when
125   // possible, compression of the instruction is performed.
126   void emitToStreamer(MCStreamer &S, const MCInst &Inst);
127 
128   // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
129   // synthesize the desired immedate value into the destination register.
130   void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
131 
132   // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
133   // helpers such as emitLoadLocalAddress and emitLoadAddress.
134   void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
135                          const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
136                          unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
137 
138   // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
139   void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
140 
141   // Helper to emit pseudo instruction "lga" used in GOT-rel addressing.
142   void emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
143 
144   // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
145   void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
146 
147   // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
148   // addressing.
149   void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
150 
151   // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
152   // addressing.
153   void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
154 
155   // Helper to emit pseudo load/store instruction with a symbol.
156   void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
157                            MCStreamer &Out, bool HasTmpReg);
158 
159   // Helper to emit pseudo sign/zero extend instruction.
160   void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
161                         SMLoc IDLoc, MCStreamer &Out);
162 
163   // Helper to emit pseudo vmsge{u}.vx instruction.
164   void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
165 
166   // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
167   // Enforcing this using a restricted register class for the second input
168   // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
169   // 'add' is an overloaded mnemonic.
170   bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
171 
172   // Check instruction constraints.
173   bool validateInstruction(MCInst &Inst, OperandVector &Operands);
174 
175   /// Helper for processing MC instructions that have been successfully matched
176   /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
177   /// like the expansion of pseudo instructions (e.g., "li"), can be performed
178   /// in this method.
179   bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
180                           MCStreamer &Out);
181 
182 // Auto-generated instruction matching functions
183 #define GET_ASSEMBLER_HEADER
184 #include "RISCVGenAsmMatcher.inc"
185 
186   ParseStatus parseCSRSystemRegister(OperandVector &Operands);
187   ParseStatus parseFPImm(OperandVector &Operands);
188   ParseStatus parseImmediate(OperandVector &Operands);
189   ParseStatus parseRegister(OperandVector &Operands, bool AllowParens = false);
190   ParseStatus parseMemOpBaseReg(OperandVector &Operands);
191   ParseStatus parseZeroOffsetMemOp(OperandVector &Operands);
192   ParseStatus parseOperandWithModifier(OperandVector &Operands);
193   ParseStatus parseBareSymbol(OperandVector &Operands);
194   ParseStatus parseCallSymbol(OperandVector &Operands);
195   ParseStatus parsePseudoJumpSymbol(OperandVector &Operands);
196   ParseStatus parseJALOffset(OperandVector &Operands);
197   ParseStatus parseVTypeI(OperandVector &Operands);
198   ParseStatus parseMaskReg(OperandVector &Operands);
199   ParseStatus parseInsnDirectiveOpcode(OperandVector &Operands);
200   ParseStatus parseInsnCDirectiveOpcode(OperandVector &Operands);
201   ParseStatus parseGPRAsFPR(OperandVector &Operands);
202   template <bool IsRV64Inst> ParseStatus parseGPRPair(OperandVector &Operands);
203   ParseStatus parseGPRPair(OperandVector &Operands, bool IsRV64Inst);
204   ParseStatus parseFRMArg(OperandVector &Operands);
205   ParseStatus parseFenceArg(OperandVector &Operands);
206   ParseStatus parseReglist(OperandVector &Operands);
207   ParseStatus parseRegReg(OperandVector &Operands);
208   ParseStatus parseRetval(OperandVector &Operands);
209   ParseStatus parseZcmpSpimm(OperandVector &Operands);
210 
211   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
212 
213   bool parseDirectiveOption();
214   bool parseDirectiveAttribute();
215   bool parseDirectiveInsn(SMLoc L);
216   bool parseDirectiveVariantCC();
217 
218   /// Helper to reset target features for a new arch string. It
219   /// also records the new arch string that is expanded by RISCVISAInfo
220   /// and reports error for invalid arch string.
221   bool resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
222                    bool FromOptionDirective);
223 
224   void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
225     if (!(getSTI().hasFeature(Feature))) {
226       MCSubtargetInfo &STI = copySTI();
227       setAvailableFeatures(
228           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
229     }
230   }
231 
232   void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
233     if (getSTI().hasFeature(Feature)) {
234       MCSubtargetInfo &STI = copySTI();
235       setAvailableFeatures(
236           ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
237     }
238   }
239 
240   void pushFeatureBits() {
241     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
242            "These two stacks must be kept synchronized");
243     FeatureBitStack.push_back(getSTI().getFeatureBits());
244     ParserOptionsStack.push_back(ParserOptions);
245   }
246 
247   bool popFeatureBits() {
248     assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
249            "These two stacks must be kept synchronized");
250     if (FeatureBitStack.empty())
251       return true;
252 
253     FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
254     copySTI().setFeatureBits(FeatureBits);
255     setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
256 
257     ParserOptions = ParserOptionsStack.pop_back_val();
258 
259     return false;
260   }
261 
262   std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
263   std::unique_ptr<RISCVOperand> defaultFRMArgOp() const;
264   std::unique_ptr<RISCVOperand> defaultFRMArgLegacyOp() const;
265 
266 public:
267   enum RISCVMatchResultTy {
268     Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
269     Match_RequiresEvenGPRs,
270 #define GET_OPERAND_DIAGNOSTIC_TYPES
271 #include "RISCVGenAsmMatcher.inc"
272 #undef GET_OPERAND_DIAGNOSTIC_TYPES
273   };
274 
275   static bool classifySymbolRef(const MCExpr *Expr,
276                                 RISCVMCExpr::VariantKind &Kind);
277   static bool isSymbolDiff(const MCExpr *Expr);
278 
279   RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
280                  const MCInstrInfo &MII, const MCTargetOptions &Options)
281       : MCTargetAsmParser(Options, STI, MII) {
282     MCAsmParserExtension::Initialize(Parser);
283 
284     Parser.addAliasForDirective(".half", ".2byte");
285     Parser.addAliasForDirective(".hword", ".2byte");
286     Parser.addAliasForDirective(".word", ".4byte");
287     Parser.addAliasForDirective(".dword", ".8byte");
288     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
289 
290     auto ABIName = StringRef(Options.ABIName);
291     if (ABIName.ends_with("f") && !getSTI().hasFeature(RISCV::FeatureStdExtF)) {
292       errs() << "Hard-float 'f' ABI can't be used for a target that "
293                 "doesn't support the F instruction set extension (ignoring "
294                 "target-abi)\n";
295     } else if (ABIName.ends_with("d") &&
296                !getSTI().hasFeature(RISCV::FeatureStdExtD)) {
297       errs() << "Hard-float 'd' ABI can't be used for a target that "
298                 "doesn't support the D instruction set extension (ignoring "
299                 "target-abi)\n";
300     }
301 
302     // Use computeTargetABI to check if ABIName is valid. If invalid, output
303     // error message.
304     RISCVABI::computeTargetABI(STI.getTargetTriple(), STI.getFeatureBits(),
305                                ABIName);
306 
307     const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
308     ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
309 
310     if (AddBuildAttributes)
311       getTargetStreamer().emitTargetAttributes(STI, /*EmitStackAlign*/ false);
312   }
313 };
314 
315 /// RISCVOperand - Instances of this class represent a parsed machine
316 /// instruction
317 struct RISCVOperand final : public MCParsedAsmOperand {
318 
319   enum class KindTy {
320     Token,
321     Register,
322     Immediate,
323     FPImmediate,
324     SystemRegister,
325     VType,
326     FRM,
327     Fence,
328     Rlist,
329     Spimm,
330     RegReg,
331   } Kind;
332 
333   struct RegOp {
334     MCRegister RegNum;
335     bool IsGPRAsFPR;
336   };
337 
338   struct ImmOp {
339     const MCExpr *Val;
340     bool IsRV64;
341   };
342 
343   struct FPImmOp {
344     uint64_t Val;
345   };
346 
347   struct SysRegOp {
348     const char *Data;
349     unsigned Length;
350     unsigned Encoding;
351     // FIXME: Add the Encoding parsed fields as needed for checks,
352     // e.g.: read/write or user/supervisor/machine privileges.
353   };
354 
355   struct VTypeOp {
356     unsigned Val;
357   };
358 
359   struct FRMOp {
360     RISCVFPRndMode::RoundingMode FRM;
361   };
362 
363   struct FenceOp {
364     unsigned Val;
365   };
366 
367   struct RlistOp {
368     unsigned Val;
369   };
370 
371   struct SpimmOp {
372     unsigned Val;
373   };
374 
375   struct RegRegOp {
376     MCRegister Reg1;
377     MCRegister Reg2;
378   };
379 
380   SMLoc StartLoc, EndLoc;
381   union {
382     StringRef Tok;
383     RegOp Reg;
384     ImmOp Imm;
385     FPImmOp FPImm;
386     struct SysRegOp SysReg;
387     struct VTypeOp VType;
388     struct FRMOp FRM;
389     struct FenceOp Fence;
390     struct RlistOp Rlist;
391     struct SpimmOp Spimm;
392     struct RegRegOp RegReg;
393   };
394 
395   RISCVOperand(KindTy K) : Kind(K) {}
396 
397 public:
398   RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
399     Kind = o.Kind;
400     StartLoc = o.StartLoc;
401     EndLoc = o.EndLoc;
402     switch (Kind) {
403     case KindTy::Register:
404       Reg = o.Reg;
405       break;
406     case KindTy::Immediate:
407       Imm = o.Imm;
408       break;
409     case KindTy::FPImmediate:
410       FPImm = o.FPImm;
411       break;
412     case KindTy::Token:
413       Tok = o.Tok;
414       break;
415     case KindTy::SystemRegister:
416       SysReg = o.SysReg;
417       break;
418     case KindTy::VType:
419       VType = o.VType;
420       break;
421     case KindTy::FRM:
422       FRM = o.FRM;
423       break;
424     case KindTy::Fence:
425       Fence = o.Fence;
426       break;
427     case KindTy::Rlist:
428       Rlist = o.Rlist;
429       break;
430     case KindTy::Spimm:
431       Spimm = o.Spimm;
432       break;
433     case KindTy::RegReg:
434       RegReg = o.RegReg;
435       break;
436     }
437   }
438 
439   bool isToken() const override { return Kind == KindTy::Token; }
440   bool isReg() const override { return Kind == KindTy::Register; }
441   bool isV0Reg() const {
442     return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
443   }
444   bool isAnyReg() const {
445     return Kind == KindTy::Register &&
446            (RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum) ||
447             RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg.RegNum) ||
448             RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg.RegNum));
449   }
450   bool isAnyRegC() const {
451     return Kind == KindTy::Register &&
452            (RISCVMCRegisterClasses[RISCV::GPRCRegClassID].contains(
453                 Reg.RegNum) ||
454             RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(
455                 Reg.RegNum));
456   }
457   bool isImm() const override { return Kind == KindTy::Immediate; }
458   bool isMem() const override { return false; }
459   bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
460   bool isRegReg() const { return Kind == KindTy::RegReg; }
461   bool isRlist() const { return Kind == KindTy::Rlist; }
462   bool isSpimm() const { return Kind == KindTy::Spimm; }
463 
464   bool isGPR() const {
465     return Kind == KindTy::Register &&
466            RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
467   }
468 
469   bool isGPRAsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
470 
471   bool isGPRPair() const {
472     return Kind == KindTy::Register &&
473            RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(
474                Reg.RegNum);
475   }
476 
477   static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
478                                   RISCVMCExpr::VariantKind &VK) {
479     if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
480       VK = RE->getKind();
481       return RE->evaluateAsConstant(Imm);
482     }
483 
484     if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
485       VK = RISCVMCExpr::VK_RISCV_None;
486       Imm = CE->getValue();
487       return true;
488     }
489 
490     return false;
491   }
492 
493   // True if operand is a symbol with no modifiers, or a constant with no
494   // modifiers and isShiftedInt<N-1, 1>(Op).
495   template <int N> bool isBareSimmNLsb0() const {
496     int64_t Imm;
497     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
498     if (!isImm())
499       return false;
500     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
501     bool IsValid;
502     if (!IsConstantImm)
503       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
504     else
505       IsValid = isShiftedInt<N - 1, 1>(Imm);
506     return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
507   }
508 
509   // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
510 
511   bool isBareSymbol() const {
512     int64_t Imm;
513     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
514     // Must be of 'immediate' type but not a constant.
515     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
516       return false;
517     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
518            VK == RISCVMCExpr::VK_RISCV_None;
519   }
520 
521   bool isCallSymbol() const {
522     int64_t Imm;
523     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
524     // Must be of 'immediate' type but not a constant.
525     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
526       return false;
527     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
528            (VK == RISCVMCExpr::VK_RISCV_CALL ||
529             VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
530   }
531 
532   bool isPseudoJumpSymbol() const {
533     int64_t Imm;
534     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
535     // Must be of 'immediate' type but not a constant.
536     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
537       return false;
538     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
539            VK == RISCVMCExpr::VK_RISCV_CALL;
540   }
541 
542   bool isTPRelAddSymbol() const {
543     int64_t Imm;
544     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
545     // Must be of 'immediate' type but not a constant.
546     if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
547       return false;
548     return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
549            VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
550   }
551 
552   bool isCSRSystemRegister() const { return isSystemRegister(); }
553 
554   bool isVTypeImm(unsigned N) const {
555     int64_t Imm;
556     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
557     if (!isImm())
558       return false;
559     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
560     return IsConstantImm && isUIntN(N, Imm) && VK == RISCVMCExpr::VK_RISCV_None;
561   }
562 
563   // If the last operand of the vsetvli/vsetvli instruction is a constant
564   // expression, KindTy is Immediate.
565   bool isVTypeI10() const {
566     if (Kind == KindTy::Immediate)
567       return isVTypeImm(10);
568     return Kind == KindTy::VType;
569   }
570   bool isVTypeI11() const {
571     if (Kind == KindTy::Immediate)
572       return isVTypeImm(11);
573     return Kind == KindTy::VType;
574   }
575 
576   /// Return true if the operand is a valid for the fence instruction e.g.
577   /// ('iorw').
578   bool isFenceArg() const { return Kind == KindTy::Fence; }
579 
580   /// Return true if the operand is a valid floating point rounding mode.
581   bool isFRMArg() const { return Kind == KindTy::FRM; }
582   bool isFRMArgLegacy() const { return Kind == KindTy::FRM; }
583   bool isRTZArg() const { return isFRMArg() && FRM.FRM == RISCVFPRndMode::RTZ; }
584 
585   /// Return true if the operand is a valid fli.s floating-point immediate.
586   bool isLoadFPImm() const {
587     if (isImm())
588       return isUImm5();
589     if (Kind != KindTy::FPImmediate)
590       return false;
591     int Idx = RISCVLoadFPImm::getLoadFPImm(
592         APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
593     // Don't allow decimal version of the minimum value. It is a different value
594     // for each supported data type.
595     return Idx >= 0 && Idx != 1;
596   }
597 
598   bool isImmXLenLI() const {
599     int64_t Imm;
600     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
601     if (!isImm())
602       return false;
603     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
604     if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
605       return true;
606     // Given only Imm, ensuring that the actually specified constant is either
607     // a signed or unsigned 64-bit number is unfortunately impossible.
608     if (IsConstantImm) {
609       return VK == RISCVMCExpr::VK_RISCV_None &&
610              (isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
611     }
612 
613     return RISCVAsmParser::isSymbolDiff(getImm());
614   }
615 
616   bool isImmXLenLI_Restricted() const {
617     int64_t Imm;
618     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
619     if (!isImm())
620       return false;
621     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
622     // 'la imm' supports constant immediates only.
623     return IsConstantImm && (VK == RISCVMCExpr::VK_RISCV_None) &&
624            (isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
625   }
626 
627   bool isUImmLog2XLen() const {
628     int64_t Imm;
629     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
630     if (!isImm())
631       return false;
632     if (!evaluateConstantImm(getImm(), Imm, VK) ||
633         VK != RISCVMCExpr::VK_RISCV_None)
634       return false;
635     return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
636   }
637 
638   bool isUImmLog2XLenNonZero() const {
639     int64_t Imm;
640     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
641     if (!isImm())
642       return false;
643     if (!evaluateConstantImm(getImm(), Imm, VK) ||
644         VK != RISCVMCExpr::VK_RISCV_None)
645       return false;
646     if (Imm == 0)
647       return false;
648     return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
649   }
650 
651   bool isUImmLog2XLenHalf() const {
652     int64_t Imm;
653     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
654     if (!isImm())
655       return false;
656     if (!evaluateConstantImm(getImm(), Imm, VK) ||
657         VK != RISCVMCExpr::VK_RISCV_None)
658       return false;
659     return (isRV64Imm() && isUInt<5>(Imm)) || isUInt<4>(Imm);
660   }
661 
662   template <unsigned N> bool IsUImm() const {
663     int64_t Imm;
664     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
665     if (!isImm())
666       return false;
667     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
668     return IsConstantImm && isUInt<N>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
669   }
670 
671   bool isUImm1() const { return IsUImm<1>(); }
672   bool isUImm2() const { return IsUImm<2>(); }
673   bool isUImm3() const { return IsUImm<3>(); }
674   bool isUImm4() const { return IsUImm<4>(); }
675   bool isUImm5() const { return IsUImm<5>(); }
676   bool isUImm6() const { return IsUImm<6>(); }
677   bool isUImm7() const { return IsUImm<7>(); }
678   bool isUImm8() const { return IsUImm<8>(); }
679   bool isUImm20() const { return IsUImm<20>(); }
680 
681   bool isUImm8GE32() const {
682     int64_t Imm;
683     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
684     if (!isImm())
685       return false;
686     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
687     return IsConstantImm && isUInt<8>(Imm) && Imm >= 32 &&
688            VK == RISCVMCExpr::VK_RISCV_None;
689   }
690 
691   bool isRnumArg() const {
692     int64_t Imm;
693     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
694     if (!isImm())
695       return false;
696     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
697     return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(10) &&
698            VK == RISCVMCExpr::VK_RISCV_None;
699   }
700 
701   bool isRnumArg_0_7() const {
702     int64_t Imm;
703     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
704     if (!isImm())
705       return false;
706     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
707     return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(7) &&
708            VK == RISCVMCExpr::VK_RISCV_None;
709   }
710 
711   bool isRnumArg_1_10() const {
712     int64_t Imm;
713     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
714     if (!isImm())
715       return false;
716     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
717     return IsConstantImm && Imm >= INT64_C(1) && Imm <= INT64_C(10) &&
718            VK == RISCVMCExpr::VK_RISCV_None;
719   }
720 
721   bool isRnumArg_2_14() const {
722     int64_t Imm;
723     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
724     if (!isImm())
725       return false;
726     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
727     return IsConstantImm && Imm >= INT64_C(2) && Imm <= INT64_C(14) &&
728            VK == RISCVMCExpr::VK_RISCV_None;
729   }
730 
731   bool isSImm5() const {
732     if (!isImm())
733       return false;
734     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
735     int64_t Imm;
736     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
737     return IsConstantImm && isInt<5>(fixImmediateForRV32(Imm, isRV64Imm())) &&
738            VK == RISCVMCExpr::VK_RISCV_None;
739   }
740 
741   bool isSImm6() const {
742     if (!isImm())
743       return false;
744     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
745     int64_t Imm;
746     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
747     return IsConstantImm && isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
748            VK == RISCVMCExpr::VK_RISCV_None;
749   }
750 
751   bool isSImm6NonZero() const {
752     if (!isImm())
753       return false;
754     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
755     int64_t Imm;
756     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
757     return IsConstantImm && Imm != 0 &&
758            isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
759            VK == RISCVMCExpr::VK_RISCV_None;
760   }
761 
762   bool isCLUIImm() const {
763     if (!isImm())
764       return false;
765     int64_t Imm;
766     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
767     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
768     return IsConstantImm && (Imm != 0) &&
769            (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
770            VK == RISCVMCExpr::VK_RISCV_None;
771   }
772 
773   bool isUImm2Lsb0() const {
774     if (!isImm())
775       return false;
776     int64_t Imm;
777     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
778     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
779     return IsConstantImm && isShiftedUInt<1, 1>(Imm) &&
780            VK == RISCVMCExpr::VK_RISCV_None;
781   }
782 
783   bool isUImm7Lsb00() const {
784     if (!isImm())
785       return false;
786     int64_t Imm;
787     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
788     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
789     return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
790            VK == RISCVMCExpr::VK_RISCV_None;
791   }
792 
793   bool isUImm8Lsb00() const {
794     if (!isImm())
795       return false;
796     int64_t Imm;
797     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
798     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
799     return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
800            VK == RISCVMCExpr::VK_RISCV_None;
801   }
802 
803   bool isUImm8Lsb000() const {
804     if (!isImm())
805       return false;
806     int64_t Imm;
807     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
808     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
809     return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
810            VK == RISCVMCExpr::VK_RISCV_None;
811   }
812 
813   bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
814 
815   bool isUImm9Lsb000() const {
816     if (!isImm())
817       return false;
818     int64_t Imm;
819     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
820     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
821     return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
822            VK == RISCVMCExpr::VK_RISCV_None;
823   }
824 
825   bool isUImm10Lsb00NonZero() const {
826     if (!isImm())
827       return false;
828     int64_t Imm;
829     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
830     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
831     return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
832            VK == RISCVMCExpr::VK_RISCV_None;
833   }
834 
835   // If this a RV32 and the immediate is a uimm32, sign extend it to 32 bits.
836   // This allows writing 'addi a0, a0, 0xffffffff'.
837   static int64_t fixImmediateForRV32(int64_t Imm, bool IsRV64Imm) {
838     if (IsRV64Imm || !isUInt<32>(Imm))
839       return Imm;
840     return SignExtend64<32>(Imm);
841   }
842 
843   bool isSImm12() const {
844     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
845     int64_t Imm;
846     bool IsValid;
847     if (!isImm())
848       return false;
849     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
850     if (!IsConstantImm)
851       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
852     else
853       IsValid = isInt<12>(fixImmediateForRV32(Imm, isRV64Imm()));
854     return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
855                        VK == RISCVMCExpr::VK_RISCV_LO ||
856                        VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
857                        VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
858   }
859 
860   bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
861 
862   bool isSImm12Lsb00000() const {
863     if (!isImm())
864       return false;
865     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
866     int64_t Imm;
867     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
868     return IsConstantImm && isShiftedInt<7, 5>(Imm) &&
869            VK == RISCVMCExpr::VK_RISCV_None;
870   }
871 
872   bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
873 
874   bool isSImm10Lsb0000NonZero() const {
875     if (!isImm())
876       return false;
877     int64_t Imm;
878     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
879     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
880     return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
881            VK == RISCVMCExpr::VK_RISCV_None;
882   }
883 
884   bool isUImm20LUI() const {
885     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
886     int64_t Imm;
887     bool IsValid;
888     if (!isImm())
889       return false;
890     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
891     if (!IsConstantImm) {
892       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
893       return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
894                          VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
895     } else {
896       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
897                                  VK == RISCVMCExpr::VK_RISCV_HI ||
898                                  VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
899     }
900   }
901 
902   bool isUImm20AUIPC() const {
903     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
904     int64_t Imm;
905     bool IsValid;
906     if (!isImm())
907       return false;
908     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
909     if (!IsConstantImm) {
910       IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
911       return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
912                          VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
913                          VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
914                          VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
915     } else {
916       return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
917                                  VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
918                                  VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
919                                  VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
920                                  VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
921     }
922   }
923 
924   bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
925 
926   bool isImmZero() const {
927     if (!isImm())
928       return false;
929     int64_t Imm;
930     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
931     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
932     return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
933   }
934 
935   bool isSImm5Plus1() const {
936     if (!isImm())
937       return false;
938     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
939     int64_t Imm;
940     bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
941     return IsConstantImm &&
942            isInt<5>(fixImmediateForRV32(Imm, isRV64Imm()) - 1) &&
943            VK == RISCVMCExpr::VK_RISCV_None;
944   }
945 
946   /// getStartLoc - Gets location of the first token of this operand
947   SMLoc getStartLoc() const override { return StartLoc; }
948   /// getEndLoc - Gets location of the last token of this operand
949   SMLoc getEndLoc() const override { return EndLoc; }
950   /// True if this operand is for an RV64 instruction
951   bool isRV64Imm() const {
952     assert(Kind == KindTy::Immediate && "Invalid type access!");
953     return Imm.IsRV64;
954   }
955 
956   unsigned getReg() const override {
957     assert(Kind == KindTy::Register && "Invalid type access!");
958     return Reg.RegNum.id();
959   }
960 
961   StringRef getSysReg() const {
962     assert(Kind == KindTy::SystemRegister && "Invalid type access!");
963     return StringRef(SysReg.Data, SysReg.Length);
964   }
965 
966   const MCExpr *getImm() const {
967     assert(Kind == KindTy::Immediate && "Invalid type access!");
968     return Imm.Val;
969   }
970 
971   uint64_t getFPConst() const {
972     assert(Kind == KindTy::FPImmediate && "Invalid type access!");
973     return FPImm.Val;
974   }
975 
976   StringRef getToken() const {
977     assert(Kind == KindTy::Token && "Invalid type access!");
978     return Tok;
979   }
980 
981   unsigned getVType() const {
982     assert(Kind == KindTy::VType && "Invalid type access!");
983     return VType.Val;
984   }
985 
986   RISCVFPRndMode::RoundingMode getFRM() const {
987     assert(Kind == KindTy::FRM && "Invalid type access!");
988     return FRM.FRM;
989   }
990 
991   unsigned getFence() const {
992     assert(Kind == KindTy::Fence && "Invalid type access!");
993     return Fence.Val;
994   }
995 
996   void print(raw_ostream &OS) const override {
997     auto RegName = [](MCRegister Reg) {
998       if (Reg)
999         return RISCVInstPrinter::getRegisterName(Reg);
1000       else
1001         return "noreg";
1002     };
1003 
1004     switch (Kind) {
1005     case KindTy::Immediate:
1006       OS << *getImm();
1007       break;
1008     case KindTy::FPImmediate:
1009       break;
1010     case KindTy::Register:
1011       OS << "<register " << RegName(getReg()) << ">";
1012       break;
1013     case KindTy::Token:
1014       OS << "'" << getToken() << "'";
1015       break;
1016     case KindTy::SystemRegister:
1017       OS << "<sysreg: " << getSysReg() << '>';
1018       break;
1019     case KindTy::VType:
1020       OS << "<vtype: ";
1021       RISCVVType::printVType(getVType(), OS);
1022       OS << '>';
1023       break;
1024     case KindTy::FRM:
1025       OS << "<frm: ";
1026       roundingModeToString(getFRM());
1027       OS << '>';
1028       break;
1029     case KindTy::Fence:
1030       OS << "<fence: ";
1031       OS << getFence();
1032       OS << '>';
1033       break;
1034     case KindTy::Rlist:
1035       OS << "<rlist: ";
1036       RISCVZC::printRlist(Rlist.Val, OS);
1037       OS << '>';
1038       break;
1039     case KindTy::Spimm:
1040       OS << "<Spimm: ";
1041       RISCVZC::printSpimm(Spimm.Val, OS);
1042       OS << '>';
1043       break;
1044     case KindTy::RegReg:
1045       OS << "<RegReg:  Reg1 " << RegName(RegReg.Reg1);
1046       OS << " Reg2 " << RegName(RegReg.Reg2);
1047       break;
1048     }
1049   }
1050 
1051   static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S) {
1052     auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
1053     Op->Tok = Str;
1054     Op->StartLoc = S;
1055     Op->EndLoc = S;
1056     return Op;
1057   }
1058 
1059   static std::unique_ptr<RISCVOperand>
1060   createReg(unsigned RegNo, SMLoc S, SMLoc E, bool IsGPRAsFPR = false) {
1061     auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
1062     Op->Reg.RegNum = RegNo;
1063     Op->Reg.IsGPRAsFPR = IsGPRAsFPR;
1064     Op->StartLoc = S;
1065     Op->EndLoc = E;
1066     return Op;
1067   }
1068 
1069   static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
1070                                                  SMLoc E, bool IsRV64) {
1071     auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
1072     Op->Imm.Val = Val;
1073     Op->Imm.IsRV64 = IsRV64;
1074     Op->StartLoc = S;
1075     Op->EndLoc = E;
1076     return Op;
1077   }
1078 
1079   static std::unique_ptr<RISCVOperand> createFPImm(uint64_t Val, SMLoc S) {
1080     auto Op = std::make_unique<RISCVOperand>(KindTy::FPImmediate);
1081     Op->FPImm.Val = Val;
1082     Op->StartLoc = S;
1083     Op->EndLoc = S;
1084     return Op;
1085   }
1086 
1087   static std::unique_ptr<RISCVOperand> createSysReg(StringRef Str, SMLoc S,
1088                                                     unsigned Encoding) {
1089     auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
1090     Op->SysReg.Data = Str.data();
1091     Op->SysReg.Length = Str.size();
1092     Op->SysReg.Encoding = Encoding;
1093     Op->StartLoc = S;
1094     Op->EndLoc = S;
1095     return Op;
1096   }
1097 
1098   static std::unique_ptr<RISCVOperand>
1099   createFRMArg(RISCVFPRndMode::RoundingMode FRM, SMLoc S) {
1100     auto Op = std::make_unique<RISCVOperand>(KindTy::FRM);
1101     Op->FRM.FRM = FRM;
1102     Op->StartLoc = S;
1103     Op->EndLoc = S;
1104     return Op;
1105   }
1106 
1107   static std::unique_ptr<RISCVOperand> createFenceArg(unsigned Val, SMLoc S) {
1108     auto Op = std::make_unique<RISCVOperand>(KindTy::Fence);
1109     Op->Fence.Val = Val;
1110     Op->StartLoc = S;
1111     Op->EndLoc = S;
1112     return Op;
1113   }
1114 
1115   static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S) {
1116     auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
1117     Op->VType.Val = VTypeI;
1118     Op->StartLoc = S;
1119     Op->EndLoc = S;
1120     return Op;
1121   }
1122 
1123   static std::unique_ptr<RISCVOperand> createRlist(unsigned RlistEncode,
1124                                                    SMLoc S) {
1125     auto Op = std::make_unique<RISCVOperand>(KindTy::Rlist);
1126     Op->Rlist.Val = RlistEncode;
1127     Op->StartLoc = S;
1128     return Op;
1129   }
1130 
1131   static std::unique_ptr<RISCVOperand> createRegReg(unsigned Reg1No,
1132                                                     unsigned Reg2No, SMLoc S) {
1133     auto Op = std::make_unique<RISCVOperand>(KindTy::RegReg);
1134     Op->RegReg.Reg1 = Reg1No;
1135     Op->RegReg.Reg2 = Reg2No;
1136     Op->StartLoc = S;
1137     Op->EndLoc = S;
1138     return Op;
1139   }
1140 
1141   static std::unique_ptr<RISCVOperand> createSpimm(unsigned Spimm, SMLoc S) {
1142     auto Op = std::make_unique<RISCVOperand>(KindTy::Spimm);
1143     Op->Spimm.Val = Spimm;
1144     Op->StartLoc = S;
1145     return Op;
1146   }
1147 
1148   static void addExpr(MCInst &Inst, const MCExpr *Expr, bool IsRV64Imm) {
1149     assert(Expr && "Expr shouldn't be null!");
1150     int64_t Imm = 0;
1151     RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
1152     bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
1153 
1154     if (IsConstant)
1155       Inst.addOperand(
1156           MCOperand::createImm(fixImmediateForRV32(Imm, IsRV64Imm)));
1157     else
1158       Inst.addOperand(MCOperand::createExpr(Expr));
1159   }
1160 
1161   // Used by the TableGen Code
1162   void addRegOperands(MCInst &Inst, unsigned N) const {
1163     assert(N == 1 && "Invalid number of operands!");
1164     Inst.addOperand(MCOperand::createReg(getReg()));
1165   }
1166 
1167   void addImmOperands(MCInst &Inst, unsigned N) const {
1168     assert(N == 1 && "Invalid number of operands!");
1169     addExpr(Inst, getImm(), isRV64Imm());
1170   }
1171 
1172   void addFPImmOperands(MCInst &Inst, unsigned N) const {
1173     assert(N == 1 && "Invalid number of operands!");
1174     if (isImm()) {
1175       addExpr(Inst, getImm(), isRV64Imm());
1176       return;
1177     }
1178 
1179     int Imm = RISCVLoadFPImm::getLoadFPImm(
1180         APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
1181     Inst.addOperand(MCOperand::createImm(Imm));
1182   }
1183 
1184   void addFenceArgOperands(MCInst &Inst, unsigned N) const {
1185     assert(N == 1 && "Invalid number of operands!");
1186     Inst.addOperand(MCOperand::createImm(Fence.Val));
1187   }
1188 
1189   void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
1190     assert(N == 1 && "Invalid number of operands!");
1191     Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
1192   }
1193 
1194   // Support non-canonical syntax:
1195   // "vsetivli rd, uimm, 0xabc" or "vsetvli rd, rs1, 0xabc"
1196   // "vsetivli rd, uimm, (0xc << N)" or "vsetvli rd, rs1, (0xc << N)"
1197   void addVTypeIOperands(MCInst &Inst, unsigned N) const {
1198     assert(N == 1 && "Invalid number of operands!");
1199     int64_t Imm = 0;
1200     if (Kind == KindTy::Immediate) {
1201       RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
1202       bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
1203       (void)IsConstantImm;
1204       assert(IsConstantImm && "Invalid VTypeI Operand!");
1205     } else {
1206       Imm = getVType();
1207     }
1208     Inst.addOperand(MCOperand::createImm(Imm));
1209   }
1210 
1211   void addRlistOperands(MCInst &Inst, unsigned N) const {
1212     assert(N == 1 && "Invalid number of operands!");
1213     Inst.addOperand(MCOperand::createImm(Rlist.Val));
1214   }
1215 
1216   void addRegRegOperands(MCInst &Inst, unsigned N) const {
1217     assert(N == 1 && "Invalid number of operands!");
1218     Inst.addOperand(MCOperand::createReg(RegReg.Reg1));
1219     Inst.addOperand(MCOperand::createReg(RegReg.Reg2));
1220   }
1221 
1222   void addSpimmOperands(MCInst &Inst, unsigned N) const {
1223     assert(N == 1 && "Invalid number of operands!");
1224     Inst.addOperand(MCOperand::createImm(Spimm.Val));
1225   }
1226 
1227   void addFRMArgOperands(MCInst &Inst, unsigned N) const {
1228     assert(N == 1 && "Invalid number of operands!");
1229     Inst.addOperand(MCOperand::createImm(getFRM()));
1230   }
1231 };
1232 } // end anonymous namespace.
1233 
1234 #define GET_REGISTER_MATCHER
1235 #define GET_SUBTARGET_FEATURE_NAME
1236 #define GET_MATCHER_IMPLEMENTATION
1237 #define GET_MNEMONIC_SPELL_CHECKER
1238 #include "RISCVGenAsmMatcher.inc"
1239 
1240 static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
1241   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
1242   return Reg - RISCV::F0_D + RISCV::F0_H;
1243 }
1244 
1245 static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
1246   assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
1247   return Reg - RISCV::F0_D + RISCV::F0_F;
1248 }
1249 
1250 static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
1251                                   unsigned Kind) {
1252   unsigned RegClassID;
1253   if (Kind == MCK_VRM2)
1254     RegClassID = RISCV::VRM2RegClassID;
1255   else if (Kind == MCK_VRM4)
1256     RegClassID = RISCV::VRM4RegClassID;
1257   else if (Kind == MCK_VRM8)
1258     RegClassID = RISCV::VRM8RegClassID;
1259   else
1260     return 0;
1261   return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
1262                                 &RISCVMCRegisterClasses[RegClassID]);
1263 }
1264 
1265 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1266                                                     unsigned Kind) {
1267   RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
1268   if (!Op.isReg())
1269     return Match_InvalidOperand;
1270 
1271   MCRegister Reg = Op.getReg();
1272   bool IsRegFPR64 =
1273       RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
1274   bool IsRegFPR64C =
1275       RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
1276   bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
1277 
1278   // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
1279   // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
1280   if ((IsRegFPR64 && Kind == MCK_FPR32) ||
1281       (IsRegFPR64C && Kind == MCK_FPR32C)) {
1282     Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
1283     return Match_Success;
1284   }
1285   // As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
1286   // register from FPR64 to FPR16 if necessary.
1287   if (IsRegFPR64 && Kind == MCK_FPR16) {
1288     Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
1289     return Match_Success;
1290   }
1291   // As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
1292   // the register from VR to VRM2/VRM4/VRM8 if necessary.
1293   if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
1294     Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
1295     if (Op.Reg.RegNum == 0)
1296       return Match_InvalidOperand;
1297     return Match_Success;
1298   }
1299   return Match_InvalidOperand;
1300 }
1301 
1302 unsigned RISCVAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
1303   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
1304 
1305   for (unsigned I = 0; I < MCID.NumOperands; ++I) {
1306     if (MCID.operands()[I].RegClass == RISCV::GPRPairRegClassID) {
1307       const auto &Op = Inst.getOperand(I);
1308       assert(Op.isReg());
1309 
1310       MCRegister Reg = Op.getReg();
1311       if (RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(Reg))
1312         continue;
1313 
1314       // FIXME: We should form a paired register during parsing/matching.
1315       if (((Reg.id() - RISCV::X0) & 1) != 0)
1316         return Match_RequiresEvenGPRs;
1317     }
1318   }
1319 
1320   return Match_Success;
1321 }
1322 
1323 bool RISCVAsmParser::generateImmOutOfRangeError(
1324     SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
1325     const Twine &Msg = "immediate must be an integer in the range") {
1326   return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
1327 }
1328 
1329 bool RISCVAsmParser::generateImmOutOfRangeError(
1330     OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
1331     const Twine &Msg = "immediate must be an integer in the range") {
1332   SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1333   return generateImmOutOfRangeError(ErrorLoc, Lower, Upper, Msg);
1334 }
1335 
1336 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1337                                              OperandVector &Operands,
1338                                              MCStreamer &Out,
1339                                              uint64_t &ErrorInfo,
1340                                              bool MatchingInlineAsm) {
1341   MCInst Inst;
1342   FeatureBitset MissingFeatures;
1343 
1344   auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1345                                      MatchingInlineAsm);
1346   switch (Result) {
1347   default:
1348     break;
1349   case Match_Success:
1350     if (validateInstruction(Inst, Operands))
1351       return true;
1352     return processInstruction(Inst, IDLoc, Operands, Out);
1353   case Match_MissingFeature: {
1354     assert(MissingFeatures.any() && "Unknown missing features!");
1355     bool FirstFeature = true;
1356     std::string Msg = "instruction requires the following:";
1357     for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
1358       if (MissingFeatures[i]) {
1359         Msg += FirstFeature ? " " : ", ";
1360         Msg += getSubtargetFeatureName(i);
1361         FirstFeature = false;
1362       }
1363     }
1364     return Error(IDLoc, Msg);
1365   }
1366   case Match_MnemonicFail: {
1367     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1368     std::string Suggestion = RISCVMnemonicSpellCheck(
1369         ((RISCVOperand &)*Operands[0]).getToken(), FBS, 0);
1370     return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
1371   }
1372   case Match_InvalidOperand: {
1373     SMLoc ErrorLoc = IDLoc;
1374     if (ErrorInfo != ~0ULL) {
1375       if (ErrorInfo >= Operands.size())
1376         return Error(ErrorLoc, "too few operands for instruction");
1377 
1378       ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1379       if (ErrorLoc == SMLoc())
1380         ErrorLoc = IDLoc;
1381     }
1382     return Error(ErrorLoc, "invalid operand for instruction");
1383   }
1384   }
1385 
1386   // Handle the case when the error message is of specific type
1387   // other than the generic Match_InvalidOperand, and the
1388   // corresponding operand is missing.
1389   if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
1390     SMLoc ErrorLoc = IDLoc;
1391     if (ErrorInfo != ~0ULL && ErrorInfo >= Operands.size())
1392       return Error(ErrorLoc, "too few operands for instruction");
1393   }
1394 
1395   switch (Result) {
1396   default:
1397     break;
1398   case Match_RequiresEvenGPRs:
1399     return Error(IDLoc,
1400                  "double precision floating point operands must use even "
1401                  "numbered X register");
1402   case Match_InvalidImmXLenLI:
1403     if (isRV64()) {
1404       SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1405       return Error(ErrorLoc, "operand must be a constant 64-bit integer");
1406     }
1407     return generateImmOutOfRangeError(Operands, ErrorInfo,
1408                                       std::numeric_limits<int32_t>::min(),
1409                                       std::numeric_limits<uint32_t>::max());
1410   case Match_InvalidImmXLenLI_Restricted:
1411     if (isRV64()) {
1412       SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1413       return Error(ErrorLoc, "operand either must be a constant 64-bit integer "
1414                              "or a bare symbol name");
1415     }
1416     return generateImmOutOfRangeError(
1417         Operands, ErrorInfo, std::numeric_limits<int32_t>::min(),
1418         std::numeric_limits<uint32_t>::max(),
1419         "operand either must be a bare symbol name or an immediate integer in "
1420         "the range");
1421   case Match_InvalidImmZero: {
1422     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1423     return Error(ErrorLoc, "immediate must be zero");
1424   }
1425   case Match_InvalidUImmLog2XLen:
1426     if (isRV64())
1427       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1428     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1429   case Match_InvalidUImmLog2XLenNonZero:
1430     if (isRV64())
1431       return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
1432     return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
1433   case Match_InvalidUImmLog2XLenHalf:
1434     if (isRV64())
1435       return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1436     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1437   case Match_InvalidUImm1:
1438     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 1) - 1);
1439   case Match_InvalidUImm2:
1440     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
1441   case Match_InvalidUImm2Lsb0:
1442     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 2,
1443                                       "immediate must be one of");
1444   case Match_InvalidUImm3:
1445     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
1446   case Match_InvalidUImm4:
1447     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
1448   case Match_InvalidUImm5:
1449     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
1450   case Match_InvalidUImm6:
1451     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
1452   case Match_InvalidUImm7:
1453     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
1454   case Match_InvalidUImm8:
1455     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 8) - 1);
1456   case Match_InvalidUImm8GE32:
1457     return generateImmOutOfRangeError(Operands, ErrorInfo, 32, (1 << 8) - 1);
1458   case Match_InvalidSImm5:
1459     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
1460                                       (1 << 4) - 1);
1461   case Match_InvalidSImm6:
1462     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
1463                                       (1 << 5) - 1);
1464   case Match_InvalidSImm6NonZero:
1465     return generateImmOutOfRangeError(
1466         Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
1467         "immediate must be non-zero in the range");
1468   case Match_InvalidCLUIImm:
1469     return generateImmOutOfRangeError(
1470         Operands, ErrorInfo, 1, (1 << 5) - 1,
1471         "immediate must be in [0xfffe0, 0xfffff] or");
1472   case Match_InvalidUImm7Lsb00:
1473     return generateImmOutOfRangeError(
1474         Operands, ErrorInfo, 0, (1 << 7) - 4,
1475         "immediate must be a multiple of 4 bytes in the range");
1476   case Match_InvalidUImm8Lsb00:
1477     return generateImmOutOfRangeError(
1478         Operands, ErrorInfo, 0, (1 << 8) - 4,
1479         "immediate must be a multiple of 4 bytes in the range");
1480   case Match_InvalidUImm8Lsb000:
1481     return generateImmOutOfRangeError(
1482         Operands, ErrorInfo, 0, (1 << 8) - 8,
1483         "immediate must be a multiple of 8 bytes in the range");
1484   case Match_InvalidSImm9Lsb0:
1485     return generateImmOutOfRangeError(
1486         Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
1487         "immediate must be a multiple of 2 bytes in the range");
1488   case Match_InvalidUImm9Lsb000:
1489     return generateImmOutOfRangeError(
1490         Operands, ErrorInfo, 0, (1 << 9) - 8,
1491         "immediate must be a multiple of 8 bytes in the range");
1492   case Match_InvalidUImm10Lsb00NonZero:
1493     return generateImmOutOfRangeError(
1494         Operands, ErrorInfo, 4, (1 << 10) - 4,
1495         "immediate must be a multiple of 4 bytes in the range");
1496   case Match_InvalidSImm10Lsb0000NonZero:
1497     return generateImmOutOfRangeError(
1498         Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
1499         "immediate must be a multiple of 16 bytes and non-zero in the range");
1500   case Match_InvalidSImm12:
1501     return generateImmOutOfRangeError(
1502         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
1503         "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
1504         "integer in the range");
1505   case Match_InvalidSImm12Lsb0:
1506     return generateImmOutOfRangeError(
1507         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
1508         "immediate must be a multiple of 2 bytes in the range");
1509   case Match_InvalidSImm12Lsb00000:
1510     return generateImmOutOfRangeError(
1511         Operands, ErrorInfo, -(1 << 11), (1 << 11) - 32,
1512         "immediate must be a multiple of 32 bytes in the range");
1513   case Match_InvalidSImm13Lsb0:
1514     return generateImmOutOfRangeError(
1515         Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
1516         "immediate must be a multiple of 2 bytes in the range");
1517   case Match_InvalidUImm20LUI:
1518     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
1519                                       "operand must be a symbol with "
1520                                       "%hi/%tprel_hi modifier or an integer in "
1521                                       "the range");
1522   case Match_InvalidUImm20:
1523     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
1524   case Match_InvalidUImm20AUIPC:
1525     return generateImmOutOfRangeError(
1526         Operands, ErrorInfo, 0, (1 << 20) - 1,
1527         "operand must be a symbol with a "
1528         "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
1529         "an integer in the range");
1530   case Match_InvalidSImm21Lsb0JAL:
1531     return generateImmOutOfRangeError(
1532         Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
1533         "immediate must be a multiple of 2 bytes in the range");
1534   case Match_InvalidCSRSystemRegister: {
1535     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
1536                                       "operand must be a valid system register "
1537                                       "name or an integer in the range");
1538   }
1539   case Match_InvalidLoadFPImm: {
1540     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1541     return Error(ErrorLoc, "operand must be a valid floating-point constant");
1542   }
1543   case Match_InvalidBareSymbol: {
1544     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1545     return Error(ErrorLoc, "operand must be a bare symbol name");
1546   }
1547   case Match_InvalidPseudoJumpSymbol: {
1548     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1549     return Error(ErrorLoc, "operand must be a valid jump target");
1550   }
1551   case Match_InvalidCallSymbol: {
1552     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1553     return Error(ErrorLoc, "operand must be a bare symbol name");
1554   }
1555   case Match_InvalidTPRelAddSymbol: {
1556     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1557     return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
1558   }
1559   case Match_InvalidRTZArg: {
1560     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1561     return Error(ErrorLoc, "operand must be 'rtz' floating-point rounding mode");
1562   }
1563   case Match_InvalidVTypeI: {
1564     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1565     return generateVTypeError(ErrorLoc);
1566   }
1567   case Match_InvalidVMaskRegister: {
1568     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1569     return Error(ErrorLoc, "operand must be v0.t");
1570   }
1571   case Match_InvalidSImm5Plus1: {
1572     return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
1573                                       (1 << 4),
1574                                       "immediate must be in the range");
1575   }
1576   case Match_InvalidRlist: {
1577     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1578     return Error(
1579         ErrorLoc,
1580         "operand must be {ra [, s0[-sN]]} or {x1 [, x8[-x9][, x18[-xN]]]}");
1581   }
1582   case Match_InvalidSpimm: {
1583     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1584     return Error(
1585         ErrorLoc,
1586         "stack adjustment is invalid for this instruction and register list; "
1587         "refer to Zc spec for a detailed range of stack adjustment");
1588   }
1589   case Match_InvalidRnumArg: {
1590     return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 10);
1591   }
1592   case Match_InvalidRegReg: {
1593     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
1594     return Error(ErrorLoc, "operands must be register and register");
1595   }
1596   }
1597 
1598   llvm_unreachable("Unknown match type detected!");
1599 }
1600 
1601 // Attempts to match Name as a register (either using the default name or
1602 // alternative ABI names), setting RegNo to the matching register. Upon
1603 // failure, returns a non-valid MCRegister. If IsRVE, then registers x16-x31
1604 // will be rejected.
1605 static MCRegister matchRegisterNameHelper(bool IsRVE, StringRef Name) {
1606   MCRegister Reg = MatchRegisterName(Name);
1607   // The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
1608   // match always matches the 64-bit variant, and not the 16/32-bit one.
1609   assert(!(Reg >= RISCV::F0_H && Reg <= RISCV::F31_H));
1610   assert(!(Reg >= RISCV::F0_F && Reg <= RISCV::F31_F));
1611   // The default FPR register class is based on the tablegen enum ordering.
1612   static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
1613   static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
1614   if (!Reg)
1615     Reg = MatchRegisterAltName(Name);
1616   if (IsRVE && Reg >= RISCV::X16 && Reg <= RISCV::X31)
1617     Reg = RISCV::NoRegister;
1618   return Reg;
1619 }
1620 
1621 bool RISCVAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1622                                    SMLoc &EndLoc) {
1623   if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess())
1624     return Error(StartLoc, "invalid register name");
1625   return false;
1626 }
1627 
1628 ParseStatus RISCVAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1629                                              SMLoc &EndLoc) {
1630   const AsmToken &Tok = getParser().getTok();
1631   StartLoc = Tok.getLoc();
1632   EndLoc = Tok.getEndLoc();
1633   StringRef Name = getLexer().getTok().getIdentifier();
1634 
1635   Reg = matchRegisterNameHelper(isRVE(), Name);
1636   if (!Reg)
1637     return ParseStatus::NoMatch;
1638 
1639   getParser().Lex(); // Eat identifier token.
1640   return ParseStatus::Success;
1641 }
1642 
1643 ParseStatus RISCVAsmParser::parseRegister(OperandVector &Operands,
1644                                           bool AllowParens) {
1645   SMLoc FirstS = getLoc();
1646   bool HadParens = false;
1647   AsmToken LParen;
1648 
1649   // If this is an LParen and a parenthesised register name is allowed, parse it
1650   // atomically.
1651   if (AllowParens && getLexer().is(AsmToken::LParen)) {
1652     AsmToken Buf[2];
1653     size_t ReadCount = getLexer().peekTokens(Buf);
1654     if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
1655       HadParens = true;
1656       LParen = getParser().getTok();
1657       getParser().Lex(); // Eat '('
1658     }
1659   }
1660 
1661   switch (getLexer().getKind()) {
1662   default:
1663     if (HadParens)
1664       getLexer().UnLex(LParen);
1665     return ParseStatus::NoMatch;
1666   case AsmToken::Identifier:
1667     StringRef Name = getLexer().getTok().getIdentifier();
1668     MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
1669 
1670     if (!RegNo) {
1671       if (HadParens)
1672         getLexer().UnLex(LParen);
1673       return ParseStatus::NoMatch;
1674     }
1675     if (HadParens)
1676       Operands.push_back(RISCVOperand::createToken("(", FirstS));
1677     SMLoc S = getLoc();
1678     SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
1679     getLexer().Lex();
1680     Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
1681   }
1682 
1683   if (HadParens) {
1684     getParser().Lex(); // Eat ')'
1685     Operands.push_back(RISCVOperand::createToken(")", getLoc()));
1686   }
1687 
1688   return ParseStatus::Success;
1689 }
1690 
1691 ParseStatus RISCVAsmParser::parseInsnDirectiveOpcode(OperandVector &Operands) {
1692   SMLoc S = getLoc();
1693   SMLoc E;
1694   const MCExpr *Res;
1695 
1696   switch (getLexer().getKind()) {
1697   default:
1698     return ParseStatus::NoMatch;
1699   case AsmToken::LParen:
1700   case AsmToken::Minus:
1701   case AsmToken::Plus:
1702   case AsmToken::Exclaim:
1703   case AsmToken::Tilde:
1704   case AsmToken::Integer:
1705   case AsmToken::String: {
1706     if (getParser().parseExpression(Res, E))
1707       return ParseStatus::Failure;
1708 
1709     auto *CE = dyn_cast<MCConstantExpr>(Res);
1710     if (CE) {
1711       int64_t Imm = CE->getValue();
1712       if (isUInt<7>(Imm)) {
1713         Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1714         return ParseStatus::Success;
1715       }
1716     }
1717 
1718     break;
1719   }
1720   case AsmToken::Identifier: {
1721     StringRef Identifier;
1722     if (getParser().parseIdentifier(Identifier))
1723       return ParseStatus::Failure;
1724 
1725     auto Opcode = RISCVInsnOpcode::lookupRISCVOpcodeByName(Identifier);
1726     if (Opcode) {
1727       assert(isUInt<7>(Opcode->Value) && (Opcode->Value & 0x3) == 3 &&
1728              "Unexpected opcode");
1729       Res = MCConstantExpr::create(Opcode->Value, getContext());
1730       E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1731       Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1732       return ParseStatus::Success;
1733     }
1734 
1735     break;
1736   }
1737   case AsmToken::Percent:
1738     break;
1739   }
1740 
1741   return generateImmOutOfRangeError(
1742       S, 0, 127,
1743       "opcode must be a valid opcode name or an immediate in the range");
1744 }
1745 
1746 ParseStatus RISCVAsmParser::parseInsnCDirectiveOpcode(OperandVector &Operands) {
1747   SMLoc S = getLoc();
1748   SMLoc E;
1749   const MCExpr *Res;
1750 
1751   switch (getLexer().getKind()) {
1752   default:
1753     return ParseStatus::NoMatch;
1754   case AsmToken::LParen:
1755   case AsmToken::Minus:
1756   case AsmToken::Plus:
1757   case AsmToken::Exclaim:
1758   case AsmToken::Tilde:
1759   case AsmToken::Integer:
1760   case AsmToken::String: {
1761     if (getParser().parseExpression(Res, E))
1762       return ParseStatus::Failure;
1763 
1764     auto *CE = dyn_cast<MCConstantExpr>(Res);
1765     if (CE) {
1766       int64_t Imm = CE->getValue();
1767       if (Imm >= 0 && Imm <= 2) {
1768         Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1769         return ParseStatus::Success;
1770       }
1771     }
1772 
1773     break;
1774   }
1775   case AsmToken::Identifier: {
1776     StringRef Identifier;
1777     if (getParser().parseIdentifier(Identifier))
1778       return ParseStatus::Failure;
1779 
1780     unsigned Opcode;
1781     if (Identifier == "C0")
1782       Opcode = 0;
1783     else if (Identifier == "C1")
1784       Opcode = 1;
1785     else if (Identifier == "C2")
1786       Opcode = 2;
1787     else
1788       break;
1789 
1790     Res = MCConstantExpr::create(Opcode, getContext());
1791     E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1792     Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1793     return ParseStatus::Success;
1794   }
1795   case AsmToken::Percent: {
1796     // Discard operand with modifier.
1797     break;
1798   }
1799   }
1800 
1801   return generateImmOutOfRangeError(
1802       S, 0, 2,
1803       "opcode must be a valid opcode name or an immediate in the range");
1804 }
1805 
1806 ParseStatus RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1807   SMLoc S = getLoc();
1808   const MCExpr *Res;
1809 
1810   switch (getLexer().getKind()) {
1811   default:
1812     return ParseStatus::NoMatch;
1813   case AsmToken::LParen:
1814   case AsmToken::Minus:
1815   case AsmToken::Plus:
1816   case AsmToken::Exclaim:
1817   case AsmToken::Tilde:
1818   case AsmToken::Integer:
1819   case AsmToken::String: {
1820     if (getParser().parseExpression(Res))
1821       return ParseStatus::Failure;
1822 
1823     auto *CE = dyn_cast<MCConstantExpr>(Res);
1824     if (CE) {
1825       int64_t Imm = CE->getValue();
1826       if (isUInt<12>(Imm)) {
1827         auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1828         // Accept an immediate representing a named or un-named Sys Reg
1829         // if the range is valid, regardless of the required features.
1830         Operands.push_back(
1831             RISCVOperand::createSysReg(SysReg ? SysReg->Name : "", S, Imm));
1832         return ParseStatus::Success;
1833       }
1834     }
1835 
1836     return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
1837   }
1838   case AsmToken::Identifier: {
1839     StringRef Identifier;
1840     if (getParser().parseIdentifier(Identifier))
1841       return ParseStatus::Failure;
1842 
1843     auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1844     if (!SysReg)
1845       SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
1846     if (!SysReg)
1847       if ((SysReg = RISCVSysReg::lookupSysRegByDeprecatedName(Identifier)))
1848         Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
1849                        SysReg->Name + "'");
1850 
1851     // Accept a named Sys Reg if the required features are present.
1852     if (SysReg) {
1853       if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits()))
1854         return Error(S, "system register use requires an option to be enabled");
1855       Operands.push_back(
1856           RISCVOperand::createSysReg(Identifier, S, SysReg->Encoding));
1857       return ParseStatus::Success;
1858     }
1859 
1860     return generateImmOutOfRangeError(S, 0, (1 << 12) - 1,
1861                                       "operand must be a valid system register "
1862                                       "name or an integer in the range");
1863   }
1864   case AsmToken::Percent: {
1865     // Discard operand with modifier.
1866     return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
1867   }
1868   }
1869 
1870   return ParseStatus::NoMatch;
1871 }
1872 
1873 ParseStatus RISCVAsmParser::parseFPImm(OperandVector &Operands) {
1874   SMLoc S = getLoc();
1875 
1876   // Parse special floats (inf/nan/min) representation.
1877   if (getTok().is(AsmToken::Identifier)) {
1878     StringRef Identifier = getTok().getIdentifier();
1879     if (Identifier.compare_insensitive("inf") == 0) {
1880       Operands.push_back(
1881           RISCVOperand::createImm(MCConstantExpr::create(30, getContext()), S,
1882                                   getTok().getEndLoc(), isRV64()));
1883     } else if (Identifier.compare_insensitive("nan") == 0) {
1884       Operands.push_back(
1885           RISCVOperand::createImm(MCConstantExpr::create(31, getContext()), S,
1886                                   getTok().getEndLoc(), isRV64()));
1887     } else if (Identifier.compare_insensitive("min") == 0) {
1888       Operands.push_back(
1889           RISCVOperand::createImm(MCConstantExpr::create(1, getContext()), S,
1890                                   getTok().getEndLoc(), isRV64()));
1891     } else {
1892       return TokError("invalid floating point literal");
1893     }
1894 
1895     Lex(); // Eat the token.
1896 
1897     return ParseStatus::Success;
1898   }
1899 
1900   // Handle negation, as that still comes through as a separate token.
1901   bool IsNegative = parseOptionalToken(AsmToken::Minus);
1902 
1903   const AsmToken &Tok = getTok();
1904   if (!Tok.is(AsmToken::Real))
1905     return TokError("invalid floating point immediate");
1906 
1907   // Parse FP representation.
1908   APFloat RealVal(APFloat::IEEEdouble());
1909   auto StatusOrErr =
1910       RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
1911   if (errorToBool(StatusOrErr.takeError()))
1912     return TokError("invalid floating point representation");
1913 
1914   if (IsNegative)
1915     RealVal.changeSign();
1916 
1917   Operands.push_back(RISCVOperand::createFPImm(
1918       RealVal.bitcastToAPInt().getZExtValue(), S));
1919 
1920   Lex(); // Eat the token.
1921 
1922   return ParseStatus::Success;
1923 }
1924 
1925 ParseStatus RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1926   SMLoc S = getLoc();
1927   SMLoc E;
1928   const MCExpr *Res;
1929 
1930   switch (getLexer().getKind()) {
1931   default:
1932     return ParseStatus::NoMatch;
1933   case AsmToken::LParen:
1934   case AsmToken::Dot:
1935   case AsmToken::Minus:
1936   case AsmToken::Plus:
1937   case AsmToken::Exclaim:
1938   case AsmToken::Tilde:
1939   case AsmToken::Integer:
1940   case AsmToken::String:
1941   case AsmToken::Identifier:
1942     if (getParser().parseExpression(Res, E))
1943       return ParseStatus::Failure;
1944     break;
1945   case AsmToken::Percent:
1946     return parseOperandWithModifier(Operands);
1947   }
1948 
1949   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1950   return ParseStatus::Success;
1951 }
1952 
1953 ParseStatus RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1954   SMLoc S = getLoc();
1955   SMLoc E;
1956 
1957   if (parseToken(AsmToken::Percent, "expected '%' for operand modifier"))
1958     return ParseStatus::Failure;
1959 
1960   if (getLexer().getKind() != AsmToken::Identifier)
1961     return Error(getLoc(), "expected valid identifier for operand modifier");
1962   StringRef Identifier = getParser().getTok().getIdentifier();
1963   RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1964   if (VK == RISCVMCExpr::VK_RISCV_Invalid)
1965     return Error(getLoc(), "unrecognized operand modifier");
1966 
1967   getParser().Lex(); // Eat the identifier
1968   if (parseToken(AsmToken::LParen, "expected '('"))
1969     return ParseStatus::Failure;
1970 
1971   const MCExpr *SubExpr;
1972   if (getParser().parseParenExpression(SubExpr, E))
1973     return ParseStatus::Failure;
1974 
1975   const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1976   Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1977   return ParseStatus::Success;
1978 }
1979 
1980 ParseStatus RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1981   SMLoc S = getLoc();
1982   const MCExpr *Res;
1983 
1984   if (getLexer().getKind() != AsmToken::Identifier)
1985     return ParseStatus::NoMatch;
1986 
1987   StringRef Identifier;
1988   AsmToken Tok = getLexer().getTok();
1989 
1990   if (getParser().parseIdentifier(Identifier))
1991     return ParseStatus::Failure;
1992 
1993   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
1994 
1995   if (Identifier.consume_back("@plt"))
1996     return Error(getLoc(), "'@plt' operand not valid for instruction");
1997 
1998   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1999 
2000   if (Sym->isVariable()) {
2001     const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
2002     if (!isa<MCSymbolRefExpr>(V)) {
2003       getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
2004       return ParseStatus::NoMatch;
2005     }
2006     Res = V;
2007   } else
2008     Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
2009 
2010   MCBinaryExpr::Opcode Opcode;
2011   switch (getLexer().getKind()) {
2012   default:
2013     Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2014     return ParseStatus::Success;
2015   case AsmToken::Plus:
2016     Opcode = MCBinaryExpr::Add;
2017     getLexer().Lex();
2018     break;
2019   case AsmToken::Minus:
2020     Opcode = MCBinaryExpr::Sub;
2021     getLexer().Lex();
2022     break;
2023   }
2024 
2025   const MCExpr *Expr;
2026   if (getParser().parseExpression(Expr, E))
2027     return ParseStatus::Failure;
2028   Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
2029   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2030   return ParseStatus::Success;
2031 }
2032 
2033 ParseStatus RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
2034   SMLoc S = getLoc();
2035   const MCExpr *Res;
2036 
2037   if (getLexer().getKind() != AsmToken::Identifier)
2038     return ParseStatus::NoMatch;
2039 
2040   // Avoid parsing the register in `call rd, foo` as a call symbol.
2041   if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
2042     return ParseStatus::NoMatch;
2043 
2044   StringRef Identifier;
2045   if (getParser().parseIdentifier(Identifier))
2046     return ParseStatus::Failure;
2047 
2048   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
2049 
2050   RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
2051   (void)Identifier.consume_back("@plt");
2052 
2053   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
2054   Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
2055   Res = RISCVMCExpr::create(Res, Kind, getContext());
2056   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2057   return ParseStatus::Success;
2058 }
2059 
2060 ParseStatus RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
2061   SMLoc S = getLoc();
2062   SMLoc E;
2063   const MCExpr *Res;
2064 
2065   if (getParser().parseExpression(Res, E))
2066     return ParseStatus::Failure;
2067 
2068   if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
2069       cast<MCSymbolRefExpr>(Res)->getKind() ==
2070           MCSymbolRefExpr::VariantKind::VK_PLT)
2071     return Error(S, "operand must be a valid jump target");
2072 
2073   Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
2074   Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
2075   return ParseStatus::Success;
2076 }
2077 
2078 ParseStatus RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
2079   // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
2080   // both being acceptable forms. When parsing `jal ra, foo` this function
2081   // will be called for the `ra` register operand in an attempt to match the
2082   // single-operand alias. parseJALOffset must fail for this case. It would
2083   // seem logical to try parse the operand using parseImmediate and return
2084   // NoMatch if the next token is a comma (meaning we must be parsing a jal in
2085   // the second form rather than the first). We can't do this as there's no
2086   // way of rewinding the lexer state. Instead, return NoMatch if this operand
2087   // is an identifier and is followed by a comma.
2088   if (getLexer().is(AsmToken::Identifier) &&
2089       getLexer().peekTok().is(AsmToken::Comma))
2090     return ParseStatus::NoMatch;
2091 
2092   return parseImmediate(Operands);
2093 }
2094 
2095 bool RISCVAsmParser::parseVTypeToken(StringRef Identifier, VTypeState &State,
2096                                      unsigned &Sew, unsigned &Lmul,
2097                                      bool &Fractional, bool &TailAgnostic,
2098                                      bool &MaskAgnostic) {
2099   switch (State) {
2100   case VTypeState_SEW:
2101     if (!Identifier.consume_front("e"))
2102       break;
2103     if (Identifier.getAsInteger(10, Sew))
2104       break;
2105     if (!RISCVVType::isValidSEW(Sew))
2106       break;
2107     State = VTypeState_LMUL;
2108     return false;
2109   case VTypeState_LMUL: {
2110     if (!Identifier.consume_front("m"))
2111       break;
2112     Fractional = Identifier.consume_front("f");
2113     if (Identifier.getAsInteger(10, Lmul))
2114       break;
2115     if (!RISCVVType::isValidLMUL(Lmul, Fractional))
2116       break;
2117     State = VTypeState_TailPolicy;
2118     return false;
2119   }
2120   case VTypeState_TailPolicy:
2121     if (Identifier == "ta")
2122       TailAgnostic = true;
2123     else if (Identifier == "tu")
2124       TailAgnostic = false;
2125     else
2126       break;
2127     State = VTypeState_MaskPolicy;
2128     return false;
2129   case VTypeState_MaskPolicy:
2130     if (Identifier == "ma")
2131       MaskAgnostic = true;
2132     else if (Identifier == "mu")
2133       MaskAgnostic = false;
2134     else
2135       break;
2136     State = VTypeState_Done;
2137     return false;
2138   case VTypeState_Done:
2139     // Extra token?
2140     break;
2141   }
2142 
2143   return true;
2144 }
2145 
2146 ParseStatus RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
2147   SMLoc S = getLoc();
2148 
2149   unsigned Sew = 0;
2150   unsigned Lmul = 0;
2151   bool Fractional = false;
2152   bool TailAgnostic = false;
2153   bool MaskAgnostic = false;
2154 
2155   VTypeState State = VTypeState_SEW;
2156 
2157   if (getLexer().isNot(AsmToken::Identifier))
2158     return ParseStatus::NoMatch;
2159 
2160   StringRef Identifier = getTok().getIdentifier();
2161 
2162   if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
2163                       MaskAgnostic))
2164     return ParseStatus::NoMatch;
2165 
2166   getLexer().Lex();
2167 
2168   while (parseOptionalToken(AsmToken::Comma)) {
2169     if (getLexer().isNot(AsmToken::Identifier))
2170       break;
2171 
2172     Identifier = getTok().getIdentifier();
2173 
2174     if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
2175                         MaskAgnostic))
2176       break;
2177 
2178     getLexer().Lex();
2179   }
2180 
2181   if (getLexer().is(AsmToken::EndOfStatement) && State == VTypeState_Done) {
2182     RISCVII::VLMUL VLMUL = RISCVVType::encodeLMUL(Lmul, Fractional);
2183 
2184     unsigned VTypeI =
2185         RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
2186     Operands.push_back(RISCVOperand::createVType(VTypeI, S));
2187     return ParseStatus::Success;
2188   }
2189 
2190   return generateVTypeError(S);
2191 }
2192 
2193 bool RISCVAsmParser::generateVTypeError(SMLoc ErrorLoc) {
2194   return Error(
2195       ErrorLoc,
2196       "operand must be "
2197       "e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
2198 }
2199 
2200 ParseStatus RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
2201   if (getLexer().isNot(AsmToken::Identifier))
2202     return ParseStatus::NoMatch;
2203 
2204   StringRef Name = getLexer().getTok().getIdentifier();
2205   if (!Name.consume_back(".t"))
2206     return Error(getLoc(), "expected '.t' suffix");
2207   MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
2208 
2209   if (!RegNo)
2210     return ParseStatus::NoMatch;
2211   if (RegNo != RISCV::V0)
2212     return ParseStatus::NoMatch;
2213   SMLoc S = getLoc();
2214   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
2215   getLexer().Lex();
2216   Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
2217   return ParseStatus::Success;
2218 }
2219 
2220 ParseStatus RISCVAsmParser::parseGPRAsFPR(OperandVector &Operands) {
2221   if (getLexer().isNot(AsmToken::Identifier))
2222     return ParseStatus::NoMatch;
2223 
2224   StringRef Name = getLexer().getTok().getIdentifier();
2225   MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
2226 
2227   if (!RegNo)
2228     return ParseStatus::NoMatch;
2229   SMLoc S = getLoc();
2230   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
2231   getLexer().Lex();
2232   Operands.push_back(RISCVOperand::createReg(
2233       RegNo, S, E, !getSTI().hasFeature(RISCV::FeatureStdExtF)));
2234   return ParseStatus::Success;
2235 }
2236 
2237 template <bool IsRV64>
2238 ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands) {
2239   return parseGPRPair(Operands, IsRV64);
2240 }
2241 
2242 ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands,
2243                                          bool IsRV64Inst) {
2244   // If this is not an RV64 GPRPair instruction, don't parse as a GPRPair on
2245   // RV64 as it will prevent matching the RV64 version of the same instruction
2246   // that doesn't use a GPRPair.
2247   // If this is an RV64 GPRPair instruction, there is no RV32 version so we can
2248   // still parse as a pair.
2249   if (!IsRV64Inst && isRV64())
2250     return ParseStatus::NoMatch;
2251 
2252   if (getLexer().isNot(AsmToken::Identifier))
2253     return ParseStatus::NoMatch;
2254 
2255   StringRef Name = getLexer().getTok().getIdentifier();
2256   MCRegister RegNo = matchRegisterNameHelper(isRVE(), Name);
2257 
2258   if (!RegNo)
2259     return ParseStatus::NoMatch;
2260 
2261   if (!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(RegNo))
2262     return ParseStatus::NoMatch;
2263 
2264   if ((RegNo - RISCV::X0) & 1)
2265     return TokError("register must be even");
2266 
2267   SMLoc S = getLoc();
2268   SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
2269   getLexer().Lex();
2270 
2271   const MCRegisterInfo *RI = getContext().getRegisterInfo();
2272   unsigned Pair = RI->getMatchingSuperReg(
2273       RegNo, RISCV::sub_gpr_even,
2274       &RISCVMCRegisterClasses[RISCV::GPRPairRegClassID]);
2275   Operands.push_back(RISCVOperand::createReg(Pair, S, E));
2276   return ParseStatus::Success;
2277 }
2278 
2279 ParseStatus RISCVAsmParser::parseFRMArg(OperandVector &Operands) {
2280   if (getLexer().isNot(AsmToken::Identifier))
2281     return TokError(
2282         "operand must be a valid floating point rounding mode mnemonic");
2283 
2284   StringRef Str = getLexer().getTok().getIdentifier();
2285   RISCVFPRndMode::RoundingMode FRM = RISCVFPRndMode::stringToRoundingMode(Str);
2286 
2287   if (FRM == RISCVFPRndMode::Invalid)
2288     return TokError(
2289         "operand must be a valid floating point rounding mode mnemonic");
2290 
2291   Operands.push_back(RISCVOperand::createFRMArg(FRM, getLoc()));
2292   Lex(); // Eat identifier token.
2293   return ParseStatus::Success;
2294 }
2295 
2296 ParseStatus RISCVAsmParser::parseFenceArg(OperandVector &Operands) {
2297   const AsmToken &Tok = getLexer().getTok();
2298 
2299   if (Tok.is(AsmToken::Integer)) {
2300     if (Tok.getIntVal() != 0)
2301       goto ParseFail;
2302 
2303     Operands.push_back(RISCVOperand::createFenceArg(0, getLoc()));
2304     Lex();
2305     return ParseStatus::Success;
2306   }
2307 
2308   if (Tok.is(AsmToken::Identifier)) {
2309     StringRef Str = Tok.getIdentifier();
2310 
2311     // Letters must be unique, taken from 'iorw', and in ascending order. This
2312     // holds as long as each individual character is one of 'iorw' and is
2313     // greater than the previous character.
2314     unsigned Imm = 0;
2315     bool Valid = true;
2316     char Prev = '\0';
2317     for (char c : Str) {
2318       switch (c) {
2319       default:
2320         Valid = false;
2321         break;
2322       case 'i':
2323         Imm |= RISCVFenceField::I;
2324         break;
2325       case 'o':
2326         Imm |= RISCVFenceField::O;
2327         break;
2328       case 'r':
2329         Imm |= RISCVFenceField::R;
2330         break;
2331       case 'w':
2332         Imm |= RISCVFenceField::W;
2333         break;
2334       }
2335 
2336       if (c <= Prev) {
2337         Valid = false;
2338         break;
2339       }
2340       Prev = c;
2341     }
2342 
2343     if (!Valid)
2344       goto ParseFail;
2345 
2346     Operands.push_back(RISCVOperand::createFenceArg(Imm, getLoc()));
2347     Lex();
2348     return ParseStatus::Success;
2349   }
2350 
2351 ParseFail:
2352   return TokError("operand must be formed of letters selected in-order from "
2353                   "'iorw' or be 0");
2354 }
2355 
2356 ParseStatus RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
2357   if (parseToken(AsmToken::LParen, "expected '('"))
2358     return ParseStatus::Failure;
2359   Operands.push_back(RISCVOperand::createToken("(", getLoc()));
2360 
2361   if (!parseRegister(Operands).isSuccess())
2362     return Error(getLoc(), "expected register");
2363 
2364   if (parseToken(AsmToken::RParen, "expected ')'"))
2365     return ParseStatus::Failure;
2366   Operands.push_back(RISCVOperand::createToken(")", getLoc()));
2367 
2368   return ParseStatus::Success;
2369 }
2370 
2371 ParseStatus RISCVAsmParser::parseZeroOffsetMemOp(OperandVector &Operands) {
2372   // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
2373   // as one of their register operands, such as `(a0)`. This just denotes that
2374   // the register (in this case `a0`) contains a memory address.
2375   //
2376   // Normally, we would be able to parse these by putting the parens into the
2377   // instruction string. However, GNU as also accepts a zero-offset memory
2378   // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
2379   // with parseImmediate followed by parseMemOpBaseReg, but these instructions
2380   // do not accept an immediate operand, and we do not want to add a "dummy"
2381   // operand that is silently dropped.
2382   //
2383   // Instead, we use this custom parser. This will: allow (and discard) an
2384   // offset if it is zero; require (and discard) parentheses; and add only the
2385   // parsed register operand to `Operands`.
2386   //
2387   // These operands are printed with RISCVInstPrinter::printZeroOffsetMemOp,
2388   // which will only print the register surrounded by parentheses (which GNU as
2389   // also uses as its canonical representation for these operands).
2390   std::unique_ptr<RISCVOperand> OptionalImmOp;
2391 
2392   if (getLexer().isNot(AsmToken::LParen)) {
2393     // Parse an Integer token. We do not accept arbritrary constant expressions
2394     // in the offset field (because they may include parens, which complicates
2395     // parsing a lot).
2396     int64_t ImmVal;
2397     SMLoc ImmStart = getLoc();
2398     if (getParser().parseIntToken(ImmVal,
2399                                   "expected '(' or optional integer offset"))
2400       return ParseStatus::Failure;
2401 
2402     // Create a RISCVOperand for checking later (so the error messages are
2403     // nicer), but we don't add it to Operands.
2404     SMLoc ImmEnd = getLoc();
2405     OptionalImmOp =
2406         RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
2407                                 ImmStart, ImmEnd, isRV64());
2408   }
2409 
2410   if (parseToken(AsmToken::LParen,
2411                  OptionalImmOp ? "expected '(' after optional integer offset"
2412                                : "expected '(' or optional integer offset"))
2413     return ParseStatus::Failure;
2414 
2415   if (!parseRegister(Operands).isSuccess())
2416     return Error(getLoc(), "expected register");
2417 
2418   if (parseToken(AsmToken::RParen, "expected ')'"))
2419     return ParseStatus::Failure;
2420 
2421   // Deferred Handling of non-zero offsets. This makes the error messages nicer.
2422   if (OptionalImmOp && !OptionalImmOp->isImmZero())
2423     return Error(
2424         OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
2425         SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
2426 
2427   return ParseStatus::Success;
2428 }
2429 
2430 ParseStatus RISCVAsmParser::parseRegReg(OperandVector &Operands) {
2431   // RR : a2(a1)
2432   if (getLexer().getKind() != AsmToken::Identifier)
2433     return ParseStatus::NoMatch;
2434 
2435   StringRef RegName = getLexer().getTok().getIdentifier();
2436   MCRegister Reg = matchRegisterNameHelper(isRVE(), RegName);
2437   if (!Reg)
2438     return Error(getLoc(), "invalid register");
2439   getLexer().Lex();
2440 
2441   if (parseToken(AsmToken::LParen, "expected '(' or invalid operand"))
2442     return ParseStatus::Failure;
2443 
2444   if (getLexer().getKind() != AsmToken::Identifier)
2445     return Error(getLoc(), "expected register");
2446 
2447   StringRef Reg2Name = getLexer().getTok().getIdentifier();
2448   MCRegister Reg2 = matchRegisterNameHelper(isRVE(), Reg2Name);
2449   if (!Reg2)
2450     return Error(getLoc(), "invalid register");
2451   getLexer().Lex();
2452 
2453   if (parseToken(AsmToken::RParen, "expected ')'"))
2454     return ParseStatus::Failure;
2455 
2456   Operands.push_back(RISCVOperand::createRegReg(Reg, Reg2, getLoc()));
2457 
2458   return ParseStatus::Success;
2459 }
2460 
2461 ParseStatus RISCVAsmParser::parseReglist(OperandVector &Operands) {
2462   // Rlist: {ra [, s0[-sN]]}
2463   // XRlist: {x1 [, x8[-x9][, x18[-xN]]]}
2464   SMLoc S = getLoc();
2465 
2466   if (parseToken(AsmToken::LCurly, "register list must start with '{'"))
2467     return ParseStatus::Failure;
2468 
2469   bool IsEABI = isRVE();
2470 
2471   if (getLexer().isNot(AsmToken::Identifier))
2472     return Error(getLoc(), "register list must start from 'ra' or 'x1'");
2473 
2474   StringRef RegName = getLexer().getTok().getIdentifier();
2475   MCRegister RegStart = matchRegisterNameHelper(IsEABI, RegName);
2476   MCRegister RegEnd;
2477   if (RegStart != RISCV::X1)
2478     return Error(getLoc(), "register list must start from 'ra' or 'x1'");
2479   getLexer().Lex();
2480 
2481   // parse case like ,s0
2482   if (parseOptionalToken(AsmToken::Comma)) {
2483     if (getLexer().isNot(AsmToken::Identifier))
2484       return Error(getLoc(), "invalid register");
2485     StringRef RegName = getLexer().getTok().getIdentifier();
2486     RegStart = matchRegisterNameHelper(IsEABI, RegName);
2487     if (!RegStart)
2488       return Error(getLoc(), "invalid register");
2489     if (RegStart != RISCV::X8)
2490       return Error(getLoc(),
2491                    "continuous register list must start from 's0' or 'x8'");
2492     getLexer().Lex(); // eat reg
2493   }
2494 
2495   // parse case like -s1
2496   if (parseOptionalToken(AsmToken::Minus)) {
2497     StringRef EndName = getLexer().getTok().getIdentifier();
2498     // FIXME: the register mapping and checks of EABI is wrong
2499     RegEnd = matchRegisterNameHelper(IsEABI, EndName);
2500     if (!RegEnd)
2501       return Error(getLoc(), "invalid register");
2502     if (IsEABI && RegEnd != RISCV::X9)
2503       return Error(getLoc(), "contiguous register list of EABI can only be "
2504                              "'s0-s1' or 'x8-x9' pair");
2505     getLexer().Lex();
2506   }
2507 
2508   if (!IsEABI) {
2509     // parse extra part like ', x18[-x20]' for XRegList
2510     if (parseOptionalToken(AsmToken::Comma)) {
2511       if (RegEnd != RISCV::X9)
2512         return Error(
2513             getLoc(),
2514             "first contiguous registers pair of register list must be 'x8-x9'");
2515 
2516       // parse ', x18' for extra part
2517       if (getLexer().isNot(AsmToken::Identifier))
2518         return Error(getLoc(), "invalid register");
2519       StringRef EndName = getLexer().getTok().getIdentifier();
2520       if (MatchRegisterName(EndName) != RISCV::X18)
2521         return Error(getLoc(),
2522                      "second contiguous registers pair of register list "
2523                      "must start from 'x18'");
2524       getLexer().Lex();
2525 
2526       // parse '-x20' for extra part
2527       if (parseOptionalToken(AsmToken::Minus)) {
2528         if (getLexer().isNot(AsmToken::Identifier))
2529           return Error(getLoc(), "invalid register");
2530         EndName = getLexer().getTok().getIdentifier();
2531         if (MatchRegisterName(EndName) == RISCV::NoRegister)
2532           return Error(getLoc(), "invalid register");
2533         getLexer().Lex();
2534       }
2535       RegEnd = MatchRegisterName(EndName);
2536     }
2537   }
2538 
2539   if (RegEnd == RISCV::X26)
2540     return Error(getLoc(), "invalid register list, {ra, s0-s10} or {x1, x8-x9, "
2541                            "x18-x26} is not supported");
2542 
2543   if (parseToken(AsmToken::RCurly, "register list must end with '}'"))
2544     return ParseStatus::Failure;
2545 
2546   if (RegEnd == RISCV::NoRegister)
2547     RegEnd = RegStart;
2548 
2549   auto Encode = RISCVZC::encodeRlist(RegEnd, IsEABI);
2550   if (Encode == 16)
2551     return Error(S, "invalid register list");
2552   Operands.push_back(RISCVOperand::createRlist(Encode, S));
2553 
2554   return ParseStatus::Success;
2555 }
2556 
2557 ParseStatus RISCVAsmParser::parseZcmpSpimm(OperandVector &Operands) {
2558   (void)parseOptionalToken(AsmToken::Minus);
2559 
2560   SMLoc S = getLoc();
2561   int64_t StackAdjustment = getLexer().getTok().getIntVal();
2562   unsigned Spimm = 0;
2563   unsigned RlistVal = static_cast<RISCVOperand *>(Operands[1].get())->Rlist.Val;
2564 
2565   bool IsEABI = isRVE();
2566   if (!RISCVZC::getSpimm(RlistVal, Spimm, StackAdjustment, isRV64(), IsEABI))
2567     return ParseStatus::NoMatch;
2568   Operands.push_back(RISCVOperand::createSpimm(Spimm << 4, S));
2569   getLexer().Lex();
2570   return ParseStatus::Success;
2571 }
2572 
2573 /// Looks at a token type and creates the relevant operand from this
2574 /// information, adding to Operands. If operand was parsed, returns false, else
2575 /// true.
2576 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
2577   // Check if the current operand has a custom associated parser, if so, try to
2578   // custom parse the operand, or fallback to the general approach.
2579   ParseStatus Result =
2580       MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
2581   if (Result.isSuccess())
2582     return false;
2583   if (Result.isFailure())
2584     return true;
2585 
2586   // Attempt to parse token as a register.
2587   if (parseRegister(Operands, true).isSuccess())
2588     return false;
2589 
2590   // Attempt to parse token as an immediate
2591   if (parseImmediate(Operands).isSuccess()) {
2592     // Parse memory base register if present
2593     if (getLexer().is(AsmToken::LParen))
2594       return !parseMemOpBaseReg(Operands).isSuccess();
2595     return false;
2596   }
2597 
2598   // Finally we have exhausted all options and must declare defeat.
2599   Error(getLoc(), "unknown operand");
2600   return true;
2601 }
2602 
2603 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
2604                                       StringRef Name, SMLoc NameLoc,
2605                                       OperandVector &Operands) {
2606   // Ensure that if the instruction occurs when relaxation is enabled,
2607   // relocations are forced for the file. Ideally this would be done when there
2608   // is enough information to reliably determine if the instruction itself may
2609   // cause relaxations. Unfortunately instruction processing stage occurs in the
2610   // same pass as relocation emission, so it's too late to set a 'sticky bit'
2611   // for the entire file.
2612   if (getSTI().hasFeature(RISCV::FeatureRelax)) {
2613     auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
2614     if (Assembler != nullptr) {
2615       RISCVAsmBackend &MAB =
2616           static_cast<RISCVAsmBackend &>(Assembler->getBackend());
2617       MAB.setForceRelocs();
2618     }
2619   }
2620 
2621   // First operand is token for instruction
2622   Operands.push_back(RISCVOperand::createToken(Name, NameLoc));
2623 
2624   // If there are no more operands, then finish
2625   if (getLexer().is(AsmToken::EndOfStatement)) {
2626     getParser().Lex(); // Consume the EndOfStatement.
2627     return false;
2628   }
2629 
2630   // Parse first operand
2631   if (parseOperand(Operands, Name))
2632     return true;
2633 
2634   // Parse until end of statement, consuming commas between operands
2635   while (parseOptionalToken(AsmToken::Comma)) {
2636     // Parse next operand
2637     if (parseOperand(Operands, Name))
2638       return true;
2639   }
2640 
2641   if (getParser().parseEOL("unexpected token")) {
2642     getParser().eatToEndOfStatement();
2643     return true;
2644   }
2645   return false;
2646 }
2647 
2648 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
2649                                        RISCVMCExpr::VariantKind &Kind) {
2650   Kind = RISCVMCExpr::VK_RISCV_None;
2651 
2652   if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
2653     Kind = RE->getKind();
2654     Expr = RE->getSubExpr();
2655   }
2656 
2657   MCValue Res;
2658   MCFixup Fixup;
2659   if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
2660     return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
2661   return false;
2662 }
2663 
2664 bool RISCVAsmParser::isSymbolDiff(const MCExpr *Expr) {
2665   MCValue Res;
2666   MCFixup Fixup;
2667   if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup)) {
2668     return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None && Res.getSymA() &&
2669            Res.getSymB();
2670   }
2671   return false;
2672 }
2673 
2674 ParseStatus RISCVAsmParser::parseDirective(AsmToken DirectiveID) {
2675   StringRef IDVal = DirectiveID.getString();
2676 
2677   if (IDVal == ".option")
2678     return parseDirectiveOption();
2679   if (IDVal == ".attribute")
2680     return parseDirectiveAttribute();
2681   if (IDVal == ".insn")
2682     return parseDirectiveInsn(DirectiveID.getLoc());
2683   if (IDVal == ".variant_cc")
2684     return parseDirectiveVariantCC();
2685 
2686   return ParseStatus::NoMatch;
2687 }
2688 
2689 bool RISCVAsmParser::resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
2690                                  bool FromOptionDirective) {
2691   for (auto Feature : RISCVFeatureKV)
2692     if (llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
2693       clearFeatureBits(Feature.Value, Feature.Key);
2694 
2695   auto ParseResult = llvm::RISCVISAInfo::parseArchString(
2696       Arch, /*EnableExperimentalExtension=*/true,
2697       /*ExperimentalExtensionVersionCheck=*/true);
2698   if (!ParseResult) {
2699     std::string Buffer;
2700     raw_string_ostream OutputErrMsg(Buffer);
2701     handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
2702       OutputErrMsg << "invalid arch name '" << Arch << "', "
2703                    << ErrMsg.getMessage();
2704     });
2705 
2706     return Error(Loc, OutputErrMsg.str());
2707   }
2708   auto &ISAInfo = *ParseResult;
2709 
2710   for (auto Feature : RISCVFeatureKV)
2711     if (ISAInfo->hasExtension(Feature.Key))
2712       setFeatureBits(Feature.Value, Feature.Key);
2713 
2714   if (FromOptionDirective) {
2715     if (ISAInfo->getXLen() == 32 && isRV64())
2716       return Error(Loc, "bad arch string switching from rv64 to rv32");
2717     else if (ISAInfo->getXLen() == 64 && !isRV64())
2718       return Error(Loc, "bad arch string switching from rv32 to rv64");
2719   }
2720 
2721   if (ISAInfo->getXLen() == 32)
2722     clearFeatureBits(RISCV::Feature64Bit, "64bit");
2723   else if (ISAInfo->getXLen() == 64)
2724     setFeatureBits(RISCV::Feature64Bit, "64bit");
2725   else
2726     return Error(Loc, "bad arch string " + Arch);
2727 
2728   Result = ISAInfo->toString();
2729   return false;
2730 }
2731 
2732 bool RISCVAsmParser::parseDirectiveOption() {
2733   MCAsmParser &Parser = getParser();
2734   // Get the option token.
2735   AsmToken Tok = Parser.getTok();
2736 
2737   // At the moment only identifiers are supported.
2738   if (parseToken(AsmToken::Identifier, "expected identifier"))
2739     return true;
2740 
2741   StringRef Option = Tok.getIdentifier();
2742 
2743   if (Option == "push") {
2744     if (Parser.parseEOL())
2745       return true;
2746 
2747     getTargetStreamer().emitDirectiveOptionPush();
2748     pushFeatureBits();
2749     return false;
2750   }
2751 
2752   if (Option == "pop") {
2753     SMLoc StartLoc = Parser.getTok().getLoc();
2754     if (Parser.parseEOL())
2755       return true;
2756 
2757     getTargetStreamer().emitDirectiveOptionPop();
2758     if (popFeatureBits())
2759       return Error(StartLoc, ".option pop with no .option push");
2760 
2761     return false;
2762   }
2763 
2764   if (Option == "arch") {
2765     SmallVector<RISCVOptionArchArg> Args;
2766     do {
2767       if (Parser.parseComma())
2768         return true;
2769 
2770       RISCVOptionArchArgType Type;
2771       if (parseOptionalToken(AsmToken::Plus))
2772         Type = RISCVOptionArchArgType::Plus;
2773       else if (parseOptionalToken(AsmToken::Minus))
2774         Type = RISCVOptionArchArgType::Minus;
2775       else if (!Args.empty())
2776         return Error(Parser.getTok().getLoc(),
2777                      "unexpected token, expected + or -");
2778       else
2779         Type = RISCVOptionArchArgType::Full;
2780 
2781       if (Parser.getTok().isNot(AsmToken::Identifier))
2782         return Error(Parser.getTok().getLoc(),
2783                      "unexpected token, expected identifier");
2784 
2785       StringRef Arch = Parser.getTok().getString();
2786       SMLoc Loc = Parser.getTok().getLoc();
2787       Parser.Lex();
2788 
2789       if (Type == RISCVOptionArchArgType::Full) {
2790         std::string Result;
2791         if (resetToArch(Arch, Loc, Result, true))
2792           return true;
2793 
2794         Args.emplace_back(Type, Result);
2795         break;
2796       }
2797 
2798       ArrayRef<SubtargetFeatureKV> KVArray(RISCVFeatureKV);
2799       auto Ext = llvm::lower_bound(KVArray, Arch);
2800       if (Ext == KVArray.end() || StringRef(Ext->Key) != Arch ||
2801           !RISCVISAInfo::isSupportedExtension(Arch)) {
2802         if (isDigit(Arch.back()))
2803           return Error(
2804               Loc,
2805               "Extension version number parsing not currently implemented");
2806         return Error(Loc, "unknown extension feature");
2807       }
2808 
2809       Args.emplace_back(Type, Ext->Key);
2810 
2811       if (Type == RISCVOptionArchArgType::Plus) {
2812         FeatureBitset OldFeatureBits = STI->getFeatureBits();
2813 
2814         setFeatureBits(Ext->Value, Ext->Key);
2815         auto ParseResult = RISCVFeatures::parseFeatureBits(isRV64(), STI->getFeatureBits());
2816         if (!ParseResult) {
2817           copySTI().setFeatureBits(OldFeatureBits);
2818           setAvailableFeatures(ComputeAvailableFeatures(OldFeatureBits));
2819 
2820           std::string Buffer;
2821           raw_string_ostream OutputErrMsg(Buffer);
2822           handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
2823             OutputErrMsg << ErrMsg.getMessage();
2824           });
2825 
2826           return Error(Loc, OutputErrMsg.str());
2827         }
2828       } else {
2829         assert(Type == RISCVOptionArchArgType::Minus);
2830         // It is invalid to disable an extension that there are other enabled
2831         // extensions depend on it.
2832         // TODO: Make use of RISCVISAInfo to handle this
2833         for (auto Feature : KVArray) {
2834           if (getSTI().hasFeature(Feature.Value) &&
2835               Feature.Implies.test(Ext->Value))
2836             return Error(Loc,
2837                          Twine("Can't disable ") + Ext->Key + " extension, " +
2838                              Feature.Key + " extension requires " + Ext->Key +
2839                              " extension be enabled");
2840         }
2841 
2842         clearFeatureBits(Ext->Value, Ext->Key);
2843       }
2844     } while (Parser.getTok().isNot(AsmToken::EndOfStatement));
2845 
2846     if (Parser.parseEOL())
2847       return true;
2848 
2849     getTargetStreamer().emitDirectiveOptionArch(Args);
2850     return false;
2851   }
2852 
2853   if (Option == "rvc") {
2854     if (Parser.parseEOL())
2855       return true;
2856 
2857     getTargetStreamer().emitDirectiveOptionRVC();
2858     setFeatureBits(RISCV::FeatureStdExtC, "c");
2859     return false;
2860   }
2861 
2862   if (Option == "norvc") {
2863     if (Parser.parseEOL())
2864       return true;
2865 
2866     getTargetStreamer().emitDirectiveOptionNoRVC();
2867     clearFeatureBits(RISCV::FeatureStdExtC, "c");
2868     clearFeatureBits(RISCV::FeatureStdExtZca, "+zca");
2869     return false;
2870   }
2871 
2872   if (Option == "pic") {
2873     if (Parser.parseEOL())
2874       return true;
2875 
2876     getTargetStreamer().emitDirectiveOptionPIC();
2877     ParserOptions.IsPicEnabled = true;
2878     return false;
2879   }
2880 
2881   if (Option == "nopic") {
2882     if (Parser.parseEOL())
2883       return true;
2884 
2885     getTargetStreamer().emitDirectiveOptionNoPIC();
2886     ParserOptions.IsPicEnabled = false;
2887     return false;
2888   }
2889 
2890   if (Option == "relax") {
2891     if (Parser.parseEOL())
2892       return true;
2893 
2894     getTargetStreamer().emitDirectiveOptionRelax();
2895     setFeatureBits(RISCV::FeatureRelax, "relax");
2896     return false;
2897   }
2898 
2899   if (Option == "norelax") {
2900     if (Parser.parseEOL())
2901       return true;
2902 
2903     getTargetStreamer().emitDirectiveOptionNoRelax();
2904     clearFeatureBits(RISCV::FeatureRelax, "relax");
2905     return false;
2906   }
2907 
2908   // Unknown option.
2909   Warning(Parser.getTok().getLoc(), "unknown option, expected 'push', 'pop', "
2910                                     "'rvc', 'norvc', 'arch', 'relax' or "
2911                                     "'norelax'");
2912   Parser.eatToEndOfStatement();
2913   return false;
2914 }
2915 
2916 /// parseDirectiveAttribute
2917 ///  ::= .attribute expression ',' ( expression | "string" )
2918 ///  ::= .attribute identifier ',' ( expression | "string" )
2919 bool RISCVAsmParser::parseDirectiveAttribute() {
2920   MCAsmParser &Parser = getParser();
2921   int64_t Tag;
2922   SMLoc TagLoc;
2923   TagLoc = Parser.getTok().getLoc();
2924   if (Parser.getTok().is(AsmToken::Identifier)) {
2925     StringRef Name = Parser.getTok().getIdentifier();
2926     std::optional<unsigned> Ret =
2927         ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
2928     if (!Ret)
2929       return Error(TagLoc, "attribute name not recognised: " + Name);
2930     Tag = *Ret;
2931     Parser.Lex();
2932   } else {
2933     const MCExpr *AttrExpr;
2934 
2935     TagLoc = Parser.getTok().getLoc();
2936     if (Parser.parseExpression(AttrExpr))
2937       return true;
2938 
2939     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
2940     if (check(!CE, TagLoc, "expected numeric constant"))
2941       return true;
2942 
2943     Tag = CE->getValue();
2944   }
2945 
2946   if (Parser.parseComma())
2947     return true;
2948 
2949   StringRef StringValue;
2950   int64_t IntegerValue = 0;
2951   bool IsIntegerValue = true;
2952 
2953   // RISC-V attributes have a string value if the tag number is odd
2954   // and an integer value if the tag number is even.
2955   if (Tag % 2)
2956     IsIntegerValue = false;
2957 
2958   SMLoc ValueExprLoc = Parser.getTok().getLoc();
2959   if (IsIntegerValue) {
2960     const MCExpr *ValueExpr;
2961     if (Parser.parseExpression(ValueExpr))
2962       return true;
2963 
2964     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
2965     if (!CE)
2966       return Error(ValueExprLoc, "expected numeric constant");
2967     IntegerValue = CE->getValue();
2968   } else {
2969     if (Parser.getTok().isNot(AsmToken::String))
2970       return Error(Parser.getTok().getLoc(), "expected string constant");
2971 
2972     StringValue = Parser.getTok().getStringContents();
2973     Parser.Lex();
2974   }
2975 
2976   if (Parser.parseEOL())
2977     return true;
2978 
2979   if (IsIntegerValue)
2980     getTargetStreamer().emitAttribute(Tag, IntegerValue);
2981   else if (Tag != RISCVAttrs::ARCH)
2982     getTargetStreamer().emitTextAttribute(Tag, StringValue);
2983   else {
2984     std::string Result;
2985     if (resetToArch(StringValue, ValueExprLoc, Result, false))
2986       return true;
2987 
2988     // Then emit the arch string.
2989     getTargetStreamer().emitTextAttribute(Tag, Result);
2990   }
2991 
2992   return false;
2993 }
2994 
2995 bool isValidInsnFormat(StringRef Format, bool AllowC) {
2996   return StringSwitch<bool>(Format)
2997       .Cases("r", "r4", "i", "b", "sb", "u", "j", "uj", "s", true)
2998       .Cases("cr", "ci", "ciw", "css", "cl", "cs", "ca", "cb", "cj", AllowC)
2999       .Default(false);
3000 }
3001 
3002 /// parseDirectiveInsn
3003 /// ::= .insn [ format encoding, (operands (, operands)*) ]
3004 bool RISCVAsmParser::parseDirectiveInsn(SMLoc L) {
3005   MCAsmParser &Parser = getParser();
3006 
3007   // Expect instruction format as identifier.
3008   StringRef Format;
3009   SMLoc ErrorLoc = Parser.getTok().getLoc();
3010   if (Parser.parseIdentifier(Format))
3011     return Error(ErrorLoc, "expected instruction format");
3012 
3013   bool AllowC = getSTI().hasFeature(RISCV::FeatureStdExtC) ||
3014                 getSTI().hasFeature(RISCV::FeatureStdExtZca);
3015   if (!isValidInsnFormat(Format, AllowC))
3016     return Error(ErrorLoc, "invalid instruction format");
3017 
3018   std::string FormatName = (".insn_" + Format).str();
3019 
3020   ParseInstructionInfo Info;
3021   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
3022 
3023   if (ParseInstruction(Info, FormatName, L, Operands))
3024     return true;
3025 
3026   unsigned Opcode;
3027   uint64_t ErrorInfo;
3028   return MatchAndEmitInstruction(L, Opcode, Operands, Parser.getStreamer(),
3029                                  ErrorInfo,
3030                                  /*MatchingInlineAsm=*/false);
3031 }
3032 
3033 /// parseDirectiveVariantCC
3034 ///  ::= .variant_cc symbol
3035 bool RISCVAsmParser::parseDirectiveVariantCC() {
3036   StringRef Name;
3037   if (getParser().parseIdentifier(Name))
3038     return TokError("expected symbol name");
3039   if (parseEOL())
3040     return true;
3041   getTargetStreamer().emitDirectiveVariantCC(
3042       *getContext().getOrCreateSymbol(Name));
3043   return false;
3044 }
3045 
3046 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
3047   MCInst CInst;
3048   bool Res = RISCVRVC::compress(CInst, Inst, getSTI());
3049   if (Res)
3050     ++RISCVNumInstrsCompressed;
3051   S.emitInstruction((Res ? CInst : Inst), getSTI());
3052 }
3053 
3054 void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
3055                                  MCStreamer &Out) {
3056   RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Value, getSTI());
3057 
3058   MCRegister SrcReg = RISCV::X0;
3059   for (const RISCVMatInt::Inst &Inst : Seq) {
3060     switch (Inst.getOpndKind()) {
3061     case RISCVMatInt::Imm:
3062       emitToStreamer(Out,
3063                      MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addImm(Inst.getImm()));
3064       break;
3065     case RISCVMatInt::RegX0:
3066       emitToStreamer(
3067           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
3068                    RISCV::X0));
3069       break;
3070     case RISCVMatInt::RegReg:
3071       emitToStreamer(
3072           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addReg(
3073                    SrcReg));
3074       break;
3075     case RISCVMatInt::RegImm:
3076       emitToStreamer(
3077           Out, MCInstBuilder(Inst.getOpcode()).addReg(DestReg).addReg(SrcReg).addImm(
3078                    Inst.getImm()));
3079       break;
3080     }
3081 
3082     // Only the first instruction has X0 as its source.
3083     SrcReg = DestReg;
3084   }
3085 }
3086 
3087 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
3088                                        const MCExpr *Symbol,
3089                                        RISCVMCExpr::VariantKind VKHi,
3090                                        unsigned SecondOpcode, SMLoc IDLoc,
3091                                        MCStreamer &Out) {
3092   // A pair of instructions for PC-relative addressing; expands to
3093   //   TmpLabel: AUIPC TmpReg, VKHi(symbol)
3094   //             OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
3095   MCContext &Ctx = getContext();
3096 
3097   MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
3098   Out.emitLabel(TmpLabel);
3099 
3100   const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
3101   emitToStreamer(
3102       Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
3103 
3104   const MCExpr *RefToLinkTmpLabel =
3105       RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
3106                           RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
3107 
3108   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
3109                           .addOperand(DestReg)
3110                           .addOperand(TmpReg)
3111                           .addExpr(RefToLinkTmpLabel));
3112 }
3113 
3114 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
3115                                           MCStreamer &Out) {
3116   // The load local address pseudo-instruction "lla" is used in PC-relative
3117   // addressing of local symbols:
3118   //   lla rdest, symbol
3119   // expands to
3120   //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
3121   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
3122   MCOperand DestReg = Inst.getOperand(0);
3123   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3124   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
3125                     RISCV::ADDI, IDLoc, Out);
3126 }
3127 
3128 void RISCVAsmParser::emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc,
3129                                            MCStreamer &Out) {
3130   // The load global address pseudo-instruction "lga" is used in GOT-indirect
3131   // addressing of global symbols:
3132   //   lga rdest, symbol
3133   // expands to
3134   //   TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
3135   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
3136   MCOperand DestReg = Inst.getOperand(0);
3137   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3138   unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
3139   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_GOT_HI,
3140                     SecondOpcode, IDLoc, Out);
3141 }
3142 
3143 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
3144                                      MCStreamer &Out) {
3145   // The load address pseudo-instruction "la" is used in PC-relative and
3146   // GOT-indirect addressing of global symbols:
3147   //   la rdest, symbol
3148   // is an alias for either (for non-PIC)
3149   //   lla rdest, symbol
3150   // or (for PIC)
3151   //   lga rdest, symbol
3152   if (ParserOptions.IsPicEnabled)
3153     emitLoadGlobalAddress(Inst, IDLoc, Out);
3154   else
3155     emitLoadLocalAddress(Inst, IDLoc, Out);
3156 }
3157 
3158 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
3159                                           MCStreamer &Out) {
3160   // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
3161   // initial-exec TLS model addressing of global symbols:
3162   //   la.tls.ie rdest, symbol
3163   // expands to
3164   //   TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
3165   //             Lx rdest, %pcrel_lo(TmpLabel)(rdest)
3166   MCOperand DestReg = Inst.getOperand(0);
3167   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3168   unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
3169   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
3170                     SecondOpcode, IDLoc, Out);
3171 }
3172 
3173 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
3174                                           MCStreamer &Out) {
3175   // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
3176   // global-dynamic TLS model addressing of global symbols:
3177   //   la.tls.gd rdest, symbol
3178   // expands to
3179   //   TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
3180   //             ADDI rdest, rdest, %pcrel_lo(TmpLabel)
3181   MCOperand DestReg = Inst.getOperand(0);
3182   const MCExpr *Symbol = Inst.getOperand(1).getExpr();
3183   emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
3184                     RISCV::ADDI, IDLoc, Out);
3185 }
3186 
3187 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
3188                                          SMLoc IDLoc, MCStreamer &Out,
3189                                          bool HasTmpReg) {
3190   // The load/store pseudo-instruction does a pc-relative load with
3191   // a symbol.
3192   //
3193   // The expansion looks like this
3194   //
3195   //   TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
3196   //             [S|L]X    rd, %pcrel_lo(TmpLabel)(tmp)
3197   unsigned DestRegOpIdx = HasTmpReg ? 1 : 0;
3198   MCOperand DestReg = Inst.getOperand(DestRegOpIdx);
3199   unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
3200   MCOperand TmpReg = Inst.getOperand(0);
3201   const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
3202   emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
3203                     Opcode, IDLoc, Out);
3204 }
3205 
3206 void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
3207                                       int64_t Width, SMLoc IDLoc,
3208                                       MCStreamer &Out) {
3209   // The sign/zero extend pseudo-instruction does two shifts, with the shift
3210   // amounts dependent on the XLEN.
3211   //
3212   // The expansion looks like this
3213   //
3214   //    SLLI rd, rs, XLEN - Width
3215   //    SR[A|R]I rd, rd, XLEN - Width
3216   MCOperand DestReg = Inst.getOperand(0);
3217   MCOperand SourceReg = Inst.getOperand(1);
3218 
3219   unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
3220   int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
3221 
3222   assert(ShAmt > 0 && "Shift amount must be non-zero.");
3223 
3224   emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
3225                           .addOperand(DestReg)
3226                           .addOperand(SourceReg)
3227                           .addImm(ShAmt));
3228 
3229   emitToStreamer(Out, MCInstBuilder(SecondOpcode)
3230                           .addOperand(DestReg)
3231                           .addOperand(DestReg)
3232                           .addImm(ShAmt));
3233 }
3234 
3235 void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
3236                                MCStreamer &Out) {
3237   if (Inst.getNumOperands() == 3) {
3238     // unmasked va >= x
3239     //
3240     //  pseudoinstruction: vmsge{u}.vx vd, va, x
3241     //  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
3242     emitToStreamer(Out, MCInstBuilder(Opcode)
3243                             .addOperand(Inst.getOperand(0))
3244                             .addOperand(Inst.getOperand(1))
3245                             .addOperand(Inst.getOperand(2))
3246                             .addReg(RISCV::NoRegister));
3247     emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
3248                             .addOperand(Inst.getOperand(0))
3249                             .addOperand(Inst.getOperand(0))
3250                             .addOperand(Inst.getOperand(0)));
3251   } else if (Inst.getNumOperands() == 4) {
3252     // masked va >= x, vd != v0
3253     //
3254     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
3255     //  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
3256     assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
3257            "The destination register should not be V0.");
3258     emitToStreamer(Out, MCInstBuilder(Opcode)
3259                             .addOperand(Inst.getOperand(0))
3260                             .addOperand(Inst.getOperand(1))
3261                             .addOperand(Inst.getOperand(2))
3262                             .addOperand(Inst.getOperand(3)));
3263     emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
3264                             .addOperand(Inst.getOperand(0))
3265                             .addOperand(Inst.getOperand(0))
3266                             .addReg(RISCV::V0));
3267   } else if (Inst.getNumOperands() == 5 &&
3268              Inst.getOperand(0).getReg() == RISCV::V0) {
3269     // masked va >= x, vd == v0
3270     //
3271     //  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
3272     //  expansion: vmslt{u}.vx vt, va, x;  vmandn.mm vd, vd, vt
3273     assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
3274            "The destination register should be V0.");
3275     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
3276            "The temporary vector register should not be V0.");
3277     emitToStreamer(Out, MCInstBuilder(Opcode)
3278                             .addOperand(Inst.getOperand(1))
3279                             .addOperand(Inst.getOperand(2))
3280                             .addOperand(Inst.getOperand(3))
3281                             .addReg(RISCV::NoRegister));
3282     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3283                             .addOperand(Inst.getOperand(0))
3284                             .addOperand(Inst.getOperand(0))
3285                             .addOperand(Inst.getOperand(1)));
3286   } else if (Inst.getNumOperands() == 5) {
3287     // masked va >= x, any vd
3288     //
3289     // pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
3290     // expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, v0, vt;
3291     //            vmandn.mm vd, vd, v0;  vmor.mm vd, vt, vd
3292     assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
3293            "The temporary vector register should not be V0.");
3294     emitToStreamer(Out, MCInstBuilder(Opcode)
3295                             .addOperand(Inst.getOperand(1))
3296                             .addOperand(Inst.getOperand(2))
3297                             .addOperand(Inst.getOperand(3))
3298                             .addReg(RISCV::NoRegister));
3299     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3300                             .addOperand(Inst.getOperand(1))
3301                             .addReg(RISCV::V0)
3302                             .addOperand(Inst.getOperand(1)));
3303     emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
3304                             .addOperand(Inst.getOperand(0))
3305                             .addOperand(Inst.getOperand(0))
3306                             .addReg(RISCV::V0));
3307     emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
3308                             .addOperand(Inst.getOperand(0))
3309                             .addOperand(Inst.getOperand(1))
3310                             .addOperand(Inst.getOperand(0)));
3311   }
3312 }
3313 
3314 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
3315                                          OperandVector &Operands) {
3316   assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
3317   assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
3318   if (Inst.getOperand(2).getReg() != RISCV::X4) {
3319     SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
3320     return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
3321                            "%tprel_add modifier");
3322   }
3323 
3324   return false;
3325 }
3326 
3327 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
3328   return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
3329                                  llvm::SMLoc());
3330 }
3331 
3332 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgOp() const {
3333   return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::DYN,
3334                                     llvm::SMLoc());
3335 }
3336 
3337 std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgLegacyOp() const {
3338   return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::RNE,
3339                                     llvm::SMLoc());
3340 }
3341 
3342 bool RISCVAsmParser::validateInstruction(MCInst &Inst,
3343                                          OperandVector &Operands) {
3344   unsigned Opcode = Inst.getOpcode();
3345 
3346   if (Opcode == RISCV::PseudoVMSGEU_VX_M_T ||
3347       Opcode == RISCV::PseudoVMSGE_VX_M_T) {
3348     unsigned DestReg = Inst.getOperand(0).getReg();
3349     unsigned TempReg = Inst.getOperand(1).getReg();
3350     if (DestReg == TempReg) {
3351       SMLoc Loc = Operands.back()->getStartLoc();
3352       return Error(Loc, "The temporary vector register cannot be the same as "
3353                         "the destination register.");
3354     }
3355   }
3356 
3357   if (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_LWUD ||
3358       Opcode == RISCV::TH_LWD) {
3359     unsigned Rd1 = Inst.getOperand(0).getReg();
3360     unsigned Rd2 = Inst.getOperand(1).getReg();
3361     unsigned Rs1 = Inst.getOperand(2).getReg();
3362     // The encoding with rd1 == rd2 == rs1 is reserved for XTHead load pair.
3363     if (Rs1 == Rd1 && Rs1 == Rd2) {
3364       SMLoc Loc = Operands[1]->getStartLoc();
3365       return Error(Loc, "The source register and destination registers "
3366                         "cannot be equal.");
3367     }
3368   }
3369 
3370   if (Opcode == RISCV::CM_MVSA01) {
3371     unsigned Rd1 = Inst.getOperand(0).getReg();
3372     unsigned Rd2 = Inst.getOperand(1).getReg();
3373     if (Rd1 == Rd2) {
3374       SMLoc Loc = Operands[1]->getStartLoc();
3375       return Error(Loc, "'rs1' and 'rs2' must be different.");
3376     }
3377   }
3378 
3379   bool IsTHeadMemPair32 = (Opcode == RISCV::TH_LWD ||
3380                            Opcode == RISCV::TH_LWUD || Opcode == RISCV::TH_SWD);
3381   bool IsTHeadMemPair64 = (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_SDD);
3382   // The last operand of XTHeadMemPair instructions must be constant 3 or 4
3383   // depending on the data width.
3384   if (IsTHeadMemPair32 && Inst.getOperand(4).getImm() != 3) {
3385     SMLoc Loc = Operands.back()->getStartLoc();
3386     return Error(Loc, "Operand must be constant 3.");
3387   } else if (IsTHeadMemPair64 && Inst.getOperand(4).getImm() != 4) {
3388     SMLoc Loc = Operands.back()->getStartLoc();
3389     return Error(Loc, "Operand must be constant 4.");
3390   }
3391 
3392   const MCInstrDesc &MCID = MII.get(Opcode);
3393   if (!(MCID.TSFlags & RISCVII::ConstraintMask))
3394     return false;
3395 
3396   if (Opcode == RISCV::VC_V_XVW || Opcode == RISCV::VC_V_IVW ||
3397       Opcode == RISCV::VC_V_FVW || Opcode == RISCV::VC_V_VVW) {
3398     // Operands Opcode, Dst, uimm, Dst, Rs2, Rs1 for VC_V_XVW.
3399     unsigned VCIXDst = Inst.getOperand(0).getReg();
3400     SMLoc VCIXDstLoc = Operands[2]->getStartLoc();
3401     if (MCID.TSFlags & RISCVII::VS1Constraint) {
3402       unsigned VCIXRs1 = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
3403       if (VCIXDst == VCIXRs1)
3404         return Error(VCIXDstLoc, "The destination vector register group cannot"
3405                                  " overlap the source vector register group.");
3406     }
3407     if (MCID.TSFlags & RISCVII::VS2Constraint) {
3408       unsigned VCIXRs2 = Inst.getOperand(Inst.getNumOperands() - 2).getReg();
3409       if (VCIXDst == VCIXRs2)
3410         return Error(VCIXDstLoc, "The destination vector register group cannot"
3411                                  " overlap the source vector register group.");
3412     }
3413     return false;
3414   }
3415 
3416   unsigned DestReg = Inst.getOperand(0).getReg();
3417   unsigned Offset = 0;
3418   int TiedOp = MCID.getOperandConstraint(1, MCOI::TIED_TO);
3419   if (TiedOp == 0)
3420     Offset = 1;
3421 
3422   // Operands[1] will be the first operand, DestReg.
3423   SMLoc Loc = Operands[1]->getStartLoc();
3424   if (MCID.TSFlags & RISCVII::VS2Constraint) {
3425     unsigned CheckReg = Inst.getOperand(Offset + 1).getReg();
3426     if (DestReg == CheckReg)
3427       return Error(Loc, "The destination vector register group cannot overlap"
3428                         " the source vector register group.");
3429   }
3430   if ((MCID.TSFlags & RISCVII::VS1Constraint) && Inst.getOperand(Offset + 2).isReg()) {
3431     unsigned CheckReg = Inst.getOperand(Offset + 2).getReg();
3432     if (DestReg == CheckReg)
3433       return Error(Loc, "The destination vector register group cannot overlap"
3434                         " the source vector register group.");
3435   }
3436   if ((MCID.TSFlags & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
3437     // vadc, vsbc are special cases. These instructions have no mask register.
3438     // The destination register could not be V0.
3439     if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
3440         Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
3441         Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
3442         Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
3443         Opcode == RISCV::VMERGE_VXM)
3444       return Error(Loc, "The destination vector register group cannot be V0.");
3445 
3446     // Regardless masked or unmasked version, the number of operands is the
3447     // same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
3448     // actually. We need to check the last operand to ensure whether it is
3449     // masked or not.
3450     unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
3451     assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
3452            "Unexpected register for mask operand");
3453 
3454     if (DestReg == CheckReg)
3455       return Error(Loc, "The destination vector register group cannot overlap"
3456                         " the mask register.");
3457   }
3458   return false;
3459 }
3460 
3461 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
3462                                         OperandVector &Operands,
3463                                         MCStreamer &Out) {
3464   Inst.setLoc(IDLoc);
3465 
3466   switch (Inst.getOpcode()) {
3467   default:
3468     break;
3469   case RISCV::PseudoLLAImm:
3470   case RISCV::PseudoLAImm:
3471   case RISCV::PseudoLI: {
3472     MCRegister Reg = Inst.getOperand(0).getReg();
3473     const MCOperand &Op1 = Inst.getOperand(1);
3474     if (Op1.isExpr()) {
3475       // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
3476       // Just convert to an addi. This allows compatibility with gas.
3477       emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
3478                               .addReg(Reg)
3479                               .addReg(RISCV::X0)
3480                               .addExpr(Op1.getExpr()));
3481       return false;
3482     }
3483     int64_t Imm = Inst.getOperand(1).getImm();
3484     // On RV32 the immediate here can either be a signed or an unsigned
3485     // 32-bit number. Sign extension has to be performed to ensure that Imm
3486     // represents the expected signed 64-bit number.
3487     if (!isRV64())
3488       Imm = SignExtend64<32>(Imm);
3489     emitLoadImm(Reg, Imm, Out);
3490     return false;
3491   }
3492   case RISCV::PseudoLLA:
3493     emitLoadLocalAddress(Inst, IDLoc, Out);
3494     return false;
3495   case RISCV::PseudoLGA:
3496     emitLoadGlobalAddress(Inst, IDLoc, Out);
3497     return false;
3498   case RISCV::PseudoLA:
3499     emitLoadAddress(Inst, IDLoc, Out);
3500     return false;
3501   case RISCV::PseudoLA_TLS_IE:
3502     emitLoadTLSIEAddress(Inst, IDLoc, Out);
3503     return false;
3504   case RISCV::PseudoLA_TLS_GD:
3505     emitLoadTLSGDAddress(Inst, IDLoc, Out);
3506     return false;
3507   case RISCV::PseudoLB:
3508     emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
3509     return false;
3510   case RISCV::PseudoLBU:
3511     emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
3512     return false;
3513   case RISCV::PseudoLH:
3514     emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
3515     return false;
3516   case RISCV::PseudoLHU:
3517     emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
3518     return false;
3519   case RISCV::PseudoLW:
3520     emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
3521     return false;
3522   case RISCV::PseudoLWU:
3523     emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
3524     return false;
3525   case RISCV::PseudoLD:
3526     emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
3527     return false;
3528   case RISCV::PseudoFLH:
3529     emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
3530     return false;
3531   case RISCV::PseudoFLW:
3532     emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
3533     return false;
3534   case RISCV::PseudoFLD:
3535     emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
3536     return false;
3537   case RISCV::PseudoSB:
3538     emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
3539     return false;
3540   case RISCV::PseudoSH:
3541     emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
3542     return false;
3543   case RISCV::PseudoSW:
3544     emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
3545     return false;
3546   case RISCV::PseudoSD:
3547     emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
3548     return false;
3549   case RISCV::PseudoFSH:
3550     emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
3551     return false;
3552   case RISCV::PseudoFSW:
3553     emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
3554     return false;
3555   case RISCV::PseudoFSD:
3556     emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
3557     return false;
3558   case RISCV::PseudoAddTPRel:
3559     if (checkPseudoAddTPRel(Inst, Operands))
3560       return true;
3561     break;
3562   case RISCV::PseudoSEXT_B:
3563     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
3564     return false;
3565   case RISCV::PseudoSEXT_H:
3566     emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
3567     return false;
3568   case RISCV::PseudoZEXT_H:
3569     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
3570     return false;
3571   case RISCV::PseudoZEXT_W:
3572     emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
3573     return false;
3574   case RISCV::PseudoVMSGEU_VX:
3575   case RISCV::PseudoVMSGEU_VX_M:
3576   case RISCV::PseudoVMSGEU_VX_M_T:
3577     emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
3578     return false;
3579   case RISCV::PseudoVMSGE_VX:
3580   case RISCV::PseudoVMSGE_VX_M:
3581   case RISCV::PseudoVMSGE_VX_M_T:
3582     emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
3583     return false;
3584   case RISCV::PseudoVMSGE_VI:
3585   case RISCV::PseudoVMSLT_VI: {
3586     // These instructions are signed and so is immediate so we can subtract one
3587     // and change the opcode.
3588     int64_t Imm = Inst.getOperand(2).getImm();
3589     unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
3590                                                              : RISCV::VMSLE_VI;
3591     emitToStreamer(Out, MCInstBuilder(Opc)
3592                             .addOperand(Inst.getOperand(0))
3593                             .addOperand(Inst.getOperand(1))
3594                             .addImm(Imm - 1)
3595                             .addOperand(Inst.getOperand(3)));
3596     return false;
3597   }
3598   case RISCV::PseudoVMSGEU_VI:
3599   case RISCV::PseudoVMSLTU_VI: {
3600     int64_t Imm = Inst.getOperand(2).getImm();
3601     // Unsigned comparisons are tricky because the immediate is signed. If the
3602     // immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
3603     // false, but vmsle.vi v0, v1, -1 is always true. Instead we use
3604     // vmsne v0, v1, v1 which is always false.
3605     if (Imm == 0) {
3606       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
3607                          ? RISCV::VMSEQ_VV
3608                          : RISCV::VMSNE_VV;
3609       emitToStreamer(Out, MCInstBuilder(Opc)
3610                               .addOperand(Inst.getOperand(0))
3611                               .addOperand(Inst.getOperand(1))
3612                               .addOperand(Inst.getOperand(1))
3613                               .addOperand(Inst.getOperand(3)));
3614     } else {
3615       // Other immediate values can subtract one like signed.
3616       unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
3617                          ? RISCV::VMSGTU_VI
3618                          : RISCV::VMSLEU_VI;
3619       emitToStreamer(Out, MCInstBuilder(Opc)
3620                               .addOperand(Inst.getOperand(0))
3621                               .addOperand(Inst.getOperand(1))
3622                               .addImm(Imm - 1)
3623                               .addOperand(Inst.getOperand(3)));
3624     }
3625 
3626     return false;
3627   }
3628   }
3629 
3630   emitToStreamer(Out, Inst);
3631   return false;
3632 }
3633 
3634 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
3635   RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
3636   RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
3637 }
3638