xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp (revision 68d75eff68281c1b445e3010bb975eae07aac225)
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_LastOpcodeSpill  // This must be last on the enum.
94 };
95 
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
98 
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101                       /* CatchRetOpcode */ -1,
102                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103       Subtarget(STI), RI(STI.getTargetMachine()) {}
104 
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109                                            const ScheduleDAG *DAG) const {
110   unsigned Directive =
111       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
112   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114     const InstrItineraryData *II =
115         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116     return new ScoreboardHazardRecognizer(II, DAG);
117   }
118 
119   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
120 }
121 
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126                                                  const ScheduleDAG *DAG) const {
127   unsigned Directive =
128       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
129 
130   // FIXME: Leaving this as-is until we have POWER9 scheduling info
131   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
133 
134   // Most subtargets use a PPC970 recognizer.
135   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137     assert(DAG->TII && "No InstrInfo?");
138 
139     return new PPCHazardRecognizer970(*DAG);
140   }
141 
142   return new ScoreboardHazardRecognizer(II, DAG);
143 }
144 
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146                                        const MachineInstr &MI,
147                                        unsigned *PredCost) const {
148   if (!ItinData || UseOldLatencyCalc)
149     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
150 
151   // The default implementation of getInstrLatency calls getStageLatency, but
152   // getStageLatency does not do the right thing for us. While we have
153   // itinerary, most cores are fully pipelined, and so the itineraries only
154   // express the first part of the pipeline, not every stage. Instead, we need
155   // to use the listed output operand cycle number (using operand 0 here, which
156   // is an output).
157 
158   unsigned Latency = 1;
159   unsigned DefClass = MI.getDesc().getSchedClass();
160   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161     const MachineOperand &MO = MI.getOperand(i);
162     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163       continue;
164 
165     int Cycle = ItinData->getOperandCycle(DefClass, i);
166     if (Cycle < 0)
167       continue;
168 
169     Latency = std::max(Latency, (unsigned) Cycle);
170   }
171 
172   return Latency;
173 }
174 
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176                                     const MachineInstr &DefMI, unsigned DefIdx,
177                                     const MachineInstr &UseMI,
178                                     unsigned UseIdx) const {
179   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180                                                    UseMI, UseIdx);
181 
182   if (!DefMI.getParent())
183     return Latency;
184 
185   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186   Register Reg = DefMO.getReg();
187 
188   bool IsRegCR;
189   if (Register::isVirtualRegister(Reg)) {
190     const MachineRegisterInfo *MRI =
191         &DefMI.getParent()->getParent()->getRegInfo();
192     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194   } else {
195     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196               PPC::CRBITRCRegClass.contains(Reg);
197   }
198 
199   if (UseMI.isBranch() && IsRegCR) {
200     if (Latency < 0)
201       Latency = getInstrLatency(ItinData, DefMI);
202 
203     // On some cores, there is an additional delay between writing to a condition
204     // register, and using it from a branch.
205     unsigned Directive = Subtarget.getDarwinDirective();
206     switch (Directive) {
207     default: break;
208     case PPC::DIR_7400:
209     case PPC::DIR_750:
210     case PPC::DIR_970:
211     case PPC::DIR_E5500:
212     case PPC::DIR_PWR4:
213     case PPC::DIR_PWR5:
214     case PPC::DIR_PWR5X:
215     case PPC::DIR_PWR6:
216     case PPC::DIR_PWR6X:
217     case PPC::DIR_PWR7:
218     case PPC::DIR_PWR8:
219     // FIXME: Is this needed for POWER9?
220       Latency += 2;
221       break;
222     }
223   }
224 
225   return Latency;
226 }
227 
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies (compared to other operations, such and
232 // and/or, which are also associative and commutative, but have low latencies).
233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234   switch (Inst.getOpcode()) {
235   // FP Add:
236   case PPC::FADD:
237   case PPC::FADDS:
238   // FP Multiply:
239   case PPC::FMUL:
240   case PPC::FMULS:
241   // Altivec Add:
242   case PPC::VADDFP:
243   // VSX Add:
244   case PPC::XSADDDP:
245   case PPC::XVADDDP:
246   case PPC::XVADDSP:
247   case PPC::XSADDSP:
248   // VSX Multiply:
249   case PPC::XSMULDP:
250   case PPC::XVMULDP:
251   case PPC::XVMULSP:
252   case PPC::XSMULSP:
253   // QPX Add:
254   case PPC::QVFADD:
255   case PPC::QVFADDS:
256   case PPC::QVFADDSs:
257   // QPX Multiply:
258   case PPC::QVFMUL:
259   case PPC::QVFMULS:
260   case PPC::QVFMULSs:
261     return true;
262   default:
263     return false;
264   }
265 }
266 
267 bool PPCInstrInfo::getMachineCombinerPatterns(
268     MachineInstr &Root,
269     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270   // Using the machine combiner in this way is potentially expensive, so
271   // restrict to when aggressive optimizations are desired.
272   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273     return false;
274 
275   // FP reassociation is only legal when we don't need strict IEEE semantics.
276   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277     return false;
278 
279   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
280 }
281 
282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284                                          unsigned &SrcReg, unsigned &DstReg,
285                                          unsigned &SubIdx) const {
286   switch (MI.getOpcode()) {
287   default: return false;
288   case PPC::EXTSW:
289   case PPC::EXTSW_32:
290   case PPC::EXTSW_32_64:
291     SrcReg = MI.getOperand(1).getReg();
292     DstReg = MI.getOperand(0).getReg();
293     SubIdx = PPC::sub_32;
294     return true;
295   }
296 }
297 
298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299                                            int &FrameIndex) const {
300   unsigned Opcode = MI.getOpcode();
301   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
303 
304   if (End != std::find(OpcodesForSpill, End, Opcode)) {
305     // Check for the operands added by addFrameReference (the immediate is the
306     // offset which defaults to 0).
307     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308         MI.getOperand(2).isFI()) {
309       FrameIndex = MI.getOperand(2).getIndex();
310       return MI.getOperand(0).getReg();
311     }
312   }
313   return 0;
314 }
315 
316 // For opcodes with the ReMaterializable flag set, this function is called to
317 // verify the instruction is really rematable.
318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319                                                      AliasAnalysis *AA) const {
320   switch (MI.getOpcode()) {
321   default:
322     // This function should only be called for opcodes with the ReMaterializable
323     // flag set.
324     llvm_unreachable("Unknown rematerializable operation!");
325     break;
326   case PPC::LI:
327   case PPC::LI8:
328   case PPC::LIS:
329   case PPC::LIS8:
330   case PPC::QVGPCI:
331   case PPC::ADDIStocHA:
332   case PPC::ADDIStocHA8:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335   case PPC::XXLXORz:
336   case PPC::XXLXORspz:
337   case PPC::XXLXORdpz:
338   case PPC::XXLEQVOnes:
339   case PPC::V_SET0B:
340   case PPC::V_SET0H:
341   case PPC::V_SET0:
342   case PPC::V_SETALLONESB:
343   case PPC::V_SETALLONESH:
344   case PPC::V_SETALLONES:
345   case PPC::CRSET:
346   case PPC::CRUNSET:
347     return true;
348   }
349   return false;
350 }
351 
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                           int &FrameIndex) const {
354   unsigned Opcode = MI.getOpcode();
355   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357 
358   if (End != std::find(OpcodesForSpill, End, Opcode)) {
359     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360         MI.getOperand(2).isFI()) {
361       FrameIndex = MI.getOperand(2).getIndex();
362       return MI.getOperand(0).getReg();
363     }
364   }
365   return 0;
366 }
367 
368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369                                                    unsigned OpIdx1,
370                                                    unsigned OpIdx2) const {
371   MachineFunction &MF = *MI.getParent()->getParent();
372 
373   // Normal instructions can be commuted the obvious way.
374   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
375     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378   // changing the relative order of the mask operands might change what happens
379   // to the high-bits of the mask (and, thus, the result).
380 
381   // Cannot commute if it has a non-zero rotate count.
382   if (MI.getOperand(3).getImm() != 0)
383     return nullptr;
384 
385   // If we have a zero rotate count, we have:
386   //   M = mask(MB,ME)
387   //   Op0 = (Op1 & ~M) | (Op2 & M)
388   // Change this to:
389   //   M = mask((ME+1)&31, (MB-1)&31)
390   //   Op0 = (Op2 & ~M) | (Op1 & M)
391 
392   // Swap op1/op2
393   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
395   Register Reg0 = MI.getOperand(0).getReg();
396   Register Reg1 = MI.getOperand(1).getReg();
397   Register Reg2 = MI.getOperand(2).getReg();
398   unsigned SubReg1 = MI.getOperand(1).getSubReg();
399   unsigned SubReg2 = MI.getOperand(2).getSubReg();
400   bool Reg1IsKill = MI.getOperand(1).isKill();
401   bool Reg2IsKill = MI.getOperand(2).isKill();
402   bool ChangeReg0 = false;
403   // If machine instrs are no longer in two-address forms, update
404   // destination register as well.
405   if (Reg0 == Reg1) {
406     // Must be two address instruction!
407     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408            "Expecting a two-address instruction!");
409     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410     Reg2IsKill = false;
411     ChangeReg0 = true;
412   }
413 
414   // Masks.
415   unsigned MB = MI.getOperand(4).getImm();
416   unsigned ME = MI.getOperand(5).getImm();
417 
418   // We can't commute a trivial mask (there is no way to represent an all-zero
419   // mask).
420   if (MB == 0 && ME == 31)
421     return nullptr;
422 
423   if (NewMI) {
424     // Create a new instruction.
425     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426     bool Reg0IsDead = MI.getOperand(0).isDead();
427     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429         .addReg(Reg2, getKillRegState(Reg2IsKill))
430         .addReg(Reg1, getKillRegState(Reg1IsKill))
431         .addImm((ME + 1) & 31)
432         .addImm((MB - 1) & 31);
433   }
434 
435   if (ChangeReg0) {
436     MI.getOperand(0).setReg(Reg2);
437     MI.getOperand(0).setSubReg(SubReg2);
438   }
439   MI.getOperand(2).setReg(Reg1);
440   MI.getOperand(1).setReg(Reg2);
441   MI.getOperand(2).setSubReg(SubReg1);
442   MI.getOperand(1).setSubReg(SubReg2);
443   MI.getOperand(2).setIsKill(Reg1IsKill);
444   MI.getOperand(1).setIsKill(Reg2IsKill);
445 
446   // Swap the mask around.
447   MI.getOperand(4).setImm((ME + 1) & 31);
448   MI.getOperand(5).setImm((MB - 1) & 31);
449   return &MI;
450 }
451 
452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
453                                          unsigned &SrcOpIdx1,
454                                          unsigned &SrcOpIdx2) const {
455   // For VSX A-Type FMA instructions, it is the first two operands that can be
456   // commuted, however, because the non-encoded tied input operand is listed
457   // first, the operands to swap are actually the second and third.
458 
459   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
460   if (AltOpc == -1)
461     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
462 
463   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
464   // and SrcOpIdx2.
465   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
466 }
467 
468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
469                               MachineBasicBlock::iterator MI) const {
470   // This function is used for scheduling, and the nop wanted here is the type
471   // that terminates dispatch groups on the POWER cores.
472   unsigned Directive = Subtarget.getDarwinDirective();
473   unsigned Opcode;
474   switch (Directive) {
475   default:            Opcode = PPC::NOP; break;
476   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
477   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
478   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
479   // FIXME: Update when POWER9 scheduling model is ready.
480   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
481   }
482 
483   DebugLoc DL;
484   BuildMI(MBB, MI, DL, get(Opcode));
485 }
486 
487 /// Return the noop instruction to use for a noop.
488 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
489   NopInst.setOpcode(PPC::NOP);
490 }
491 
492 // Branch analysis.
493 // Note: If the condition register is set to CTR or CTR8 then this is a
494 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
496                                  MachineBasicBlock *&TBB,
497                                  MachineBasicBlock *&FBB,
498                                  SmallVectorImpl<MachineOperand> &Cond,
499                                  bool AllowModify) const {
500   bool isPPC64 = Subtarget.isPPC64();
501 
502   // If the block has no terminators, it just falls into the block after it.
503   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
504   if (I == MBB.end())
505     return false;
506 
507   if (!isUnpredicatedTerminator(*I))
508     return false;
509 
510   if (AllowModify) {
511     // If the BB ends with an unconditional branch to the fallthrough BB,
512     // we eliminate the branch instruction.
513     if (I->getOpcode() == PPC::B &&
514         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
515       I->eraseFromParent();
516 
517       // We update iterator after deleting the last branch.
518       I = MBB.getLastNonDebugInstr();
519       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
520         return false;
521     }
522   }
523 
524   // Get the last instruction in the block.
525   MachineInstr &LastInst = *I;
526 
527   // If there is only one terminator instruction, process it.
528   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
529     if (LastInst.getOpcode() == PPC::B) {
530       if (!LastInst.getOperand(0).isMBB())
531         return true;
532       TBB = LastInst.getOperand(0).getMBB();
533       return false;
534     } else if (LastInst.getOpcode() == PPC::BCC) {
535       if (!LastInst.getOperand(2).isMBB())
536         return true;
537       // Block ends with fall-through condbranch.
538       TBB = LastInst.getOperand(2).getMBB();
539       Cond.push_back(LastInst.getOperand(0));
540       Cond.push_back(LastInst.getOperand(1));
541       return false;
542     } else if (LastInst.getOpcode() == PPC::BC) {
543       if (!LastInst.getOperand(1).isMBB())
544         return true;
545       // Block ends with fall-through condbranch.
546       TBB = LastInst.getOperand(1).getMBB();
547       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
548       Cond.push_back(LastInst.getOperand(0));
549       return false;
550     } else if (LastInst.getOpcode() == PPC::BCn) {
551       if (!LastInst.getOperand(1).isMBB())
552         return true;
553       // Block ends with fall-through condbranch.
554       TBB = LastInst.getOperand(1).getMBB();
555       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
556       Cond.push_back(LastInst.getOperand(0));
557       return false;
558     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
559                LastInst.getOpcode() == PPC::BDNZ) {
560       if (!LastInst.getOperand(0).isMBB())
561         return true;
562       if (DisableCTRLoopAnal)
563         return true;
564       TBB = LastInst.getOperand(0).getMBB();
565       Cond.push_back(MachineOperand::CreateImm(1));
566       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
567                                                true));
568       return false;
569     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
570                LastInst.getOpcode() == PPC::BDZ) {
571       if (!LastInst.getOperand(0).isMBB())
572         return true;
573       if (DisableCTRLoopAnal)
574         return true;
575       TBB = LastInst.getOperand(0).getMBB();
576       Cond.push_back(MachineOperand::CreateImm(0));
577       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
578                                                true));
579       return false;
580     }
581 
582     // Otherwise, don't know what this is.
583     return true;
584   }
585 
586   // Get the instruction before it if it's a terminator.
587   MachineInstr &SecondLastInst = *I;
588 
589   // If there are three terminators, we don't know what sort of block this is.
590   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
591     return true;
592 
593   // If the block ends with PPC::B and PPC:BCC, handle it.
594   if (SecondLastInst.getOpcode() == PPC::BCC &&
595       LastInst.getOpcode() == PPC::B) {
596     if (!SecondLastInst.getOperand(2).isMBB() ||
597         !LastInst.getOperand(0).isMBB())
598       return true;
599     TBB = SecondLastInst.getOperand(2).getMBB();
600     Cond.push_back(SecondLastInst.getOperand(0));
601     Cond.push_back(SecondLastInst.getOperand(1));
602     FBB = LastInst.getOperand(0).getMBB();
603     return false;
604   } else if (SecondLastInst.getOpcode() == PPC::BC &&
605              LastInst.getOpcode() == PPC::B) {
606     if (!SecondLastInst.getOperand(1).isMBB() ||
607         !LastInst.getOperand(0).isMBB())
608       return true;
609     TBB = SecondLastInst.getOperand(1).getMBB();
610     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
611     Cond.push_back(SecondLastInst.getOperand(0));
612     FBB = LastInst.getOperand(0).getMBB();
613     return false;
614   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
615              LastInst.getOpcode() == PPC::B) {
616     if (!SecondLastInst.getOperand(1).isMBB() ||
617         !LastInst.getOperand(0).isMBB())
618       return true;
619     TBB = SecondLastInst.getOperand(1).getMBB();
620     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
621     Cond.push_back(SecondLastInst.getOperand(0));
622     FBB = LastInst.getOperand(0).getMBB();
623     return false;
624   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
625               SecondLastInst.getOpcode() == PPC::BDNZ) &&
626              LastInst.getOpcode() == PPC::B) {
627     if (!SecondLastInst.getOperand(0).isMBB() ||
628         !LastInst.getOperand(0).isMBB())
629       return true;
630     if (DisableCTRLoopAnal)
631       return true;
632     TBB = SecondLastInst.getOperand(0).getMBB();
633     Cond.push_back(MachineOperand::CreateImm(1));
634     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
635                                              true));
636     FBB = LastInst.getOperand(0).getMBB();
637     return false;
638   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
639               SecondLastInst.getOpcode() == PPC::BDZ) &&
640              LastInst.getOpcode() == PPC::B) {
641     if (!SecondLastInst.getOperand(0).isMBB() ||
642         !LastInst.getOperand(0).isMBB())
643       return true;
644     if (DisableCTRLoopAnal)
645       return true;
646     TBB = SecondLastInst.getOperand(0).getMBB();
647     Cond.push_back(MachineOperand::CreateImm(0));
648     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
649                                              true));
650     FBB = LastInst.getOperand(0).getMBB();
651     return false;
652   }
653 
654   // If the block ends with two PPC:Bs, handle it.  The second one is not
655   // executed, so remove it.
656   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
657     if (!SecondLastInst.getOperand(0).isMBB())
658       return true;
659     TBB = SecondLastInst.getOperand(0).getMBB();
660     I = LastInst;
661     if (AllowModify)
662       I->eraseFromParent();
663     return false;
664   }
665 
666   // Otherwise, can't handle this.
667   return true;
668 }
669 
670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
671                                     int *BytesRemoved) const {
672   assert(!BytesRemoved && "code size not handled");
673 
674   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
675   if (I == MBB.end())
676     return 0;
677 
678   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
679       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
682     return 0;
683 
684   // Remove the branch.
685   I->eraseFromParent();
686 
687   I = MBB.end();
688 
689   if (I == MBB.begin()) return 1;
690   --I;
691   if (I->getOpcode() != PPC::BCC &&
692       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
693       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
694       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
695     return 1;
696 
697   // Remove the branch.
698   I->eraseFromParent();
699   return 2;
700 }
701 
702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
703                                     MachineBasicBlock *TBB,
704                                     MachineBasicBlock *FBB,
705                                     ArrayRef<MachineOperand> Cond,
706                                     const DebugLoc &DL,
707                                     int *BytesAdded) const {
708   // Shouldn't be a fall through.
709   assert(TBB && "insertBranch must not be told to insert a fallthrough");
710   assert((Cond.size() == 2 || Cond.size() == 0) &&
711          "PPC branch conditions have two components!");
712   assert(!BytesAdded && "code size not handled");
713 
714   bool isPPC64 = Subtarget.isPPC64();
715 
716   // One-way branch.
717   if (!FBB) {
718     if (Cond.empty())   // Unconditional branch
719       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
720     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
721       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
722                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
723                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
724     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
725       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
726     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
727       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
728     else                // Conditional branch
729       BuildMI(&MBB, DL, get(PPC::BCC))
730           .addImm(Cond[0].getImm())
731           .add(Cond[1])
732           .addMBB(TBB);
733     return 1;
734   }
735 
736   // Two-way Conditional Branch.
737   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
738     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
739                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
740                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
741   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
742     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
743   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
744     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
745   else
746     BuildMI(&MBB, DL, get(PPC::BCC))
747         .addImm(Cond[0].getImm())
748         .add(Cond[1])
749         .addMBB(TBB);
750   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
751   return 2;
752 }
753 
754 // Select analysis.
755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
756                 ArrayRef<MachineOperand> Cond,
757                 unsigned TrueReg, unsigned FalseReg,
758                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
759   if (Cond.size() != 2)
760     return false;
761 
762   // If this is really a bdnz-like condition, then it cannot be turned into a
763   // select.
764   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
765     return false;
766 
767   // Check register classes.
768   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
769   const TargetRegisterClass *RC =
770     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
771   if (!RC)
772     return false;
773 
774   // isel is for regular integer GPRs only.
775   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
776       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
777       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
778       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
779     return false;
780 
781   // FIXME: These numbers are for the A2, how well they work for other cores is
782   // an open question. On the A2, the isel instruction has a 2-cycle latency
783   // but single-cycle throughput. These numbers are used in combination with
784   // the MispredictPenalty setting from the active SchedMachineModel.
785   CondCycles = 1;
786   TrueCycles = 1;
787   FalseCycles = 1;
788 
789   return true;
790 }
791 
792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
793                                 MachineBasicBlock::iterator MI,
794                                 const DebugLoc &dl, unsigned DestReg,
795                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
796                                 unsigned FalseReg) const {
797   assert(Cond.size() == 2 &&
798          "PPC branch conditions have two components!");
799 
800   // Get the register classes.
801   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
802   const TargetRegisterClass *RC =
803     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
804   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
805 
806   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
807                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
808   assert((Is64Bit ||
809           PPC::GPRCRegClass.hasSubClassEq(RC) ||
810           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
811          "isel is for regular integer GPRs only");
812 
813   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
814   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
815 
816   unsigned SubIdx = 0;
817   bool SwapOps = false;
818   switch (SelectPred) {
819   case PPC::PRED_EQ:
820   case PPC::PRED_EQ_MINUS:
821   case PPC::PRED_EQ_PLUS:
822       SubIdx = PPC::sub_eq; SwapOps = false; break;
823   case PPC::PRED_NE:
824   case PPC::PRED_NE_MINUS:
825   case PPC::PRED_NE_PLUS:
826       SubIdx = PPC::sub_eq; SwapOps = true; break;
827   case PPC::PRED_LT:
828   case PPC::PRED_LT_MINUS:
829   case PPC::PRED_LT_PLUS:
830       SubIdx = PPC::sub_lt; SwapOps = false; break;
831   case PPC::PRED_GE:
832   case PPC::PRED_GE_MINUS:
833   case PPC::PRED_GE_PLUS:
834       SubIdx = PPC::sub_lt; SwapOps = true; break;
835   case PPC::PRED_GT:
836   case PPC::PRED_GT_MINUS:
837   case PPC::PRED_GT_PLUS:
838       SubIdx = PPC::sub_gt; SwapOps = false; break;
839   case PPC::PRED_LE:
840   case PPC::PRED_LE_MINUS:
841   case PPC::PRED_LE_PLUS:
842       SubIdx = PPC::sub_gt; SwapOps = true; break;
843   case PPC::PRED_UN:
844   case PPC::PRED_UN_MINUS:
845   case PPC::PRED_UN_PLUS:
846       SubIdx = PPC::sub_un; SwapOps = false; break;
847   case PPC::PRED_NU:
848   case PPC::PRED_NU_MINUS:
849   case PPC::PRED_NU_PLUS:
850       SubIdx = PPC::sub_un; SwapOps = true; break;
851   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
852   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
853   }
854 
855   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
856            SecondReg = SwapOps ? TrueReg  : FalseReg;
857 
858   // The first input register of isel cannot be r0. If it is a member
859   // of a register class that can be r0, then copy it first (the
860   // register allocator should eliminate the copy).
861   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
862       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
863     const TargetRegisterClass *FirstRC =
864       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
865         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
866     unsigned OldFirstReg = FirstReg;
867     FirstReg = MRI.createVirtualRegister(FirstRC);
868     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
869       .addReg(OldFirstReg);
870   }
871 
872   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
873     .addReg(FirstReg).addReg(SecondReg)
874     .addReg(Cond[1].getReg(), 0, SubIdx);
875 }
876 
877 static unsigned getCRBitValue(unsigned CRBit) {
878   unsigned Ret = 4;
879   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
880       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
881       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
882       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
883     Ret = 3;
884   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
885       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
886       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
887       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
888     Ret = 2;
889   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
890       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
891       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
892       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
893     Ret = 1;
894   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
895       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
896       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
897       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
898     Ret = 0;
899 
900   assert(Ret != 4 && "Invalid CR bit register");
901   return Ret;
902 }
903 
904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
905                                MachineBasicBlock::iterator I,
906                                const DebugLoc &DL, unsigned DestReg,
907                                unsigned SrcReg, bool KillSrc) const {
908   // We can end up with self copies and similar things as a result of VSX copy
909   // legalization. Promote them here.
910   const TargetRegisterInfo *TRI = &getRegisterInfo();
911   if (PPC::F8RCRegClass.contains(DestReg) &&
912       PPC::VSRCRegClass.contains(SrcReg)) {
913     unsigned SuperReg =
914       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
915 
916     if (VSXSelfCopyCrash && SrcReg == SuperReg)
917       llvm_unreachable("nop VSX copy");
918 
919     DestReg = SuperReg;
920   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
921              PPC::VSRCRegClass.contains(DestReg)) {
922     unsigned SuperReg =
923       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
924 
925     if (VSXSelfCopyCrash && DestReg == SuperReg)
926       llvm_unreachable("nop VSX copy");
927 
928     SrcReg = SuperReg;
929   }
930 
931   // Different class register copy
932   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
933       PPC::GPRCRegClass.contains(DestReg)) {
934     unsigned CRReg = getCRFromCRBit(SrcReg);
935     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
936     getKillRegState(KillSrc);
937     // Rotate the CR bit in the CR fields to be the least significant bit and
938     // then mask with 0x1 (MB = ME = 31).
939     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
940        .addReg(DestReg, RegState::Kill)
941        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
942        .addImm(31)
943        .addImm(31);
944     return;
945   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
946       PPC::G8RCRegClass.contains(DestReg)) {
947     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
948     getKillRegState(KillSrc);
949     return;
950   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
951       PPC::GPRCRegClass.contains(DestReg)) {
952     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
953     getKillRegState(KillSrc);
954     return;
955   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
956              PPC::VSFRCRegClass.contains(DestReg)) {
957     assert(Subtarget.hasDirectMove() &&
958            "Subtarget doesn't support directmove, don't know how to copy.");
959     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
960     NumGPRtoVSRSpill++;
961     getKillRegState(KillSrc);
962     return;
963   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
964              PPC::G8RCRegClass.contains(DestReg)) {
965     assert(Subtarget.hasDirectMove() &&
966            "Subtarget doesn't support directmove, don't know how to copy.");
967     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
968     getKillRegState(KillSrc);
969     return;
970   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
971              PPC::GPRCRegClass.contains(DestReg)) {
972     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
973     getKillRegState(KillSrc);
974     return;
975   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
976              PPC::SPERCRegClass.contains(DestReg)) {
977     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
978     getKillRegState(KillSrc);
979     return;
980   }
981 
982   unsigned Opc;
983   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
984     Opc = PPC::OR;
985   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
986     Opc = PPC::OR8;
987   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
988     Opc = PPC::FMR;
989   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
990     Opc = PPC::MCRF;
991   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
992     Opc = PPC::VOR;
993   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
994     // There are two different ways this can be done:
995     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
996     //      issue in VSU pipeline 0.
997     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
998     //      can go to either pipeline.
999     // We'll always use xxlor here, because in practically all cases where
1000     // copies are generated, they are close enough to some use that the
1001     // lower-latency form is preferable.
1002     Opc = PPC::XXLOR;
1003   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1004            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1005     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1006   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1007     Opc = PPC::QVFMR;
1008   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1009     Opc = PPC::QVFMRs;
1010   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1011     Opc = PPC::QVFMRb;
1012   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1013     Opc = PPC::CROR;
1014   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1015     Opc = PPC::EVOR;
1016   else
1017     llvm_unreachable("Impossible reg-to-reg copy");
1018 
1019   const MCInstrDesc &MCID = get(Opc);
1020   if (MCID.getNumOperands() == 3)
1021     BuildMI(MBB, I, DL, MCID, DestReg)
1022       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1023   else
1024     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1025 }
1026 
1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1028                                               const TargetRegisterClass *RC)
1029                                               const {
1030   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1031   int OpcodeIndex = 0;
1032 
1033   if (RC != nullptr) {
1034     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1035         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1036       OpcodeIndex = SOK_Int4Spill;
1037     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1038                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1039       OpcodeIndex = SOK_Int8Spill;
1040     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1041       OpcodeIndex = SOK_Float8Spill;
1042     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1043       OpcodeIndex = SOK_Float4Spill;
1044     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1045       OpcodeIndex = SOK_SPESpill;
1046     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047       OpcodeIndex = SOK_CRSpill;
1048     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049       OpcodeIndex = SOK_CRBitSpill;
1050     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051       OpcodeIndex = SOK_VRVectorSpill;
1052     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053       OpcodeIndex = SOK_VSXVectorSpill;
1054     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055       OpcodeIndex = SOK_VectorFloat8Spill;
1056     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057       OpcodeIndex = SOK_VectorFloat4Spill;
1058     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059       OpcodeIndex = SOK_VRSaveSpill;
1060     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061       OpcodeIndex = SOK_QuadFloat8Spill;
1062     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063       OpcodeIndex = SOK_QuadFloat4Spill;
1064     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065       OpcodeIndex = SOK_QuadBitSpill;
1066     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067       OpcodeIndex = SOK_SpillToVSR;
1068     } else {
1069       llvm_unreachable("Unknown regclass!");
1070     }
1071   } else {
1072     if (PPC::GPRCRegClass.contains(Reg) ||
1073         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_Int4Spill;
1075     } else if (PPC::G8RCRegClass.contains(Reg) ||
1076                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_Int8Spill;
1078     } else if (PPC::F8RCRegClass.contains(Reg)) {
1079       OpcodeIndex = SOK_Float8Spill;
1080     } else if (PPC::F4RCRegClass.contains(Reg)) {
1081       OpcodeIndex = SOK_Float4Spill;
1082     } else if (PPC::SPERCRegClass.contains(Reg)) {
1083       OpcodeIndex = SOK_SPESpill;
1084     } else if (PPC::CRRCRegClass.contains(Reg)) {
1085       OpcodeIndex = SOK_CRSpill;
1086     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1087       OpcodeIndex = SOK_CRBitSpill;
1088     } else if (PPC::VRRCRegClass.contains(Reg)) {
1089       OpcodeIndex = SOK_VRVectorSpill;
1090     } else if (PPC::VSRCRegClass.contains(Reg)) {
1091       OpcodeIndex = SOK_VSXVectorSpill;
1092     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1093       OpcodeIndex = SOK_VectorFloat8Spill;
1094     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1095       OpcodeIndex = SOK_VectorFloat4Spill;
1096     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1097       OpcodeIndex = SOK_VRSaveSpill;
1098     } else if (PPC::QFRCRegClass.contains(Reg)) {
1099       OpcodeIndex = SOK_QuadFloat8Spill;
1100     } else if (PPC::QSRCRegClass.contains(Reg)) {
1101       OpcodeIndex = SOK_QuadFloat4Spill;
1102     } else if (PPC::QBRCRegClass.contains(Reg)) {
1103       OpcodeIndex = SOK_QuadBitSpill;
1104     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1105       OpcodeIndex = SOK_SpillToVSR;
1106     } else {
1107       llvm_unreachable("Unknown regclass!");
1108     }
1109   }
1110   return OpcodesForSpill[OpcodeIndex];
1111 }
1112 
1113 unsigned
1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1115                                     const TargetRegisterClass *RC) const {
1116   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1117   int OpcodeIndex = 0;
1118 
1119   if (RC != nullptr) {
1120     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1121         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1122       OpcodeIndex = SOK_Int4Spill;
1123     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1124                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1125       OpcodeIndex = SOK_Int8Spill;
1126     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_Float8Spill;
1128     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1129       OpcodeIndex = SOK_Float4Spill;
1130     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1131       OpcodeIndex = SOK_SPESpill;
1132     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1133       OpcodeIndex = SOK_CRSpill;
1134     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1135       OpcodeIndex = SOK_CRBitSpill;
1136     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1137       OpcodeIndex = SOK_VRVectorSpill;
1138     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1139       OpcodeIndex = SOK_VSXVectorSpill;
1140     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1141       OpcodeIndex = SOK_VectorFloat8Spill;
1142     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1143       OpcodeIndex = SOK_VectorFloat4Spill;
1144     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1145       OpcodeIndex = SOK_VRSaveSpill;
1146     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1147       OpcodeIndex = SOK_QuadFloat8Spill;
1148     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1149       OpcodeIndex = SOK_QuadFloat4Spill;
1150     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1151       OpcodeIndex = SOK_QuadBitSpill;
1152     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1153       OpcodeIndex = SOK_SpillToVSR;
1154     } else {
1155       llvm_unreachable("Unknown regclass!");
1156     }
1157   } else {
1158     if (PPC::GPRCRegClass.contains(Reg) ||
1159         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1160       OpcodeIndex = SOK_Int4Spill;
1161     } else if (PPC::G8RCRegClass.contains(Reg) ||
1162                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1163       OpcodeIndex = SOK_Int8Spill;
1164     } else if (PPC::F8RCRegClass.contains(Reg)) {
1165       OpcodeIndex = SOK_Float8Spill;
1166     } else if (PPC::F4RCRegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_Float4Spill;
1168     } else if (PPC::SPERCRegClass.contains(Reg)) {
1169       OpcodeIndex = SOK_SPESpill;
1170     } else if (PPC::CRRCRegClass.contains(Reg)) {
1171       OpcodeIndex = SOK_CRSpill;
1172     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1173       OpcodeIndex = SOK_CRBitSpill;
1174     } else if (PPC::VRRCRegClass.contains(Reg)) {
1175       OpcodeIndex = SOK_VRVectorSpill;
1176     } else if (PPC::VSRCRegClass.contains(Reg)) {
1177       OpcodeIndex = SOK_VSXVectorSpill;
1178     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1179       OpcodeIndex = SOK_VectorFloat8Spill;
1180     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1181       OpcodeIndex = SOK_VectorFloat4Spill;
1182     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1183       OpcodeIndex = SOK_VRSaveSpill;
1184     } else if (PPC::QFRCRegClass.contains(Reg)) {
1185       OpcodeIndex = SOK_QuadFloat8Spill;
1186     } else if (PPC::QSRCRegClass.contains(Reg)) {
1187       OpcodeIndex = SOK_QuadFloat4Spill;
1188     } else if (PPC::QBRCRegClass.contains(Reg)) {
1189       OpcodeIndex = SOK_QuadBitSpill;
1190     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1191       OpcodeIndex = SOK_SpillToVSR;
1192     } else {
1193       llvm_unreachable("Unknown regclass!");
1194     }
1195   }
1196   return OpcodesForSpill[OpcodeIndex];
1197 }
1198 
1199 void PPCInstrInfo::StoreRegToStackSlot(
1200     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1201     const TargetRegisterClass *RC,
1202     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1203   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1204   DebugLoc DL;
1205 
1206   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1207   FuncInfo->setHasSpills();
1208 
1209   NewMIs.push_back(addFrameReference(
1210       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1211       FrameIdx));
1212 
1213   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1214       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1215     FuncInfo->setSpillsCR();
1216 
1217   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1218     FuncInfo->setSpillsVRSAVE();
1219 
1220   if (isXFormMemOp(Opcode))
1221     FuncInfo->setHasNonRISpills();
1222 }
1223 
1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1225                                        MachineBasicBlock::iterator MI,
1226                                        unsigned SrcReg, bool isKill,
1227                                        int FrameIdx,
1228                                        const TargetRegisterClass *RC,
1229                                        const TargetRegisterInfo *TRI) const {
1230   MachineFunction &MF = *MBB.getParent();
1231   SmallVector<MachineInstr *, 4> NewMIs;
1232 
1233   // We need to avoid a situation in which the value from a VRRC register is
1234   // spilled using an Altivec instruction and reloaded into a VSRC register
1235   // using a VSX instruction. The issue with this is that the VSX
1236   // load/store instructions swap the doublewords in the vector and the Altivec
1237   // ones don't. The register classes on the spill/reload may be different if
1238   // the register is defined using an Altivec instruction and is then used by a
1239   // VSX instruction.
1240   RC = updatedRC(RC);
1241 
1242   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1243 
1244   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1245     MBB.insert(MI, NewMIs[i]);
1246 
1247   const MachineFrameInfo &MFI = MF.getFrameInfo();
1248   MachineMemOperand *MMO = MF.getMachineMemOperand(
1249       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1250       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1251       MFI.getObjectAlignment(FrameIdx));
1252   NewMIs.back()->addMemOperand(MF, MMO);
1253 }
1254 
1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1256                                         unsigned DestReg, int FrameIdx,
1257                                         const TargetRegisterClass *RC,
1258                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1259                                         const {
1260   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1261   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1262                                      FrameIdx));
1263   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1264 
1265   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1266       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1267     FuncInfo->setSpillsCR();
1268 
1269   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1270     FuncInfo->setSpillsVRSAVE();
1271 
1272   if (isXFormMemOp(Opcode))
1273     FuncInfo->setHasNonRISpills();
1274 }
1275 
1276 void
1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1278                                    MachineBasicBlock::iterator MI,
1279                                    unsigned DestReg, int FrameIdx,
1280                                    const TargetRegisterClass *RC,
1281                                    const TargetRegisterInfo *TRI) const {
1282   MachineFunction &MF = *MBB.getParent();
1283   SmallVector<MachineInstr*, 4> NewMIs;
1284   DebugLoc DL;
1285   if (MI != MBB.end()) DL = MI->getDebugLoc();
1286 
1287   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1288   FuncInfo->setHasSpills();
1289 
1290   // We need to avoid a situation in which the value from a VRRC register is
1291   // spilled using an Altivec instruction and reloaded into a VSRC register
1292   // using a VSX instruction. The issue with this is that the VSX
1293   // load/store instructions swap the doublewords in the vector and the Altivec
1294   // ones don't. The register classes on the spill/reload may be different if
1295   // the register is defined using an Altivec instruction and is then used by a
1296   // VSX instruction.
1297   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1298     RC = &PPC::VSRCRegClass;
1299 
1300   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1301 
1302   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1303     MBB.insert(MI, NewMIs[i]);
1304 
1305   const MachineFrameInfo &MFI = MF.getFrameInfo();
1306   MachineMemOperand *MMO = MF.getMachineMemOperand(
1307       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1308       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1309       MFI.getObjectAlignment(FrameIdx));
1310   NewMIs.back()->addMemOperand(MF, MMO);
1311 }
1312 
1313 bool PPCInstrInfo::
1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1315   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1316   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1317     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1318   else
1319     // Leave the CR# the same, but invert the condition.
1320     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1321   return false;
1322 }
1323 
1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1325                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1326   // For some instructions, it is legal to fold ZERO into the RA register field.
1327   // A zero immediate should always be loaded with a single li.
1328   unsigned DefOpc = DefMI.getOpcode();
1329   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1330     return false;
1331   if (!DefMI.getOperand(1).isImm())
1332     return false;
1333   if (DefMI.getOperand(1).getImm() != 0)
1334     return false;
1335 
1336   // Note that we cannot here invert the arguments of an isel in order to fold
1337   // a ZERO into what is presented as the second argument. All we have here
1338   // is the condition bit, and that might come from a CR-logical bit operation.
1339 
1340   const MCInstrDesc &UseMCID = UseMI.getDesc();
1341 
1342   // Only fold into real machine instructions.
1343   if (UseMCID.isPseudo())
1344     return false;
1345 
1346   unsigned UseIdx;
1347   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1348     if (UseMI.getOperand(UseIdx).isReg() &&
1349         UseMI.getOperand(UseIdx).getReg() == Reg)
1350       break;
1351 
1352   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1353   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1354 
1355   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1356 
1357   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1358   // register (which might also be specified as a pointer class kind).
1359   if (UseInfo->isLookupPtrRegClass()) {
1360     if (UseInfo->RegClass /* Kind */ != 1)
1361       return false;
1362   } else {
1363     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1364         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1365       return false;
1366   }
1367 
1368   // Make sure this is not tied to an output register (or otherwise
1369   // constrained). This is true for ST?UX registers, for example, which
1370   // are tied to their output registers.
1371   if (UseInfo->Constraints != 0)
1372     return false;
1373 
1374   unsigned ZeroReg;
1375   if (UseInfo->isLookupPtrRegClass()) {
1376     bool isPPC64 = Subtarget.isPPC64();
1377     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1378   } else {
1379     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1380               PPC::ZERO8 : PPC::ZERO;
1381   }
1382 
1383   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1384   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1385 
1386   if (DeleteDef)
1387     DefMI.eraseFromParent();
1388 
1389   return true;
1390 }
1391 
1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1393   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1394        I != IE; ++I)
1395     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1396       return true;
1397   return false;
1398 }
1399 
1400 // We should make sure that, if we're going to predicate both sides of a
1401 // condition (a diamond), that both sides don't define the counter register. We
1402 // can predicate counter-decrement-based branches, but while that predicates
1403 // the branching, it does not predicate the counter decrement. If we tried to
1404 // merge the triangle into one predicated block, we'd decrement the counter
1405 // twice.
1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1407                      unsigned NumT, unsigned ExtraT,
1408                      MachineBasicBlock &FMBB,
1409                      unsigned NumF, unsigned ExtraF,
1410                      BranchProbability Probability) const {
1411   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1412 }
1413 
1414 
1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1416   // The predicated branches are identified by their type, not really by the
1417   // explicit presence of a predicate. Furthermore, some of them can be
1418   // predicated more than once. Because if conversion won't try to predicate
1419   // any instruction which already claims to be predicated (by returning true
1420   // here), always return false. In doing so, we let isPredicable() be the
1421   // final word on whether not the instruction can be (further) predicated.
1422 
1423   return false;
1424 }
1425 
1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1427   if (!MI.isTerminator())
1428     return false;
1429 
1430   // Conditional branch is a special case.
1431   if (MI.isBranch() && !MI.isBarrier())
1432     return true;
1433 
1434   return !isPredicated(MI);
1435 }
1436 
1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1438                                         ArrayRef<MachineOperand> Pred) const {
1439   unsigned OpC = MI.getOpcode();
1440   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1441     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1442       bool isPPC64 = Subtarget.isPPC64();
1443       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1444                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1445     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1446       MI.setDesc(get(PPC::BCLR));
1447       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1448     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1449       MI.setDesc(get(PPC::BCLRn));
1450       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1451     } else {
1452       MI.setDesc(get(PPC::BCCLR));
1453       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454           .addImm(Pred[0].getImm())
1455           .add(Pred[1]);
1456     }
1457 
1458     return true;
1459   } else if (OpC == PPC::B) {
1460     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1461       bool isPPC64 = Subtarget.isPPC64();
1462       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1463                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1464     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1465       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466       MI.RemoveOperand(0);
1467 
1468       MI.setDesc(get(PPC::BC));
1469       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470           .add(Pred[1])
1471           .addMBB(MBB);
1472     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1473       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1474       MI.RemoveOperand(0);
1475 
1476       MI.setDesc(get(PPC::BCn));
1477       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1478           .add(Pred[1])
1479           .addMBB(MBB);
1480     } else {
1481       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1482       MI.RemoveOperand(0);
1483 
1484       MI.setDesc(get(PPC::BCC));
1485       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486           .addImm(Pred[0].getImm())
1487           .add(Pred[1])
1488           .addMBB(MBB);
1489     }
1490 
1491     return true;
1492   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1493              OpC == PPC::BCTRL8) {
1494     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1495       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1496 
1497     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1498     bool isPPC64 = Subtarget.isPPC64();
1499 
1500     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1501       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1502                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1503       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1504       return true;
1505     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1506       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1507                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1508       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1509       return true;
1510     }
1511 
1512     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1513                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1514     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1515         .addImm(Pred[0].getImm())
1516         .add(Pred[1]);
1517     return true;
1518   }
1519 
1520   return false;
1521 }
1522 
1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1524                                      ArrayRef<MachineOperand> Pred2) const {
1525   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1526   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1527 
1528   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1529     return false;
1530   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1531     return false;
1532 
1533   // P1 can only subsume P2 if they test the same condition register.
1534   if (Pred1[1].getReg() != Pred2[1].getReg())
1535     return false;
1536 
1537   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1538   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1539 
1540   if (P1 == P2)
1541     return true;
1542 
1543   // Does P1 subsume P2, e.g. GE subsumes GT.
1544   if (P1 == PPC::PRED_LE &&
1545       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1546     return true;
1547   if (P1 == PPC::PRED_GE &&
1548       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1549     return true;
1550 
1551   return false;
1552 }
1553 
1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1555                                     std::vector<MachineOperand> &Pred) const {
1556   // Note: At the present time, the contents of Pred from this function is
1557   // unused by IfConversion. This implementation follows ARM by pushing the
1558   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1559   // predicate, instructions defining CTR or CTR8 are also included as
1560   // predicate-defining instructions.
1561 
1562   const TargetRegisterClass *RCs[] =
1563     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1564       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1565 
1566   bool Found = false;
1567   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1568     const MachineOperand &MO = MI.getOperand(i);
1569     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1570       const TargetRegisterClass *RC = RCs[c];
1571       if (MO.isReg()) {
1572         if (MO.isDef() && RC->contains(MO.getReg())) {
1573           Pred.push_back(MO);
1574           Found = true;
1575         }
1576       } else if (MO.isRegMask()) {
1577         for (TargetRegisterClass::iterator I = RC->begin(),
1578              IE = RC->end(); I != IE; ++I)
1579           if (MO.clobbersPhysReg(*I)) {
1580             Pred.push_back(MO);
1581             Found = true;
1582           }
1583       }
1584     }
1585   }
1586 
1587   return Found;
1588 }
1589 
1590 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1591   unsigned OpC = MI.getOpcode();
1592   switch (OpC) {
1593   default:
1594     return false;
1595   case PPC::B:
1596   case PPC::BLR:
1597   case PPC::BLR8:
1598   case PPC::BCTR:
1599   case PPC::BCTR8:
1600   case PPC::BCTRL:
1601   case PPC::BCTRL8:
1602     return true;
1603   }
1604 }
1605 
1606 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1607                                   unsigned &SrcReg2, int &Mask,
1608                                   int &Value) const {
1609   unsigned Opc = MI.getOpcode();
1610 
1611   switch (Opc) {
1612   default: return false;
1613   case PPC::CMPWI:
1614   case PPC::CMPLWI:
1615   case PPC::CMPDI:
1616   case PPC::CMPLDI:
1617     SrcReg = MI.getOperand(1).getReg();
1618     SrcReg2 = 0;
1619     Value = MI.getOperand(2).getImm();
1620     Mask = 0xFFFF;
1621     return true;
1622   case PPC::CMPW:
1623   case PPC::CMPLW:
1624   case PPC::CMPD:
1625   case PPC::CMPLD:
1626   case PPC::FCMPUS:
1627   case PPC::FCMPUD:
1628     SrcReg = MI.getOperand(1).getReg();
1629     SrcReg2 = MI.getOperand(2).getReg();
1630     Value = 0;
1631     Mask = 0;
1632     return true;
1633   }
1634 }
1635 
1636 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1637                                         unsigned SrcReg2, int Mask, int Value,
1638                                         const MachineRegisterInfo *MRI) const {
1639   if (DisableCmpOpt)
1640     return false;
1641 
1642   int OpC = CmpInstr.getOpcode();
1643   Register CRReg = CmpInstr.getOperand(0).getReg();
1644 
1645   // FP record forms set CR1 based on the exception status bits, not a
1646   // comparison with zero.
1647   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1648     return false;
1649 
1650   const TargetRegisterInfo *TRI = &getRegisterInfo();
1651   // The record forms set the condition register based on a signed comparison
1652   // with zero (so says the ISA manual). This is not as straightforward as it
1653   // seems, however, because this is always a 64-bit comparison on PPC64, even
1654   // for instructions that are 32-bit in nature (like slw for example).
1655   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1656   // for equality checks (as those don't depend on the sign). On PPC64,
1657   // we are restricted to equality for unsigned 64-bit comparisons and for
1658   // signed 32-bit comparisons the applicability is more restricted.
1659   bool isPPC64 = Subtarget.isPPC64();
1660   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1661   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1662   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1663 
1664   // Look through copies unless that gets us to a physical register.
1665   unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1666   if (Register::isVirtualRegister(ActualSrc))
1667     SrcReg = ActualSrc;
1668 
1669   // Get the unique definition of SrcReg.
1670   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1671   if (!MI) return false;
1672 
1673   bool equalityOnly = false;
1674   bool noSub = false;
1675   if (isPPC64) {
1676     if (is32BitSignedCompare) {
1677       // We can perform this optimization only if MI is sign-extending.
1678       if (isSignExtended(*MI))
1679         noSub = true;
1680       else
1681         return false;
1682     } else if (is32BitUnsignedCompare) {
1683       // We can perform this optimization, equality only, if MI is
1684       // zero-extending.
1685       if (isZeroExtended(*MI)) {
1686         noSub = true;
1687         equalityOnly = true;
1688       } else
1689         return false;
1690     } else
1691       equalityOnly = is64BitUnsignedCompare;
1692   } else
1693     equalityOnly = is32BitUnsignedCompare;
1694 
1695   if (equalityOnly) {
1696     // We need to check the uses of the condition register in order to reject
1697     // non-equality comparisons.
1698     for (MachineRegisterInfo::use_instr_iterator
1699          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1700          I != IE; ++I) {
1701       MachineInstr *UseMI = &*I;
1702       if (UseMI->getOpcode() == PPC::BCC) {
1703         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1704         unsigned PredCond = PPC::getPredicateCondition(Pred);
1705         // We ignore hint bits when checking for non-equality comparisons.
1706         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1707           return false;
1708       } else if (UseMI->getOpcode() == PPC::ISEL ||
1709                  UseMI->getOpcode() == PPC::ISEL8) {
1710         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1711         if (SubIdx != PPC::sub_eq)
1712           return false;
1713       } else
1714         return false;
1715     }
1716   }
1717 
1718   MachineBasicBlock::iterator I = CmpInstr;
1719 
1720   // Scan forward to find the first use of the compare.
1721   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1722        ++I) {
1723     bool FoundUse = false;
1724     for (MachineRegisterInfo::use_instr_iterator
1725          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1726          J != JE; ++J)
1727       if (&*J == &*I) {
1728         FoundUse = true;
1729         break;
1730       }
1731 
1732     if (FoundUse)
1733       break;
1734   }
1735 
1736   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1737   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1738 
1739   // There are two possible candidates which can be changed to set CR[01].
1740   // One is MI, the other is a SUB instruction.
1741   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1742   MachineInstr *Sub = nullptr;
1743   if (SrcReg2 != 0)
1744     // MI is not a candidate for CMPrr.
1745     MI = nullptr;
1746   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1747   // same BB as the comparison. This is to allow the check below to avoid calls
1748   // (and other explicit clobbers); instead we should really check for these
1749   // more explicitly (in at least a few predecessors).
1750   else if (MI->getParent() != CmpInstr.getParent())
1751     return false;
1752   else if (Value != 0) {
1753     // The record-form instructions set CR bit based on signed comparison
1754     // against 0. We try to convert a compare against 1 or -1 into a compare
1755     // against 0 to exploit record-form instructions. For example, we change
1756     // the condition "greater than -1" into "greater than or equal to 0"
1757     // and "less than 1" into "less than or equal to 0".
1758 
1759     // Since we optimize comparison based on a specific branch condition,
1760     // we don't optimize if condition code is used by more than once.
1761     if (equalityOnly || !MRI->hasOneUse(CRReg))
1762       return false;
1763 
1764     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1765     if (UseMI->getOpcode() != PPC::BCC)
1766       return false;
1767 
1768     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1769     unsigned PredCond = PPC::getPredicateCondition(Pred);
1770     unsigned PredHint = PPC::getPredicateHint(Pred);
1771     int16_t Immed = (int16_t)Value;
1772 
1773     // When modifying the condition in the predicate, we propagate hint bits
1774     // from the original predicate to the new one.
1775     if (Immed == -1 && PredCond == PPC::PRED_GT)
1776       // We convert "greater than -1" into "greater than or equal to 0",
1777       // since we are assuming signed comparison by !equalityOnly
1778       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1779     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1780       // We convert "less than or equal to -1" into "less than 0".
1781       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1782     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1783       // We convert "less than 1" into "less than or equal to 0".
1784       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1785     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1786       // We convert "greater than or equal to 1" into "greater than 0".
1787       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1788     else
1789       return false;
1790 
1791     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1792   }
1793 
1794   // Search for Sub.
1795   --I;
1796 
1797   // Get ready to iterate backward from CmpInstr.
1798   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1799 
1800   for (; I != E && !noSub; --I) {
1801     const MachineInstr &Instr = *I;
1802     unsigned IOpC = Instr.getOpcode();
1803 
1804     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1805                              Instr.readsRegister(PPC::CR0, TRI)))
1806       // This instruction modifies or uses the record condition register after
1807       // the one we want to change. While we could do this transformation, it
1808       // would likely not be profitable. This transformation removes one
1809       // instruction, and so even forcing RA to generate one move probably
1810       // makes it unprofitable.
1811       return false;
1812 
1813     // Check whether CmpInstr can be made redundant by the current instruction.
1814     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1815          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1816         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1817         ((Instr.getOperand(1).getReg() == SrcReg &&
1818           Instr.getOperand(2).getReg() == SrcReg2) ||
1819         (Instr.getOperand(1).getReg() == SrcReg2 &&
1820          Instr.getOperand(2).getReg() == SrcReg))) {
1821       Sub = &*I;
1822       break;
1823     }
1824 
1825     if (I == B)
1826       // The 'and' is below the comparison instruction.
1827       return false;
1828   }
1829 
1830   // Return false if no candidates exist.
1831   if (!MI && !Sub)
1832     return false;
1833 
1834   // The single candidate is called MI.
1835   if (!MI) MI = Sub;
1836 
1837   int NewOpC = -1;
1838   int MIOpC = MI->getOpcode();
1839   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1840       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1841     NewOpC = MIOpC;
1842   else {
1843     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1844     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1845       NewOpC = MIOpC;
1846   }
1847 
1848   // FIXME: On the non-embedded POWER architectures, only some of the record
1849   // forms are fast, and we should use only the fast ones.
1850 
1851   // The defining instruction has a record form (or is already a record
1852   // form). It is possible, however, that we'll need to reverse the condition
1853   // code of the users.
1854   if (NewOpC == -1)
1855     return false;
1856 
1857   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1858   // needs to be updated to be based on SUB.  Push the condition code
1859   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1860   // condition code of these operands will be modified.
1861   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1862   // comparison against 0, which may modify predicate.
1863   bool ShouldSwap = false;
1864   if (Sub && Value == 0) {
1865     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1866       Sub->getOperand(2).getReg() == SrcReg;
1867 
1868     // The operands to subf are the opposite of sub, so only in the fixed-point
1869     // case, invert the order.
1870     ShouldSwap = !ShouldSwap;
1871   }
1872 
1873   if (ShouldSwap)
1874     for (MachineRegisterInfo::use_instr_iterator
1875          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1876          I != IE; ++I) {
1877       MachineInstr *UseMI = &*I;
1878       if (UseMI->getOpcode() == PPC::BCC) {
1879         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1880         unsigned PredCond = PPC::getPredicateCondition(Pred);
1881         assert((!equalityOnly ||
1882                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1883                "Invalid predicate for equality-only optimization");
1884         (void)PredCond; // To suppress warning in release build.
1885         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1886                                 PPC::getSwappedPredicate(Pred)));
1887       } else if (UseMI->getOpcode() == PPC::ISEL ||
1888                  UseMI->getOpcode() == PPC::ISEL8) {
1889         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1890         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1891                "Invalid CR bit for equality-only optimization");
1892 
1893         if (NewSubReg == PPC::sub_lt)
1894           NewSubReg = PPC::sub_gt;
1895         else if (NewSubReg == PPC::sub_gt)
1896           NewSubReg = PPC::sub_lt;
1897 
1898         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1899                                                  NewSubReg));
1900       } else // We need to abort on a user we don't understand.
1901         return false;
1902     }
1903   assert(!(Value != 0 && ShouldSwap) &&
1904          "Non-zero immediate support and ShouldSwap"
1905          "may conflict in updating predicate");
1906 
1907   // Create a new virtual register to hold the value of the CR set by the
1908   // record-form instruction. If the instruction was not previously in
1909   // record form, then set the kill flag on the CR.
1910   CmpInstr.eraseFromParent();
1911 
1912   MachineBasicBlock::iterator MII = MI;
1913   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1914           get(TargetOpcode::COPY), CRReg)
1915     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1916 
1917   // Even if CR0 register were dead before, it is alive now since the
1918   // instruction we just built uses it.
1919   MI->clearRegisterDeads(PPC::CR0);
1920 
1921   if (MIOpC != NewOpC) {
1922     // We need to be careful here: we're replacing one instruction with
1923     // another, and we need to make sure that we get all of the right
1924     // implicit uses and defs. On the other hand, the caller may be holding
1925     // an iterator to this instruction, and so we can't delete it (this is
1926     // specifically the case if this is the instruction directly after the
1927     // compare).
1928 
1929     // Rotates are expensive instructions. If we're emitting a record-form
1930     // rotate that can just be an andi/andis, we should just emit that.
1931     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1932       Register GPRRes = MI->getOperand(0).getReg();
1933       int64_t SH = MI->getOperand(2).getImm();
1934       int64_t MB = MI->getOperand(3).getImm();
1935       int64_t ME = MI->getOperand(4).getImm();
1936       // We can only do this if both the start and end of the mask are in the
1937       // same halfword.
1938       bool MBInLoHWord = MB >= 16;
1939       bool MEInLoHWord = ME >= 16;
1940       uint64_t Mask = ~0LLU;
1941 
1942       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1943         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1944         // The mask value needs to shift right 16 if we're emitting andis.
1945         Mask >>= MBInLoHWord ? 0 : 16;
1946         NewOpC = MIOpC == PPC::RLWINM ?
1947           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1948           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1949       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1950                  (ME - MB + 1 == SH) && (MB >= 16)) {
1951         // If we are rotating by the exact number of bits as are in the mask
1952         // and the mask is in the least significant bits of the register,
1953         // that's just an andis. (as long as the GPR result has no uses).
1954         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1955         Mask >>= 16;
1956         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1957       }
1958       // If we've set the mask, we can transform.
1959       if (Mask != ~0LLU) {
1960         MI->RemoveOperand(4);
1961         MI->RemoveOperand(3);
1962         MI->getOperand(2).setImm(Mask);
1963         NumRcRotatesConvertedToRcAnd++;
1964       }
1965     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1966       int64_t MB = MI->getOperand(3).getImm();
1967       if (MB >= 48) {
1968         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1969         NewOpC = PPC::ANDIo8;
1970         MI->RemoveOperand(3);
1971         MI->getOperand(2).setImm(Mask);
1972         NumRcRotatesConvertedToRcAnd++;
1973       }
1974     }
1975 
1976     const MCInstrDesc &NewDesc = get(NewOpC);
1977     MI->setDesc(NewDesc);
1978 
1979     if (NewDesc.ImplicitDefs)
1980       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1981            *ImpDefs; ++ImpDefs)
1982         if (!MI->definesRegister(*ImpDefs))
1983           MI->addOperand(*MI->getParent()->getParent(),
1984                          MachineOperand::CreateReg(*ImpDefs, true, true));
1985     if (NewDesc.ImplicitUses)
1986       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1987            *ImpUses; ++ImpUses)
1988         if (!MI->readsRegister(*ImpUses))
1989           MI->addOperand(*MI->getParent()->getParent(),
1990                          MachineOperand::CreateReg(*ImpUses, false, true));
1991   }
1992   assert(MI->definesRegister(PPC::CR0) &&
1993          "Record-form instruction does not define cr0?");
1994 
1995   // Modify the condition code of operands in OperandsToUpdate.
1996   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1997   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1998   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1999     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2000 
2001   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2002     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2003 
2004   return true;
2005 }
2006 
2007 /// GetInstSize - Return the number of bytes of code the specified
2008 /// instruction may be.  This returns the maximum number of bytes.
2009 ///
2010 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2011   unsigned Opcode = MI.getOpcode();
2012 
2013   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2014     const MachineFunction *MF = MI.getParent()->getParent();
2015     const char *AsmStr = MI.getOperand(0).getSymbolName();
2016     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2017   } else if (Opcode == TargetOpcode::STACKMAP) {
2018     StackMapOpers Opers(&MI);
2019     return Opers.getNumPatchBytes();
2020   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2021     PatchPointOpers Opers(&MI);
2022     return Opers.getNumPatchBytes();
2023   } else {
2024     return get(Opcode).getSize();
2025   }
2026 }
2027 
2028 std::pair<unsigned, unsigned>
2029 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2030   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2031   return std::make_pair(TF & Mask, TF & ~Mask);
2032 }
2033 
2034 ArrayRef<std::pair<unsigned, const char *>>
2035 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2036   using namespace PPCII;
2037   static const std::pair<unsigned, const char *> TargetFlags[] = {
2038       {MO_LO, "ppc-lo"},
2039       {MO_HA, "ppc-ha"},
2040       {MO_TPREL_LO, "ppc-tprel-lo"},
2041       {MO_TPREL_HA, "ppc-tprel-ha"},
2042       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2043       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2044       {MO_TOC_LO, "ppc-toc-lo"},
2045       {MO_TLS, "ppc-tls"}};
2046   return makeArrayRef(TargetFlags);
2047 }
2048 
2049 ArrayRef<std::pair<unsigned, const char *>>
2050 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2051   using namespace PPCII;
2052   static const std::pair<unsigned, const char *> TargetFlags[] = {
2053       {MO_PLT, "ppc-plt"},
2054       {MO_PIC_FLAG, "ppc-pic"},
2055       {MO_NLP_FLAG, "ppc-nlp"},
2056       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2057   return makeArrayRef(TargetFlags);
2058 }
2059 
2060 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2061 // The VSX versions have the advantage of a full 64-register target whereas
2062 // the FP ones have the advantage of lower latency and higher throughput. So
2063 // what we are after is using the faster instructions in low register pressure
2064 // situations and using the larger register file in high register pressure
2065 // situations.
2066 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2067     unsigned UpperOpcode, LowerOpcode;
2068     switch (MI.getOpcode()) {
2069     case PPC::DFLOADf32:
2070       UpperOpcode = PPC::LXSSP;
2071       LowerOpcode = PPC::LFS;
2072       break;
2073     case PPC::DFLOADf64:
2074       UpperOpcode = PPC::LXSD;
2075       LowerOpcode = PPC::LFD;
2076       break;
2077     case PPC::DFSTOREf32:
2078       UpperOpcode = PPC::STXSSP;
2079       LowerOpcode = PPC::STFS;
2080       break;
2081     case PPC::DFSTOREf64:
2082       UpperOpcode = PPC::STXSD;
2083       LowerOpcode = PPC::STFD;
2084       break;
2085     case PPC::XFLOADf32:
2086       UpperOpcode = PPC::LXSSPX;
2087       LowerOpcode = PPC::LFSX;
2088       break;
2089     case PPC::XFLOADf64:
2090       UpperOpcode = PPC::LXSDX;
2091       LowerOpcode = PPC::LFDX;
2092       break;
2093     case PPC::XFSTOREf32:
2094       UpperOpcode = PPC::STXSSPX;
2095       LowerOpcode = PPC::STFSX;
2096       break;
2097     case PPC::XFSTOREf64:
2098       UpperOpcode = PPC::STXSDX;
2099       LowerOpcode = PPC::STFDX;
2100       break;
2101     case PPC::LIWAX:
2102       UpperOpcode = PPC::LXSIWAX;
2103       LowerOpcode = PPC::LFIWAX;
2104       break;
2105     case PPC::LIWZX:
2106       UpperOpcode = PPC::LXSIWZX;
2107       LowerOpcode = PPC::LFIWZX;
2108       break;
2109     case PPC::STIWX:
2110       UpperOpcode = PPC::STXSIWX;
2111       LowerOpcode = PPC::STFIWX;
2112       break;
2113     default:
2114       llvm_unreachable("Unknown Operation!");
2115     }
2116 
2117     Register TargetReg = MI.getOperand(0).getReg();
2118     unsigned Opcode;
2119     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2120         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2121       Opcode = LowerOpcode;
2122     else
2123       Opcode = UpperOpcode;
2124     MI.setDesc(get(Opcode));
2125     return true;
2126 }
2127 
2128 static bool isAnImmediateOperand(const MachineOperand &MO) {
2129   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2130 }
2131 
2132 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2133   auto &MBB = *MI.getParent();
2134   auto DL = MI.getDebugLoc();
2135 
2136   switch (MI.getOpcode()) {
2137   case TargetOpcode::LOAD_STACK_GUARD: {
2138     assert(Subtarget.isTargetLinux() &&
2139            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2140     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2141     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2142     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2143     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2144         .addImm(Offset)
2145         .addReg(Reg);
2146     return true;
2147   }
2148   case PPC::DFLOADf32:
2149   case PPC::DFLOADf64:
2150   case PPC::DFSTOREf32:
2151   case PPC::DFSTOREf64: {
2152     assert(Subtarget.hasP9Vector() &&
2153            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2154     assert(MI.getOperand(2).isReg() &&
2155            isAnImmediateOperand(MI.getOperand(1)) &&
2156            "D-form op must have register and immediate operands");
2157     return expandVSXMemPseudo(MI);
2158   }
2159   case PPC::XFLOADf32:
2160   case PPC::XFSTOREf32:
2161   case PPC::LIWAX:
2162   case PPC::LIWZX:
2163   case PPC::STIWX: {
2164     assert(Subtarget.hasP8Vector() &&
2165            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2166     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2167            "X-form op must have register and register operands");
2168     return expandVSXMemPseudo(MI);
2169   }
2170   case PPC::XFLOADf64:
2171   case PPC::XFSTOREf64: {
2172     assert(Subtarget.hasVSX() &&
2173            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2174     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2175            "X-form op must have register and register operands");
2176     return expandVSXMemPseudo(MI);
2177   }
2178   case PPC::SPILLTOVSR_LD: {
2179     Register TargetReg = MI.getOperand(0).getReg();
2180     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2181       MI.setDesc(get(PPC::DFLOADf64));
2182       return expandPostRAPseudo(MI);
2183     }
2184     else
2185       MI.setDesc(get(PPC::LD));
2186     return true;
2187   }
2188   case PPC::SPILLTOVSR_ST: {
2189     Register SrcReg = MI.getOperand(0).getReg();
2190     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2191       NumStoreSPILLVSRRCAsVec++;
2192       MI.setDesc(get(PPC::DFSTOREf64));
2193       return expandPostRAPseudo(MI);
2194     } else {
2195       NumStoreSPILLVSRRCAsGpr++;
2196       MI.setDesc(get(PPC::STD));
2197     }
2198     return true;
2199   }
2200   case PPC::SPILLTOVSR_LDX: {
2201     Register TargetReg = MI.getOperand(0).getReg();
2202     if (PPC::VSFRCRegClass.contains(TargetReg))
2203       MI.setDesc(get(PPC::LXSDX));
2204     else
2205       MI.setDesc(get(PPC::LDX));
2206     return true;
2207   }
2208   case PPC::SPILLTOVSR_STX: {
2209     Register SrcReg = MI.getOperand(0).getReg();
2210     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2211       NumStoreSPILLVSRRCAsVec++;
2212       MI.setDesc(get(PPC::STXSDX));
2213     } else {
2214       NumStoreSPILLVSRRCAsGpr++;
2215       MI.setDesc(get(PPC::STDX));
2216     }
2217     return true;
2218   }
2219 
2220   case PPC::CFENCE8: {
2221     auto Val = MI.getOperand(0).getReg();
2222     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2223     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2224         .addImm(PPC::PRED_NE_MINUS)
2225         .addReg(PPC::CR7)
2226         .addImm(1);
2227     MI.setDesc(get(PPC::ISYNC));
2228     MI.RemoveOperand(0);
2229     return true;
2230   }
2231   }
2232   return false;
2233 }
2234 
2235 // Essentially a compile-time implementation of a compare->isel sequence.
2236 // It takes two constants to compare, along with the true/false registers
2237 // and the comparison type (as a subreg to a CR field) and returns one
2238 // of the true/false registers, depending on the comparison results.
2239 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2240                           unsigned TrueReg, unsigned FalseReg,
2241                           unsigned CRSubReg) {
2242   // Signed comparisons. The immediates are assumed to be sign-extended.
2243   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2244     switch (CRSubReg) {
2245     default: llvm_unreachable("Unknown integer comparison type.");
2246     case PPC::sub_lt:
2247       return Imm1 < Imm2 ? TrueReg : FalseReg;
2248     case PPC::sub_gt:
2249       return Imm1 > Imm2 ? TrueReg : FalseReg;
2250     case PPC::sub_eq:
2251       return Imm1 == Imm2 ? TrueReg : FalseReg;
2252     }
2253   }
2254   // Unsigned comparisons.
2255   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2256     switch (CRSubReg) {
2257     default: llvm_unreachable("Unknown integer comparison type.");
2258     case PPC::sub_lt:
2259       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2260     case PPC::sub_gt:
2261       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2262     case PPC::sub_eq:
2263       return Imm1 == Imm2 ? TrueReg : FalseReg;
2264     }
2265   }
2266   return PPC::NoRegister;
2267 }
2268 
2269 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2270                                               unsigned OpNo,
2271                                               int64_t Imm) const {
2272   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2273   // Replace the REG with the Immediate.
2274   Register InUseReg = MI.getOperand(OpNo).getReg();
2275   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2276 
2277   if (MI.implicit_operands().empty())
2278     return;
2279 
2280   // We need to make sure that the MI didn't have any implicit use
2281   // of this REG any more.
2282   const TargetRegisterInfo *TRI = &getRegisterInfo();
2283   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2284   if (UseOpIdx >= 0) {
2285     MachineOperand &MO = MI.getOperand(UseOpIdx);
2286     if (MO.isImplicit())
2287       // The operands must always be in the following order:
2288       // - explicit reg defs,
2289       // - other explicit operands (reg uses, immediates, etc.),
2290       // - implicit reg defs
2291       // - implicit reg uses
2292       // Therefore, removing the implicit operand won't change the explicit
2293       // operands layout.
2294       MI.RemoveOperand(UseOpIdx);
2295   }
2296 }
2297 
2298 // Replace an instruction with one that materializes a constant (and sets
2299 // CR0 if the original instruction was a record-form instruction).
2300 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2301                                       const LoadImmediateInfo &LII) const {
2302   // Remove existing operands.
2303   int OperandToKeep = LII.SetCR ? 1 : 0;
2304   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2305     MI.RemoveOperand(i);
2306 
2307   // Replace the instruction.
2308   if (LII.SetCR) {
2309     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2310     // Set the immediate.
2311     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2312         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2313     return;
2314   }
2315   else
2316     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2317 
2318   // Set the immediate.
2319   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2320       .addImm(LII.Imm);
2321 }
2322 
2323 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2324                                            bool &SeenIntermediateUse) const {
2325   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2326          "Should be called after register allocation.");
2327   const TargetRegisterInfo *TRI = &getRegisterInfo();
2328   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2329   It++;
2330   SeenIntermediateUse = false;
2331   for (; It != E; ++It) {
2332     if (It->modifiesRegister(Reg, TRI))
2333       return &*It;
2334     if (It->readsRegister(Reg, TRI))
2335       SeenIntermediateUse = true;
2336   }
2337   return nullptr;
2338 }
2339 
2340 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2341   MachineInstr &MI,
2342   unsigned &OpNoForForwarding,
2343   bool &SeenIntermediateUse) const {
2344   OpNoForForwarding = ~0U;
2345   MachineInstr *DefMI = nullptr;
2346   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2347   const TargetRegisterInfo *TRI = &getRegisterInfo();
2348   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2349   // within the basic block to see if the register is defined using an LI/LI8.
2350   if (MRI->isSSA()) {
2351     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2352       if (!MI.getOperand(i).isReg())
2353         continue;
2354       Register Reg = MI.getOperand(i).getReg();
2355       if (!Register::isVirtualRegister(Reg))
2356         continue;
2357       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2358       if (Register::isVirtualRegister(TrueReg)) {
2359         DefMI = MRI->getVRegDef(TrueReg);
2360         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2361           OpNoForForwarding = i;
2362           break;
2363         }
2364       }
2365     }
2366   } else {
2367     // Looking back through the definition for each operand could be expensive,
2368     // so exit early if this isn't an instruction that either has an immediate
2369     // form or is already an immediate form that we can handle.
2370     ImmInstrInfo III;
2371     unsigned Opc = MI.getOpcode();
2372     bool ConvertibleImmForm =
2373       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2374       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2375       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2376       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2377       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2378       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2379       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2380       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2381       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2382     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2383                        ? isVFRegister(MI.getOperand(0).getReg())
2384                        : false;
2385     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2386       return nullptr;
2387 
2388     // Don't convert or %X, %Y, %Y since that's just a register move.
2389     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2390         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2391       return nullptr;
2392     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2393       MachineOperand &MO = MI.getOperand(i);
2394       SeenIntermediateUse = false;
2395       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2396         Register Reg = MI.getOperand(i).getReg();
2397         // If we see another use of this reg between the def and the MI,
2398         // we want to flat it so the def isn't deleted.
2399         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2400         if (DefMI) {
2401           // Is this register defined by some form of add-immediate (including
2402           // load-immediate) within this basic block?
2403           switch (DefMI->getOpcode()) {
2404           default:
2405             break;
2406           case PPC::LI:
2407           case PPC::LI8:
2408           case PPC::ADDItocL:
2409           case PPC::ADDI:
2410           case PPC::ADDI8:
2411             OpNoForForwarding = i;
2412             return DefMI;
2413           }
2414         }
2415       }
2416     }
2417   }
2418   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2419 }
2420 
2421 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2422   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2423       // Power 8
2424       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2425        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2426        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2427        PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2428       // Power 9
2429       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2430        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2431        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2432        PPC::SPILLTOVSR_ST}};
2433 
2434   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2435 }
2436 
2437 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2438   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2439       // Power 8
2440       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2441        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2442        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2443        PPC::SPILLTOVSR_LD, PPC::EVLDD},
2444       // Power 9
2445       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2446        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2447        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2448        PPC::SPILLTOVSR_LD}};
2449 
2450   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2451 }
2452 
2453 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2454                                      unsigned RegNo) const {
2455   const MachineRegisterInfo &MRI =
2456       StartMI.getParent()->getParent()->getRegInfo();
2457   if (MRI.isSSA())
2458     return;
2459 
2460   // Instructions between [StartMI, EndMI] should be in same basic block.
2461   assert((StartMI.getParent() == EndMI.getParent()) &&
2462          "Instructions are not in same basic block");
2463 
2464   bool IsKillSet = false;
2465 
2466   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2467     MachineOperand &MO = MI.getOperand(Index);
2468     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2469         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2470       MO.setIsKill(false);
2471   };
2472 
2473   // Set killed flag for EndMI.
2474   // No need to do anything if EndMI defines RegNo.
2475   int UseIndex =
2476       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2477   if (UseIndex != -1) {
2478     EndMI.getOperand(UseIndex).setIsKill(true);
2479     IsKillSet = true;
2480     // Clear killed flag for other EndMI operands related to RegNo. In some
2481     // upexpected cases, killed may be set multiple times for same register
2482     // operand in same MI.
2483     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2484       if (i != UseIndex)
2485         clearOperandKillInfo(EndMI, i);
2486   }
2487 
2488   // Walking the inst in reverse order (EndMI -> StartMI].
2489   MachineBasicBlock::reverse_iterator It = EndMI;
2490   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2491   // EndMI has been handled above, skip it here.
2492   It++;
2493   MachineOperand *MO = nullptr;
2494   for (; It != E; ++It) {
2495     // Skip insturctions which could not be a def/use of RegNo.
2496     if (It->isDebugInstr() || It->isPosition())
2497       continue;
2498 
2499     // Clear killed flag for all It operands related to RegNo. In some
2500     // upexpected cases, killed may be set multiple times for same register
2501     // operand in same MI.
2502     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2503         clearOperandKillInfo(*It, i);
2504 
2505     // If killed is not set, set killed for its last use or set dead for its def
2506     // if no use found.
2507     if (!IsKillSet) {
2508       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2509         // Use found, set it killed.
2510         IsKillSet = true;
2511         MO->setIsKill(true);
2512         continue;
2513       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2514                                                   &getRegisterInfo()))) {
2515         // No use found, set dead for its def.
2516         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2517         MO->setIsDead(true);
2518         break;
2519       }
2520     }
2521 
2522     if ((&*It) == &StartMI)
2523       break;
2524   }
2525   // Ensure RegMo liveness is killed after EndMI.
2526   assert((IsKillSet || (MO && MO->isDead())) &&
2527          "RegNo should be killed or dead");
2528 }
2529 
2530 // If this instruction has an immediate form and one of its operands is a
2531 // result of a load-immediate or an add-immediate, convert it to
2532 // the immediate form if the constant is in range.
2533 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2534                                           MachineInstr **KilledDef) const {
2535   MachineFunction *MF = MI.getParent()->getParent();
2536   MachineRegisterInfo *MRI = &MF->getRegInfo();
2537   bool PostRA = !MRI->isSSA();
2538   bool SeenIntermediateUse = true;
2539   unsigned ForwardingOperand = ~0U;
2540   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2541                                            SeenIntermediateUse);
2542   if (!DefMI)
2543     return false;
2544   assert(ForwardingOperand < MI.getNumOperands() &&
2545          "The forwarding operand needs to be valid at this point");
2546   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2547   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2548   Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2549   if (KilledDef && KillFwdDefMI)
2550     *KilledDef = DefMI;
2551 
2552   ImmInstrInfo III;
2553   bool IsVFReg = MI.getOperand(0).isReg()
2554                      ? isVFRegister(MI.getOperand(0).getReg())
2555                      : false;
2556   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2557   // If this is a reg+reg instruction that has a reg+imm form,
2558   // and one of the operands is produced by an add-immediate,
2559   // try to convert it.
2560   if (HasImmForm &&
2561       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2562                                  KillFwdDefMI))
2563     return true;
2564 
2565   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2566       !DefMI->getOperand(1).isImm())
2567     return false;
2568 
2569   int64_t Immediate = DefMI->getOperand(1).getImm();
2570   // Sign-extend to 64-bits.
2571   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2572     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2573 
2574   // If this is a reg+reg instruction that has a reg+imm form,
2575   // and one of the operands is produced by LI, convert it now.
2576   if (HasImmForm)
2577     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2578 
2579   bool ReplaceWithLI = false;
2580   bool Is64BitLI = false;
2581   int64_t NewImm = 0;
2582   bool SetCR = false;
2583   unsigned Opc = MI.getOpcode();
2584   switch (Opc) {
2585   default: return false;
2586 
2587   // FIXME: Any branches conditional on such a comparison can be made
2588   // unconditional. At this time, this happens too infrequently to be worth
2589   // the implementation effort, but if that ever changes, we could convert
2590   // such a pattern here.
2591   case PPC::CMPWI:
2592   case PPC::CMPLWI:
2593   case PPC::CMPDI:
2594   case PPC::CMPLDI: {
2595     // Doing this post-RA would require dataflow analysis to reliably find uses
2596     // of the CR register set by the compare.
2597     // No need to fixup killed/dead flag since this transformation is only valid
2598     // before RA.
2599     if (PostRA)
2600       return false;
2601     // If a compare-immediate is fed by an immediate and is itself an input of
2602     // an ISEL (the most common case) into a COPY of the correct register.
2603     bool Changed = false;
2604     Register DefReg = MI.getOperand(0).getReg();
2605     int64_t Comparand = MI.getOperand(2).getImm();
2606     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2607       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2608 
2609     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2610       unsigned UseOpc = CompareUseMI.getOpcode();
2611       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2612         continue;
2613       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2614       Register TrueReg = CompareUseMI.getOperand(1).getReg();
2615       Register FalseReg = CompareUseMI.getOperand(2).getReg();
2616       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2617                                      FalseReg, CRSubReg);
2618       if (RegToCopy == PPC::NoRegister)
2619         continue;
2620       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2621       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2622         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2623         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2624         CompareUseMI.RemoveOperand(3);
2625         CompareUseMI.RemoveOperand(2);
2626         continue;
2627       }
2628       LLVM_DEBUG(
2629           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2630       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2631       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2632       // Convert to copy and remove unneeded operands.
2633       CompareUseMI.setDesc(get(PPC::COPY));
2634       CompareUseMI.RemoveOperand(3);
2635       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2636       CmpIselsConverted++;
2637       Changed = true;
2638       LLVM_DEBUG(CompareUseMI.dump());
2639     }
2640     if (Changed)
2641       return true;
2642     // This may end up incremented multiple times since this function is called
2643     // during a fixed-point transformation, but it is only meant to indicate the
2644     // presence of this opportunity.
2645     MissedConvertibleImmediateInstrs++;
2646     return false;
2647   }
2648 
2649   // Immediate forms - may simply be convertable to an LI.
2650   case PPC::ADDI:
2651   case PPC::ADDI8: {
2652     // Does the sum fit in a 16-bit signed field?
2653     int64_t Addend = MI.getOperand(2).getImm();
2654     if (isInt<16>(Addend + SExtImm)) {
2655       ReplaceWithLI = true;
2656       Is64BitLI = Opc == PPC::ADDI8;
2657       NewImm = Addend + SExtImm;
2658       break;
2659     }
2660     return false;
2661   }
2662   case PPC::RLDICL:
2663   case PPC::RLDICLo:
2664   case PPC::RLDICL_32:
2665   case PPC::RLDICL_32_64: {
2666     // Use APInt's rotate function.
2667     int64_t SH = MI.getOperand(2).getImm();
2668     int64_t MB = MI.getOperand(3).getImm();
2669     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2670                 64 : 32, SExtImm, true);
2671     InVal = InVal.rotl(SH);
2672     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2673     InVal &= Mask;
2674     // Can't replace negative values with an LI as that will sign-extend
2675     // and not clear the left bits. If we're setting the CR bit, we will use
2676     // ANDIo which won't sign extend, so that's safe.
2677     if (isUInt<15>(InVal.getSExtValue()) ||
2678         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2679       ReplaceWithLI = true;
2680       Is64BitLI = Opc != PPC::RLDICL_32;
2681       NewImm = InVal.getSExtValue();
2682       SetCR = Opc == PPC::RLDICLo;
2683       break;
2684     }
2685     return false;
2686   }
2687   case PPC::RLWINM:
2688   case PPC::RLWINM8:
2689   case PPC::RLWINMo:
2690   case PPC::RLWINM8o: {
2691     int64_t SH = MI.getOperand(2).getImm();
2692     int64_t MB = MI.getOperand(3).getImm();
2693     int64_t ME = MI.getOperand(4).getImm();
2694     APInt InVal(32, SExtImm, true);
2695     InVal = InVal.rotl(SH);
2696     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2697     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2698     InVal &= Mask;
2699     // Can't replace negative values with an LI as that will sign-extend
2700     // and not clear the left bits. If we're setting the CR bit, we will use
2701     // ANDIo which won't sign extend, so that's safe.
2702     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2703     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2704                   isUInt<16>(InVal.getSExtValue()));
2705     if (ValueFits) {
2706       ReplaceWithLI = true;
2707       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2708       NewImm = InVal.getSExtValue();
2709       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2710       break;
2711     }
2712     return false;
2713   }
2714   case PPC::ORI:
2715   case PPC::ORI8:
2716   case PPC::XORI:
2717   case PPC::XORI8: {
2718     int64_t LogicalImm = MI.getOperand(2).getImm();
2719     int64_t Result = 0;
2720     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2721       Result = LogicalImm | SExtImm;
2722     else
2723       Result = LogicalImm ^ SExtImm;
2724     if (isInt<16>(Result)) {
2725       ReplaceWithLI = true;
2726       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2727       NewImm = Result;
2728       break;
2729     }
2730     return false;
2731   }
2732   }
2733 
2734   if (ReplaceWithLI) {
2735     // We need to be careful with CR-setting instructions we're replacing.
2736     if (SetCR) {
2737       // We don't know anything about uses when we're out of SSA, so only
2738       // replace if the new immediate will be reproduced.
2739       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2740       if (PostRA && ImmChanged)
2741         return false;
2742 
2743       if (!PostRA) {
2744         // If the defining load-immediate has no other uses, we can just replace
2745         // the immediate with the new immediate.
2746         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2747           DefMI->getOperand(1).setImm(NewImm);
2748 
2749         // If we're not using the GPR result of the CR-setting instruction, we
2750         // just need to and with zero/non-zero depending on the new immediate.
2751         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2752           if (NewImm) {
2753             assert(Immediate && "Transformation converted zero to non-zero?");
2754             NewImm = Immediate;
2755           }
2756         }
2757         else if (ImmChanged)
2758           return false;
2759       }
2760     }
2761 
2762     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2763     LLVM_DEBUG(MI.dump());
2764     LLVM_DEBUG(dbgs() << "Fed by:\n");
2765     LLVM_DEBUG(DefMI->dump());
2766     LoadImmediateInfo LII;
2767     LII.Imm = NewImm;
2768     LII.Is64Bit = Is64BitLI;
2769     LII.SetCR = SetCR;
2770     // If we're setting the CR, the original load-immediate must be kept (as an
2771     // operand to ANDIo/ANDI8o).
2772     if (KilledDef && SetCR)
2773       *KilledDef = nullptr;
2774     replaceInstrWithLI(MI, LII);
2775 
2776     // Fixup killed/dead flag after transformation.
2777     // Pattern:
2778     // ForwardingOperandReg = LI imm1
2779     // y = op2 imm2, ForwardingOperandReg(killed)
2780     if (IsForwardingOperandKilled)
2781       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2782 
2783     LLVM_DEBUG(dbgs() << "With:\n");
2784     LLVM_DEBUG(MI.dump());
2785     return true;
2786   }
2787   return false;
2788 }
2789 
2790 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2791                                    ImmInstrInfo &III, bool PostRA) const {
2792   // The vast majority of the instructions would need their operand 2 replaced
2793   // with an immediate when switching to the reg+imm form. A marked exception
2794   // are the update form loads/stores for which a constant operand 2 would need
2795   // to turn into a displacement and move operand 1 to the operand 2 position.
2796   III.ImmOpNo = 2;
2797   III.OpNoForForwarding = 2;
2798   III.ImmWidth = 16;
2799   III.ImmMustBeMultipleOf = 1;
2800   III.TruncateImmTo = 0;
2801   III.IsSummingOperands = false;
2802   switch (Opc) {
2803   default: return false;
2804   case PPC::ADD4:
2805   case PPC::ADD8:
2806     III.SignedImm = true;
2807     III.ZeroIsSpecialOrig = 0;
2808     III.ZeroIsSpecialNew = 1;
2809     III.IsCommutative = true;
2810     III.IsSummingOperands = true;
2811     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2812     break;
2813   case PPC::ADDC:
2814   case PPC::ADDC8:
2815     III.SignedImm = true;
2816     III.ZeroIsSpecialOrig = 0;
2817     III.ZeroIsSpecialNew = 0;
2818     III.IsCommutative = true;
2819     III.IsSummingOperands = true;
2820     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2821     break;
2822   case PPC::ADDCo:
2823     III.SignedImm = true;
2824     III.ZeroIsSpecialOrig = 0;
2825     III.ZeroIsSpecialNew = 0;
2826     III.IsCommutative = true;
2827     III.IsSummingOperands = true;
2828     III.ImmOpcode = PPC::ADDICo;
2829     break;
2830   case PPC::SUBFC:
2831   case PPC::SUBFC8:
2832     III.SignedImm = true;
2833     III.ZeroIsSpecialOrig = 0;
2834     III.ZeroIsSpecialNew = 0;
2835     III.IsCommutative = false;
2836     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2837     break;
2838   case PPC::CMPW:
2839   case PPC::CMPD:
2840     III.SignedImm = true;
2841     III.ZeroIsSpecialOrig = 0;
2842     III.ZeroIsSpecialNew = 0;
2843     III.IsCommutative = false;
2844     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2845     break;
2846   case PPC::CMPLW:
2847   case PPC::CMPLD:
2848     III.SignedImm = false;
2849     III.ZeroIsSpecialOrig = 0;
2850     III.ZeroIsSpecialNew = 0;
2851     III.IsCommutative = false;
2852     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2853     break;
2854   case PPC::ANDo:
2855   case PPC::AND8o:
2856   case PPC::OR:
2857   case PPC::OR8:
2858   case PPC::XOR:
2859   case PPC::XOR8:
2860     III.SignedImm = false;
2861     III.ZeroIsSpecialOrig = 0;
2862     III.ZeroIsSpecialNew = 0;
2863     III.IsCommutative = true;
2864     switch(Opc) {
2865     default: llvm_unreachable("Unknown opcode");
2866     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2867     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2868     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2869     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2870     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2871     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2872     }
2873     break;
2874   case PPC::RLWNM:
2875   case PPC::RLWNM8:
2876   case PPC::RLWNMo:
2877   case PPC::RLWNM8o:
2878   case PPC::SLW:
2879   case PPC::SLW8:
2880   case PPC::SLWo:
2881   case PPC::SLW8o:
2882   case PPC::SRW:
2883   case PPC::SRW8:
2884   case PPC::SRWo:
2885   case PPC::SRW8o:
2886   case PPC::SRAW:
2887   case PPC::SRAWo:
2888     III.SignedImm = false;
2889     III.ZeroIsSpecialOrig = 0;
2890     III.ZeroIsSpecialNew = 0;
2891     III.IsCommutative = false;
2892     // This isn't actually true, but the instructions ignore any of the
2893     // upper bits, so any immediate loaded with an LI is acceptable.
2894     // This does not apply to shift right algebraic because a value
2895     // out of range will produce a -1/0.
2896     III.ImmWidth = 16;
2897     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2898         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2899       III.TruncateImmTo = 5;
2900     else
2901       III.TruncateImmTo = 6;
2902     switch(Opc) {
2903     default: llvm_unreachable("Unknown opcode");
2904     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2905     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2906     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2907     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2908     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2909     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2910     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2911     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2912     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2913     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2914     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2915     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2916     case PPC::SRAW:
2917       III.ImmWidth = 5;
2918       III.TruncateImmTo = 0;
2919       III.ImmOpcode = PPC::SRAWI;
2920       break;
2921     case PPC::SRAWo:
2922       III.ImmWidth = 5;
2923       III.TruncateImmTo = 0;
2924       III.ImmOpcode = PPC::SRAWIo;
2925       break;
2926     }
2927     break;
2928   case PPC::RLDCL:
2929   case PPC::RLDCLo:
2930   case PPC::RLDCR:
2931   case PPC::RLDCRo:
2932   case PPC::SLD:
2933   case PPC::SLDo:
2934   case PPC::SRD:
2935   case PPC::SRDo:
2936   case PPC::SRAD:
2937   case PPC::SRADo:
2938     III.SignedImm = false;
2939     III.ZeroIsSpecialOrig = 0;
2940     III.ZeroIsSpecialNew = 0;
2941     III.IsCommutative = false;
2942     // This isn't actually true, but the instructions ignore any of the
2943     // upper bits, so any immediate loaded with an LI is acceptable.
2944     // This does not apply to shift right algebraic because a value
2945     // out of range will produce a -1/0.
2946     III.ImmWidth = 16;
2947     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2948         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2949       III.TruncateImmTo = 6;
2950     else
2951       III.TruncateImmTo = 7;
2952     switch(Opc) {
2953     default: llvm_unreachable("Unknown opcode");
2954     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2955     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2956     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2957     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2958     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2959     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2960     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2961     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2962     case PPC::SRAD:
2963       III.ImmWidth = 6;
2964       III.TruncateImmTo = 0;
2965       III.ImmOpcode = PPC::SRADI;
2966        break;
2967     case PPC::SRADo:
2968       III.ImmWidth = 6;
2969       III.TruncateImmTo = 0;
2970       III.ImmOpcode = PPC::SRADIo;
2971       break;
2972     }
2973     break;
2974   // Loads and stores:
2975   case PPC::LBZX:
2976   case PPC::LBZX8:
2977   case PPC::LHZX:
2978   case PPC::LHZX8:
2979   case PPC::LHAX:
2980   case PPC::LHAX8:
2981   case PPC::LWZX:
2982   case PPC::LWZX8:
2983   case PPC::LWAX:
2984   case PPC::LDX:
2985   case PPC::LFSX:
2986   case PPC::LFDX:
2987   case PPC::STBX:
2988   case PPC::STBX8:
2989   case PPC::STHX:
2990   case PPC::STHX8:
2991   case PPC::STWX:
2992   case PPC::STWX8:
2993   case PPC::STDX:
2994   case PPC::STFSX:
2995   case PPC::STFDX:
2996     III.SignedImm = true;
2997     III.ZeroIsSpecialOrig = 1;
2998     III.ZeroIsSpecialNew = 2;
2999     III.IsCommutative = true;
3000     III.IsSummingOperands = true;
3001     III.ImmOpNo = 1;
3002     III.OpNoForForwarding = 2;
3003     switch(Opc) {
3004     default: llvm_unreachable("Unknown opcode");
3005     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3006     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3007     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3008     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3009     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3010     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3011     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3012     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3013     case PPC::LWAX:
3014       III.ImmOpcode = PPC::LWA;
3015       III.ImmMustBeMultipleOf = 4;
3016       break;
3017     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3018     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3019     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3020     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3021     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3022     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3023     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3024     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3025     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3026     case PPC::STDX:
3027       III.ImmOpcode = PPC::STD;
3028       III.ImmMustBeMultipleOf = 4;
3029       break;
3030     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3031     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3032     }
3033     break;
3034   case PPC::LBZUX:
3035   case PPC::LBZUX8:
3036   case PPC::LHZUX:
3037   case PPC::LHZUX8:
3038   case PPC::LHAUX:
3039   case PPC::LHAUX8:
3040   case PPC::LWZUX:
3041   case PPC::LWZUX8:
3042   case PPC::LDUX:
3043   case PPC::LFSUX:
3044   case PPC::LFDUX:
3045   case PPC::STBUX:
3046   case PPC::STBUX8:
3047   case PPC::STHUX:
3048   case PPC::STHUX8:
3049   case PPC::STWUX:
3050   case PPC::STWUX8:
3051   case PPC::STDUX:
3052   case PPC::STFSUX:
3053   case PPC::STFDUX:
3054     III.SignedImm = true;
3055     III.ZeroIsSpecialOrig = 2;
3056     III.ZeroIsSpecialNew = 3;
3057     III.IsCommutative = false;
3058     III.IsSummingOperands = true;
3059     III.ImmOpNo = 2;
3060     III.OpNoForForwarding = 3;
3061     switch(Opc) {
3062     default: llvm_unreachable("Unknown opcode");
3063     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3064     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3065     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3066     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3067     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3068     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3069     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3070     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3071     case PPC::LDUX:
3072       III.ImmOpcode = PPC::LDU;
3073       III.ImmMustBeMultipleOf = 4;
3074       break;
3075     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3076     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3077     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3078     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3079     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3080     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3081     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3082     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3083     case PPC::STDUX:
3084       III.ImmOpcode = PPC::STDU;
3085       III.ImmMustBeMultipleOf = 4;
3086       break;
3087     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3088     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3089     }
3090     break;
3091   // Power9 and up only. For some of these, the X-Form version has access to all
3092   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3093   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3094   // into or stored from is one of the VR registers.
3095   case PPC::LXVX:
3096   case PPC::LXSSPX:
3097   case PPC::LXSDX:
3098   case PPC::STXVX:
3099   case PPC::STXSSPX:
3100   case PPC::STXSDX:
3101   case PPC::XFLOADf32:
3102   case PPC::XFLOADf64:
3103   case PPC::XFSTOREf32:
3104   case PPC::XFSTOREf64:
3105     if (!Subtarget.hasP9Vector())
3106       return false;
3107     III.SignedImm = true;
3108     III.ZeroIsSpecialOrig = 1;
3109     III.ZeroIsSpecialNew = 2;
3110     III.IsCommutative = true;
3111     III.IsSummingOperands = true;
3112     III.ImmOpNo = 1;
3113     III.OpNoForForwarding = 2;
3114     III.ImmMustBeMultipleOf = 4;
3115     switch(Opc) {
3116     default: llvm_unreachable("Unknown opcode");
3117     case PPC::LXVX:
3118       III.ImmOpcode = PPC::LXV;
3119       III.ImmMustBeMultipleOf = 16;
3120       break;
3121     case PPC::LXSSPX:
3122       if (PostRA) {
3123         if (IsVFReg)
3124           III.ImmOpcode = PPC::LXSSP;
3125         else {
3126           III.ImmOpcode = PPC::LFS;
3127           III.ImmMustBeMultipleOf = 1;
3128         }
3129         break;
3130       }
3131       LLVM_FALLTHROUGH;
3132     case PPC::XFLOADf32:
3133       III.ImmOpcode = PPC::DFLOADf32;
3134       break;
3135     case PPC::LXSDX:
3136       if (PostRA) {
3137         if (IsVFReg)
3138           III.ImmOpcode = PPC::LXSD;
3139         else {
3140           III.ImmOpcode = PPC::LFD;
3141           III.ImmMustBeMultipleOf = 1;
3142         }
3143         break;
3144       }
3145       LLVM_FALLTHROUGH;
3146     case PPC::XFLOADf64:
3147       III.ImmOpcode = PPC::DFLOADf64;
3148       break;
3149     case PPC::STXVX:
3150       III.ImmOpcode = PPC::STXV;
3151       III.ImmMustBeMultipleOf = 16;
3152       break;
3153     case PPC::STXSSPX:
3154       if (PostRA) {
3155         if (IsVFReg)
3156           III.ImmOpcode = PPC::STXSSP;
3157         else {
3158           III.ImmOpcode = PPC::STFS;
3159           III.ImmMustBeMultipleOf = 1;
3160         }
3161         break;
3162       }
3163       LLVM_FALLTHROUGH;
3164     case PPC::XFSTOREf32:
3165       III.ImmOpcode = PPC::DFSTOREf32;
3166       break;
3167     case PPC::STXSDX:
3168       if (PostRA) {
3169         if (IsVFReg)
3170           III.ImmOpcode = PPC::STXSD;
3171         else {
3172           III.ImmOpcode = PPC::STFD;
3173           III.ImmMustBeMultipleOf = 1;
3174         }
3175         break;
3176       }
3177       LLVM_FALLTHROUGH;
3178     case PPC::XFSTOREf64:
3179       III.ImmOpcode = PPC::DFSTOREf64;
3180       break;
3181     }
3182     break;
3183   }
3184   return true;
3185 }
3186 
3187 // Utility function for swaping two arbitrary operands of an instruction.
3188 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3189   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3190 
3191   unsigned MaxOp = std::max(Op1, Op2);
3192   unsigned MinOp = std::min(Op1, Op2);
3193   MachineOperand MOp1 = MI.getOperand(MinOp);
3194   MachineOperand MOp2 = MI.getOperand(MaxOp);
3195   MI.RemoveOperand(std::max(Op1, Op2));
3196   MI.RemoveOperand(std::min(Op1, Op2));
3197 
3198   // If the operands we are swapping are the two at the end (the common case)
3199   // we can just remove both and add them in the opposite order.
3200   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3201     MI.addOperand(MOp2);
3202     MI.addOperand(MOp1);
3203   } else {
3204     // Store all operands in a temporary vector, remove them and re-add in the
3205     // right order.
3206     SmallVector<MachineOperand, 2> MOps;
3207     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3208     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3209       MOps.push_back(MI.getOperand(i));
3210       MI.RemoveOperand(i);
3211     }
3212     // MOp2 needs to be added next.
3213     MI.addOperand(MOp2);
3214     // Now add the rest.
3215     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3216       if (i == MaxOp)
3217         MI.addOperand(MOp1);
3218       else {
3219         MI.addOperand(MOps.back());
3220         MOps.pop_back();
3221       }
3222     }
3223   }
3224 }
3225 
3226 // Check if the 'MI' that has the index OpNoForForwarding
3227 // meets the requirement described in the ImmInstrInfo.
3228 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3229                                                const ImmInstrInfo &III,
3230                                                unsigned OpNoForForwarding
3231                                                ) const {
3232   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3233   // would not work pre-RA, we can only do the check post RA.
3234   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3235   if (MRI.isSSA())
3236     return false;
3237 
3238   // Cannot do the transform if MI isn't summing the operands.
3239   if (!III.IsSummingOperands)
3240     return false;
3241 
3242   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3243   if (!III.ZeroIsSpecialOrig)
3244     return false;
3245 
3246   // We cannot do the transform if the operand we are trying to replace
3247   // isn't the same as the operand the instruction allows.
3248   if (OpNoForForwarding != III.OpNoForForwarding)
3249     return false;
3250 
3251   // Check if the instruction we are trying to transform really has
3252   // the special zero register as its operand.
3253   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3254       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3255     return false;
3256 
3257   // This machine instruction is convertible if it is,
3258   // 1. summing the operands.
3259   // 2. one of the operands is special zero register.
3260   // 3. the operand we are trying to replace is allowed by the MI.
3261   return true;
3262 }
3263 
3264 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3265 // accordingly.
3266 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3267                                                const ImmInstrInfo &III,
3268                                                MachineOperand *&ImmMO,
3269                                                MachineOperand *&RegMO) const {
3270   unsigned Opc = DefMI.getOpcode();
3271   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3272     return false;
3273 
3274   assert(DefMI.getNumOperands() >= 3 &&
3275          "Add inst must have at least three operands");
3276   RegMO = &DefMI.getOperand(1);
3277   ImmMO = &DefMI.getOperand(2);
3278 
3279   // This DefMI is elgible for forwarding if it is:
3280   // 1. add inst
3281   // 2. one of the operands is Imm/CPI/Global.
3282   return isAnImmediateOperand(*ImmMO);
3283 }
3284 
3285 bool PPCInstrInfo::isRegElgibleForForwarding(
3286     const MachineOperand &RegMO, const MachineInstr &DefMI,
3287     const MachineInstr &MI, bool KillDefMI,
3288     bool &IsFwdFeederRegKilled) const {
3289   // x = addi y, imm
3290   // ...
3291   // z = lfdx 0, x   -> z = lfd imm(y)
3292   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3293   // of "y" between the DEF of "x" and "z".
3294   // The query is only valid post RA.
3295   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3296   if (MRI.isSSA())
3297     return false;
3298 
3299   Register Reg = RegMO.getReg();
3300 
3301   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3302   MachineBasicBlock::const_reverse_iterator It = MI;
3303   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3304   It++;
3305   for (; It != E; ++It) {
3306     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3307       return false;
3308     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3309       IsFwdFeederRegKilled = true;
3310     // Made it to DefMI without encountering a clobber.
3311     if ((&*It) == &DefMI)
3312       break;
3313   }
3314   assert((&*It) == &DefMI && "DefMI is missing");
3315 
3316   // If DefMI also defines the register to be forwarded, we can only forward it
3317   // if DefMI is being erased.
3318   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3319     return KillDefMI;
3320 
3321   return true;
3322 }
3323 
3324 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3325                                              const MachineInstr &DefMI,
3326                                              const ImmInstrInfo &III,
3327                                              int64_t &Imm) const {
3328   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3329   if (DefMI.getOpcode() == PPC::ADDItocL) {
3330     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3331     // However, we know that, it is 16-bit width, and has the alignment of 4.
3332     // Check if the instruction met the requirement.
3333     if (III.ImmMustBeMultipleOf > 4 ||
3334        III.TruncateImmTo || III.ImmWidth != 16)
3335       return false;
3336 
3337     // Going from XForm to DForm loads means that the displacement needs to be
3338     // not just an immediate but also a multiple of 4, or 16 depending on the
3339     // load. A DForm load cannot be represented if it is a multiple of say 2.
3340     // XForm loads do not have this restriction.
3341     if (ImmMO.isGlobal() &&
3342         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3343       return false;
3344 
3345     return true;
3346   }
3347 
3348   if (ImmMO.isImm()) {
3349     // It is Imm, we need to check if the Imm fit the range.
3350     int64_t Immediate = ImmMO.getImm();
3351     // Sign-extend to 64-bits.
3352     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3353       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3354 
3355     if (Imm % III.ImmMustBeMultipleOf)
3356       return false;
3357     if (III.TruncateImmTo)
3358       Imm &= ((1 << III.TruncateImmTo) - 1);
3359     if (III.SignedImm) {
3360       APInt ActualValue(64, Imm, true);
3361       if (!ActualValue.isSignedIntN(III.ImmWidth))
3362         return false;
3363     } else {
3364       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3365       if ((uint64_t)Imm > UnsignedMax)
3366         return false;
3367     }
3368   }
3369   else
3370     return false;
3371 
3372   // This ImmMO is forwarded if it meets the requriement describle
3373   // in ImmInstrInfo
3374   return true;
3375 }
3376 
3377 // If an X-Form instruction is fed by an add-immediate and one of its operands
3378 // is the literal zero, attempt to forward the source of the add-immediate to
3379 // the corresponding D-Form instruction with the displacement coming from
3380 // the immediate being added.
3381 bool PPCInstrInfo::transformToImmFormFedByAdd(
3382     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3383     MachineInstr &DefMI, bool KillDefMI) const {
3384   //         RegMO ImmMO
3385   //           |    |
3386   // x = addi reg, imm  <----- DefMI
3387   // y = op    0 ,  x   <----- MI
3388   //                |
3389   //         OpNoForForwarding
3390   // Check if the MI meet the requirement described in the III.
3391   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3392     return false;
3393 
3394   // Check if the DefMI meet the requirement
3395   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3396   MachineOperand *ImmMO = nullptr;
3397   MachineOperand *RegMO = nullptr;
3398   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3399     return false;
3400   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3401 
3402   // As we get the Imm operand now, we need to check if the ImmMO meet
3403   // the requirement described in the III. If yes set the Imm.
3404   int64_t Imm = 0;
3405   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3406     return false;
3407 
3408   bool IsFwdFeederRegKilled = false;
3409   // Check if the RegMO can be forwarded to MI.
3410   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3411                                  IsFwdFeederRegKilled))
3412     return false;
3413 
3414   // Get killed info in case fixup needed after transformation.
3415   unsigned ForwardKilledOperandReg = ~0U;
3416   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3417   bool PostRA = !MRI.isSSA();
3418   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3419     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3420 
3421   // We know that, the MI and DefMI both meet the pattern, and
3422   // the Imm also meet the requirement with the new Imm-form.
3423   // It is safe to do the transformation now.
3424   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3425   LLVM_DEBUG(MI.dump());
3426   LLVM_DEBUG(dbgs() << "Fed by:\n");
3427   LLVM_DEBUG(DefMI.dump());
3428 
3429   // Update the base reg first.
3430   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3431                                                         false, false,
3432                                                         RegMO->isKill());
3433 
3434   // Then, update the imm.
3435   if (ImmMO->isImm()) {
3436     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3437     // directly.
3438     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3439   }
3440   else {
3441     // Otherwise, it is Constant Pool Index(CPI) or Global,
3442     // which is relocation in fact. We need to replace the special zero
3443     // register with ImmMO.
3444     // Before that, we need to fixup the target flags for imm.
3445     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3446     if (DefMI.getOpcode() == PPC::ADDItocL)
3447       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3448 
3449     // MI didn't have the interface such as MI.setOperand(i) though
3450     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3451     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3452     // and, add the ImmMO, then, move back all the operands behind ZERO.
3453     SmallVector<MachineOperand, 2> MOps;
3454     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3455       MOps.push_back(MI.getOperand(i));
3456       MI.RemoveOperand(i);
3457     }
3458 
3459     // Remove the last MO in the list, which is ZERO operand in fact.
3460     MOps.pop_back();
3461     // Add the imm operand.
3462     MI.addOperand(*ImmMO);
3463     // Now add the rest back.
3464     for (auto &MO : MOps)
3465       MI.addOperand(MO);
3466   }
3467 
3468   // Update the opcode.
3469   MI.setDesc(get(III.ImmOpcode));
3470 
3471   // Fix up killed/dead flag after transformation.
3472   // Pattern 1:
3473   // x = ADD KilledFwdFeederReg, imm
3474   // n = opn KilledFwdFeederReg(killed), regn
3475   // y = XOP 0, x
3476   // Pattern 2:
3477   // x = ADD reg(killed), imm
3478   // y = XOP 0, x
3479   if (IsFwdFeederRegKilled || RegMO->isKill())
3480     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3481   // Pattern 3:
3482   // ForwardKilledOperandReg = ADD reg, imm
3483   // y = XOP 0, ForwardKilledOperandReg(killed)
3484   if (ForwardKilledOperandReg != ~0U)
3485     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3486 
3487   LLVM_DEBUG(dbgs() << "With:\n");
3488   LLVM_DEBUG(MI.dump());
3489 
3490   return true;
3491 }
3492 
3493 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3494                                              const ImmInstrInfo &III,
3495                                              unsigned ConstantOpNo,
3496                                              MachineInstr &DefMI,
3497                                              int64_t Imm) const {
3498   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3499   bool PostRA = !MRI.isSSA();
3500   // Exit early if we can't convert this.
3501   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3502     return false;
3503   if (Imm % III.ImmMustBeMultipleOf)
3504     return false;
3505   if (III.TruncateImmTo)
3506     Imm &= ((1 << III.TruncateImmTo) - 1);
3507   if (III.SignedImm) {
3508     APInt ActualValue(64, Imm, true);
3509     if (!ActualValue.isSignedIntN(III.ImmWidth))
3510       return false;
3511   } else {
3512     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3513     if ((uint64_t)Imm > UnsignedMax)
3514       return false;
3515   }
3516 
3517   // If we're post-RA, the instructions don't agree on whether register zero is
3518   // special, we can transform this as long as the register operand that will
3519   // end up in the location where zero is special isn't R0.
3520   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3521     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3522       III.ZeroIsSpecialNew + 1;
3523     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3524     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3525     // If R0 is in the operand where zero is special for the new instruction,
3526     // it is unsafe to transform if the constant operand isn't that operand.
3527     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3528         ConstantOpNo != III.ZeroIsSpecialNew)
3529       return false;
3530     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3531         ConstantOpNo != PosForOrigZero)
3532       return false;
3533   }
3534 
3535   // Get killed info in case fixup needed after transformation.
3536   unsigned ForwardKilledOperandReg = ~0U;
3537   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3538     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3539 
3540   unsigned Opc = MI.getOpcode();
3541   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLWo ||
3542                         Opc == PPC::SRW || Opc == PPC::SRWo ||
3543                         Opc == PPC::SLW8 || Opc == PPC::SLW8o ||
3544                         Opc == PPC::SRW8 || Opc == PPC::SRW8o;
3545   bool SpecialShift64 =
3546     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3547   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3548     Opc == PPC::SLDo || Opc == PPC::SRDo;
3549   bool RightShift =
3550     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3551 
3552   MI.setDesc(get(III.ImmOpcode));
3553   if (ConstantOpNo == III.OpNoForForwarding) {
3554     // Converting shifts to immediate form is a bit tricky since they may do
3555     // one of three things:
3556     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3557     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3558     //    setting CR0)
3559     // 3. If the shift amount is in [1, OpSize), it's just a shift
3560     if (SpecialShift32 || SpecialShift64) {
3561       LoadImmediateInfo LII;
3562       LII.Imm = 0;
3563       LII.SetCR = SetCR;
3564       LII.Is64Bit = SpecialShift64;
3565       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3566       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3567         replaceInstrWithLI(MI, LII);
3568       // Shifts by zero don't change the value. If we don't need to set CR0,
3569       // just convert this to a COPY. Can't do this post-RA since we've already
3570       // cleaned up the copies.
3571       else if (!SetCR && ShAmt == 0 && !PostRA) {
3572         MI.RemoveOperand(2);
3573         MI.setDesc(get(PPC::COPY));
3574       } else {
3575         // The 32 bit and 64 bit instructions are quite different.
3576         if (SpecialShift32) {
3577           // Left shifts use (N, 0, 31-N).
3578           // Right shifts use (32-N, N, 31) if 0 < N < 32.
3579           //              use (0, 0, 31)    if N == 0.
3580           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
3581           uint64_t MB = RightShift ? ShAmt : 0;
3582           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3583           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3584           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3585             .addImm(ME);
3586         } else {
3587           // Left shifts use (N, 63-N).
3588           // Right shifts use (64-N, N) if 0 < N < 64.
3589           //              use (0, 0)    if N == 0.
3590           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
3591           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3592           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3593           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3594         }
3595       }
3596     } else
3597       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3598   }
3599   // Convert commutative instructions (switch the operands and convert the
3600   // desired one to an immediate.
3601   else if (III.IsCommutative) {
3602     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3603     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3604   } else
3605     llvm_unreachable("Should have exited early!");
3606 
3607   // For instructions for which the constant register replaces a different
3608   // operand than where the immediate goes, we need to swap them.
3609   if (III.OpNoForForwarding != III.ImmOpNo)
3610     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3611 
3612   // If the special R0/X0 register index are different for original instruction
3613   // and new instruction, we need to fix up the register class in new
3614   // instruction.
3615   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3616     if (III.ZeroIsSpecialNew) {
3617       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3618       // need to fix up register class.
3619       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3620       if (Register::isVirtualRegister(RegToModify)) {
3621         const TargetRegisterClass *NewRC =
3622           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3623           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3624         MRI.setRegClass(RegToModify, NewRC);
3625       }
3626     }
3627   }
3628 
3629   // Fix up killed/dead flag after transformation.
3630   // Pattern:
3631   // ForwardKilledOperandReg = LI imm
3632   // y = XOP reg, ForwardKilledOperandReg(killed)
3633   if (ForwardKilledOperandReg != ~0U)
3634     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3635   return true;
3636 }
3637 
3638 const TargetRegisterClass *
3639 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3640   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3641     return &PPC::VSRCRegClass;
3642   return RC;
3643 }
3644 
3645 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3646   return PPC::getRecordFormOpcode(Opcode);
3647 }
3648 
3649 // This function returns true if the machine instruction
3650 // always outputs a value by sign-extending a 32 bit value,
3651 // i.e. 0 to 31-th bits are same as 32-th bit.
3652 static bool isSignExtendingOp(const MachineInstr &MI) {
3653   int Opcode = MI.getOpcode();
3654   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3655       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3656       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3657       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3658       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3659       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3660       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3661       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3662       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3663       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3664       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3665       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3666       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3667       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3668       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3669       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3670       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3671       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3672       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3673       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3674       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3675       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3676       Opcode == PPC::EXTSB8_32_64)
3677     return true;
3678 
3679   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3680     return true;
3681 
3682   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3683        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3684       MI.getOperand(3).getImm() > 0 &&
3685       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3686     return true;
3687 
3688   return false;
3689 }
3690 
3691 // This function returns true if the machine instruction
3692 // always outputs zeros in higher 32 bits.
3693 static bool isZeroExtendingOp(const MachineInstr &MI) {
3694   int Opcode = MI.getOpcode();
3695   // The 16-bit immediate is sign-extended in li/lis.
3696   // If the most significant bit is zero, all higher bits are zero.
3697   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3698       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3699     int64_t Imm = MI.getOperand(1).getImm();
3700     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3701       return true;
3702   }
3703 
3704   // We have some variations of rotate-and-mask instructions
3705   // that clear higher 32-bits.
3706   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3707        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3708        Opcode == PPC::RLDICL_32_64) &&
3709       MI.getOperand(3).getImm() >= 32)
3710     return true;
3711 
3712   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3713       MI.getOperand(3).getImm() >= 32 &&
3714       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3715     return true;
3716 
3717   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3718        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3719        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3720       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3721     return true;
3722 
3723   // There are other instructions that clear higher 32-bits.
3724   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3725       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3726       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3727       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3728       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3729       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3730       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3731       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3732       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3733       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3734       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3735       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3736       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3737       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3738       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3739       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3740       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3741       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3742       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3743       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3744       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3745       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3746       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3747       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3748       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3749       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3750       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3751       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3752       Opcode == PPC::MFVSRWZ)
3753     return true;
3754 
3755   return false;
3756 }
3757 
3758 // This function returns true if the input MachineInstr is a TOC save
3759 // instruction.
3760 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3761   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3762     return false;
3763   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3764   unsigned StackOffset = MI.getOperand(1).getImm();
3765   Register StackReg = MI.getOperand(2).getReg();
3766   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3767     return true;
3768 
3769   return false;
3770 }
3771 
3772 // We limit the max depth to track incoming values of PHIs or binary ops
3773 // (e.g. AND) to avoid excessive cost.
3774 const unsigned MAX_DEPTH = 1;
3775 
3776 bool
3777 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3778                                    const unsigned Depth) const {
3779   const MachineFunction *MF = MI.getParent()->getParent();
3780   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3781 
3782   // If we know this instruction returns sign- or zero-extended result,
3783   // return true.
3784   if (SignExt ? isSignExtendingOp(MI):
3785                 isZeroExtendingOp(MI))
3786     return true;
3787 
3788   switch (MI.getOpcode()) {
3789   case PPC::COPY: {
3790     Register SrcReg = MI.getOperand(1).getReg();
3791 
3792     // In both ELFv1 and v2 ABI, method parameters and the return value
3793     // are sign- or zero-extended.
3794     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3795       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3796       // We check the ZExt/SExt flags for a method parameter.
3797       if (MI.getParent()->getBasicBlock() ==
3798           &MF->getFunction().getEntryBlock()) {
3799         Register VReg = MI.getOperand(0).getReg();
3800         if (MF->getRegInfo().isLiveIn(VReg))
3801           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3802                            FuncInfo->isLiveInZExt(VReg);
3803       }
3804 
3805       // For a method return value, we check the ZExt/SExt flags in attribute.
3806       // We assume the following code sequence for method call.
3807       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3808       //   BL8_NOP @func,...
3809       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3810       //   %5 = COPY %x3; G8RC:%5
3811       if (SrcReg == PPC::X3) {
3812         const MachineBasicBlock *MBB = MI.getParent();
3813         MachineBasicBlock::const_instr_iterator II =
3814           MachineBasicBlock::const_instr_iterator(&MI);
3815         if (II != MBB->instr_begin() &&
3816             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3817           const MachineInstr &CallMI = *(--II);
3818           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3819             const Function *CalleeFn =
3820               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3821             if (!CalleeFn)
3822               return false;
3823             const IntegerType *IntTy =
3824               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3825             const AttributeSet &Attrs =
3826               CalleeFn->getAttributes().getRetAttributes();
3827             if (IntTy && IntTy->getBitWidth() <= 32)
3828               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3829                                                   Attribute::ZExt);
3830           }
3831         }
3832       }
3833     }
3834 
3835     // If this is a copy from another register, we recursively check source.
3836     if (!Register::isVirtualRegister(SrcReg))
3837       return false;
3838     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3839     if (SrcMI != NULL)
3840       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3841 
3842     return false;
3843   }
3844 
3845   case PPC::ANDIo:
3846   case PPC::ANDISo:
3847   case PPC::ORI:
3848   case PPC::ORIS:
3849   case PPC::XORI:
3850   case PPC::XORIS:
3851   case PPC::ANDIo8:
3852   case PPC::ANDISo8:
3853   case PPC::ORI8:
3854   case PPC::ORIS8:
3855   case PPC::XORI8:
3856   case PPC::XORIS8: {
3857     // logical operation with 16-bit immediate does not change the upper bits.
3858     // So, we track the operand register as we do for register copy.
3859     Register SrcReg = MI.getOperand(1).getReg();
3860     if (!Register::isVirtualRegister(SrcReg))
3861       return false;
3862     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3863     if (SrcMI != NULL)
3864       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3865 
3866     return false;
3867   }
3868 
3869   // If all incoming values are sign-/zero-extended,
3870   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3871   case PPC::OR:
3872   case PPC::OR8:
3873   case PPC::ISEL:
3874   case PPC::PHI: {
3875     if (Depth >= MAX_DEPTH)
3876       return false;
3877 
3878     // The input registers for PHI are operand 1, 3, ...
3879     // The input registers for others are operand 1 and 2.
3880     unsigned E = 3, D = 1;
3881     if (MI.getOpcode() == PPC::PHI) {
3882       E = MI.getNumOperands();
3883       D = 2;
3884     }
3885 
3886     for (unsigned I = 1; I != E; I += D) {
3887       if (MI.getOperand(I).isReg()) {
3888         Register SrcReg = MI.getOperand(I).getReg();
3889         if (!Register::isVirtualRegister(SrcReg))
3890           return false;
3891         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3892         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3893           return false;
3894       }
3895       else
3896         return false;
3897     }
3898     return true;
3899   }
3900 
3901   // If at least one of the incoming values of an AND is zero extended
3902   // then the output is also zero-extended. If both of the incoming values
3903   // are sign-extended then the output is also sign extended.
3904   case PPC::AND:
3905   case PPC::AND8: {
3906     if (Depth >= MAX_DEPTH)
3907        return false;
3908 
3909     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3910 
3911     Register SrcReg1 = MI.getOperand(1).getReg();
3912     Register SrcReg2 = MI.getOperand(2).getReg();
3913 
3914     if (!Register::isVirtualRegister(SrcReg1) ||
3915         !Register::isVirtualRegister(SrcReg2))
3916       return false;
3917 
3918     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3919     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3920     if (!MISrc1 || !MISrc2)
3921         return false;
3922 
3923     if(SignExt)
3924         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3925                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3926     else
3927         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3928                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3929   }
3930 
3931   default:
3932     break;
3933   }
3934   return false;
3935 }
3936 
3937 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3938   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3939 }
3940 
3941 namespace {
3942 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
3943   MachineInstr *Loop, *EndLoop, *LoopCount;
3944   MachineFunction *MF;
3945   const TargetInstrInfo *TII;
3946   int64_t TripCount;
3947 
3948 public:
3949   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
3950                        MachineInstr *LoopCount)
3951       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
3952         MF(Loop->getParent()->getParent()),
3953         TII(MF->getSubtarget().getInstrInfo()) {
3954     // Inspect the Loop instruction up-front, as it may be deleted when we call
3955     // createTripCountGreaterCondition.
3956     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
3957       TripCount = LoopCount->getOperand(1).getImm();
3958     else
3959       TripCount = -1;
3960   }
3961 
3962   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
3963     // Only ignore the terminator.
3964     return MI == EndLoop;
3965   }
3966 
3967   Optional<bool>
3968   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
3969                                   SmallVectorImpl<MachineOperand> &Cond) override {
3970     if (TripCount == -1) {
3971       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3972       // so we don't need to generate any thing here.
3973       Cond.push_back(MachineOperand::CreateImm(0));
3974       Cond.push_back(MachineOperand::CreateReg(
3975           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
3976           true));
3977       return {};
3978     }
3979 
3980     return TripCount > TC;
3981   }
3982 
3983   void setPreheader(MachineBasicBlock *NewPreheader) override {
3984     // Do nothing. We want the LOOP setup instruction to stay in the *old*
3985     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
3986   }
3987 
3988   void adjustTripCount(int TripCountAdjust) override {
3989     // If the loop trip count is a compile-time value, then just change the
3990     // value.
3991     if (LoopCount->getOpcode() == PPC::LI8 ||
3992         LoopCount->getOpcode() == PPC::LI) {
3993       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
3994       LoopCount->getOperand(1).setImm(TripCount);
3995       return;
3996     }
3997 
3998     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3999     // so we don't need to generate any thing here.
4000   }
4001 
4002   void disposed() override {
4003     Loop->eraseFromParent();
4004     // Ensure the loop setup instruction is deleted too.
4005     LoopCount->eraseFromParent();
4006   }
4007 };
4008 } // namespace
4009 
4010 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4011 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4012   // We really "analyze" only hardware loops right now.
4013   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4014   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4015   if (Preheader == LoopBB)
4016     Preheader = *std::next(LoopBB->pred_begin());
4017   MachineFunction *MF = Preheader->getParent();
4018 
4019   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4020     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4021     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4022       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4023       MachineRegisterInfo &MRI = MF->getRegInfo();
4024       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4025       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4026     }
4027   }
4028   return nullptr;
4029 }
4030 
4031 MachineInstr *PPCInstrInfo::findLoopInstr(
4032     MachineBasicBlock &PreHeader,
4033     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4034 
4035   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4036 
4037   // The loop set-up instruction should be in preheader
4038   for (auto &I : PreHeader.instrs())
4039     if (I.getOpcode() == LOOPi)
4040       return &I;
4041   return nullptr;
4042 }
4043 
4044 // Return true if get the base operand, byte offset of an instruction and the
4045 // memory width. Width is the size of memory that is being loaded/stored.
4046 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4047   const MachineInstr &LdSt,
4048   const MachineOperand *&BaseReg,
4049   int64_t &Offset,
4050   unsigned &Width,
4051   const TargetRegisterInfo *TRI) const {
4052   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4053 
4054   // Handle only loads/stores with base register followed by immediate offset.
4055   if (LdSt.getNumExplicitOperands() != 3)
4056     return false;
4057   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4058     return false;
4059 
4060   if (!LdSt.hasOneMemOperand())
4061     return false;
4062 
4063   Width = (*LdSt.memoperands_begin())->getSize();
4064   Offset = LdSt.getOperand(1).getImm();
4065   BaseReg = &LdSt.getOperand(2);
4066   return true;
4067 }
4068 
4069 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4070     const MachineInstr &MIa, const MachineInstr &MIb) const {
4071   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4072   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4073 
4074   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4075       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4076     return false;
4077 
4078   // Retrieve the base register, offset from the base register and width. Width
4079   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4080   // base registers are identical, and the offset of a lower memory access +
4081   // the width doesn't overlap the offset of a higher memory access,
4082   // then the memory accesses are different.
4083   const TargetRegisterInfo *TRI = &getRegisterInfo();
4084   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4085   int64_t OffsetA = 0, OffsetB = 0;
4086   unsigned int WidthA = 0, WidthB = 0;
4087   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4088       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4089     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4090       int LowOffset = std::min(OffsetA, OffsetB);
4091       int HighOffset = std::max(OffsetA, OffsetB);
4092       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4093       if (LowOffset + LowWidth <= HighOffset)
4094         return true;
4095     }
4096   }
4097   return false;
4098 }
4099