1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getDarwinDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDIStocHA8: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::XXLEQVOnes: 339 case PPC::V_SET0B: 340 case PPC::V_SET0H: 341 case PPC::V_SET0: 342 case PPC::V_SETALLONESB: 343 case PPC::V_SETALLONESH: 344 case PPC::V_SETALLONES: 345 case PPC::CRSET: 346 case PPC::CRUNSET: 347 return true; 348 } 349 return false; 350 } 351 352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 unsigned Opcode = MI.getOpcode(); 355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 357 358 if (End != std::find(OpcodesForSpill, End, Opcode)) { 359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 360 MI.getOperand(2).isFI()) { 361 FrameIndex = MI.getOperand(2).getIndex(); 362 return MI.getOperand(0).getReg(); 363 } 364 } 365 return 0; 366 } 367 368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 369 unsigned OpIdx1, 370 unsigned OpIdx2) const { 371 MachineFunction &MF = *MI.getParent()->getParent(); 372 373 // Normal instructions can be commuted the obvious way. 374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 378 // changing the relative order of the mask operands might change what happens 379 // to the high-bits of the mask (and, thus, the result). 380 381 // Cannot commute if it has a non-zero rotate count. 382 if (MI.getOperand(3).getImm() != 0) 383 return nullptr; 384 385 // If we have a zero rotate count, we have: 386 // M = mask(MB,ME) 387 // Op0 = (Op1 & ~M) | (Op2 & M) 388 // Change this to: 389 // M = mask((ME+1)&31, (MB-1)&31) 390 // Op0 = (Op2 & ~M) | (Op1 & M) 391 392 // Swap op1/op2 393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 395 Register Reg0 = MI.getOperand(0).getReg(); 396 Register Reg1 = MI.getOperand(1).getReg(); 397 Register Reg2 = MI.getOperand(2).getReg(); 398 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 399 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 400 bool Reg1IsKill = MI.getOperand(1).isKill(); 401 bool Reg2IsKill = MI.getOperand(2).isKill(); 402 bool ChangeReg0 = false; 403 // If machine instrs are no longer in two-address forms, update 404 // destination register as well. 405 if (Reg0 == Reg1) { 406 // Must be two address instruction! 407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 408 "Expecting a two-address instruction!"); 409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 410 Reg2IsKill = false; 411 ChangeReg0 = true; 412 } 413 414 // Masks. 415 unsigned MB = MI.getOperand(4).getImm(); 416 unsigned ME = MI.getOperand(5).getImm(); 417 418 // We can't commute a trivial mask (there is no way to represent an all-zero 419 // mask). 420 if (MB == 0 && ME == 31) 421 return nullptr; 422 423 if (NewMI) { 424 // Create a new instruction. 425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 426 bool Reg0IsDead = MI.getOperand(0).isDead(); 427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 429 .addReg(Reg2, getKillRegState(Reg2IsKill)) 430 .addReg(Reg1, getKillRegState(Reg1IsKill)) 431 .addImm((ME + 1) & 31) 432 .addImm((MB - 1) & 31); 433 } 434 435 if (ChangeReg0) { 436 MI.getOperand(0).setReg(Reg2); 437 MI.getOperand(0).setSubReg(SubReg2); 438 } 439 MI.getOperand(2).setReg(Reg1); 440 MI.getOperand(1).setReg(Reg2); 441 MI.getOperand(2).setSubReg(SubReg1); 442 MI.getOperand(1).setSubReg(SubReg2); 443 MI.getOperand(2).setIsKill(Reg1IsKill); 444 MI.getOperand(1).setIsKill(Reg2IsKill); 445 446 // Swap the mask around. 447 MI.getOperand(4).setImm((ME + 1) & 31); 448 MI.getOperand(5).setImm((MB - 1) & 31); 449 return &MI; 450 } 451 452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 453 unsigned &SrcOpIdx1, 454 unsigned &SrcOpIdx2) const { 455 // For VSX A-Type FMA instructions, it is the first two operands that can be 456 // commuted, however, because the non-encoded tied input operand is listed 457 // first, the operands to swap are actually the second and third. 458 459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 460 if (AltOpc == -1) 461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 462 463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 464 // and SrcOpIdx2. 465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 466 } 467 468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 469 MachineBasicBlock::iterator MI) const { 470 // This function is used for scheduling, and the nop wanted here is the type 471 // that terminates dispatch groups on the POWER cores. 472 unsigned Directive = Subtarget.getDarwinDirective(); 473 unsigned Opcode; 474 switch (Directive) { 475 default: Opcode = PPC::NOP; break; 476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 479 // FIXME: Update when POWER9 scheduling model is ready. 480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 481 } 482 483 DebugLoc DL; 484 BuildMI(MBB, MI, DL, get(Opcode)); 485 } 486 487 /// Return the noop instruction to use for a noop. 488 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 489 NopInst.setOpcode(PPC::NOP); 490 } 491 492 // Branch analysis. 493 // Note: If the condition register is set to CTR or CTR8 then this is a 494 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 496 MachineBasicBlock *&TBB, 497 MachineBasicBlock *&FBB, 498 SmallVectorImpl<MachineOperand> &Cond, 499 bool AllowModify) const { 500 bool isPPC64 = Subtarget.isPPC64(); 501 502 // If the block has no terminators, it just falls into the block after it. 503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 504 if (I == MBB.end()) 505 return false; 506 507 if (!isUnpredicatedTerminator(*I)) 508 return false; 509 510 if (AllowModify) { 511 // If the BB ends with an unconditional branch to the fallthrough BB, 512 // we eliminate the branch instruction. 513 if (I->getOpcode() == PPC::B && 514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 515 I->eraseFromParent(); 516 517 // We update iterator after deleting the last branch. 518 I = MBB.getLastNonDebugInstr(); 519 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 520 return false; 521 } 522 } 523 524 // Get the last instruction in the block. 525 MachineInstr &LastInst = *I; 526 527 // If there is only one terminator instruction, process it. 528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 529 if (LastInst.getOpcode() == PPC::B) { 530 if (!LastInst.getOperand(0).isMBB()) 531 return true; 532 TBB = LastInst.getOperand(0).getMBB(); 533 return false; 534 } else if (LastInst.getOpcode() == PPC::BCC) { 535 if (!LastInst.getOperand(2).isMBB()) 536 return true; 537 // Block ends with fall-through condbranch. 538 TBB = LastInst.getOperand(2).getMBB(); 539 Cond.push_back(LastInst.getOperand(0)); 540 Cond.push_back(LastInst.getOperand(1)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BC) { 543 if (!LastInst.getOperand(1).isMBB()) 544 return true; 545 // Block ends with fall-through condbranch. 546 TBB = LastInst.getOperand(1).getMBB(); 547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 548 Cond.push_back(LastInst.getOperand(0)); 549 return false; 550 } else if (LastInst.getOpcode() == PPC::BCn) { 551 if (!LastInst.getOperand(1).isMBB()) 552 return true; 553 // Block ends with fall-through condbranch. 554 TBB = LastInst.getOperand(1).getMBB(); 555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 556 Cond.push_back(LastInst.getOperand(0)); 557 return false; 558 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 559 LastInst.getOpcode() == PPC::BDNZ) { 560 if (!LastInst.getOperand(0).isMBB()) 561 return true; 562 if (DisableCTRLoopAnal) 563 return true; 564 TBB = LastInst.getOperand(0).getMBB(); 565 Cond.push_back(MachineOperand::CreateImm(1)); 566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 567 true)); 568 return false; 569 } else if (LastInst.getOpcode() == PPC::BDZ8 || 570 LastInst.getOpcode() == PPC::BDZ) { 571 if (!LastInst.getOperand(0).isMBB()) 572 return true; 573 if (DisableCTRLoopAnal) 574 return true; 575 TBB = LastInst.getOperand(0).getMBB(); 576 Cond.push_back(MachineOperand::CreateImm(0)); 577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 578 true)); 579 return false; 580 } 581 582 // Otherwise, don't know what this is. 583 return true; 584 } 585 586 // Get the instruction before it if it's a terminator. 587 MachineInstr &SecondLastInst = *I; 588 589 // If there are three terminators, we don't know what sort of block this is. 590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 591 return true; 592 593 // If the block ends with PPC::B and PPC:BCC, handle it. 594 if (SecondLastInst.getOpcode() == PPC::BCC && 595 LastInst.getOpcode() == PPC::B) { 596 if (!SecondLastInst.getOperand(2).isMBB() || 597 !LastInst.getOperand(0).isMBB()) 598 return true; 599 TBB = SecondLastInst.getOperand(2).getMBB(); 600 Cond.push_back(SecondLastInst.getOperand(0)); 601 Cond.push_back(SecondLastInst.getOperand(1)); 602 FBB = LastInst.getOperand(0).getMBB(); 603 return false; 604 } else if (SecondLastInst.getOpcode() == PPC::BC && 605 LastInst.getOpcode() == PPC::B) { 606 if (!SecondLastInst.getOperand(1).isMBB() || 607 !LastInst.getOperand(0).isMBB()) 608 return true; 609 TBB = SecondLastInst.getOperand(1).getMBB(); 610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 611 Cond.push_back(SecondLastInst.getOperand(0)); 612 FBB = LastInst.getOperand(0).getMBB(); 613 return false; 614 } else if (SecondLastInst.getOpcode() == PPC::BCn && 615 LastInst.getOpcode() == PPC::B) { 616 if (!SecondLastInst.getOperand(1).isMBB() || 617 !LastInst.getOperand(0).isMBB()) 618 return true; 619 TBB = SecondLastInst.getOperand(1).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 621 Cond.push_back(SecondLastInst.getOperand(0)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 625 SecondLastInst.getOpcode() == PPC::BDNZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(1)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 639 SecondLastInst.getOpcode() == PPC::BDZ) && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(0).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 if (DisableCTRLoopAnal) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 Cond.push_back(MachineOperand::CreateImm(0)); 648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 649 true)); 650 FBB = LastInst.getOperand(0).getMBB(); 651 return false; 652 } 653 654 // If the block ends with two PPC:Bs, handle it. The second one is not 655 // executed, so remove it. 656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 657 if (!SecondLastInst.getOperand(0).isMBB()) 658 return true; 659 TBB = SecondLastInst.getOperand(0).getMBB(); 660 I = LastInst; 661 if (AllowModify) 662 I->eraseFromParent(); 663 return false; 664 } 665 666 // Otherwise, can't handle this. 667 return true; 668 } 669 670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 671 int *BytesRemoved) const { 672 assert(!BytesRemoved && "code size not handled"); 673 674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 675 if (I == MBB.end()) 676 return 0; 677 678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 0; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 687 I = MBB.end(); 688 689 if (I == MBB.begin()) return 1; 690 --I; 691 if (I->getOpcode() != PPC::BCC && 692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 695 return 1; 696 697 // Remove the branch. 698 I->eraseFromParent(); 699 return 2; 700 } 701 702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 703 MachineBasicBlock *TBB, 704 MachineBasicBlock *FBB, 705 ArrayRef<MachineOperand> Cond, 706 const DebugLoc &DL, 707 int *BytesAdded) const { 708 // Shouldn't be a fall through. 709 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 710 assert((Cond.size() == 2 || Cond.size() == 0) && 711 "PPC branch conditions have two components!"); 712 assert(!BytesAdded && "code size not handled"); 713 714 bool isPPC64 = Subtarget.isPPC64(); 715 716 // One-way branch. 717 if (!FBB) { 718 if (Cond.empty()) // Unconditional branch 719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 721 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 728 else // Conditional branch 729 BuildMI(&MBB, DL, get(PPC::BCC)) 730 .addImm(Cond[0].getImm()) 731 .add(Cond[1]) 732 .addMBB(TBB); 733 return 1; 734 } 735 736 // Two-way Conditional Branch. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 745 else 746 BuildMI(&MBB, DL, get(PPC::BCC)) 747 .addImm(Cond[0].getImm()) 748 .add(Cond[1]) 749 .addMBB(TBB); 750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 751 return 2; 752 } 753 754 // Select analysis. 755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 756 ArrayRef<MachineOperand> Cond, 757 unsigned TrueReg, unsigned FalseReg, 758 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 759 if (Cond.size() != 2) 760 return false; 761 762 // If this is really a bdnz-like condition, then it cannot be turned into a 763 // select. 764 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 765 return false; 766 767 // Check register classes. 768 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 769 const TargetRegisterClass *RC = 770 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 771 if (!RC) 772 return false; 773 774 // isel is for regular integer GPRs only. 775 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 776 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 777 !PPC::G8RCRegClass.hasSubClassEq(RC) && 778 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 779 return false; 780 781 // FIXME: These numbers are for the A2, how well they work for other cores is 782 // an open question. On the A2, the isel instruction has a 2-cycle latency 783 // but single-cycle throughput. These numbers are used in combination with 784 // the MispredictPenalty setting from the active SchedMachineModel. 785 CondCycles = 1; 786 TrueCycles = 1; 787 FalseCycles = 1; 788 789 return true; 790 } 791 792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 793 MachineBasicBlock::iterator MI, 794 const DebugLoc &dl, unsigned DestReg, 795 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 796 unsigned FalseReg) const { 797 assert(Cond.size() == 2 && 798 "PPC branch conditions have two components!"); 799 800 // Get the register classes. 801 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 802 const TargetRegisterClass *RC = 803 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 804 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 805 806 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 807 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 808 assert((Is64Bit || 809 PPC::GPRCRegClass.hasSubClassEq(RC) || 810 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 811 "isel is for regular integer GPRs only"); 812 813 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 814 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 815 816 unsigned SubIdx = 0; 817 bool SwapOps = false; 818 switch (SelectPred) { 819 case PPC::PRED_EQ: 820 case PPC::PRED_EQ_MINUS: 821 case PPC::PRED_EQ_PLUS: 822 SubIdx = PPC::sub_eq; SwapOps = false; break; 823 case PPC::PRED_NE: 824 case PPC::PRED_NE_MINUS: 825 case PPC::PRED_NE_PLUS: 826 SubIdx = PPC::sub_eq; SwapOps = true; break; 827 case PPC::PRED_LT: 828 case PPC::PRED_LT_MINUS: 829 case PPC::PRED_LT_PLUS: 830 SubIdx = PPC::sub_lt; SwapOps = false; break; 831 case PPC::PRED_GE: 832 case PPC::PRED_GE_MINUS: 833 case PPC::PRED_GE_PLUS: 834 SubIdx = PPC::sub_lt; SwapOps = true; break; 835 case PPC::PRED_GT: 836 case PPC::PRED_GT_MINUS: 837 case PPC::PRED_GT_PLUS: 838 SubIdx = PPC::sub_gt; SwapOps = false; break; 839 case PPC::PRED_LE: 840 case PPC::PRED_LE_MINUS: 841 case PPC::PRED_LE_PLUS: 842 SubIdx = PPC::sub_gt; SwapOps = true; break; 843 case PPC::PRED_UN: 844 case PPC::PRED_UN_MINUS: 845 case PPC::PRED_UN_PLUS: 846 SubIdx = PPC::sub_un; SwapOps = false; break; 847 case PPC::PRED_NU: 848 case PPC::PRED_NU_MINUS: 849 case PPC::PRED_NU_PLUS: 850 SubIdx = PPC::sub_un; SwapOps = true; break; 851 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 852 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 853 } 854 855 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 856 SecondReg = SwapOps ? TrueReg : FalseReg; 857 858 // The first input register of isel cannot be r0. If it is a member 859 // of a register class that can be r0, then copy it first (the 860 // register allocator should eliminate the copy). 861 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 862 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 863 const TargetRegisterClass *FirstRC = 864 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 865 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 866 unsigned OldFirstReg = FirstReg; 867 FirstReg = MRI.createVirtualRegister(FirstRC); 868 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 869 .addReg(OldFirstReg); 870 } 871 872 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 873 .addReg(FirstReg).addReg(SecondReg) 874 .addReg(Cond[1].getReg(), 0, SubIdx); 875 } 876 877 static unsigned getCRBitValue(unsigned CRBit) { 878 unsigned Ret = 4; 879 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 880 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 881 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 882 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 883 Ret = 3; 884 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 885 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 886 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 887 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 888 Ret = 2; 889 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 890 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 891 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 892 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 893 Ret = 1; 894 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 895 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 896 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 897 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 898 Ret = 0; 899 900 assert(Ret != 4 && "Invalid CR bit register"); 901 return Ret; 902 } 903 904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 905 MachineBasicBlock::iterator I, 906 const DebugLoc &DL, unsigned DestReg, 907 unsigned SrcReg, bool KillSrc) const { 908 // We can end up with self copies and similar things as a result of VSX copy 909 // legalization. Promote them here. 910 const TargetRegisterInfo *TRI = &getRegisterInfo(); 911 if (PPC::F8RCRegClass.contains(DestReg) && 912 PPC::VSRCRegClass.contains(SrcReg)) { 913 unsigned SuperReg = 914 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 915 916 if (VSXSelfCopyCrash && SrcReg == SuperReg) 917 llvm_unreachable("nop VSX copy"); 918 919 DestReg = SuperReg; 920 } else if (PPC::F8RCRegClass.contains(SrcReg) && 921 PPC::VSRCRegClass.contains(DestReg)) { 922 unsigned SuperReg = 923 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 924 925 if (VSXSelfCopyCrash && DestReg == SuperReg) 926 llvm_unreachable("nop VSX copy"); 927 928 SrcReg = SuperReg; 929 } 930 931 // Different class register copy 932 if (PPC::CRBITRCRegClass.contains(SrcReg) && 933 PPC::GPRCRegClass.contains(DestReg)) { 934 unsigned CRReg = getCRFromCRBit(SrcReg); 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 936 getKillRegState(KillSrc); 937 // Rotate the CR bit in the CR fields to be the least significant bit and 938 // then mask with 0x1 (MB = ME = 31). 939 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 940 .addReg(DestReg, RegState::Kill) 941 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 942 .addImm(31) 943 .addImm(31); 944 return; 945 } else if (PPC::CRRCRegClass.contains(SrcReg) && 946 PPC::G8RCRegClass.contains(DestReg)) { 947 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 948 getKillRegState(KillSrc); 949 return; 950 } else if (PPC::CRRCRegClass.contains(SrcReg) && 951 PPC::GPRCRegClass.contains(DestReg)) { 952 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 953 getKillRegState(KillSrc); 954 return; 955 } else if (PPC::G8RCRegClass.contains(SrcReg) && 956 PPC::VSFRCRegClass.contains(DestReg)) { 957 assert(Subtarget.hasDirectMove() && 958 "Subtarget doesn't support directmove, don't know how to copy."); 959 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 960 NumGPRtoVSRSpill++; 961 getKillRegState(KillSrc); 962 return; 963 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 964 PPC::G8RCRegClass.contains(DestReg)) { 965 assert(Subtarget.hasDirectMove() && 966 "Subtarget doesn't support directmove, don't know how to copy."); 967 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 968 getKillRegState(KillSrc); 969 return; 970 } else if (PPC::SPERCRegClass.contains(SrcReg) && 971 PPC::GPRCRegClass.contains(DestReg)) { 972 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 973 getKillRegState(KillSrc); 974 return; 975 } else if (PPC::GPRCRegClass.contains(SrcReg) && 976 PPC::SPERCRegClass.contains(DestReg)) { 977 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 978 getKillRegState(KillSrc); 979 return; 980 } 981 982 unsigned Opc; 983 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::OR; 985 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::OR8; 987 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::FMR; 989 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 990 Opc = PPC::MCRF; 991 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 992 Opc = PPC::VOR; 993 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 994 // There are two different ways this can be done: 995 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 996 // issue in VSU pipeline 0. 997 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 998 // can go to either pipeline. 999 // We'll always use xxlor here, because in practically all cases where 1000 // copies are generated, they are close enough to some use that the 1001 // lower-latency form is preferable. 1002 Opc = PPC::XXLOR; 1003 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1004 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1006 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMR; 1008 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::QVFMRs; 1010 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::QVFMRb; 1012 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1013 Opc = PPC::CROR; 1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1015 Opc = PPC::EVOR; 1016 else 1017 llvm_unreachable("Impossible reg-to-reg copy"); 1018 1019 const MCInstrDesc &MCID = get(Opc); 1020 if (MCID.getNumOperands() == 3) 1021 BuildMI(MBB, I, DL, MCID, DestReg) 1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1023 else 1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1025 } 1026 1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1028 const TargetRegisterClass *RC) 1029 const { 1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1031 int OpcodeIndex = 0; 1032 1033 if (RC != nullptr) { 1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_Int4Spill; 1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Int8Spill; 1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_Float8Spill; 1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_Float4Spill; 1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_SPESpill; 1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_CRSpill; 1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_CRBitSpill; 1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_VRVectorSpill; 1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VSXVectorSpill; 1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VectorFloat8Spill; 1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VectorFloat4Spill; 1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_VRSaveSpill; 1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_QuadFloat8Spill; 1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadFloat4Spill; 1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_QuadBitSpill; 1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_SpillToVSR; 1068 } else { 1069 llvm_unreachable("Unknown regclass!"); 1070 } 1071 } else { 1072 if (PPC::GPRCRegClass.contains(Reg) || 1073 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_Int4Spill; 1075 } else if (PPC::G8RCRegClass.contains(Reg) || 1076 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_Int8Spill; 1078 } else if (PPC::F8RCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Float8Spill; 1080 } else if (PPC::F4RCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_Float4Spill; 1082 } else if (PPC::SPERCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_SPESpill; 1084 } else if (PPC::CRRCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_CRSpill; 1086 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_CRBitSpill; 1088 } else if (PPC::VRRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_VRVectorSpill; 1090 } else if (PPC::VSRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_VSXVectorSpill; 1092 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VectorFloat8Spill; 1094 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VectorFloat4Spill; 1096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VRSaveSpill; 1098 } else if (PPC::QFRCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_QuadFloat8Spill; 1100 } else if (PPC::QSRCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_QuadFloat4Spill; 1102 } else if (PPC::QBRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadBitSpill; 1104 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_SpillToVSR; 1106 } else { 1107 llvm_unreachable("Unknown regclass!"); 1108 } 1109 } 1110 return OpcodesForSpill[OpcodeIndex]; 1111 } 1112 1113 unsigned 1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1115 const TargetRegisterClass *RC) const { 1116 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1117 int OpcodeIndex = 0; 1118 1119 if (RC != nullptr) { 1120 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1121 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_Int4Spill; 1123 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1124 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1125 OpcodeIndex = SOK_Int8Spill; 1126 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_Float8Spill; 1128 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Float4Spill; 1130 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_SPESpill; 1132 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_CRSpill; 1134 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_CRBitSpill; 1136 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_VRVectorSpill; 1138 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_VSXVectorSpill; 1140 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_VectorFloat8Spill; 1142 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VectorFloat4Spill; 1144 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VRSaveSpill; 1146 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_QuadFloat8Spill; 1148 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_QuadFloat4Spill; 1150 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_QuadBitSpill; 1152 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_SpillToVSR; 1154 } else { 1155 llvm_unreachable("Unknown regclass!"); 1156 } 1157 } else { 1158 if (PPC::GPRCRegClass.contains(Reg) || 1159 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1160 OpcodeIndex = SOK_Int4Spill; 1161 } else if (PPC::G8RCRegClass.contains(Reg) || 1162 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1163 OpcodeIndex = SOK_Int8Spill; 1164 } else if (PPC::F8RCRegClass.contains(Reg)) { 1165 OpcodeIndex = SOK_Float8Spill; 1166 } else if (PPC::F4RCRegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_Float4Spill; 1168 } else if (PPC::SPERCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_SPESpill; 1170 } else if (PPC::CRRCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_CRSpill; 1172 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_CRBitSpill; 1174 } else if (PPC::VRRCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_VRVectorSpill; 1176 } else if (PPC::VSRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_VSXVectorSpill; 1178 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_VectorFloat8Spill; 1180 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_VectorFloat4Spill; 1182 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VRSaveSpill; 1184 } else if (PPC::QFRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_QuadFloat8Spill; 1186 } else if (PPC::QSRCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_QuadFloat4Spill; 1188 } else if (PPC::QBRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_QuadBitSpill; 1190 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_SpillToVSR; 1192 } else { 1193 llvm_unreachable("Unknown regclass!"); 1194 } 1195 } 1196 return OpcodesForSpill[OpcodeIndex]; 1197 } 1198 1199 void PPCInstrInfo::StoreRegToStackSlot( 1200 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1201 const TargetRegisterClass *RC, 1202 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1203 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1204 DebugLoc DL; 1205 1206 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1207 FuncInfo->setHasSpills(); 1208 1209 NewMIs.push_back(addFrameReference( 1210 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1211 FrameIdx)); 1212 1213 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1214 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1215 FuncInfo->setSpillsCR(); 1216 1217 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1218 FuncInfo->setSpillsVRSAVE(); 1219 1220 if (isXFormMemOp(Opcode)) 1221 FuncInfo->setHasNonRISpills(); 1222 } 1223 1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1225 MachineBasicBlock::iterator MI, 1226 unsigned SrcReg, bool isKill, 1227 int FrameIdx, 1228 const TargetRegisterClass *RC, 1229 const TargetRegisterInfo *TRI) const { 1230 MachineFunction &MF = *MBB.getParent(); 1231 SmallVector<MachineInstr *, 4> NewMIs; 1232 1233 // We need to avoid a situation in which the value from a VRRC register is 1234 // spilled using an Altivec instruction and reloaded into a VSRC register 1235 // using a VSX instruction. The issue with this is that the VSX 1236 // load/store instructions swap the doublewords in the vector and the Altivec 1237 // ones don't. The register classes on the spill/reload may be different if 1238 // the register is defined using an Altivec instruction and is then used by a 1239 // VSX instruction. 1240 RC = updatedRC(RC); 1241 1242 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1243 1244 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1245 MBB.insert(MI, NewMIs[i]); 1246 1247 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1248 MachineMemOperand *MMO = MF.getMachineMemOperand( 1249 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1250 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1251 MFI.getObjectAlignment(FrameIdx)); 1252 NewMIs.back()->addMemOperand(MF, MMO); 1253 } 1254 1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1256 unsigned DestReg, int FrameIdx, 1257 const TargetRegisterClass *RC, 1258 SmallVectorImpl<MachineInstr *> &NewMIs) 1259 const { 1260 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1261 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1262 FrameIdx)); 1263 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1264 1265 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1266 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1267 FuncInfo->setSpillsCR(); 1268 1269 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1270 FuncInfo->setSpillsVRSAVE(); 1271 1272 if (isXFormMemOp(Opcode)) 1273 FuncInfo->setHasNonRISpills(); 1274 } 1275 1276 void 1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1278 MachineBasicBlock::iterator MI, 1279 unsigned DestReg, int FrameIdx, 1280 const TargetRegisterClass *RC, 1281 const TargetRegisterInfo *TRI) const { 1282 MachineFunction &MF = *MBB.getParent(); 1283 SmallVector<MachineInstr*, 4> NewMIs; 1284 DebugLoc DL; 1285 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1286 1287 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1288 FuncInfo->setHasSpills(); 1289 1290 // We need to avoid a situation in which the value from a VRRC register is 1291 // spilled using an Altivec instruction and reloaded into a VSRC register 1292 // using a VSX instruction. The issue with this is that the VSX 1293 // load/store instructions swap the doublewords in the vector and the Altivec 1294 // ones don't. The register classes on the spill/reload may be different if 1295 // the register is defined using an Altivec instruction and is then used by a 1296 // VSX instruction. 1297 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1298 RC = &PPC::VSRCRegClass; 1299 1300 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1301 1302 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1303 MBB.insert(MI, NewMIs[i]); 1304 1305 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1306 MachineMemOperand *MMO = MF.getMachineMemOperand( 1307 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1308 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1309 MFI.getObjectAlignment(FrameIdx)); 1310 NewMIs.back()->addMemOperand(MF, MMO); 1311 } 1312 1313 bool PPCInstrInfo:: 1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1315 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1316 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1317 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1318 else 1319 // Leave the CR# the same, but invert the condition. 1320 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1321 return false; 1322 } 1323 1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1325 unsigned Reg, MachineRegisterInfo *MRI) const { 1326 // For some instructions, it is legal to fold ZERO into the RA register field. 1327 // A zero immediate should always be loaded with a single li. 1328 unsigned DefOpc = DefMI.getOpcode(); 1329 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1330 return false; 1331 if (!DefMI.getOperand(1).isImm()) 1332 return false; 1333 if (DefMI.getOperand(1).getImm() != 0) 1334 return false; 1335 1336 // Note that we cannot here invert the arguments of an isel in order to fold 1337 // a ZERO into what is presented as the second argument. All we have here 1338 // is the condition bit, and that might come from a CR-logical bit operation. 1339 1340 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1341 1342 // Only fold into real machine instructions. 1343 if (UseMCID.isPseudo()) 1344 return false; 1345 1346 unsigned UseIdx; 1347 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1348 if (UseMI.getOperand(UseIdx).isReg() && 1349 UseMI.getOperand(UseIdx).getReg() == Reg) 1350 break; 1351 1352 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1353 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1354 1355 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1356 1357 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1358 // register (which might also be specified as a pointer class kind). 1359 if (UseInfo->isLookupPtrRegClass()) { 1360 if (UseInfo->RegClass /* Kind */ != 1) 1361 return false; 1362 } else { 1363 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1364 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1365 return false; 1366 } 1367 1368 // Make sure this is not tied to an output register (or otherwise 1369 // constrained). This is true for ST?UX registers, for example, which 1370 // are tied to their output registers. 1371 if (UseInfo->Constraints != 0) 1372 return false; 1373 1374 unsigned ZeroReg; 1375 if (UseInfo->isLookupPtrRegClass()) { 1376 bool isPPC64 = Subtarget.isPPC64(); 1377 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1378 } else { 1379 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1380 PPC::ZERO8 : PPC::ZERO; 1381 } 1382 1383 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1384 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1385 1386 if (DeleteDef) 1387 DefMI.eraseFromParent(); 1388 1389 return true; 1390 } 1391 1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1393 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1394 I != IE; ++I) 1395 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1396 return true; 1397 return false; 1398 } 1399 1400 // We should make sure that, if we're going to predicate both sides of a 1401 // condition (a diamond), that both sides don't define the counter register. We 1402 // can predicate counter-decrement-based branches, but while that predicates 1403 // the branching, it does not predicate the counter decrement. If we tried to 1404 // merge the triangle into one predicated block, we'd decrement the counter 1405 // twice. 1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1407 unsigned NumT, unsigned ExtraT, 1408 MachineBasicBlock &FMBB, 1409 unsigned NumF, unsigned ExtraF, 1410 BranchProbability Probability) const { 1411 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1412 } 1413 1414 1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1416 // The predicated branches are identified by their type, not really by the 1417 // explicit presence of a predicate. Furthermore, some of them can be 1418 // predicated more than once. Because if conversion won't try to predicate 1419 // any instruction which already claims to be predicated (by returning true 1420 // here), always return false. In doing so, we let isPredicable() be the 1421 // final word on whether not the instruction can be (further) predicated. 1422 1423 return false; 1424 } 1425 1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1427 if (!MI.isTerminator()) 1428 return false; 1429 1430 // Conditional branch is a special case. 1431 if (MI.isBranch() && !MI.isBarrier()) 1432 return true; 1433 1434 return !isPredicated(MI); 1435 } 1436 1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1438 ArrayRef<MachineOperand> Pred) const { 1439 unsigned OpC = MI.getOpcode(); 1440 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1441 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1442 bool isPPC64 = Subtarget.isPPC64(); 1443 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1444 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1445 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1446 MI.setDesc(get(PPC::BCLR)); 1447 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1448 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1449 MI.setDesc(get(PPC::BCLRn)); 1450 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1451 } else { 1452 MI.setDesc(get(PPC::BCCLR)); 1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1454 .addImm(Pred[0].getImm()) 1455 .add(Pred[1]); 1456 } 1457 1458 return true; 1459 } else if (OpC == PPC::B) { 1460 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1461 bool isPPC64 = Subtarget.isPPC64(); 1462 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1463 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1464 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1466 MI.RemoveOperand(0); 1467 1468 MI.setDesc(get(PPC::BC)); 1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1470 .add(Pred[1]) 1471 .addMBB(MBB); 1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1474 MI.RemoveOperand(0); 1475 1476 MI.setDesc(get(PPC::BCn)); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .add(Pred[1]) 1479 .addMBB(MBB); 1480 } else { 1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1482 MI.RemoveOperand(0); 1483 1484 MI.setDesc(get(PPC::BCC)); 1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1486 .addImm(Pred[0].getImm()) 1487 .add(Pred[1]) 1488 .addMBB(MBB); 1489 } 1490 1491 return true; 1492 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1493 OpC == PPC::BCTRL8) { 1494 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1495 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1496 1497 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1498 bool isPPC64 = Subtarget.isPPC64(); 1499 1500 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1501 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1502 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1504 return true; 1505 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1506 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1507 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1508 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1509 return true; 1510 } 1511 1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1513 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1515 .addImm(Pred[0].getImm()) 1516 .add(Pred[1]); 1517 return true; 1518 } 1519 1520 return false; 1521 } 1522 1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1524 ArrayRef<MachineOperand> Pred2) const { 1525 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1526 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1527 1528 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1529 return false; 1530 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1531 return false; 1532 1533 // P1 can only subsume P2 if they test the same condition register. 1534 if (Pred1[1].getReg() != Pred2[1].getReg()) 1535 return false; 1536 1537 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1538 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1539 1540 if (P1 == P2) 1541 return true; 1542 1543 // Does P1 subsume P2, e.g. GE subsumes GT. 1544 if (P1 == PPC::PRED_LE && 1545 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1546 return true; 1547 if (P1 == PPC::PRED_GE && 1548 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1549 return true; 1550 1551 return false; 1552 } 1553 1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1555 std::vector<MachineOperand> &Pred) const { 1556 // Note: At the present time, the contents of Pred from this function is 1557 // unused by IfConversion. This implementation follows ARM by pushing the 1558 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1559 // predicate, instructions defining CTR or CTR8 are also included as 1560 // predicate-defining instructions. 1561 1562 const TargetRegisterClass *RCs[] = 1563 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1564 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1565 1566 bool Found = false; 1567 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1568 const MachineOperand &MO = MI.getOperand(i); 1569 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1570 const TargetRegisterClass *RC = RCs[c]; 1571 if (MO.isReg()) { 1572 if (MO.isDef() && RC->contains(MO.getReg())) { 1573 Pred.push_back(MO); 1574 Found = true; 1575 } 1576 } else if (MO.isRegMask()) { 1577 for (TargetRegisterClass::iterator I = RC->begin(), 1578 IE = RC->end(); I != IE; ++I) 1579 if (MO.clobbersPhysReg(*I)) { 1580 Pred.push_back(MO); 1581 Found = true; 1582 } 1583 } 1584 } 1585 } 1586 1587 return Found; 1588 } 1589 1590 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1591 unsigned OpC = MI.getOpcode(); 1592 switch (OpC) { 1593 default: 1594 return false; 1595 case PPC::B: 1596 case PPC::BLR: 1597 case PPC::BLR8: 1598 case PPC::BCTR: 1599 case PPC::BCTR8: 1600 case PPC::BCTRL: 1601 case PPC::BCTRL8: 1602 return true; 1603 } 1604 } 1605 1606 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1607 unsigned &SrcReg2, int &Mask, 1608 int &Value) const { 1609 unsigned Opc = MI.getOpcode(); 1610 1611 switch (Opc) { 1612 default: return false; 1613 case PPC::CMPWI: 1614 case PPC::CMPLWI: 1615 case PPC::CMPDI: 1616 case PPC::CMPLDI: 1617 SrcReg = MI.getOperand(1).getReg(); 1618 SrcReg2 = 0; 1619 Value = MI.getOperand(2).getImm(); 1620 Mask = 0xFFFF; 1621 return true; 1622 case PPC::CMPW: 1623 case PPC::CMPLW: 1624 case PPC::CMPD: 1625 case PPC::CMPLD: 1626 case PPC::FCMPUS: 1627 case PPC::FCMPUD: 1628 SrcReg = MI.getOperand(1).getReg(); 1629 SrcReg2 = MI.getOperand(2).getReg(); 1630 Value = 0; 1631 Mask = 0; 1632 return true; 1633 } 1634 } 1635 1636 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1637 unsigned SrcReg2, int Mask, int Value, 1638 const MachineRegisterInfo *MRI) const { 1639 if (DisableCmpOpt) 1640 return false; 1641 1642 int OpC = CmpInstr.getOpcode(); 1643 Register CRReg = CmpInstr.getOperand(0).getReg(); 1644 1645 // FP record forms set CR1 based on the exception status bits, not a 1646 // comparison with zero. 1647 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1648 return false; 1649 1650 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1651 // The record forms set the condition register based on a signed comparison 1652 // with zero (so says the ISA manual). This is not as straightforward as it 1653 // seems, however, because this is always a 64-bit comparison on PPC64, even 1654 // for instructions that are 32-bit in nature (like slw for example). 1655 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1656 // for equality checks (as those don't depend on the sign). On PPC64, 1657 // we are restricted to equality for unsigned 64-bit comparisons and for 1658 // signed 32-bit comparisons the applicability is more restricted. 1659 bool isPPC64 = Subtarget.isPPC64(); 1660 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1661 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1662 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1663 1664 // Look through copies unless that gets us to a physical register. 1665 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1666 if (Register::isVirtualRegister(ActualSrc)) 1667 SrcReg = ActualSrc; 1668 1669 // Get the unique definition of SrcReg. 1670 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1671 if (!MI) return false; 1672 1673 bool equalityOnly = false; 1674 bool noSub = false; 1675 if (isPPC64) { 1676 if (is32BitSignedCompare) { 1677 // We can perform this optimization only if MI is sign-extending. 1678 if (isSignExtended(*MI)) 1679 noSub = true; 1680 else 1681 return false; 1682 } else if (is32BitUnsignedCompare) { 1683 // We can perform this optimization, equality only, if MI is 1684 // zero-extending. 1685 if (isZeroExtended(*MI)) { 1686 noSub = true; 1687 equalityOnly = true; 1688 } else 1689 return false; 1690 } else 1691 equalityOnly = is64BitUnsignedCompare; 1692 } else 1693 equalityOnly = is32BitUnsignedCompare; 1694 1695 if (equalityOnly) { 1696 // We need to check the uses of the condition register in order to reject 1697 // non-equality comparisons. 1698 for (MachineRegisterInfo::use_instr_iterator 1699 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1700 I != IE; ++I) { 1701 MachineInstr *UseMI = &*I; 1702 if (UseMI->getOpcode() == PPC::BCC) { 1703 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1704 unsigned PredCond = PPC::getPredicateCondition(Pred); 1705 // We ignore hint bits when checking for non-equality comparisons. 1706 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1707 return false; 1708 } else if (UseMI->getOpcode() == PPC::ISEL || 1709 UseMI->getOpcode() == PPC::ISEL8) { 1710 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1711 if (SubIdx != PPC::sub_eq) 1712 return false; 1713 } else 1714 return false; 1715 } 1716 } 1717 1718 MachineBasicBlock::iterator I = CmpInstr; 1719 1720 // Scan forward to find the first use of the compare. 1721 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1722 ++I) { 1723 bool FoundUse = false; 1724 for (MachineRegisterInfo::use_instr_iterator 1725 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1726 J != JE; ++J) 1727 if (&*J == &*I) { 1728 FoundUse = true; 1729 break; 1730 } 1731 1732 if (FoundUse) 1733 break; 1734 } 1735 1736 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1737 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1738 1739 // There are two possible candidates which can be changed to set CR[01]. 1740 // One is MI, the other is a SUB instruction. 1741 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1742 MachineInstr *Sub = nullptr; 1743 if (SrcReg2 != 0) 1744 // MI is not a candidate for CMPrr. 1745 MI = nullptr; 1746 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1747 // same BB as the comparison. This is to allow the check below to avoid calls 1748 // (and other explicit clobbers); instead we should really check for these 1749 // more explicitly (in at least a few predecessors). 1750 else if (MI->getParent() != CmpInstr.getParent()) 1751 return false; 1752 else if (Value != 0) { 1753 // The record-form instructions set CR bit based on signed comparison 1754 // against 0. We try to convert a compare against 1 or -1 into a compare 1755 // against 0 to exploit record-form instructions. For example, we change 1756 // the condition "greater than -1" into "greater than or equal to 0" 1757 // and "less than 1" into "less than or equal to 0". 1758 1759 // Since we optimize comparison based on a specific branch condition, 1760 // we don't optimize if condition code is used by more than once. 1761 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1762 return false; 1763 1764 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1765 if (UseMI->getOpcode() != PPC::BCC) 1766 return false; 1767 1768 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1769 unsigned PredCond = PPC::getPredicateCondition(Pred); 1770 unsigned PredHint = PPC::getPredicateHint(Pred); 1771 int16_t Immed = (int16_t)Value; 1772 1773 // When modifying the condition in the predicate, we propagate hint bits 1774 // from the original predicate to the new one. 1775 if (Immed == -1 && PredCond == PPC::PRED_GT) 1776 // We convert "greater than -1" into "greater than or equal to 0", 1777 // since we are assuming signed comparison by !equalityOnly 1778 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1779 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1780 // We convert "less than or equal to -1" into "less than 0". 1781 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1782 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1783 // We convert "less than 1" into "less than or equal to 0". 1784 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1785 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1786 // We convert "greater than or equal to 1" into "greater than 0". 1787 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1788 else 1789 return false; 1790 1791 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1792 } 1793 1794 // Search for Sub. 1795 --I; 1796 1797 // Get ready to iterate backward from CmpInstr. 1798 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1799 1800 for (; I != E && !noSub; --I) { 1801 const MachineInstr &Instr = *I; 1802 unsigned IOpC = Instr.getOpcode(); 1803 1804 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1805 Instr.readsRegister(PPC::CR0, TRI))) 1806 // This instruction modifies or uses the record condition register after 1807 // the one we want to change. While we could do this transformation, it 1808 // would likely not be profitable. This transformation removes one 1809 // instruction, and so even forcing RA to generate one move probably 1810 // makes it unprofitable. 1811 return false; 1812 1813 // Check whether CmpInstr can be made redundant by the current instruction. 1814 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1815 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1816 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1817 ((Instr.getOperand(1).getReg() == SrcReg && 1818 Instr.getOperand(2).getReg() == SrcReg2) || 1819 (Instr.getOperand(1).getReg() == SrcReg2 && 1820 Instr.getOperand(2).getReg() == SrcReg))) { 1821 Sub = &*I; 1822 break; 1823 } 1824 1825 if (I == B) 1826 // The 'and' is below the comparison instruction. 1827 return false; 1828 } 1829 1830 // Return false if no candidates exist. 1831 if (!MI && !Sub) 1832 return false; 1833 1834 // The single candidate is called MI. 1835 if (!MI) MI = Sub; 1836 1837 int NewOpC = -1; 1838 int MIOpC = MI->getOpcode(); 1839 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1840 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1841 NewOpC = MIOpC; 1842 else { 1843 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1844 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1845 NewOpC = MIOpC; 1846 } 1847 1848 // FIXME: On the non-embedded POWER architectures, only some of the record 1849 // forms are fast, and we should use only the fast ones. 1850 1851 // The defining instruction has a record form (or is already a record 1852 // form). It is possible, however, that we'll need to reverse the condition 1853 // code of the users. 1854 if (NewOpC == -1) 1855 return false; 1856 1857 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1858 // needs to be updated to be based on SUB. Push the condition code 1859 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1860 // condition code of these operands will be modified. 1861 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1862 // comparison against 0, which may modify predicate. 1863 bool ShouldSwap = false; 1864 if (Sub && Value == 0) { 1865 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1866 Sub->getOperand(2).getReg() == SrcReg; 1867 1868 // The operands to subf are the opposite of sub, so only in the fixed-point 1869 // case, invert the order. 1870 ShouldSwap = !ShouldSwap; 1871 } 1872 1873 if (ShouldSwap) 1874 for (MachineRegisterInfo::use_instr_iterator 1875 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1876 I != IE; ++I) { 1877 MachineInstr *UseMI = &*I; 1878 if (UseMI->getOpcode() == PPC::BCC) { 1879 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1880 unsigned PredCond = PPC::getPredicateCondition(Pred); 1881 assert((!equalityOnly || 1882 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1883 "Invalid predicate for equality-only optimization"); 1884 (void)PredCond; // To suppress warning in release build. 1885 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1886 PPC::getSwappedPredicate(Pred))); 1887 } else if (UseMI->getOpcode() == PPC::ISEL || 1888 UseMI->getOpcode() == PPC::ISEL8) { 1889 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1890 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1891 "Invalid CR bit for equality-only optimization"); 1892 1893 if (NewSubReg == PPC::sub_lt) 1894 NewSubReg = PPC::sub_gt; 1895 else if (NewSubReg == PPC::sub_gt) 1896 NewSubReg = PPC::sub_lt; 1897 1898 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1899 NewSubReg)); 1900 } else // We need to abort on a user we don't understand. 1901 return false; 1902 } 1903 assert(!(Value != 0 && ShouldSwap) && 1904 "Non-zero immediate support and ShouldSwap" 1905 "may conflict in updating predicate"); 1906 1907 // Create a new virtual register to hold the value of the CR set by the 1908 // record-form instruction. If the instruction was not previously in 1909 // record form, then set the kill flag on the CR. 1910 CmpInstr.eraseFromParent(); 1911 1912 MachineBasicBlock::iterator MII = MI; 1913 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1914 get(TargetOpcode::COPY), CRReg) 1915 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1916 1917 // Even if CR0 register were dead before, it is alive now since the 1918 // instruction we just built uses it. 1919 MI->clearRegisterDeads(PPC::CR0); 1920 1921 if (MIOpC != NewOpC) { 1922 // We need to be careful here: we're replacing one instruction with 1923 // another, and we need to make sure that we get all of the right 1924 // implicit uses and defs. On the other hand, the caller may be holding 1925 // an iterator to this instruction, and so we can't delete it (this is 1926 // specifically the case if this is the instruction directly after the 1927 // compare). 1928 1929 // Rotates are expensive instructions. If we're emitting a record-form 1930 // rotate that can just be an andi/andis, we should just emit that. 1931 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1932 Register GPRRes = MI->getOperand(0).getReg(); 1933 int64_t SH = MI->getOperand(2).getImm(); 1934 int64_t MB = MI->getOperand(3).getImm(); 1935 int64_t ME = MI->getOperand(4).getImm(); 1936 // We can only do this if both the start and end of the mask are in the 1937 // same halfword. 1938 bool MBInLoHWord = MB >= 16; 1939 bool MEInLoHWord = ME >= 16; 1940 uint64_t Mask = ~0LLU; 1941 1942 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1943 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1944 // The mask value needs to shift right 16 if we're emitting andis. 1945 Mask >>= MBInLoHWord ? 0 : 16; 1946 NewOpC = MIOpC == PPC::RLWINM ? 1947 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1948 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1949 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1950 (ME - MB + 1 == SH) && (MB >= 16)) { 1951 // If we are rotating by the exact number of bits as are in the mask 1952 // and the mask is in the least significant bits of the register, 1953 // that's just an andis. (as long as the GPR result has no uses). 1954 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1955 Mask >>= 16; 1956 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1957 } 1958 // If we've set the mask, we can transform. 1959 if (Mask != ~0LLU) { 1960 MI->RemoveOperand(4); 1961 MI->RemoveOperand(3); 1962 MI->getOperand(2).setImm(Mask); 1963 NumRcRotatesConvertedToRcAnd++; 1964 } 1965 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1966 int64_t MB = MI->getOperand(3).getImm(); 1967 if (MB >= 48) { 1968 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1969 NewOpC = PPC::ANDIo8; 1970 MI->RemoveOperand(3); 1971 MI->getOperand(2).setImm(Mask); 1972 NumRcRotatesConvertedToRcAnd++; 1973 } 1974 } 1975 1976 const MCInstrDesc &NewDesc = get(NewOpC); 1977 MI->setDesc(NewDesc); 1978 1979 if (NewDesc.ImplicitDefs) 1980 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1981 *ImpDefs; ++ImpDefs) 1982 if (!MI->definesRegister(*ImpDefs)) 1983 MI->addOperand(*MI->getParent()->getParent(), 1984 MachineOperand::CreateReg(*ImpDefs, true, true)); 1985 if (NewDesc.ImplicitUses) 1986 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1987 *ImpUses; ++ImpUses) 1988 if (!MI->readsRegister(*ImpUses)) 1989 MI->addOperand(*MI->getParent()->getParent(), 1990 MachineOperand::CreateReg(*ImpUses, false, true)); 1991 } 1992 assert(MI->definesRegister(PPC::CR0) && 1993 "Record-form instruction does not define cr0?"); 1994 1995 // Modify the condition code of operands in OperandsToUpdate. 1996 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1997 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1998 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1999 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2000 2001 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2002 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2003 2004 return true; 2005 } 2006 2007 /// GetInstSize - Return the number of bytes of code the specified 2008 /// instruction may be. This returns the maximum number of bytes. 2009 /// 2010 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2011 unsigned Opcode = MI.getOpcode(); 2012 2013 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2014 const MachineFunction *MF = MI.getParent()->getParent(); 2015 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2016 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2017 } else if (Opcode == TargetOpcode::STACKMAP) { 2018 StackMapOpers Opers(&MI); 2019 return Opers.getNumPatchBytes(); 2020 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2021 PatchPointOpers Opers(&MI); 2022 return Opers.getNumPatchBytes(); 2023 } else { 2024 return get(Opcode).getSize(); 2025 } 2026 } 2027 2028 std::pair<unsigned, unsigned> 2029 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2030 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2031 return std::make_pair(TF & Mask, TF & ~Mask); 2032 } 2033 2034 ArrayRef<std::pair<unsigned, const char *>> 2035 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2036 using namespace PPCII; 2037 static const std::pair<unsigned, const char *> TargetFlags[] = { 2038 {MO_LO, "ppc-lo"}, 2039 {MO_HA, "ppc-ha"}, 2040 {MO_TPREL_LO, "ppc-tprel-lo"}, 2041 {MO_TPREL_HA, "ppc-tprel-ha"}, 2042 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2043 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2044 {MO_TOC_LO, "ppc-toc-lo"}, 2045 {MO_TLS, "ppc-tls"}}; 2046 return makeArrayRef(TargetFlags); 2047 } 2048 2049 ArrayRef<std::pair<unsigned, const char *>> 2050 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2051 using namespace PPCII; 2052 static const std::pair<unsigned, const char *> TargetFlags[] = { 2053 {MO_PLT, "ppc-plt"}, 2054 {MO_PIC_FLAG, "ppc-pic"}, 2055 {MO_NLP_FLAG, "ppc-nlp"}, 2056 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2057 return makeArrayRef(TargetFlags); 2058 } 2059 2060 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2061 // The VSX versions have the advantage of a full 64-register target whereas 2062 // the FP ones have the advantage of lower latency and higher throughput. So 2063 // what we are after is using the faster instructions in low register pressure 2064 // situations and using the larger register file in high register pressure 2065 // situations. 2066 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2067 unsigned UpperOpcode, LowerOpcode; 2068 switch (MI.getOpcode()) { 2069 case PPC::DFLOADf32: 2070 UpperOpcode = PPC::LXSSP; 2071 LowerOpcode = PPC::LFS; 2072 break; 2073 case PPC::DFLOADf64: 2074 UpperOpcode = PPC::LXSD; 2075 LowerOpcode = PPC::LFD; 2076 break; 2077 case PPC::DFSTOREf32: 2078 UpperOpcode = PPC::STXSSP; 2079 LowerOpcode = PPC::STFS; 2080 break; 2081 case PPC::DFSTOREf64: 2082 UpperOpcode = PPC::STXSD; 2083 LowerOpcode = PPC::STFD; 2084 break; 2085 case PPC::XFLOADf32: 2086 UpperOpcode = PPC::LXSSPX; 2087 LowerOpcode = PPC::LFSX; 2088 break; 2089 case PPC::XFLOADf64: 2090 UpperOpcode = PPC::LXSDX; 2091 LowerOpcode = PPC::LFDX; 2092 break; 2093 case PPC::XFSTOREf32: 2094 UpperOpcode = PPC::STXSSPX; 2095 LowerOpcode = PPC::STFSX; 2096 break; 2097 case PPC::XFSTOREf64: 2098 UpperOpcode = PPC::STXSDX; 2099 LowerOpcode = PPC::STFDX; 2100 break; 2101 case PPC::LIWAX: 2102 UpperOpcode = PPC::LXSIWAX; 2103 LowerOpcode = PPC::LFIWAX; 2104 break; 2105 case PPC::LIWZX: 2106 UpperOpcode = PPC::LXSIWZX; 2107 LowerOpcode = PPC::LFIWZX; 2108 break; 2109 case PPC::STIWX: 2110 UpperOpcode = PPC::STXSIWX; 2111 LowerOpcode = PPC::STFIWX; 2112 break; 2113 default: 2114 llvm_unreachable("Unknown Operation!"); 2115 } 2116 2117 Register TargetReg = MI.getOperand(0).getReg(); 2118 unsigned Opcode; 2119 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2120 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2121 Opcode = LowerOpcode; 2122 else 2123 Opcode = UpperOpcode; 2124 MI.setDesc(get(Opcode)); 2125 return true; 2126 } 2127 2128 static bool isAnImmediateOperand(const MachineOperand &MO) { 2129 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2130 } 2131 2132 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2133 auto &MBB = *MI.getParent(); 2134 auto DL = MI.getDebugLoc(); 2135 2136 switch (MI.getOpcode()) { 2137 case TargetOpcode::LOAD_STACK_GUARD: { 2138 assert(Subtarget.isTargetLinux() && 2139 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2140 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2141 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2142 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2143 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2144 .addImm(Offset) 2145 .addReg(Reg); 2146 return true; 2147 } 2148 case PPC::DFLOADf32: 2149 case PPC::DFLOADf64: 2150 case PPC::DFSTOREf32: 2151 case PPC::DFSTOREf64: { 2152 assert(Subtarget.hasP9Vector() && 2153 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2154 assert(MI.getOperand(2).isReg() && 2155 isAnImmediateOperand(MI.getOperand(1)) && 2156 "D-form op must have register and immediate operands"); 2157 return expandVSXMemPseudo(MI); 2158 } 2159 case PPC::XFLOADf32: 2160 case PPC::XFSTOREf32: 2161 case PPC::LIWAX: 2162 case PPC::LIWZX: 2163 case PPC::STIWX: { 2164 assert(Subtarget.hasP8Vector() && 2165 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2166 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2167 "X-form op must have register and register operands"); 2168 return expandVSXMemPseudo(MI); 2169 } 2170 case PPC::XFLOADf64: 2171 case PPC::XFSTOREf64: { 2172 assert(Subtarget.hasVSX() && 2173 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2175 "X-form op must have register and register operands"); 2176 return expandVSXMemPseudo(MI); 2177 } 2178 case PPC::SPILLTOVSR_LD: { 2179 Register TargetReg = MI.getOperand(0).getReg(); 2180 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2181 MI.setDesc(get(PPC::DFLOADf64)); 2182 return expandPostRAPseudo(MI); 2183 } 2184 else 2185 MI.setDesc(get(PPC::LD)); 2186 return true; 2187 } 2188 case PPC::SPILLTOVSR_ST: { 2189 Register SrcReg = MI.getOperand(0).getReg(); 2190 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2191 NumStoreSPILLVSRRCAsVec++; 2192 MI.setDesc(get(PPC::DFSTOREf64)); 2193 return expandPostRAPseudo(MI); 2194 } else { 2195 NumStoreSPILLVSRRCAsGpr++; 2196 MI.setDesc(get(PPC::STD)); 2197 } 2198 return true; 2199 } 2200 case PPC::SPILLTOVSR_LDX: { 2201 Register TargetReg = MI.getOperand(0).getReg(); 2202 if (PPC::VSFRCRegClass.contains(TargetReg)) 2203 MI.setDesc(get(PPC::LXSDX)); 2204 else 2205 MI.setDesc(get(PPC::LDX)); 2206 return true; 2207 } 2208 case PPC::SPILLTOVSR_STX: { 2209 Register SrcReg = MI.getOperand(0).getReg(); 2210 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2211 NumStoreSPILLVSRRCAsVec++; 2212 MI.setDesc(get(PPC::STXSDX)); 2213 } else { 2214 NumStoreSPILLVSRRCAsGpr++; 2215 MI.setDesc(get(PPC::STDX)); 2216 } 2217 return true; 2218 } 2219 2220 case PPC::CFENCE8: { 2221 auto Val = MI.getOperand(0).getReg(); 2222 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2223 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2224 .addImm(PPC::PRED_NE_MINUS) 2225 .addReg(PPC::CR7) 2226 .addImm(1); 2227 MI.setDesc(get(PPC::ISYNC)); 2228 MI.RemoveOperand(0); 2229 return true; 2230 } 2231 } 2232 return false; 2233 } 2234 2235 // Essentially a compile-time implementation of a compare->isel sequence. 2236 // It takes two constants to compare, along with the true/false registers 2237 // and the comparison type (as a subreg to a CR field) and returns one 2238 // of the true/false registers, depending on the comparison results. 2239 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2240 unsigned TrueReg, unsigned FalseReg, 2241 unsigned CRSubReg) { 2242 // Signed comparisons. The immediates are assumed to be sign-extended. 2243 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2244 switch (CRSubReg) { 2245 default: llvm_unreachable("Unknown integer comparison type."); 2246 case PPC::sub_lt: 2247 return Imm1 < Imm2 ? TrueReg : FalseReg; 2248 case PPC::sub_gt: 2249 return Imm1 > Imm2 ? TrueReg : FalseReg; 2250 case PPC::sub_eq: 2251 return Imm1 == Imm2 ? TrueReg : FalseReg; 2252 } 2253 } 2254 // Unsigned comparisons. 2255 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2256 switch (CRSubReg) { 2257 default: llvm_unreachable("Unknown integer comparison type."); 2258 case PPC::sub_lt: 2259 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2260 case PPC::sub_gt: 2261 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2262 case PPC::sub_eq: 2263 return Imm1 == Imm2 ? TrueReg : FalseReg; 2264 } 2265 } 2266 return PPC::NoRegister; 2267 } 2268 2269 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2270 unsigned OpNo, 2271 int64_t Imm) const { 2272 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2273 // Replace the REG with the Immediate. 2274 Register InUseReg = MI.getOperand(OpNo).getReg(); 2275 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2276 2277 if (MI.implicit_operands().empty()) 2278 return; 2279 2280 // We need to make sure that the MI didn't have any implicit use 2281 // of this REG any more. 2282 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2283 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2284 if (UseOpIdx >= 0) { 2285 MachineOperand &MO = MI.getOperand(UseOpIdx); 2286 if (MO.isImplicit()) 2287 // The operands must always be in the following order: 2288 // - explicit reg defs, 2289 // - other explicit operands (reg uses, immediates, etc.), 2290 // - implicit reg defs 2291 // - implicit reg uses 2292 // Therefore, removing the implicit operand won't change the explicit 2293 // operands layout. 2294 MI.RemoveOperand(UseOpIdx); 2295 } 2296 } 2297 2298 // Replace an instruction with one that materializes a constant (and sets 2299 // CR0 if the original instruction was a record-form instruction). 2300 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2301 const LoadImmediateInfo &LII) const { 2302 // Remove existing operands. 2303 int OperandToKeep = LII.SetCR ? 1 : 0; 2304 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2305 MI.RemoveOperand(i); 2306 2307 // Replace the instruction. 2308 if (LII.SetCR) { 2309 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2310 // Set the immediate. 2311 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2312 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2313 return; 2314 } 2315 else 2316 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2317 2318 // Set the immediate. 2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2320 .addImm(LII.Imm); 2321 } 2322 2323 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2324 bool &SeenIntermediateUse) const { 2325 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2326 "Should be called after register allocation."); 2327 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2328 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2329 It++; 2330 SeenIntermediateUse = false; 2331 for (; It != E; ++It) { 2332 if (It->modifiesRegister(Reg, TRI)) 2333 return &*It; 2334 if (It->readsRegister(Reg, TRI)) 2335 SeenIntermediateUse = true; 2336 } 2337 return nullptr; 2338 } 2339 2340 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2341 MachineInstr &MI, 2342 unsigned &OpNoForForwarding, 2343 bool &SeenIntermediateUse) const { 2344 OpNoForForwarding = ~0U; 2345 MachineInstr *DefMI = nullptr; 2346 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2347 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2348 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2349 // within the basic block to see if the register is defined using an LI/LI8. 2350 if (MRI->isSSA()) { 2351 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2352 if (!MI.getOperand(i).isReg()) 2353 continue; 2354 Register Reg = MI.getOperand(i).getReg(); 2355 if (!Register::isVirtualRegister(Reg)) 2356 continue; 2357 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2358 if (Register::isVirtualRegister(TrueReg)) { 2359 DefMI = MRI->getVRegDef(TrueReg); 2360 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2361 OpNoForForwarding = i; 2362 break; 2363 } 2364 } 2365 } 2366 } else { 2367 // Looking back through the definition for each operand could be expensive, 2368 // so exit early if this isn't an instruction that either has an immediate 2369 // form or is already an immediate form that we can handle. 2370 ImmInstrInfo III; 2371 unsigned Opc = MI.getOpcode(); 2372 bool ConvertibleImmForm = 2373 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2374 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2375 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2376 Opc == PPC::ORI || Opc == PPC::ORI8 || 2377 Opc == PPC::XORI || Opc == PPC::XORI8 || 2378 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2379 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2380 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2381 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2382 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2383 ? isVFRegister(MI.getOperand(0).getReg()) 2384 : false; 2385 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2386 return nullptr; 2387 2388 // Don't convert or %X, %Y, %Y since that's just a register move. 2389 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2390 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2391 return nullptr; 2392 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2393 MachineOperand &MO = MI.getOperand(i); 2394 SeenIntermediateUse = false; 2395 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2396 Register Reg = MI.getOperand(i).getReg(); 2397 // If we see another use of this reg between the def and the MI, 2398 // we want to flat it so the def isn't deleted. 2399 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2400 if (DefMI) { 2401 // Is this register defined by some form of add-immediate (including 2402 // load-immediate) within this basic block? 2403 switch (DefMI->getOpcode()) { 2404 default: 2405 break; 2406 case PPC::LI: 2407 case PPC::LI8: 2408 case PPC::ADDItocL: 2409 case PPC::ADDI: 2410 case PPC::ADDI8: 2411 OpNoForForwarding = i; 2412 return DefMI; 2413 } 2414 } 2415 } 2416 } 2417 } 2418 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2419 } 2420 2421 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2422 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2423 // Power 8 2424 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2425 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2426 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2427 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2428 // Power 9 2429 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2430 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2431 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2432 PPC::SPILLTOVSR_ST}}; 2433 2434 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2435 } 2436 2437 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2438 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2439 // Power 8 2440 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2441 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2442 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2443 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2444 // Power 9 2445 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2446 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2447 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2448 PPC::SPILLTOVSR_LD}}; 2449 2450 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2451 } 2452 2453 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2454 unsigned RegNo) const { 2455 const MachineRegisterInfo &MRI = 2456 StartMI.getParent()->getParent()->getRegInfo(); 2457 if (MRI.isSSA()) 2458 return; 2459 2460 // Instructions between [StartMI, EndMI] should be in same basic block. 2461 assert((StartMI.getParent() == EndMI.getParent()) && 2462 "Instructions are not in same basic block"); 2463 2464 bool IsKillSet = false; 2465 2466 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2467 MachineOperand &MO = MI.getOperand(Index); 2468 if (MO.isReg() && MO.isUse() && MO.isKill() && 2469 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2470 MO.setIsKill(false); 2471 }; 2472 2473 // Set killed flag for EndMI. 2474 // No need to do anything if EndMI defines RegNo. 2475 int UseIndex = 2476 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2477 if (UseIndex != -1) { 2478 EndMI.getOperand(UseIndex).setIsKill(true); 2479 IsKillSet = true; 2480 // Clear killed flag for other EndMI operands related to RegNo. In some 2481 // upexpected cases, killed may be set multiple times for same register 2482 // operand in same MI. 2483 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2484 if (i != UseIndex) 2485 clearOperandKillInfo(EndMI, i); 2486 } 2487 2488 // Walking the inst in reverse order (EndMI -> StartMI]. 2489 MachineBasicBlock::reverse_iterator It = EndMI; 2490 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2491 // EndMI has been handled above, skip it here. 2492 It++; 2493 MachineOperand *MO = nullptr; 2494 for (; It != E; ++It) { 2495 // Skip insturctions which could not be a def/use of RegNo. 2496 if (It->isDebugInstr() || It->isPosition()) 2497 continue; 2498 2499 // Clear killed flag for all It operands related to RegNo. In some 2500 // upexpected cases, killed may be set multiple times for same register 2501 // operand in same MI. 2502 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2503 clearOperandKillInfo(*It, i); 2504 2505 // If killed is not set, set killed for its last use or set dead for its def 2506 // if no use found. 2507 if (!IsKillSet) { 2508 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2509 // Use found, set it killed. 2510 IsKillSet = true; 2511 MO->setIsKill(true); 2512 continue; 2513 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2514 &getRegisterInfo()))) { 2515 // No use found, set dead for its def. 2516 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2517 MO->setIsDead(true); 2518 break; 2519 } 2520 } 2521 2522 if ((&*It) == &StartMI) 2523 break; 2524 } 2525 // Ensure RegMo liveness is killed after EndMI. 2526 assert((IsKillSet || (MO && MO->isDead())) && 2527 "RegNo should be killed or dead"); 2528 } 2529 2530 // If this instruction has an immediate form and one of its operands is a 2531 // result of a load-immediate or an add-immediate, convert it to 2532 // the immediate form if the constant is in range. 2533 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2534 MachineInstr **KilledDef) const { 2535 MachineFunction *MF = MI.getParent()->getParent(); 2536 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2537 bool PostRA = !MRI->isSSA(); 2538 bool SeenIntermediateUse = true; 2539 unsigned ForwardingOperand = ~0U; 2540 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2541 SeenIntermediateUse); 2542 if (!DefMI) 2543 return false; 2544 assert(ForwardingOperand < MI.getNumOperands() && 2545 "The forwarding operand needs to be valid at this point"); 2546 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2547 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2548 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2549 if (KilledDef && KillFwdDefMI) 2550 *KilledDef = DefMI; 2551 2552 ImmInstrInfo III; 2553 bool IsVFReg = MI.getOperand(0).isReg() 2554 ? isVFRegister(MI.getOperand(0).getReg()) 2555 : false; 2556 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2557 // If this is a reg+reg instruction that has a reg+imm form, 2558 // and one of the operands is produced by an add-immediate, 2559 // try to convert it. 2560 if (HasImmForm && 2561 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2562 KillFwdDefMI)) 2563 return true; 2564 2565 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2566 !DefMI->getOperand(1).isImm()) 2567 return false; 2568 2569 int64_t Immediate = DefMI->getOperand(1).getImm(); 2570 // Sign-extend to 64-bits. 2571 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2572 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2573 2574 // If this is a reg+reg instruction that has a reg+imm form, 2575 // and one of the operands is produced by LI, convert it now. 2576 if (HasImmForm) 2577 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2578 2579 bool ReplaceWithLI = false; 2580 bool Is64BitLI = false; 2581 int64_t NewImm = 0; 2582 bool SetCR = false; 2583 unsigned Opc = MI.getOpcode(); 2584 switch (Opc) { 2585 default: return false; 2586 2587 // FIXME: Any branches conditional on such a comparison can be made 2588 // unconditional. At this time, this happens too infrequently to be worth 2589 // the implementation effort, but if that ever changes, we could convert 2590 // such a pattern here. 2591 case PPC::CMPWI: 2592 case PPC::CMPLWI: 2593 case PPC::CMPDI: 2594 case PPC::CMPLDI: { 2595 // Doing this post-RA would require dataflow analysis to reliably find uses 2596 // of the CR register set by the compare. 2597 // No need to fixup killed/dead flag since this transformation is only valid 2598 // before RA. 2599 if (PostRA) 2600 return false; 2601 // If a compare-immediate is fed by an immediate and is itself an input of 2602 // an ISEL (the most common case) into a COPY of the correct register. 2603 bool Changed = false; 2604 Register DefReg = MI.getOperand(0).getReg(); 2605 int64_t Comparand = MI.getOperand(2).getImm(); 2606 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2607 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2608 2609 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2610 unsigned UseOpc = CompareUseMI.getOpcode(); 2611 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2612 continue; 2613 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2614 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2615 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2616 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2617 FalseReg, CRSubReg); 2618 if (RegToCopy == PPC::NoRegister) 2619 continue; 2620 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2621 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2622 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2623 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2624 CompareUseMI.RemoveOperand(3); 2625 CompareUseMI.RemoveOperand(2); 2626 continue; 2627 } 2628 LLVM_DEBUG( 2629 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2630 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2631 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2632 // Convert to copy and remove unneeded operands. 2633 CompareUseMI.setDesc(get(PPC::COPY)); 2634 CompareUseMI.RemoveOperand(3); 2635 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2636 CmpIselsConverted++; 2637 Changed = true; 2638 LLVM_DEBUG(CompareUseMI.dump()); 2639 } 2640 if (Changed) 2641 return true; 2642 // This may end up incremented multiple times since this function is called 2643 // during a fixed-point transformation, but it is only meant to indicate the 2644 // presence of this opportunity. 2645 MissedConvertibleImmediateInstrs++; 2646 return false; 2647 } 2648 2649 // Immediate forms - may simply be convertable to an LI. 2650 case PPC::ADDI: 2651 case PPC::ADDI8: { 2652 // Does the sum fit in a 16-bit signed field? 2653 int64_t Addend = MI.getOperand(2).getImm(); 2654 if (isInt<16>(Addend + SExtImm)) { 2655 ReplaceWithLI = true; 2656 Is64BitLI = Opc == PPC::ADDI8; 2657 NewImm = Addend + SExtImm; 2658 break; 2659 } 2660 return false; 2661 } 2662 case PPC::RLDICL: 2663 case PPC::RLDICLo: 2664 case PPC::RLDICL_32: 2665 case PPC::RLDICL_32_64: { 2666 // Use APInt's rotate function. 2667 int64_t SH = MI.getOperand(2).getImm(); 2668 int64_t MB = MI.getOperand(3).getImm(); 2669 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2670 64 : 32, SExtImm, true); 2671 InVal = InVal.rotl(SH); 2672 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2673 InVal &= Mask; 2674 // Can't replace negative values with an LI as that will sign-extend 2675 // and not clear the left bits. If we're setting the CR bit, we will use 2676 // ANDIo which won't sign extend, so that's safe. 2677 if (isUInt<15>(InVal.getSExtValue()) || 2678 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2679 ReplaceWithLI = true; 2680 Is64BitLI = Opc != PPC::RLDICL_32; 2681 NewImm = InVal.getSExtValue(); 2682 SetCR = Opc == PPC::RLDICLo; 2683 break; 2684 } 2685 return false; 2686 } 2687 case PPC::RLWINM: 2688 case PPC::RLWINM8: 2689 case PPC::RLWINMo: 2690 case PPC::RLWINM8o: { 2691 int64_t SH = MI.getOperand(2).getImm(); 2692 int64_t MB = MI.getOperand(3).getImm(); 2693 int64_t ME = MI.getOperand(4).getImm(); 2694 APInt InVal(32, SExtImm, true); 2695 InVal = InVal.rotl(SH); 2696 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2697 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2698 InVal &= Mask; 2699 // Can't replace negative values with an LI as that will sign-extend 2700 // and not clear the left bits. If we're setting the CR bit, we will use 2701 // ANDIo which won't sign extend, so that's safe. 2702 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2703 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2704 isUInt<16>(InVal.getSExtValue())); 2705 if (ValueFits) { 2706 ReplaceWithLI = true; 2707 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2708 NewImm = InVal.getSExtValue(); 2709 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2710 break; 2711 } 2712 return false; 2713 } 2714 case PPC::ORI: 2715 case PPC::ORI8: 2716 case PPC::XORI: 2717 case PPC::XORI8: { 2718 int64_t LogicalImm = MI.getOperand(2).getImm(); 2719 int64_t Result = 0; 2720 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2721 Result = LogicalImm | SExtImm; 2722 else 2723 Result = LogicalImm ^ SExtImm; 2724 if (isInt<16>(Result)) { 2725 ReplaceWithLI = true; 2726 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2727 NewImm = Result; 2728 break; 2729 } 2730 return false; 2731 } 2732 } 2733 2734 if (ReplaceWithLI) { 2735 // We need to be careful with CR-setting instructions we're replacing. 2736 if (SetCR) { 2737 // We don't know anything about uses when we're out of SSA, so only 2738 // replace if the new immediate will be reproduced. 2739 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2740 if (PostRA && ImmChanged) 2741 return false; 2742 2743 if (!PostRA) { 2744 // If the defining load-immediate has no other uses, we can just replace 2745 // the immediate with the new immediate. 2746 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2747 DefMI->getOperand(1).setImm(NewImm); 2748 2749 // If we're not using the GPR result of the CR-setting instruction, we 2750 // just need to and with zero/non-zero depending on the new immediate. 2751 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2752 if (NewImm) { 2753 assert(Immediate && "Transformation converted zero to non-zero?"); 2754 NewImm = Immediate; 2755 } 2756 } 2757 else if (ImmChanged) 2758 return false; 2759 } 2760 } 2761 2762 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2763 LLVM_DEBUG(MI.dump()); 2764 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2765 LLVM_DEBUG(DefMI->dump()); 2766 LoadImmediateInfo LII; 2767 LII.Imm = NewImm; 2768 LII.Is64Bit = Is64BitLI; 2769 LII.SetCR = SetCR; 2770 // If we're setting the CR, the original load-immediate must be kept (as an 2771 // operand to ANDIo/ANDI8o). 2772 if (KilledDef && SetCR) 2773 *KilledDef = nullptr; 2774 replaceInstrWithLI(MI, LII); 2775 2776 // Fixup killed/dead flag after transformation. 2777 // Pattern: 2778 // ForwardingOperandReg = LI imm1 2779 // y = op2 imm2, ForwardingOperandReg(killed) 2780 if (IsForwardingOperandKilled) 2781 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2782 2783 LLVM_DEBUG(dbgs() << "With:\n"); 2784 LLVM_DEBUG(MI.dump()); 2785 return true; 2786 } 2787 return false; 2788 } 2789 2790 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 2791 ImmInstrInfo &III, bool PostRA) const { 2792 // The vast majority of the instructions would need their operand 2 replaced 2793 // with an immediate when switching to the reg+imm form. A marked exception 2794 // are the update form loads/stores for which a constant operand 2 would need 2795 // to turn into a displacement and move operand 1 to the operand 2 position. 2796 III.ImmOpNo = 2; 2797 III.OpNoForForwarding = 2; 2798 III.ImmWidth = 16; 2799 III.ImmMustBeMultipleOf = 1; 2800 III.TruncateImmTo = 0; 2801 III.IsSummingOperands = false; 2802 switch (Opc) { 2803 default: return false; 2804 case PPC::ADD4: 2805 case PPC::ADD8: 2806 III.SignedImm = true; 2807 III.ZeroIsSpecialOrig = 0; 2808 III.ZeroIsSpecialNew = 1; 2809 III.IsCommutative = true; 2810 III.IsSummingOperands = true; 2811 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2812 break; 2813 case PPC::ADDC: 2814 case PPC::ADDC8: 2815 III.SignedImm = true; 2816 III.ZeroIsSpecialOrig = 0; 2817 III.ZeroIsSpecialNew = 0; 2818 III.IsCommutative = true; 2819 III.IsSummingOperands = true; 2820 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2821 break; 2822 case PPC::ADDCo: 2823 III.SignedImm = true; 2824 III.ZeroIsSpecialOrig = 0; 2825 III.ZeroIsSpecialNew = 0; 2826 III.IsCommutative = true; 2827 III.IsSummingOperands = true; 2828 III.ImmOpcode = PPC::ADDICo; 2829 break; 2830 case PPC::SUBFC: 2831 case PPC::SUBFC8: 2832 III.SignedImm = true; 2833 III.ZeroIsSpecialOrig = 0; 2834 III.ZeroIsSpecialNew = 0; 2835 III.IsCommutative = false; 2836 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2837 break; 2838 case PPC::CMPW: 2839 case PPC::CMPD: 2840 III.SignedImm = true; 2841 III.ZeroIsSpecialOrig = 0; 2842 III.ZeroIsSpecialNew = 0; 2843 III.IsCommutative = false; 2844 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2845 break; 2846 case PPC::CMPLW: 2847 case PPC::CMPLD: 2848 III.SignedImm = false; 2849 III.ZeroIsSpecialOrig = 0; 2850 III.ZeroIsSpecialNew = 0; 2851 III.IsCommutative = false; 2852 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2853 break; 2854 case PPC::ANDo: 2855 case PPC::AND8o: 2856 case PPC::OR: 2857 case PPC::OR8: 2858 case PPC::XOR: 2859 case PPC::XOR8: 2860 III.SignedImm = false; 2861 III.ZeroIsSpecialOrig = 0; 2862 III.ZeroIsSpecialNew = 0; 2863 III.IsCommutative = true; 2864 switch(Opc) { 2865 default: llvm_unreachable("Unknown opcode"); 2866 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2867 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2868 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2869 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2870 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2871 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2872 } 2873 break; 2874 case PPC::RLWNM: 2875 case PPC::RLWNM8: 2876 case PPC::RLWNMo: 2877 case PPC::RLWNM8o: 2878 case PPC::SLW: 2879 case PPC::SLW8: 2880 case PPC::SLWo: 2881 case PPC::SLW8o: 2882 case PPC::SRW: 2883 case PPC::SRW8: 2884 case PPC::SRWo: 2885 case PPC::SRW8o: 2886 case PPC::SRAW: 2887 case PPC::SRAWo: 2888 III.SignedImm = false; 2889 III.ZeroIsSpecialOrig = 0; 2890 III.ZeroIsSpecialNew = 0; 2891 III.IsCommutative = false; 2892 // This isn't actually true, but the instructions ignore any of the 2893 // upper bits, so any immediate loaded with an LI is acceptable. 2894 // This does not apply to shift right algebraic because a value 2895 // out of range will produce a -1/0. 2896 III.ImmWidth = 16; 2897 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2898 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2899 III.TruncateImmTo = 5; 2900 else 2901 III.TruncateImmTo = 6; 2902 switch(Opc) { 2903 default: llvm_unreachable("Unknown opcode"); 2904 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2905 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2906 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2907 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2908 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2909 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2910 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2911 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2912 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2913 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2914 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2915 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2916 case PPC::SRAW: 2917 III.ImmWidth = 5; 2918 III.TruncateImmTo = 0; 2919 III.ImmOpcode = PPC::SRAWI; 2920 break; 2921 case PPC::SRAWo: 2922 III.ImmWidth = 5; 2923 III.TruncateImmTo = 0; 2924 III.ImmOpcode = PPC::SRAWIo; 2925 break; 2926 } 2927 break; 2928 case PPC::RLDCL: 2929 case PPC::RLDCLo: 2930 case PPC::RLDCR: 2931 case PPC::RLDCRo: 2932 case PPC::SLD: 2933 case PPC::SLDo: 2934 case PPC::SRD: 2935 case PPC::SRDo: 2936 case PPC::SRAD: 2937 case PPC::SRADo: 2938 III.SignedImm = false; 2939 III.ZeroIsSpecialOrig = 0; 2940 III.ZeroIsSpecialNew = 0; 2941 III.IsCommutative = false; 2942 // This isn't actually true, but the instructions ignore any of the 2943 // upper bits, so any immediate loaded with an LI is acceptable. 2944 // This does not apply to shift right algebraic because a value 2945 // out of range will produce a -1/0. 2946 III.ImmWidth = 16; 2947 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2948 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2949 III.TruncateImmTo = 6; 2950 else 2951 III.TruncateImmTo = 7; 2952 switch(Opc) { 2953 default: llvm_unreachable("Unknown opcode"); 2954 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2955 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2956 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2957 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2958 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2959 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2960 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2961 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2962 case PPC::SRAD: 2963 III.ImmWidth = 6; 2964 III.TruncateImmTo = 0; 2965 III.ImmOpcode = PPC::SRADI; 2966 break; 2967 case PPC::SRADo: 2968 III.ImmWidth = 6; 2969 III.TruncateImmTo = 0; 2970 III.ImmOpcode = PPC::SRADIo; 2971 break; 2972 } 2973 break; 2974 // Loads and stores: 2975 case PPC::LBZX: 2976 case PPC::LBZX8: 2977 case PPC::LHZX: 2978 case PPC::LHZX8: 2979 case PPC::LHAX: 2980 case PPC::LHAX8: 2981 case PPC::LWZX: 2982 case PPC::LWZX8: 2983 case PPC::LWAX: 2984 case PPC::LDX: 2985 case PPC::LFSX: 2986 case PPC::LFDX: 2987 case PPC::STBX: 2988 case PPC::STBX8: 2989 case PPC::STHX: 2990 case PPC::STHX8: 2991 case PPC::STWX: 2992 case PPC::STWX8: 2993 case PPC::STDX: 2994 case PPC::STFSX: 2995 case PPC::STFDX: 2996 III.SignedImm = true; 2997 III.ZeroIsSpecialOrig = 1; 2998 III.ZeroIsSpecialNew = 2; 2999 III.IsCommutative = true; 3000 III.IsSummingOperands = true; 3001 III.ImmOpNo = 1; 3002 III.OpNoForForwarding = 2; 3003 switch(Opc) { 3004 default: llvm_unreachable("Unknown opcode"); 3005 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3006 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3007 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3008 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3009 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3010 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3011 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3012 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3013 case PPC::LWAX: 3014 III.ImmOpcode = PPC::LWA; 3015 III.ImmMustBeMultipleOf = 4; 3016 break; 3017 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3018 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3019 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3020 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3021 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3022 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3023 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3024 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3025 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3026 case PPC::STDX: 3027 III.ImmOpcode = PPC::STD; 3028 III.ImmMustBeMultipleOf = 4; 3029 break; 3030 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3031 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3032 } 3033 break; 3034 case PPC::LBZUX: 3035 case PPC::LBZUX8: 3036 case PPC::LHZUX: 3037 case PPC::LHZUX8: 3038 case PPC::LHAUX: 3039 case PPC::LHAUX8: 3040 case PPC::LWZUX: 3041 case PPC::LWZUX8: 3042 case PPC::LDUX: 3043 case PPC::LFSUX: 3044 case PPC::LFDUX: 3045 case PPC::STBUX: 3046 case PPC::STBUX8: 3047 case PPC::STHUX: 3048 case PPC::STHUX8: 3049 case PPC::STWUX: 3050 case PPC::STWUX8: 3051 case PPC::STDUX: 3052 case PPC::STFSUX: 3053 case PPC::STFDUX: 3054 III.SignedImm = true; 3055 III.ZeroIsSpecialOrig = 2; 3056 III.ZeroIsSpecialNew = 3; 3057 III.IsCommutative = false; 3058 III.IsSummingOperands = true; 3059 III.ImmOpNo = 2; 3060 III.OpNoForForwarding = 3; 3061 switch(Opc) { 3062 default: llvm_unreachable("Unknown opcode"); 3063 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3064 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3065 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3066 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3067 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3068 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3069 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3070 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3071 case PPC::LDUX: 3072 III.ImmOpcode = PPC::LDU; 3073 III.ImmMustBeMultipleOf = 4; 3074 break; 3075 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3076 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3077 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3078 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3079 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3080 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3081 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3082 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3083 case PPC::STDUX: 3084 III.ImmOpcode = PPC::STDU; 3085 III.ImmMustBeMultipleOf = 4; 3086 break; 3087 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3088 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3089 } 3090 break; 3091 // Power9 and up only. For some of these, the X-Form version has access to all 3092 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3093 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3094 // into or stored from is one of the VR registers. 3095 case PPC::LXVX: 3096 case PPC::LXSSPX: 3097 case PPC::LXSDX: 3098 case PPC::STXVX: 3099 case PPC::STXSSPX: 3100 case PPC::STXSDX: 3101 case PPC::XFLOADf32: 3102 case PPC::XFLOADf64: 3103 case PPC::XFSTOREf32: 3104 case PPC::XFSTOREf64: 3105 if (!Subtarget.hasP9Vector()) 3106 return false; 3107 III.SignedImm = true; 3108 III.ZeroIsSpecialOrig = 1; 3109 III.ZeroIsSpecialNew = 2; 3110 III.IsCommutative = true; 3111 III.IsSummingOperands = true; 3112 III.ImmOpNo = 1; 3113 III.OpNoForForwarding = 2; 3114 III.ImmMustBeMultipleOf = 4; 3115 switch(Opc) { 3116 default: llvm_unreachable("Unknown opcode"); 3117 case PPC::LXVX: 3118 III.ImmOpcode = PPC::LXV; 3119 III.ImmMustBeMultipleOf = 16; 3120 break; 3121 case PPC::LXSSPX: 3122 if (PostRA) { 3123 if (IsVFReg) 3124 III.ImmOpcode = PPC::LXSSP; 3125 else { 3126 III.ImmOpcode = PPC::LFS; 3127 III.ImmMustBeMultipleOf = 1; 3128 } 3129 break; 3130 } 3131 LLVM_FALLTHROUGH; 3132 case PPC::XFLOADf32: 3133 III.ImmOpcode = PPC::DFLOADf32; 3134 break; 3135 case PPC::LXSDX: 3136 if (PostRA) { 3137 if (IsVFReg) 3138 III.ImmOpcode = PPC::LXSD; 3139 else { 3140 III.ImmOpcode = PPC::LFD; 3141 III.ImmMustBeMultipleOf = 1; 3142 } 3143 break; 3144 } 3145 LLVM_FALLTHROUGH; 3146 case PPC::XFLOADf64: 3147 III.ImmOpcode = PPC::DFLOADf64; 3148 break; 3149 case PPC::STXVX: 3150 III.ImmOpcode = PPC::STXV; 3151 III.ImmMustBeMultipleOf = 16; 3152 break; 3153 case PPC::STXSSPX: 3154 if (PostRA) { 3155 if (IsVFReg) 3156 III.ImmOpcode = PPC::STXSSP; 3157 else { 3158 III.ImmOpcode = PPC::STFS; 3159 III.ImmMustBeMultipleOf = 1; 3160 } 3161 break; 3162 } 3163 LLVM_FALLTHROUGH; 3164 case PPC::XFSTOREf32: 3165 III.ImmOpcode = PPC::DFSTOREf32; 3166 break; 3167 case PPC::STXSDX: 3168 if (PostRA) { 3169 if (IsVFReg) 3170 III.ImmOpcode = PPC::STXSD; 3171 else { 3172 III.ImmOpcode = PPC::STFD; 3173 III.ImmMustBeMultipleOf = 1; 3174 } 3175 break; 3176 } 3177 LLVM_FALLTHROUGH; 3178 case PPC::XFSTOREf64: 3179 III.ImmOpcode = PPC::DFSTOREf64; 3180 break; 3181 } 3182 break; 3183 } 3184 return true; 3185 } 3186 3187 // Utility function for swaping two arbitrary operands of an instruction. 3188 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3189 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3190 3191 unsigned MaxOp = std::max(Op1, Op2); 3192 unsigned MinOp = std::min(Op1, Op2); 3193 MachineOperand MOp1 = MI.getOperand(MinOp); 3194 MachineOperand MOp2 = MI.getOperand(MaxOp); 3195 MI.RemoveOperand(std::max(Op1, Op2)); 3196 MI.RemoveOperand(std::min(Op1, Op2)); 3197 3198 // If the operands we are swapping are the two at the end (the common case) 3199 // we can just remove both and add them in the opposite order. 3200 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3201 MI.addOperand(MOp2); 3202 MI.addOperand(MOp1); 3203 } else { 3204 // Store all operands in a temporary vector, remove them and re-add in the 3205 // right order. 3206 SmallVector<MachineOperand, 2> MOps; 3207 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3208 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3209 MOps.push_back(MI.getOperand(i)); 3210 MI.RemoveOperand(i); 3211 } 3212 // MOp2 needs to be added next. 3213 MI.addOperand(MOp2); 3214 // Now add the rest. 3215 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3216 if (i == MaxOp) 3217 MI.addOperand(MOp1); 3218 else { 3219 MI.addOperand(MOps.back()); 3220 MOps.pop_back(); 3221 } 3222 } 3223 } 3224 } 3225 3226 // Check if the 'MI' that has the index OpNoForForwarding 3227 // meets the requirement described in the ImmInstrInfo. 3228 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3229 const ImmInstrInfo &III, 3230 unsigned OpNoForForwarding 3231 ) const { 3232 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3233 // would not work pre-RA, we can only do the check post RA. 3234 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3235 if (MRI.isSSA()) 3236 return false; 3237 3238 // Cannot do the transform if MI isn't summing the operands. 3239 if (!III.IsSummingOperands) 3240 return false; 3241 3242 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3243 if (!III.ZeroIsSpecialOrig) 3244 return false; 3245 3246 // We cannot do the transform if the operand we are trying to replace 3247 // isn't the same as the operand the instruction allows. 3248 if (OpNoForForwarding != III.OpNoForForwarding) 3249 return false; 3250 3251 // Check if the instruction we are trying to transform really has 3252 // the special zero register as its operand. 3253 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3254 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3255 return false; 3256 3257 // This machine instruction is convertible if it is, 3258 // 1. summing the operands. 3259 // 2. one of the operands is special zero register. 3260 // 3. the operand we are trying to replace is allowed by the MI. 3261 return true; 3262 } 3263 3264 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3265 // accordingly. 3266 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3267 const ImmInstrInfo &III, 3268 MachineOperand *&ImmMO, 3269 MachineOperand *&RegMO) const { 3270 unsigned Opc = DefMI.getOpcode(); 3271 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3272 return false; 3273 3274 assert(DefMI.getNumOperands() >= 3 && 3275 "Add inst must have at least three operands"); 3276 RegMO = &DefMI.getOperand(1); 3277 ImmMO = &DefMI.getOperand(2); 3278 3279 // This DefMI is elgible for forwarding if it is: 3280 // 1. add inst 3281 // 2. one of the operands is Imm/CPI/Global. 3282 return isAnImmediateOperand(*ImmMO); 3283 } 3284 3285 bool PPCInstrInfo::isRegElgibleForForwarding( 3286 const MachineOperand &RegMO, const MachineInstr &DefMI, 3287 const MachineInstr &MI, bool KillDefMI, 3288 bool &IsFwdFeederRegKilled) const { 3289 // x = addi y, imm 3290 // ... 3291 // z = lfdx 0, x -> z = lfd imm(y) 3292 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3293 // of "y" between the DEF of "x" and "z". 3294 // The query is only valid post RA. 3295 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3296 if (MRI.isSSA()) 3297 return false; 3298 3299 Register Reg = RegMO.getReg(); 3300 3301 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3302 MachineBasicBlock::const_reverse_iterator It = MI; 3303 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3304 It++; 3305 for (; It != E; ++It) { 3306 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3307 return false; 3308 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3309 IsFwdFeederRegKilled = true; 3310 // Made it to DefMI without encountering a clobber. 3311 if ((&*It) == &DefMI) 3312 break; 3313 } 3314 assert((&*It) == &DefMI && "DefMI is missing"); 3315 3316 // If DefMI also defines the register to be forwarded, we can only forward it 3317 // if DefMI is being erased. 3318 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3319 return KillDefMI; 3320 3321 return true; 3322 } 3323 3324 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3325 const MachineInstr &DefMI, 3326 const ImmInstrInfo &III, 3327 int64_t &Imm) const { 3328 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3329 if (DefMI.getOpcode() == PPC::ADDItocL) { 3330 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3331 // However, we know that, it is 16-bit width, and has the alignment of 4. 3332 // Check if the instruction met the requirement. 3333 if (III.ImmMustBeMultipleOf > 4 || 3334 III.TruncateImmTo || III.ImmWidth != 16) 3335 return false; 3336 3337 // Going from XForm to DForm loads means that the displacement needs to be 3338 // not just an immediate but also a multiple of 4, or 16 depending on the 3339 // load. A DForm load cannot be represented if it is a multiple of say 2. 3340 // XForm loads do not have this restriction. 3341 if (ImmMO.isGlobal() && 3342 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3343 return false; 3344 3345 return true; 3346 } 3347 3348 if (ImmMO.isImm()) { 3349 // It is Imm, we need to check if the Imm fit the range. 3350 int64_t Immediate = ImmMO.getImm(); 3351 // Sign-extend to 64-bits. 3352 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3353 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3354 3355 if (Imm % III.ImmMustBeMultipleOf) 3356 return false; 3357 if (III.TruncateImmTo) 3358 Imm &= ((1 << III.TruncateImmTo) - 1); 3359 if (III.SignedImm) { 3360 APInt ActualValue(64, Imm, true); 3361 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3362 return false; 3363 } else { 3364 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3365 if ((uint64_t)Imm > UnsignedMax) 3366 return false; 3367 } 3368 } 3369 else 3370 return false; 3371 3372 // This ImmMO is forwarded if it meets the requriement describle 3373 // in ImmInstrInfo 3374 return true; 3375 } 3376 3377 // If an X-Form instruction is fed by an add-immediate and one of its operands 3378 // is the literal zero, attempt to forward the source of the add-immediate to 3379 // the corresponding D-Form instruction with the displacement coming from 3380 // the immediate being added. 3381 bool PPCInstrInfo::transformToImmFormFedByAdd( 3382 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3383 MachineInstr &DefMI, bool KillDefMI) const { 3384 // RegMO ImmMO 3385 // | | 3386 // x = addi reg, imm <----- DefMI 3387 // y = op 0 , x <----- MI 3388 // | 3389 // OpNoForForwarding 3390 // Check if the MI meet the requirement described in the III. 3391 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3392 return false; 3393 3394 // Check if the DefMI meet the requirement 3395 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3396 MachineOperand *ImmMO = nullptr; 3397 MachineOperand *RegMO = nullptr; 3398 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3399 return false; 3400 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3401 3402 // As we get the Imm operand now, we need to check if the ImmMO meet 3403 // the requirement described in the III. If yes set the Imm. 3404 int64_t Imm = 0; 3405 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3406 return false; 3407 3408 bool IsFwdFeederRegKilled = false; 3409 // Check if the RegMO can be forwarded to MI. 3410 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3411 IsFwdFeederRegKilled)) 3412 return false; 3413 3414 // Get killed info in case fixup needed after transformation. 3415 unsigned ForwardKilledOperandReg = ~0U; 3416 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3417 bool PostRA = !MRI.isSSA(); 3418 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3419 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3420 3421 // We know that, the MI and DefMI both meet the pattern, and 3422 // the Imm also meet the requirement with the new Imm-form. 3423 // It is safe to do the transformation now. 3424 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3425 LLVM_DEBUG(MI.dump()); 3426 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3427 LLVM_DEBUG(DefMI.dump()); 3428 3429 // Update the base reg first. 3430 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3431 false, false, 3432 RegMO->isKill()); 3433 3434 // Then, update the imm. 3435 if (ImmMO->isImm()) { 3436 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3437 // directly. 3438 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3439 } 3440 else { 3441 // Otherwise, it is Constant Pool Index(CPI) or Global, 3442 // which is relocation in fact. We need to replace the special zero 3443 // register with ImmMO. 3444 // Before that, we need to fixup the target flags for imm. 3445 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3446 if (DefMI.getOpcode() == PPC::ADDItocL) 3447 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3448 3449 // MI didn't have the interface such as MI.setOperand(i) though 3450 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3451 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3452 // and, add the ImmMO, then, move back all the operands behind ZERO. 3453 SmallVector<MachineOperand, 2> MOps; 3454 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3455 MOps.push_back(MI.getOperand(i)); 3456 MI.RemoveOperand(i); 3457 } 3458 3459 // Remove the last MO in the list, which is ZERO operand in fact. 3460 MOps.pop_back(); 3461 // Add the imm operand. 3462 MI.addOperand(*ImmMO); 3463 // Now add the rest back. 3464 for (auto &MO : MOps) 3465 MI.addOperand(MO); 3466 } 3467 3468 // Update the opcode. 3469 MI.setDesc(get(III.ImmOpcode)); 3470 3471 // Fix up killed/dead flag after transformation. 3472 // Pattern 1: 3473 // x = ADD KilledFwdFeederReg, imm 3474 // n = opn KilledFwdFeederReg(killed), regn 3475 // y = XOP 0, x 3476 // Pattern 2: 3477 // x = ADD reg(killed), imm 3478 // y = XOP 0, x 3479 if (IsFwdFeederRegKilled || RegMO->isKill()) 3480 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3481 // Pattern 3: 3482 // ForwardKilledOperandReg = ADD reg, imm 3483 // y = XOP 0, ForwardKilledOperandReg(killed) 3484 if (ForwardKilledOperandReg != ~0U) 3485 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3486 3487 LLVM_DEBUG(dbgs() << "With:\n"); 3488 LLVM_DEBUG(MI.dump()); 3489 3490 return true; 3491 } 3492 3493 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3494 const ImmInstrInfo &III, 3495 unsigned ConstantOpNo, 3496 MachineInstr &DefMI, 3497 int64_t Imm) const { 3498 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3499 bool PostRA = !MRI.isSSA(); 3500 // Exit early if we can't convert this. 3501 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3502 return false; 3503 if (Imm % III.ImmMustBeMultipleOf) 3504 return false; 3505 if (III.TruncateImmTo) 3506 Imm &= ((1 << III.TruncateImmTo) - 1); 3507 if (III.SignedImm) { 3508 APInt ActualValue(64, Imm, true); 3509 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3510 return false; 3511 } else { 3512 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3513 if ((uint64_t)Imm > UnsignedMax) 3514 return false; 3515 } 3516 3517 // If we're post-RA, the instructions don't agree on whether register zero is 3518 // special, we can transform this as long as the register operand that will 3519 // end up in the location where zero is special isn't R0. 3520 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3521 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3522 III.ZeroIsSpecialNew + 1; 3523 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3524 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3525 // If R0 is in the operand where zero is special for the new instruction, 3526 // it is unsafe to transform if the constant operand isn't that operand. 3527 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3528 ConstantOpNo != III.ZeroIsSpecialNew) 3529 return false; 3530 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3531 ConstantOpNo != PosForOrigZero) 3532 return false; 3533 } 3534 3535 // Get killed info in case fixup needed after transformation. 3536 unsigned ForwardKilledOperandReg = ~0U; 3537 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3538 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3539 3540 unsigned Opc = MI.getOpcode(); 3541 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLWo || 3542 Opc == PPC::SRW || Opc == PPC::SRWo || 3543 Opc == PPC::SLW8 || Opc == PPC::SLW8o || 3544 Opc == PPC::SRW8 || Opc == PPC::SRW8o; 3545 bool SpecialShift64 = 3546 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3547 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3548 Opc == PPC::SLDo || Opc == PPC::SRDo; 3549 bool RightShift = 3550 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3551 3552 MI.setDesc(get(III.ImmOpcode)); 3553 if (ConstantOpNo == III.OpNoForForwarding) { 3554 // Converting shifts to immediate form is a bit tricky since they may do 3555 // one of three things: 3556 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3557 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3558 // setting CR0) 3559 // 3. If the shift amount is in [1, OpSize), it's just a shift 3560 if (SpecialShift32 || SpecialShift64) { 3561 LoadImmediateInfo LII; 3562 LII.Imm = 0; 3563 LII.SetCR = SetCR; 3564 LII.Is64Bit = SpecialShift64; 3565 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3566 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3567 replaceInstrWithLI(MI, LII); 3568 // Shifts by zero don't change the value. If we don't need to set CR0, 3569 // just convert this to a COPY. Can't do this post-RA since we've already 3570 // cleaned up the copies. 3571 else if (!SetCR && ShAmt == 0 && !PostRA) { 3572 MI.RemoveOperand(2); 3573 MI.setDesc(get(PPC::COPY)); 3574 } else { 3575 // The 32 bit and 64 bit instructions are quite different. 3576 if (SpecialShift32) { 3577 // Left shifts use (N, 0, 31-N). 3578 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3579 // use (0, 0, 31) if N == 0. 3580 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3581 uint64_t MB = RightShift ? ShAmt : 0; 3582 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3583 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3584 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3585 .addImm(ME); 3586 } else { 3587 // Left shifts use (N, 63-N). 3588 // Right shifts use (64-N, N) if 0 < N < 64. 3589 // use (0, 0) if N == 0. 3590 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3591 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3592 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3593 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3594 } 3595 } 3596 } else 3597 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3598 } 3599 // Convert commutative instructions (switch the operands and convert the 3600 // desired one to an immediate. 3601 else if (III.IsCommutative) { 3602 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3603 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3604 } else 3605 llvm_unreachable("Should have exited early!"); 3606 3607 // For instructions for which the constant register replaces a different 3608 // operand than where the immediate goes, we need to swap them. 3609 if (III.OpNoForForwarding != III.ImmOpNo) 3610 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3611 3612 // If the special R0/X0 register index are different for original instruction 3613 // and new instruction, we need to fix up the register class in new 3614 // instruction. 3615 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3616 if (III.ZeroIsSpecialNew) { 3617 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3618 // need to fix up register class. 3619 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3620 if (Register::isVirtualRegister(RegToModify)) { 3621 const TargetRegisterClass *NewRC = 3622 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3623 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3624 MRI.setRegClass(RegToModify, NewRC); 3625 } 3626 } 3627 } 3628 3629 // Fix up killed/dead flag after transformation. 3630 // Pattern: 3631 // ForwardKilledOperandReg = LI imm 3632 // y = XOP reg, ForwardKilledOperandReg(killed) 3633 if (ForwardKilledOperandReg != ~0U) 3634 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3635 return true; 3636 } 3637 3638 const TargetRegisterClass * 3639 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3640 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3641 return &PPC::VSRCRegClass; 3642 return RC; 3643 } 3644 3645 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3646 return PPC::getRecordFormOpcode(Opcode); 3647 } 3648 3649 // This function returns true if the machine instruction 3650 // always outputs a value by sign-extending a 32 bit value, 3651 // i.e. 0 to 31-th bits are same as 32-th bit. 3652 static bool isSignExtendingOp(const MachineInstr &MI) { 3653 int Opcode = MI.getOpcode(); 3654 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3655 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3656 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3657 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3658 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3659 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3660 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3661 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3662 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3663 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3664 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3665 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3666 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3667 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3668 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3669 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3670 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3671 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3672 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3673 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3674 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3675 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3676 Opcode == PPC::EXTSB8_32_64) 3677 return true; 3678 3679 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3680 return true; 3681 3682 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3683 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3684 MI.getOperand(3).getImm() > 0 && 3685 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3686 return true; 3687 3688 return false; 3689 } 3690 3691 // This function returns true if the machine instruction 3692 // always outputs zeros in higher 32 bits. 3693 static bool isZeroExtendingOp(const MachineInstr &MI) { 3694 int Opcode = MI.getOpcode(); 3695 // The 16-bit immediate is sign-extended in li/lis. 3696 // If the most significant bit is zero, all higher bits are zero. 3697 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3698 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3699 int64_t Imm = MI.getOperand(1).getImm(); 3700 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3701 return true; 3702 } 3703 3704 // We have some variations of rotate-and-mask instructions 3705 // that clear higher 32-bits. 3706 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3707 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3708 Opcode == PPC::RLDICL_32_64) && 3709 MI.getOperand(3).getImm() >= 32) 3710 return true; 3711 3712 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3713 MI.getOperand(3).getImm() >= 32 && 3714 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3715 return true; 3716 3717 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3718 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3719 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3720 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3721 return true; 3722 3723 // There are other instructions that clear higher 32-bits. 3724 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3725 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3726 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3727 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3728 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3729 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3730 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3731 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3732 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3733 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3734 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3735 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3736 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3737 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3738 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3739 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3740 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3741 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3742 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3743 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3744 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3745 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3746 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3747 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3748 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3749 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3750 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3751 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3752 Opcode == PPC::MFVSRWZ) 3753 return true; 3754 3755 return false; 3756 } 3757 3758 // This function returns true if the input MachineInstr is a TOC save 3759 // instruction. 3760 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3761 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3762 return false; 3763 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3764 unsigned StackOffset = MI.getOperand(1).getImm(); 3765 Register StackReg = MI.getOperand(2).getReg(); 3766 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3767 return true; 3768 3769 return false; 3770 } 3771 3772 // We limit the max depth to track incoming values of PHIs or binary ops 3773 // (e.g. AND) to avoid excessive cost. 3774 const unsigned MAX_DEPTH = 1; 3775 3776 bool 3777 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3778 const unsigned Depth) const { 3779 const MachineFunction *MF = MI.getParent()->getParent(); 3780 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3781 3782 // If we know this instruction returns sign- or zero-extended result, 3783 // return true. 3784 if (SignExt ? isSignExtendingOp(MI): 3785 isZeroExtendingOp(MI)) 3786 return true; 3787 3788 switch (MI.getOpcode()) { 3789 case PPC::COPY: { 3790 Register SrcReg = MI.getOperand(1).getReg(); 3791 3792 // In both ELFv1 and v2 ABI, method parameters and the return value 3793 // are sign- or zero-extended. 3794 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3795 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3796 // We check the ZExt/SExt flags for a method parameter. 3797 if (MI.getParent()->getBasicBlock() == 3798 &MF->getFunction().getEntryBlock()) { 3799 Register VReg = MI.getOperand(0).getReg(); 3800 if (MF->getRegInfo().isLiveIn(VReg)) 3801 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3802 FuncInfo->isLiveInZExt(VReg); 3803 } 3804 3805 // For a method return value, we check the ZExt/SExt flags in attribute. 3806 // We assume the following code sequence for method call. 3807 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3808 // BL8_NOP @func,... 3809 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3810 // %5 = COPY %x3; G8RC:%5 3811 if (SrcReg == PPC::X3) { 3812 const MachineBasicBlock *MBB = MI.getParent(); 3813 MachineBasicBlock::const_instr_iterator II = 3814 MachineBasicBlock::const_instr_iterator(&MI); 3815 if (II != MBB->instr_begin() && 3816 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3817 const MachineInstr &CallMI = *(--II); 3818 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3819 const Function *CalleeFn = 3820 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3821 if (!CalleeFn) 3822 return false; 3823 const IntegerType *IntTy = 3824 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3825 const AttributeSet &Attrs = 3826 CalleeFn->getAttributes().getRetAttributes(); 3827 if (IntTy && IntTy->getBitWidth() <= 32) 3828 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3829 Attribute::ZExt); 3830 } 3831 } 3832 } 3833 } 3834 3835 // If this is a copy from another register, we recursively check source. 3836 if (!Register::isVirtualRegister(SrcReg)) 3837 return false; 3838 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3839 if (SrcMI != NULL) 3840 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3841 3842 return false; 3843 } 3844 3845 case PPC::ANDIo: 3846 case PPC::ANDISo: 3847 case PPC::ORI: 3848 case PPC::ORIS: 3849 case PPC::XORI: 3850 case PPC::XORIS: 3851 case PPC::ANDIo8: 3852 case PPC::ANDISo8: 3853 case PPC::ORI8: 3854 case PPC::ORIS8: 3855 case PPC::XORI8: 3856 case PPC::XORIS8: { 3857 // logical operation with 16-bit immediate does not change the upper bits. 3858 // So, we track the operand register as we do for register copy. 3859 Register SrcReg = MI.getOperand(1).getReg(); 3860 if (!Register::isVirtualRegister(SrcReg)) 3861 return false; 3862 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3863 if (SrcMI != NULL) 3864 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3865 3866 return false; 3867 } 3868 3869 // If all incoming values are sign-/zero-extended, 3870 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3871 case PPC::OR: 3872 case PPC::OR8: 3873 case PPC::ISEL: 3874 case PPC::PHI: { 3875 if (Depth >= MAX_DEPTH) 3876 return false; 3877 3878 // The input registers for PHI are operand 1, 3, ... 3879 // The input registers for others are operand 1 and 2. 3880 unsigned E = 3, D = 1; 3881 if (MI.getOpcode() == PPC::PHI) { 3882 E = MI.getNumOperands(); 3883 D = 2; 3884 } 3885 3886 for (unsigned I = 1; I != E; I += D) { 3887 if (MI.getOperand(I).isReg()) { 3888 Register SrcReg = MI.getOperand(I).getReg(); 3889 if (!Register::isVirtualRegister(SrcReg)) 3890 return false; 3891 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3892 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3893 return false; 3894 } 3895 else 3896 return false; 3897 } 3898 return true; 3899 } 3900 3901 // If at least one of the incoming values of an AND is zero extended 3902 // then the output is also zero-extended. If both of the incoming values 3903 // are sign-extended then the output is also sign extended. 3904 case PPC::AND: 3905 case PPC::AND8: { 3906 if (Depth >= MAX_DEPTH) 3907 return false; 3908 3909 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3910 3911 Register SrcReg1 = MI.getOperand(1).getReg(); 3912 Register SrcReg2 = MI.getOperand(2).getReg(); 3913 3914 if (!Register::isVirtualRegister(SrcReg1) || 3915 !Register::isVirtualRegister(SrcReg2)) 3916 return false; 3917 3918 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3919 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3920 if (!MISrc1 || !MISrc2) 3921 return false; 3922 3923 if(SignExt) 3924 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3925 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3926 else 3927 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3928 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3929 } 3930 3931 default: 3932 break; 3933 } 3934 return false; 3935 } 3936 3937 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 3938 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 3939 } 3940 3941 namespace { 3942 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 3943 MachineInstr *Loop, *EndLoop, *LoopCount; 3944 MachineFunction *MF; 3945 const TargetInstrInfo *TII; 3946 int64_t TripCount; 3947 3948 public: 3949 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 3950 MachineInstr *LoopCount) 3951 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 3952 MF(Loop->getParent()->getParent()), 3953 TII(MF->getSubtarget().getInstrInfo()) { 3954 // Inspect the Loop instruction up-front, as it may be deleted when we call 3955 // createTripCountGreaterCondition. 3956 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 3957 TripCount = LoopCount->getOperand(1).getImm(); 3958 else 3959 TripCount = -1; 3960 } 3961 3962 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 3963 // Only ignore the terminator. 3964 return MI == EndLoop; 3965 } 3966 3967 Optional<bool> 3968 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 3969 SmallVectorImpl<MachineOperand> &Cond) override { 3970 if (TripCount == -1) { 3971 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 3972 // so we don't need to generate any thing here. 3973 Cond.push_back(MachineOperand::CreateImm(0)); 3974 Cond.push_back(MachineOperand::CreateReg( 3975 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 3976 true)); 3977 return {}; 3978 } 3979 3980 return TripCount > TC; 3981 } 3982 3983 void setPreheader(MachineBasicBlock *NewPreheader) override { 3984 // Do nothing. We want the LOOP setup instruction to stay in the *old* 3985 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 3986 } 3987 3988 void adjustTripCount(int TripCountAdjust) override { 3989 // If the loop trip count is a compile-time value, then just change the 3990 // value. 3991 if (LoopCount->getOpcode() == PPC::LI8 || 3992 LoopCount->getOpcode() == PPC::LI) { 3993 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 3994 LoopCount->getOperand(1).setImm(TripCount); 3995 return; 3996 } 3997 3998 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 3999 // so we don't need to generate any thing here. 4000 } 4001 4002 void disposed() override { 4003 Loop->eraseFromParent(); 4004 // Ensure the loop setup instruction is deleted too. 4005 LoopCount->eraseFromParent(); 4006 } 4007 }; 4008 } // namespace 4009 4010 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4011 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4012 // We really "analyze" only hardware loops right now. 4013 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4014 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4015 if (Preheader == LoopBB) 4016 Preheader = *std::next(LoopBB->pred_begin()); 4017 MachineFunction *MF = Preheader->getParent(); 4018 4019 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4020 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4021 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4022 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4023 MachineRegisterInfo &MRI = MF->getRegInfo(); 4024 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4025 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4026 } 4027 } 4028 return nullptr; 4029 } 4030 4031 MachineInstr *PPCInstrInfo::findLoopInstr( 4032 MachineBasicBlock &PreHeader, 4033 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4034 4035 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4036 4037 // The loop set-up instruction should be in preheader 4038 for (auto &I : PreHeader.instrs()) 4039 if (I.getOpcode() == LOOPi) 4040 return &I; 4041 return nullptr; 4042 } 4043 4044 // Return true if get the base operand, byte offset of an instruction and the 4045 // memory width. Width is the size of memory that is being loaded/stored. 4046 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4047 const MachineInstr &LdSt, 4048 const MachineOperand *&BaseReg, 4049 int64_t &Offset, 4050 unsigned &Width, 4051 const TargetRegisterInfo *TRI) const { 4052 assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); 4053 4054 // Handle only loads/stores with base register followed by immediate offset. 4055 if (LdSt.getNumExplicitOperands() != 3) 4056 return false; 4057 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4058 return false; 4059 4060 if (!LdSt.hasOneMemOperand()) 4061 return false; 4062 4063 Width = (*LdSt.memoperands_begin())->getSize(); 4064 Offset = LdSt.getOperand(1).getImm(); 4065 BaseReg = &LdSt.getOperand(2); 4066 return true; 4067 } 4068 4069 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4070 const MachineInstr &MIa, const MachineInstr &MIb) const { 4071 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4072 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4073 4074 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4075 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4076 return false; 4077 4078 // Retrieve the base register, offset from the base register and width. Width 4079 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4080 // base registers are identical, and the offset of a lower memory access + 4081 // the width doesn't overlap the offset of a higher memory access, 4082 // then the memory accesses are different. 4083 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4084 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4085 int64_t OffsetA = 0, OffsetB = 0; 4086 unsigned int WidthA = 0, WidthB = 0; 4087 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4088 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4089 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4090 int LowOffset = std::min(OffsetA, OffsetB); 4091 int HighOffset = std::max(OffsetA, OffsetB); 4092 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4093 if (LowOffset + LowWidth <= HighOffset) 4094 return true; 4095 } 4096 } 4097 return false; 4098 } 4099