1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCContext.h" 74 #include "llvm/MC/MCExpr.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCSymbolXCOFF.h" 77 #include "llvm/Support/AtomicOrdering.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CodeGen.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MachineValueType.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <list> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "ppc-lowering" 103 104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisableSCO("disable-ppc-sco", 114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 115 116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 118 119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 120 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 121 122 STATISTIC(NumTailCalls, "Number of tail calls"); 123 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 124 125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 126 127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 128 129 // FIXME: Remove this once the bug has been fixed! 130 extern cl::opt<bool> ANDIGlueBug; 131 132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 133 const PPCSubtarget &STI) 134 : TargetLowering(TM), Subtarget(STI) { 135 // Use _setjmp/_longjmp instead of setjmp/longjmp. 136 setUseUnderscoreSetJmp(true); 137 setUseUnderscoreLongJmp(true); 138 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? 8:4); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 170 171 // PowerPC has pre-inc load and store's. 172 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 177 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 182 if (!Subtarget.hasSPE()) { 183 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 187 } 188 189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 190 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 191 for (MVT VT : ScalarIntVTs) { 192 setOperationAction(ISD::ADDC, VT, Legal); 193 setOperationAction(ISD::ADDE, VT, Legal); 194 setOperationAction(ISD::SUBC, VT, Legal); 195 setOperationAction(ISD::SUBE, VT, Legal); 196 } 197 198 if (Subtarget.useCRBits()) { 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 if (isPPC64 || Subtarget.hasFPCVT()) { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 203 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 204 isPPC64 ? MVT::i64 : MVT::i32); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 206 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 207 isPPC64 ? MVT::i64 : MVT::i32); 208 } else { 209 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 211 } 212 213 // PowerPC does not support direct load/store of condition registers. 214 setOperationAction(ISD::LOAD, MVT::i1, Custom); 215 setOperationAction(ISD::STORE, MVT::i1, Custom); 216 217 // FIXME: Remove this once the ANDI glue bug is fixed: 218 if (ANDIGlueBug) 219 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 220 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 224 setTruncStoreAction(VT, MVT::i1, Expand); 225 } 226 227 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 228 } 229 230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 231 // PPC (the libcall is not available). 232 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 233 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 234 235 // We do not currently implement these libm ops for PowerPC. 236 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 237 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 242 243 // PowerPC has no SREM/UREM instructions unless we are on P9 244 // On P9 we may use a hardware instruction to compute the remainder. 245 // The instructions are not legalized directly because in the cases where the 246 // result of both the remainder and the division is required it is more 247 // efficient to compute the remainder from the result of the division rather 248 // than use the remainder instruction. 249 if (Subtarget.isISA3_0()) { 250 setOperationAction(ISD::SREM, MVT::i32, Custom); 251 setOperationAction(ISD::UREM, MVT::i32, Custom); 252 setOperationAction(ISD::SREM, MVT::i64, Custom); 253 setOperationAction(ISD::UREM, MVT::i64, Custom); 254 } else { 255 setOperationAction(ISD::SREM, MVT::i32, Expand); 256 setOperationAction(ISD::UREM, MVT::i32, Expand); 257 setOperationAction(ISD::SREM, MVT::i64, Expand); 258 setOperationAction(ISD::UREM, MVT::i64, Expand); 259 } 260 261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 262 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 269 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 270 271 // We don't support sin/cos/sqrt/fmod/pow 272 setOperationAction(ISD::FSIN , MVT::f64, Expand); 273 setOperationAction(ISD::FCOS , MVT::f64, Expand); 274 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 275 setOperationAction(ISD::FREM , MVT::f64, Expand); 276 setOperationAction(ISD::FPOW , MVT::f64, Expand); 277 setOperationAction(ISD::FSIN , MVT::f32, Expand); 278 setOperationAction(ISD::FCOS , MVT::f32, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 280 setOperationAction(ISD::FREM , MVT::f32, Expand); 281 setOperationAction(ISD::FPOW , MVT::f32, Expand); 282 if (Subtarget.hasSPE()) { 283 setOperationAction(ISD::FMA , MVT::f64, Expand); 284 setOperationAction(ISD::FMA , MVT::f32, Expand); 285 } else { 286 setOperationAction(ISD::FMA , MVT::f64, Legal); 287 setOperationAction(ISD::FMA , MVT::f32, Legal); 288 } 289 290 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 291 292 // If we're enabling GP optimizations, use hardware square root 293 if (!Subtarget.hasFSQRT() && 294 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 295 Subtarget.hasFRE())) 296 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 297 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 300 Subtarget.hasFRES())) 301 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 302 303 if (Subtarget.hasFCPSGN()) { 304 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 305 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 306 } else { 307 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 308 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 313 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 314 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 315 setOperationAction(ISD::FROUND, MVT::f64, Legal); 316 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FROUND, MVT::f32, Legal); 321 } 322 323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 324 // to speed up scalar BSWAP64. 325 // CTPOP or CTTZ were introduced in P8/P9 respectively 326 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 327 if (Subtarget.hasP9Vector()) 328 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 329 else 330 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 331 if (Subtarget.isISA3_0()) { 332 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 334 } else { 335 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 336 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 337 } 338 339 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 342 } else { 343 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 344 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 345 } 346 347 // PowerPC does not have ROTR 348 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 349 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 350 351 if (!Subtarget.useCRBits()) { 352 // PowerPC does not have Select 353 setOperationAction(ISD::SELECT, MVT::i32, Expand); 354 setOperationAction(ISD::SELECT, MVT::i64, Expand); 355 setOperationAction(ISD::SELECT, MVT::f32, Expand); 356 setOperationAction(ISD::SELECT, MVT::f64, Expand); 357 } 358 359 // PowerPC wants to turn select_cc of FP into fsel when possible. 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 361 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 362 363 // PowerPC wants to optimize integer setcc a bit 364 if (!Subtarget.useCRBits()) 365 setOperationAction(ISD::SETCC, MVT::i32, Custom); 366 367 // PowerPC does not have BRCOND which requires SetCC 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 370 371 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 372 373 if (Subtarget.hasSPE()) { 374 // SPE has built-in conversions 375 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 378 } else { 379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 382 // PowerPC does not have [U|S]INT_TO_FP 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 385 } 386 387 if (Subtarget.hasDirectMove() && isPPC64) { 388 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 389 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 391 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 392 } else { 393 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 394 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 395 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 396 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 397 } 398 399 // We cannot sextinreg(i1). Expand to shifts. 400 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 401 402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 404 // support continuation, user-level threading, and etc.. As a result, no 405 // other SjLj exception interfaces are implemented and please don't build 406 // your own exception handling based on them. 407 // LLVM/Clang supports zero-cost DWARF exception handling. 408 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 409 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 410 411 // We want to legalize GlobalAddress and ConstantPool nodes into the 412 // appropriate instructions to materialize the address. 413 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 414 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 415 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 416 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 417 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 423 424 // TRAP is legal. 425 setOperationAction(ISD::TRAP, MVT::Other, Legal); 426 427 // TRAMPOLINE is custom lowered. 428 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 429 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 430 431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 432 setOperationAction(ISD::VASTART , MVT::Other, Custom); 433 434 if (Subtarget.isSVR4ABI()) { 435 if (isPPC64) { 436 // VAARG always uses double-word chunks, so promote anything smaller. 437 setOperationAction(ISD::VAARG, MVT::i1, Promote); 438 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 439 setOperationAction(ISD::VAARG, MVT::i8, Promote); 440 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 441 setOperationAction(ISD::VAARG, MVT::i16, Promote); 442 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 443 setOperationAction(ISD::VAARG, MVT::i32, Promote); 444 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 445 setOperationAction(ISD::VAARG, MVT::Other, Expand); 446 } else { 447 // VAARG is custom lowered with the 32-bit SVR4 ABI. 448 setOperationAction(ISD::VAARG, MVT::Other, Custom); 449 setOperationAction(ISD::VAARG, MVT::i64, Custom); 450 } 451 } else 452 setOperationAction(ISD::VAARG, MVT::Other, Expand); 453 454 if (Subtarget.isSVR4ABI() && !isPPC64) 455 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 456 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 457 else 458 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 459 460 // Use the default implementation. 461 setOperationAction(ISD::VAEND , MVT::Other, Expand); 462 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 463 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 464 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 465 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 466 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 467 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 468 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 469 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 470 471 // We want to custom lower some of our intrinsics. 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 473 474 // To handle counter-based loop conditions. 475 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 476 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 478 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 479 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 480 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 481 482 // Comparisons that require checking two conditions. 483 if (Subtarget.hasSPE()) { 484 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 486 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 488 } 489 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 499 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 500 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 501 502 if (Subtarget.has64BitSupport()) { 503 // They also have instructions for converting between i64 and fp. 504 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 505 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 508 // This is just the low 32 bits of a (signed) fp->i64 conversion. 509 // We cannot do this with Promote because i64 is not a legal type. 510 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 511 512 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 513 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 514 } else { 515 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 516 if (Subtarget.hasSPE()) 517 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 518 else 519 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 520 } 521 522 // With the instructions enabled under FPCVT, we can do everything. 523 if (Subtarget.hasFPCVT()) { 524 if (Subtarget.has64BitSupport()) { 525 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 529 } 530 531 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 532 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 533 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 534 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 535 } 536 537 if (Subtarget.use64BitRegs()) { 538 // 64-bit PowerPC implementations can support i64 types directly 539 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 540 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 541 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 542 // 64-bit PowerPC wants to expand i128 shifts itself. 543 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 544 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 545 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 546 } else { 547 // 32-bit PowerPC wants to expand i64 shifts itself. 548 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 549 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 550 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 551 } 552 553 if (Subtarget.hasAltivec()) { 554 // First set operation action for all vector types to expand. Then we 555 // will selectively turn on ones that can be effectively codegen'd. 556 for (MVT VT : MVT::vector_valuetypes()) { 557 // add/sub are legal for all supported vector VT's. 558 setOperationAction(ISD::ADD, VT, Legal); 559 setOperationAction(ISD::SUB, VT, Legal); 560 561 // For v2i64, these are only valid with P8Vector. This is corrected after 562 // the loop. 563 setOperationAction(ISD::SMAX, VT, Legal); 564 setOperationAction(ISD::SMIN, VT, Legal); 565 setOperationAction(ISD::UMAX, VT, Legal); 566 setOperationAction(ISD::UMIN, VT, Legal); 567 568 if (Subtarget.hasVSX()) { 569 setOperationAction(ISD::FMAXNUM, VT, Legal); 570 setOperationAction(ISD::FMINNUM, VT, Legal); 571 } 572 573 // Vector instructions introduced in P8 574 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 575 setOperationAction(ISD::CTPOP, VT, Legal); 576 setOperationAction(ISD::CTLZ, VT, Legal); 577 } 578 else { 579 setOperationAction(ISD::CTPOP, VT, Expand); 580 setOperationAction(ISD::CTLZ, VT, Expand); 581 } 582 583 // Vector instructions introduced in P9 584 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 585 setOperationAction(ISD::CTTZ, VT, Legal); 586 else 587 setOperationAction(ISD::CTTZ, VT, Expand); 588 589 // We promote all shuffles to v16i8. 590 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 591 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 592 593 // We promote all non-typed operations to v4i32. 594 setOperationAction(ISD::AND , VT, Promote); 595 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 596 setOperationAction(ISD::OR , VT, Promote); 597 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 598 setOperationAction(ISD::XOR , VT, Promote); 599 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 600 setOperationAction(ISD::LOAD , VT, Promote); 601 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 602 setOperationAction(ISD::SELECT, VT, Promote); 603 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 604 setOperationAction(ISD::VSELECT, VT, Legal); 605 setOperationAction(ISD::SELECT_CC, VT, Promote); 606 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 607 setOperationAction(ISD::STORE, VT, Promote); 608 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 609 610 // No other operations are legal. 611 setOperationAction(ISD::MUL , VT, Expand); 612 setOperationAction(ISD::SDIV, VT, Expand); 613 setOperationAction(ISD::SREM, VT, Expand); 614 setOperationAction(ISD::UDIV, VT, Expand); 615 setOperationAction(ISD::UREM, VT, Expand); 616 setOperationAction(ISD::FDIV, VT, Expand); 617 setOperationAction(ISD::FREM, VT, Expand); 618 setOperationAction(ISD::FNEG, VT, Expand); 619 setOperationAction(ISD::FSQRT, VT, Expand); 620 setOperationAction(ISD::FLOG, VT, Expand); 621 setOperationAction(ISD::FLOG10, VT, Expand); 622 setOperationAction(ISD::FLOG2, VT, Expand); 623 setOperationAction(ISD::FEXP, VT, Expand); 624 setOperationAction(ISD::FEXP2, VT, Expand); 625 setOperationAction(ISD::FSIN, VT, Expand); 626 setOperationAction(ISD::FCOS, VT, Expand); 627 setOperationAction(ISD::FABS, VT, Expand); 628 setOperationAction(ISD::FFLOOR, VT, Expand); 629 setOperationAction(ISD::FCEIL, VT, Expand); 630 setOperationAction(ISD::FTRUNC, VT, Expand); 631 setOperationAction(ISD::FRINT, VT, Expand); 632 setOperationAction(ISD::FNEARBYINT, VT, Expand); 633 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 634 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 635 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 636 setOperationAction(ISD::MULHU, VT, Expand); 637 setOperationAction(ISD::MULHS, VT, Expand); 638 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 639 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 640 setOperationAction(ISD::UDIVREM, VT, Expand); 641 setOperationAction(ISD::SDIVREM, VT, Expand); 642 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 643 setOperationAction(ISD::FPOW, VT, Expand); 644 setOperationAction(ISD::BSWAP, VT, Expand); 645 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 646 setOperationAction(ISD::ROTL, VT, Expand); 647 setOperationAction(ISD::ROTR, VT, Expand); 648 649 for (MVT InnerVT : MVT::vector_valuetypes()) { 650 setTruncStoreAction(VT, InnerVT, Expand); 651 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 652 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 653 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 654 } 655 } 656 if (!Subtarget.hasP8Vector()) { 657 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 658 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 659 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 660 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 661 } 662 663 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 664 setOperationAction(ISD::ABS, VT, Custom); 665 666 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 667 // with merges, splats, etc. 668 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 669 670 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 671 // are cheap, so handle them before they get expanded to scalar. 672 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 673 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 674 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 675 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 676 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 677 678 setOperationAction(ISD::AND , MVT::v4i32, Legal); 679 setOperationAction(ISD::OR , MVT::v4i32, Legal); 680 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 681 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 682 setOperationAction(ISD::SELECT, MVT::v4i32, 683 Subtarget.useCRBits() ? Legal : Expand); 684 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 685 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 686 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 687 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 688 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 689 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 690 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 691 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 692 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 693 694 // Without hasP8Altivec set, v2i64 SMAX isn't available. 695 // But ABS custom lowering requires SMAX support. 696 if (!Subtarget.hasP8Altivec()) 697 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 698 699 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 700 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 701 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 702 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 703 704 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 705 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 706 707 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 708 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 709 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 710 } 711 712 if (Subtarget.hasP8Altivec()) 713 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 714 else 715 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 716 717 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 718 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 719 720 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 721 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 722 723 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 724 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 726 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 727 728 // Altivec does not contain unordered floating-point compare instructions 729 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 730 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 731 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 732 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 733 734 if (Subtarget.hasVSX()) { 735 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 736 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 737 if (Subtarget.hasP8Vector()) { 738 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 740 } 741 if (Subtarget.hasDirectMove() && isPPC64) { 742 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 743 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 745 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 746 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 747 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 748 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 749 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 750 } 751 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 752 753 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 754 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 755 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 756 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 757 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 758 759 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 760 761 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 762 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 763 764 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 765 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 766 767 // Share the Altivec comparison restrictions. 768 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 769 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 770 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 771 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 772 773 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 774 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 775 776 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 777 778 if (Subtarget.hasP8Vector()) 779 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 780 781 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 782 783 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 784 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 785 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 786 787 if (Subtarget.hasP8Altivec()) { 788 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 789 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 790 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 791 792 // 128 bit shifts can be accomplished via 3 instructions for SHL and 793 // SRL, but not for SRA because of the instructions available: 794 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 795 // doing 796 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 797 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 798 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 799 800 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 801 } 802 else { 803 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 804 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 805 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 806 807 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 808 809 // VSX v2i64 only supports non-arithmetic operations. 810 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 811 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 812 } 813 814 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 815 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 816 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 817 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 818 819 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 820 821 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 822 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 823 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 824 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 825 826 // Custom handling for partial vectors of integers converted to 827 // floating point. We already have optimal handling for v2i32 through 828 // the DAG combine, so those aren't necessary. 829 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 830 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 831 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 832 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 833 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 834 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 835 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 836 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 837 838 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 839 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 840 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 841 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 842 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 843 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 844 845 if (Subtarget.hasDirectMove()) 846 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 847 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 848 849 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 850 } 851 852 if (Subtarget.hasP8Altivec()) { 853 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 854 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 855 } 856 857 if (Subtarget.hasP9Vector()) { 858 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 859 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 860 861 // 128 bit shifts can be accomplished via 3 instructions for SHL and 862 // SRL, but not for SRA because of the instructions available: 863 // VS{RL} and VS{RL}O. 864 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 865 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 866 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 867 868 if (EnableQuadPrecision) { 869 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 870 setOperationAction(ISD::FADD, MVT::f128, Legal); 871 setOperationAction(ISD::FSUB, MVT::f128, Legal); 872 setOperationAction(ISD::FDIV, MVT::f128, Legal); 873 setOperationAction(ISD::FMUL, MVT::f128, Legal); 874 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 875 // No extending loads to f128 on PPC. 876 for (MVT FPT : MVT::fp_valuetypes()) 877 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 878 setOperationAction(ISD::FMA, MVT::f128, Legal); 879 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 880 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 881 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 882 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 883 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 884 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 885 886 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 887 setOperationAction(ISD::FRINT, MVT::f128, Legal); 888 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 889 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 890 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 891 setOperationAction(ISD::FROUND, MVT::f128, Legal); 892 893 setOperationAction(ISD::SELECT, MVT::f128, Expand); 894 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 895 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 896 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 897 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 898 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 899 // No implementation for these ops for PowerPC. 900 setOperationAction(ISD::FSIN , MVT::f128, Expand); 901 setOperationAction(ISD::FCOS , MVT::f128, Expand); 902 setOperationAction(ISD::FPOW, MVT::f128, Expand); 903 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 904 setOperationAction(ISD::FREM, MVT::f128, Expand); 905 } 906 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 907 908 } 909 910 if (Subtarget.hasP9Altivec()) { 911 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 912 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 913 } 914 } 915 916 if (Subtarget.hasQPX()) { 917 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 918 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 919 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 920 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 921 922 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 923 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 924 925 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 926 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 927 928 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 929 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 930 931 if (!Subtarget.useCRBits()) 932 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 933 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 934 935 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 936 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 937 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 938 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 939 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 940 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 941 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 942 943 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 944 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 945 946 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 947 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 948 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 949 950 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 951 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 952 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 953 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 954 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 955 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 956 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 957 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 958 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 959 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 960 961 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 962 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 963 964 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 965 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 966 967 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 968 969 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 970 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 971 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 972 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 973 974 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 975 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 976 977 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 978 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 979 980 if (!Subtarget.useCRBits()) 981 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 982 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 983 984 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 985 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 986 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 987 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 988 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 989 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 990 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 991 992 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 993 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 994 995 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 996 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 997 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 998 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 999 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1000 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1001 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1002 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1003 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1004 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1005 1006 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1008 1009 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1010 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1011 1012 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1013 1014 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1015 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1016 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1017 1018 if (!Subtarget.useCRBits()) 1019 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1020 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1021 1022 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1023 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1024 1025 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1026 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1027 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1028 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1029 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1030 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1031 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1032 1033 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1034 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1035 1036 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1037 1038 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1039 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1040 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1041 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1042 1043 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1044 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1045 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1046 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1047 1048 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1049 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1050 1051 // These need to set FE_INEXACT, and so cannot be vectorized here. 1052 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1053 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1054 1055 if (TM.Options.UnsafeFPMath) { 1056 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1057 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1058 1059 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1060 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1061 } else { 1062 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1063 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1064 1065 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1066 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1067 } 1068 } 1069 1070 if (Subtarget.has64BitSupport()) 1071 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1072 1073 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1074 1075 if (!isPPC64) { 1076 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1077 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1078 } 1079 1080 setBooleanContents(ZeroOrOneBooleanContent); 1081 1082 if (Subtarget.hasAltivec()) { 1083 // Altivec instructions set fields to all zeros or all ones. 1084 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1085 } 1086 1087 if (!isPPC64) { 1088 // These libcalls are not available in 32-bit. 1089 setLibcallName(RTLIB::SHL_I128, nullptr); 1090 setLibcallName(RTLIB::SRL_I128, nullptr); 1091 setLibcallName(RTLIB::SRA_I128, nullptr); 1092 } 1093 1094 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1095 1096 // We have target-specific dag combine patterns for the following nodes: 1097 setTargetDAGCombine(ISD::ADD); 1098 setTargetDAGCombine(ISD::SHL); 1099 setTargetDAGCombine(ISD::SRA); 1100 setTargetDAGCombine(ISD::SRL); 1101 setTargetDAGCombine(ISD::MUL); 1102 setTargetDAGCombine(ISD::SINT_TO_FP); 1103 setTargetDAGCombine(ISD::BUILD_VECTOR); 1104 if (Subtarget.hasFPCVT()) 1105 setTargetDAGCombine(ISD::UINT_TO_FP); 1106 setTargetDAGCombine(ISD::LOAD); 1107 setTargetDAGCombine(ISD::STORE); 1108 setTargetDAGCombine(ISD::BR_CC); 1109 if (Subtarget.useCRBits()) 1110 setTargetDAGCombine(ISD::BRCOND); 1111 setTargetDAGCombine(ISD::BSWAP); 1112 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1113 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1114 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1115 1116 setTargetDAGCombine(ISD::SIGN_EXTEND); 1117 setTargetDAGCombine(ISD::ZERO_EXTEND); 1118 setTargetDAGCombine(ISD::ANY_EXTEND); 1119 1120 setTargetDAGCombine(ISD::TRUNCATE); 1121 1122 if (Subtarget.useCRBits()) { 1123 setTargetDAGCombine(ISD::TRUNCATE); 1124 setTargetDAGCombine(ISD::SETCC); 1125 setTargetDAGCombine(ISD::SELECT_CC); 1126 } 1127 1128 // Use reciprocal estimates. 1129 if (TM.Options.UnsafeFPMath) { 1130 setTargetDAGCombine(ISD::FDIV); 1131 setTargetDAGCombine(ISD::FSQRT); 1132 } 1133 1134 if (Subtarget.hasP9Altivec()) { 1135 setTargetDAGCombine(ISD::ABS); 1136 setTargetDAGCombine(ISD::VSELECT); 1137 } 1138 1139 // Darwin long double math library functions have $LDBL128 appended. 1140 if (Subtarget.isDarwin()) { 1141 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1142 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1143 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1144 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1145 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1146 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1147 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1148 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1149 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1150 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1151 } 1152 1153 if (EnableQuadPrecision) { 1154 setLibcallName(RTLIB::LOG_F128, "logf128"); 1155 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1156 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1157 setLibcallName(RTLIB::EXP_F128, "expf128"); 1158 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1159 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1160 setLibcallName(RTLIB::COS_F128, "cosf128"); 1161 setLibcallName(RTLIB::POW_F128, "powf128"); 1162 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1163 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1164 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1165 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1166 } 1167 1168 // With 32 condition bits, we don't need to sink (and duplicate) compares 1169 // aggressively in CodeGenPrep. 1170 if (Subtarget.useCRBits()) { 1171 setHasMultipleConditionRegisters(); 1172 setJumpIsExpensive(); 1173 } 1174 1175 setMinFunctionAlignment(2); 1176 if (Subtarget.isDarwin()) 1177 setPrefFunctionAlignment(4); 1178 1179 switch (Subtarget.getDarwinDirective()) { 1180 default: break; 1181 case PPC::DIR_970: 1182 case PPC::DIR_A2: 1183 case PPC::DIR_E500: 1184 case PPC::DIR_E500mc: 1185 case PPC::DIR_E5500: 1186 case PPC::DIR_PWR4: 1187 case PPC::DIR_PWR5: 1188 case PPC::DIR_PWR5X: 1189 case PPC::DIR_PWR6: 1190 case PPC::DIR_PWR6X: 1191 case PPC::DIR_PWR7: 1192 case PPC::DIR_PWR8: 1193 case PPC::DIR_PWR9: 1194 setPrefFunctionAlignment(4); 1195 setPrefLoopAlignment(4); 1196 break; 1197 } 1198 1199 if (Subtarget.enableMachineScheduler()) 1200 setSchedulingPreference(Sched::Source); 1201 else 1202 setSchedulingPreference(Sched::Hybrid); 1203 1204 computeRegisterProperties(STI.getRegisterInfo()); 1205 1206 // The Freescale cores do better with aggressive inlining of memcpy and 1207 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1208 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1209 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1210 MaxStoresPerMemset = 32; 1211 MaxStoresPerMemsetOptSize = 16; 1212 MaxStoresPerMemcpy = 32; 1213 MaxStoresPerMemcpyOptSize = 8; 1214 MaxStoresPerMemmove = 32; 1215 MaxStoresPerMemmoveOptSize = 8; 1216 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1217 // The A2 also benefits from (very) aggressive inlining of memcpy and 1218 // friends. The overhead of a the function call, even when warm, can be 1219 // over one hundred cycles. 1220 MaxStoresPerMemset = 128; 1221 MaxStoresPerMemcpy = 128; 1222 MaxStoresPerMemmove = 128; 1223 MaxLoadsPerMemcmp = 128; 1224 } else { 1225 MaxLoadsPerMemcmp = 8; 1226 MaxLoadsPerMemcmpOptSize = 4; 1227 } 1228 } 1229 1230 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1231 /// the desired ByVal argument alignment. 1232 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1233 unsigned MaxMaxAlign) { 1234 if (MaxAlign == MaxMaxAlign) 1235 return; 1236 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1237 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1238 MaxAlign = 32; 1239 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1240 MaxAlign = 16; 1241 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1242 unsigned EltAlign = 0; 1243 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1244 if (EltAlign > MaxAlign) 1245 MaxAlign = EltAlign; 1246 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1247 for (auto *EltTy : STy->elements()) { 1248 unsigned EltAlign = 0; 1249 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1250 if (EltAlign > MaxAlign) 1251 MaxAlign = EltAlign; 1252 if (MaxAlign == MaxMaxAlign) 1253 break; 1254 } 1255 } 1256 } 1257 1258 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1259 /// function arguments in the caller parameter area. 1260 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1261 const DataLayout &DL) const { 1262 // Darwin passes everything on 4 byte boundary. 1263 if (Subtarget.isDarwin()) 1264 return 4; 1265 1266 // 16byte and wider vectors are passed on 16byte boundary. 1267 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1268 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1269 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1270 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1271 return Align; 1272 } 1273 1274 bool PPCTargetLowering::useSoftFloat() const { 1275 return Subtarget.useSoftFloat(); 1276 } 1277 1278 bool PPCTargetLowering::hasSPE() const { 1279 return Subtarget.hasSPE(); 1280 } 1281 1282 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1283 return VT.isScalarInteger(); 1284 } 1285 1286 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1287 switch ((PPCISD::NodeType)Opcode) { 1288 case PPCISD::FIRST_NUMBER: break; 1289 case PPCISD::FSEL: return "PPCISD::FSEL"; 1290 case PPCISD::FCFID: return "PPCISD::FCFID"; 1291 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1292 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1293 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1294 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1295 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1296 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1297 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1298 case PPCISD::FP_TO_UINT_IN_VSR: 1299 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1300 case PPCISD::FP_TO_SINT_IN_VSR: 1301 return "PPCISD::FP_TO_SINT_IN_VSR"; 1302 case PPCISD::FRE: return "PPCISD::FRE"; 1303 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1304 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1305 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1306 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1307 case PPCISD::VPERM: return "PPCISD::VPERM"; 1308 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1309 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1310 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1311 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1312 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1313 case PPCISD::CMPB: return "PPCISD::CMPB"; 1314 case PPCISD::Hi: return "PPCISD::Hi"; 1315 case PPCISD::Lo: return "PPCISD::Lo"; 1316 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1317 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1318 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1319 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1320 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1321 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1322 case PPCISD::SRL: return "PPCISD::SRL"; 1323 case PPCISD::SRA: return "PPCISD::SRA"; 1324 case PPCISD::SHL: return "PPCISD::SHL"; 1325 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1326 case PPCISD::CALL: return "PPCISD::CALL"; 1327 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1328 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1329 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1330 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1331 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1332 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1333 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1334 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1335 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1336 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1337 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1338 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1339 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1340 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1341 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1342 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1343 case PPCISD::VCMP: return "PPCISD::VCMP"; 1344 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1345 case PPCISD::LBRX: return "PPCISD::LBRX"; 1346 case PPCISD::STBRX: return "PPCISD::STBRX"; 1347 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1348 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1349 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1350 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1351 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1352 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1353 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1354 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1355 case PPCISD::ST_VSR_SCAL_INT: 1356 return "PPCISD::ST_VSR_SCAL_INT"; 1357 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1358 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1359 case PPCISD::BDZ: return "PPCISD::BDZ"; 1360 case PPCISD::MFFS: return "PPCISD::MFFS"; 1361 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1362 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1363 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1364 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1365 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1366 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1367 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1368 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1369 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1370 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1371 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1372 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1373 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1374 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1375 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1376 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1377 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1378 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1379 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1380 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1381 case PPCISD::SC: return "PPCISD::SC"; 1382 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1383 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1384 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1385 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1386 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1387 case PPCISD::VABSD: return "PPCISD::VABSD"; 1388 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1389 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1390 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1391 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1392 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1393 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1394 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1395 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1396 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1397 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1398 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1399 case PPCISD::FP_EXTEND_LH: return "PPCISD::FP_EXTEND_LH"; 1400 } 1401 return nullptr; 1402 } 1403 1404 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1405 EVT VT) const { 1406 if (!VT.isVector()) 1407 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1408 1409 if (Subtarget.hasQPX()) 1410 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1411 1412 return VT.changeVectorElementTypeToInteger(); 1413 } 1414 1415 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1416 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1417 return true; 1418 } 1419 1420 //===----------------------------------------------------------------------===// 1421 // Node matching predicates, for use by the tblgen matching code. 1422 //===----------------------------------------------------------------------===// 1423 1424 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1425 static bool isFloatingPointZero(SDValue Op) { 1426 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1427 return CFP->getValueAPF().isZero(); 1428 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1429 // Maybe this has already been legalized into the constant pool? 1430 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1432 return CFP->getValueAPF().isZero(); 1433 } 1434 return false; 1435 } 1436 1437 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1438 /// true if Op is undef or if it matches the specified value. 1439 static bool isConstantOrUndef(int Op, int Val) { 1440 return Op < 0 || Op == Val; 1441 } 1442 1443 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1444 /// VPKUHUM instruction. 1445 /// The ShuffleKind distinguishes between big-endian operations with 1446 /// two different inputs (0), either-endian operations with two identical 1447 /// inputs (1), and little-endian operations with two different inputs (2). 1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1449 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1450 SelectionDAG &DAG) { 1451 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1452 if (ShuffleKind == 0) { 1453 if (IsLE) 1454 return false; 1455 for (unsigned i = 0; i != 16; ++i) 1456 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1457 return false; 1458 } else if (ShuffleKind == 2) { 1459 if (!IsLE) 1460 return false; 1461 for (unsigned i = 0; i != 16; ++i) 1462 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1463 return false; 1464 } else if (ShuffleKind == 1) { 1465 unsigned j = IsLE ? 0 : 1; 1466 for (unsigned i = 0; i != 8; ++i) 1467 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1468 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1469 return false; 1470 } 1471 return true; 1472 } 1473 1474 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1475 /// VPKUWUM instruction. 1476 /// The ShuffleKind distinguishes between big-endian operations with 1477 /// two different inputs (0), either-endian operations with two identical 1478 /// inputs (1), and little-endian operations with two different inputs (2). 1479 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1480 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1481 SelectionDAG &DAG) { 1482 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1483 if (ShuffleKind == 0) { 1484 if (IsLE) 1485 return false; 1486 for (unsigned i = 0; i != 16; i += 2) 1487 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1488 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1489 return false; 1490 } else if (ShuffleKind == 2) { 1491 if (!IsLE) 1492 return false; 1493 for (unsigned i = 0; i != 16; i += 2) 1494 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1495 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1496 return false; 1497 } else if (ShuffleKind == 1) { 1498 unsigned j = IsLE ? 0 : 2; 1499 for (unsigned i = 0; i != 8; i += 2) 1500 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1501 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1502 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1503 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1504 return false; 1505 } 1506 return true; 1507 } 1508 1509 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1510 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1511 /// current subtarget. 1512 /// 1513 /// The ShuffleKind distinguishes between big-endian operations with 1514 /// two different inputs (0), either-endian operations with two identical 1515 /// inputs (1), and little-endian operations with two different inputs (2). 1516 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1517 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1518 SelectionDAG &DAG) { 1519 const PPCSubtarget& Subtarget = 1520 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1521 if (!Subtarget.hasP8Vector()) 1522 return false; 1523 1524 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1525 if (ShuffleKind == 0) { 1526 if (IsLE) 1527 return false; 1528 for (unsigned i = 0; i != 16; i += 4) 1529 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1530 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1531 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1532 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1533 return false; 1534 } else if (ShuffleKind == 2) { 1535 if (!IsLE) 1536 return false; 1537 for (unsigned i = 0; i != 16; i += 4) 1538 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1539 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1540 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1541 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1542 return false; 1543 } else if (ShuffleKind == 1) { 1544 unsigned j = IsLE ? 0 : 4; 1545 for (unsigned i = 0; i != 8; i += 4) 1546 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1547 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1548 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1549 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1550 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1551 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1552 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1553 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1554 return false; 1555 } 1556 return true; 1557 } 1558 1559 /// isVMerge - Common function, used to match vmrg* shuffles. 1560 /// 1561 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1562 unsigned LHSStart, unsigned RHSStart) { 1563 if (N->getValueType(0) != MVT::v16i8) 1564 return false; 1565 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1566 "Unsupported merge size!"); 1567 1568 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1569 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1570 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1571 LHSStart+j+i*UnitSize) || 1572 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1573 RHSStart+j+i*UnitSize)) 1574 return false; 1575 } 1576 return true; 1577 } 1578 1579 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1580 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1581 /// The ShuffleKind distinguishes between big-endian merges with two 1582 /// different inputs (0), either-endian merges with two identical inputs (1), 1583 /// and little-endian merges with two different inputs (2). For the latter, 1584 /// the input operands are swapped (see PPCInstrAltivec.td). 1585 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1586 unsigned ShuffleKind, SelectionDAG &DAG) { 1587 if (DAG.getDataLayout().isLittleEndian()) { 1588 if (ShuffleKind == 1) // unary 1589 return isVMerge(N, UnitSize, 0, 0); 1590 else if (ShuffleKind == 2) // swapped 1591 return isVMerge(N, UnitSize, 0, 16); 1592 else 1593 return false; 1594 } else { 1595 if (ShuffleKind == 1) // unary 1596 return isVMerge(N, UnitSize, 8, 8); 1597 else if (ShuffleKind == 0) // normal 1598 return isVMerge(N, UnitSize, 8, 24); 1599 else 1600 return false; 1601 } 1602 } 1603 1604 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1605 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1606 /// The ShuffleKind distinguishes between big-endian merges with two 1607 /// different inputs (0), either-endian merges with two identical inputs (1), 1608 /// and little-endian merges with two different inputs (2). For the latter, 1609 /// the input operands are swapped (see PPCInstrAltivec.td). 1610 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1611 unsigned ShuffleKind, SelectionDAG &DAG) { 1612 if (DAG.getDataLayout().isLittleEndian()) { 1613 if (ShuffleKind == 1) // unary 1614 return isVMerge(N, UnitSize, 8, 8); 1615 else if (ShuffleKind == 2) // swapped 1616 return isVMerge(N, UnitSize, 8, 24); 1617 else 1618 return false; 1619 } else { 1620 if (ShuffleKind == 1) // unary 1621 return isVMerge(N, UnitSize, 0, 0); 1622 else if (ShuffleKind == 0) // normal 1623 return isVMerge(N, UnitSize, 0, 16); 1624 else 1625 return false; 1626 } 1627 } 1628 1629 /** 1630 * Common function used to match vmrgew and vmrgow shuffles 1631 * 1632 * The indexOffset determines whether to look for even or odd words in 1633 * the shuffle mask. This is based on the of the endianness of the target 1634 * machine. 1635 * - Little Endian: 1636 * - Use offset of 0 to check for odd elements 1637 * - Use offset of 4 to check for even elements 1638 * - Big Endian: 1639 * - Use offset of 0 to check for even elements 1640 * - Use offset of 4 to check for odd elements 1641 * A detailed description of the vector element ordering for little endian and 1642 * big endian can be found at 1643 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1644 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1645 * compiler differences mean to you 1646 * 1647 * The mask to the shuffle vector instruction specifies the indices of the 1648 * elements from the two input vectors to place in the result. The elements are 1649 * numbered in array-access order, starting with the first vector. These vectors 1650 * are always of type v16i8, thus each vector will contain 16 elements of size 1651 * 8. More info on the shuffle vector can be found in the 1652 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1653 * Language Reference. 1654 * 1655 * The RHSStartValue indicates whether the same input vectors are used (unary) 1656 * or two different input vectors are used, based on the following: 1657 * - If the instruction uses the same vector for both inputs, the range of the 1658 * indices will be 0 to 15. In this case, the RHSStart value passed should 1659 * be 0. 1660 * - If the instruction has two different vectors then the range of the 1661 * indices will be 0 to 31. In this case, the RHSStart value passed should 1662 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1663 * to 31 specify elements in the second vector). 1664 * 1665 * \param[in] N The shuffle vector SD Node to analyze 1666 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1667 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1668 * vector to the shuffle_vector instruction 1669 * \return true iff this shuffle vector represents an even or odd word merge 1670 */ 1671 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1672 unsigned RHSStartValue) { 1673 if (N->getValueType(0) != MVT::v16i8) 1674 return false; 1675 1676 for (unsigned i = 0; i < 2; ++i) 1677 for (unsigned j = 0; j < 4; ++j) 1678 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1679 i*RHSStartValue+j+IndexOffset) || 1680 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1681 i*RHSStartValue+j+IndexOffset+8)) 1682 return false; 1683 return true; 1684 } 1685 1686 /** 1687 * Determine if the specified shuffle mask is suitable for the vmrgew or 1688 * vmrgow instructions. 1689 * 1690 * \param[in] N The shuffle vector SD Node to analyze 1691 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1692 * \param[in] ShuffleKind Identify the type of merge: 1693 * - 0 = big-endian merge with two different inputs; 1694 * - 1 = either-endian merge with two identical inputs; 1695 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1696 * little-endian merges). 1697 * \param[in] DAG The current SelectionDAG 1698 * \return true iff this shuffle mask 1699 */ 1700 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1701 unsigned ShuffleKind, SelectionDAG &DAG) { 1702 if (DAG.getDataLayout().isLittleEndian()) { 1703 unsigned indexOffset = CheckEven ? 4 : 0; 1704 if (ShuffleKind == 1) // Unary 1705 return isVMerge(N, indexOffset, 0); 1706 else if (ShuffleKind == 2) // swapped 1707 return isVMerge(N, indexOffset, 16); 1708 else 1709 return false; 1710 } 1711 else { 1712 unsigned indexOffset = CheckEven ? 0 : 4; 1713 if (ShuffleKind == 1) // Unary 1714 return isVMerge(N, indexOffset, 0); 1715 else if (ShuffleKind == 0) // Normal 1716 return isVMerge(N, indexOffset, 16); 1717 else 1718 return false; 1719 } 1720 return false; 1721 } 1722 1723 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1724 /// amount, otherwise return -1. 1725 /// The ShuffleKind distinguishes between big-endian operations with two 1726 /// different inputs (0), either-endian operations with two identical inputs 1727 /// (1), and little-endian operations with two different inputs (2). For the 1728 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1729 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1730 SelectionDAG &DAG) { 1731 if (N->getValueType(0) != MVT::v16i8) 1732 return -1; 1733 1734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1735 1736 // Find the first non-undef value in the shuffle mask. 1737 unsigned i; 1738 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1739 /*search*/; 1740 1741 if (i == 16) return -1; // all undef. 1742 1743 // Otherwise, check to see if the rest of the elements are consecutively 1744 // numbered from this value. 1745 unsigned ShiftAmt = SVOp->getMaskElt(i); 1746 if (ShiftAmt < i) return -1; 1747 1748 ShiftAmt -= i; 1749 bool isLE = DAG.getDataLayout().isLittleEndian(); 1750 1751 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1752 // Check the rest of the elements to see if they are consecutive. 1753 for (++i; i != 16; ++i) 1754 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1755 return -1; 1756 } else if (ShuffleKind == 1) { 1757 // Check the rest of the elements to see if they are consecutive. 1758 for (++i; i != 16; ++i) 1759 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1760 return -1; 1761 } else 1762 return -1; 1763 1764 if (isLE) 1765 ShiftAmt = 16 - ShiftAmt; 1766 1767 return ShiftAmt; 1768 } 1769 1770 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1771 /// specifies a splat of a single element that is suitable for input to 1772 /// VSPLTB/VSPLTH/VSPLTW. 1773 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1774 assert(N->getValueType(0) == MVT::v16i8 && 1775 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1776 1777 // The consecutive indices need to specify an element, not part of two 1778 // different elements. So abandon ship early if this isn't the case. 1779 if (N->getMaskElt(0) % EltSize != 0) 1780 return false; 1781 1782 // This is a splat operation if each element of the permute is the same, and 1783 // if the value doesn't reference the second vector. 1784 unsigned ElementBase = N->getMaskElt(0); 1785 1786 // FIXME: Handle UNDEF elements too! 1787 if (ElementBase >= 16) 1788 return false; 1789 1790 // Check that the indices are consecutive, in the case of a multi-byte element 1791 // splatted with a v16i8 mask. 1792 for (unsigned i = 1; i != EltSize; ++i) 1793 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1794 return false; 1795 1796 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1797 if (N->getMaskElt(i) < 0) continue; 1798 for (unsigned j = 0; j != EltSize; ++j) 1799 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1800 return false; 1801 } 1802 return true; 1803 } 1804 1805 /// Check that the mask is shuffling N byte elements. Within each N byte 1806 /// element of the mask, the indices could be either in increasing or 1807 /// decreasing order as long as they are consecutive. 1808 /// \param[in] N the shuffle vector SD Node to analyze 1809 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1810 /// Word/DoubleWord/QuadWord). 1811 /// \param[in] StepLen the delta indices number among the N byte element, if 1812 /// the mask is in increasing/decreasing order then it is 1/-1. 1813 /// \return true iff the mask is shuffling N byte elements. 1814 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1815 int StepLen) { 1816 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1817 "Unexpected element width."); 1818 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1819 1820 unsigned NumOfElem = 16 / Width; 1821 unsigned MaskVal[16]; // Width is never greater than 16 1822 for (unsigned i = 0; i < NumOfElem; ++i) { 1823 MaskVal[0] = N->getMaskElt(i * Width); 1824 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1825 return false; 1826 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1827 return false; 1828 } 1829 1830 for (unsigned int j = 1; j < Width; ++j) { 1831 MaskVal[j] = N->getMaskElt(i * Width + j); 1832 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1833 return false; 1834 } 1835 } 1836 } 1837 1838 return true; 1839 } 1840 1841 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1842 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1843 if (!isNByteElemShuffleMask(N, 4, 1)) 1844 return false; 1845 1846 // Now we look at mask elements 0,4,8,12 1847 unsigned M0 = N->getMaskElt(0) / 4; 1848 unsigned M1 = N->getMaskElt(4) / 4; 1849 unsigned M2 = N->getMaskElt(8) / 4; 1850 unsigned M3 = N->getMaskElt(12) / 4; 1851 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1852 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1853 1854 // Below, let H and L be arbitrary elements of the shuffle mask 1855 // where H is in the range [4,7] and L is in the range [0,3]. 1856 // H, 1, 2, 3 or L, 5, 6, 7 1857 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1858 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1859 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1860 InsertAtByte = IsLE ? 12 : 0; 1861 Swap = M0 < 4; 1862 return true; 1863 } 1864 // 0, H, 2, 3 or 4, L, 6, 7 1865 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1866 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1867 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1868 InsertAtByte = IsLE ? 8 : 4; 1869 Swap = M1 < 4; 1870 return true; 1871 } 1872 // 0, 1, H, 3 or 4, 5, L, 7 1873 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1874 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1875 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1876 InsertAtByte = IsLE ? 4 : 8; 1877 Swap = M2 < 4; 1878 return true; 1879 } 1880 // 0, 1, 2, H or 4, 5, 6, L 1881 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1882 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1883 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1884 InsertAtByte = IsLE ? 0 : 12; 1885 Swap = M3 < 4; 1886 return true; 1887 } 1888 1889 // If both vector operands for the shuffle are the same vector, the mask will 1890 // contain only elements from the first one and the second one will be undef. 1891 if (N->getOperand(1).isUndef()) { 1892 ShiftElts = 0; 1893 Swap = true; 1894 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1895 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1896 InsertAtByte = IsLE ? 12 : 0; 1897 return true; 1898 } 1899 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1900 InsertAtByte = IsLE ? 8 : 4; 1901 return true; 1902 } 1903 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1904 InsertAtByte = IsLE ? 4 : 8; 1905 return true; 1906 } 1907 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1908 InsertAtByte = IsLE ? 0 : 12; 1909 return true; 1910 } 1911 } 1912 1913 return false; 1914 } 1915 1916 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1917 bool &Swap, bool IsLE) { 1918 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1919 // Ensure each byte index of the word is consecutive. 1920 if (!isNByteElemShuffleMask(N, 4, 1)) 1921 return false; 1922 1923 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1924 unsigned M0 = N->getMaskElt(0) / 4; 1925 unsigned M1 = N->getMaskElt(4) / 4; 1926 unsigned M2 = N->getMaskElt(8) / 4; 1927 unsigned M3 = N->getMaskElt(12) / 4; 1928 1929 // If both vector operands for the shuffle are the same vector, the mask will 1930 // contain only elements from the first one and the second one will be undef. 1931 if (N->getOperand(1).isUndef()) { 1932 assert(M0 < 4 && "Indexing into an undef vector?"); 1933 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1934 return false; 1935 1936 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1937 Swap = false; 1938 return true; 1939 } 1940 1941 // Ensure each word index of the ShuffleVector Mask is consecutive. 1942 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1943 return false; 1944 1945 if (IsLE) { 1946 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1947 // Input vectors don't need to be swapped if the leading element 1948 // of the result is one of the 3 left elements of the second vector 1949 // (or if there is no shift to be done at all). 1950 Swap = false; 1951 ShiftElts = (8 - M0) % 8; 1952 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1953 // Input vectors need to be swapped if the leading element 1954 // of the result is one of the 3 left elements of the first vector 1955 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1956 Swap = true; 1957 ShiftElts = (4 - M0) % 4; 1958 } 1959 1960 return true; 1961 } else { // BE 1962 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1963 // Input vectors don't need to be swapped if the leading element 1964 // of the result is one of the 4 elements of the first vector. 1965 Swap = false; 1966 ShiftElts = M0; 1967 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1968 // Input vectors need to be swapped if the leading element 1969 // of the result is one of the 4 elements of the right vector. 1970 Swap = true; 1971 ShiftElts = M0 - 4; 1972 } 1973 1974 return true; 1975 } 1976 } 1977 1978 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1979 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1980 1981 if (!isNByteElemShuffleMask(N, Width, -1)) 1982 return false; 1983 1984 for (int i = 0; i < 16; i += Width) 1985 if (N->getMaskElt(i) != i + Width - 1) 1986 return false; 1987 1988 return true; 1989 } 1990 1991 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1992 return isXXBRShuffleMaskHelper(N, 2); 1993 } 1994 1995 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1996 return isXXBRShuffleMaskHelper(N, 4); 1997 } 1998 1999 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2000 return isXXBRShuffleMaskHelper(N, 8); 2001 } 2002 2003 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2004 return isXXBRShuffleMaskHelper(N, 16); 2005 } 2006 2007 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2008 /// if the inputs to the instruction should be swapped and set \p DM to the 2009 /// value for the immediate. 2010 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2011 /// AND element 0 of the result comes from the first input (LE) or second input 2012 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2013 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2014 /// mask. 2015 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2016 bool &Swap, bool IsLE) { 2017 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2018 2019 // Ensure each byte index of the double word is consecutive. 2020 if (!isNByteElemShuffleMask(N, 8, 1)) 2021 return false; 2022 2023 unsigned M0 = N->getMaskElt(0) / 8; 2024 unsigned M1 = N->getMaskElt(8) / 8; 2025 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2026 2027 // If both vector operands for the shuffle are the same vector, the mask will 2028 // contain only elements from the first one and the second one will be undef. 2029 if (N->getOperand(1).isUndef()) { 2030 if ((M0 | M1) < 2) { 2031 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2032 Swap = false; 2033 return true; 2034 } else 2035 return false; 2036 } 2037 2038 if (IsLE) { 2039 if (M0 > 1 && M1 < 2) { 2040 Swap = false; 2041 } else if (M0 < 2 && M1 > 1) { 2042 M0 = (M0 + 2) % 4; 2043 M1 = (M1 + 2) % 4; 2044 Swap = true; 2045 } else 2046 return false; 2047 2048 // Note: if control flow comes here that means Swap is already set above 2049 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2050 return true; 2051 } else { // BE 2052 if (M0 < 2 && M1 > 1) { 2053 Swap = false; 2054 } else if (M0 > 1 && M1 < 2) { 2055 M0 = (M0 + 2) % 4; 2056 M1 = (M1 + 2) % 4; 2057 Swap = true; 2058 } else 2059 return false; 2060 2061 // Note: if control flow comes here that means Swap is already set above 2062 DM = (M0 << 1) + (M1 & 1); 2063 return true; 2064 } 2065 } 2066 2067 2068 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2069 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2070 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2071 SelectionDAG &DAG) { 2072 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2073 assert(isSplatShuffleMask(SVOp, EltSize)); 2074 if (DAG.getDataLayout().isLittleEndian()) 2075 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2076 else 2077 return SVOp->getMaskElt(0) / EltSize; 2078 } 2079 2080 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2081 /// by using a vspltis[bhw] instruction of the specified element size, return 2082 /// the constant being splatted. The ByteSize field indicates the number of 2083 /// bytes of each element [124] -> [bhw]. 2084 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2085 SDValue OpVal(nullptr, 0); 2086 2087 // If ByteSize of the splat is bigger than the element size of the 2088 // build_vector, then we have a case where we are checking for a splat where 2089 // multiple elements of the buildvector are folded together into a single 2090 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2091 unsigned EltSize = 16/N->getNumOperands(); 2092 if (EltSize < ByteSize) { 2093 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2094 SDValue UniquedVals[4]; 2095 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2096 2097 // See if all of the elements in the buildvector agree across. 2098 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2099 if (N->getOperand(i).isUndef()) continue; 2100 // If the element isn't a constant, bail fully out. 2101 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2102 2103 if (!UniquedVals[i&(Multiple-1)].getNode()) 2104 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2105 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2106 return SDValue(); // no match. 2107 } 2108 2109 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2110 // either constant or undef values that are identical for each chunk. See 2111 // if these chunks can form into a larger vspltis*. 2112 2113 // Check to see if all of the leading entries are either 0 or -1. If 2114 // neither, then this won't fit into the immediate field. 2115 bool LeadingZero = true; 2116 bool LeadingOnes = true; 2117 for (unsigned i = 0; i != Multiple-1; ++i) { 2118 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2119 2120 LeadingZero &= isNullConstant(UniquedVals[i]); 2121 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2122 } 2123 // Finally, check the least significant entry. 2124 if (LeadingZero) { 2125 if (!UniquedVals[Multiple-1].getNode()) 2126 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2127 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2128 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2129 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2130 } 2131 if (LeadingOnes) { 2132 if (!UniquedVals[Multiple-1].getNode()) 2133 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2134 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2135 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2136 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2137 } 2138 2139 return SDValue(); 2140 } 2141 2142 // Check to see if this buildvec has a single non-undef value in its elements. 2143 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2144 if (N->getOperand(i).isUndef()) continue; 2145 if (!OpVal.getNode()) 2146 OpVal = N->getOperand(i); 2147 else if (OpVal != N->getOperand(i)) 2148 return SDValue(); 2149 } 2150 2151 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2152 2153 unsigned ValSizeInBytes = EltSize; 2154 uint64_t Value = 0; 2155 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2156 Value = CN->getZExtValue(); 2157 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2158 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2159 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2160 } 2161 2162 // If the splat value is larger than the element value, then we can never do 2163 // this splat. The only case that we could fit the replicated bits into our 2164 // immediate field for would be zero, and we prefer to use vxor for it. 2165 if (ValSizeInBytes < ByteSize) return SDValue(); 2166 2167 // If the element value is larger than the splat value, check if it consists 2168 // of a repeated bit pattern of size ByteSize. 2169 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2170 return SDValue(); 2171 2172 // Properly sign extend the value. 2173 int MaskVal = SignExtend32(Value, ByteSize * 8); 2174 2175 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2176 if (MaskVal == 0) return SDValue(); 2177 2178 // Finally, if this value fits in a 5 bit sext field, return it 2179 if (SignExtend32<5>(MaskVal) == MaskVal) 2180 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2181 return SDValue(); 2182 } 2183 2184 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2185 /// amount, otherwise return -1. 2186 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2187 EVT VT = N->getValueType(0); 2188 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2189 return -1; 2190 2191 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2192 2193 // Find the first non-undef value in the shuffle mask. 2194 unsigned i; 2195 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2196 /*search*/; 2197 2198 if (i == 4) return -1; // all undef. 2199 2200 // Otherwise, check to see if the rest of the elements are consecutively 2201 // numbered from this value. 2202 unsigned ShiftAmt = SVOp->getMaskElt(i); 2203 if (ShiftAmt < i) return -1; 2204 ShiftAmt -= i; 2205 2206 // Check the rest of the elements to see if they are consecutive. 2207 for (++i; i != 4; ++i) 2208 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2209 return -1; 2210 2211 return ShiftAmt; 2212 } 2213 2214 //===----------------------------------------------------------------------===// 2215 // Addressing Mode Selection 2216 //===----------------------------------------------------------------------===// 2217 2218 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2219 /// or 64-bit immediate, and if the value can be accurately represented as a 2220 /// sign extension from a 16-bit value. If so, this returns true and the 2221 /// immediate. 2222 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2223 if (!isa<ConstantSDNode>(N)) 2224 return false; 2225 2226 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2227 if (N->getValueType(0) == MVT::i32) 2228 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2229 else 2230 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2231 } 2232 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2233 return isIntS16Immediate(Op.getNode(), Imm); 2234 } 2235 2236 2237 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2238 /// be represented as an indexed [r+r] operation. 2239 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2240 SDValue &Index, 2241 SelectionDAG &DAG) const { 2242 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2243 UI != E; ++UI) { 2244 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2245 if (Memop->getMemoryVT() == MVT::f64) { 2246 Base = N.getOperand(0); 2247 Index = N.getOperand(1); 2248 return true; 2249 } 2250 } 2251 } 2252 return false; 2253 } 2254 2255 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2256 /// can be represented as an indexed [r+r] operation. Returns false if it 2257 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2258 /// non-zero and N can be represented by a base register plus a signed 16-bit 2259 /// displacement, make a more precise judgement by checking (displacement % \p 2260 /// EncodingAlignment). 2261 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2262 SDValue &Index, SelectionDAG &DAG, 2263 unsigned EncodingAlignment) const { 2264 int16_t imm = 0; 2265 if (N.getOpcode() == ISD::ADD) { 2266 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2267 // SPE load/store can only handle 8-bit offsets. 2268 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2269 return true; 2270 if (isIntS16Immediate(N.getOperand(1), imm) && 2271 (!EncodingAlignment || !(imm % EncodingAlignment))) 2272 return false; // r+i 2273 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2274 return false; // r+i 2275 2276 Base = N.getOperand(0); 2277 Index = N.getOperand(1); 2278 return true; 2279 } else if (N.getOpcode() == ISD::OR) { 2280 if (isIntS16Immediate(N.getOperand(1), imm) && 2281 (!EncodingAlignment || !(imm % EncodingAlignment))) 2282 return false; // r+i can fold it if we can. 2283 2284 // If this is an or of disjoint bitfields, we can codegen this as an add 2285 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2286 // disjoint. 2287 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2288 2289 if (LHSKnown.Zero.getBoolValue()) { 2290 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2291 // If all of the bits are known zero on the LHS or RHS, the add won't 2292 // carry. 2293 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2294 Base = N.getOperand(0); 2295 Index = N.getOperand(1); 2296 return true; 2297 } 2298 } 2299 } 2300 2301 return false; 2302 } 2303 2304 // If we happen to be doing an i64 load or store into a stack slot that has 2305 // less than a 4-byte alignment, then the frame-index elimination may need to 2306 // use an indexed load or store instruction (because the offset may not be a 2307 // multiple of 4). The extra register needed to hold the offset comes from the 2308 // register scavenger, and it is possible that the scavenger will need to use 2309 // an emergency spill slot. As a result, we need to make sure that a spill slot 2310 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2311 // stack slot. 2312 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2313 // FIXME: This does not handle the LWA case. 2314 if (VT != MVT::i64) 2315 return; 2316 2317 // NOTE: We'll exclude negative FIs here, which come from argument 2318 // lowering, because there are no known test cases triggering this problem 2319 // using packed structures (or similar). We can remove this exclusion if 2320 // we find such a test case. The reason why this is so test-case driven is 2321 // because this entire 'fixup' is only to prevent crashes (from the 2322 // register scavenger) on not-really-valid inputs. For example, if we have: 2323 // %a = alloca i1 2324 // %b = bitcast i1* %a to i64* 2325 // store i64* a, i64 b 2326 // then the store should really be marked as 'align 1', but is not. If it 2327 // were marked as 'align 1' then the indexed form would have been 2328 // instruction-selected initially, and the problem this 'fixup' is preventing 2329 // won't happen regardless. 2330 if (FrameIdx < 0) 2331 return; 2332 2333 MachineFunction &MF = DAG.getMachineFunction(); 2334 MachineFrameInfo &MFI = MF.getFrameInfo(); 2335 2336 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2337 if (Align >= 4) 2338 return; 2339 2340 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2341 FuncInfo->setHasNonRISpills(); 2342 } 2343 2344 /// Returns true if the address N can be represented by a base register plus 2345 /// a signed 16-bit displacement [r+imm], and if it is not better 2346 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2347 /// displacements that are multiples of that value. 2348 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2349 SDValue &Base, 2350 SelectionDAG &DAG, 2351 unsigned EncodingAlignment) const { 2352 // FIXME dl should come from parent load or store, not from address 2353 SDLoc dl(N); 2354 // If this can be more profitably realized as r+r, fail. 2355 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2356 return false; 2357 2358 if (N.getOpcode() == ISD::ADD) { 2359 int16_t imm = 0; 2360 if (isIntS16Immediate(N.getOperand(1), imm) && 2361 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2362 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2363 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2364 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2365 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2366 } else { 2367 Base = N.getOperand(0); 2368 } 2369 return true; // [r+i] 2370 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2371 // Match LOAD (ADD (X, Lo(G))). 2372 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2373 && "Cannot handle constant offsets yet!"); 2374 Disp = N.getOperand(1).getOperand(0); // The global address. 2375 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2376 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2377 Disp.getOpcode() == ISD::TargetConstantPool || 2378 Disp.getOpcode() == ISD::TargetJumpTable); 2379 Base = N.getOperand(0); 2380 return true; // [&g+r] 2381 } 2382 } else if (N.getOpcode() == ISD::OR) { 2383 int16_t imm = 0; 2384 if (isIntS16Immediate(N.getOperand(1), imm) && 2385 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2386 // If this is an or of disjoint bitfields, we can codegen this as an add 2387 // (for better address arithmetic) if the LHS and RHS of the OR are 2388 // provably disjoint. 2389 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2390 2391 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2392 // If all of the bits are known zero on the LHS or RHS, the add won't 2393 // carry. 2394 if (FrameIndexSDNode *FI = 2395 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2396 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2397 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2398 } else { 2399 Base = N.getOperand(0); 2400 } 2401 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2402 return true; 2403 } 2404 } 2405 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2406 // Loading from a constant address. 2407 2408 // If this address fits entirely in a 16-bit sext immediate field, codegen 2409 // this as "d, 0" 2410 int16_t Imm; 2411 if (isIntS16Immediate(CN, Imm) && 2412 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2413 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2414 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2415 CN->getValueType(0)); 2416 return true; 2417 } 2418 2419 // Handle 32-bit sext immediates with LIS + addr mode. 2420 if ((CN->getValueType(0) == MVT::i32 || 2421 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2422 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2423 int Addr = (int)CN->getZExtValue(); 2424 2425 // Otherwise, break this down into an LIS + disp. 2426 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2427 2428 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2429 MVT::i32); 2430 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2431 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2432 return true; 2433 } 2434 } 2435 2436 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2437 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2438 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2439 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2440 } else 2441 Base = N; 2442 return true; // [r+0] 2443 } 2444 2445 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2446 /// represented as an indexed [r+r] operation. 2447 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2448 SDValue &Index, 2449 SelectionDAG &DAG) const { 2450 // Check to see if we can easily represent this as an [r+r] address. This 2451 // will fail if it thinks that the address is more profitably represented as 2452 // reg+imm, e.g. where imm = 0. 2453 if (SelectAddressRegReg(N, Base, Index, DAG)) 2454 return true; 2455 2456 // If the address is the result of an add, we will utilize the fact that the 2457 // address calculation includes an implicit add. However, we can reduce 2458 // register pressure if we do not materialize a constant just for use as the 2459 // index register. We only get rid of the add if it is not an add of a 2460 // value and a 16-bit signed constant and both have a single use. 2461 int16_t imm = 0; 2462 if (N.getOpcode() == ISD::ADD && 2463 (!isIntS16Immediate(N.getOperand(1), imm) || 2464 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2465 Base = N.getOperand(0); 2466 Index = N.getOperand(1); 2467 return true; 2468 } 2469 2470 // Otherwise, do it the hard way, using R0 as the base register. 2471 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2472 N.getValueType()); 2473 Index = N; 2474 return true; 2475 } 2476 2477 /// Returns true if we should use a direct load into vector instruction 2478 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2479 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2480 2481 // If there are any other uses other than scalar to vector, then we should 2482 // keep it as a scalar load -> direct move pattern to prevent multiple 2483 // loads. 2484 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2485 if (!LD) 2486 return false; 2487 2488 EVT MemVT = LD->getMemoryVT(); 2489 if (!MemVT.isSimple()) 2490 return false; 2491 switch(MemVT.getSimpleVT().SimpleTy) { 2492 case MVT::i64: 2493 break; 2494 case MVT::i32: 2495 if (!ST.hasP8Vector()) 2496 return false; 2497 break; 2498 case MVT::i16: 2499 case MVT::i8: 2500 if (!ST.hasP9Vector()) 2501 return false; 2502 break; 2503 default: 2504 return false; 2505 } 2506 2507 SDValue LoadedVal(N, 0); 2508 if (!LoadedVal.hasOneUse()) 2509 return false; 2510 2511 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2512 UI != UE; ++UI) 2513 if (UI.getUse().get().getResNo() == 0 && 2514 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2515 return false; 2516 2517 return true; 2518 } 2519 2520 /// getPreIndexedAddressParts - returns true by value, base pointer and 2521 /// offset pointer and addressing mode by reference if the node's address 2522 /// can be legally represented as pre-indexed load / store address. 2523 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2524 SDValue &Offset, 2525 ISD::MemIndexedMode &AM, 2526 SelectionDAG &DAG) const { 2527 if (DisablePPCPreinc) return false; 2528 2529 bool isLoad = true; 2530 SDValue Ptr; 2531 EVT VT; 2532 unsigned Alignment; 2533 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2534 Ptr = LD->getBasePtr(); 2535 VT = LD->getMemoryVT(); 2536 Alignment = LD->getAlignment(); 2537 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2538 Ptr = ST->getBasePtr(); 2539 VT = ST->getMemoryVT(); 2540 Alignment = ST->getAlignment(); 2541 isLoad = false; 2542 } else 2543 return false; 2544 2545 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2546 // instructions because we can fold these into a more efficient instruction 2547 // instead, (such as LXSD). 2548 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2549 return false; 2550 } 2551 2552 // PowerPC doesn't have preinc load/store instructions for vectors (except 2553 // for QPX, which does have preinc r+r forms). 2554 if (VT.isVector()) { 2555 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2556 return false; 2557 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2558 AM = ISD::PRE_INC; 2559 return true; 2560 } 2561 } 2562 2563 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2564 // Common code will reject creating a pre-inc form if the base pointer 2565 // is a frame index, or if N is a store and the base pointer is either 2566 // the same as or a predecessor of the value being stored. Check for 2567 // those situations here, and try with swapped Base/Offset instead. 2568 bool Swap = false; 2569 2570 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2571 Swap = true; 2572 else if (!isLoad) { 2573 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2574 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2575 Swap = true; 2576 } 2577 2578 if (Swap) 2579 std::swap(Base, Offset); 2580 2581 AM = ISD::PRE_INC; 2582 return true; 2583 } 2584 2585 // LDU/STU can only handle immediates that are a multiple of 4. 2586 if (VT != MVT::i64) { 2587 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2588 return false; 2589 } else { 2590 // LDU/STU need an address with at least 4-byte alignment. 2591 if (Alignment < 4) 2592 return false; 2593 2594 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2595 return false; 2596 } 2597 2598 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2599 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2600 // sext i32 to i64 when addr mode is r+i. 2601 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2602 LD->getExtensionType() == ISD::SEXTLOAD && 2603 isa<ConstantSDNode>(Offset)) 2604 return false; 2605 } 2606 2607 AM = ISD::PRE_INC; 2608 return true; 2609 } 2610 2611 //===----------------------------------------------------------------------===// 2612 // LowerOperation implementation 2613 //===----------------------------------------------------------------------===// 2614 2615 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2616 /// and LoOpFlags to the target MO flags. 2617 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2618 unsigned &HiOpFlags, unsigned &LoOpFlags, 2619 const GlobalValue *GV = nullptr) { 2620 HiOpFlags = PPCII::MO_HA; 2621 LoOpFlags = PPCII::MO_LO; 2622 2623 // Don't use the pic base if not in PIC relocation model. 2624 if (IsPIC) { 2625 HiOpFlags |= PPCII::MO_PIC_FLAG; 2626 LoOpFlags |= PPCII::MO_PIC_FLAG; 2627 } 2628 2629 // If this is a reference to a global value that requires a non-lazy-ptr, make 2630 // sure that instruction lowering adds it. 2631 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2632 HiOpFlags |= PPCII::MO_NLP_FLAG; 2633 LoOpFlags |= PPCII::MO_NLP_FLAG; 2634 2635 if (GV->hasHiddenVisibility()) { 2636 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2637 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2638 } 2639 } 2640 } 2641 2642 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2643 SelectionDAG &DAG) { 2644 SDLoc DL(HiPart); 2645 EVT PtrVT = HiPart.getValueType(); 2646 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2647 2648 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2649 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2650 2651 // With PIC, the first instruction is actually "GR+hi(&G)". 2652 if (isPIC) 2653 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2654 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2655 2656 // Generate non-pic code that has direct accesses to the constant pool. 2657 // The address of the global is just (hi(&g)+lo(&g)). 2658 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2659 } 2660 2661 static void setUsesTOCBasePtr(MachineFunction &MF) { 2662 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2663 FuncInfo->setUsesTOCBasePtr(); 2664 } 2665 2666 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2667 setUsesTOCBasePtr(DAG.getMachineFunction()); 2668 } 2669 2670 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2671 SDValue GA) { 2672 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2673 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2674 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2675 2676 SDValue Ops[] = { GA, Reg }; 2677 return DAG.getMemIntrinsicNode( 2678 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2679 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2680 MachineMemOperand::MOLoad); 2681 } 2682 2683 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2684 SelectionDAG &DAG) const { 2685 EVT PtrVT = Op.getValueType(); 2686 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2687 const Constant *C = CP->getConstVal(); 2688 2689 // 64-bit SVR4 ABI code is always position-independent. 2690 // The actual address of the GlobalValue is stored in the TOC. 2691 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2692 setUsesTOCBasePtr(DAG); 2693 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2694 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2695 } 2696 2697 unsigned MOHiFlag, MOLoFlag; 2698 bool IsPIC = isPositionIndependent(); 2699 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2700 2701 if (IsPIC && Subtarget.isSVR4ABI()) { 2702 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2703 PPCII::MO_PIC_FLAG); 2704 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2705 } 2706 2707 SDValue CPIHi = 2708 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2709 SDValue CPILo = 2710 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2711 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2712 } 2713 2714 // For 64-bit PowerPC, prefer the more compact relative encodings. 2715 // This trades 32 bits per jump table entry for one or two instructions 2716 // on the jump site. 2717 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2718 if (isJumpTableRelative()) 2719 return MachineJumpTableInfo::EK_LabelDifference32; 2720 2721 return TargetLowering::getJumpTableEncoding(); 2722 } 2723 2724 bool PPCTargetLowering::isJumpTableRelative() const { 2725 if (Subtarget.isPPC64()) 2726 return true; 2727 return TargetLowering::isJumpTableRelative(); 2728 } 2729 2730 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2731 SelectionDAG &DAG) const { 2732 if (!Subtarget.isPPC64()) 2733 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2734 2735 switch (getTargetMachine().getCodeModel()) { 2736 case CodeModel::Small: 2737 case CodeModel::Medium: 2738 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2739 default: 2740 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2741 getPointerTy(DAG.getDataLayout())); 2742 } 2743 } 2744 2745 const MCExpr * 2746 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2747 unsigned JTI, 2748 MCContext &Ctx) const { 2749 if (!Subtarget.isPPC64()) 2750 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2751 2752 switch (getTargetMachine().getCodeModel()) { 2753 case CodeModel::Small: 2754 case CodeModel::Medium: 2755 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2756 default: 2757 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2758 } 2759 } 2760 2761 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2762 EVT PtrVT = Op.getValueType(); 2763 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2764 2765 // 64-bit SVR4 ABI code is always position-independent. 2766 // The actual address of the GlobalValue is stored in the TOC. 2767 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2768 setUsesTOCBasePtr(DAG); 2769 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2770 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2771 } 2772 2773 unsigned MOHiFlag, MOLoFlag; 2774 bool IsPIC = isPositionIndependent(); 2775 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2776 2777 if (IsPIC && Subtarget.isSVR4ABI()) { 2778 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2779 PPCII::MO_PIC_FLAG); 2780 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2781 } 2782 2783 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2784 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2785 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2786 } 2787 2788 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2789 SelectionDAG &DAG) const { 2790 EVT PtrVT = Op.getValueType(); 2791 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2792 const BlockAddress *BA = BASDN->getBlockAddress(); 2793 2794 // 64-bit SVR4 ABI code is always position-independent. 2795 // The actual BlockAddress is stored in the TOC. 2796 if (Subtarget.isSVR4ABI() && 2797 (Subtarget.isPPC64() || isPositionIndependent())) { 2798 if (Subtarget.isPPC64()) 2799 setUsesTOCBasePtr(DAG); 2800 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2801 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2802 } 2803 2804 unsigned MOHiFlag, MOLoFlag; 2805 bool IsPIC = isPositionIndependent(); 2806 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2807 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2808 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2809 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2810 } 2811 2812 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2813 SelectionDAG &DAG) const { 2814 // FIXME: TLS addresses currently use medium model code sequences, 2815 // which is the most useful form. Eventually support for small and 2816 // large models could be added if users need it, at the cost of 2817 // additional complexity. 2818 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2819 if (DAG.getTarget().useEmulatedTLS()) 2820 return LowerToTLSEmulatedModel(GA, DAG); 2821 2822 SDLoc dl(GA); 2823 const GlobalValue *GV = GA->getGlobal(); 2824 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2825 bool is64bit = Subtarget.isPPC64(); 2826 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2827 PICLevel::Level picLevel = M->getPICLevel(); 2828 2829 const TargetMachine &TM = getTargetMachine(); 2830 TLSModel::Model Model = TM.getTLSModel(GV); 2831 2832 if (Model == TLSModel::LocalExec) { 2833 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2834 PPCII::MO_TPREL_HA); 2835 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2836 PPCII::MO_TPREL_LO); 2837 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2838 : DAG.getRegister(PPC::R2, MVT::i32); 2839 2840 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2841 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2842 } 2843 2844 if (Model == TLSModel::InitialExec) { 2845 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2846 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2847 PPCII::MO_TLS); 2848 SDValue GOTPtr; 2849 if (is64bit) { 2850 setUsesTOCBasePtr(DAG); 2851 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2852 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2853 PtrVT, GOTReg, TGA); 2854 } else { 2855 if (!TM.isPositionIndependent()) 2856 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2857 else if (picLevel == PICLevel::SmallPIC) 2858 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2859 else 2860 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2861 } 2862 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2863 PtrVT, TGA, GOTPtr); 2864 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2865 } 2866 2867 if (Model == TLSModel::GeneralDynamic) { 2868 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2869 SDValue GOTPtr; 2870 if (is64bit) { 2871 setUsesTOCBasePtr(DAG); 2872 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2873 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2874 GOTReg, TGA); 2875 } else { 2876 if (picLevel == PICLevel::SmallPIC) 2877 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2878 else 2879 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2880 } 2881 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2882 GOTPtr, TGA, TGA); 2883 } 2884 2885 if (Model == TLSModel::LocalDynamic) { 2886 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2887 SDValue GOTPtr; 2888 if (is64bit) { 2889 setUsesTOCBasePtr(DAG); 2890 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2891 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2892 GOTReg, TGA); 2893 } else { 2894 if (picLevel == PICLevel::SmallPIC) 2895 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2896 else 2897 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2898 } 2899 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2900 PtrVT, GOTPtr, TGA, TGA); 2901 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2902 PtrVT, TLSAddr, TGA); 2903 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2904 } 2905 2906 llvm_unreachable("Unknown TLS model!"); 2907 } 2908 2909 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2910 SelectionDAG &DAG) const { 2911 EVT PtrVT = Op.getValueType(); 2912 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2913 SDLoc DL(GSDN); 2914 const GlobalValue *GV = GSDN->getGlobal(); 2915 2916 // 64-bit SVR4 ABI code is always position-independent. 2917 // The actual address of the GlobalValue is stored in the TOC. 2918 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2919 setUsesTOCBasePtr(DAG); 2920 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2921 return getTOCEntry(DAG, DL, true, GA); 2922 } 2923 2924 unsigned MOHiFlag, MOLoFlag; 2925 bool IsPIC = isPositionIndependent(); 2926 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2927 2928 if (IsPIC && Subtarget.isSVR4ABI()) { 2929 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2930 GSDN->getOffset(), 2931 PPCII::MO_PIC_FLAG); 2932 return getTOCEntry(DAG, DL, false, GA); 2933 } 2934 2935 SDValue GAHi = 2936 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2937 SDValue GALo = 2938 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2939 2940 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2941 2942 // If the global reference is actually to a non-lazy-pointer, we have to do an 2943 // extra load to get the address of the global. 2944 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2945 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2946 return Ptr; 2947 } 2948 2949 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2950 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2951 SDLoc dl(Op); 2952 2953 if (Op.getValueType() == MVT::v2i64) { 2954 // When the operands themselves are v2i64 values, we need to do something 2955 // special because VSX has no underlying comparison operations for these. 2956 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2957 // Equality can be handled by casting to the legal type for Altivec 2958 // comparisons, everything else needs to be expanded. 2959 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2960 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2961 DAG.getSetCC(dl, MVT::v4i32, 2962 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2963 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2964 CC)); 2965 } 2966 2967 return SDValue(); 2968 } 2969 2970 // We handle most of these in the usual way. 2971 return Op; 2972 } 2973 2974 // If we're comparing for equality to zero, expose the fact that this is 2975 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2976 // fold the new nodes. 2977 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2978 return V; 2979 2980 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2981 // Leave comparisons against 0 and -1 alone for now, since they're usually 2982 // optimized. FIXME: revisit this when we can custom lower all setcc 2983 // optimizations. 2984 if (C->isAllOnesValue() || C->isNullValue()) 2985 return SDValue(); 2986 } 2987 2988 // If we have an integer seteq/setne, turn it into a compare against zero 2989 // by xor'ing the rhs with the lhs, which is faster than setting a 2990 // condition register, reading it back out, and masking the correct bit. The 2991 // normal approach here uses sub to do this instead of xor. Using xor exposes 2992 // the result to other bit-twiddling opportunities. 2993 EVT LHSVT = Op.getOperand(0).getValueType(); 2994 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2995 EVT VT = Op.getValueType(); 2996 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2997 Op.getOperand(1)); 2998 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2999 } 3000 return SDValue(); 3001 } 3002 3003 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3004 SDNode *Node = Op.getNode(); 3005 EVT VT = Node->getValueType(0); 3006 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3007 SDValue InChain = Node->getOperand(0); 3008 SDValue VAListPtr = Node->getOperand(1); 3009 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3010 SDLoc dl(Node); 3011 3012 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3013 3014 // gpr_index 3015 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3016 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3017 InChain = GprIndex.getValue(1); 3018 3019 if (VT == MVT::i64) { 3020 // Check if GprIndex is even 3021 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3022 DAG.getConstant(1, dl, MVT::i32)); 3023 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3024 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3025 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3026 DAG.getConstant(1, dl, MVT::i32)); 3027 // Align GprIndex to be even if it isn't 3028 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3029 GprIndex); 3030 } 3031 3032 // fpr index is 1 byte after gpr 3033 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3034 DAG.getConstant(1, dl, MVT::i32)); 3035 3036 // fpr 3037 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3038 FprPtr, MachinePointerInfo(SV), MVT::i8); 3039 InChain = FprIndex.getValue(1); 3040 3041 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3042 DAG.getConstant(8, dl, MVT::i32)); 3043 3044 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3045 DAG.getConstant(4, dl, MVT::i32)); 3046 3047 // areas 3048 SDValue OverflowArea = 3049 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3050 InChain = OverflowArea.getValue(1); 3051 3052 SDValue RegSaveArea = 3053 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3054 InChain = RegSaveArea.getValue(1); 3055 3056 // select overflow_area if index > 8 3057 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3058 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3059 3060 // adjustment constant gpr_index * 4/8 3061 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3062 VT.isInteger() ? GprIndex : FprIndex, 3063 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3064 MVT::i32)); 3065 3066 // OurReg = RegSaveArea + RegConstant 3067 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3068 RegConstant); 3069 3070 // Floating types are 32 bytes into RegSaveArea 3071 if (VT.isFloatingPoint()) 3072 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3073 DAG.getConstant(32, dl, MVT::i32)); 3074 3075 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3076 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3077 VT.isInteger() ? GprIndex : FprIndex, 3078 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3079 MVT::i32)); 3080 3081 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3082 VT.isInteger() ? VAListPtr : FprPtr, 3083 MachinePointerInfo(SV), MVT::i8); 3084 3085 // determine if we should load from reg_save_area or overflow_area 3086 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3087 3088 // increase overflow_area by 4/8 if gpr/fpr > 8 3089 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3090 DAG.getConstant(VT.isInteger() ? 4 : 8, 3091 dl, MVT::i32)); 3092 3093 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3094 OverflowAreaPlusN); 3095 3096 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3097 MachinePointerInfo(), MVT::i32); 3098 3099 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3100 } 3101 3102 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3103 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3104 3105 // We have to copy the entire va_list struct: 3106 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3107 return DAG.getMemcpy(Op.getOperand(0), Op, 3108 Op.getOperand(1), Op.getOperand(2), 3109 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3110 false, MachinePointerInfo(), MachinePointerInfo()); 3111 } 3112 3113 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3114 SelectionDAG &DAG) const { 3115 return Op.getOperand(0); 3116 } 3117 3118 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3119 SelectionDAG &DAG) const { 3120 SDValue Chain = Op.getOperand(0); 3121 SDValue Trmp = Op.getOperand(1); // trampoline 3122 SDValue FPtr = Op.getOperand(2); // nested function 3123 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3124 SDLoc dl(Op); 3125 3126 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3127 bool isPPC64 = (PtrVT == MVT::i64); 3128 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3129 3130 TargetLowering::ArgListTy Args; 3131 TargetLowering::ArgListEntry Entry; 3132 3133 Entry.Ty = IntPtrTy; 3134 Entry.Node = Trmp; Args.push_back(Entry); 3135 3136 // TrampSize == (isPPC64 ? 48 : 40); 3137 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3138 isPPC64 ? MVT::i64 : MVT::i32); 3139 Args.push_back(Entry); 3140 3141 Entry.Node = FPtr; Args.push_back(Entry); 3142 Entry.Node = Nest; Args.push_back(Entry); 3143 3144 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3145 TargetLowering::CallLoweringInfo CLI(DAG); 3146 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3147 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3148 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3149 3150 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3151 return CallResult.second; 3152 } 3153 3154 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3155 MachineFunction &MF = DAG.getMachineFunction(); 3156 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3157 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3158 3159 SDLoc dl(Op); 3160 3161 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3162 // vastart just stores the address of the VarArgsFrameIndex slot into the 3163 // memory location argument. 3164 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3165 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3166 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3167 MachinePointerInfo(SV)); 3168 } 3169 3170 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3171 // We suppose the given va_list is already allocated. 3172 // 3173 // typedef struct { 3174 // char gpr; /* index into the array of 8 GPRs 3175 // * stored in the register save area 3176 // * gpr=0 corresponds to r3, 3177 // * gpr=1 to r4, etc. 3178 // */ 3179 // char fpr; /* index into the array of 8 FPRs 3180 // * stored in the register save area 3181 // * fpr=0 corresponds to f1, 3182 // * fpr=1 to f2, etc. 3183 // */ 3184 // char *overflow_arg_area; 3185 // /* location on stack that holds 3186 // * the next overflow argument 3187 // */ 3188 // char *reg_save_area; 3189 // /* where r3:r10 and f1:f8 (if saved) 3190 // * are stored 3191 // */ 3192 // } va_list[1]; 3193 3194 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3195 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3196 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3197 PtrVT); 3198 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3199 PtrVT); 3200 3201 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3202 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3203 3204 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3205 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3206 3207 uint64_t FPROffset = 1; 3208 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3209 3210 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3211 3212 // Store first byte : number of int regs 3213 SDValue firstStore = 3214 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3215 MachinePointerInfo(SV), MVT::i8); 3216 uint64_t nextOffset = FPROffset; 3217 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3218 ConstFPROffset); 3219 3220 // Store second byte : number of float regs 3221 SDValue secondStore = 3222 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3223 MachinePointerInfo(SV, nextOffset), MVT::i8); 3224 nextOffset += StackOffset; 3225 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3226 3227 // Store second word : arguments given on stack 3228 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3229 MachinePointerInfo(SV, nextOffset)); 3230 nextOffset += FrameOffset; 3231 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3232 3233 // Store third word : arguments given in registers 3234 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3235 MachinePointerInfo(SV, nextOffset)); 3236 } 3237 3238 /// FPR - The set of FP registers that should be allocated for arguments, 3239 /// on Darwin. 3240 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3241 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3242 PPC::F11, PPC::F12, PPC::F13}; 3243 3244 /// QFPR - The set of QPX registers that should be allocated for arguments. 3245 static const MCPhysReg QFPR[] = { 3246 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3247 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3248 3249 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3250 /// the stack. 3251 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3252 unsigned PtrByteSize) { 3253 unsigned ArgSize = ArgVT.getStoreSize(); 3254 if (Flags.isByVal()) 3255 ArgSize = Flags.getByValSize(); 3256 3257 // Round up to multiples of the pointer size, except for array members, 3258 // which are always packed. 3259 if (!Flags.isInConsecutiveRegs()) 3260 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3261 3262 return ArgSize; 3263 } 3264 3265 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3266 /// on the stack. 3267 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3268 ISD::ArgFlagsTy Flags, 3269 unsigned PtrByteSize) { 3270 unsigned Align = PtrByteSize; 3271 3272 // Altivec parameters are padded to a 16 byte boundary. 3273 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3274 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3275 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3276 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3277 Align = 16; 3278 // QPX vector types stored in double-precision are padded to a 32 byte 3279 // boundary. 3280 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3281 Align = 32; 3282 3283 // ByVal parameters are aligned as requested. 3284 if (Flags.isByVal()) { 3285 unsigned BVAlign = Flags.getByValAlign(); 3286 if (BVAlign > PtrByteSize) { 3287 if (BVAlign % PtrByteSize != 0) 3288 llvm_unreachable( 3289 "ByVal alignment is not a multiple of the pointer size"); 3290 3291 Align = BVAlign; 3292 } 3293 } 3294 3295 // Array members are always packed to their original alignment. 3296 if (Flags.isInConsecutiveRegs()) { 3297 // If the array member was split into multiple registers, the first 3298 // needs to be aligned to the size of the full type. (Except for 3299 // ppcf128, which is only aligned as its f64 components.) 3300 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3301 Align = OrigVT.getStoreSize(); 3302 else 3303 Align = ArgVT.getStoreSize(); 3304 } 3305 3306 return Align; 3307 } 3308 3309 /// CalculateStackSlotUsed - Return whether this argument will use its 3310 /// stack slot (instead of being passed in registers). ArgOffset, 3311 /// AvailableFPRs, and AvailableVRs must hold the current argument 3312 /// position, and will be updated to account for this argument. 3313 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3314 ISD::ArgFlagsTy Flags, 3315 unsigned PtrByteSize, 3316 unsigned LinkageSize, 3317 unsigned ParamAreaSize, 3318 unsigned &ArgOffset, 3319 unsigned &AvailableFPRs, 3320 unsigned &AvailableVRs, bool HasQPX) { 3321 bool UseMemory = false; 3322 3323 // Respect alignment of argument on the stack. 3324 unsigned Align = 3325 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3326 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3327 // If there's no space left in the argument save area, we must 3328 // use memory (this check also catches zero-sized arguments). 3329 if (ArgOffset >= LinkageSize + ParamAreaSize) 3330 UseMemory = true; 3331 3332 // Allocate argument on the stack. 3333 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3334 if (Flags.isInConsecutiveRegsLast()) 3335 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3336 // If we overran the argument save area, we must use memory 3337 // (this check catches arguments passed partially in memory) 3338 if (ArgOffset > LinkageSize + ParamAreaSize) 3339 UseMemory = true; 3340 3341 // However, if the argument is actually passed in an FPR or a VR, 3342 // we don't use memory after all. 3343 if (!Flags.isByVal()) { 3344 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3345 // QPX registers overlap with the scalar FP registers. 3346 (HasQPX && (ArgVT == MVT::v4f32 || 3347 ArgVT == MVT::v4f64 || 3348 ArgVT == MVT::v4i1))) 3349 if (AvailableFPRs > 0) { 3350 --AvailableFPRs; 3351 return false; 3352 } 3353 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3354 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3355 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3356 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3357 if (AvailableVRs > 0) { 3358 --AvailableVRs; 3359 return false; 3360 } 3361 } 3362 3363 return UseMemory; 3364 } 3365 3366 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3367 /// ensure minimum alignment required for target. 3368 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3369 unsigned NumBytes) { 3370 unsigned TargetAlign = Lowering->getStackAlignment(); 3371 unsigned AlignMask = TargetAlign - 1; 3372 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3373 return NumBytes; 3374 } 3375 3376 SDValue PPCTargetLowering::LowerFormalArguments( 3377 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3378 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3379 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3380 if (Subtarget.isSVR4ABI()) { 3381 if (Subtarget.isPPC64()) 3382 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3383 dl, DAG, InVals); 3384 else 3385 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3386 dl, DAG, InVals); 3387 } else { 3388 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3389 dl, DAG, InVals); 3390 } 3391 } 3392 3393 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3394 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3395 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3396 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3397 3398 // 32-bit SVR4 ABI Stack Frame Layout: 3399 // +-----------------------------------+ 3400 // +--> | Back chain | 3401 // | +-----------------------------------+ 3402 // | | Floating-point register save area | 3403 // | +-----------------------------------+ 3404 // | | General register save area | 3405 // | +-----------------------------------+ 3406 // | | CR save word | 3407 // | +-----------------------------------+ 3408 // | | VRSAVE save word | 3409 // | +-----------------------------------+ 3410 // | | Alignment padding | 3411 // | +-----------------------------------+ 3412 // | | Vector register save area | 3413 // | +-----------------------------------+ 3414 // | | Local variable space | 3415 // | +-----------------------------------+ 3416 // | | Parameter list area | 3417 // | +-----------------------------------+ 3418 // | | LR save word | 3419 // | +-----------------------------------+ 3420 // SP--> +--- | Back chain | 3421 // +-----------------------------------+ 3422 // 3423 // Specifications: 3424 // System V Application Binary Interface PowerPC Processor Supplement 3425 // AltiVec Technology Programming Interface Manual 3426 3427 MachineFunction &MF = DAG.getMachineFunction(); 3428 MachineFrameInfo &MFI = MF.getFrameInfo(); 3429 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3430 3431 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3432 // Potential tail calls could cause overwriting of argument stack slots. 3433 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3434 (CallConv == CallingConv::Fast)); 3435 unsigned PtrByteSize = 4; 3436 3437 // Assign locations to all of the incoming arguments. 3438 SmallVector<CCValAssign, 16> ArgLocs; 3439 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3440 *DAG.getContext()); 3441 3442 // Reserve space for the linkage area on the stack. 3443 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3444 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3445 if (useSoftFloat()) 3446 CCInfo.PreAnalyzeFormalArguments(Ins); 3447 3448 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3449 CCInfo.clearWasPPCF128(); 3450 3451 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3452 CCValAssign &VA = ArgLocs[i]; 3453 3454 // Arguments stored in registers. 3455 if (VA.isRegLoc()) { 3456 const TargetRegisterClass *RC; 3457 EVT ValVT = VA.getValVT(); 3458 3459 switch (ValVT.getSimpleVT().SimpleTy) { 3460 default: 3461 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3462 case MVT::i1: 3463 case MVT::i32: 3464 RC = &PPC::GPRCRegClass; 3465 break; 3466 case MVT::f32: 3467 if (Subtarget.hasP8Vector()) 3468 RC = &PPC::VSSRCRegClass; 3469 else if (Subtarget.hasSPE()) 3470 RC = &PPC::SPE4RCRegClass; 3471 else 3472 RC = &PPC::F4RCRegClass; 3473 break; 3474 case MVT::f64: 3475 if (Subtarget.hasVSX()) 3476 RC = &PPC::VSFRCRegClass; 3477 else if (Subtarget.hasSPE()) 3478 // SPE passes doubles in GPR pairs. 3479 RC = &PPC::GPRCRegClass; 3480 else 3481 RC = &PPC::F8RCRegClass; 3482 break; 3483 case MVT::v16i8: 3484 case MVT::v8i16: 3485 case MVT::v4i32: 3486 RC = &PPC::VRRCRegClass; 3487 break; 3488 case MVT::v4f32: 3489 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3490 break; 3491 case MVT::v2f64: 3492 case MVT::v2i64: 3493 RC = &PPC::VRRCRegClass; 3494 break; 3495 case MVT::v4f64: 3496 RC = &PPC::QFRCRegClass; 3497 break; 3498 case MVT::v4i1: 3499 RC = &PPC::QBRCRegClass; 3500 break; 3501 } 3502 3503 SDValue ArgValue; 3504 // Transform the arguments stored in physical registers into 3505 // virtual ones. 3506 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3507 assert(i + 1 < e && "No second half of double precision argument"); 3508 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3509 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3510 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3511 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3512 if (!Subtarget.isLittleEndian()) 3513 std::swap (ArgValueLo, ArgValueHi); 3514 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3515 ArgValueHi); 3516 } else { 3517 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3518 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3519 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3520 if (ValVT == MVT::i1) 3521 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3522 } 3523 3524 InVals.push_back(ArgValue); 3525 } else { 3526 // Argument stored in memory. 3527 assert(VA.isMemLoc()); 3528 3529 // Get the extended size of the argument type in stack 3530 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3531 // Get the actual size of the argument type 3532 unsigned ObjSize = VA.getValVT().getStoreSize(); 3533 unsigned ArgOffset = VA.getLocMemOffset(); 3534 // Stack objects in PPC32 are right justified. 3535 ArgOffset += ArgSize - ObjSize; 3536 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3537 3538 // Create load nodes to retrieve arguments from the stack. 3539 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3540 InVals.push_back( 3541 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3542 } 3543 } 3544 3545 // Assign locations to all of the incoming aggregate by value arguments. 3546 // Aggregates passed by value are stored in the local variable space of the 3547 // caller's stack frame, right above the parameter list area. 3548 SmallVector<CCValAssign, 16> ByValArgLocs; 3549 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3550 ByValArgLocs, *DAG.getContext()); 3551 3552 // Reserve stack space for the allocations in CCInfo. 3553 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3554 3555 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3556 3557 // Area that is at least reserved in the caller of this function. 3558 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3559 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3560 3561 // Set the size that is at least reserved in caller of this function. Tail 3562 // call optimized function's reserved stack space needs to be aligned so that 3563 // taking the difference between two stack areas will result in an aligned 3564 // stack. 3565 MinReservedArea = 3566 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3567 FuncInfo->setMinReservedArea(MinReservedArea); 3568 3569 SmallVector<SDValue, 8> MemOps; 3570 3571 // If the function takes variable number of arguments, make a frame index for 3572 // the start of the first vararg value... for expansion of llvm.va_start. 3573 if (isVarArg) { 3574 static const MCPhysReg GPArgRegs[] = { 3575 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3576 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3577 }; 3578 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3579 3580 static const MCPhysReg FPArgRegs[] = { 3581 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3582 PPC::F8 3583 }; 3584 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3585 3586 if (useSoftFloat() || hasSPE()) 3587 NumFPArgRegs = 0; 3588 3589 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3590 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3591 3592 // Make room for NumGPArgRegs and NumFPArgRegs. 3593 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3594 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3595 3596 FuncInfo->setVarArgsStackOffset( 3597 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3598 CCInfo.getNextStackOffset(), true)); 3599 3600 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3601 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3602 3603 // The fixed integer arguments of a variadic function are stored to the 3604 // VarArgsFrameIndex on the stack so that they may be loaded by 3605 // dereferencing the result of va_next. 3606 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3607 // Get an existing live-in vreg, or add a new one. 3608 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3609 if (!VReg) 3610 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3611 3612 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3613 SDValue Store = 3614 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3615 MemOps.push_back(Store); 3616 // Increment the address by four for the next argument to store 3617 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3618 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3619 } 3620 3621 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3622 // is set. 3623 // The double arguments are stored to the VarArgsFrameIndex 3624 // on the stack. 3625 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3626 // Get an existing live-in vreg, or add a new one. 3627 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3628 if (!VReg) 3629 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3630 3631 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3632 SDValue Store = 3633 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3634 MemOps.push_back(Store); 3635 // Increment the address by eight for the next argument to store 3636 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3637 PtrVT); 3638 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3639 } 3640 } 3641 3642 if (!MemOps.empty()) 3643 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3644 3645 return Chain; 3646 } 3647 3648 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3649 // value to MVT::i64 and then truncate to the correct register size. 3650 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3651 EVT ObjectVT, SelectionDAG &DAG, 3652 SDValue ArgVal, 3653 const SDLoc &dl) const { 3654 if (Flags.isSExt()) 3655 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3656 DAG.getValueType(ObjectVT)); 3657 else if (Flags.isZExt()) 3658 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3659 DAG.getValueType(ObjectVT)); 3660 3661 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3662 } 3663 3664 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3665 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3666 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3667 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3668 // TODO: add description of PPC stack frame format, or at least some docs. 3669 // 3670 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3671 bool isLittleEndian = Subtarget.isLittleEndian(); 3672 MachineFunction &MF = DAG.getMachineFunction(); 3673 MachineFrameInfo &MFI = MF.getFrameInfo(); 3674 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3675 3676 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3677 "fastcc not supported on varargs functions"); 3678 3679 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3680 // Potential tail calls could cause overwriting of argument stack slots. 3681 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3682 (CallConv == CallingConv::Fast)); 3683 unsigned PtrByteSize = 8; 3684 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3685 3686 static const MCPhysReg GPR[] = { 3687 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3688 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3689 }; 3690 static const MCPhysReg VR[] = { 3691 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3692 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3693 }; 3694 3695 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3696 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3697 const unsigned Num_VR_Regs = array_lengthof(VR); 3698 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3699 3700 // Do a first pass over the arguments to determine whether the ABI 3701 // guarantees that our caller has allocated the parameter save area 3702 // on its stack frame. In the ELFv1 ABI, this is always the case; 3703 // in the ELFv2 ABI, it is true if this is a vararg function or if 3704 // any parameter is located in a stack slot. 3705 3706 bool HasParameterArea = !isELFv2ABI || isVarArg; 3707 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3708 unsigned NumBytes = LinkageSize; 3709 unsigned AvailableFPRs = Num_FPR_Regs; 3710 unsigned AvailableVRs = Num_VR_Regs; 3711 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3712 if (Ins[i].Flags.isNest()) 3713 continue; 3714 3715 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3716 PtrByteSize, LinkageSize, ParamAreaSize, 3717 NumBytes, AvailableFPRs, AvailableVRs, 3718 Subtarget.hasQPX())) 3719 HasParameterArea = true; 3720 } 3721 3722 // Add DAG nodes to load the arguments or copy them out of registers. On 3723 // entry to a function on PPC, the arguments start after the linkage area, 3724 // although the first ones are often in registers. 3725 3726 unsigned ArgOffset = LinkageSize; 3727 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3728 unsigned &QFPR_idx = FPR_idx; 3729 SmallVector<SDValue, 8> MemOps; 3730 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3731 unsigned CurArgIdx = 0; 3732 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3733 SDValue ArgVal; 3734 bool needsLoad = false; 3735 EVT ObjectVT = Ins[ArgNo].VT; 3736 EVT OrigVT = Ins[ArgNo].ArgVT; 3737 unsigned ObjSize = ObjectVT.getStoreSize(); 3738 unsigned ArgSize = ObjSize; 3739 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3740 if (Ins[ArgNo].isOrigArg()) { 3741 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3742 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3743 } 3744 // We re-align the argument offset for each argument, except when using the 3745 // fast calling convention, when we need to make sure we do that only when 3746 // we'll actually use a stack slot. 3747 unsigned CurArgOffset, Align; 3748 auto ComputeArgOffset = [&]() { 3749 /* Respect alignment of argument on the stack. */ 3750 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3751 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3752 CurArgOffset = ArgOffset; 3753 }; 3754 3755 if (CallConv != CallingConv::Fast) { 3756 ComputeArgOffset(); 3757 3758 /* Compute GPR index associated with argument offset. */ 3759 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3760 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3761 } 3762 3763 // FIXME the codegen can be much improved in some cases. 3764 // We do not have to keep everything in memory. 3765 if (Flags.isByVal()) { 3766 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3767 3768 if (CallConv == CallingConv::Fast) 3769 ComputeArgOffset(); 3770 3771 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3772 ObjSize = Flags.getByValSize(); 3773 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3774 // Empty aggregate parameters do not take up registers. Examples: 3775 // struct { } a; 3776 // union { } b; 3777 // int c[0]; 3778 // etc. However, we have to provide a place-holder in InVals, so 3779 // pretend we have an 8-byte item at the current address for that 3780 // purpose. 3781 if (!ObjSize) { 3782 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3783 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3784 InVals.push_back(FIN); 3785 continue; 3786 } 3787 3788 // Create a stack object covering all stack doublewords occupied 3789 // by the argument. If the argument is (fully or partially) on 3790 // the stack, or if the argument is fully in registers but the 3791 // caller has allocated the parameter save anyway, we can refer 3792 // directly to the caller's stack frame. Otherwise, create a 3793 // local copy in our own frame. 3794 int FI; 3795 if (HasParameterArea || 3796 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3797 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3798 else 3799 FI = MFI.CreateStackObject(ArgSize, Align, false); 3800 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3801 3802 // Handle aggregates smaller than 8 bytes. 3803 if (ObjSize < PtrByteSize) { 3804 // The value of the object is its address, which differs from the 3805 // address of the enclosing doubleword on big-endian systems. 3806 SDValue Arg = FIN; 3807 if (!isLittleEndian) { 3808 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3809 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3810 } 3811 InVals.push_back(Arg); 3812 3813 if (GPR_idx != Num_GPR_Regs) { 3814 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3815 FuncInfo->addLiveInAttr(VReg, Flags); 3816 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3817 SDValue Store; 3818 3819 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3820 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3821 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3822 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3823 MachinePointerInfo(&*FuncArg), ObjType); 3824 } else { 3825 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3826 // store the whole register as-is to the parameter save area 3827 // slot. 3828 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3829 MachinePointerInfo(&*FuncArg)); 3830 } 3831 3832 MemOps.push_back(Store); 3833 } 3834 // Whether we copied from a register or not, advance the offset 3835 // into the parameter save area by a full doubleword. 3836 ArgOffset += PtrByteSize; 3837 continue; 3838 } 3839 3840 // The value of the object is its address, which is the address of 3841 // its first stack doubleword. 3842 InVals.push_back(FIN); 3843 3844 // Store whatever pieces of the object are in registers to memory. 3845 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3846 if (GPR_idx == Num_GPR_Regs) 3847 break; 3848 3849 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3850 FuncInfo->addLiveInAttr(VReg, Flags); 3851 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3852 SDValue Addr = FIN; 3853 if (j) { 3854 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3855 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3856 } 3857 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3858 MachinePointerInfo(&*FuncArg, j)); 3859 MemOps.push_back(Store); 3860 ++GPR_idx; 3861 } 3862 ArgOffset += ArgSize; 3863 continue; 3864 } 3865 3866 switch (ObjectVT.getSimpleVT().SimpleTy) { 3867 default: llvm_unreachable("Unhandled argument type!"); 3868 case MVT::i1: 3869 case MVT::i32: 3870 case MVT::i64: 3871 if (Flags.isNest()) { 3872 // The 'nest' parameter, if any, is passed in R11. 3873 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3874 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3875 3876 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3877 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3878 3879 break; 3880 } 3881 3882 // These can be scalar arguments or elements of an integer array type 3883 // passed directly. Clang may use those instead of "byval" aggregate 3884 // types to avoid forcing arguments to memory unnecessarily. 3885 if (GPR_idx != Num_GPR_Regs) { 3886 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3887 FuncInfo->addLiveInAttr(VReg, Flags); 3888 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3889 3890 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3891 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3892 // value to MVT::i64 and then truncate to the correct register size. 3893 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3894 } else { 3895 if (CallConv == CallingConv::Fast) 3896 ComputeArgOffset(); 3897 3898 needsLoad = true; 3899 ArgSize = PtrByteSize; 3900 } 3901 if (CallConv != CallingConv::Fast || needsLoad) 3902 ArgOffset += 8; 3903 break; 3904 3905 case MVT::f32: 3906 case MVT::f64: 3907 // These can be scalar arguments or elements of a float array type 3908 // passed directly. The latter are used to implement ELFv2 homogenous 3909 // float aggregates. 3910 if (FPR_idx != Num_FPR_Regs) { 3911 unsigned VReg; 3912 3913 if (ObjectVT == MVT::f32) 3914 VReg = MF.addLiveIn(FPR[FPR_idx], 3915 Subtarget.hasP8Vector() 3916 ? &PPC::VSSRCRegClass 3917 : &PPC::F4RCRegClass); 3918 else 3919 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3920 ? &PPC::VSFRCRegClass 3921 : &PPC::F8RCRegClass); 3922 3923 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3924 ++FPR_idx; 3925 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3926 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3927 // once we support fp <-> gpr moves. 3928 3929 // This can only ever happen in the presence of f32 array types, 3930 // since otherwise we never run out of FPRs before running out 3931 // of GPRs. 3932 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3933 FuncInfo->addLiveInAttr(VReg, Flags); 3934 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3935 3936 if (ObjectVT == MVT::f32) { 3937 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3938 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3939 DAG.getConstant(32, dl, MVT::i32)); 3940 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3941 } 3942 3943 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3944 } else { 3945 if (CallConv == CallingConv::Fast) 3946 ComputeArgOffset(); 3947 3948 needsLoad = true; 3949 } 3950 3951 // When passing an array of floats, the array occupies consecutive 3952 // space in the argument area; only round up to the next doubleword 3953 // at the end of the array. Otherwise, each float takes 8 bytes. 3954 if (CallConv != CallingConv::Fast || needsLoad) { 3955 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3956 ArgOffset += ArgSize; 3957 if (Flags.isInConsecutiveRegsLast()) 3958 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3959 } 3960 break; 3961 case MVT::v4f32: 3962 case MVT::v4i32: 3963 case MVT::v8i16: 3964 case MVT::v16i8: 3965 case MVT::v2f64: 3966 case MVT::v2i64: 3967 case MVT::v1i128: 3968 case MVT::f128: 3969 if (!Subtarget.hasQPX()) { 3970 // These can be scalar arguments or elements of a vector array type 3971 // passed directly. The latter are used to implement ELFv2 homogenous 3972 // vector aggregates. 3973 if (VR_idx != Num_VR_Regs) { 3974 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3975 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3976 ++VR_idx; 3977 } else { 3978 if (CallConv == CallingConv::Fast) 3979 ComputeArgOffset(); 3980 needsLoad = true; 3981 } 3982 if (CallConv != CallingConv::Fast || needsLoad) 3983 ArgOffset += 16; 3984 break; 3985 } // not QPX 3986 3987 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3988 "Invalid QPX parameter type"); 3989 LLVM_FALLTHROUGH; 3990 3991 case MVT::v4f64: 3992 case MVT::v4i1: 3993 // QPX vectors are treated like their scalar floating-point subregisters 3994 // (except that they're larger). 3995 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3996 if (QFPR_idx != Num_QFPR_Regs) { 3997 const TargetRegisterClass *RC; 3998 switch (ObjectVT.getSimpleVT().SimpleTy) { 3999 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4000 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4001 default: RC = &PPC::QBRCRegClass; break; 4002 } 4003 4004 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4005 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4006 ++QFPR_idx; 4007 } else { 4008 if (CallConv == CallingConv::Fast) 4009 ComputeArgOffset(); 4010 needsLoad = true; 4011 } 4012 if (CallConv != CallingConv::Fast || needsLoad) 4013 ArgOffset += Sz; 4014 break; 4015 } 4016 4017 // We need to load the argument to a virtual register if we determined 4018 // above that we ran out of physical registers of the appropriate type. 4019 if (needsLoad) { 4020 if (ObjSize < ArgSize && !isLittleEndian) 4021 CurArgOffset += ArgSize - ObjSize; 4022 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4023 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4024 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4025 } 4026 4027 InVals.push_back(ArgVal); 4028 } 4029 4030 // Area that is at least reserved in the caller of this function. 4031 unsigned MinReservedArea; 4032 if (HasParameterArea) 4033 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4034 else 4035 MinReservedArea = LinkageSize; 4036 4037 // Set the size that is at least reserved in caller of this function. Tail 4038 // call optimized functions' reserved stack space needs to be aligned so that 4039 // taking the difference between two stack areas will result in an aligned 4040 // stack. 4041 MinReservedArea = 4042 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4043 FuncInfo->setMinReservedArea(MinReservedArea); 4044 4045 // If the function takes variable number of arguments, make a frame index for 4046 // the start of the first vararg value... for expansion of llvm.va_start. 4047 if (isVarArg) { 4048 int Depth = ArgOffset; 4049 4050 FuncInfo->setVarArgsFrameIndex( 4051 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4052 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4053 4054 // If this function is vararg, store any remaining integer argument regs 4055 // to their spots on the stack so that they may be loaded by dereferencing 4056 // the result of va_next. 4057 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4058 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4059 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4060 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4061 SDValue Store = 4062 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4063 MemOps.push_back(Store); 4064 // Increment the address by four for the next argument to store 4065 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4066 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4067 } 4068 } 4069 4070 if (!MemOps.empty()) 4071 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4072 4073 return Chain; 4074 } 4075 4076 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4077 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4078 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4079 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4080 // TODO: add description of PPC stack frame format, or at least some docs. 4081 // 4082 MachineFunction &MF = DAG.getMachineFunction(); 4083 MachineFrameInfo &MFI = MF.getFrameInfo(); 4084 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4085 4086 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4087 bool isPPC64 = PtrVT == MVT::i64; 4088 // Potential tail calls could cause overwriting of argument stack slots. 4089 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4090 (CallConv == CallingConv::Fast)); 4091 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4092 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4093 unsigned ArgOffset = LinkageSize; 4094 // Area that is at least reserved in caller of this function. 4095 unsigned MinReservedArea = ArgOffset; 4096 4097 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4098 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4099 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4100 }; 4101 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4102 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4103 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4104 }; 4105 static const MCPhysReg VR[] = { 4106 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4107 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4108 }; 4109 4110 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4111 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4112 const unsigned Num_VR_Regs = array_lengthof( VR); 4113 4114 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4115 4116 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4117 4118 // In 32-bit non-varargs functions, the stack space for vectors is after the 4119 // stack space for non-vectors. We do not use this space unless we have 4120 // too many vectors to fit in registers, something that only occurs in 4121 // constructed examples:), but we have to walk the arglist to figure 4122 // that out...for the pathological case, compute VecArgOffset as the 4123 // start of the vector parameter area. Computing VecArgOffset is the 4124 // entire point of the following loop. 4125 unsigned VecArgOffset = ArgOffset; 4126 if (!isVarArg && !isPPC64) { 4127 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4128 ++ArgNo) { 4129 EVT ObjectVT = Ins[ArgNo].VT; 4130 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4131 4132 if (Flags.isByVal()) { 4133 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4134 unsigned ObjSize = Flags.getByValSize(); 4135 unsigned ArgSize = 4136 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4137 VecArgOffset += ArgSize; 4138 continue; 4139 } 4140 4141 switch(ObjectVT.getSimpleVT().SimpleTy) { 4142 default: llvm_unreachable("Unhandled argument type!"); 4143 case MVT::i1: 4144 case MVT::i32: 4145 case MVT::f32: 4146 VecArgOffset += 4; 4147 break; 4148 case MVT::i64: // PPC64 4149 case MVT::f64: 4150 // FIXME: We are guaranteed to be !isPPC64 at this point. 4151 // Does MVT::i64 apply? 4152 VecArgOffset += 8; 4153 break; 4154 case MVT::v4f32: 4155 case MVT::v4i32: 4156 case MVT::v8i16: 4157 case MVT::v16i8: 4158 // Nothing to do, we're only looking at Nonvector args here. 4159 break; 4160 } 4161 } 4162 } 4163 // We've found where the vector parameter area in memory is. Skip the 4164 // first 12 parameters; these don't use that memory. 4165 VecArgOffset = ((VecArgOffset+15)/16)*16; 4166 VecArgOffset += 12*16; 4167 4168 // Add DAG nodes to load the arguments or copy them out of registers. On 4169 // entry to a function on PPC, the arguments start after the linkage area, 4170 // although the first ones are often in registers. 4171 4172 SmallVector<SDValue, 8> MemOps; 4173 unsigned nAltivecParamsAtEnd = 0; 4174 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4175 unsigned CurArgIdx = 0; 4176 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4177 SDValue ArgVal; 4178 bool needsLoad = false; 4179 EVT ObjectVT = Ins[ArgNo].VT; 4180 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4181 unsigned ArgSize = ObjSize; 4182 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4183 if (Ins[ArgNo].isOrigArg()) { 4184 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4185 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4186 } 4187 unsigned CurArgOffset = ArgOffset; 4188 4189 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4190 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4191 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4192 if (isVarArg || isPPC64) { 4193 MinReservedArea = ((MinReservedArea+15)/16)*16; 4194 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4195 Flags, 4196 PtrByteSize); 4197 } else nAltivecParamsAtEnd++; 4198 } else 4199 // Calculate min reserved area. 4200 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4201 Flags, 4202 PtrByteSize); 4203 4204 // FIXME the codegen can be much improved in some cases. 4205 // We do not have to keep everything in memory. 4206 if (Flags.isByVal()) { 4207 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4208 4209 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4210 ObjSize = Flags.getByValSize(); 4211 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4212 // Objects of size 1 and 2 are right justified, everything else is 4213 // left justified. This means the memory address is adjusted forwards. 4214 if (ObjSize==1 || ObjSize==2) { 4215 CurArgOffset = CurArgOffset + (4 - ObjSize); 4216 } 4217 // The value of the object is its address. 4218 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4219 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4220 InVals.push_back(FIN); 4221 if (ObjSize==1 || ObjSize==2) { 4222 if (GPR_idx != Num_GPR_Regs) { 4223 unsigned VReg; 4224 if (isPPC64) 4225 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4226 else 4227 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4228 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4229 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4230 SDValue Store = 4231 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4232 MachinePointerInfo(&*FuncArg), ObjType); 4233 MemOps.push_back(Store); 4234 ++GPR_idx; 4235 } 4236 4237 ArgOffset += PtrByteSize; 4238 4239 continue; 4240 } 4241 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4242 // Store whatever pieces of the object are in registers 4243 // to memory. ArgOffset will be the address of the beginning 4244 // of the object. 4245 if (GPR_idx != Num_GPR_Regs) { 4246 unsigned VReg; 4247 if (isPPC64) 4248 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4249 else 4250 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4251 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4252 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4253 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4254 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4255 MachinePointerInfo(&*FuncArg, j)); 4256 MemOps.push_back(Store); 4257 ++GPR_idx; 4258 ArgOffset += PtrByteSize; 4259 } else { 4260 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4261 break; 4262 } 4263 } 4264 continue; 4265 } 4266 4267 switch (ObjectVT.getSimpleVT().SimpleTy) { 4268 default: llvm_unreachable("Unhandled argument type!"); 4269 case MVT::i1: 4270 case MVT::i32: 4271 if (!isPPC64) { 4272 if (GPR_idx != Num_GPR_Regs) { 4273 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4274 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4275 4276 if (ObjectVT == MVT::i1) 4277 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4278 4279 ++GPR_idx; 4280 } else { 4281 needsLoad = true; 4282 ArgSize = PtrByteSize; 4283 } 4284 // All int arguments reserve stack space in the Darwin ABI. 4285 ArgOffset += PtrByteSize; 4286 break; 4287 } 4288 LLVM_FALLTHROUGH; 4289 case MVT::i64: // PPC64 4290 if (GPR_idx != Num_GPR_Regs) { 4291 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4292 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4293 4294 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4295 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4296 // value to MVT::i64 and then truncate to the correct register size. 4297 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4298 4299 ++GPR_idx; 4300 } else { 4301 needsLoad = true; 4302 ArgSize = PtrByteSize; 4303 } 4304 // All int arguments reserve stack space in the Darwin ABI. 4305 ArgOffset += 8; 4306 break; 4307 4308 case MVT::f32: 4309 case MVT::f64: 4310 // Every 4 bytes of argument space consumes one of the GPRs available for 4311 // argument passing. 4312 if (GPR_idx != Num_GPR_Regs) { 4313 ++GPR_idx; 4314 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4315 ++GPR_idx; 4316 } 4317 if (FPR_idx != Num_FPR_Regs) { 4318 unsigned VReg; 4319 4320 if (ObjectVT == MVT::f32) 4321 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4322 else 4323 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4324 4325 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4326 ++FPR_idx; 4327 } else { 4328 needsLoad = true; 4329 } 4330 4331 // All FP arguments reserve stack space in the Darwin ABI. 4332 ArgOffset += isPPC64 ? 8 : ObjSize; 4333 break; 4334 case MVT::v4f32: 4335 case MVT::v4i32: 4336 case MVT::v8i16: 4337 case MVT::v16i8: 4338 // Note that vector arguments in registers don't reserve stack space, 4339 // except in varargs functions. 4340 if (VR_idx != Num_VR_Regs) { 4341 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4342 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4343 if (isVarArg) { 4344 while ((ArgOffset % 16) != 0) { 4345 ArgOffset += PtrByteSize; 4346 if (GPR_idx != Num_GPR_Regs) 4347 GPR_idx++; 4348 } 4349 ArgOffset += 16; 4350 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4351 } 4352 ++VR_idx; 4353 } else { 4354 if (!isVarArg && !isPPC64) { 4355 // Vectors go after all the nonvectors. 4356 CurArgOffset = VecArgOffset; 4357 VecArgOffset += 16; 4358 } else { 4359 // Vectors are aligned. 4360 ArgOffset = ((ArgOffset+15)/16)*16; 4361 CurArgOffset = ArgOffset; 4362 ArgOffset += 16; 4363 } 4364 needsLoad = true; 4365 } 4366 break; 4367 } 4368 4369 // We need to load the argument to a virtual register if we determined above 4370 // that we ran out of physical registers of the appropriate type. 4371 if (needsLoad) { 4372 int FI = MFI.CreateFixedObject(ObjSize, 4373 CurArgOffset + (ArgSize - ObjSize), 4374 isImmutable); 4375 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4376 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4377 } 4378 4379 InVals.push_back(ArgVal); 4380 } 4381 4382 // Allow for Altivec parameters at the end, if needed. 4383 if (nAltivecParamsAtEnd) { 4384 MinReservedArea = ((MinReservedArea+15)/16)*16; 4385 MinReservedArea += 16*nAltivecParamsAtEnd; 4386 } 4387 4388 // Area that is at least reserved in the caller of this function. 4389 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4390 4391 // Set the size that is at least reserved in caller of this function. Tail 4392 // call optimized functions' reserved stack space needs to be aligned so that 4393 // taking the difference between two stack areas will result in an aligned 4394 // stack. 4395 MinReservedArea = 4396 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4397 FuncInfo->setMinReservedArea(MinReservedArea); 4398 4399 // If the function takes variable number of arguments, make a frame index for 4400 // the start of the first vararg value... for expansion of llvm.va_start. 4401 if (isVarArg) { 4402 int Depth = ArgOffset; 4403 4404 FuncInfo->setVarArgsFrameIndex( 4405 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4406 Depth, true)); 4407 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4408 4409 // If this function is vararg, store any remaining integer argument regs 4410 // to their spots on the stack so that they may be loaded by dereferencing 4411 // the result of va_next. 4412 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4413 unsigned VReg; 4414 4415 if (isPPC64) 4416 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4417 else 4418 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4419 4420 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4421 SDValue Store = 4422 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4423 MemOps.push_back(Store); 4424 // Increment the address by four for the next argument to store 4425 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4426 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4427 } 4428 } 4429 4430 if (!MemOps.empty()) 4431 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4432 4433 return Chain; 4434 } 4435 4436 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4437 /// adjusted to accommodate the arguments for the tailcall. 4438 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4439 unsigned ParamSize) { 4440 4441 if (!isTailCall) return 0; 4442 4443 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4444 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4445 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4446 // Remember only if the new adjustment is bigger. 4447 if (SPDiff < FI->getTailCallSPDelta()) 4448 FI->setTailCallSPDelta(SPDiff); 4449 4450 return SPDiff; 4451 } 4452 4453 static bool isFunctionGlobalAddress(SDValue Callee); 4454 4455 static bool 4456 callsShareTOCBase(const Function *Caller, SDValue Callee, 4457 const TargetMachine &TM) { 4458 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4459 // don't have enough information to determine if the caller and calle share 4460 // the same TOC base, so we have to pessimistically assume they don't for 4461 // correctness. 4462 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4463 if (!G) 4464 return false; 4465 4466 const GlobalValue *GV = G->getGlobal(); 4467 // The medium and large code models are expected to provide a sufficiently 4468 // large TOC to provide all data addressing needs of a module with a 4469 // single TOC. Since each module will be addressed with a single TOC then we 4470 // only need to check that caller and callee don't cross dso boundaries. 4471 if (CodeModel::Medium == TM.getCodeModel() || 4472 CodeModel::Large == TM.getCodeModel()) 4473 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4474 4475 // Otherwise we need to ensure callee and caller are in the same section, 4476 // since the linker may allocate multiple TOCs, and we don't know which 4477 // sections will belong to the same TOC base. 4478 4479 if (!GV->isStrongDefinitionForLinker()) 4480 return false; 4481 4482 // Any explicitly-specified sections and section prefixes must also match. 4483 // Also, if we're using -ffunction-sections, then each function is always in 4484 // a different section (the same is true for COMDAT functions). 4485 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4486 GV->getSection() != Caller->getSection()) 4487 return false; 4488 if (const auto *F = dyn_cast<Function>(GV)) { 4489 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4490 return false; 4491 } 4492 4493 // If the callee might be interposed, then we can't assume the ultimate call 4494 // target will be in the same section. Even in cases where we can assume that 4495 // interposition won't happen, in any case where the linker might insert a 4496 // stub to allow for interposition, we must generate code as though 4497 // interposition might occur. To understand why this matters, consider a 4498 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4499 // in the same section, but a is in a different module (i.e. has a different 4500 // TOC base pointer). If the linker allows for interposition between b and c, 4501 // then it will generate a stub for the call edge between b and c which will 4502 // save the TOC pointer into the designated stack slot allocated by b. If we 4503 // return true here, and therefore allow a tail call between b and c, that 4504 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4505 // pointer into the stack slot allocated by a (where the a -> b stub saved 4506 // a's TOC base pointer). If we're not considering a tail call, but rather, 4507 // whether a nop is needed after the call instruction in b, because the linker 4508 // will insert a stub, it might complain about a missing nop if we omit it 4509 // (although many don't complain in this case). 4510 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4511 return false; 4512 4513 return true; 4514 } 4515 4516 static bool 4517 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4518 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4519 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4520 4521 const unsigned PtrByteSize = 8; 4522 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4523 4524 static const MCPhysReg GPR[] = { 4525 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4526 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4527 }; 4528 static const MCPhysReg VR[] = { 4529 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4530 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4531 }; 4532 4533 const unsigned NumGPRs = array_lengthof(GPR); 4534 const unsigned NumFPRs = 13; 4535 const unsigned NumVRs = array_lengthof(VR); 4536 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4537 4538 unsigned NumBytes = LinkageSize; 4539 unsigned AvailableFPRs = NumFPRs; 4540 unsigned AvailableVRs = NumVRs; 4541 4542 for (const ISD::OutputArg& Param : Outs) { 4543 if (Param.Flags.isNest()) continue; 4544 4545 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4546 PtrByteSize, LinkageSize, ParamAreaSize, 4547 NumBytes, AvailableFPRs, AvailableVRs, 4548 Subtarget.hasQPX())) 4549 return true; 4550 } 4551 return false; 4552 } 4553 4554 static bool 4555 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4556 if (CS.arg_size() != CallerFn->arg_size()) 4557 return false; 4558 4559 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4560 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4561 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4562 4563 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4564 const Value* CalleeArg = *CalleeArgIter; 4565 const Value* CallerArg = &(*CallerArgIter); 4566 if (CalleeArg == CallerArg) 4567 continue; 4568 4569 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4570 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4571 // } 4572 // 1st argument of callee is undef and has the same type as caller. 4573 if (CalleeArg->getType() == CallerArg->getType() && 4574 isa<UndefValue>(CalleeArg)) 4575 continue; 4576 4577 return false; 4578 } 4579 4580 return true; 4581 } 4582 4583 // Returns true if TCO is possible between the callers and callees 4584 // calling conventions. 4585 static bool 4586 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4587 CallingConv::ID CalleeCC) { 4588 // Tail calls are possible with fastcc and ccc. 4589 auto isTailCallableCC = [] (CallingConv::ID CC){ 4590 return CC == CallingConv::C || CC == CallingConv::Fast; 4591 }; 4592 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4593 return false; 4594 4595 // We can safely tail call both fastcc and ccc callees from a c calling 4596 // convention caller. If the caller is fastcc, we may have less stack space 4597 // than a non-fastcc caller with the same signature so disable tail-calls in 4598 // that case. 4599 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4600 } 4601 4602 bool 4603 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4604 SDValue Callee, 4605 CallingConv::ID CalleeCC, 4606 ImmutableCallSite CS, 4607 bool isVarArg, 4608 const SmallVectorImpl<ISD::OutputArg> &Outs, 4609 const SmallVectorImpl<ISD::InputArg> &Ins, 4610 SelectionDAG& DAG) const { 4611 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4612 4613 if (DisableSCO && !TailCallOpt) return false; 4614 4615 // Variadic argument functions are not supported. 4616 if (isVarArg) return false; 4617 4618 auto &Caller = DAG.getMachineFunction().getFunction(); 4619 // Check that the calling conventions are compatible for tco. 4620 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4621 return false; 4622 4623 // Caller contains any byval parameter is not supported. 4624 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4625 return false; 4626 4627 // Callee contains any byval parameter is not supported, too. 4628 // Note: This is a quick work around, because in some cases, e.g. 4629 // caller's stack size > callee's stack size, we are still able to apply 4630 // sibling call optimization. For example, gcc is able to do SCO for caller1 4631 // in the following example, but not for caller2. 4632 // struct test { 4633 // long int a; 4634 // char ary[56]; 4635 // } gTest; 4636 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4637 // b->a = v.a; 4638 // return 0; 4639 // } 4640 // void caller1(struct test a, struct test c, struct test *b) { 4641 // callee(gTest, b); } 4642 // void caller2(struct test *b) { callee(gTest, b); } 4643 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4644 return false; 4645 4646 // If callee and caller use different calling conventions, we cannot pass 4647 // parameters on stack since offsets for the parameter area may be different. 4648 if (Caller.getCallingConv() != CalleeCC && 4649 needStackSlotPassParameters(Subtarget, Outs)) 4650 return false; 4651 4652 // No TCO/SCO on indirect call because Caller have to restore its TOC 4653 if (!isFunctionGlobalAddress(Callee) && 4654 !isa<ExternalSymbolSDNode>(Callee)) 4655 return false; 4656 4657 // If the caller and callee potentially have different TOC bases then we 4658 // cannot tail call since we need to restore the TOC pointer after the call. 4659 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4660 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4661 return false; 4662 4663 // TCO allows altering callee ABI, so we don't have to check further. 4664 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4665 return true; 4666 4667 if (DisableSCO) return false; 4668 4669 // If callee use the same argument list that caller is using, then we can 4670 // apply SCO on this case. If it is not, then we need to check if callee needs 4671 // stack for passing arguments. 4672 if (!hasSameArgumentList(&Caller, CS) && 4673 needStackSlotPassParameters(Subtarget, Outs)) { 4674 return false; 4675 } 4676 4677 return true; 4678 } 4679 4680 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4681 /// for tail call optimization. Targets which want to do tail call 4682 /// optimization should implement this function. 4683 bool 4684 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4685 CallingConv::ID CalleeCC, 4686 bool isVarArg, 4687 const SmallVectorImpl<ISD::InputArg> &Ins, 4688 SelectionDAG& DAG) const { 4689 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4690 return false; 4691 4692 // Variable argument functions are not supported. 4693 if (isVarArg) 4694 return false; 4695 4696 MachineFunction &MF = DAG.getMachineFunction(); 4697 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4698 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4699 // Functions containing by val parameters are not supported. 4700 for (unsigned i = 0; i != Ins.size(); i++) { 4701 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4702 if (Flags.isByVal()) return false; 4703 } 4704 4705 // Non-PIC/GOT tail calls are supported. 4706 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4707 return true; 4708 4709 // At the moment we can only do local tail calls (in same module, hidden 4710 // or protected) if we are generating PIC. 4711 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4712 return G->getGlobal()->hasHiddenVisibility() 4713 || G->getGlobal()->hasProtectedVisibility(); 4714 } 4715 4716 return false; 4717 } 4718 4719 /// isCallCompatibleAddress - Return the immediate to use if the specified 4720 /// 32-bit value is representable in the immediate field of a BxA instruction. 4721 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4722 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4723 if (!C) return nullptr; 4724 4725 int Addr = C->getZExtValue(); 4726 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4727 SignExtend32<26>(Addr) != Addr) 4728 return nullptr; // Top 6 bits have to be sext of immediate. 4729 4730 return DAG 4731 .getConstant( 4732 (int)C->getZExtValue() >> 2, SDLoc(Op), 4733 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4734 .getNode(); 4735 } 4736 4737 namespace { 4738 4739 struct TailCallArgumentInfo { 4740 SDValue Arg; 4741 SDValue FrameIdxOp; 4742 int FrameIdx = 0; 4743 4744 TailCallArgumentInfo() = default; 4745 }; 4746 4747 } // end anonymous namespace 4748 4749 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4750 static void StoreTailCallArgumentsToStackSlot( 4751 SelectionDAG &DAG, SDValue Chain, 4752 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4753 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4754 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4755 SDValue Arg = TailCallArgs[i].Arg; 4756 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4757 int FI = TailCallArgs[i].FrameIdx; 4758 // Store relative to framepointer. 4759 MemOpChains.push_back(DAG.getStore( 4760 Chain, dl, Arg, FIN, 4761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4762 } 4763 } 4764 4765 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4766 /// the appropriate stack slot for the tail call optimized function call. 4767 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4768 SDValue OldRetAddr, SDValue OldFP, 4769 int SPDiff, const SDLoc &dl) { 4770 if (SPDiff) { 4771 // Calculate the new stack slot for the return address. 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4774 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4775 bool isPPC64 = Subtarget.isPPC64(); 4776 int SlotSize = isPPC64 ? 8 : 4; 4777 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4778 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4779 NewRetAddrLoc, true); 4780 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4781 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4782 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4783 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4784 4785 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4786 // slot as the FP is never overwritten. 4787 if (Subtarget.isDarwinABI()) { 4788 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4789 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4790 true); 4791 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4792 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4793 MachinePointerInfo::getFixedStack( 4794 DAG.getMachineFunction(), NewFPIdx)); 4795 } 4796 } 4797 return Chain; 4798 } 4799 4800 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4801 /// the position of the argument. 4802 static void 4803 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4804 SDValue Arg, int SPDiff, unsigned ArgOffset, 4805 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4806 int Offset = ArgOffset + SPDiff; 4807 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4808 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4809 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4810 SDValue FIN = DAG.getFrameIndex(FI, VT); 4811 TailCallArgumentInfo Info; 4812 Info.Arg = Arg; 4813 Info.FrameIdxOp = FIN; 4814 Info.FrameIdx = FI; 4815 TailCallArguments.push_back(Info); 4816 } 4817 4818 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4819 /// stack slot. Returns the chain as result and the loaded frame pointers in 4820 /// LROpOut/FPOpout. Used when tail calling. 4821 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4822 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4823 SDValue &FPOpOut, const SDLoc &dl) const { 4824 if (SPDiff) { 4825 // Load the LR and FP stack slot for later adjusting. 4826 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4827 LROpOut = getReturnAddrFrameIndex(DAG); 4828 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4829 Chain = SDValue(LROpOut.getNode(), 1); 4830 4831 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4832 // slot as the FP is never overwritten. 4833 if (Subtarget.isDarwinABI()) { 4834 FPOpOut = getFramePointerFrameIndex(DAG); 4835 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4836 Chain = SDValue(FPOpOut.getNode(), 1); 4837 } 4838 } 4839 return Chain; 4840 } 4841 4842 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4843 /// by "Src" to address "Dst" of size "Size". Alignment information is 4844 /// specified by the specific parameter attribute. The copy will be passed as 4845 /// a byval function parameter. 4846 /// Sometimes what we are copying is the end of a larger object, the part that 4847 /// does not fit in registers. 4848 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4849 SDValue Chain, ISD::ArgFlagsTy Flags, 4850 SelectionDAG &DAG, const SDLoc &dl) { 4851 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4852 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4853 false, false, false, MachinePointerInfo(), 4854 MachinePointerInfo()); 4855 } 4856 4857 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4858 /// tail calls. 4859 static void LowerMemOpCallTo( 4860 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4861 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4862 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4863 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4864 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4865 if (!isTailCall) { 4866 if (isVector) { 4867 SDValue StackPtr; 4868 if (isPPC64) 4869 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4870 else 4871 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4872 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4873 DAG.getConstant(ArgOffset, dl, PtrVT)); 4874 } 4875 MemOpChains.push_back( 4876 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4877 // Calculate and remember argument location. 4878 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4879 TailCallArguments); 4880 } 4881 4882 static void 4883 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4884 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4885 SDValue FPOp, 4886 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4887 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4888 // might overwrite each other in case of tail call optimization. 4889 SmallVector<SDValue, 8> MemOpChains2; 4890 // Do not flag preceding copytoreg stuff together with the following stuff. 4891 InFlag = SDValue(); 4892 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4893 MemOpChains2, dl); 4894 if (!MemOpChains2.empty()) 4895 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4896 4897 // Store the return address to the appropriate stack slot. 4898 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4899 4900 // Emit callseq_end just before tailcall node. 4901 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4902 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4903 InFlag = Chain.getValue(1); 4904 } 4905 4906 // Is this global address that of a function that can be called by name? (as 4907 // opposed to something that must hold a descriptor for an indirect call). 4908 static bool isFunctionGlobalAddress(SDValue Callee) { 4909 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4910 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4911 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4912 return false; 4913 4914 return G->getGlobal()->getValueType()->isFunctionTy(); 4915 } 4916 4917 return false; 4918 } 4919 4920 static unsigned 4921 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4922 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4923 bool isPatchPoint, bool hasNest, 4924 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4925 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4926 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4927 bool isPPC64 = Subtarget.isPPC64(); 4928 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4929 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4930 bool isAIXABI = Subtarget.isAIXABI(); 4931 4932 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4933 NodeTys.push_back(MVT::Other); // Returns a chain 4934 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4935 4936 unsigned CallOpc = PPCISD::CALL; 4937 4938 bool needIndirectCall = true; 4939 if (!isSVR4ABI || !isPPC64) 4940 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4941 // If this is an absolute destination address, use the munged value. 4942 Callee = SDValue(Dest, 0); 4943 needIndirectCall = false; 4944 } 4945 4946 // PC-relative references to external symbols should go through $stub, unless 4947 // we're building with the leopard linker or later, which automatically 4948 // synthesizes these stubs. 4949 const TargetMachine &TM = DAG.getTarget(); 4950 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4951 const GlobalValue *GV = nullptr; 4952 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4953 GV = G->getGlobal(); 4954 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4955 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4956 4957 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4958 // every direct call is) turn it into a TargetGlobalAddress / 4959 // TargetExternalSymbol node so that legalize doesn't hack it. 4960 if (isFunctionGlobalAddress(Callee)) { 4961 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4962 4963 // A call to a TLS address is actually an indirect call to a 4964 // thread-specific pointer. 4965 unsigned OpFlags = 0; 4966 if (UsePlt) 4967 OpFlags = PPCII::MO_PLT; 4968 4969 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4970 Callee.getValueType(), 0, OpFlags); 4971 needIndirectCall = false; 4972 } 4973 4974 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4975 unsigned char OpFlags = 0; 4976 4977 if (UsePlt) 4978 OpFlags = PPCII::MO_PLT; 4979 4980 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4981 OpFlags); 4982 needIndirectCall = false; 4983 } 4984 4985 if (isPatchPoint) { 4986 // We'll form an invalid direct call when lowering a patchpoint; the full 4987 // sequence for an indirect call is complicated, and many of the 4988 // instructions introduced might have side effects (and, thus, can't be 4989 // removed later). The call itself will be removed as soon as the 4990 // argument/return lowering is complete, so the fact that it has the wrong 4991 // kind of operands should not really matter. 4992 needIndirectCall = false; 4993 } 4994 4995 if (needIndirectCall) { 4996 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4997 // to do the call, we can't use PPCISD::CALL. 4998 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4999 5000 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 5001 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5002 // entry point, but to the function descriptor (the function entry point 5003 // address is part of the function descriptor though). 5004 // The function descriptor is a three doubleword structure with the 5005 // following fields: function entry point, TOC base address and 5006 // environment pointer. 5007 // Thus for a call through a function pointer, the following actions need 5008 // to be performed: 5009 // 1. Save the TOC of the caller in the TOC save area of its stack 5010 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5011 // 2. Load the address of the function entry point from the function 5012 // descriptor. 5013 // 3. Load the TOC of the callee from the function descriptor into r2. 5014 // 4. Load the environment pointer from the function descriptor into 5015 // r11. 5016 // 5. Branch to the function entry point address. 5017 // 6. On return of the callee, the TOC of the caller needs to be 5018 // restored (this is done in FinishCall()). 5019 // 5020 // The loads are scheduled at the beginning of the call sequence, and the 5021 // register copies are flagged together to ensure that no other 5022 // operations can be scheduled in between. E.g. without flagging the 5023 // copies together, a TOC access in the caller could be scheduled between 5024 // the assignment of the callee TOC and the branch to the callee, which 5025 // results in the TOC access going through the TOC of the callee instead 5026 // of going through the TOC of the caller, which leads to incorrect code. 5027 5028 // Load the address of the function entry point from the function 5029 // descriptor. 5030 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5031 if (LDChain.getValueType() == MVT::Glue) 5032 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5033 5034 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5035 ? (MachineMemOperand::MODereferenceable | 5036 MachineMemOperand::MOInvariant) 5037 : MachineMemOperand::MONone; 5038 5039 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5040 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5041 /* Alignment = */ 8, MMOFlags); 5042 5043 // Load environment pointer into r11. 5044 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5045 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5046 SDValue LoadEnvPtr = 5047 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5048 /* Alignment = */ 8, MMOFlags); 5049 5050 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5051 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5052 SDValue TOCPtr = 5053 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5054 /* Alignment = */ 8, MMOFlags); 5055 5056 setUsesTOCBasePtr(DAG); 5057 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5058 InFlag); 5059 Chain = TOCVal.getValue(0); 5060 InFlag = TOCVal.getValue(1); 5061 5062 // If the function call has an explicit 'nest' parameter, it takes the 5063 // place of the environment pointer. 5064 if (!hasNest) { 5065 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5066 InFlag); 5067 5068 Chain = EnvVal.getValue(0); 5069 InFlag = EnvVal.getValue(1); 5070 } 5071 5072 MTCTROps[0] = Chain; 5073 MTCTROps[1] = LoadFuncPtr; 5074 MTCTROps[2] = InFlag; 5075 } 5076 5077 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5078 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5079 InFlag = Chain.getValue(1); 5080 5081 NodeTys.clear(); 5082 NodeTys.push_back(MVT::Other); 5083 NodeTys.push_back(MVT::Glue); 5084 Ops.push_back(Chain); 5085 CallOpc = PPCISD::BCTRL; 5086 Callee.setNode(nullptr); 5087 // Add use of X11 (holding environment pointer) 5088 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5089 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5090 // Add CTR register as callee so a bctr can be emitted later. 5091 if (isTailCall) 5092 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5093 } 5094 5095 // If this is a direct call, pass the chain and the callee. 5096 if (Callee.getNode()) { 5097 Ops.push_back(Chain); 5098 Ops.push_back(Callee); 5099 } 5100 // If this is a tail call add stack pointer delta. 5101 if (isTailCall) 5102 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5103 5104 // Add argument registers to the end of the list so that they are known live 5105 // into the call. 5106 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5107 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5108 RegsToPass[i].second.getValueType())); 5109 5110 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register 5111 // live into the call. 5112 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT. 5113 if ((isSVR4ABI && isPPC64) || isAIXABI) { 5114 setUsesTOCBasePtr(DAG); 5115 5116 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5117 // no way to mark dependencies as implicit here. 5118 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5119 if (!isPatchPoint) 5120 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2 5121 : PPC::R2, PtrVT)); 5122 } 5123 5124 return CallOpc; 5125 } 5126 5127 SDValue PPCTargetLowering::LowerCallResult( 5128 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5129 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5130 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5131 SmallVector<CCValAssign, 16> RVLocs; 5132 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5133 *DAG.getContext()); 5134 5135 CCRetInfo.AnalyzeCallResult( 5136 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5137 ? RetCC_PPC_Cold 5138 : RetCC_PPC); 5139 5140 // Copy all of the result registers out of their specified physreg. 5141 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5142 CCValAssign &VA = RVLocs[i]; 5143 assert(VA.isRegLoc() && "Can only return in registers!"); 5144 5145 SDValue Val; 5146 5147 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5148 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5149 InFlag); 5150 Chain = Lo.getValue(1); 5151 InFlag = Lo.getValue(2); 5152 VA = RVLocs[++i]; // skip ahead to next loc 5153 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5154 InFlag); 5155 Chain = Hi.getValue(1); 5156 InFlag = Hi.getValue(2); 5157 if (!Subtarget.isLittleEndian()) 5158 std::swap (Lo, Hi); 5159 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5160 } else { 5161 Val = DAG.getCopyFromReg(Chain, dl, 5162 VA.getLocReg(), VA.getLocVT(), InFlag); 5163 Chain = Val.getValue(1); 5164 InFlag = Val.getValue(2); 5165 } 5166 5167 switch (VA.getLocInfo()) { 5168 default: llvm_unreachable("Unknown loc info!"); 5169 case CCValAssign::Full: break; 5170 case CCValAssign::AExt: 5171 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5172 break; 5173 case CCValAssign::ZExt: 5174 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5175 DAG.getValueType(VA.getValVT())); 5176 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5177 break; 5178 case CCValAssign::SExt: 5179 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5180 DAG.getValueType(VA.getValVT())); 5181 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5182 break; 5183 } 5184 5185 InVals.push_back(Val); 5186 } 5187 5188 return Chain; 5189 } 5190 5191 SDValue PPCTargetLowering::FinishCall( 5192 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5193 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5194 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5195 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5196 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5197 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5198 std::vector<EVT> NodeTys; 5199 SmallVector<SDValue, 8> Ops; 5200 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5201 SPDiff, isTailCall, isPatchPoint, hasNest, 5202 RegsToPass, Ops, NodeTys, CS, Subtarget); 5203 5204 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5205 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5206 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5207 5208 // When performing tail call optimization the callee pops its arguments off 5209 // the stack. Account for this here so these bytes can be pushed back on in 5210 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5211 int BytesCalleePops = 5212 (CallConv == CallingConv::Fast && 5213 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5214 5215 // Add a register mask operand representing the call-preserved registers. 5216 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5217 const uint32_t *Mask = 5218 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5219 assert(Mask && "Missing call preserved mask for calling convention"); 5220 Ops.push_back(DAG.getRegisterMask(Mask)); 5221 5222 if (InFlag.getNode()) 5223 Ops.push_back(InFlag); 5224 5225 // Emit tail call. 5226 if (isTailCall) { 5227 assert(((Callee.getOpcode() == ISD::Register && 5228 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5229 Callee.getOpcode() == ISD::TargetExternalSymbol || 5230 Callee.getOpcode() == ISD::TargetGlobalAddress || 5231 isa<ConstantSDNode>(Callee)) && 5232 "Expecting an global address, external symbol, absolute value or register"); 5233 5234 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5235 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5236 } 5237 5238 // Add a NOP immediately after the branch instruction when using the 64-bit 5239 // SVR4 or the AIX ABI. 5240 // At link time, if caller and callee are in a different module and 5241 // thus have a different TOC, the call will be replaced with a call to a stub 5242 // function which saves the current TOC, loads the TOC of the callee and 5243 // branches to the callee. The NOP will be replaced with a load instruction 5244 // which restores the TOC of the caller from the TOC save slot of the current 5245 // stack frame. If caller and callee belong to the same module (and have the 5246 // same TOC), the NOP will remain unchanged, or become some other NOP. 5247 5248 MachineFunction &MF = DAG.getMachineFunction(); 5249 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5250 if (!isTailCall && !isPatchPoint && 5251 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5252 Subtarget.isAIXABI())) { 5253 if (CallOpc == PPCISD::BCTRL) { 5254 if (Subtarget.isAIXABI()) 5255 report_fatal_error("Indirect call on AIX is not implemented."); 5256 5257 // This is a call through a function pointer. 5258 // Restore the caller TOC from the save area into R2. 5259 // See PrepareCall() for more information about calls through function 5260 // pointers in the 64-bit SVR4 ABI. 5261 // We are using a target-specific load with r2 hard coded, because the 5262 // result of a target-independent load would never go directly into r2, 5263 // since r2 is a reserved register (which prevents the register allocator 5264 // from allocating it), resulting in an additional register being 5265 // allocated and an unnecessary move instruction being generated. 5266 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5267 5268 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5269 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5270 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5271 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5272 5273 // The address needs to go after the chain input but before the flag (or 5274 // any other variadic arguments). 5275 Ops.insert(std::next(Ops.begin()), AddTOC); 5276 } else if (CallOpc == PPCISD::CALL && 5277 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5278 // Otherwise insert NOP for non-local calls. 5279 CallOpc = PPCISD::CALL_NOP; 5280 } 5281 } 5282 5283 if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) { 5284 // On AIX, direct function calls reference the symbol for the function's 5285 // entry point, which is named by inserting a "." before the function's 5286 // C-linkage name. 5287 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5288 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5289 MCSymbol *S = Context.getOrCreateSymbol(Twine(".") + 5290 Twine(G->getGlobal()->getName())); 5291 Callee = DAG.getMCSymbol(S, PtrVT); 5292 // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode. 5293 Ops[1] = Callee; 5294 } 5295 5296 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5297 InFlag = Chain.getValue(1); 5298 5299 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5300 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5301 InFlag, dl); 5302 if (!Ins.empty()) 5303 InFlag = Chain.getValue(1); 5304 5305 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5306 Ins, dl, DAG, InVals); 5307 } 5308 5309 SDValue 5310 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5311 SmallVectorImpl<SDValue> &InVals) const { 5312 SelectionDAG &DAG = CLI.DAG; 5313 SDLoc &dl = CLI.DL; 5314 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5315 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5316 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5317 SDValue Chain = CLI.Chain; 5318 SDValue Callee = CLI.Callee; 5319 bool &isTailCall = CLI.IsTailCall; 5320 CallingConv::ID CallConv = CLI.CallConv; 5321 bool isVarArg = CLI.IsVarArg; 5322 bool isPatchPoint = CLI.IsPatchPoint; 5323 ImmutableCallSite CS = CLI.CS; 5324 5325 if (isTailCall) { 5326 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5327 isTailCall = false; 5328 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5329 isTailCall = 5330 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5331 isVarArg, Outs, Ins, DAG); 5332 else 5333 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5334 Ins, DAG); 5335 if (isTailCall) { 5336 ++NumTailCalls; 5337 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5338 ++NumSiblingCalls; 5339 5340 assert(isa<GlobalAddressSDNode>(Callee) && 5341 "Callee should be an llvm::Function object."); 5342 LLVM_DEBUG( 5343 const GlobalValue *GV = 5344 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5345 const unsigned Width = 5346 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5347 dbgs() << "TCO caller: " 5348 << left_justify(DAG.getMachineFunction().getName(), Width) 5349 << ", callee linkage: " << GV->getVisibility() << ", " 5350 << GV->getLinkage() << "\n"); 5351 } 5352 } 5353 5354 if (!isTailCall && CS && CS.isMustTailCall()) 5355 report_fatal_error("failed to perform tail call elimination on a call " 5356 "site marked musttail"); 5357 5358 // When long calls (i.e. indirect calls) are always used, calls are always 5359 // made via function pointer. If we have a function name, first translate it 5360 // into a pointer. 5361 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5362 !isTailCall) 5363 Callee = LowerGlobalAddress(Callee, DAG); 5364 5365 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5366 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5367 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5368 dl, DAG, InVals, CS); 5369 5370 if (Subtarget.isSVR4ABI()) 5371 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5372 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5373 dl, DAG, InVals, CS); 5374 5375 if (Subtarget.isAIXABI()) 5376 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5377 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5378 dl, DAG, InVals, CS); 5379 5380 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5381 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5382 dl, DAG, InVals, CS); 5383 } 5384 5385 SDValue PPCTargetLowering::LowerCall_32SVR4( 5386 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5387 bool isTailCall, bool isPatchPoint, 5388 const SmallVectorImpl<ISD::OutputArg> &Outs, 5389 const SmallVectorImpl<SDValue> &OutVals, 5390 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5391 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5392 ImmutableCallSite CS) const { 5393 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5394 // of the 32-bit SVR4 ABI stack frame layout. 5395 5396 assert((CallConv == CallingConv::C || 5397 CallConv == CallingConv::Cold || 5398 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5399 5400 unsigned PtrByteSize = 4; 5401 5402 MachineFunction &MF = DAG.getMachineFunction(); 5403 5404 // Mark this function as potentially containing a function that contains a 5405 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5406 // and restoring the callers stack pointer in this functions epilog. This is 5407 // done because by tail calling the called function might overwrite the value 5408 // in this function's (MF) stack pointer stack slot 0(SP). 5409 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5410 CallConv == CallingConv::Fast) 5411 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5412 5413 // Count how many bytes are to be pushed on the stack, including the linkage 5414 // area, parameter list area and the part of the local variable space which 5415 // contains copies of aggregates which are passed by value. 5416 5417 // Assign locations to all of the outgoing arguments. 5418 SmallVector<CCValAssign, 16> ArgLocs; 5419 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5420 5421 // Reserve space for the linkage area on the stack. 5422 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5423 PtrByteSize); 5424 if (useSoftFloat()) 5425 CCInfo.PreAnalyzeCallOperands(Outs); 5426 5427 if (isVarArg) { 5428 // Handle fixed and variable vector arguments differently. 5429 // Fixed vector arguments go into registers as long as registers are 5430 // available. Variable vector arguments always go into memory. 5431 unsigned NumArgs = Outs.size(); 5432 5433 for (unsigned i = 0; i != NumArgs; ++i) { 5434 MVT ArgVT = Outs[i].VT; 5435 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5436 bool Result; 5437 5438 if (Outs[i].IsFixed) { 5439 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5440 CCInfo); 5441 } else { 5442 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5443 ArgFlags, CCInfo); 5444 } 5445 5446 if (Result) { 5447 #ifndef NDEBUG 5448 errs() << "Call operand #" << i << " has unhandled type " 5449 << EVT(ArgVT).getEVTString() << "\n"; 5450 #endif 5451 llvm_unreachable(nullptr); 5452 } 5453 } 5454 } else { 5455 // All arguments are treated the same. 5456 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5457 } 5458 CCInfo.clearWasPPCF128(); 5459 5460 // Assign locations to all of the outgoing aggregate by value arguments. 5461 SmallVector<CCValAssign, 16> ByValArgLocs; 5462 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5463 5464 // Reserve stack space for the allocations in CCInfo. 5465 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5466 5467 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5468 5469 // Size of the linkage area, parameter list area and the part of the local 5470 // space variable where copies of aggregates which are passed by value are 5471 // stored. 5472 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5473 5474 // Calculate by how many bytes the stack has to be adjusted in case of tail 5475 // call optimization. 5476 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5477 5478 // Adjust the stack pointer for the new arguments... 5479 // These operations are automatically eliminated by the prolog/epilog pass 5480 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5481 SDValue CallSeqStart = Chain; 5482 5483 // Load the return address and frame pointer so it can be moved somewhere else 5484 // later. 5485 SDValue LROp, FPOp; 5486 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5487 5488 // Set up a copy of the stack pointer for use loading and storing any 5489 // arguments that may not fit in the registers available for argument 5490 // passing. 5491 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5492 5493 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5494 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5495 SmallVector<SDValue, 8> MemOpChains; 5496 5497 bool seenFloatArg = false; 5498 // Walk the register/memloc assignments, inserting copies/loads. 5499 // i - Tracks the index into the list of registers allocated for the call 5500 // RealArgIdx - Tracks the index into the list of actual function arguments 5501 // j - Tracks the index into the list of byval arguments 5502 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5503 i != e; 5504 ++i, ++RealArgIdx) { 5505 CCValAssign &VA = ArgLocs[i]; 5506 SDValue Arg = OutVals[RealArgIdx]; 5507 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5508 5509 if (Flags.isByVal()) { 5510 // Argument is an aggregate which is passed by value, thus we need to 5511 // create a copy of it in the local variable space of the current stack 5512 // frame (which is the stack frame of the caller) and pass the address of 5513 // this copy to the callee. 5514 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5515 CCValAssign &ByValVA = ByValArgLocs[j++]; 5516 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5517 5518 // Memory reserved in the local variable space of the callers stack frame. 5519 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5520 5521 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5522 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5523 StackPtr, PtrOff); 5524 5525 // Create a copy of the argument in the local area of the current 5526 // stack frame. 5527 SDValue MemcpyCall = 5528 CreateCopyOfByValArgument(Arg, PtrOff, 5529 CallSeqStart.getNode()->getOperand(0), 5530 Flags, DAG, dl); 5531 5532 // This must go outside the CALLSEQ_START..END. 5533 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5534 SDLoc(MemcpyCall)); 5535 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5536 NewCallSeqStart.getNode()); 5537 Chain = CallSeqStart = NewCallSeqStart; 5538 5539 // Pass the address of the aggregate copy on the stack either in a 5540 // physical register or in the parameter list area of the current stack 5541 // frame to the callee. 5542 Arg = PtrOff; 5543 } 5544 5545 // When useCRBits() is true, there can be i1 arguments. 5546 // It is because getRegisterType(MVT::i1) => MVT::i1, 5547 // and for other integer types getRegisterType() => MVT::i32. 5548 // Extend i1 and ensure callee will get i32. 5549 if (Arg.getValueType() == MVT::i1) 5550 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5551 dl, MVT::i32, Arg); 5552 5553 if (VA.isRegLoc()) { 5554 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5555 // Put argument in a physical register. 5556 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5557 bool IsLE = Subtarget.isLittleEndian(); 5558 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5559 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5560 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5561 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5562 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5563 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5564 SVal.getValue(0))); 5565 } else 5566 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5567 } else { 5568 // Put argument in the parameter list area of the current stack frame. 5569 assert(VA.isMemLoc()); 5570 unsigned LocMemOffset = VA.getLocMemOffset(); 5571 5572 if (!isTailCall) { 5573 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5574 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5575 StackPtr, PtrOff); 5576 5577 MemOpChains.push_back( 5578 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5579 } else { 5580 // Calculate and remember argument location. 5581 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5582 TailCallArguments); 5583 } 5584 } 5585 } 5586 5587 if (!MemOpChains.empty()) 5588 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5589 5590 // Build a sequence of copy-to-reg nodes chained together with token chain 5591 // and flag operands which copy the outgoing args into the appropriate regs. 5592 SDValue InFlag; 5593 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5594 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5595 RegsToPass[i].second, InFlag); 5596 InFlag = Chain.getValue(1); 5597 } 5598 5599 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5600 // registers. 5601 if (isVarArg) { 5602 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5603 SDValue Ops[] = { Chain, InFlag }; 5604 5605 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5606 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5607 5608 InFlag = Chain.getValue(1); 5609 } 5610 5611 if (isTailCall) 5612 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5613 TailCallArguments); 5614 5615 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5616 /* unused except on PPC64 ELFv1 */ false, DAG, 5617 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5618 NumBytes, Ins, InVals, CS); 5619 } 5620 5621 // Copy an argument into memory, being careful to do this outside the 5622 // call sequence for the call to which the argument belongs. 5623 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5624 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5625 SelectionDAG &DAG, const SDLoc &dl) const { 5626 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5627 CallSeqStart.getNode()->getOperand(0), 5628 Flags, DAG, dl); 5629 // The MEMCPY must go outside the CALLSEQ_START..END. 5630 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5631 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5632 SDLoc(MemcpyCall)); 5633 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5634 NewCallSeqStart.getNode()); 5635 return NewCallSeqStart; 5636 } 5637 5638 SDValue PPCTargetLowering::LowerCall_64SVR4( 5639 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5640 bool isTailCall, bool isPatchPoint, 5641 const SmallVectorImpl<ISD::OutputArg> &Outs, 5642 const SmallVectorImpl<SDValue> &OutVals, 5643 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5644 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5645 ImmutableCallSite CS) const { 5646 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5647 bool isLittleEndian = Subtarget.isLittleEndian(); 5648 unsigned NumOps = Outs.size(); 5649 bool hasNest = false; 5650 bool IsSibCall = false; 5651 5652 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5653 unsigned PtrByteSize = 8; 5654 5655 MachineFunction &MF = DAG.getMachineFunction(); 5656 5657 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5658 IsSibCall = true; 5659 5660 // Mark this function as potentially containing a function that contains a 5661 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5662 // and restoring the callers stack pointer in this functions epilog. This is 5663 // done because by tail calling the called function might overwrite the value 5664 // in this function's (MF) stack pointer stack slot 0(SP). 5665 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5666 CallConv == CallingConv::Fast) 5667 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5668 5669 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5670 "fastcc not supported on varargs functions"); 5671 5672 // Count how many bytes are to be pushed on the stack, including the linkage 5673 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5674 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5675 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5676 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5677 unsigned NumBytes = LinkageSize; 5678 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5679 unsigned &QFPR_idx = FPR_idx; 5680 5681 static const MCPhysReg GPR[] = { 5682 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5683 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5684 }; 5685 static const MCPhysReg VR[] = { 5686 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5687 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5688 }; 5689 5690 const unsigned NumGPRs = array_lengthof(GPR); 5691 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5692 const unsigned NumVRs = array_lengthof(VR); 5693 const unsigned NumQFPRs = NumFPRs; 5694 5695 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5696 // can be passed to the callee in registers. 5697 // For the fast calling convention, there is another check below. 5698 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5699 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5700 if (!HasParameterArea) { 5701 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5702 unsigned AvailableFPRs = NumFPRs; 5703 unsigned AvailableVRs = NumVRs; 5704 unsigned NumBytesTmp = NumBytes; 5705 for (unsigned i = 0; i != NumOps; ++i) { 5706 if (Outs[i].Flags.isNest()) continue; 5707 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5708 PtrByteSize, LinkageSize, ParamAreaSize, 5709 NumBytesTmp, AvailableFPRs, AvailableVRs, 5710 Subtarget.hasQPX())) 5711 HasParameterArea = true; 5712 } 5713 } 5714 5715 // When using the fast calling convention, we don't provide backing for 5716 // arguments that will be in registers. 5717 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5718 5719 // Avoid allocating parameter area for fastcc functions if all the arguments 5720 // can be passed in the registers. 5721 if (CallConv == CallingConv::Fast) 5722 HasParameterArea = false; 5723 5724 // Add up all the space actually used. 5725 for (unsigned i = 0; i != NumOps; ++i) { 5726 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5727 EVT ArgVT = Outs[i].VT; 5728 EVT OrigVT = Outs[i].ArgVT; 5729 5730 if (Flags.isNest()) 5731 continue; 5732 5733 if (CallConv == CallingConv::Fast) { 5734 if (Flags.isByVal()) { 5735 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5736 if (NumGPRsUsed > NumGPRs) 5737 HasParameterArea = true; 5738 } else { 5739 switch (ArgVT.getSimpleVT().SimpleTy) { 5740 default: llvm_unreachable("Unexpected ValueType for argument!"); 5741 case MVT::i1: 5742 case MVT::i32: 5743 case MVT::i64: 5744 if (++NumGPRsUsed <= NumGPRs) 5745 continue; 5746 break; 5747 case MVT::v4i32: 5748 case MVT::v8i16: 5749 case MVT::v16i8: 5750 case MVT::v2f64: 5751 case MVT::v2i64: 5752 case MVT::v1i128: 5753 case MVT::f128: 5754 if (++NumVRsUsed <= NumVRs) 5755 continue; 5756 break; 5757 case MVT::v4f32: 5758 // When using QPX, this is handled like a FP register, otherwise, it 5759 // is an Altivec register. 5760 if (Subtarget.hasQPX()) { 5761 if (++NumFPRsUsed <= NumFPRs) 5762 continue; 5763 } else { 5764 if (++NumVRsUsed <= NumVRs) 5765 continue; 5766 } 5767 break; 5768 case MVT::f32: 5769 case MVT::f64: 5770 case MVT::v4f64: // QPX 5771 case MVT::v4i1: // QPX 5772 if (++NumFPRsUsed <= NumFPRs) 5773 continue; 5774 break; 5775 } 5776 HasParameterArea = true; 5777 } 5778 } 5779 5780 /* Respect alignment of argument on the stack. */ 5781 unsigned Align = 5782 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5783 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5784 5785 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5786 if (Flags.isInConsecutiveRegsLast()) 5787 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5788 } 5789 5790 unsigned NumBytesActuallyUsed = NumBytes; 5791 5792 // In the old ELFv1 ABI, 5793 // the prolog code of the callee may store up to 8 GPR argument registers to 5794 // the stack, allowing va_start to index over them in memory if its varargs. 5795 // Because we cannot tell if this is needed on the caller side, we have to 5796 // conservatively assume that it is needed. As such, make sure we have at 5797 // least enough stack space for the caller to store the 8 GPRs. 5798 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5799 // really requires memory operands, e.g. a vararg function. 5800 if (HasParameterArea) 5801 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5802 else 5803 NumBytes = LinkageSize; 5804 5805 // Tail call needs the stack to be aligned. 5806 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5807 CallConv == CallingConv::Fast) 5808 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5809 5810 int SPDiff = 0; 5811 5812 // Calculate by how many bytes the stack has to be adjusted in case of tail 5813 // call optimization. 5814 if (!IsSibCall) 5815 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5816 5817 // To protect arguments on the stack from being clobbered in a tail call, 5818 // force all the loads to happen before doing any other lowering. 5819 if (isTailCall) 5820 Chain = DAG.getStackArgumentTokenFactor(Chain); 5821 5822 // Adjust the stack pointer for the new arguments... 5823 // These operations are automatically eliminated by the prolog/epilog pass 5824 if (!IsSibCall) 5825 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5826 SDValue CallSeqStart = Chain; 5827 5828 // Load the return address and frame pointer so it can be move somewhere else 5829 // later. 5830 SDValue LROp, FPOp; 5831 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5832 5833 // Set up a copy of the stack pointer for use loading and storing any 5834 // arguments that may not fit in the registers available for argument 5835 // passing. 5836 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5837 5838 // Figure out which arguments are going to go in registers, and which in 5839 // memory. Also, if this is a vararg function, floating point operations 5840 // must be stored to our stack, and loaded into integer regs as well, if 5841 // any integer regs are available for argument passing. 5842 unsigned ArgOffset = LinkageSize; 5843 5844 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5845 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5846 5847 SmallVector<SDValue, 8> MemOpChains; 5848 for (unsigned i = 0; i != NumOps; ++i) { 5849 SDValue Arg = OutVals[i]; 5850 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5851 EVT ArgVT = Outs[i].VT; 5852 EVT OrigVT = Outs[i].ArgVT; 5853 5854 // PtrOff will be used to store the current argument to the stack if a 5855 // register cannot be found for it. 5856 SDValue PtrOff; 5857 5858 // We re-align the argument offset for each argument, except when using the 5859 // fast calling convention, when we need to make sure we do that only when 5860 // we'll actually use a stack slot. 5861 auto ComputePtrOff = [&]() { 5862 /* Respect alignment of argument on the stack. */ 5863 unsigned Align = 5864 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5865 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5866 5867 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5868 5869 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5870 }; 5871 5872 if (CallConv != CallingConv::Fast) { 5873 ComputePtrOff(); 5874 5875 /* Compute GPR index associated with argument offset. */ 5876 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5877 GPR_idx = std::min(GPR_idx, NumGPRs); 5878 } 5879 5880 // Promote integers to 64-bit values. 5881 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5882 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5883 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5884 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5885 } 5886 5887 // FIXME memcpy is used way more than necessary. Correctness first. 5888 // Note: "by value" is code for passing a structure by value, not 5889 // basic types. 5890 if (Flags.isByVal()) { 5891 // Note: Size includes alignment padding, so 5892 // struct x { short a; char b; } 5893 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5894 // These are the proper values we need for right-justifying the 5895 // aggregate in a parameter register. 5896 unsigned Size = Flags.getByValSize(); 5897 5898 // An empty aggregate parameter takes up no storage and no 5899 // registers. 5900 if (Size == 0) 5901 continue; 5902 5903 if (CallConv == CallingConv::Fast) 5904 ComputePtrOff(); 5905 5906 // All aggregates smaller than 8 bytes must be passed right-justified. 5907 if (Size==1 || Size==2 || Size==4) { 5908 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5909 if (GPR_idx != NumGPRs) { 5910 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5911 MachinePointerInfo(), VT); 5912 MemOpChains.push_back(Load.getValue(1)); 5913 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5914 5915 ArgOffset += PtrByteSize; 5916 continue; 5917 } 5918 } 5919 5920 if (GPR_idx == NumGPRs && Size < 8) { 5921 SDValue AddPtr = PtrOff; 5922 if (!isLittleEndian) { 5923 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5924 PtrOff.getValueType()); 5925 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5926 } 5927 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5928 CallSeqStart, 5929 Flags, DAG, dl); 5930 ArgOffset += PtrByteSize; 5931 continue; 5932 } 5933 // Copy entire object into memory. There are cases where gcc-generated 5934 // code assumes it is there, even if it could be put entirely into 5935 // registers. (This is not what the doc says.) 5936 5937 // FIXME: The above statement is likely due to a misunderstanding of the 5938 // documents. All arguments must be copied into the parameter area BY 5939 // THE CALLEE in the event that the callee takes the address of any 5940 // formal argument. That has not yet been implemented. However, it is 5941 // reasonable to use the stack area as a staging area for the register 5942 // load. 5943 5944 // Skip this for small aggregates, as we will use the same slot for a 5945 // right-justified copy, below. 5946 if (Size >= 8) 5947 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5948 CallSeqStart, 5949 Flags, DAG, dl); 5950 5951 // When a register is available, pass a small aggregate right-justified. 5952 if (Size < 8 && GPR_idx != NumGPRs) { 5953 // The easiest way to get this right-justified in a register 5954 // is to copy the structure into the rightmost portion of a 5955 // local variable slot, then load the whole slot into the 5956 // register. 5957 // FIXME: The memcpy seems to produce pretty awful code for 5958 // small aggregates, particularly for packed ones. 5959 // FIXME: It would be preferable to use the slot in the 5960 // parameter save area instead of a new local variable. 5961 SDValue AddPtr = PtrOff; 5962 if (!isLittleEndian) { 5963 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5964 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5965 } 5966 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5967 CallSeqStart, 5968 Flags, DAG, dl); 5969 5970 // Load the slot into the register. 5971 SDValue Load = 5972 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5973 MemOpChains.push_back(Load.getValue(1)); 5974 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5975 5976 // Done with this argument. 5977 ArgOffset += PtrByteSize; 5978 continue; 5979 } 5980 5981 // For aggregates larger than PtrByteSize, copy the pieces of the 5982 // object that fit into registers from the parameter save area. 5983 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5984 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5985 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5986 if (GPR_idx != NumGPRs) { 5987 SDValue Load = 5988 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5989 MemOpChains.push_back(Load.getValue(1)); 5990 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5991 ArgOffset += PtrByteSize; 5992 } else { 5993 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5994 break; 5995 } 5996 } 5997 continue; 5998 } 5999 6000 switch (Arg.getSimpleValueType().SimpleTy) { 6001 default: llvm_unreachable("Unexpected ValueType for argument!"); 6002 case MVT::i1: 6003 case MVT::i32: 6004 case MVT::i64: 6005 if (Flags.isNest()) { 6006 // The 'nest' parameter, if any, is passed in R11. 6007 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6008 hasNest = true; 6009 break; 6010 } 6011 6012 // These can be scalar arguments or elements of an integer array type 6013 // passed directly. Clang may use those instead of "byval" aggregate 6014 // types to avoid forcing arguments to memory unnecessarily. 6015 if (GPR_idx != NumGPRs) { 6016 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6017 } else { 6018 if (CallConv == CallingConv::Fast) 6019 ComputePtrOff(); 6020 6021 assert(HasParameterArea && 6022 "Parameter area must exist to pass an argument in memory."); 6023 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6024 true, isTailCall, false, MemOpChains, 6025 TailCallArguments, dl); 6026 if (CallConv == CallingConv::Fast) 6027 ArgOffset += PtrByteSize; 6028 } 6029 if (CallConv != CallingConv::Fast) 6030 ArgOffset += PtrByteSize; 6031 break; 6032 case MVT::f32: 6033 case MVT::f64: { 6034 // These can be scalar arguments or elements of a float array type 6035 // passed directly. The latter are used to implement ELFv2 homogenous 6036 // float aggregates. 6037 6038 // Named arguments go into FPRs first, and once they overflow, the 6039 // remaining arguments go into GPRs and then the parameter save area. 6040 // Unnamed arguments for vararg functions always go to GPRs and 6041 // then the parameter save area. For now, put all arguments to vararg 6042 // routines always in both locations (FPR *and* GPR or stack slot). 6043 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6044 bool NeededLoad = false; 6045 6046 // First load the argument into the next available FPR. 6047 if (FPR_idx != NumFPRs) 6048 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6049 6050 // Next, load the argument into GPR or stack slot if needed. 6051 if (!NeedGPROrStack) 6052 ; 6053 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6054 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6055 // once we support fp <-> gpr moves. 6056 6057 // In the non-vararg case, this can only ever happen in the 6058 // presence of f32 array types, since otherwise we never run 6059 // out of FPRs before running out of GPRs. 6060 SDValue ArgVal; 6061 6062 // Double values are always passed in a single GPR. 6063 if (Arg.getValueType() != MVT::f32) { 6064 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6065 6066 // Non-array float values are extended and passed in a GPR. 6067 } else if (!Flags.isInConsecutiveRegs()) { 6068 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6069 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6070 6071 // If we have an array of floats, we collect every odd element 6072 // together with its predecessor into one GPR. 6073 } else if (ArgOffset % PtrByteSize != 0) { 6074 SDValue Lo, Hi; 6075 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6076 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6077 if (!isLittleEndian) 6078 std::swap(Lo, Hi); 6079 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6080 6081 // The final element, if even, goes into the first half of a GPR. 6082 } else if (Flags.isInConsecutiveRegsLast()) { 6083 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6084 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6085 if (!isLittleEndian) 6086 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6087 DAG.getConstant(32, dl, MVT::i32)); 6088 6089 // Non-final even elements are skipped; they will be handled 6090 // together the with subsequent argument on the next go-around. 6091 } else 6092 ArgVal = SDValue(); 6093 6094 if (ArgVal.getNode()) 6095 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6096 } else { 6097 if (CallConv == CallingConv::Fast) 6098 ComputePtrOff(); 6099 6100 // Single-precision floating-point values are mapped to the 6101 // second (rightmost) word of the stack doubleword. 6102 if (Arg.getValueType() == MVT::f32 && 6103 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6104 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6105 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6106 } 6107 6108 assert(HasParameterArea && 6109 "Parameter area must exist to pass an argument in memory."); 6110 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6111 true, isTailCall, false, MemOpChains, 6112 TailCallArguments, dl); 6113 6114 NeededLoad = true; 6115 } 6116 // When passing an array of floats, the array occupies consecutive 6117 // space in the argument area; only round up to the next doubleword 6118 // at the end of the array. Otherwise, each float takes 8 bytes. 6119 if (CallConv != CallingConv::Fast || NeededLoad) { 6120 ArgOffset += (Arg.getValueType() == MVT::f32 && 6121 Flags.isInConsecutiveRegs()) ? 4 : 8; 6122 if (Flags.isInConsecutiveRegsLast()) 6123 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6124 } 6125 break; 6126 } 6127 case MVT::v4f32: 6128 case MVT::v4i32: 6129 case MVT::v8i16: 6130 case MVT::v16i8: 6131 case MVT::v2f64: 6132 case MVT::v2i64: 6133 case MVT::v1i128: 6134 case MVT::f128: 6135 if (!Subtarget.hasQPX()) { 6136 // These can be scalar arguments or elements of a vector array type 6137 // passed directly. The latter are used to implement ELFv2 homogenous 6138 // vector aggregates. 6139 6140 // For a varargs call, named arguments go into VRs or on the stack as 6141 // usual; unnamed arguments always go to the stack or the corresponding 6142 // GPRs when within range. For now, we always put the value in both 6143 // locations (or even all three). 6144 if (isVarArg) { 6145 assert(HasParameterArea && 6146 "Parameter area must exist if we have a varargs call."); 6147 // We could elide this store in the case where the object fits 6148 // entirely in R registers. Maybe later. 6149 SDValue Store = 6150 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6151 MemOpChains.push_back(Store); 6152 if (VR_idx != NumVRs) { 6153 SDValue Load = 6154 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6155 MemOpChains.push_back(Load.getValue(1)); 6156 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6157 } 6158 ArgOffset += 16; 6159 for (unsigned i=0; i<16; i+=PtrByteSize) { 6160 if (GPR_idx == NumGPRs) 6161 break; 6162 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6163 DAG.getConstant(i, dl, PtrVT)); 6164 SDValue Load = 6165 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6166 MemOpChains.push_back(Load.getValue(1)); 6167 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6168 } 6169 break; 6170 } 6171 6172 // Non-varargs Altivec params go into VRs or on the stack. 6173 if (VR_idx != NumVRs) { 6174 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6175 } else { 6176 if (CallConv == CallingConv::Fast) 6177 ComputePtrOff(); 6178 6179 assert(HasParameterArea && 6180 "Parameter area must exist to pass an argument in memory."); 6181 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6182 true, isTailCall, true, MemOpChains, 6183 TailCallArguments, dl); 6184 if (CallConv == CallingConv::Fast) 6185 ArgOffset += 16; 6186 } 6187 6188 if (CallConv != CallingConv::Fast) 6189 ArgOffset += 16; 6190 break; 6191 } // not QPX 6192 6193 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6194 "Invalid QPX parameter type"); 6195 6196 LLVM_FALLTHROUGH; 6197 case MVT::v4f64: 6198 case MVT::v4i1: { 6199 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6200 if (isVarArg) { 6201 assert(HasParameterArea && 6202 "Parameter area must exist if we have a varargs call."); 6203 // We could elide this store in the case where the object fits 6204 // entirely in R registers. Maybe later. 6205 SDValue Store = 6206 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6207 MemOpChains.push_back(Store); 6208 if (QFPR_idx != NumQFPRs) { 6209 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6210 PtrOff, MachinePointerInfo()); 6211 MemOpChains.push_back(Load.getValue(1)); 6212 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6213 } 6214 ArgOffset += (IsF32 ? 16 : 32); 6215 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6216 if (GPR_idx == NumGPRs) 6217 break; 6218 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6219 DAG.getConstant(i, dl, PtrVT)); 6220 SDValue Load = 6221 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6222 MemOpChains.push_back(Load.getValue(1)); 6223 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6224 } 6225 break; 6226 } 6227 6228 // Non-varargs QPX params go into registers or on the stack. 6229 if (QFPR_idx != NumQFPRs) { 6230 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6231 } else { 6232 if (CallConv == CallingConv::Fast) 6233 ComputePtrOff(); 6234 6235 assert(HasParameterArea && 6236 "Parameter area must exist to pass an argument in memory."); 6237 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6238 true, isTailCall, true, MemOpChains, 6239 TailCallArguments, dl); 6240 if (CallConv == CallingConv::Fast) 6241 ArgOffset += (IsF32 ? 16 : 32); 6242 } 6243 6244 if (CallConv != CallingConv::Fast) 6245 ArgOffset += (IsF32 ? 16 : 32); 6246 break; 6247 } 6248 } 6249 } 6250 6251 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6252 "mismatch in size of parameter area"); 6253 (void)NumBytesActuallyUsed; 6254 6255 if (!MemOpChains.empty()) 6256 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6257 6258 // Check if this is an indirect call (MTCTR/BCTRL). 6259 // See PrepareCall() for more information about calls through function 6260 // pointers in the 64-bit SVR4 ABI. 6261 if (!isTailCall && !isPatchPoint && 6262 !isFunctionGlobalAddress(Callee) && 6263 !isa<ExternalSymbolSDNode>(Callee)) { 6264 // Load r2 into a virtual register and store it to the TOC save area. 6265 setUsesTOCBasePtr(DAG); 6266 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6267 // TOC save area offset. 6268 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6269 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6270 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6271 Chain = DAG.getStore( 6272 Val.getValue(1), dl, Val, AddPtr, 6273 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6274 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6275 // This does not mean the MTCTR instruction must use R12; it's easier 6276 // to model this as an extra parameter, so do that. 6277 if (isELFv2ABI && !isPatchPoint) 6278 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6279 } 6280 6281 // Build a sequence of copy-to-reg nodes chained together with token chain 6282 // and flag operands which copy the outgoing args into the appropriate regs. 6283 SDValue InFlag; 6284 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6285 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6286 RegsToPass[i].second, InFlag); 6287 InFlag = Chain.getValue(1); 6288 } 6289 6290 if (isTailCall && !IsSibCall) 6291 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6292 TailCallArguments); 6293 6294 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6295 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6296 SPDiff, NumBytes, Ins, InVals, CS); 6297 } 6298 6299 SDValue PPCTargetLowering::LowerCall_Darwin( 6300 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6301 bool isTailCall, bool isPatchPoint, 6302 const SmallVectorImpl<ISD::OutputArg> &Outs, 6303 const SmallVectorImpl<SDValue> &OutVals, 6304 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6305 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6306 ImmutableCallSite CS) const { 6307 unsigned NumOps = Outs.size(); 6308 6309 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6310 bool isPPC64 = PtrVT == MVT::i64; 6311 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6312 6313 MachineFunction &MF = DAG.getMachineFunction(); 6314 6315 // Mark this function as potentially containing a function that contains a 6316 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6317 // and restoring the callers stack pointer in this functions epilog. This is 6318 // done because by tail calling the called function might overwrite the value 6319 // in this function's (MF) stack pointer stack slot 0(SP). 6320 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6321 CallConv == CallingConv::Fast) 6322 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6323 6324 // Count how many bytes are to be pushed on the stack, including the linkage 6325 // area, and parameter passing area. We start with 24/48 bytes, which is 6326 // prereserved space for [SP][CR][LR][3 x unused]. 6327 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6328 unsigned NumBytes = LinkageSize; 6329 6330 // Add up all the space actually used. 6331 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6332 // they all go in registers, but we must reserve stack space for them for 6333 // possible use by the caller. In varargs or 64-bit calls, parameters are 6334 // assigned stack space in order, with padding so Altivec parameters are 6335 // 16-byte aligned. 6336 unsigned nAltivecParamsAtEnd = 0; 6337 for (unsigned i = 0; i != NumOps; ++i) { 6338 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6339 EVT ArgVT = Outs[i].VT; 6340 // Varargs Altivec parameters are padded to a 16 byte boundary. 6341 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6342 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6343 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6344 if (!isVarArg && !isPPC64) { 6345 // Non-varargs Altivec parameters go after all the non-Altivec 6346 // parameters; handle those later so we know how much padding we need. 6347 nAltivecParamsAtEnd++; 6348 continue; 6349 } 6350 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6351 NumBytes = ((NumBytes+15)/16)*16; 6352 } 6353 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6354 } 6355 6356 // Allow for Altivec parameters at the end, if needed. 6357 if (nAltivecParamsAtEnd) { 6358 NumBytes = ((NumBytes+15)/16)*16; 6359 NumBytes += 16*nAltivecParamsAtEnd; 6360 } 6361 6362 // The prolog code of the callee may store up to 8 GPR argument registers to 6363 // the stack, allowing va_start to index over them in memory if its varargs. 6364 // Because we cannot tell if this is needed on the caller side, we have to 6365 // conservatively assume that it is needed. As such, make sure we have at 6366 // least enough stack space for the caller to store the 8 GPRs. 6367 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6368 6369 // Tail call needs the stack to be aligned. 6370 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6371 CallConv == CallingConv::Fast) 6372 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6373 6374 // Calculate by how many bytes the stack has to be adjusted in case of tail 6375 // call optimization. 6376 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6377 6378 // To protect arguments on the stack from being clobbered in a tail call, 6379 // force all the loads to happen before doing any other lowering. 6380 if (isTailCall) 6381 Chain = DAG.getStackArgumentTokenFactor(Chain); 6382 6383 // Adjust the stack pointer for the new arguments... 6384 // These operations are automatically eliminated by the prolog/epilog pass 6385 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6386 SDValue CallSeqStart = Chain; 6387 6388 // Load the return address and frame pointer so it can be move somewhere else 6389 // later. 6390 SDValue LROp, FPOp; 6391 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6392 6393 // Set up a copy of the stack pointer for use loading and storing any 6394 // arguments that may not fit in the registers available for argument 6395 // passing. 6396 SDValue StackPtr; 6397 if (isPPC64) 6398 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6399 else 6400 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6401 6402 // Figure out which arguments are going to go in registers, and which in 6403 // memory. Also, if this is a vararg function, floating point operations 6404 // must be stored to our stack, and loaded into integer regs as well, if 6405 // any integer regs are available for argument passing. 6406 unsigned ArgOffset = LinkageSize; 6407 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6408 6409 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6410 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6411 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6412 }; 6413 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6414 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6415 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6416 }; 6417 static const MCPhysReg VR[] = { 6418 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6419 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6420 }; 6421 const unsigned NumGPRs = array_lengthof(GPR_32); 6422 const unsigned NumFPRs = 13; 6423 const unsigned NumVRs = array_lengthof(VR); 6424 6425 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6426 6427 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6428 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6429 6430 SmallVector<SDValue, 8> MemOpChains; 6431 for (unsigned i = 0; i != NumOps; ++i) { 6432 SDValue Arg = OutVals[i]; 6433 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6434 6435 // PtrOff will be used to store the current argument to the stack if a 6436 // register cannot be found for it. 6437 SDValue PtrOff; 6438 6439 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6440 6441 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6442 6443 // On PPC64, promote integers to 64-bit values. 6444 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6445 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6446 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6447 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6448 } 6449 6450 // FIXME memcpy is used way more than necessary. Correctness first. 6451 // Note: "by value" is code for passing a structure by value, not 6452 // basic types. 6453 if (Flags.isByVal()) { 6454 unsigned Size = Flags.getByValSize(); 6455 // Very small objects are passed right-justified. Everything else is 6456 // passed left-justified. 6457 if (Size==1 || Size==2) { 6458 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6459 if (GPR_idx != NumGPRs) { 6460 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6461 MachinePointerInfo(), VT); 6462 MemOpChains.push_back(Load.getValue(1)); 6463 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6464 6465 ArgOffset += PtrByteSize; 6466 } else { 6467 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6468 PtrOff.getValueType()); 6469 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6470 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6471 CallSeqStart, 6472 Flags, DAG, dl); 6473 ArgOffset += PtrByteSize; 6474 } 6475 continue; 6476 } 6477 // Copy entire object into memory. There are cases where gcc-generated 6478 // code assumes it is there, even if it could be put entirely into 6479 // registers. (This is not what the doc says.) 6480 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6481 CallSeqStart, 6482 Flags, DAG, dl); 6483 6484 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6485 // copy the pieces of the object that fit into registers from the 6486 // parameter save area. 6487 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6488 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6489 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6490 if (GPR_idx != NumGPRs) { 6491 SDValue Load = 6492 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6493 MemOpChains.push_back(Load.getValue(1)); 6494 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6495 ArgOffset += PtrByteSize; 6496 } else { 6497 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6498 break; 6499 } 6500 } 6501 continue; 6502 } 6503 6504 switch (Arg.getSimpleValueType().SimpleTy) { 6505 default: llvm_unreachable("Unexpected ValueType for argument!"); 6506 case MVT::i1: 6507 case MVT::i32: 6508 case MVT::i64: 6509 if (GPR_idx != NumGPRs) { 6510 if (Arg.getValueType() == MVT::i1) 6511 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6512 6513 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6514 } else { 6515 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6516 isPPC64, isTailCall, false, MemOpChains, 6517 TailCallArguments, dl); 6518 } 6519 ArgOffset += PtrByteSize; 6520 break; 6521 case MVT::f32: 6522 case MVT::f64: 6523 if (FPR_idx != NumFPRs) { 6524 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6525 6526 if (isVarArg) { 6527 SDValue Store = 6528 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6529 MemOpChains.push_back(Store); 6530 6531 // Float varargs are always shadowed in available integer registers 6532 if (GPR_idx != NumGPRs) { 6533 SDValue Load = 6534 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6535 MemOpChains.push_back(Load.getValue(1)); 6536 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6537 } 6538 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6539 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6540 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6541 SDValue Load = 6542 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6543 MemOpChains.push_back(Load.getValue(1)); 6544 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6545 } 6546 } else { 6547 // If we have any FPRs remaining, we may also have GPRs remaining. 6548 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6549 // GPRs. 6550 if (GPR_idx != NumGPRs) 6551 ++GPR_idx; 6552 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6553 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6554 ++GPR_idx; 6555 } 6556 } else 6557 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6558 isPPC64, isTailCall, false, MemOpChains, 6559 TailCallArguments, dl); 6560 if (isPPC64) 6561 ArgOffset += 8; 6562 else 6563 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6564 break; 6565 case MVT::v4f32: 6566 case MVT::v4i32: 6567 case MVT::v8i16: 6568 case MVT::v16i8: 6569 if (isVarArg) { 6570 // These go aligned on the stack, or in the corresponding R registers 6571 // when within range. The Darwin PPC ABI doc claims they also go in 6572 // V registers; in fact gcc does this only for arguments that are 6573 // prototyped, not for those that match the ... We do it for all 6574 // arguments, seems to work. 6575 while (ArgOffset % 16 !=0) { 6576 ArgOffset += PtrByteSize; 6577 if (GPR_idx != NumGPRs) 6578 GPR_idx++; 6579 } 6580 // We could elide this store in the case where the object fits 6581 // entirely in R registers. Maybe later. 6582 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6583 DAG.getConstant(ArgOffset, dl, PtrVT)); 6584 SDValue Store = 6585 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6586 MemOpChains.push_back(Store); 6587 if (VR_idx != NumVRs) { 6588 SDValue Load = 6589 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6590 MemOpChains.push_back(Load.getValue(1)); 6591 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6592 } 6593 ArgOffset += 16; 6594 for (unsigned i=0; i<16; i+=PtrByteSize) { 6595 if (GPR_idx == NumGPRs) 6596 break; 6597 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6598 DAG.getConstant(i, dl, PtrVT)); 6599 SDValue Load = 6600 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6601 MemOpChains.push_back(Load.getValue(1)); 6602 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6603 } 6604 break; 6605 } 6606 6607 // Non-varargs Altivec params generally go in registers, but have 6608 // stack space allocated at the end. 6609 if (VR_idx != NumVRs) { 6610 // Doesn't have GPR space allocated. 6611 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6612 } else if (nAltivecParamsAtEnd==0) { 6613 // We are emitting Altivec params in order. 6614 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6615 isPPC64, isTailCall, true, MemOpChains, 6616 TailCallArguments, dl); 6617 ArgOffset += 16; 6618 } 6619 break; 6620 } 6621 } 6622 // If all Altivec parameters fit in registers, as they usually do, 6623 // they get stack space following the non-Altivec parameters. We 6624 // don't track this here because nobody below needs it. 6625 // If there are more Altivec parameters than fit in registers emit 6626 // the stores here. 6627 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6628 unsigned j = 0; 6629 // Offset is aligned; skip 1st 12 params which go in V registers. 6630 ArgOffset = ((ArgOffset+15)/16)*16; 6631 ArgOffset += 12*16; 6632 for (unsigned i = 0; i != NumOps; ++i) { 6633 SDValue Arg = OutVals[i]; 6634 EVT ArgType = Outs[i].VT; 6635 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6636 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6637 if (++j > NumVRs) { 6638 SDValue PtrOff; 6639 // We are emitting Altivec params in order. 6640 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6641 isPPC64, isTailCall, true, MemOpChains, 6642 TailCallArguments, dl); 6643 ArgOffset += 16; 6644 } 6645 } 6646 } 6647 } 6648 6649 if (!MemOpChains.empty()) 6650 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6651 6652 // On Darwin, R12 must contain the address of an indirect callee. This does 6653 // not mean the MTCTR instruction must use R12; it's easier to model this as 6654 // an extra parameter, so do that. 6655 if (!isTailCall && 6656 !isFunctionGlobalAddress(Callee) && 6657 !isa<ExternalSymbolSDNode>(Callee) && 6658 !isBLACompatibleAddress(Callee, DAG)) 6659 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6660 PPC::R12), Callee)); 6661 6662 // Build a sequence of copy-to-reg nodes chained together with token chain 6663 // and flag operands which copy the outgoing args into the appropriate regs. 6664 SDValue InFlag; 6665 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6666 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6667 RegsToPass[i].second, InFlag); 6668 InFlag = Chain.getValue(1); 6669 } 6670 6671 if (isTailCall) 6672 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6673 TailCallArguments); 6674 6675 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6676 /* unused except on PPC64 ELFv1 */ false, DAG, 6677 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6678 NumBytes, Ins, InVals, CS); 6679 } 6680 6681 6682 SDValue PPCTargetLowering::LowerCall_AIX( 6683 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6684 bool isTailCall, bool isPatchPoint, 6685 const SmallVectorImpl<ISD::OutputArg> &Outs, 6686 const SmallVectorImpl<SDValue> &OutVals, 6687 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6688 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6689 ImmutableCallSite CS) const { 6690 6691 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6692 "Unimplemented calling convention!"); 6693 if (isVarArg || isPatchPoint) 6694 report_fatal_error("This call type is unimplemented on AIX."); 6695 6696 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6697 bool isPPC64 = PtrVT == MVT::i64; 6698 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6699 unsigned NumOps = Outs.size(); 6700 6701 6702 // Count how many bytes are to be pushed on the stack, including the linkage 6703 // area, parameter list area. 6704 // On XCOFF, we start with 24/48, which is reserved space for 6705 // [SP][CR][LR][2 x reserved][TOC]. 6706 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6707 6708 // The prolog code of the callee may store up to 8 GPR argument registers to 6709 // the stack, allowing va_start to index over them in memory if the callee 6710 // is variadic. 6711 // Because we cannot tell if this is needed on the caller side, we have to 6712 // conservatively assume that it is needed. As such, make sure we have at 6713 // least enough stack space for the caller to store the 8 GPRs. 6714 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6715 6716 // Adjust the stack pointer for the new arguments... 6717 // These operations are automatically eliminated by the prolog/epilog 6718 // inserter pass. 6719 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6720 SDValue CallSeqStart = Chain; 6721 6722 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6723 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6724 PPC::R7, PPC::R8, PPC::R9, PPC::R10 6725 }; 6726 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6727 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6728 PPC::X7, PPC::X8, PPC::X9, PPC::X10 6729 }; 6730 6731 const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64) 6732 : array_lengthof(GPR_32); 6733 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6734 unsigned GPR_idx = 0; 6735 6736 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6737 6738 if (isTailCall) 6739 report_fatal_error("Handling of tail call is unimplemented!"); 6740 int SPDiff = 0; 6741 6742 for (unsigned i = 0; i != NumOps; ++i) { 6743 SDValue Arg = OutVals[i]; 6744 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6745 6746 // Promote integers if needed. 6747 if (Arg.getValueType() == MVT::i1 || 6748 (isPPC64 && Arg.getValueType() == MVT::i32)) { 6749 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6750 Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg); 6751 } 6752 6753 // Note: "by value" is code for passing a structure by value, not 6754 // basic types. 6755 if (Flags.isByVal()) 6756 report_fatal_error("Passing structure by value is unimplemented!"); 6757 6758 switch (Arg.getSimpleValueType().SimpleTy) { 6759 default: llvm_unreachable("Unexpected ValueType for argument!"); 6760 case MVT::i1: 6761 case MVT::i32: 6762 case MVT::i64: 6763 if (GPR_idx != NumGPRs) 6764 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6765 else 6766 report_fatal_error("Handling of placing parameters on the stack is " 6767 "unimplemented!"); 6768 break; 6769 case MVT::f32: 6770 case MVT::f64: 6771 case MVT::v4f32: 6772 case MVT::v4i32: 6773 case MVT::v8i16: 6774 case MVT::v16i8: 6775 case MVT::v2f64: 6776 case MVT::v2i64: 6777 case MVT::v1i128: 6778 case MVT::f128: 6779 case MVT::v4f64: 6780 case MVT::v4i1: 6781 report_fatal_error("Handling of this parameter type is unimplemented!"); 6782 } 6783 } 6784 6785 if (!isFunctionGlobalAddress(Callee) && 6786 !isa<ExternalSymbolSDNode>(Callee)) 6787 report_fatal_error("Handling of indirect call is unimplemented!"); 6788 6789 // Build a sequence of copy-to-reg nodes chained together with token chain 6790 // and flag operands which copy the outgoing args into the appropriate regs. 6791 SDValue InFlag; 6792 for (auto Reg : RegsToPass) { 6793 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 6794 InFlag = Chain.getValue(1); 6795 } 6796 6797 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6798 /* unused except on PPC64 ELFv1 */ false, DAG, 6799 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6800 NumBytes, Ins, InVals, CS); 6801 } 6802 6803 bool 6804 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6805 MachineFunction &MF, bool isVarArg, 6806 const SmallVectorImpl<ISD::OutputArg> &Outs, 6807 LLVMContext &Context) const { 6808 SmallVector<CCValAssign, 16> RVLocs; 6809 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6810 return CCInfo.CheckReturn( 6811 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6812 ? RetCC_PPC_Cold 6813 : RetCC_PPC); 6814 } 6815 6816 SDValue 6817 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6818 bool isVarArg, 6819 const SmallVectorImpl<ISD::OutputArg> &Outs, 6820 const SmallVectorImpl<SDValue> &OutVals, 6821 const SDLoc &dl, SelectionDAG &DAG) const { 6822 SmallVector<CCValAssign, 16> RVLocs; 6823 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6824 *DAG.getContext()); 6825 CCInfo.AnalyzeReturn(Outs, 6826 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6827 ? RetCC_PPC_Cold 6828 : RetCC_PPC); 6829 6830 SDValue Flag; 6831 SmallVector<SDValue, 4> RetOps(1, Chain); 6832 6833 // Copy the result values into the output registers. 6834 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 6835 CCValAssign &VA = RVLocs[i]; 6836 assert(VA.isRegLoc() && "Can only return in registers!"); 6837 6838 SDValue Arg = OutVals[RealResIdx]; 6839 6840 switch (VA.getLocInfo()) { 6841 default: llvm_unreachable("Unknown loc info!"); 6842 case CCValAssign::Full: break; 6843 case CCValAssign::AExt: 6844 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6845 break; 6846 case CCValAssign::ZExt: 6847 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6848 break; 6849 case CCValAssign::SExt: 6850 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6851 break; 6852 } 6853 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 6854 bool isLittleEndian = Subtarget.isLittleEndian(); 6855 // Legalize ret f64 -> ret 2 x i32. 6856 SDValue SVal = 6857 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6858 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 6859 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6860 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6861 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6862 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 6863 Flag = Chain.getValue(1); 6864 VA = RVLocs[++i]; // skip ahead to next loc 6865 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6866 } else 6867 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6868 Flag = Chain.getValue(1); 6869 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6870 } 6871 6872 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6873 const MCPhysReg *I = 6874 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6875 if (I) { 6876 for (; *I; ++I) { 6877 6878 if (PPC::G8RCRegClass.contains(*I)) 6879 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6880 else if (PPC::F8RCRegClass.contains(*I)) 6881 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6882 else if (PPC::CRRCRegClass.contains(*I)) 6883 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6884 else if (PPC::VRRCRegClass.contains(*I)) 6885 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6886 else 6887 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6888 } 6889 } 6890 6891 RetOps[0] = Chain; // Update chain. 6892 6893 // Add the flag if we have it. 6894 if (Flag.getNode()) 6895 RetOps.push_back(Flag); 6896 6897 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6898 } 6899 6900 SDValue 6901 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6902 SelectionDAG &DAG) const { 6903 SDLoc dl(Op); 6904 6905 // Get the correct type for integers. 6906 EVT IntVT = Op.getValueType(); 6907 6908 // Get the inputs. 6909 SDValue Chain = Op.getOperand(0); 6910 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6911 // Build a DYNAREAOFFSET node. 6912 SDValue Ops[2] = {Chain, FPSIdx}; 6913 SDVTList VTs = DAG.getVTList(IntVT); 6914 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6915 } 6916 6917 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6918 SelectionDAG &DAG) const { 6919 // When we pop the dynamic allocation we need to restore the SP link. 6920 SDLoc dl(Op); 6921 6922 // Get the correct type for pointers. 6923 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6924 6925 // Construct the stack pointer operand. 6926 bool isPPC64 = Subtarget.isPPC64(); 6927 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6928 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6929 6930 // Get the operands for the STACKRESTORE. 6931 SDValue Chain = Op.getOperand(0); 6932 SDValue SaveSP = Op.getOperand(1); 6933 6934 // Load the old link SP. 6935 SDValue LoadLinkSP = 6936 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6937 6938 // Restore the stack pointer. 6939 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6940 6941 // Store the old link SP. 6942 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6943 } 6944 6945 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6946 MachineFunction &MF = DAG.getMachineFunction(); 6947 bool isPPC64 = Subtarget.isPPC64(); 6948 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6949 6950 // Get current frame pointer save index. The users of this index will be 6951 // primarily DYNALLOC instructions. 6952 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6953 int RASI = FI->getReturnAddrSaveIndex(); 6954 6955 // If the frame pointer save index hasn't been defined yet. 6956 if (!RASI) { 6957 // Find out what the fix offset of the frame pointer save area. 6958 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6959 // Allocate the frame index for frame pointer save area. 6960 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6961 // Save the result. 6962 FI->setReturnAddrSaveIndex(RASI); 6963 } 6964 return DAG.getFrameIndex(RASI, PtrVT); 6965 } 6966 6967 SDValue 6968 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6969 MachineFunction &MF = DAG.getMachineFunction(); 6970 bool isPPC64 = Subtarget.isPPC64(); 6971 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6972 6973 // Get current frame pointer save index. The users of this index will be 6974 // primarily DYNALLOC instructions. 6975 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6976 int FPSI = FI->getFramePointerSaveIndex(); 6977 6978 // If the frame pointer save index hasn't been defined yet. 6979 if (!FPSI) { 6980 // Find out what the fix offset of the frame pointer save area. 6981 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6982 // Allocate the frame index for frame pointer save area. 6983 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6984 // Save the result. 6985 FI->setFramePointerSaveIndex(FPSI); 6986 } 6987 return DAG.getFrameIndex(FPSI, PtrVT); 6988 } 6989 6990 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6991 SelectionDAG &DAG) const { 6992 // Get the inputs. 6993 SDValue Chain = Op.getOperand(0); 6994 SDValue Size = Op.getOperand(1); 6995 SDLoc dl(Op); 6996 6997 // Get the correct type for pointers. 6998 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6999 // Negate the size. 7000 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7001 DAG.getConstant(0, dl, PtrVT), Size); 7002 // Construct a node for the frame pointer save index. 7003 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7004 // Build a DYNALLOC node. 7005 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7006 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7007 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7008 } 7009 7010 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7011 SelectionDAG &DAG) const { 7012 MachineFunction &MF = DAG.getMachineFunction(); 7013 7014 bool isPPC64 = Subtarget.isPPC64(); 7015 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7016 7017 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7018 return DAG.getFrameIndex(FI, PtrVT); 7019 } 7020 7021 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7022 SelectionDAG &DAG) const { 7023 SDLoc DL(Op); 7024 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7025 DAG.getVTList(MVT::i32, MVT::Other), 7026 Op.getOperand(0), Op.getOperand(1)); 7027 } 7028 7029 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7030 SelectionDAG &DAG) const { 7031 SDLoc DL(Op); 7032 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7033 Op.getOperand(0), Op.getOperand(1)); 7034 } 7035 7036 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7037 if (Op.getValueType().isVector()) 7038 return LowerVectorLoad(Op, DAG); 7039 7040 assert(Op.getValueType() == MVT::i1 && 7041 "Custom lowering only for i1 loads"); 7042 7043 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7044 7045 SDLoc dl(Op); 7046 LoadSDNode *LD = cast<LoadSDNode>(Op); 7047 7048 SDValue Chain = LD->getChain(); 7049 SDValue BasePtr = LD->getBasePtr(); 7050 MachineMemOperand *MMO = LD->getMemOperand(); 7051 7052 SDValue NewLD = 7053 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7054 BasePtr, MVT::i8, MMO); 7055 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7056 7057 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7058 return DAG.getMergeValues(Ops, dl); 7059 } 7060 7061 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7062 if (Op.getOperand(1).getValueType().isVector()) 7063 return LowerVectorStore(Op, DAG); 7064 7065 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7066 "Custom lowering only for i1 stores"); 7067 7068 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7069 7070 SDLoc dl(Op); 7071 StoreSDNode *ST = cast<StoreSDNode>(Op); 7072 7073 SDValue Chain = ST->getChain(); 7074 SDValue BasePtr = ST->getBasePtr(); 7075 SDValue Value = ST->getValue(); 7076 MachineMemOperand *MMO = ST->getMemOperand(); 7077 7078 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7079 Value); 7080 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7081 } 7082 7083 // FIXME: Remove this once the ANDI glue bug is fixed: 7084 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7085 assert(Op.getValueType() == MVT::i1 && 7086 "Custom lowering only for i1 results"); 7087 7088 SDLoc DL(Op); 7089 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7090 Op.getOperand(0)); 7091 } 7092 7093 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7094 SelectionDAG &DAG) const { 7095 7096 // Implements a vector truncate that fits in a vector register as a shuffle. 7097 // We want to legalize vector truncates down to where the source fits in 7098 // a vector register (and target is therefore smaller than vector register 7099 // size). At that point legalization will try to custom lower the sub-legal 7100 // result and get here - where we can contain the truncate as a single target 7101 // operation. 7102 7103 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7104 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7105 // 7106 // We will implement it for big-endian ordering as this (where x denotes 7107 // undefined): 7108 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7109 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7110 // 7111 // The same operation in little-endian ordering will be: 7112 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7113 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7114 7115 assert(Op.getValueType().isVector() && "Vector type expected."); 7116 7117 SDLoc DL(Op); 7118 SDValue N1 = Op.getOperand(0); 7119 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7120 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7121 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7122 7123 EVT TrgVT = Op.getValueType(); 7124 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7125 EVT EltVT = TrgVT.getVectorElementType(); 7126 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7127 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7128 7129 // First list the elements we want to keep. 7130 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7131 SmallVector<int, 16> ShuffV; 7132 if (Subtarget.isLittleEndian()) 7133 for (unsigned i = 0; i < TrgNumElts; ++i) 7134 ShuffV.push_back(i * SizeMult); 7135 else 7136 for (unsigned i = 1; i <= TrgNumElts; ++i) 7137 ShuffV.push_back(i * SizeMult - 1); 7138 7139 // Populate the remaining elements with undefs. 7140 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7141 // ShuffV.push_back(i + WideNumElts); 7142 ShuffV.push_back(WideNumElts + 1); 7143 7144 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7145 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7146 } 7147 7148 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7149 /// possible. 7150 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7151 // Not FP? Not a fsel. 7152 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7153 !Op.getOperand(2).getValueType().isFloatingPoint()) 7154 return Op; 7155 7156 // We might be able to do better than this under some circumstances, but in 7157 // general, fsel-based lowering of select is a finite-math-only optimization. 7158 // For more information, see section F.3 of the 2.06 ISA specification. 7159 if (!DAG.getTarget().Options.NoInfsFPMath || 7160 !DAG.getTarget().Options.NoNaNsFPMath) 7161 return Op; 7162 // TODO: Propagate flags from the select rather than global settings. 7163 SDNodeFlags Flags; 7164 Flags.setNoInfs(true); 7165 Flags.setNoNaNs(true); 7166 7167 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7168 7169 EVT ResVT = Op.getValueType(); 7170 EVT CmpVT = Op.getOperand(0).getValueType(); 7171 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7172 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7173 SDLoc dl(Op); 7174 7175 // If the RHS of the comparison is a 0.0, we don't need to do the 7176 // subtraction at all. 7177 SDValue Sel1; 7178 if (isFloatingPointZero(RHS)) 7179 switch (CC) { 7180 default: break; // SETUO etc aren't handled by fsel. 7181 case ISD::SETNE: 7182 std::swap(TV, FV); 7183 LLVM_FALLTHROUGH; 7184 case ISD::SETEQ: 7185 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7186 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7187 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7188 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7189 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7190 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7191 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7192 case ISD::SETULT: 7193 case ISD::SETLT: 7194 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7195 LLVM_FALLTHROUGH; 7196 case ISD::SETOGE: 7197 case ISD::SETGE: 7198 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7199 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7200 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7201 case ISD::SETUGT: 7202 case ISD::SETGT: 7203 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7204 LLVM_FALLTHROUGH; 7205 case ISD::SETOLE: 7206 case ISD::SETLE: 7207 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7208 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7209 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7210 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7211 } 7212 7213 SDValue Cmp; 7214 switch (CC) { 7215 default: break; // SETUO etc aren't handled by fsel. 7216 case ISD::SETNE: 7217 std::swap(TV, FV); 7218 LLVM_FALLTHROUGH; 7219 case ISD::SETEQ: 7220 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7221 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7222 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7223 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7224 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7225 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7226 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7227 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7228 case ISD::SETULT: 7229 case ISD::SETLT: 7230 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7231 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7232 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7233 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7234 case ISD::SETOGE: 7235 case ISD::SETGE: 7236 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7237 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7238 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7239 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7240 case ISD::SETUGT: 7241 case ISD::SETGT: 7242 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7243 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7244 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7245 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7246 case ISD::SETOLE: 7247 case ISD::SETLE: 7248 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7249 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7250 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7251 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7252 } 7253 return Op; 7254 } 7255 7256 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7257 SelectionDAG &DAG, 7258 const SDLoc &dl) const { 7259 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7260 SDValue Src = Op.getOperand(0); 7261 if (Src.getValueType() == MVT::f32) 7262 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7263 7264 SDValue Tmp; 7265 switch (Op.getSimpleValueType().SimpleTy) { 7266 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7267 case MVT::i32: 7268 Tmp = DAG.getNode( 7269 Op.getOpcode() == ISD::FP_TO_SINT 7270 ? PPCISD::FCTIWZ 7271 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7272 dl, MVT::f64, Src); 7273 break; 7274 case MVT::i64: 7275 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7276 "i64 FP_TO_UINT is supported only with FPCVT"); 7277 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7278 PPCISD::FCTIDUZ, 7279 dl, MVT::f64, Src); 7280 break; 7281 } 7282 7283 // Convert the FP value to an int value through memory. 7284 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7285 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7286 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7287 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7288 MachinePointerInfo MPI = 7289 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7290 7291 // Emit a store to the stack slot. 7292 SDValue Chain; 7293 if (i32Stack) { 7294 MachineFunction &MF = DAG.getMachineFunction(); 7295 MachineMemOperand *MMO = 7296 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7297 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7298 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7299 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7300 } else 7301 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7302 7303 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7304 // add in a bias on big endian. 7305 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7306 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7307 DAG.getConstant(4, dl, FIPtr.getValueType())); 7308 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7309 } 7310 7311 RLI.Chain = Chain; 7312 RLI.Ptr = FIPtr; 7313 RLI.MPI = MPI; 7314 } 7315 7316 /// Custom lowers floating point to integer conversions to use 7317 /// the direct move instructions available in ISA 2.07 to avoid the 7318 /// need for load/store combinations. 7319 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7320 SelectionDAG &DAG, 7321 const SDLoc &dl) const { 7322 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7323 SDValue Src = Op.getOperand(0); 7324 7325 if (Src.getValueType() == MVT::f32) 7326 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7327 7328 SDValue Tmp; 7329 switch (Op.getSimpleValueType().SimpleTy) { 7330 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7331 case MVT::i32: 7332 Tmp = DAG.getNode( 7333 Op.getOpcode() == ISD::FP_TO_SINT 7334 ? PPCISD::FCTIWZ 7335 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7336 dl, MVT::f64, Src); 7337 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7338 break; 7339 case MVT::i64: 7340 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7341 "i64 FP_TO_UINT is supported only with FPCVT"); 7342 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7343 PPCISD::FCTIDUZ, 7344 dl, MVT::f64, Src); 7345 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7346 break; 7347 } 7348 return Tmp; 7349 } 7350 7351 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7352 const SDLoc &dl) const { 7353 7354 // FP to INT conversions are legal for f128. 7355 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7356 return Op; 7357 7358 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7359 // PPC (the libcall is not available). 7360 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7361 if (Op.getValueType() == MVT::i32) { 7362 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7363 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7364 MVT::f64, Op.getOperand(0), 7365 DAG.getIntPtrConstant(0, dl)); 7366 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7367 MVT::f64, Op.getOperand(0), 7368 DAG.getIntPtrConstant(1, dl)); 7369 7370 // Add the two halves of the long double in round-to-zero mode. 7371 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7372 7373 // Now use a smaller FP_TO_SINT. 7374 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7375 } 7376 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7377 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7378 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7379 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7380 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7381 // FIXME: generated code sucks. 7382 // TODO: Are there fast-math-flags to propagate to this FSUB? 7383 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7384 Op.getOperand(0), Tmp); 7385 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7386 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7387 DAG.getConstant(0x80000000, dl, MVT::i32)); 7388 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7389 Op.getOperand(0)); 7390 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7391 ISD::SETGE); 7392 } 7393 } 7394 7395 return SDValue(); 7396 } 7397 7398 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7399 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7400 7401 ReuseLoadInfo RLI; 7402 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7403 7404 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7405 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7406 } 7407 7408 // We're trying to insert a regular store, S, and then a load, L. If the 7409 // incoming value, O, is a load, we might just be able to have our load use the 7410 // address used by O. However, we don't know if anything else will store to 7411 // that address before we can load from it. To prevent this situation, we need 7412 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7413 // the same chain operand as O, we create a token factor from the chain results 7414 // of O and L, and we replace all uses of O's chain result with that token 7415 // factor (see spliceIntoChain below for this last part). 7416 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7417 ReuseLoadInfo &RLI, 7418 SelectionDAG &DAG, 7419 ISD::LoadExtType ET) const { 7420 SDLoc dl(Op); 7421 if (ET == ISD::NON_EXTLOAD && 7422 (Op.getOpcode() == ISD::FP_TO_UINT || 7423 Op.getOpcode() == ISD::FP_TO_SINT) && 7424 isOperationLegalOrCustom(Op.getOpcode(), 7425 Op.getOperand(0).getValueType())) { 7426 7427 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7428 return true; 7429 } 7430 7431 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7432 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7433 LD->isNonTemporal()) 7434 return false; 7435 if (LD->getMemoryVT() != MemVT) 7436 return false; 7437 7438 RLI.Ptr = LD->getBasePtr(); 7439 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7440 assert(LD->getAddressingMode() == ISD::PRE_INC && 7441 "Non-pre-inc AM on PPC?"); 7442 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7443 LD->getOffset()); 7444 } 7445 7446 RLI.Chain = LD->getChain(); 7447 RLI.MPI = LD->getPointerInfo(); 7448 RLI.IsDereferenceable = LD->isDereferenceable(); 7449 RLI.IsInvariant = LD->isInvariant(); 7450 RLI.Alignment = LD->getAlignment(); 7451 RLI.AAInfo = LD->getAAInfo(); 7452 RLI.Ranges = LD->getRanges(); 7453 7454 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7455 return true; 7456 } 7457 7458 // Given the head of the old chain, ResChain, insert a token factor containing 7459 // it and NewResChain, and make users of ResChain now be users of that token 7460 // factor. 7461 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7462 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7463 SDValue NewResChain, 7464 SelectionDAG &DAG) const { 7465 if (!ResChain) 7466 return; 7467 7468 SDLoc dl(NewResChain); 7469 7470 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7471 NewResChain, DAG.getUNDEF(MVT::Other)); 7472 assert(TF.getNode() != NewResChain.getNode() && 7473 "A new TF really is required here"); 7474 7475 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7476 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7477 } 7478 7479 /// Analyze profitability of direct move 7480 /// prefer float load to int load plus direct move 7481 /// when there is no integer use of int load 7482 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7483 SDNode *Origin = Op.getOperand(0).getNode(); 7484 if (Origin->getOpcode() != ISD::LOAD) 7485 return true; 7486 7487 // If there is no LXSIBZX/LXSIHZX, like Power8, 7488 // prefer direct move if the memory size is 1 or 2 bytes. 7489 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7490 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7491 return true; 7492 7493 for (SDNode::use_iterator UI = Origin->use_begin(), 7494 UE = Origin->use_end(); 7495 UI != UE; ++UI) { 7496 7497 // Only look at the users of the loaded value. 7498 if (UI.getUse().get().getResNo() != 0) 7499 continue; 7500 7501 if (UI->getOpcode() != ISD::SINT_TO_FP && 7502 UI->getOpcode() != ISD::UINT_TO_FP) 7503 return true; 7504 } 7505 7506 return false; 7507 } 7508 7509 /// Custom lowers integer to floating point conversions to use 7510 /// the direct move instructions available in ISA 2.07 to avoid the 7511 /// need for load/store combinations. 7512 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7513 SelectionDAG &DAG, 7514 const SDLoc &dl) const { 7515 assert((Op.getValueType() == MVT::f32 || 7516 Op.getValueType() == MVT::f64) && 7517 "Invalid floating point type as target of conversion"); 7518 assert(Subtarget.hasFPCVT() && 7519 "Int to FP conversions with direct moves require FPCVT"); 7520 SDValue FP; 7521 SDValue Src = Op.getOperand(0); 7522 bool SinglePrec = Op.getValueType() == MVT::f32; 7523 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7524 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7525 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7526 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7527 7528 if (WordInt) { 7529 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7530 dl, MVT::f64, Src); 7531 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7532 } 7533 else { 7534 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7535 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7536 } 7537 7538 return FP; 7539 } 7540 7541 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7542 7543 EVT VecVT = Vec.getValueType(); 7544 assert(VecVT.isVector() && "Expected a vector type."); 7545 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7546 7547 EVT EltVT = VecVT.getVectorElementType(); 7548 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7549 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7550 7551 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7552 SmallVector<SDValue, 16> Ops(NumConcat); 7553 Ops[0] = Vec; 7554 SDValue UndefVec = DAG.getUNDEF(VecVT); 7555 for (unsigned i = 1; i < NumConcat; ++i) 7556 Ops[i] = UndefVec; 7557 7558 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7559 } 7560 7561 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7562 const SDLoc &dl) const { 7563 7564 unsigned Opc = Op.getOpcode(); 7565 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7566 "Unexpected conversion type"); 7567 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7568 "Supports conversions to v2f64/v4f32 only."); 7569 7570 bool SignedConv = Opc == ISD::SINT_TO_FP; 7571 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7572 7573 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7574 EVT WideVT = Wide.getValueType(); 7575 unsigned WideNumElts = WideVT.getVectorNumElements(); 7576 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7577 7578 SmallVector<int, 16> ShuffV; 7579 for (unsigned i = 0; i < WideNumElts; ++i) 7580 ShuffV.push_back(i + WideNumElts); 7581 7582 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7583 int SaveElts = FourEltRes ? 4 : 2; 7584 if (Subtarget.isLittleEndian()) 7585 for (int i = 0; i < SaveElts; i++) 7586 ShuffV[i * Stride] = i; 7587 else 7588 for (int i = 1; i <= SaveElts; i++) 7589 ShuffV[i * Stride - 1] = i - 1; 7590 7591 SDValue ShuffleSrc2 = 7592 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7593 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7594 unsigned ExtendOp = 7595 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7596 7597 SDValue Extend; 7598 if (!Subtarget.hasP9Altivec() && SignedConv) { 7599 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7600 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7601 DAG.getValueType(Op.getOperand(0).getValueType())); 7602 } else 7603 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7604 7605 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7606 } 7607 7608 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7609 SelectionDAG &DAG) const { 7610 SDLoc dl(Op); 7611 7612 EVT InVT = Op.getOperand(0).getValueType(); 7613 EVT OutVT = Op.getValueType(); 7614 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7615 isOperationCustom(Op.getOpcode(), InVT)) 7616 return LowerINT_TO_FPVector(Op, DAG, dl); 7617 7618 // Conversions to f128 are legal. 7619 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7620 return Op; 7621 7622 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7623 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7624 return SDValue(); 7625 7626 SDValue Value = Op.getOperand(0); 7627 // The values are now known to be -1 (false) or 1 (true). To convert this 7628 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7629 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7630 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7631 7632 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7633 7634 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7635 7636 if (Op.getValueType() != MVT::v4f64) 7637 Value = DAG.getNode(ISD::FP_ROUND, dl, 7638 Op.getValueType(), Value, 7639 DAG.getIntPtrConstant(1, dl)); 7640 return Value; 7641 } 7642 7643 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7644 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7645 return SDValue(); 7646 7647 if (Op.getOperand(0).getValueType() == MVT::i1) 7648 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7649 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7650 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7651 7652 // If we have direct moves, we can do all the conversion, skip the store/load 7653 // however, without FPCVT we can't do most conversions. 7654 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7655 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7656 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7657 7658 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7659 "UINT_TO_FP is supported only with FPCVT"); 7660 7661 // If we have FCFIDS, then use it when converting to single-precision. 7662 // Otherwise, convert to double-precision and then round. 7663 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7664 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7665 : PPCISD::FCFIDS) 7666 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7667 : PPCISD::FCFID); 7668 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7669 ? MVT::f32 7670 : MVT::f64; 7671 7672 if (Op.getOperand(0).getValueType() == MVT::i64) { 7673 SDValue SINT = Op.getOperand(0); 7674 // When converting to single-precision, we actually need to convert 7675 // to double-precision first and then round to single-precision. 7676 // To avoid double-rounding effects during that operation, we have 7677 // to prepare the input operand. Bits that might be truncated when 7678 // converting to double-precision are replaced by a bit that won't 7679 // be lost at this stage, but is below the single-precision rounding 7680 // position. 7681 // 7682 // However, if -enable-unsafe-fp-math is in effect, accept double 7683 // rounding to avoid the extra overhead. 7684 if (Op.getValueType() == MVT::f32 && 7685 !Subtarget.hasFPCVT() && 7686 !DAG.getTarget().Options.UnsafeFPMath) { 7687 7688 // Twiddle input to make sure the low 11 bits are zero. (If this 7689 // is the case, we are guaranteed the value will fit into the 53 bit 7690 // mantissa of an IEEE double-precision value without rounding.) 7691 // If any of those low 11 bits were not zero originally, make sure 7692 // bit 12 (value 2048) is set instead, so that the final rounding 7693 // to single-precision gets the correct result. 7694 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7695 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7696 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7697 Round, DAG.getConstant(2047, dl, MVT::i64)); 7698 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7699 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7700 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7701 7702 // However, we cannot use that value unconditionally: if the magnitude 7703 // of the input value is small, the bit-twiddling we did above might 7704 // end up visibly changing the output. Fortunately, in that case, we 7705 // don't need to twiddle bits since the original input will convert 7706 // exactly to double-precision floating-point already. Therefore, 7707 // construct a conditional to use the original value if the top 11 7708 // bits are all sign-bit copies, and use the rounded value computed 7709 // above otherwise. 7710 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7711 SINT, DAG.getConstant(53, dl, MVT::i32)); 7712 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7713 Cond, DAG.getConstant(1, dl, MVT::i64)); 7714 Cond = DAG.getSetCC(dl, MVT::i32, 7715 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7716 7717 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7718 } 7719 7720 ReuseLoadInfo RLI; 7721 SDValue Bits; 7722 7723 MachineFunction &MF = DAG.getMachineFunction(); 7724 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7725 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7726 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7727 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7728 } else if (Subtarget.hasLFIWAX() && 7729 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7730 MachineMemOperand *MMO = 7731 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7732 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7733 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7734 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7735 DAG.getVTList(MVT::f64, MVT::Other), 7736 Ops, MVT::i32, MMO); 7737 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7738 } else if (Subtarget.hasFPCVT() && 7739 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7740 MachineMemOperand *MMO = 7741 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7742 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7743 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7744 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7745 DAG.getVTList(MVT::f64, MVT::Other), 7746 Ops, MVT::i32, MMO); 7747 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7748 } else if (((Subtarget.hasLFIWAX() && 7749 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7750 (Subtarget.hasFPCVT() && 7751 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7752 SINT.getOperand(0).getValueType() == MVT::i32) { 7753 MachineFrameInfo &MFI = MF.getFrameInfo(); 7754 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7755 7756 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7757 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7758 7759 SDValue Store = 7760 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7761 MachinePointerInfo::getFixedStack( 7762 DAG.getMachineFunction(), FrameIdx)); 7763 7764 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7765 "Expected an i32 store"); 7766 7767 RLI.Ptr = FIdx; 7768 RLI.Chain = Store; 7769 RLI.MPI = 7770 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7771 RLI.Alignment = 4; 7772 7773 MachineMemOperand *MMO = 7774 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7775 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7776 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7777 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7778 PPCISD::LFIWZX : PPCISD::LFIWAX, 7779 dl, DAG.getVTList(MVT::f64, MVT::Other), 7780 Ops, MVT::i32, MMO); 7781 } else 7782 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7783 7784 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7785 7786 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7787 FP = DAG.getNode(ISD::FP_ROUND, dl, 7788 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7789 return FP; 7790 } 7791 7792 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7793 "Unhandled INT_TO_FP type in custom expander!"); 7794 // Since we only generate this in 64-bit mode, we can take advantage of 7795 // 64-bit registers. In particular, sign extend the input value into the 7796 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7797 // then lfd it and fcfid it. 7798 MachineFunction &MF = DAG.getMachineFunction(); 7799 MachineFrameInfo &MFI = MF.getFrameInfo(); 7800 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7801 7802 SDValue Ld; 7803 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7804 ReuseLoadInfo RLI; 7805 bool ReusingLoad; 7806 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7807 DAG))) { 7808 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7809 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7810 7811 SDValue Store = 7812 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7813 MachinePointerInfo::getFixedStack( 7814 DAG.getMachineFunction(), FrameIdx)); 7815 7816 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7817 "Expected an i32 store"); 7818 7819 RLI.Ptr = FIdx; 7820 RLI.Chain = Store; 7821 RLI.MPI = 7822 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7823 RLI.Alignment = 4; 7824 } 7825 7826 MachineMemOperand *MMO = 7827 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7828 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7829 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7830 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7831 PPCISD::LFIWZX : PPCISD::LFIWAX, 7832 dl, DAG.getVTList(MVT::f64, MVT::Other), 7833 Ops, MVT::i32, MMO); 7834 if (ReusingLoad) 7835 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7836 } else { 7837 assert(Subtarget.isPPC64() && 7838 "i32->FP without LFIWAX supported only on PPC64"); 7839 7840 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7841 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7842 7843 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7844 Op.getOperand(0)); 7845 7846 // STD the extended value into the stack slot. 7847 SDValue Store = DAG.getStore( 7848 DAG.getEntryNode(), dl, Ext64, FIdx, 7849 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7850 7851 // Load the value as a double. 7852 Ld = DAG.getLoad( 7853 MVT::f64, dl, Store, FIdx, 7854 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7855 } 7856 7857 // FCFID it and return it. 7858 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7859 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7860 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7861 DAG.getIntPtrConstant(0, dl)); 7862 return FP; 7863 } 7864 7865 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7866 SelectionDAG &DAG) const { 7867 SDLoc dl(Op); 7868 /* 7869 The rounding mode is in bits 30:31 of FPSR, and has the following 7870 settings: 7871 00 Round to nearest 7872 01 Round to 0 7873 10 Round to +inf 7874 11 Round to -inf 7875 7876 FLT_ROUNDS, on the other hand, expects the following: 7877 -1 Undefined 7878 0 Round to 0 7879 1 Round to nearest 7880 2 Round to +inf 7881 3 Round to -inf 7882 7883 To perform the conversion, we do: 7884 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7885 */ 7886 7887 MachineFunction &MF = DAG.getMachineFunction(); 7888 EVT VT = Op.getValueType(); 7889 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7890 7891 // Save FP Control Word to register 7892 EVT NodeTys[] = { 7893 MVT::f64, // return register 7894 MVT::Glue // unused in this context 7895 }; 7896 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7897 7898 // Save FP register to stack slot 7899 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7900 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7901 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7902 MachinePointerInfo()); 7903 7904 // Load FP Control Word from low 32 bits of stack slot. 7905 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7906 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7907 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7908 7909 // Transform as necessary 7910 SDValue CWD1 = 7911 DAG.getNode(ISD::AND, dl, MVT::i32, 7912 CWD, DAG.getConstant(3, dl, MVT::i32)); 7913 SDValue CWD2 = 7914 DAG.getNode(ISD::SRL, dl, MVT::i32, 7915 DAG.getNode(ISD::AND, dl, MVT::i32, 7916 DAG.getNode(ISD::XOR, dl, MVT::i32, 7917 CWD, DAG.getConstant(3, dl, MVT::i32)), 7918 DAG.getConstant(3, dl, MVT::i32)), 7919 DAG.getConstant(1, dl, MVT::i32)); 7920 7921 SDValue RetVal = 7922 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7923 7924 return DAG.getNode((VT.getSizeInBits() < 16 ? 7925 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7926 } 7927 7928 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7929 EVT VT = Op.getValueType(); 7930 unsigned BitWidth = VT.getSizeInBits(); 7931 SDLoc dl(Op); 7932 assert(Op.getNumOperands() == 3 && 7933 VT == Op.getOperand(1).getValueType() && 7934 "Unexpected SHL!"); 7935 7936 // Expand into a bunch of logical ops. Note that these ops 7937 // depend on the PPC behavior for oversized shift amounts. 7938 SDValue Lo = Op.getOperand(0); 7939 SDValue Hi = Op.getOperand(1); 7940 SDValue Amt = Op.getOperand(2); 7941 EVT AmtVT = Amt.getValueType(); 7942 7943 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7944 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7945 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7946 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7947 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7948 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7949 DAG.getConstant(-BitWidth, dl, AmtVT)); 7950 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7951 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7952 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7953 SDValue OutOps[] = { OutLo, OutHi }; 7954 return DAG.getMergeValues(OutOps, dl); 7955 } 7956 7957 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7958 EVT VT = Op.getValueType(); 7959 SDLoc dl(Op); 7960 unsigned BitWidth = VT.getSizeInBits(); 7961 assert(Op.getNumOperands() == 3 && 7962 VT == Op.getOperand(1).getValueType() && 7963 "Unexpected SRL!"); 7964 7965 // Expand into a bunch of logical ops. Note that these ops 7966 // depend on the PPC behavior for oversized shift amounts. 7967 SDValue Lo = Op.getOperand(0); 7968 SDValue Hi = Op.getOperand(1); 7969 SDValue Amt = Op.getOperand(2); 7970 EVT AmtVT = Amt.getValueType(); 7971 7972 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7973 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7974 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7975 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7976 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7977 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7978 DAG.getConstant(-BitWidth, dl, AmtVT)); 7979 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7980 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7981 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7982 SDValue OutOps[] = { OutLo, OutHi }; 7983 return DAG.getMergeValues(OutOps, dl); 7984 } 7985 7986 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7987 SDLoc dl(Op); 7988 EVT VT = Op.getValueType(); 7989 unsigned BitWidth = VT.getSizeInBits(); 7990 assert(Op.getNumOperands() == 3 && 7991 VT == Op.getOperand(1).getValueType() && 7992 "Unexpected SRA!"); 7993 7994 // Expand into a bunch of logical ops, followed by a select_cc. 7995 SDValue Lo = Op.getOperand(0); 7996 SDValue Hi = Op.getOperand(1); 7997 SDValue Amt = Op.getOperand(2); 7998 EVT AmtVT = Amt.getValueType(); 7999 8000 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8001 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8002 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8003 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8004 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8005 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8006 DAG.getConstant(-BitWidth, dl, AmtVT)); 8007 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8008 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8009 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8010 Tmp4, Tmp6, ISD::SETLE); 8011 SDValue OutOps[] = { OutLo, OutHi }; 8012 return DAG.getMergeValues(OutOps, dl); 8013 } 8014 8015 //===----------------------------------------------------------------------===// 8016 // Vector related lowering. 8017 // 8018 8019 /// BuildSplatI - Build a canonical splati of Val with an element size of 8020 /// SplatSize. Cast the result to VT. 8021 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8022 SelectionDAG &DAG, const SDLoc &dl) { 8023 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8024 8025 static const MVT VTys[] = { // canonical VT to use for each size. 8026 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8027 }; 8028 8029 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8030 8031 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8032 if (Val == -1) 8033 SplatSize = 1; 8034 8035 EVT CanonicalVT = VTys[SplatSize-1]; 8036 8037 // Build a canonical splat for this value. 8038 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8039 } 8040 8041 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8042 /// specified intrinsic ID. 8043 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8044 const SDLoc &dl, EVT DestVT = MVT::Other) { 8045 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8046 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8047 DAG.getConstant(IID, dl, MVT::i32), Op); 8048 } 8049 8050 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8051 /// specified intrinsic ID. 8052 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8053 SelectionDAG &DAG, const SDLoc &dl, 8054 EVT DestVT = MVT::Other) { 8055 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8056 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8057 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8058 } 8059 8060 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8061 /// specified intrinsic ID. 8062 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8063 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8064 EVT DestVT = MVT::Other) { 8065 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8066 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8067 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8068 } 8069 8070 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8071 /// amount. The result has the specified value type. 8072 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8073 SelectionDAG &DAG, const SDLoc &dl) { 8074 // Force LHS/RHS to be the right type. 8075 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8076 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8077 8078 int Ops[16]; 8079 for (unsigned i = 0; i != 16; ++i) 8080 Ops[i] = i + Amt; 8081 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8082 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8083 } 8084 8085 /// Do we have an efficient pattern in a .td file for this node? 8086 /// 8087 /// \param V - pointer to the BuildVectorSDNode being matched 8088 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8089 /// 8090 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8091 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8092 /// the opposite is true (expansion is beneficial) are: 8093 /// - The node builds a vector out of integers that are not 32 or 64-bits 8094 /// - The node builds a vector out of constants 8095 /// - The node is a "load-and-splat" 8096 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8097 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8098 bool HasDirectMove, 8099 bool HasP8Vector) { 8100 EVT VecVT = V->getValueType(0); 8101 bool RightType = VecVT == MVT::v2f64 || 8102 (HasP8Vector && VecVT == MVT::v4f32) || 8103 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8104 if (!RightType) 8105 return false; 8106 8107 bool IsSplat = true; 8108 bool IsLoad = false; 8109 SDValue Op0 = V->getOperand(0); 8110 8111 // This function is called in a block that confirms the node is not a constant 8112 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8113 // different constants. 8114 if (V->isConstant()) 8115 return false; 8116 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8117 if (V->getOperand(i).isUndef()) 8118 return false; 8119 // We want to expand nodes that represent load-and-splat even if the 8120 // loaded value is a floating point truncation or conversion to int. 8121 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8122 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8123 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8124 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8125 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8126 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8127 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8128 IsLoad = true; 8129 // If the operands are different or the input is not a load and has more 8130 // uses than just this BV node, then it isn't a splat. 8131 if (V->getOperand(i) != Op0 || 8132 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8133 IsSplat = false; 8134 } 8135 return !(IsSplat && IsLoad); 8136 } 8137 8138 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8139 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8140 8141 SDLoc dl(Op); 8142 SDValue Op0 = Op->getOperand(0); 8143 8144 if (!EnableQuadPrecision || 8145 (Op.getValueType() != MVT::f128 ) || 8146 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8147 (Op0.getOperand(0).getValueType() != MVT::i64) || 8148 (Op0.getOperand(1).getValueType() != MVT::i64)) 8149 return SDValue(); 8150 8151 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8152 Op0.getOperand(1)); 8153 } 8154 8155 // If this is a case we can't handle, return null and let the default 8156 // expansion code take care of it. If we CAN select this case, and if it 8157 // selects to a single instruction, return Op. Otherwise, if we can codegen 8158 // this case more efficiently than a constant pool load, lower it to the 8159 // sequence of ops that should be used. 8160 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8161 SelectionDAG &DAG) const { 8162 SDLoc dl(Op); 8163 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8164 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8165 8166 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8167 // We first build an i32 vector, load it into a QPX register, 8168 // then convert it to a floating-point vector and compare it 8169 // to a zero vector to get the boolean result. 8170 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8171 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8172 MachinePointerInfo PtrInfo = 8173 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8174 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8175 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8176 8177 assert(BVN->getNumOperands() == 4 && 8178 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8179 8180 bool IsConst = true; 8181 for (unsigned i = 0; i < 4; ++i) { 8182 if (BVN->getOperand(i).isUndef()) continue; 8183 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8184 IsConst = false; 8185 break; 8186 } 8187 } 8188 8189 if (IsConst) { 8190 Constant *One = 8191 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8192 Constant *NegOne = 8193 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8194 8195 Constant *CV[4]; 8196 for (unsigned i = 0; i < 4; ++i) { 8197 if (BVN->getOperand(i).isUndef()) 8198 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8199 else if (isNullConstant(BVN->getOperand(i))) 8200 CV[i] = NegOne; 8201 else 8202 CV[i] = One; 8203 } 8204 8205 Constant *CP = ConstantVector::get(CV); 8206 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8207 16 /* alignment */); 8208 8209 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8210 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8211 return DAG.getMemIntrinsicNode( 8212 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8213 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8214 } 8215 8216 SmallVector<SDValue, 4> Stores; 8217 for (unsigned i = 0; i < 4; ++i) { 8218 if (BVN->getOperand(i).isUndef()) continue; 8219 8220 unsigned Offset = 4*i; 8221 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8222 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8223 8224 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8225 if (StoreSize > 4) { 8226 Stores.push_back( 8227 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8228 PtrInfo.getWithOffset(Offset), MVT::i32)); 8229 } else { 8230 SDValue StoreValue = BVN->getOperand(i); 8231 if (StoreSize < 4) 8232 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8233 8234 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8235 PtrInfo.getWithOffset(Offset))); 8236 } 8237 } 8238 8239 SDValue StoreChain; 8240 if (!Stores.empty()) 8241 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8242 else 8243 StoreChain = DAG.getEntryNode(); 8244 8245 // Now load from v4i32 into the QPX register; this will extend it to 8246 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8247 // is typed as v4f64 because the QPX register integer states are not 8248 // explicitly represented. 8249 8250 SDValue Ops[] = {StoreChain, 8251 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8252 FIdx}; 8253 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8254 8255 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8256 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8257 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8258 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8259 LoadedVect); 8260 8261 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8262 8263 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8264 } 8265 8266 // All other QPX vectors are handled by generic code. 8267 if (Subtarget.hasQPX()) 8268 return SDValue(); 8269 8270 // Check if this is a splat of a constant value. 8271 APInt APSplatBits, APSplatUndef; 8272 unsigned SplatBitSize; 8273 bool HasAnyUndefs; 8274 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8275 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8276 SplatBitSize > 32) { 8277 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8278 // lowered to VSX instructions under certain conditions. 8279 // Without VSX, there is no pattern more efficient than expanding the node. 8280 if (Subtarget.hasVSX() && 8281 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8282 Subtarget.hasP8Vector())) 8283 return Op; 8284 return SDValue(); 8285 } 8286 8287 unsigned SplatBits = APSplatBits.getZExtValue(); 8288 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8289 unsigned SplatSize = SplatBitSize / 8; 8290 8291 // First, handle single instruction cases. 8292 8293 // All zeros? 8294 if (SplatBits == 0) { 8295 // Canonicalize all zero vectors to be v4i32. 8296 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8297 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8298 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8299 } 8300 return Op; 8301 } 8302 8303 // We have XXSPLTIB for constant splats one byte wide 8304 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8305 // This is a splat of 1-byte elements with some elements potentially undef. 8306 // Rather than trying to match undef in the SDAG patterns, ensure that all 8307 // elements are the same constant. 8308 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8309 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8310 dl, MVT::i32)); 8311 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8312 if (Op.getValueType() != MVT::v16i8) 8313 return DAG.getBitcast(Op.getValueType(), NewBV); 8314 return NewBV; 8315 } 8316 8317 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8318 // detect that constant splats like v8i16: 0xABAB are really just splats 8319 // of a 1-byte constant. In this case, we need to convert the node to a 8320 // splat of v16i8 and a bitcast. 8321 if (Op.getValueType() != MVT::v16i8) 8322 return DAG.getBitcast(Op.getValueType(), 8323 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8324 8325 return Op; 8326 } 8327 8328 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8329 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8330 (32-SplatBitSize)); 8331 if (SextVal >= -16 && SextVal <= 15) 8332 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8333 8334 // Two instruction sequences. 8335 8336 // If this value is in the range [-32,30] and is even, use: 8337 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8338 // If this value is in the range [17,31] and is odd, use: 8339 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8340 // If this value is in the range [-31,-17] and is odd, use: 8341 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8342 // Note the last two are three-instruction sequences. 8343 if (SextVal >= -32 && SextVal <= 31) { 8344 // To avoid having these optimizations undone by constant folding, 8345 // we convert to a pseudo that will be expanded later into one of 8346 // the above forms. 8347 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8348 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8349 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8350 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8351 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8352 if (VT == Op.getValueType()) 8353 return RetVal; 8354 else 8355 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8356 } 8357 8358 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8359 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8360 // for fneg/fabs. 8361 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8362 // Make -1 and vspltisw -1: 8363 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8364 8365 // Make the VSLW intrinsic, computing 0x8000_0000. 8366 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8367 OnesV, DAG, dl); 8368 8369 // xor by OnesV to invert it. 8370 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8371 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8372 } 8373 8374 // Check to see if this is a wide variety of vsplti*, binop self cases. 8375 static const signed char SplatCsts[] = { 8376 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8377 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8378 }; 8379 8380 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8381 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8382 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8383 int i = SplatCsts[idx]; 8384 8385 // Figure out what shift amount will be used by altivec if shifted by i in 8386 // this splat size. 8387 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8388 8389 // vsplti + shl self. 8390 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8391 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8392 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8393 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8394 Intrinsic::ppc_altivec_vslw 8395 }; 8396 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8397 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8398 } 8399 8400 // vsplti + srl self. 8401 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8402 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8403 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8404 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8405 Intrinsic::ppc_altivec_vsrw 8406 }; 8407 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8408 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8409 } 8410 8411 // vsplti + sra self. 8412 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8413 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8414 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8415 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8416 Intrinsic::ppc_altivec_vsraw 8417 }; 8418 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8419 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8420 } 8421 8422 // vsplti + rol self. 8423 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8424 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8425 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8426 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8427 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8428 Intrinsic::ppc_altivec_vrlw 8429 }; 8430 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8431 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8432 } 8433 8434 // t = vsplti c, result = vsldoi t, t, 1 8435 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8436 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8437 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8438 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8439 } 8440 // t = vsplti c, result = vsldoi t, t, 2 8441 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8442 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8443 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8444 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8445 } 8446 // t = vsplti c, result = vsldoi t, t, 3 8447 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8448 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8449 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8450 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8451 } 8452 } 8453 8454 return SDValue(); 8455 } 8456 8457 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8458 /// the specified operations to build the shuffle. 8459 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8460 SDValue RHS, SelectionDAG &DAG, 8461 const SDLoc &dl) { 8462 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8463 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8464 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8465 8466 enum { 8467 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8468 OP_VMRGHW, 8469 OP_VMRGLW, 8470 OP_VSPLTISW0, 8471 OP_VSPLTISW1, 8472 OP_VSPLTISW2, 8473 OP_VSPLTISW3, 8474 OP_VSLDOI4, 8475 OP_VSLDOI8, 8476 OP_VSLDOI12 8477 }; 8478 8479 if (OpNum == OP_COPY) { 8480 if (LHSID == (1*9+2)*9+3) return LHS; 8481 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8482 return RHS; 8483 } 8484 8485 SDValue OpLHS, OpRHS; 8486 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8487 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8488 8489 int ShufIdxs[16]; 8490 switch (OpNum) { 8491 default: llvm_unreachable("Unknown i32 permute!"); 8492 case OP_VMRGHW: 8493 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8494 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8495 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8496 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8497 break; 8498 case OP_VMRGLW: 8499 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8500 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8501 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8502 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8503 break; 8504 case OP_VSPLTISW0: 8505 for (unsigned i = 0; i != 16; ++i) 8506 ShufIdxs[i] = (i&3)+0; 8507 break; 8508 case OP_VSPLTISW1: 8509 for (unsigned i = 0; i != 16; ++i) 8510 ShufIdxs[i] = (i&3)+4; 8511 break; 8512 case OP_VSPLTISW2: 8513 for (unsigned i = 0; i != 16; ++i) 8514 ShufIdxs[i] = (i&3)+8; 8515 break; 8516 case OP_VSPLTISW3: 8517 for (unsigned i = 0; i != 16; ++i) 8518 ShufIdxs[i] = (i&3)+12; 8519 break; 8520 case OP_VSLDOI4: 8521 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8522 case OP_VSLDOI8: 8523 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8524 case OP_VSLDOI12: 8525 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8526 } 8527 EVT VT = OpLHS.getValueType(); 8528 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8529 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8530 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8531 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8532 } 8533 8534 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8535 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8536 /// SDValue. 8537 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8538 SelectionDAG &DAG) const { 8539 const unsigned BytesInVector = 16; 8540 bool IsLE = Subtarget.isLittleEndian(); 8541 SDLoc dl(N); 8542 SDValue V1 = N->getOperand(0); 8543 SDValue V2 = N->getOperand(1); 8544 unsigned ShiftElts = 0, InsertAtByte = 0; 8545 bool Swap = false; 8546 8547 // Shifts required to get the byte we want at element 7. 8548 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8549 0, 15, 14, 13, 12, 11, 10, 9}; 8550 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8551 1, 2, 3, 4, 5, 6, 7, 8}; 8552 8553 ArrayRef<int> Mask = N->getMask(); 8554 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8555 8556 // For each mask element, find out if we're just inserting something 8557 // from V2 into V1 or vice versa. 8558 // Possible permutations inserting an element from V2 into V1: 8559 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8560 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8561 // ... 8562 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8563 // Inserting from V1 into V2 will be similar, except mask range will be 8564 // [16,31]. 8565 8566 bool FoundCandidate = false; 8567 // If both vector operands for the shuffle are the same vector, the mask 8568 // will contain only elements from the first one and the second one will be 8569 // undef. 8570 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8571 // Go through the mask of half-words to find an element that's being moved 8572 // from one vector to the other. 8573 for (unsigned i = 0; i < BytesInVector; ++i) { 8574 unsigned CurrentElement = Mask[i]; 8575 // If 2nd operand is undefined, we should only look for element 7 in the 8576 // Mask. 8577 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8578 continue; 8579 8580 bool OtherElementsInOrder = true; 8581 // Examine the other elements in the Mask to see if they're in original 8582 // order. 8583 for (unsigned j = 0; j < BytesInVector; ++j) { 8584 if (j == i) 8585 continue; 8586 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8587 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8588 // in which we always assume we're always picking from the 1st operand. 8589 int MaskOffset = 8590 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8591 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8592 OtherElementsInOrder = false; 8593 break; 8594 } 8595 } 8596 // If other elements are in original order, we record the number of shifts 8597 // we need to get the element we want into element 7. Also record which byte 8598 // in the vector we should insert into. 8599 if (OtherElementsInOrder) { 8600 // If 2nd operand is undefined, we assume no shifts and no swapping. 8601 if (V2.isUndef()) { 8602 ShiftElts = 0; 8603 Swap = false; 8604 } else { 8605 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8606 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8607 : BigEndianShifts[CurrentElement & 0xF]; 8608 Swap = CurrentElement < BytesInVector; 8609 } 8610 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8611 FoundCandidate = true; 8612 break; 8613 } 8614 } 8615 8616 if (!FoundCandidate) 8617 return SDValue(); 8618 8619 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8620 // optionally with VECSHL if shift is required. 8621 if (Swap) 8622 std::swap(V1, V2); 8623 if (V2.isUndef()) 8624 V2 = V1; 8625 if (ShiftElts) { 8626 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8627 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8628 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8629 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8630 } 8631 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8632 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8633 } 8634 8635 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8636 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8637 /// SDValue. 8638 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8639 SelectionDAG &DAG) const { 8640 const unsigned NumHalfWords = 8; 8641 const unsigned BytesInVector = NumHalfWords * 2; 8642 // Check that the shuffle is on half-words. 8643 if (!isNByteElemShuffleMask(N, 2, 1)) 8644 return SDValue(); 8645 8646 bool IsLE = Subtarget.isLittleEndian(); 8647 SDLoc dl(N); 8648 SDValue V1 = N->getOperand(0); 8649 SDValue V2 = N->getOperand(1); 8650 unsigned ShiftElts = 0, InsertAtByte = 0; 8651 bool Swap = false; 8652 8653 // Shifts required to get the half-word we want at element 3. 8654 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8655 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8656 8657 uint32_t Mask = 0; 8658 uint32_t OriginalOrderLow = 0x1234567; 8659 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8660 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8661 // 32-bit space, only need 4-bit nibbles per element. 8662 for (unsigned i = 0; i < NumHalfWords; ++i) { 8663 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8664 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8665 } 8666 8667 // For each mask element, find out if we're just inserting something 8668 // from V2 into V1 or vice versa. Possible permutations inserting an element 8669 // from V2 into V1: 8670 // X, 1, 2, 3, 4, 5, 6, 7 8671 // 0, X, 2, 3, 4, 5, 6, 7 8672 // 0, 1, X, 3, 4, 5, 6, 7 8673 // 0, 1, 2, X, 4, 5, 6, 7 8674 // 0, 1, 2, 3, X, 5, 6, 7 8675 // 0, 1, 2, 3, 4, X, 6, 7 8676 // 0, 1, 2, 3, 4, 5, X, 7 8677 // 0, 1, 2, 3, 4, 5, 6, X 8678 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8679 8680 bool FoundCandidate = false; 8681 // Go through the mask of half-words to find an element that's being moved 8682 // from one vector to the other. 8683 for (unsigned i = 0; i < NumHalfWords; ++i) { 8684 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8685 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8686 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8687 uint32_t TargetOrder = 0x0; 8688 8689 // If both vector operands for the shuffle are the same vector, the mask 8690 // will contain only elements from the first one and the second one will be 8691 // undef. 8692 if (V2.isUndef()) { 8693 ShiftElts = 0; 8694 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8695 TargetOrder = OriginalOrderLow; 8696 Swap = false; 8697 // Skip if not the correct element or mask of other elements don't equal 8698 // to our expected order. 8699 if (MaskOneElt == VINSERTHSrcElem && 8700 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8701 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8702 FoundCandidate = true; 8703 break; 8704 } 8705 } else { // If both operands are defined. 8706 // Target order is [8,15] if the current mask is between [0,7]. 8707 TargetOrder = 8708 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8709 // Skip if mask of other elements don't equal our expected order. 8710 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8711 // We only need the last 3 bits for the number of shifts. 8712 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8713 : BigEndianShifts[MaskOneElt & 0x7]; 8714 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8715 Swap = MaskOneElt < NumHalfWords; 8716 FoundCandidate = true; 8717 break; 8718 } 8719 } 8720 } 8721 8722 if (!FoundCandidate) 8723 return SDValue(); 8724 8725 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8726 // optionally with VECSHL if shift is required. 8727 if (Swap) 8728 std::swap(V1, V2); 8729 if (V2.isUndef()) 8730 V2 = V1; 8731 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8732 if (ShiftElts) { 8733 // Double ShiftElts because we're left shifting on v16i8 type. 8734 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8735 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8736 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8737 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8738 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8739 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8740 } 8741 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8742 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8743 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8744 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8745 } 8746 8747 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8748 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8749 /// return the code it can be lowered into. Worst case, it can always be 8750 /// lowered into a vperm. 8751 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8752 SelectionDAG &DAG) const { 8753 SDLoc dl(Op); 8754 SDValue V1 = Op.getOperand(0); 8755 SDValue V2 = Op.getOperand(1); 8756 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8757 EVT VT = Op.getValueType(); 8758 bool isLittleEndian = Subtarget.isLittleEndian(); 8759 8760 unsigned ShiftElts, InsertAtByte; 8761 bool Swap = false; 8762 if (Subtarget.hasP9Vector() && 8763 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8764 isLittleEndian)) { 8765 if (Swap) 8766 std::swap(V1, V2); 8767 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8768 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8769 if (ShiftElts) { 8770 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8771 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8772 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8773 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8774 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8775 } 8776 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8777 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8778 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8779 } 8780 8781 if (Subtarget.hasP9Altivec()) { 8782 SDValue NewISDNode; 8783 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8784 return NewISDNode; 8785 8786 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8787 return NewISDNode; 8788 } 8789 8790 if (Subtarget.hasVSX() && 8791 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8792 if (Swap) 8793 std::swap(V1, V2); 8794 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8795 SDValue Conv2 = 8796 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8797 8798 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8799 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8800 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8801 } 8802 8803 if (Subtarget.hasVSX() && 8804 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8805 if (Swap) 8806 std::swap(V1, V2); 8807 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8808 SDValue Conv2 = 8809 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8810 8811 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8812 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8813 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8814 } 8815 8816 if (Subtarget.hasP9Vector()) { 8817 if (PPC::isXXBRHShuffleMask(SVOp)) { 8818 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8819 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8820 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8821 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8822 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8823 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8824 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8825 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8826 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8827 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8828 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8829 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8830 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8831 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8832 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8833 } 8834 } 8835 8836 if (Subtarget.hasVSX()) { 8837 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8838 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8839 8840 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8841 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8842 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8843 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8844 } 8845 8846 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8847 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8848 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8849 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8850 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8851 } 8852 } 8853 8854 if (Subtarget.hasQPX()) { 8855 if (VT.getVectorNumElements() != 4) 8856 return SDValue(); 8857 8858 if (V2.isUndef()) V2 = V1; 8859 8860 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8861 if (AlignIdx != -1) { 8862 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8863 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8864 } else if (SVOp->isSplat()) { 8865 int SplatIdx = SVOp->getSplatIndex(); 8866 if (SplatIdx >= 4) { 8867 std::swap(V1, V2); 8868 SplatIdx -= 4; 8869 } 8870 8871 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8872 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8873 } 8874 8875 // Lower this into a qvgpci/qvfperm pair. 8876 8877 // Compute the qvgpci literal 8878 unsigned idx = 0; 8879 for (unsigned i = 0; i < 4; ++i) { 8880 int m = SVOp->getMaskElt(i); 8881 unsigned mm = m >= 0 ? (unsigned) m : i; 8882 idx |= mm << (3-i)*3; 8883 } 8884 8885 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8886 DAG.getConstant(idx, dl, MVT::i32)); 8887 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8888 } 8889 8890 // Cases that are handled by instructions that take permute immediates 8891 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8892 // selected by the instruction selector. 8893 if (V2.isUndef()) { 8894 if (PPC::isSplatShuffleMask(SVOp, 1) || 8895 PPC::isSplatShuffleMask(SVOp, 2) || 8896 PPC::isSplatShuffleMask(SVOp, 4) || 8897 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8898 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8899 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8900 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8901 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8902 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8903 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8904 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8905 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8906 (Subtarget.hasP8Altivec() && ( 8907 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8908 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8909 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8910 return Op; 8911 } 8912 } 8913 8914 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8915 // and produce a fixed permutation. If any of these match, do not lower to 8916 // VPERM. 8917 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8918 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8919 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8920 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8921 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8922 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8923 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8924 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8925 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8926 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8927 (Subtarget.hasP8Altivec() && ( 8928 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8929 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8930 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8931 return Op; 8932 8933 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8934 // perfect shuffle table to emit an optimal matching sequence. 8935 ArrayRef<int> PermMask = SVOp->getMask(); 8936 8937 unsigned PFIndexes[4]; 8938 bool isFourElementShuffle = true; 8939 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8940 unsigned EltNo = 8; // Start out undef. 8941 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8942 if (PermMask[i*4+j] < 0) 8943 continue; // Undef, ignore it. 8944 8945 unsigned ByteSource = PermMask[i*4+j]; 8946 if ((ByteSource & 3) != j) { 8947 isFourElementShuffle = false; 8948 break; 8949 } 8950 8951 if (EltNo == 8) { 8952 EltNo = ByteSource/4; 8953 } else if (EltNo != ByteSource/4) { 8954 isFourElementShuffle = false; 8955 break; 8956 } 8957 } 8958 PFIndexes[i] = EltNo; 8959 } 8960 8961 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8962 // perfect shuffle vector to determine if it is cost effective to do this as 8963 // discrete instructions, or whether we should use a vperm. 8964 // For now, we skip this for little endian until such time as we have a 8965 // little-endian perfect shuffle table. 8966 if (isFourElementShuffle && !isLittleEndian) { 8967 // Compute the index in the perfect shuffle table. 8968 unsigned PFTableIndex = 8969 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8970 8971 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8972 unsigned Cost = (PFEntry >> 30); 8973 8974 // Determining when to avoid vperm is tricky. Many things affect the cost 8975 // of vperm, particularly how many times the perm mask needs to be computed. 8976 // For example, if the perm mask can be hoisted out of a loop or is already 8977 // used (perhaps because there are multiple permutes with the same shuffle 8978 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8979 // the loop requires an extra register. 8980 // 8981 // As a compromise, we only emit discrete instructions if the shuffle can be 8982 // generated in 3 or fewer operations. When we have loop information 8983 // available, if this block is within a loop, we should avoid using vperm 8984 // for 3-operation perms and use a constant pool load instead. 8985 if (Cost < 3) 8986 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8987 } 8988 8989 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8990 // vector that will get spilled to the constant pool. 8991 if (V2.isUndef()) V2 = V1; 8992 8993 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8994 // that it is in input element units, not in bytes. Convert now. 8995 8996 // For little endian, the order of the input vectors is reversed, and 8997 // the permutation mask is complemented with respect to 31. This is 8998 // necessary to produce proper semantics with the big-endian-biased vperm 8999 // instruction. 9000 EVT EltVT = V1.getValueType().getVectorElementType(); 9001 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9002 9003 SmallVector<SDValue, 16> ResultMask; 9004 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9005 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9006 9007 for (unsigned j = 0; j != BytesPerElement; ++j) 9008 if (isLittleEndian) 9009 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9010 dl, MVT::i32)); 9011 else 9012 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9013 MVT::i32)); 9014 } 9015 9016 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9017 if (isLittleEndian) 9018 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9019 V2, V1, VPermMask); 9020 else 9021 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9022 V1, V2, VPermMask); 9023 } 9024 9025 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9026 /// vector comparison. If it is, return true and fill in Opc/isDot with 9027 /// information about the intrinsic. 9028 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9029 bool &isDot, const PPCSubtarget &Subtarget) { 9030 unsigned IntrinsicID = 9031 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9032 CompareOpc = -1; 9033 isDot = false; 9034 switch (IntrinsicID) { 9035 default: 9036 return false; 9037 // Comparison predicates. 9038 case Intrinsic::ppc_altivec_vcmpbfp_p: 9039 CompareOpc = 966; 9040 isDot = true; 9041 break; 9042 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9043 CompareOpc = 198; 9044 isDot = true; 9045 break; 9046 case Intrinsic::ppc_altivec_vcmpequb_p: 9047 CompareOpc = 6; 9048 isDot = true; 9049 break; 9050 case Intrinsic::ppc_altivec_vcmpequh_p: 9051 CompareOpc = 70; 9052 isDot = true; 9053 break; 9054 case Intrinsic::ppc_altivec_vcmpequw_p: 9055 CompareOpc = 134; 9056 isDot = true; 9057 break; 9058 case Intrinsic::ppc_altivec_vcmpequd_p: 9059 if (Subtarget.hasP8Altivec()) { 9060 CompareOpc = 199; 9061 isDot = true; 9062 } else 9063 return false; 9064 break; 9065 case Intrinsic::ppc_altivec_vcmpneb_p: 9066 case Intrinsic::ppc_altivec_vcmpneh_p: 9067 case Intrinsic::ppc_altivec_vcmpnew_p: 9068 case Intrinsic::ppc_altivec_vcmpnezb_p: 9069 case Intrinsic::ppc_altivec_vcmpnezh_p: 9070 case Intrinsic::ppc_altivec_vcmpnezw_p: 9071 if (Subtarget.hasP9Altivec()) { 9072 switch (IntrinsicID) { 9073 default: 9074 llvm_unreachable("Unknown comparison intrinsic."); 9075 case Intrinsic::ppc_altivec_vcmpneb_p: 9076 CompareOpc = 7; 9077 break; 9078 case Intrinsic::ppc_altivec_vcmpneh_p: 9079 CompareOpc = 71; 9080 break; 9081 case Intrinsic::ppc_altivec_vcmpnew_p: 9082 CompareOpc = 135; 9083 break; 9084 case Intrinsic::ppc_altivec_vcmpnezb_p: 9085 CompareOpc = 263; 9086 break; 9087 case Intrinsic::ppc_altivec_vcmpnezh_p: 9088 CompareOpc = 327; 9089 break; 9090 case Intrinsic::ppc_altivec_vcmpnezw_p: 9091 CompareOpc = 391; 9092 break; 9093 } 9094 isDot = true; 9095 } else 9096 return false; 9097 break; 9098 case Intrinsic::ppc_altivec_vcmpgefp_p: 9099 CompareOpc = 454; 9100 isDot = true; 9101 break; 9102 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9103 CompareOpc = 710; 9104 isDot = true; 9105 break; 9106 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9107 CompareOpc = 774; 9108 isDot = true; 9109 break; 9110 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9111 CompareOpc = 838; 9112 isDot = true; 9113 break; 9114 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9115 CompareOpc = 902; 9116 isDot = true; 9117 break; 9118 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9119 if (Subtarget.hasP8Altivec()) { 9120 CompareOpc = 967; 9121 isDot = true; 9122 } else 9123 return false; 9124 break; 9125 case Intrinsic::ppc_altivec_vcmpgtub_p: 9126 CompareOpc = 518; 9127 isDot = true; 9128 break; 9129 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9130 CompareOpc = 582; 9131 isDot = true; 9132 break; 9133 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9134 CompareOpc = 646; 9135 isDot = true; 9136 break; 9137 case Intrinsic::ppc_altivec_vcmpgtud_p: 9138 if (Subtarget.hasP8Altivec()) { 9139 CompareOpc = 711; 9140 isDot = true; 9141 } else 9142 return false; 9143 break; 9144 9145 // VSX predicate comparisons use the same infrastructure 9146 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9147 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9148 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9149 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9150 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9151 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9152 if (Subtarget.hasVSX()) { 9153 switch (IntrinsicID) { 9154 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9155 CompareOpc = 99; 9156 break; 9157 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9158 CompareOpc = 115; 9159 break; 9160 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9161 CompareOpc = 107; 9162 break; 9163 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9164 CompareOpc = 67; 9165 break; 9166 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9167 CompareOpc = 83; 9168 break; 9169 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9170 CompareOpc = 75; 9171 break; 9172 } 9173 isDot = true; 9174 } else 9175 return false; 9176 break; 9177 9178 // Normal Comparisons. 9179 case Intrinsic::ppc_altivec_vcmpbfp: 9180 CompareOpc = 966; 9181 break; 9182 case Intrinsic::ppc_altivec_vcmpeqfp: 9183 CompareOpc = 198; 9184 break; 9185 case Intrinsic::ppc_altivec_vcmpequb: 9186 CompareOpc = 6; 9187 break; 9188 case Intrinsic::ppc_altivec_vcmpequh: 9189 CompareOpc = 70; 9190 break; 9191 case Intrinsic::ppc_altivec_vcmpequw: 9192 CompareOpc = 134; 9193 break; 9194 case Intrinsic::ppc_altivec_vcmpequd: 9195 if (Subtarget.hasP8Altivec()) 9196 CompareOpc = 199; 9197 else 9198 return false; 9199 break; 9200 case Intrinsic::ppc_altivec_vcmpneb: 9201 case Intrinsic::ppc_altivec_vcmpneh: 9202 case Intrinsic::ppc_altivec_vcmpnew: 9203 case Intrinsic::ppc_altivec_vcmpnezb: 9204 case Intrinsic::ppc_altivec_vcmpnezh: 9205 case Intrinsic::ppc_altivec_vcmpnezw: 9206 if (Subtarget.hasP9Altivec()) 9207 switch (IntrinsicID) { 9208 default: 9209 llvm_unreachable("Unknown comparison intrinsic."); 9210 case Intrinsic::ppc_altivec_vcmpneb: 9211 CompareOpc = 7; 9212 break; 9213 case Intrinsic::ppc_altivec_vcmpneh: 9214 CompareOpc = 71; 9215 break; 9216 case Intrinsic::ppc_altivec_vcmpnew: 9217 CompareOpc = 135; 9218 break; 9219 case Intrinsic::ppc_altivec_vcmpnezb: 9220 CompareOpc = 263; 9221 break; 9222 case Intrinsic::ppc_altivec_vcmpnezh: 9223 CompareOpc = 327; 9224 break; 9225 case Intrinsic::ppc_altivec_vcmpnezw: 9226 CompareOpc = 391; 9227 break; 9228 } 9229 else 9230 return false; 9231 break; 9232 case Intrinsic::ppc_altivec_vcmpgefp: 9233 CompareOpc = 454; 9234 break; 9235 case Intrinsic::ppc_altivec_vcmpgtfp: 9236 CompareOpc = 710; 9237 break; 9238 case Intrinsic::ppc_altivec_vcmpgtsb: 9239 CompareOpc = 774; 9240 break; 9241 case Intrinsic::ppc_altivec_vcmpgtsh: 9242 CompareOpc = 838; 9243 break; 9244 case Intrinsic::ppc_altivec_vcmpgtsw: 9245 CompareOpc = 902; 9246 break; 9247 case Intrinsic::ppc_altivec_vcmpgtsd: 9248 if (Subtarget.hasP8Altivec()) 9249 CompareOpc = 967; 9250 else 9251 return false; 9252 break; 9253 case Intrinsic::ppc_altivec_vcmpgtub: 9254 CompareOpc = 518; 9255 break; 9256 case Intrinsic::ppc_altivec_vcmpgtuh: 9257 CompareOpc = 582; 9258 break; 9259 case Intrinsic::ppc_altivec_vcmpgtuw: 9260 CompareOpc = 646; 9261 break; 9262 case Intrinsic::ppc_altivec_vcmpgtud: 9263 if (Subtarget.hasP8Altivec()) 9264 CompareOpc = 711; 9265 else 9266 return false; 9267 break; 9268 } 9269 return true; 9270 } 9271 9272 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9273 /// lower, do it, otherwise return null. 9274 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9275 SelectionDAG &DAG) const { 9276 unsigned IntrinsicID = 9277 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9278 9279 SDLoc dl(Op); 9280 9281 if (IntrinsicID == Intrinsic::thread_pointer) { 9282 // Reads the thread pointer register, used for __builtin_thread_pointer. 9283 if (Subtarget.isPPC64()) 9284 return DAG.getRegister(PPC::X13, MVT::i64); 9285 return DAG.getRegister(PPC::R2, MVT::i32); 9286 } 9287 9288 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9289 // opcode number of the comparison. 9290 int CompareOpc; 9291 bool isDot; 9292 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9293 return SDValue(); // Don't custom lower most intrinsics. 9294 9295 // If this is a non-dot comparison, make the VCMP node and we are done. 9296 if (!isDot) { 9297 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9298 Op.getOperand(1), Op.getOperand(2), 9299 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9300 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9301 } 9302 9303 // Create the PPCISD altivec 'dot' comparison node. 9304 SDValue Ops[] = { 9305 Op.getOperand(2), // LHS 9306 Op.getOperand(3), // RHS 9307 DAG.getConstant(CompareOpc, dl, MVT::i32) 9308 }; 9309 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9310 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9311 9312 // Now that we have the comparison, emit a copy from the CR to a GPR. 9313 // This is flagged to the above dot comparison. 9314 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9315 DAG.getRegister(PPC::CR6, MVT::i32), 9316 CompNode.getValue(1)); 9317 9318 // Unpack the result based on how the target uses it. 9319 unsigned BitNo; // Bit # of CR6. 9320 bool InvertBit; // Invert result? 9321 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9322 default: // Can't happen, don't crash on invalid number though. 9323 case 0: // Return the value of the EQ bit of CR6. 9324 BitNo = 0; InvertBit = false; 9325 break; 9326 case 1: // Return the inverted value of the EQ bit of CR6. 9327 BitNo = 0; InvertBit = true; 9328 break; 9329 case 2: // Return the value of the LT bit of CR6. 9330 BitNo = 2; InvertBit = false; 9331 break; 9332 case 3: // Return the inverted value of the LT bit of CR6. 9333 BitNo = 2; InvertBit = true; 9334 break; 9335 } 9336 9337 // Shift the bit into the low position. 9338 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9339 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9340 // Isolate the bit. 9341 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9342 DAG.getConstant(1, dl, MVT::i32)); 9343 9344 // If we are supposed to, toggle the bit. 9345 if (InvertBit) 9346 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9347 DAG.getConstant(1, dl, MVT::i32)); 9348 return Flags; 9349 } 9350 9351 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9352 SelectionDAG &DAG) const { 9353 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9354 // the beginning of the argument list. 9355 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9356 SDLoc DL(Op); 9357 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9358 case Intrinsic::ppc_cfence: { 9359 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9360 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9361 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9362 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9363 Op.getOperand(ArgStart + 1)), 9364 Op.getOperand(0)), 9365 0); 9366 } 9367 default: 9368 break; 9369 } 9370 return SDValue(); 9371 } 9372 9373 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9374 // Check for a DIV with the same operands as this REM. 9375 for (auto UI : Op.getOperand(1)->uses()) { 9376 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9377 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9378 if (UI->getOperand(0) == Op.getOperand(0) && 9379 UI->getOperand(1) == Op.getOperand(1)) 9380 return SDValue(); 9381 } 9382 return Op; 9383 } 9384 9385 // Lower scalar BSWAP64 to xxbrd. 9386 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9387 SDLoc dl(Op); 9388 // MTVSRDD 9389 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9390 Op.getOperand(0)); 9391 // XXBRD 9392 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9393 // MFVSRD 9394 int VectorIndex = 0; 9395 if (Subtarget.isLittleEndian()) 9396 VectorIndex = 1; 9397 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9398 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9399 return Op; 9400 } 9401 9402 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9403 // compared to a value that is atomically loaded (atomic loads zero-extend). 9404 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9405 SelectionDAG &DAG) const { 9406 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9407 "Expecting an atomic compare-and-swap here."); 9408 SDLoc dl(Op); 9409 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9410 EVT MemVT = AtomicNode->getMemoryVT(); 9411 if (MemVT.getSizeInBits() >= 32) 9412 return Op; 9413 9414 SDValue CmpOp = Op.getOperand(2); 9415 // If this is already correctly zero-extended, leave it alone. 9416 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9417 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9418 return Op; 9419 9420 // Clear the high bits of the compare operand. 9421 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9422 SDValue NewCmpOp = 9423 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9424 DAG.getConstant(MaskVal, dl, MVT::i32)); 9425 9426 // Replace the existing compare operand with the properly zero-extended one. 9427 SmallVector<SDValue, 4> Ops; 9428 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9429 Ops.push_back(AtomicNode->getOperand(i)); 9430 Ops[2] = NewCmpOp; 9431 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9432 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9433 auto NodeTy = 9434 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9435 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9436 } 9437 9438 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9439 SelectionDAG &DAG) const { 9440 SDLoc dl(Op); 9441 // Create a stack slot that is 16-byte aligned. 9442 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9443 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9444 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9445 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9446 9447 // Store the input value into Value#0 of the stack slot. 9448 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9449 MachinePointerInfo()); 9450 // Load it out. 9451 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9452 } 9453 9454 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9455 SelectionDAG &DAG) const { 9456 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9457 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9458 9459 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9460 // We have legal lowering for constant indices but not for variable ones. 9461 if (!C) 9462 return SDValue(); 9463 9464 EVT VT = Op.getValueType(); 9465 SDLoc dl(Op); 9466 SDValue V1 = Op.getOperand(0); 9467 SDValue V2 = Op.getOperand(1); 9468 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9469 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9470 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9471 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9472 unsigned InsertAtElement = C->getZExtValue(); 9473 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9474 if (Subtarget.isLittleEndian()) { 9475 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9476 } 9477 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9478 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9479 } 9480 return Op; 9481 } 9482 9483 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9484 SelectionDAG &DAG) const { 9485 SDLoc dl(Op); 9486 SDNode *N = Op.getNode(); 9487 9488 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9489 "Unknown extract_vector_elt type"); 9490 9491 SDValue Value = N->getOperand(0); 9492 9493 // The first part of this is like the store lowering except that we don't 9494 // need to track the chain. 9495 9496 // The values are now known to be -1 (false) or 1 (true). To convert this 9497 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9498 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9499 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9500 9501 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9502 // understand how to form the extending load. 9503 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9504 9505 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9506 9507 // Now convert to an integer and store. 9508 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9509 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9510 Value); 9511 9512 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9513 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9514 MachinePointerInfo PtrInfo = 9515 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9516 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9517 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9518 9519 SDValue StoreChain = DAG.getEntryNode(); 9520 SDValue Ops[] = {StoreChain, 9521 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9522 Value, FIdx}; 9523 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9524 9525 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9526 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9527 9528 // Extract the value requested. 9529 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9530 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9531 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9532 9533 SDValue IntVal = 9534 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9535 9536 if (!Subtarget.useCRBits()) 9537 return IntVal; 9538 9539 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9540 } 9541 9542 /// Lowering for QPX v4i1 loads 9543 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9544 SelectionDAG &DAG) const { 9545 SDLoc dl(Op); 9546 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9547 SDValue LoadChain = LN->getChain(); 9548 SDValue BasePtr = LN->getBasePtr(); 9549 9550 if (Op.getValueType() == MVT::v4f64 || 9551 Op.getValueType() == MVT::v4f32) { 9552 EVT MemVT = LN->getMemoryVT(); 9553 unsigned Alignment = LN->getAlignment(); 9554 9555 // If this load is properly aligned, then it is legal. 9556 if (Alignment >= MemVT.getStoreSize()) 9557 return Op; 9558 9559 EVT ScalarVT = Op.getValueType().getScalarType(), 9560 ScalarMemVT = MemVT.getScalarType(); 9561 unsigned Stride = ScalarMemVT.getStoreSize(); 9562 9563 SDValue Vals[4], LoadChains[4]; 9564 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9565 SDValue Load; 9566 if (ScalarVT != ScalarMemVT) 9567 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9568 BasePtr, 9569 LN->getPointerInfo().getWithOffset(Idx * Stride), 9570 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9571 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9572 else 9573 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9574 LN->getPointerInfo().getWithOffset(Idx * Stride), 9575 MinAlign(Alignment, Idx * Stride), 9576 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9577 9578 if (Idx == 0 && LN->isIndexed()) { 9579 assert(LN->getAddressingMode() == ISD::PRE_INC && 9580 "Unknown addressing mode on vector load"); 9581 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9582 LN->getAddressingMode()); 9583 } 9584 9585 Vals[Idx] = Load; 9586 LoadChains[Idx] = Load.getValue(1); 9587 9588 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9589 DAG.getConstant(Stride, dl, 9590 BasePtr.getValueType())); 9591 } 9592 9593 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9594 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9595 9596 if (LN->isIndexed()) { 9597 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9598 return DAG.getMergeValues(RetOps, dl); 9599 } 9600 9601 SDValue RetOps[] = { Value, TF }; 9602 return DAG.getMergeValues(RetOps, dl); 9603 } 9604 9605 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9606 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9607 9608 // To lower v4i1 from a byte array, we load the byte elements of the 9609 // vector and then reuse the BUILD_VECTOR logic. 9610 9611 SDValue VectElmts[4], VectElmtChains[4]; 9612 for (unsigned i = 0; i < 4; ++i) { 9613 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9614 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9615 9616 VectElmts[i] = DAG.getExtLoad( 9617 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9618 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9619 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9620 VectElmtChains[i] = VectElmts[i].getValue(1); 9621 } 9622 9623 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9624 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9625 9626 SDValue RVals[] = { Value, LoadChain }; 9627 return DAG.getMergeValues(RVals, dl); 9628 } 9629 9630 /// Lowering for QPX v4i1 stores 9631 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9632 SelectionDAG &DAG) const { 9633 SDLoc dl(Op); 9634 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9635 SDValue StoreChain = SN->getChain(); 9636 SDValue BasePtr = SN->getBasePtr(); 9637 SDValue Value = SN->getValue(); 9638 9639 if (Value.getValueType() == MVT::v4f64 || 9640 Value.getValueType() == MVT::v4f32) { 9641 EVT MemVT = SN->getMemoryVT(); 9642 unsigned Alignment = SN->getAlignment(); 9643 9644 // If this store is properly aligned, then it is legal. 9645 if (Alignment >= MemVT.getStoreSize()) 9646 return Op; 9647 9648 EVT ScalarVT = Value.getValueType().getScalarType(), 9649 ScalarMemVT = MemVT.getScalarType(); 9650 unsigned Stride = ScalarMemVT.getStoreSize(); 9651 9652 SDValue Stores[4]; 9653 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9654 SDValue Ex = DAG.getNode( 9655 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9656 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9657 SDValue Store; 9658 if (ScalarVT != ScalarMemVT) 9659 Store = 9660 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9661 SN->getPointerInfo().getWithOffset(Idx * Stride), 9662 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9663 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9664 else 9665 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9666 SN->getPointerInfo().getWithOffset(Idx * Stride), 9667 MinAlign(Alignment, Idx * Stride), 9668 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9669 9670 if (Idx == 0 && SN->isIndexed()) { 9671 assert(SN->getAddressingMode() == ISD::PRE_INC && 9672 "Unknown addressing mode on vector store"); 9673 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9674 SN->getAddressingMode()); 9675 } 9676 9677 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9678 DAG.getConstant(Stride, dl, 9679 BasePtr.getValueType())); 9680 Stores[Idx] = Store; 9681 } 9682 9683 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9684 9685 if (SN->isIndexed()) { 9686 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9687 return DAG.getMergeValues(RetOps, dl); 9688 } 9689 9690 return TF; 9691 } 9692 9693 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9694 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9695 9696 // The values are now known to be -1 (false) or 1 (true). To convert this 9697 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9698 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9699 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9700 9701 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9702 // understand how to form the extending load. 9703 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9704 9705 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9706 9707 // Now convert to an integer and store. 9708 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9709 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9710 Value); 9711 9712 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9713 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9714 MachinePointerInfo PtrInfo = 9715 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9716 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9717 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9718 9719 SDValue Ops[] = {StoreChain, 9720 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9721 Value, FIdx}; 9722 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9723 9724 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9725 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9726 9727 // Move data into the byte array. 9728 SDValue Loads[4], LoadChains[4]; 9729 for (unsigned i = 0; i < 4; ++i) { 9730 unsigned Offset = 4*i; 9731 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9732 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9733 9734 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9735 PtrInfo.getWithOffset(Offset)); 9736 LoadChains[i] = Loads[i].getValue(1); 9737 } 9738 9739 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9740 9741 SDValue Stores[4]; 9742 for (unsigned i = 0; i < 4; ++i) { 9743 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9744 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9745 9746 Stores[i] = DAG.getTruncStore( 9747 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9748 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9749 SN->getAAInfo()); 9750 } 9751 9752 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9753 9754 return StoreChain; 9755 } 9756 9757 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9758 SDLoc dl(Op); 9759 if (Op.getValueType() == MVT::v4i32) { 9760 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9761 9762 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9763 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9764 9765 SDValue RHSSwap = // = vrlw RHS, 16 9766 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9767 9768 // Shrinkify inputs to v8i16. 9769 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9770 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9771 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9772 9773 // Low parts multiplied together, generating 32-bit results (we ignore the 9774 // top parts). 9775 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9776 LHS, RHS, DAG, dl, MVT::v4i32); 9777 9778 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9779 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9780 // Shift the high parts up 16 bits. 9781 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9782 Neg16, DAG, dl); 9783 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9784 } else if (Op.getValueType() == MVT::v8i16) { 9785 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9786 9787 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9788 9789 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9790 LHS, RHS, Zero, DAG, dl); 9791 } else if (Op.getValueType() == MVT::v16i8) { 9792 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9793 bool isLittleEndian = Subtarget.isLittleEndian(); 9794 9795 // Multiply the even 8-bit parts, producing 16-bit sums. 9796 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9797 LHS, RHS, DAG, dl, MVT::v8i16); 9798 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9799 9800 // Multiply the odd 8-bit parts, producing 16-bit sums. 9801 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9802 LHS, RHS, DAG, dl, MVT::v8i16); 9803 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9804 9805 // Merge the results together. Because vmuleub and vmuloub are 9806 // instructions with a big-endian bias, we must reverse the 9807 // element numbering and reverse the meaning of "odd" and "even" 9808 // when generating little endian code. 9809 int Ops[16]; 9810 for (unsigned i = 0; i != 8; ++i) { 9811 if (isLittleEndian) { 9812 Ops[i*2 ] = 2*i; 9813 Ops[i*2+1] = 2*i+16; 9814 } else { 9815 Ops[i*2 ] = 2*i+1; 9816 Ops[i*2+1] = 2*i+1+16; 9817 } 9818 } 9819 if (isLittleEndian) 9820 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9821 else 9822 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9823 } else { 9824 llvm_unreachable("Unknown mul to lower!"); 9825 } 9826 } 9827 9828 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9829 9830 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9831 9832 EVT VT = Op.getValueType(); 9833 assert(VT.isVector() && 9834 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9835 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9836 VT == MVT::v16i8) && 9837 "Unexpected vector element type!"); 9838 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9839 "Current subtarget doesn't support smax v2i64!"); 9840 9841 // For vector abs, it can be lowered to: 9842 // abs x 9843 // ==> 9844 // y = -x 9845 // smax(x, y) 9846 9847 SDLoc dl(Op); 9848 SDValue X = Op.getOperand(0); 9849 SDValue Zero = DAG.getConstant(0, dl, VT); 9850 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9851 9852 // SMAX patch https://reviews.llvm.org/D47332 9853 // hasn't landed yet, so use intrinsic first here. 9854 // TODO: Should use SMAX directly once SMAX patch landed 9855 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9856 if (VT == MVT::v2i64) 9857 BifID = Intrinsic::ppc_altivec_vmaxsd; 9858 else if (VT == MVT::v8i16) 9859 BifID = Intrinsic::ppc_altivec_vmaxsh; 9860 else if (VT == MVT::v16i8) 9861 BifID = Intrinsic::ppc_altivec_vmaxsb; 9862 9863 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9864 } 9865 9866 // Custom lowering for fpext vf32 to v2f64 9867 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9868 9869 assert(Op.getOpcode() == ISD::FP_EXTEND && 9870 "Should only be called for ISD::FP_EXTEND"); 9871 9872 // We only want to custom lower an extend from v2f32 to v2f64. 9873 if (Op.getValueType() != MVT::v2f64 || 9874 Op.getOperand(0).getValueType() != MVT::v2f32) 9875 return SDValue(); 9876 9877 SDLoc dl(Op); 9878 SDValue Op0 = Op.getOperand(0); 9879 9880 switch (Op0.getOpcode()) { 9881 default: 9882 return SDValue(); 9883 case ISD::FADD: 9884 case ISD::FMUL: 9885 case ISD::FSUB: { 9886 SDValue NewLoad[2]; 9887 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 9888 // Ensure both input are loads. 9889 SDValue LdOp = Op0.getOperand(i); 9890 if (LdOp.getOpcode() != ISD::LOAD) 9891 return SDValue(); 9892 // Generate new load node. 9893 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 9894 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9895 NewLoad[i] = 9896 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9897 DAG.getVTList(MVT::v4f32, MVT::Other), 9898 LoadOps, LD->getMemoryVT(), 9899 LD->getMemOperand()); 9900 } 9901 SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, 9902 NewLoad[0], NewLoad[1], 9903 Op0.getNode()->getFlags()); 9904 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp); 9905 } 9906 case ISD::LOAD: { 9907 LoadSDNode *LD = cast<LoadSDNode>(Op0); 9908 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9909 SDValue NewLd = 9910 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9911 DAG.getVTList(MVT::v4f32, MVT::Other), 9912 LoadOps, LD->getMemoryVT(), LD->getMemOperand()); 9913 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd); 9914 } 9915 } 9916 llvm_unreachable("ERROR:Should return for all cases within swtich."); 9917 } 9918 9919 /// LowerOperation - Provide custom lowering hooks for some operations. 9920 /// 9921 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9922 switch (Op.getOpcode()) { 9923 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9924 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9925 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9926 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9927 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9928 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9929 case ISD::SETCC: return LowerSETCC(Op, DAG); 9930 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9931 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9932 9933 // Variable argument lowering. 9934 case ISD::VASTART: return LowerVASTART(Op, DAG); 9935 case ISD::VAARG: return LowerVAARG(Op, DAG); 9936 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9937 9938 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9939 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9940 case ISD::GET_DYNAMIC_AREA_OFFSET: 9941 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9942 9943 // Exception handling lowering. 9944 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9945 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9946 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9947 9948 case ISD::LOAD: return LowerLOAD(Op, DAG); 9949 case ISD::STORE: return LowerSTORE(Op, DAG); 9950 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9951 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9952 case ISD::FP_TO_UINT: 9953 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9954 case ISD::UINT_TO_FP: 9955 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9956 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9957 9958 // Lower 64-bit shifts. 9959 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9960 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9961 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9962 9963 // Vector-related lowering. 9964 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9965 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9966 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9967 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9968 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9969 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9970 case ISD::MUL: return LowerMUL(Op, DAG); 9971 case ISD::ABS: return LowerABS(Op, DAG); 9972 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 9973 9974 // For counter-based loop handling. 9975 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9976 9977 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9978 9979 // Frame & Return address. 9980 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9981 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9982 9983 case ISD::INTRINSIC_VOID: 9984 return LowerINTRINSIC_VOID(Op, DAG); 9985 case ISD::SREM: 9986 case ISD::UREM: 9987 return LowerREM(Op, DAG); 9988 case ISD::BSWAP: 9989 return LowerBSWAP(Op, DAG); 9990 case ISD::ATOMIC_CMP_SWAP: 9991 return LowerATOMIC_CMP_SWAP(Op, DAG); 9992 } 9993 } 9994 9995 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9996 SmallVectorImpl<SDValue>&Results, 9997 SelectionDAG &DAG) const { 9998 SDLoc dl(N); 9999 switch (N->getOpcode()) { 10000 default: 10001 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10002 case ISD::READCYCLECOUNTER: { 10003 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10004 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10005 10006 Results.push_back(RTB); 10007 Results.push_back(RTB.getValue(1)); 10008 Results.push_back(RTB.getValue(2)); 10009 break; 10010 } 10011 case ISD::INTRINSIC_W_CHAIN: { 10012 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10013 Intrinsic::loop_decrement) 10014 break; 10015 10016 assert(N->getValueType(0) == MVT::i1 && 10017 "Unexpected result type for CTR decrement intrinsic"); 10018 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10019 N->getValueType(0)); 10020 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10021 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10022 N->getOperand(1)); 10023 10024 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10025 Results.push_back(NewInt.getValue(1)); 10026 break; 10027 } 10028 case ISD::VAARG: { 10029 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10030 return; 10031 10032 EVT VT = N->getValueType(0); 10033 10034 if (VT == MVT::i64) { 10035 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10036 10037 Results.push_back(NewNode); 10038 Results.push_back(NewNode.getValue(1)); 10039 } 10040 return; 10041 } 10042 case ISD::FP_TO_SINT: 10043 case ISD::FP_TO_UINT: 10044 // LowerFP_TO_INT() can only handle f32 and f64. 10045 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10046 return; 10047 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10048 return; 10049 case ISD::TRUNCATE: { 10050 EVT TrgVT = N->getValueType(0); 10051 if (TrgVT.isVector() && 10052 isOperationCustom(N->getOpcode(), TrgVT) && 10053 N->getOperand(0).getValueType().getSizeInBits() <= 128) 10054 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10055 return; 10056 } 10057 case ISD::BITCAST: 10058 // Don't handle bitcast here. 10059 return; 10060 } 10061 } 10062 10063 //===----------------------------------------------------------------------===// 10064 // Other Lowering Code 10065 //===----------------------------------------------------------------------===// 10066 10067 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10068 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10069 Function *Func = Intrinsic::getDeclaration(M, Id); 10070 return Builder.CreateCall(Func, {}); 10071 } 10072 10073 // The mappings for emitLeading/TrailingFence is taken from 10074 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10075 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10076 Instruction *Inst, 10077 AtomicOrdering Ord) const { 10078 if (Ord == AtomicOrdering::SequentiallyConsistent) 10079 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10080 if (isReleaseOrStronger(Ord)) 10081 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10082 return nullptr; 10083 } 10084 10085 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10086 Instruction *Inst, 10087 AtomicOrdering Ord) const { 10088 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10089 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10090 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10091 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10092 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10093 return Builder.CreateCall( 10094 Intrinsic::getDeclaration( 10095 Builder.GetInsertBlock()->getParent()->getParent(), 10096 Intrinsic::ppc_cfence, {Inst->getType()}), 10097 {Inst}); 10098 // FIXME: Can use isync for rmw operation. 10099 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10100 } 10101 return nullptr; 10102 } 10103 10104 MachineBasicBlock * 10105 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10106 unsigned AtomicSize, 10107 unsigned BinOpcode, 10108 unsigned CmpOpcode, 10109 unsigned CmpPred) const { 10110 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10111 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10112 10113 auto LoadMnemonic = PPC::LDARX; 10114 auto StoreMnemonic = PPC::STDCX; 10115 switch (AtomicSize) { 10116 default: 10117 llvm_unreachable("Unexpected size of atomic entity"); 10118 case 1: 10119 LoadMnemonic = PPC::LBARX; 10120 StoreMnemonic = PPC::STBCX; 10121 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10122 break; 10123 case 2: 10124 LoadMnemonic = PPC::LHARX; 10125 StoreMnemonic = PPC::STHCX; 10126 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10127 break; 10128 case 4: 10129 LoadMnemonic = PPC::LWARX; 10130 StoreMnemonic = PPC::STWCX; 10131 break; 10132 case 8: 10133 LoadMnemonic = PPC::LDARX; 10134 StoreMnemonic = PPC::STDCX; 10135 break; 10136 } 10137 10138 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10139 MachineFunction *F = BB->getParent(); 10140 MachineFunction::iterator It = ++BB->getIterator(); 10141 10142 Register dest = MI.getOperand(0).getReg(); 10143 Register ptrA = MI.getOperand(1).getReg(); 10144 Register ptrB = MI.getOperand(2).getReg(); 10145 Register incr = MI.getOperand(3).getReg(); 10146 DebugLoc dl = MI.getDebugLoc(); 10147 10148 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10149 MachineBasicBlock *loop2MBB = 10150 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10151 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10152 F->insert(It, loopMBB); 10153 if (CmpOpcode) 10154 F->insert(It, loop2MBB); 10155 F->insert(It, exitMBB); 10156 exitMBB->splice(exitMBB->begin(), BB, 10157 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10158 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10159 10160 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10161 Register TmpReg = (!BinOpcode) ? incr : 10162 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10163 : &PPC::GPRCRegClass); 10164 10165 // thisMBB: 10166 // ... 10167 // fallthrough --> loopMBB 10168 BB->addSuccessor(loopMBB); 10169 10170 // loopMBB: 10171 // l[wd]arx dest, ptr 10172 // add r0, dest, incr 10173 // st[wd]cx. r0, ptr 10174 // bne- loopMBB 10175 // fallthrough --> exitMBB 10176 10177 // For max/min... 10178 // loopMBB: 10179 // l[wd]arx dest, ptr 10180 // cmpl?[wd] incr, dest 10181 // bgt exitMBB 10182 // loop2MBB: 10183 // st[wd]cx. dest, ptr 10184 // bne- loopMBB 10185 // fallthrough --> exitMBB 10186 10187 BB = loopMBB; 10188 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10189 .addReg(ptrA).addReg(ptrB); 10190 if (BinOpcode) 10191 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10192 if (CmpOpcode) { 10193 // Signed comparisons of byte or halfword values must be sign-extended. 10194 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10195 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10196 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10197 ExtReg).addReg(dest); 10198 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10199 .addReg(incr).addReg(ExtReg); 10200 } else 10201 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10202 .addReg(incr).addReg(dest); 10203 10204 BuildMI(BB, dl, TII->get(PPC::BCC)) 10205 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10206 BB->addSuccessor(loop2MBB); 10207 BB->addSuccessor(exitMBB); 10208 BB = loop2MBB; 10209 } 10210 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10211 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10212 BuildMI(BB, dl, TII->get(PPC::BCC)) 10213 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10214 BB->addSuccessor(loopMBB); 10215 BB->addSuccessor(exitMBB); 10216 10217 // exitMBB: 10218 // ... 10219 BB = exitMBB; 10220 return BB; 10221 } 10222 10223 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10224 MachineInstr &MI, MachineBasicBlock *BB, 10225 bool is8bit, // operation 10226 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10227 // If we support part-word atomic mnemonics, just use them 10228 if (Subtarget.hasPartwordAtomics()) 10229 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10230 CmpPred); 10231 10232 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10233 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10234 // In 64 bit mode we have to use 64 bits for addresses, even though the 10235 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10236 // registers without caring whether they're 32 or 64, but here we're 10237 // doing actual arithmetic on the addresses. 10238 bool is64bit = Subtarget.isPPC64(); 10239 bool isLittleEndian = Subtarget.isLittleEndian(); 10240 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10241 10242 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10243 MachineFunction *F = BB->getParent(); 10244 MachineFunction::iterator It = ++BB->getIterator(); 10245 10246 unsigned dest = MI.getOperand(0).getReg(); 10247 unsigned ptrA = MI.getOperand(1).getReg(); 10248 unsigned ptrB = MI.getOperand(2).getReg(); 10249 unsigned incr = MI.getOperand(3).getReg(); 10250 DebugLoc dl = MI.getDebugLoc(); 10251 10252 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10253 MachineBasicBlock *loop2MBB = 10254 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10255 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10256 F->insert(It, loopMBB); 10257 if (CmpOpcode) 10258 F->insert(It, loop2MBB); 10259 F->insert(It, exitMBB); 10260 exitMBB->splice(exitMBB->begin(), BB, 10261 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10262 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10263 10264 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10265 const TargetRegisterClass *RC = 10266 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10267 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10268 10269 Register PtrReg = RegInfo.createVirtualRegister(RC); 10270 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10271 Register ShiftReg = 10272 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10273 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10274 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10275 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10276 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10277 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10278 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10279 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10280 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10281 Register Ptr1Reg; 10282 Register TmpReg = 10283 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10284 10285 // thisMBB: 10286 // ... 10287 // fallthrough --> loopMBB 10288 BB->addSuccessor(loopMBB); 10289 10290 // The 4-byte load must be aligned, while a char or short may be 10291 // anywhere in the word. Hence all this nasty bookkeeping code. 10292 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10293 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10294 // xori shift, shift1, 24 [16] 10295 // rlwinm ptr, ptr1, 0, 0, 29 10296 // slw incr2, incr, shift 10297 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10298 // slw mask, mask2, shift 10299 // loopMBB: 10300 // lwarx tmpDest, ptr 10301 // add tmp, tmpDest, incr2 10302 // andc tmp2, tmpDest, mask 10303 // and tmp3, tmp, mask 10304 // or tmp4, tmp3, tmp2 10305 // stwcx. tmp4, ptr 10306 // bne- loopMBB 10307 // fallthrough --> exitMBB 10308 // srw dest, tmpDest, shift 10309 if (ptrA != ZeroReg) { 10310 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10311 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10312 .addReg(ptrA) 10313 .addReg(ptrB); 10314 } else { 10315 Ptr1Reg = ptrB; 10316 } 10317 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10318 // mode. 10319 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10320 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10321 .addImm(3) 10322 .addImm(27) 10323 .addImm(is8bit ? 28 : 27); 10324 if (!isLittleEndian) 10325 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10326 .addReg(Shift1Reg) 10327 .addImm(is8bit ? 24 : 16); 10328 if (is64bit) 10329 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10330 .addReg(Ptr1Reg) 10331 .addImm(0) 10332 .addImm(61); 10333 else 10334 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10335 .addReg(Ptr1Reg) 10336 .addImm(0) 10337 .addImm(0) 10338 .addImm(29); 10339 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10340 if (is8bit) 10341 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10342 else { 10343 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10344 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10345 .addReg(Mask3Reg) 10346 .addImm(65535); 10347 } 10348 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10349 .addReg(Mask2Reg) 10350 .addReg(ShiftReg); 10351 10352 BB = loopMBB; 10353 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10354 .addReg(ZeroReg) 10355 .addReg(PtrReg); 10356 if (BinOpcode) 10357 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10358 .addReg(Incr2Reg) 10359 .addReg(TmpDestReg); 10360 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10361 .addReg(TmpDestReg) 10362 .addReg(MaskReg); 10363 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10364 if (CmpOpcode) { 10365 // For unsigned comparisons, we can directly compare the shifted values. 10366 // For signed comparisons we shift and sign extend. 10367 unsigned SReg = RegInfo.createVirtualRegister(GPRC); 10368 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10369 .addReg(TmpDestReg) 10370 .addReg(MaskReg); 10371 unsigned ValueReg = SReg; 10372 unsigned CmpReg = Incr2Reg; 10373 if (CmpOpcode == PPC::CMPW) { 10374 ValueReg = RegInfo.createVirtualRegister(GPRC); 10375 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10376 .addReg(SReg) 10377 .addReg(ShiftReg); 10378 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC); 10379 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10380 .addReg(ValueReg); 10381 ValueReg = ValueSReg; 10382 CmpReg = incr; 10383 } 10384 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10385 .addReg(CmpReg) 10386 .addReg(ValueReg); 10387 BuildMI(BB, dl, TII->get(PPC::BCC)) 10388 .addImm(CmpPred) 10389 .addReg(PPC::CR0) 10390 .addMBB(exitMBB); 10391 BB->addSuccessor(loop2MBB); 10392 BB->addSuccessor(exitMBB); 10393 BB = loop2MBB; 10394 } 10395 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10396 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10397 .addReg(Tmp4Reg) 10398 .addReg(ZeroReg) 10399 .addReg(PtrReg); 10400 BuildMI(BB, dl, TII->get(PPC::BCC)) 10401 .addImm(PPC::PRED_NE) 10402 .addReg(PPC::CR0) 10403 .addMBB(loopMBB); 10404 BB->addSuccessor(loopMBB); 10405 BB->addSuccessor(exitMBB); 10406 10407 // exitMBB: 10408 // ... 10409 BB = exitMBB; 10410 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10411 .addReg(TmpDestReg) 10412 .addReg(ShiftReg); 10413 return BB; 10414 } 10415 10416 llvm::MachineBasicBlock * 10417 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10418 MachineBasicBlock *MBB) const { 10419 DebugLoc DL = MI.getDebugLoc(); 10420 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10421 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10422 10423 MachineFunction *MF = MBB->getParent(); 10424 MachineRegisterInfo &MRI = MF->getRegInfo(); 10425 10426 const BasicBlock *BB = MBB->getBasicBlock(); 10427 MachineFunction::iterator I = ++MBB->getIterator(); 10428 10429 unsigned DstReg = MI.getOperand(0).getReg(); 10430 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10431 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10432 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10433 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10434 10435 MVT PVT = getPointerTy(MF->getDataLayout()); 10436 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10437 "Invalid Pointer Size!"); 10438 // For v = setjmp(buf), we generate 10439 // 10440 // thisMBB: 10441 // SjLjSetup mainMBB 10442 // bl mainMBB 10443 // v_restore = 1 10444 // b sinkMBB 10445 // 10446 // mainMBB: 10447 // buf[LabelOffset] = LR 10448 // v_main = 0 10449 // 10450 // sinkMBB: 10451 // v = phi(main, restore) 10452 // 10453 10454 MachineBasicBlock *thisMBB = MBB; 10455 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10456 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10457 MF->insert(I, mainMBB); 10458 MF->insert(I, sinkMBB); 10459 10460 MachineInstrBuilder MIB; 10461 10462 // Transfer the remainder of BB and its successor edges to sinkMBB. 10463 sinkMBB->splice(sinkMBB->begin(), MBB, 10464 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10465 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10466 10467 // Note that the structure of the jmp_buf used here is not compatible 10468 // with that used by libc, and is not designed to be. Specifically, it 10469 // stores only those 'reserved' registers that LLVM does not otherwise 10470 // understand how to spill. Also, by convention, by the time this 10471 // intrinsic is called, Clang has already stored the frame address in the 10472 // first slot of the buffer and stack address in the third. Following the 10473 // X86 target code, we'll store the jump address in the second slot. We also 10474 // need to save the TOC pointer (R2) to handle jumps between shared 10475 // libraries, and that will be stored in the fourth slot. The thread 10476 // identifier (R13) is not affected. 10477 10478 // thisMBB: 10479 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10480 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10481 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10482 10483 // Prepare IP either in reg. 10484 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10485 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10486 unsigned BufReg = MI.getOperand(1).getReg(); 10487 10488 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10489 setUsesTOCBasePtr(*MBB->getParent()); 10490 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10491 .addReg(PPC::X2) 10492 .addImm(TOCOffset) 10493 .addReg(BufReg) 10494 .cloneMemRefs(MI); 10495 } 10496 10497 // Naked functions never have a base pointer, and so we use r1. For all 10498 // other functions, this decision must be delayed until during PEI. 10499 unsigned BaseReg; 10500 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10501 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10502 else 10503 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10504 10505 MIB = BuildMI(*thisMBB, MI, DL, 10506 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10507 .addReg(BaseReg) 10508 .addImm(BPOffset) 10509 .addReg(BufReg) 10510 .cloneMemRefs(MI); 10511 10512 // Setup 10513 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10514 MIB.addRegMask(TRI->getNoPreservedMask()); 10515 10516 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10517 10518 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10519 .addMBB(mainMBB); 10520 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10521 10522 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10523 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10524 10525 // mainMBB: 10526 // mainDstReg = 0 10527 MIB = 10528 BuildMI(mainMBB, DL, 10529 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10530 10531 // Store IP 10532 if (Subtarget.isPPC64()) { 10533 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10534 .addReg(LabelReg) 10535 .addImm(LabelOffset) 10536 .addReg(BufReg); 10537 } else { 10538 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10539 .addReg(LabelReg) 10540 .addImm(LabelOffset) 10541 .addReg(BufReg); 10542 } 10543 MIB.cloneMemRefs(MI); 10544 10545 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10546 mainMBB->addSuccessor(sinkMBB); 10547 10548 // sinkMBB: 10549 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10550 TII->get(PPC::PHI), DstReg) 10551 .addReg(mainDstReg).addMBB(mainMBB) 10552 .addReg(restoreDstReg).addMBB(thisMBB); 10553 10554 MI.eraseFromParent(); 10555 return sinkMBB; 10556 } 10557 10558 MachineBasicBlock * 10559 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10560 MachineBasicBlock *MBB) const { 10561 DebugLoc DL = MI.getDebugLoc(); 10562 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10563 10564 MachineFunction *MF = MBB->getParent(); 10565 MachineRegisterInfo &MRI = MF->getRegInfo(); 10566 10567 MVT PVT = getPointerTy(MF->getDataLayout()); 10568 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10569 "Invalid Pointer Size!"); 10570 10571 const TargetRegisterClass *RC = 10572 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10573 unsigned Tmp = MRI.createVirtualRegister(RC); 10574 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10575 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10576 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10577 unsigned BP = 10578 (PVT == MVT::i64) 10579 ? PPC::X30 10580 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10581 : PPC::R30); 10582 10583 MachineInstrBuilder MIB; 10584 10585 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10586 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10587 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10588 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10589 10590 unsigned BufReg = MI.getOperand(0).getReg(); 10591 10592 // Reload FP (the jumped-to function may not have had a 10593 // frame pointer, and if so, then its r31 will be restored 10594 // as necessary). 10595 if (PVT == MVT::i64) { 10596 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10597 .addImm(0) 10598 .addReg(BufReg); 10599 } else { 10600 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10601 .addImm(0) 10602 .addReg(BufReg); 10603 } 10604 MIB.cloneMemRefs(MI); 10605 10606 // Reload IP 10607 if (PVT == MVT::i64) { 10608 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10609 .addImm(LabelOffset) 10610 .addReg(BufReg); 10611 } else { 10612 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10613 .addImm(LabelOffset) 10614 .addReg(BufReg); 10615 } 10616 MIB.cloneMemRefs(MI); 10617 10618 // Reload SP 10619 if (PVT == MVT::i64) { 10620 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10621 .addImm(SPOffset) 10622 .addReg(BufReg); 10623 } else { 10624 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10625 .addImm(SPOffset) 10626 .addReg(BufReg); 10627 } 10628 MIB.cloneMemRefs(MI); 10629 10630 // Reload BP 10631 if (PVT == MVT::i64) { 10632 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10633 .addImm(BPOffset) 10634 .addReg(BufReg); 10635 } else { 10636 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10637 .addImm(BPOffset) 10638 .addReg(BufReg); 10639 } 10640 MIB.cloneMemRefs(MI); 10641 10642 // Reload TOC 10643 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10644 setUsesTOCBasePtr(*MBB->getParent()); 10645 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10646 .addImm(TOCOffset) 10647 .addReg(BufReg) 10648 .cloneMemRefs(MI); 10649 } 10650 10651 // Jump 10652 BuildMI(*MBB, MI, DL, 10653 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10654 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10655 10656 MI.eraseFromParent(); 10657 return MBB; 10658 } 10659 10660 MachineBasicBlock * 10661 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10662 MachineBasicBlock *BB) const { 10663 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10664 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10665 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10666 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10667 // Call lowering should have added an r2 operand to indicate a dependence 10668 // on the TOC base pointer value. It can't however, because there is no 10669 // way to mark the dependence as implicit there, and so the stackmap code 10670 // will confuse it with a regular operand. Instead, add the dependence 10671 // here. 10672 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10673 } 10674 10675 return emitPatchPoint(MI, BB); 10676 } 10677 10678 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10679 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10680 return emitEHSjLjSetJmp(MI, BB); 10681 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10682 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10683 return emitEHSjLjLongJmp(MI, BB); 10684 } 10685 10686 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10687 10688 // To "insert" these instructions we actually have to insert their 10689 // control-flow patterns. 10690 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10691 MachineFunction::iterator It = ++BB->getIterator(); 10692 10693 MachineFunction *F = BB->getParent(); 10694 10695 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10696 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10697 MI.getOpcode() == PPC::SELECT_I8) { 10698 SmallVector<MachineOperand, 2> Cond; 10699 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10700 MI.getOpcode() == PPC::SELECT_CC_I8) 10701 Cond.push_back(MI.getOperand(4)); 10702 else 10703 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10704 Cond.push_back(MI.getOperand(1)); 10705 10706 DebugLoc dl = MI.getDebugLoc(); 10707 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10708 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10709 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10710 MI.getOpcode() == PPC::SELECT_CC_I8 || 10711 MI.getOpcode() == PPC::SELECT_CC_F4 || 10712 MI.getOpcode() == PPC::SELECT_CC_F8 || 10713 MI.getOpcode() == PPC::SELECT_CC_F16 || 10714 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10715 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10716 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10717 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10718 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10719 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10720 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10721 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10722 MI.getOpcode() == PPC::SELECT_CC_SPE || 10723 MI.getOpcode() == PPC::SELECT_I4 || 10724 MI.getOpcode() == PPC::SELECT_I8 || 10725 MI.getOpcode() == PPC::SELECT_F4 || 10726 MI.getOpcode() == PPC::SELECT_F8 || 10727 MI.getOpcode() == PPC::SELECT_F16 || 10728 MI.getOpcode() == PPC::SELECT_QFRC || 10729 MI.getOpcode() == PPC::SELECT_QSRC || 10730 MI.getOpcode() == PPC::SELECT_QBRC || 10731 MI.getOpcode() == PPC::SELECT_SPE || 10732 MI.getOpcode() == PPC::SELECT_SPE4 || 10733 MI.getOpcode() == PPC::SELECT_VRRC || 10734 MI.getOpcode() == PPC::SELECT_VSFRC || 10735 MI.getOpcode() == PPC::SELECT_VSSRC || 10736 MI.getOpcode() == PPC::SELECT_VSRC) { 10737 // The incoming instruction knows the destination vreg to set, the 10738 // condition code register to branch on, the true/false values to 10739 // select between, and a branch opcode to use. 10740 10741 // thisMBB: 10742 // ... 10743 // TrueVal = ... 10744 // cmpTY ccX, r1, r2 10745 // bCC copy1MBB 10746 // fallthrough --> copy0MBB 10747 MachineBasicBlock *thisMBB = BB; 10748 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10749 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10750 DebugLoc dl = MI.getDebugLoc(); 10751 F->insert(It, copy0MBB); 10752 F->insert(It, sinkMBB); 10753 10754 // Transfer the remainder of BB and its successor edges to sinkMBB. 10755 sinkMBB->splice(sinkMBB->begin(), BB, 10756 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10757 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10758 10759 // Next, add the true and fallthrough blocks as its successors. 10760 BB->addSuccessor(copy0MBB); 10761 BB->addSuccessor(sinkMBB); 10762 10763 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10764 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10765 MI.getOpcode() == PPC::SELECT_F16 || 10766 MI.getOpcode() == PPC::SELECT_SPE4 || 10767 MI.getOpcode() == PPC::SELECT_SPE || 10768 MI.getOpcode() == PPC::SELECT_QFRC || 10769 MI.getOpcode() == PPC::SELECT_QSRC || 10770 MI.getOpcode() == PPC::SELECT_QBRC || 10771 MI.getOpcode() == PPC::SELECT_VRRC || 10772 MI.getOpcode() == PPC::SELECT_VSFRC || 10773 MI.getOpcode() == PPC::SELECT_VSSRC || 10774 MI.getOpcode() == PPC::SELECT_VSRC) { 10775 BuildMI(BB, dl, TII->get(PPC::BC)) 10776 .addReg(MI.getOperand(1).getReg()) 10777 .addMBB(sinkMBB); 10778 } else { 10779 unsigned SelectPred = MI.getOperand(4).getImm(); 10780 BuildMI(BB, dl, TII->get(PPC::BCC)) 10781 .addImm(SelectPred) 10782 .addReg(MI.getOperand(1).getReg()) 10783 .addMBB(sinkMBB); 10784 } 10785 10786 // copy0MBB: 10787 // %FalseValue = ... 10788 // # fallthrough to sinkMBB 10789 BB = copy0MBB; 10790 10791 // Update machine-CFG edges 10792 BB->addSuccessor(sinkMBB); 10793 10794 // sinkMBB: 10795 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10796 // ... 10797 BB = sinkMBB; 10798 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10799 .addReg(MI.getOperand(3).getReg()) 10800 .addMBB(copy0MBB) 10801 .addReg(MI.getOperand(2).getReg()) 10802 .addMBB(thisMBB); 10803 } else if (MI.getOpcode() == PPC::ReadTB) { 10804 // To read the 64-bit time-base register on a 32-bit target, we read the 10805 // two halves. Should the counter have wrapped while it was being read, we 10806 // need to try again. 10807 // ... 10808 // readLoop: 10809 // mfspr Rx,TBU # load from TBU 10810 // mfspr Ry,TB # load from TB 10811 // mfspr Rz,TBU # load from TBU 10812 // cmpw crX,Rx,Rz # check if 'old'='new' 10813 // bne readLoop # branch if they're not equal 10814 // ... 10815 10816 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10817 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10818 DebugLoc dl = MI.getDebugLoc(); 10819 F->insert(It, readMBB); 10820 F->insert(It, sinkMBB); 10821 10822 // Transfer the remainder of BB and its successor edges to sinkMBB. 10823 sinkMBB->splice(sinkMBB->begin(), BB, 10824 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10825 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10826 10827 BB->addSuccessor(readMBB); 10828 BB = readMBB; 10829 10830 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10831 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10832 unsigned LoReg = MI.getOperand(0).getReg(); 10833 unsigned HiReg = MI.getOperand(1).getReg(); 10834 10835 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10836 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10837 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10838 10839 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10840 10841 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10842 .addReg(HiReg) 10843 .addReg(ReadAgainReg); 10844 BuildMI(BB, dl, TII->get(PPC::BCC)) 10845 .addImm(PPC::PRED_NE) 10846 .addReg(CmpReg) 10847 .addMBB(readMBB); 10848 10849 BB->addSuccessor(readMBB); 10850 BB->addSuccessor(sinkMBB); 10851 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10852 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10853 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10854 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10855 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10856 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10857 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10858 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10859 10860 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10861 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10862 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10863 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10864 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10865 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10866 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10867 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10868 10869 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10870 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10871 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10872 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10873 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10874 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10875 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10876 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10877 10878 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10879 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10880 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10881 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10882 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10883 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10884 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10885 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10886 10887 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10888 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10889 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10890 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10891 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10892 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10893 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10894 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10895 10896 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10897 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10898 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10899 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10900 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10901 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10902 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10903 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10904 10905 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10906 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10907 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10908 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10909 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10910 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10911 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10912 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10913 10914 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10915 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10916 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10917 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10918 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10919 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10920 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10921 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10922 10923 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10924 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10925 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10926 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10927 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10928 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10929 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10930 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10931 10932 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10933 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10934 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10935 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10936 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10937 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10938 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10939 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10940 10941 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10942 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10943 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10944 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10945 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10946 BB = EmitAtomicBinary(MI, BB, 4, 0); 10947 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10948 BB = EmitAtomicBinary(MI, BB, 8, 0); 10949 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10950 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10951 (Subtarget.hasPartwordAtomics() && 10952 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10953 (Subtarget.hasPartwordAtomics() && 10954 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10955 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10956 10957 auto LoadMnemonic = PPC::LDARX; 10958 auto StoreMnemonic = PPC::STDCX; 10959 switch (MI.getOpcode()) { 10960 default: 10961 llvm_unreachable("Compare and swap of unknown size"); 10962 case PPC::ATOMIC_CMP_SWAP_I8: 10963 LoadMnemonic = PPC::LBARX; 10964 StoreMnemonic = PPC::STBCX; 10965 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10966 break; 10967 case PPC::ATOMIC_CMP_SWAP_I16: 10968 LoadMnemonic = PPC::LHARX; 10969 StoreMnemonic = PPC::STHCX; 10970 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10971 break; 10972 case PPC::ATOMIC_CMP_SWAP_I32: 10973 LoadMnemonic = PPC::LWARX; 10974 StoreMnemonic = PPC::STWCX; 10975 break; 10976 case PPC::ATOMIC_CMP_SWAP_I64: 10977 LoadMnemonic = PPC::LDARX; 10978 StoreMnemonic = PPC::STDCX; 10979 break; 10980 } 10981 unsigned dest = MI.getOperand(0).getReg(); 10982 unsigned ptrA = MI.getOperand(1).getReg(); 10983 unsigned ptrB = MI.getOperand(2).getReg(); 10984 unsigned oldval = MI.getOperand(3).getReg(); 10985 unsigned newval = MI.getOperand(4).getReg(); 10986 DebugLoc dl = MI.getDebugLoc(); 10987 10988 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10989 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10990 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10991 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10992 F->insert(It, loop1MBB); 10993 F->insert(It, loop2MBB); 10994 F->insert(It, midMBB); 10995 F->insert(It, exitMBB); 10996 exitMBB->splice(exitMBB->begin(), BB, 10997 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10998 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10999 11000 // thisMBB: 11001 // ... 11002 // fallthrough --> loopMBB 11003 BB->addSuccessor(loop1MBB); 11004 11005 // loop1MBB: 11006 // l[bhwd]arx dest, ptr 11007 // cmp[wd] dest, oldval 11008 // bne- midMBB 11009 // loop2MBB: 11010 // st[bhwd]cx. newval, ptr 11011 // bne- loopMBB 11012 // b exitBB 11013 // midMBB: 11014 // st[bhwd]cx. dest, ptr 11015 // exitBB: 11016 BB = loop1MBB; 11017 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11018 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11019 .addReg(oldval) 11020 .addReg(dest); 11021 BuildMI(BB, dl, TII->get(PPC::BCC)) 11022 .addImm(PPC::PRED_NE) 11023 .addReg(PPC::CR0) 11024 .addMBB(midMBB); 11025 BB->addSuccessor(loop2MBB); 11026 BB->addSuccessor(midMBB); 11027 11028 BB = loop2MBB; 11029 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11030 .addReg(newval) 11031 .addReg(ptrA) 11032 .addReg(ptrB); 11033 BuildMI(BB, dl, TII->get(PPC::BCC)) 11034 .addImm(PPC::PRED_NE) 11035 .addReg(PPC::CR0) 11036 .addMBB(loop1MBB); 11037 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11038 BB->addSuccessor(loop1MBB); 11039 BB->addSuccessor(exitMBB); 11040 11041 BB = midMBB; 11042 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11043 .addReg(dest) 11044 .addReg(ptrA) 11045 .addReg(ptrB); 11046 BB->addSuccessor(exitMBB); 11047 11048 // exitMBB: 11049 // ... 11050 BB = exitMBB; 11051 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11052 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11053 // We must use 64-bit registers for addresses when targeting 64-bit, 11054 // since we're actually doing arithmetic on them. Other registers 11055 // can be 32-bit. 11056 bool is64bit = Subtarget.isPPC64(); 11057 bool isLittleEndian = Subtarget.isLittleEndian(); 11058 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11059 11060 unsigned dest = MI.getOperand(0).getReg(); 11061 unsigned ptrA = MI.getOperand(1).getReg(); 11062 unsigned ptrB = MI.getOperand(2).getReg(); 11063 unsigned oldval = MI.getOperand(3).getReg(); 11064 unsigned newval = MI.getOperand(4).getReg(); 11065 DebugLoc dl = MI.getDebugLoc(); 11066 11067 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11068 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11069 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11070 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11071 F->insert(It, loop1MBB); 11072 F->insert(It, loop2MBB); 11073 F->insert(It, midMBB); 11074 F->insert(It, exitMBB); 11075 exitMBB->splice(exitMBB->begin(), BB, 11076 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11077 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11078 11079 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11080 const TargetRegisterClass *RC = 11081 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11082 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11083 11084 Register PtrReg = RegInfo.createVirtualRegister(RC); 11085 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11086 Register ShiftReg = 11087 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11088 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11089 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11090 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11091 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11092 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11093 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11094 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11095 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11096 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11097 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11098 Register Ptr1Reg; 11099 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11100 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11101 // thisMBB: 11102 // ... 11103 // fallthrough --> loopMBB 11104 BB->addSuccessor(loop1MBB); 11105 11106 // The 4-byte load must be aligned, while a char or short may be 11107 // anywhere in the word. Hence all this nasty bookkeeping code. 11108 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11109 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11110 // xori shift, shift1, 24 [16] 11111 // rlwinm ptr, ptr1, 0, 0, 29 11112 // slw newval2, newval, shift 11113 // slw oldval2, oldval,shift 11114 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11115 // slw mask, mask2, shift 11116 // and newval3, newval2, mask 11117 // and oldval3, oldval2, mask 11118 // loop1MBB: 11119 // lwarx tmpDest, ptr 11120 // and tmp, tmpDest, mask 11121 // cmpw tmp, oldval3 11122 // bne- midMBB 11123 // loop2MBB: 11124 // andc tmp2, tmpDest, mask 11125 // or tmp4, tmp2, newval3 11126 // stwcx. tmp4, ptr 11127 // bne- loop1MBB 11128 // b exitBB 11129 // midMBB: 11130 // stwcx. tmpDest, ptr 11131 // exitBB: 11132 // srw dest, tmpDest, shift 11133 if (ptrA != ZeroReg) { 11134 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11135 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11136 .addReg(ptrA) 11137 .addReg(ptrB); 11138 } else { 11139 Ptr1Reg = ptrB; 11140 } 11141 11142 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11143 // mode. 11144 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11145 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11146 .addImm(3) 11147 .addImm(27) 11148 .addImm(is8bit ? 28 : 27); 11149 if (!isLittleEndian) 11150 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11151 .addReg(Shift1Reg) 11152 .addImm(is8bit ? 24 : 16); 11153 if (is64bit) 11154 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11155 .addReg(Ptr1Reg) 11156 .addImm(0) 11157 .addImm(61); 11158 else 11159 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11160 .addReg(Ptr1Reg) 11161 .addImm(0) 11162 .addImm(0) 11163 .addImm(29); 11164 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11165 .addReg(newval) 11166 .addReg(ShiftReg); 11167 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11168 .addReg(oldval) 11169 .addReg(ShiftReg); 11170 if (is8bit) 11171 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11172 else { 11173 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11174 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11175 .addReg(Mask3Reg) 11176 .addImm(65535); 11177 } 11178 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11179 .addReg(Mask2Reg) 11180 .addReg(ShiftReg); 11181 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11182 .addReg(NewVal2Reg) 11183 .addReg(MaskReg); 11184 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11185 .addReg(OldVal2Reg) 11186 .addReg(MaskReg); 11187 11188 BB = loop1MBB; 11189 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11190 .addReg(ZeroReg) 11191 .addReg(PtrReg); 11192 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11193 .addReg(TmpDestReg) 11194 .addReg(MaskReg); 11195 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11196 .addReg(TmpReg) 11197 .addReg(OldVal3Reg); 11198 BuildMI(BB, dl, TII->get(PPC::BCC)) 11199 .addImm(PPC::PRED_NE) 11200 .addReg(PPC::CR0) 11201 .addMBB(midMBB); 11202 BB->addSuccessor(loop2MBB); 11203 BB->addSuccessor(midMBB); 11204 11205 BB = loop2MBB; 11206 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11207 .addReg(TmpDestReg) 11208 .addReg(MaskReg); 11209 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11210 .addReg(Tmp2Reg) 11211 .addReg(NewVal3Reg); 11212 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11213 .addReg(Tmp4Reg) 11214 .addReg(ZeroReg) 11215 .addReg(PtrReg); 11216 BuildMI(BB, dl, TII->get(PPC::BCC)) 11217 .addImm(PPC::PRED_NE) 11218 .addReg(PPC::CR0) 11219 .addMBB(loop1MBB); 11220 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11221 BB->addSuccessor(loop1MBB); 11222 BB->addSuccessor(exitMBB); 11223 11224 BB = midMBB; 11225 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11226 .addReg(TmpDestReg) 11227 .addReg(ZeroReg) 11228 .addReg(PtrReg); 11229 BB->addSuccessor(exitMBB); 11230 11231 // exitMBB: 11232 // ... 11233 BB = exitMBB; 11234 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11235 .addReg(TmpReg) 11236 .addReg(ShiftReg); 11237 } else if (MI.getOpcode() == PPC::FADDrtz) { 11238 // This pseudo performs an FADD with rounding mode temporarily forced 11239 // to round-to-zero. We emit this via custom inserter since the FPSCR 11240 // is not modeled at the SelectionDAG level. 11241 unsigned Dest = MI.getOperand(0).getReg(); 11242 unsigned Src1 = MI.getOperand(1).getReg(); 11243 unsigned Src2 = MI.getOperand(2).getReg(); 11244 DebugLoc dl = MI.getDebugLoc(); 11245 11246 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11247 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11248 11249 // Save FPSCR value. 11250 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11251 11252 // Set rounding mode to round-to-zero. 11253 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11254 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11255 11256 // Perform addition. 11257 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11258 11259 // Restore FPSCR value. 11260 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11261 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11262 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11263 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11264 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11265 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11266 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11267 ? PPC::ANDIo8 11268 : PPC::ANDIo; 11269 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11270 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11271 11272 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11273 unsigned Dest = RegInfo.createVirtualRegister( 11274 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11275 11276 DebugLoc dl = MI.getDebugLoc(); 11277 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11278 .addReg(MI.getOperand(1).getReg()) 11279 .addImm(1); 11280 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11281 MI.getOperand(0).getReg()) 11282 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11283 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11284 DebugLoc Dl = MI.getDebugLoc(); 11285 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11286 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11287 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11288 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11289 MI.getOperand(0).getReg()) 11290 .addReg(CRReg); 11291 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11292 DebugLoc Dl = MI.getDebugLoc(); 11293 unsigned Imm = MI.getOperand(1).getImm(); 11294 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11295 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11296 MI.getOperand(0).getReg()) 11297 .addReg(PPC::CR0EQ); 11298 } else if (MI.getOpcode() == PPC::SETRNDi) { 11299 DebugLoc dl = MI.getDebugLoc(); 11300 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11301 11302 // Save FPSCR value. 11303 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11304 11305 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11306 // the following settings: 11307 // 00 Round to nearest 11308 // 01 Round to 0 11309 // 10 Round to +inf 11310 // 11 Round to -inf 11311 11312 // When the operand is immediate, using the two least significant bits of 11313 // the immediate to set the bits 62:63 of FPSCR. 11314 unsigned Mode = MI.getOperand(1).getImm(); 11315 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11316 .addImm(31); 11317 11318 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11319 .addImm(30); 11320 } else if (MI.getOpcode() == PPC::SETRND) { 11321 DebugLoc dl = MI.getDebugLoc(); 11322 11323 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11324 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11325 // If the target doesn't have DirectMove, we should use stack to do the 11326 // conversion, because the target doesn't have the instructions like mtvsrd 11327 // or mfvsrd to do this conversion directly. 11328 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11329 if (Subtarget.hasDirectMove()) { 11330 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11331 .addReg(SrcReg); 11332 } else { 11333 // Use stack to do the register copy. 11334 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11335 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11336 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11337 if (RC == &PPC::F8RCRegClass) { 11338 // Copy register from F8RCRegClass to G8RCRegclass. 11339 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11340 "Unsupported RegClass."); 11341 11342 StoreOp = PPC::STFD; 11343 LoadOp = PPC::LD; 11344 } else { 11345 // Copy register from G8RCRegClass to F8RCRegclass. 11346 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11347 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11348 "Unsupported RegClass."); 11349 } 11350 11351 MachineFrameInfo &MFI = F->getFrameInfo(); 11352 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11353 11354 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11355 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11356 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11357 MFI.getObjectAlignment(FrameIdx)); 11358 11359 // Store the SrcReg into the stack. 11360 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11361 .addReg(SrcReg) 11362 .addImm(0) 11363 .addFrameIndex(FrameIdx) 11364 .addMemOperand(MMOStore); 11365 11366 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11367 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11368 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11369 MFI.getObjectAlignment(FrameIdx)); 11370 11371 // Load from the stack where SrcReg is stored, and save to DestReg, 11372 // so we have done the RegClass conversion from RegClass::SrcReg to 11373 // RegClass::DestReg. 11374 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11375 .addImm(0) 11376 .addFrameIndex(FrameIdx) 11377 .addMemOperand(MMOLoad); 11378 } 11379 }; 11380 11381 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11382 11383 // Save FPSCR value. 11384 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11385 11386 // When the operand is gprc register, use two least significant bits of the 11387 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11388 // 11389 // copy OldFPSCRTmpReg, OldFPSCRReg 11390 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11391 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11392 // copy NewFPSCRReg, NewFPSCRTmpReg 11393 // mtfsf 255, NewFPSCRReg 11394 MachineOperand SrcOp = MI.getOperand(1); 11395 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11396 unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11397 11398 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11399 11400 unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11401 unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11402 11403 // The first operand of INSERT_SUBREG should be a register which has 11404 // subregisters, we only care about its RegClass, so we should use an 11405 // IMPLICIT_DEF register. 11406 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11407 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11408 .addReg(ImDefReg) 11409 .add(SrcOp) 11410 .addImm(1); 11411 11412 unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11413 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11414 .addReg(OldFPSCRTmpReg) 11415 .addReg(ExtSrcReg) 11416 .addImm(0) 11417 .addImm(62); 11418 11419 unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11420 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11421 11422 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11423 // bits of FPSCR. 11424 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11425 .addImm(255) 11426 .addReg(NewFPSCRReg) 11427 .addImm(0) 11428 .addImm(0); 11429 } else { 11430 llvm_unreachable("Unexpected instr type to insert"); 11431 } 11432 11433 MI.eraseFromParent(); // The pseudo instruction is gone now. 11434 return BB; 11435 } 11436 11437 //===----------------------------------------------------------------------===// 11438 // Target Optimization Hooks 11439 //===----------------------------------------------------------------------===// 11440 11441 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11442 // For the estimates, convergence is quadratic, so we essentially double the 11443 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11444 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11445 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11446 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11447 if (VT.getScalarType() == MVT::f64) 11448 RefinementSteps++; 11449 return RefinementSteps; 11450 } 11451 11452 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11453 int Enabled, int &RefinementSteps, 11454 bool &UseOneConstNR, 11455 bool Reciprocal) const { 11456 EVT VT = Operand.getValueType(); 11457 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11458 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11459 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11460 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11461 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11462 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11463 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11464 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11465 11466 // The Newton-Raphson computation with a single constant does not provide 11467 // enough accuracy on some CPUs. 11468 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11469 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11470 } 11471 return SDValue(); 11472 } 11473 11474 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11475 int Enabled, 11476 int &RefinementSteps) const { 11477 EVT VT = Operand.getValueType(); 11478 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11479 (VT == MVT::f64 && Subtarget.hasFRE()) || 11480 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11481 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11482 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11483 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11484 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11485 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11486 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11487 } 11488 return SDValue(); 11489 } 11490 11491 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11492 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11493 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11494 // enabled for division), this functionality is redundant with the default 11495 // combiner logic (once the division -> reciprocal/multiply transformation 11496 // has taken place). As a result, this matters more for older cores than for 11497 // newer ones. 11498 11499 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11500 // reciprocal if there are two or more FDIVs (for embedded cores with only 11501 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11502 switch (Subtarget.getDarwinDirective()) { 11503 default: 11504 return 3; 11505 case PPC::DIR_440: 11506 case PPC::DIR_A2: 11507 case PPC::DIR_E500: 11508 case PPC::DIR_E500mc: 11509 case PPC::DIR_E5500: 11510 return 2; 11511 } 11512 } 11513 11514 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11515 // collapsed, and so we need to look through chains of them. 11516 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11517 int64_t& Offset, SelectionDAG &DAG) { 11518 if (DAG.isBaseWithConstantOffset(Loc)) { 11519 Base = Loc.getOperand(0); 11520 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11521 11522 // The base might itself be a base plus an offset, and if so, accumulate 11523 // that as well. 11524 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11525 } 11526 } 11527 11528 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11529 unsigned Bytes, int Dist, 11530 SelectionDAG &DAG) { 11531 if (VT.getSizeInBits() / 8 != Bytes) 11532 return false; 11533 11534 SDValue BaseLoc = Base->getBasePtr(); 11535 if (Loc.getOpcode() == ISD::FrameIndex) { 11536 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11537 return false; 11538 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11539 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11540 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11541 int FS = MFI.getObjectSize(FI); 11542 int BFS = MFI.getObjectSize(BFI); 11543 if (FS != BFS || FS != (int)Bytes) return false; 11544 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11545 } 11546 11547 SDValue Base1 = Loc, Base2 = BaseLoc; 11548 int64_t Offset1 = 0, Offset2 = 0; 11549 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11550 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11551 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11552 return true; 11553 11554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11555 const GlobalValue *GV1 = nullptr; 11556 const GlobalValue *GV2 = nullptr; 11557 Offset1 = 0; 11558 Offset2 = 0; 11559 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11560 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11561 if (isGA1 && isGA2 && GV1 == GV2) 11562 return Offset1 == (Offset2 + Dist*Bytes); 11563 return false; 11564 } 11565 11566 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11567 // not enforce equality of the chain operands. 11568 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11569 unsigned Bytes, int Dist, 11570 SelectionDAG &DAG) { 11571 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11572 EVT VT = LS->getMemoryVT(); 11573 SDValue Loc = LS->getBasePtr(); 11574 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11575 } 11576 11577 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11578 EVT VT; 11579 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11580 default: return false; 11581 case Intrinsic::ppc_qpx_qvlfd: 11582 case Intrinsic::ppc_qpx_qvlfda: 11583 VT = MVT::v4f64; 11584 break; 11585 case Intrinsic::ppc_qpx_qvlfs: 11586 case Intrinsic::ppc_qpx_qvlfsa: 11587 VT = MVT::v4f32; 11588 break; 11589 case Intrinsic::ppc_qpx_qvlfcd: 11590 case Intrinsic::ppc_qpx_qvlfcda: 11591 VT = MVT::v2f64; 11592 break; 11593 case Intrinsic::ppc_qpx_qvlfcs: 11594 case Intrinsic::ppc_qpx_qvlfcsa: 11595 VT = MVT::v2f32; 11596 break; 11597 case Intrinsic::ppc_qpx_qvlfiwa: 11598 case Intrinsic::ppc_qpx_qvlfiwz: 11599 case Intrinsic::ppc_altivec_lvx: 11600 case Intrinsic::ppc_altivec_lvxl: 11601 case Intrinsic::ppc_vsx_lxvw4x: 11602 case Intrinsic::ppc_vsx_lxvw4x_be: 11603 VT = MVT::v4i32; 11604 break; 11605 case Intrinsic::ppc_vsx_lxvd2x: 11606 case Intrinsic::ppc_vsx_lxvd2x_be: 11607 VT = MVT::v2f64; 11608 break; 11609 case Intrinsic::ppc_altivec_lvebx: 11610 VT = MVT::i8; 11611 break; 11612 case Intrinsic::ppc_altivec_lvehx: 11613 VT = MVT::i16; 11614 break; 11615 case Intrinsic::ppc_altivec_lvewx: 11616 VT = MVT::i32; 11617 break; 11618 } 11619 11620 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11621 } 11622 11623 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11624 EVT VT; 11625 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11626 default: return false; 11627 case Intrinsic::ppc_qpx_qvstfd: 11628 case Intrinsic::ppc_qpx_qvstfda: 11629 VT = MVT::v4f64; 11630 break; 11631 case Intrinsic::ppc_qpx_qvstfs: 11632 case Intrinsic::ppc_qpx_qvstfsa: 11633 VT = MVT::v4f32; 11634 break; 11635 case Intrinsic::ppc_qpx_qvstfcd: 11636 case Intrinsic::ppc_qpx_qvstfcda: 11637 VT = MVT::v2f64; 11638 break; 11639 case Intrinsic::ppc_qpx_qvstfcs: 11640 case Intrinsic::ppc_qpx_qvstfcsa: 11641 VT = MVT::v2f32; 11642 break; 11643 case Intrinsic::ppc_qpx_qvstfiw: 11644 case Intrinsic::ppc_qpx_qvstfiwa: 11645 case Intrinsic::ppc_altivec_stvx: 11646 case Intrinsic::ppc_altivec_stvxl: 11647 case Intrinsic::ppc_vsx_stxvw4x: 11648 VT = MVT::v4i32; 11649 break; 11650 case Intrinsic::ppc_vsx_stxvd2x: 11651 VT = MVT::v2f64; 11652 break; 11653 case Intrinsic::ppc_vsx_stxvw4x_be: 11654 VT = MVT::v4i32; 11655 break; 11656 case Intrinsic::ppc_vsx_stxvd2x_be: 11657 VT = MVT::v2f64; 11658 break; 11659 case Intrinsic::ppc_altivec_stvebx: 11660 VT = MVT::i8; 11661 break; 11662 case Intrinsic::ppc_altivec_stvehx: 11663 VT = MVT::i16; 11664 break; 11665 case Intrinsic::ppc_altivec_stvewx: 11666 VT = MVT::i32; 11667 break; 11668 } 11669 11670 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11671 } 11672 11673 return false; 11674 } 11675 11676 // Return true is there is a nearyby consecutive load to the one provided 11677 // (regardless of alignment). We search up and down the chain, looking though 11678 // token factors and other loads (but nothing else). As a result, a true result 11679 // indicates that it is safe to create a new consecutive load adjacent to the 11680 // load provided. 11681 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11682 SDValue Chain = LD->getChain(); 11683 EVT VT = LD->getMemoryVT(); 11684 11685 SmallSet<SDNode *, 16> LoadRoots; 11686 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11687 SmallSet<SDNode *, 16> Visited; 11688 11689 // First, search up the chain, branching to follow all token-factor operands. 11690 // If we find a consecutive load, then we're done, otherwise, record all 11691 // nodes just above the top-level loads and token factors. 11692 while (!Queue.empty()) { 11693 SDNode *ChainNext = Queue.pop_back_val(); 11694 if (!Visited.insert(ChainNext).second) 11695 continue; 11696 11697 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11698 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11699 return true; 11700 11701 if (!Visited.count(ChainLD->getChain().getNode())) 11702 Queue.push_back(ChainLD->getChain().getNode()); 11703 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11704 for (const SDUse &O : ChainNext->ops()) 11705 if (!Visited.count(O.getNode())) 11706 Queue.push_back(O.getNode()); 11707 } else 11708 LoadRoots.insert(ChainNext); 11709 } 11710 11711 // Second, search down the chain, starting from the top-level nodes recorded 11712 // in the first phase. These top-level nodes are the nodes just above all 11713 // loads and token factors. Starting with their uses, recursively look though 11714 // all loads (just the chain uses) and token factors to find a consecutive 11715 // load. 11716 Visited.clear(); 11717 Queue.clear(); 11718 11719 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11720 IE = LoadRoots.end(); I != IE; ++I) { 11721 Queue.push_back(*I); 11722 11723 while (!Queue.empty()) { 11724 SDNode *LoadRoot = Queue.pop_back_val(); 11725 if (!Visited.insert(LoadRoot).second) 11726 continue; 11727 11728 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11729 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11730 return true; 11731 11732 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11733 UE = LoadRoot->use_end(); UI != UE; ++UI) 11734 if (((isa<MemSDNode>(*UI) && 11735 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11736 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11737 Queue.push_back(*UI); 11738 } 11739 } 11740 11741 return false; 11742 } 11743 11744 /// This function is called when we have proved that a SETCC node can be replaced 11745 /// by subtraction (and other supporting instructions) so that the result of 11746 /// comparison is kept in a GPR instead of CR. This function is purely for 11747 /// codegen purposes and has some flags to guide the codegen process. 11748 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11749 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11750 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11751 11752 // Zero extend the operands to the largest legal integer. Originally, they 11753 // must be of a strictly smaller size. 11754 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11755 DAG.getConstant(Size, DL, MVT::i32)); 11756 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11757 DAG.getConstant(Size, DL, MVT::i32)); 11758 11759 // Swap if needed. Depends on the condition code. 11760 if (Swap) 11761 std::swap(Op0, Op1); 11762 11763 // Subtract extended integers. 11764 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11765 11766 // Move the sign bit to the least significant position and zero out the rest. 11767 // Now the least significant bit carries the result of original comparison. 11768 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11769 DAG.getConstant(Size - 1, DL, MVT::i32)); 11770 auto Final = Shifted; 11771 11772 // Complement the result if needed. Based on the condition code. 11773 if (Complement) 11774 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11775 DAG.getConstant(1, DL, MVT::i64)); 11776 11777 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11778 } 11779 11780 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11781 DAGCombinerInfo &DCI) const { 11782 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11783 11784 SelectionDAG &DAG = DCI.DAG; 11785 SDLoc DL(N); 11786 11787 // Size of integers being compared has a critical role in the following 11788 // analysis, so we prefer to do this when all types are legal. 11789 if (!DCI.isAfterLegalizeDAG()) 11790 return SDValue(); 11791 11792 // If all users of SETCC extend its value to a legal integer type 11793 // then we replace SETCC with a subtraction 11794 for (SDNode::use_iterator UI = N->use_begin(), 11795 UE = N->use_end(); UI != UE; ++UI) { 11796 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11797 return SDValue(); 11798 } 11799 11800 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11801 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11802 11803 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11804 11805 if (OpSize < Size) { 11806 switch (CC) { 11807 default: break; 11808 case ISD::SETULT: 11809 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11810 case ISD::SETULE: 11811 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11812 case ISD::SETUGT: 11813 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11814 case ISD::SETUGE: 11815 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11816 } 11817 } 11818 11819 return SDValue(); 11820 } 11821 11822 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11823 DAGCombinerInfo &DCI) const { 11824 SelectionDAG &DAG = DCI.DAG; 11825 SDLoc dl(N); 11826 11827 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11828 // If we're tracking CR bits, we need to be careful that we don't have: 11829 // trunc(binary-ops(zext(x), zext(y))) 11830 // or 11831 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11832 // such that we're unnecessarily moving things into GPRs when it would be 11833 // better to keep them in CR bits. 11834 11835 // Note that trunc here can be an actual i1 trunc, or can be the effective 11836 // truncation that comes from a setcc or select_cc. 11837 if (N->getOpcode() == ISD::TRUNCATE && 11838 N->getValueType(0) != MVT::i1) 11839 return SDValue(); 11840 11841 if (N->getOperand(0).getValueType() != MVT::i32 && 11842 N->getOperand(0).getValueType() != MVT::i64) 11843 return SDValue(); 11844 11845 if (N->getOpcode() == ISD::SETCC || 11846 N->getOpcode() == ISD::SELECT_CC) { 11847 // If we're looking at a comparison, then we need to make sure that the 11848 // high bits (all except for the first) don't matter the result. 11849 ISD::CondCode CC = 11850 cast<CondCodeSDNode>(N->getOperand( 11851 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11852 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11853 11854 if (ISD::isSignedIntSetCC(CC)) { 11855 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11856 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11857 return SDValue(); 11858 } else if (ISD::isUnsignedIntSetCC(CC)) { 11859 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11860 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11861 !DAG.MaskedValueIsZero(N->getOperand(1), 11862 APInt::getHighBitsSet(OpBits, OpBits-1))) 11863 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11864 : SDValue()); 11865 } else { 11866 // This is neither a signed nor an unsigned comparison, just make sure 11867 // that the high bits are equal. 11868 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11869 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11870 11871 // We don't really care about what is known about the first bit (if 11872 // anything), so clear it in all masks prior to comparing them. 11873 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11874 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11875 11876 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11877 return SDValue(); 11878 } 11879 } 11880 11881 // We now know that the higher-order bits are irrelevant, we just need to 11882 // make sure that all of the intermediate operations are bit operations, and 11883 // all inputs are extensions. 11884 if (N->getOperand(0).getOpcode() != ISD::AND && 11885 N->getOperand(0).getOpcode() != ISD::OR && 11886 N->getOperand(0).getOpcode() != ISD::XOR && 11887 N->getOperand(0).getOpcode() != ISD::SELECT && 11888 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11889 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11890 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11891 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11892 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11893 return SDValue(); 11894 11895 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11896 N->getOperand(1).getOpcode() != ISD::AND && 11897 N->getOperand(1).getOpcode() != ISD::OR && 11898 N->getOperand(1).getOpcode() != ISD::XOR && 11899 N->getOperand(1).getOpcode() != ISD::SELECT && 11900 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11901 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11902 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11903 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11904 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11905 return SDValue(); 11906 11907 SmallVector<SDValue, 4> Inputs; 11908 SmallVector<SDValue, 8> BinOps, PromOps; 11909 SmallPtrSet<SDNode *, 16> Visited; 11910 11911 for (unsigned i = 0; i < 2; ++i) { 11912 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11913 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11914 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11915 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11916 isa<ConstantSDNode>(N->getOperand(i))) 11917 Inputs.push_back(N->getOperand(i)); 11918 else 11919 BinOps.push_back(N->getOperand(i)); 11920 11921 if (N->getOpcode() == ISD::TRUNCATE) 11922 break; 11923 } 11924 11925 // Visit all inputs, collect all binary operations (and, or, xor and 11926 // select) that are all fed by extensions. 11927 while (!BinOps.empty()) { 11928 SDValue BinOp = BinOps.back(); 11929 BinOps.pop_back(); 11930 11931 if (!Visited.insert(BinOp.getNode()).second) 11932 continue; 11933 11934 PromOps.push_back(BinOp); 11935 11936 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11937 // The condition of the select is not promoted. 11938 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11939 continue; 11940 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11941 continue; 11942 11943 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11944 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11945 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11946 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11947 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11948 Inputs.push_back(BinOp.getOperand(i)); 11949 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11950 BinOp.getOperand(i).getOpcode() == ISD::OR || 11951 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11952 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11953 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11954 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11955 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11956 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11957 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11958 BinOps.push_back(BinOp.getOperand(i)); 11959 } else { 11960 // We have an input that is not an extension or another binary 11961 // operation; we'll abort this transformation. 11962 return SDValue(); 11963 } 11964 } 11965 } 11966 11967 // Make sure that this is a self-contained cluster of operations (which 11968 // is not quite the same thing as saying that everything has only one 11969 // use). 11970 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11971 if (isa<ConstantSDNode>(Inputs[i])) 11972 continue; 11973 11974 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11975 UE = Inputs[i].getNode()->use_end(); 11976 UI != UE; ++UI) { 11977 SDNode *User = *UI; 11978 if (User != N && !Visited.count(User)) 11979 return SDValue(); 11980 11981 // Make sure that we're not going to promote the non-output-value 11982 // operand(s) or SELECT or SELECT_CC. 11983 // FIXME: Although we could sometimes handle this, and it does occur in 11984 // practice that one of the condition inputs to the select is also one of 11985 // the outputs, we currently can't deal with this. 11986 if (User->getOpcode() == ISD::SELECT) { 11987 if (User->getOperand(0) == Inputs[i]) 11988 return SDValue(); 11989 } else if (User->getOpcode() == ISD::SELECT_CC) { 11990 if (User->getOperand(0) == Inputs[i] || 11991 User->getOperand(1) == Inputs[i]) 11992 return SDValue(); 11993 } 11994 } 11995 } 11996 11997 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11998 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11999 UE = PromOps[i].getNode()->use_end(); 12000 UI != UE; ++UI) { 12001 SDNode *User = *UI; 12002 if (User != N && !Visited.count(User)) 12003 return SDValue(); 12004 12005 // Make sure that we're not going to promote the non-output-value 12006 // operand(s) or SELECT or SELECT_CC. 12007 // FIXME: Although we could sometimes handle this, and it does occur in 12008 // practice that one of the condition inputs to the select is also one of 12009 // the outputs, we currently can't deal with this. 12010 if (User->getOpcode() == ISD::SELECT) { 12011 if (User->getOperand(0) == PromOps[i]) 12012 return SDValue(); 12013 } else if (User->getOpcode() == ISD::SELECT_CC) { 12014 if (User->getOperand(0) == PromOps[i] || 12015 User->getOperand(1) == PromOps[i]) 12016 return SDValue(); 12017 } 12018 } 12019 } 12020 12021 // Replace all inputs with the extension operand. 12022 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12023 // Constants may have users outside the cluster of to-be-promoted nodes, 12024 // and so we need to replace those as we do the promotions. 12025 if (isa<ConstantSDNode>(Inputs[i])) 12026 continue; 12027 else 12028 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12029 } 12030 12031 std::list<HandleSDNode> PromOpHandles; 12032 for (auto &PromOp : PromOps) 12033 PromOpHandles.emplace_back(PromOp); 12034 12035 // Replace all operations (these are all the same, but have a different 12036 // (i1) return type). DAG.getNode will validate that the types of 12037 // a binary operator match, so go through the list in reverse so that 12038 // we've likely promoted both operands first. Any intermediate truncations or 12039 // extensions disappear. 12040 while (!PromOpHandles.empty()) { 12041 SDValue PromOp = PromOpHandles.back().getValue(); 12042 PromOpHandles.pop_back(); 12043 12044 if (PromOp.getOpcode() == ISD::TRUNCATE || 12045 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12046 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12047 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12048 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12049 PromOp.getOperand(0).getValueType() != MVT::i1) { 12050 // The operand is not yet ready (see comment below). 12051 PromOpHandles.emplace_front(PromOp); 12052 continue; 12053 } 12054 12055 SDValue RepValue = PromOp.getOperand(0); 12056 if (isa<ConstantSDNode>(RepValue)) 12057 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12058 12059 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12060 continue; 12061 } 12062 12063 unsigned C; 12064 switch (PromOp.getOpcode()) { 12065 default: C = 0; break; 12066 case ISD::SELECT: C = 1; break; 12067 case ISD::SELECT_CC: C = 2; break; 12068 } 12069 12070 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12071 PromOp.getOperand(C).getValueType() != MVT::i1) || 12072 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12073 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12074 // The to-be-promoted operands of this node have not yet been 12075 // promoted (this should be rare because we're going through the 12076 // list backward, but if one of the operands has several users in 12077 // this cluster of to-be-promoted nodes, it is possible). 12078 PromOpHandles.emplace_front(PromOp); 12079 continue; 12080 } 12081 12082 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12083 PromOp.getNode()->op_end()); 12084 12085 // If there are any constant inputs, make sure they're replaced now. 12086 for (unsigned i = 0; i < 2; ++i) 12087 if (isa<ConstantSDNode>(Ops[C+i])) 12088 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12089 12090 DAG.ReplaceAllUsesOfValueWith(PromOp, 12091 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12092 } 12093 12094 // Now we're left with the initial truncation itself. 12095 if (N->getOpcode() == ISD::TRUNCATE) 12096 return N->getOperand(0); 12097 12098 // Otherwise, this is a comparison. The operands to be compared have just 12099 // changed type (to i1), but everything else is the same. 12100 return SDValue(N, 0); 12101 } 12102 12103 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12104 DAGCombinerInfo &DCI) const { 12105 SelectionDAG &DAG = DCI.DAG; 12106 SDLoc dl(N); 12107 12108 // If we're tracking CR bits, we need to be careful that we don't have: 12109 // zext(binary-ops(trunc(x), trunc(y))) 12110 // or 12111 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12112 // such that we're unnecessarily moving things into CR bits that can more 12113 // efficiently stay in GPRs. Note that if we're not certain that the high 12114 // bits are set as required by the final extension, we still may need to do 12115 // some masking to get the proper behavior. 12116 12117 // This same functionality is important on PPC64 when dealing with 12118 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12119 // the return values of functions. Because it is so similar, it is handled 12120 // here as well. 12121 12122 if (N->getValueType(0) != MVT::i32 && 12123 N->getValueType(0) != MVT::i64) 12124 return SDValue(); 12125 12126 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12127 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12128 return SDValue(); 12129 12130 if (N->getOperand(0).getOpcode() != ISD::AND && 12131 N->getOperand(0).getOpcode() != ISD::OR && 12132 N->getOperand(0).getOpcode() != ISD::XOR && 12133 N->getOperand(0).getOpcode() != ISD::SELECT && 12134 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12135 return SDValue(); 12136 12137 SmallVector<SDValue, 4> Inputs; 12138 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12139 SmallPtrSet<SDNode *, 16> Visited; 12140 12141 // Visit all inputs, collect all binary operations (and, or, xor and 12142 // select) that are all fed by truncations. 12143 while (!BinOps.empty()) { 12144 SDValue BinOp = BinOps.back(); 12145 BinOps.pop_back(); 12146 12147 if (!Visited.insert(BinOp.getNode()).second) 12148 continue; 12149 12150 PromOps.push_back(BinOp); 12151 12152 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12153 // The condition of the select is not promoted. 12154 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12155 continue; 12156 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12157 continue; 12158 12159 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12160 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12161 Inputs.push_back(BinOp.getOperand(i)); 12162 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12163 BinOp.getOperand(i).getOpcode() == ISD::OR || 12164 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12165 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12166 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12167 BinOps.push_back(BinOp.getOperand(i)); 12168 } else { 12169 // We have an input that is not a truncation or another binary 12170 // operation; we'll abort this transformation. 12171 return SDValue(); 12172 } 12173 } 12174 } 12175 12176 // The operands of a select that must be truncated when the select is 12177 // promoted because the operand is actually part of the to-be-promoted set. 12178 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12179 12180 // Make sure that this is a self-contained cluster of operations (which 12181 // is not quite the same thing as saying that everything has only one 12182 // use). 12183 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12184 if (isa<ConstantSDNode>(Inputs[i])) 12185 continue; 12186 12187 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12188 UE = Inputs[i].getNode()->use_end(); 12189 UI != UE; ++UI) { 12190 SDNode *User = *UI; 12191 if (User != N && !Visited.count(User)) 12192 return SDValue(); 12193 12194 // If we're going to promote the non-output-value operand(s) or SELECT or 12195 // SELECT_CC, record them for truncation. 12196 if (User->getOpcode() == ISD::SELECT) { 12197 if (User->getOperand(0) == Inputs[i]) 12198 SelectTruncOp[0].insert(std::make_pair(User, 12199 User->getOperand(0).getValueType())); 12200 } else if (User->getOpcode() == ISD::SELECT_CC) { 12201 if (User->getOperand(0) == Inputs[i]) 12202 SelectTruncOp[0].insert(std::make_pair(User, 12203 User->getOperand(0).getValueType())); 12204 if (User->getOperand(1) == Inputs[i]) 12205 SelectTruncOp[1].insert(std::make_pair(User, 12206 User->getOperand(1).getValueType())); 12207 } 12208 } 12209 } 12210 12211 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12212 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12213 UE = PromOps[i].getNode()->use_end(); 12214 UI != UE; ++UI) { 12215 SDNode *User = *UI; 12216 if (User != N && !Visited.count(User)) 12217 return SDValue(); 12218 12219 // If we're going to promote the non-output-value operand(s) or SELECT or 12220 // SELECT_CC, record them for truncation. 12221 if (User->getOpcode() == ISD::SELECT) { 12222 if (User->getOperand(0) == PromOps[i]) 12223 SelectTruncOp[0].insert(std::make_pair(User, 12224 User->getOperand(0).getValueType())); 12225 } else if (User->getOpcode() == ISD::SELECT_CC) { 12226 if (User->getOperand(0) == PromOps[i]) 12227 SelectTruncOp[0].insert(std::make_pair(User, 12228 User->getOperand(0).getValueType())); 12229 if (User->getOperand(1) == PromOps[i]) 12230 SelectTruncOp[1].insert(std::make_pair(User, 12231 User->getOperand(1).getValueType())); 12232 } 12233 } 12234 } 12235 12236 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12237 bool ReallyNeedsExt = false; 12238 if (N->getOpcode() != ISD::ANY_EXTEND) { 12239 // If all of the inputs are not already sign/zero extended, then 12240 // we'll still need to do that at the end. 12241 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12242 if (isa<ConstantSDNode>(Inputs[i])) 12243 continue; 12244 12245 unsigned OpBits = 12246 Inputs[i].getOperand(0).getValueSizeInBits(); 12247 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12248 12249 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12250 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12251 APInt::getHighBitsSet(OpBits, 12252 OpBits-PromBits))) || 12253 (N->getOpcode() == ISD::SIGN_EXTEND && 12254 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12255 (OpBits-(PromBits-1)))) { 12256 ReallyNeedsExt = true; 12257 break; 12258 } 12259 } 12260 } 12261 12262 // Replace all inputs, either with the truncation operand, or a 12263 // truncation or extension to the final output type. 12264 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12265 // Constant inputs need to be replaced with the to-be-promoted nodes that 12266 // use them because they might have users outside of the cluster of 12267 // promoted nodes. 12268 if (isa<ConstantSDNode>(Inputs[i])) 12269 continue; 12270 12271 SDValue InSrc = Inputs[i].getOperand(0); 12272 if (Inputs[i].getValueType() == N->getValueType(0)) 12273 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12274 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12275 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12276 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12277 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12278 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12279 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12280 else 12281 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12282 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12283 } 12284 12285 std::list<HandleSDNode> PromOpHandles; 12286 for (auto &PromOp : PromOps) 12287 PromOpHandles.emplace_back(PromOp); 12288 12289 // Replace all operations (these are all the same, but have a different 12290 // (promoted) return type). DAG.getNode will validate that the types of 12291 // a binary operator match, so go through the list in reverse so that 12292 // we've likely promoted both operands first. 12293 while (!PromOpHandles.empty()) { 12294 SDValue PromOp = PromOpHandles.back().getValue(); 12295 PromOpHandles.pop_back(); 12296 12297 unsigned C; 12298 switch (PromOp.getOpcode()) { 12299 default: C = 0; break; 12300 case ISD::SELECT: C = 1; break; 12301 case ISD::SELECT_CC: C = 2; break; 12302 } 12303 12304 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12305 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12306 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12307 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12308 // The to-be-promoted operands of this node have not yet been 12309 // promoted (this should be rare because we're going through the 12310 // list backward, but if one of the operands has several users in 12311 // this cluster of to-be-promoted nodes, it is possible). 12312 PromOpHandles.emplace_front(PromOp); 12313 continue; 12314 } 12315 12316 // For SELECT and SELECT_CC nodes, we do a similar check for any 12317 // to-be-promoted comparison inputs. 12318 if (PromOp.getOpcode() == ISD::SELECT || 12319 PromOp.getOpcode() == ISD::SELECT_CC) { 12320 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12321 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12322 (SelectTruncOp[1].count(PromOp.getNode()) && 12323 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12324 PromOpHandles.emplace_front(PromOp); 12325 continue; 12326 } 12327 } 12328 12329 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12330 PromOp.getNode()->op_end()); 12331 12332 // If this node has constant inputs, then they'll need to be promoted here. 12333 for (unsigned i = 0; i < 2; ++i) { 12334 if (!isa<ConstantSDNode>(Ops[C+i])) 12335 continue; 12336 if (Ops[C+i].getValueType() == N->getValueType(0)) 12337 continue; 12338 12339 if (N->getOpcode() == ISD::SIGN_EXTEND) 12340 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12341 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12342 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12343 else 12344 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12345 } 12346 12347 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12348 // truncate them again to the original value type. 12349 if (PromOp.getOpcode() == ISD::SELECT || 12350 PromOp.getOpcode() == ISD::SELECT_CC) { 12351 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12352 if (SI0 != SelectTruncOp[0].end()) 12353 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12354 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12355 if (SI1 != SelectTruncOp[1].end()) 12356 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12357 } 12358 12359 DAG.ReplaceAllUsesOfValueWith(PromOp, 12360 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12361 } 12362 12363 // Now we're left with the initial extension itself. 12364 if (!ReallyNeedsExt) 12365 return N->getOperand(0); 12366 12367 // To zero extend, just mask off everything except for the first bit (in the 12368 // i1 case). 12369 if (N->getOpcode() == ISD::ZERO_EXTEND) 12370 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12371 DAG.getConstant(APInt::getLowBitsSet( 12372 N->getValueSizeInBits(0), PromBits), 12373 dl, N->getValueType(0))); 12374 12375 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12376 "Invalid extension type"); 12377 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12378 SDValue ShiftCst = 12379 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12380 return DAG.getNode( 12381 ISD::SRA, dl, N->getValueType(0), 12382 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12383 ShiftCst); 12384 } 12385 12386 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12387 DAGCombinerInfo &DCI) const { 12388 assert(N->getOpcode() == ISD::SETCC && 12389 "Should be called with a SETCC node"); 12390 12391 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12392 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12393 SDValue LHS = N->getOperand(0); 12394 SDValue RHS = N->getOperand(1); 12395 12396 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12397 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12398 LHS.hasOneUse()) 12399 std::swap(LHS, RHS); 12400 12401 // x == 0-y --> x+y == 0 12402 // x != 0-y --> x+y != 0 12403 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12404 RHS.hasOneUse()) { 12405 SDLoc DL(N); 12406 SelectionDAG &DAG = DCI.DAG; 12407 EVT VT = N->getValueType(0); 12408 EVT OpVT = LHS.getValueType(); 12409 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12410 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12411 } 12412 } 12413 12414 return DAGCombineTruncBoolExt(N, DCI); 12415 } 12416 12417 // Is this an extending load from an f32 to an f64? 12418 static bool isFPExtLoad(SDValue Op) { 12419 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12420 return LD->getExtensionType() == ISD::EXTLOAD && 12421 Op.getValueType() == MVT::f64; 12422 return false; 12423 } 12424 12425 /// Reduces the number of fp-to-int conversion when building a vector. 12426 /// 12427 /// If this vector is built out of floating to integer conversions, 12428 /// transform it to a vector built out of floating point values followed by a 12429 /// single floating to integer conversion of the vector. 12430 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12431 /// becomes (fptosi (build_vector ($A, $B, ...))) 12432 SDValue PPCTargetLowering:: 12433 combineElementTruncationToVectorTruncation(SDNode *N, 12434 DAGCombinerInfo &DCI) const { 12435 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12436 "Should be called with a BUILD_VECTOR node"); 12437 12438 SelectionDAG &DAG = DCI.DAG; 12439 SDLoc dl(N); 12440 12441 SDValue FirstInput = N->getOperand(0); 12442 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12443 "The input operand must be an fp-to-int conversion."); 12444 12445 // This combine happens after legalization so the fp_to_[su]i nodes are 12446 // already converted to PPCSISD nodes. 12447 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12448 if (FirstConversion == PPCISD::FCTIDZ || 12449 FirstConversion == PPCISD::FCTIDUZ || 12450 FirstConversion == PPCISD::FCTIWZ || 12451 FirstConversion == PPCISD::FCTIWUZ) { 12452 bool IsSplat = true; 12453 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12454 FirstConversion == PPCISD::FCTIWUZ; 12455 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12456 SmallVector<SDValue, 4> Ops; 12457 EVT TargetVT = N->getValueType(0); 12458 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12459 SDValue NextOp = N->getOperand(i); 12460 if (NextOp.getOpcode() != PPCISD::MFVSR) 12461 return SDValue(); 12462 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12463 if (NextConversion != FirstConversion) 12464 return SDValue(); 12465 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12466 // This is not valid if the input was originally double precision. It is 12467 // also not profitable to do unless this is an extending load in which 12468 // case doing this combine will allow us to combine consecutive loads. 12469 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12470 return SDValue(); 12471 if (N->getOperand(i) != FirstInput) 12472 IsSplat = false; 12473 } 12474 12475 // If this is a splat, we leave it as-is since there will be only a single 12476 // fp-to-int conversion followed by a splat of the integer. This is better 12477 // for 32-bit and smaller ints and neutral for 64-bit ints. 12478 if (IsSplat) 12479 return SDValue(); 12480 12481 // Now that we know we have the right type of node, get its operands 12482 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12483 SDValue In = N->getOperand(i).getOperand(0); 12484 if (Is32Bit) { 12485 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12486 // here, we know that all inputs are extending loads so this is safe). 12487 if (In.isUndef()) 12488 Ops.push_back(DAG.getUNDEF(SrcVT)); 12489 else { 12490 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12491 MVT::f32, In.getOperand(0), 12492 DAG.getIntPtrConstant(1, dl)); 12493 Ops.push_back(Trunc); 12494 } 12495 } else 12496 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12497 } 12498 12499 unsigned Opcode; 12500 if (FirstConversion == PPCISD::FCTIDZ || 12501 FirstConversion == PPCISD::FCTIWZ) 12502 Opcode = ISD::FP_TO_SINT; 12503 else 12504 Opcode = ISD::FP_TO_UINT; 12505 12506 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12507 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12508 return DAG.getNode(Opcode, dl, TargetVT, BV); 12509 } 12510 return SDValue(); 12511 } 12512 12513 /// Reduce the number of loads when building a vector. 12514 /// 12515 /// Building a vector out of multiple loads can be converted to a load 12516 /// of the vector type if the loads are consecutive. If the loads are 12517 /// consecutive but in descending order, a shuffle is added at the end 12518 /// to reorder the vector. 12519 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12520 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12521 "Should be called with a BUILD_VECTOR node"); 12522 12523 SDLoc dl(N); 12524 12525 // Return early for non byte-sized type, as they can't be consecutive. 12526 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12527 return SDValue(); 12528 12529 bool InputsAreConsecutiveLoads = true; 12530 bool InputsAreReverseConsecutive = true; 12531 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12532 SDValue FirstInput = N->getOperand(0); 12533 bool IsRoundOfExtLoad = false; 12534 12535 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12536 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12537 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12538 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12539 } 12540 // Not a build vector of (possibly fp_rounded) loads. 12541 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12542 N->getNumOperands() == 1) 12543 return SDValue(); 12544 12545 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12546 // If any inputs are fp_round(extload), they all must be. 12547 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12548 return SDValue(); 12549 12550 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12551 N->getOperand(i); 12552 if (NextInput.getOpcode() != ISD::LOAD) 12553 return SDValue(); 12554 12555 SDValue PreviousInput = 12556 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12557 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12558 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12559 12560 // If any inputs are fp_round(extload), they all must be. 12561 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12562 return SDValue(); 12563 12564 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12565 InputsAreConsecutiveLoads = false; 12566 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12567 InputsAreReverseConsecutive = false; 12568 12569 // Exit early if the loads are neither consecutive nor reverse consecutive. 12570 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12571 return SDValue(); 12572 } 12573 12574 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12575 "The loads cannot be both consecutive and reverse consecutive."); 12576 12577 SDValue FirstLoadOp = 12578 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12579 SDValue LastLoadOp = 12580 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12581 N->getOperand(N->getNumOperands()-1); 12582 12583 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12584 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12585 if (InputsAreConsecutiveLoads) { 12586 assert(LD1 && "Input needs to be a LoadSDNode."); 12587 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12588 LD1->getBasePtr(), LD1->getPointerInfo(), 12589 LD1->getAlignment()); 12590 } 12591 if (InputsAreReverseConsecutive) { 12592 assert(LDL && "Input needs to be a LoadSDNode."); 12593 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12594 LDL->getBasePtr(), LDL->getPointerInfo(), 12595 LDL->getAlignment()); 12596 SmallVector<int, 16> Ops; 12597 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12598 Ops.push_back(i); 12599 12600 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12601 DAG.getUNDEF(N->getValueType(0)), Ops); 12602 } 12603 return SDValue(); 12604 } 12605 12606 // This function adds the required vector_shuffle needed to get 12607 // the elements of the vector extract in the correct position 12608 // as specified by the CorrectElems encoding. 12609 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12610 SDValue Input, uint64_t Elems, 12611 uint64_t CorrectElems) { 12612 SDLoc dl(N); 12613 12614 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12615 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12616 12617 // Knowing the element indices being extracted from the original 12618 // vector and the order in which they're being inserted, just put 12619 // them at element indices required for the instruction. 12620 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12621 if (DAG.getDataLayout().isLittleEndian()) 12622 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12623 else 12624 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12625 CorrectElems = CorrectElems >> 8; 12626 Elems = Elems >> 8; 12627 } 12628 12629 SDValue Shuffle = 12630 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12631 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12632 12633 EVT Ty = N->getValueType(0); 12634 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12635 return BV; 12636 } 12637 12638 // Look for build vector patterns where input operands come from sign 12639 // extended vector_extract elements of specific indices. If the correct indices 12640 // aren't used, add a vector shuffle to fix up the indices and create a new 12641 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12642 // during instruction selection. 12643 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12644 // This array encodes the indices that the vector sign extend instructions 12645 // extract from when extending from one type to another for both BE and LE. 12646 // The right nibble of each byte corresponds to the LE incides. 12647 // and the left nibble of each byte corresponds to the BE incides. 12648 // For example: 0x3074B8FC byte->word 12649 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12650 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12651 // For example: 0x000070F8 byte->double word 12652 // For LE: the allowed indices are: 0x0,0x8 12653 // For BE: the allowed indices are: 0x7,0xF 12654 uint64_t TargetElems[] = { 12655 0x3074B8FC, // b->w 12656 0x000070F8, // b->d 12657 0x10325476, // h->w 12658 0x00003074, // h->d 12659 0x00001032, // w->d 12660 }; 12661 12662 uint64_t Elems = 0; 12663 int Index; 12664 SDValue Input; 12665 12666 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12667 if (!Op) 12668 return false; 12669 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12670 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12671 return false; 12672 12673 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12674 // of the right width. 12675 SDValue Extract = Op.getOperand(0); 12676 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12677 Extract = Extract.getOperand(0); 12678 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12679 return false; 12680 12681 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12682 if (!ExtOp) 12683 return false; 12684 12685 Index = ExtOp->getZExtValue(); 12686 if (Input && Input != Extract.getOperand(0)) 12687 return false; 12688 12689 if (!Input) 12690 Input = Extract.getOperand(0); 12691 12692 Elems = Elems << 8; 12693 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12694 Elems |= Index; 12695 12696 return true; 12697 }; 12698 12699 // If the build vector operands aren't sign extended vector extracts, 12700 // of the same input vector, then return. 12701 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12702 if (!isSExtOfVecExtract(N->getOperand(i))) { 12703 return SDValue(); 12704 } 12705 } 12706 12707 // If the vector extract indicies are not correct, add the appropriate 12708 // vector_shuffle. 12709 int TgtElemArrayIdx; 12710 int InputSize = Input.getValueType().getScalarSizeInBits(); 12711 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12712 if (InputSize + OutputSize == 40) 12713 TgtElemArrayIdx = 0; 12714 else if (InputSize + OutputSize == 72) 12715 TgtElemArrayIdx = 1; 12716 else if (InputSize + OutputSize == 48) 12717 TgtElemArrayIdx = 2; 12718 else if (InputSize + OutputSize == 80) 12719 TgtElemArrayIdx = 3; 12720 else if (InputSize + OutputSize == 96) 12721 TgtElemArrayIdx = 4; 12722 else 12723 return SDValue(); 12724 12725 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12726 CorrectElems = DAG.getDataLayout().isLittleEndian() 12727 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12728 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12729 if (Elems != CorrectElems) { 12730 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12731 } 12732 12733 // Regular lowering will catch cases where a shuffle is not needed. 12734 return SDValue(); 12735 } 12736 12737 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12738 DAGCombinerInfo &DCI) const { 12739 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12740 "Should be called with a BUILD_VECTOR node"); 12741 12742 SelectionDAG &DAG = DCI.DAG; 12743 SDLoc dl(N); 12744 12745 if (!Subtarget.hasVSX()) 12746 return SDValue(); 12747 12748 // The target independent DAG combiner will leave a build_vector of 12749 // float-to-int conversions intact. We can generate MUCH better code for 12750 // a float-to-int conversion of a vector of floats. 12751 SDValue FirstInput = N->getOperand(0); 12752 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12753 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12754 if (Reduced) 12755 return Reduced; 12756 } 12757 12758 // If we're building a vector out of consecutive loads, just load that 12759 // vector type. 12760 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12761 if (Reduced) 12762 return Reduced; 12763 12764 // If we're building a vector out of extended elements from another vector 12765 // we have P9 vector integer extend instructions. The code assumes legal 12766 // input types (i.e. it can't handle things like v4i16) so do not run before 12767 // legalization. 12768 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12769 Reduced = combineBVOfVecSExt(N, DAG); 12770 if (Reduced) 12771 return Reduced; 12772 } 12773 12774 12775 if (N->getValueType(0) != MVT::v2f64) 12776 return SDValue(); 12777 12778 // Looking for: 12779 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12780 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12781 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12782 return SDValue(); 12783 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12784 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12785 return SDValue(); 12786 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12787 return SDValue(); 12788 12789 SDValue Ext1 = FirstInput.getOperand(0); 12790 SDValue Ext2 = N->getOperand(1).getOperand(0); 12791 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12792 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12793 return SDValue(); 12794 12795 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12796 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12797 if (!Ext1Op || !Ext2Op) 12798 return SDValue(); 12799 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12800 Ext1.getOperand(0) != Ext2.getOperand(0)) 12801 return SDValue(); 12802 12803 int FirstElem = Ext1Op->getZExtValue(); 12804 int SecondElem = Ext2Op->getZExtValue(); 12805 int SubvecIdx; 12806 if (FirstElem == 0 && SecondElem == 1) 12807 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12808 else if (FirstElem == 2 && SecondElem == 3) 12809 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12810 else 12811 return SDValue(); 12812 12813 SDValue SrcVec = Ext1.getOperand(0); 12814 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12815 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12816 return DAG.getNode(NodeType, dl, MVT::v2f64, 12817 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12818 } 12819 12820 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12821 DAGCombinerInfo &DCI) const { 12822 assert((N->getOpcode() == ISD::SINT_TO_FP || 12823 N->getOpcode() == ISD::UINT_TO_FP) && 12824 "Need an int -> FP conversion node here"); 12825 12826 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12827 return SDValue(); 12828 12829 SelectionDAG &DAG = DCI.DAG; 12830 SDLoc dl(N); 12831 SDValue Op(N, 0); 12832 12833 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12834 // from the hardware. 12835 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12836 return SDValue(); 12837 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12838 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12839 return SDValue(); 12840 12841 SDValue FirstOperand(Op.getOperand(0)); 12842 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12843 (FirstOperand.getValueType() == MVT::i8 || 12844 FirstOperand.getValueType() == MVT::i16); 12845 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12846 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12847 bool DstDouble = Op.getValueType() == MVT::f64; 12848 unsigned ConvOp = Signed ? 12849 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12850 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12851 SDValue WidthConst = 12852 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12853 dl, false); 12854 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12855 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12856 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12857 DAG.getVTList(MVT::f64, MVT::Other), 12858 Ops, MVT::i8, LDN->getMemOperand()); 12859 12860 // For signed conversion, we need to sign-extend the value in the VSR 12861 if (Signed) { 12862 SDValue ExtOps[] = { Ld, WidthConst }; 12863 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12864 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12865 } else 12866 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12867 } 12868 12869 12870 // For i32 intermediate values, unfortunately, the conversion functions 12871 // leave the upper 32 bits of the value are undefined. Within the set of 12872 // scalar instructions, we have no method for zero- or sign-extending the 12873 // value. Thus, we cannot handle i32 intermediate values here. 12874 if (Op.getOperand(0).getValueType() == MVT::i32) 12875 return SDValue(); 12876 12877 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12878 "UINT_TO_FP is supported only with FPCVT"); 12879 12880 // If we have FCFIDS, then use it when converting to single-precision. 12881 // Otherwise, convert to double-precision and then round. 12882 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12883 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12884 : PPCISD::FCFIDS) 12885 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12886 : PPCISD::FCFID); 12887 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12888 ? MVT::f32 12889 : MVT::f64; 12890 12891 // If we're converting from a float, to an int, and back to a float again, 12892 // then we don't need the store/load pair at all. 12893 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12894 Subtarget.hasFPCVT()) || 12895 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12896 SDValue Src = Op.getOperand(0).getOperand(0); 12897 if (Src.getValueType() == MVT::f32) { 12898 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12899 DCI.AddToWorklist(Src.getNode()); 12900 } else if (Src.getValueType() != MVT::f64) { 12901 // Make sure that we don't pick up a ppc_fp128 source value. 12902 return SDValue(); 12903 } 12904 12905 unsigned FCTOp = 12906 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12907 PPCISD::FCTIDUZ; 12908 12909 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12910 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12911 12912 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12913 FP = DAG.getNode(ISD::FP_ROUND, dl, 12914 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12915 DCI.AddToWorklist(FP.getNode()); 12916 } 12917 12918 return FP; 12919 } 12920 12921 return SDValue(); 12922 } 12923 12924 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12925 // builtins) into loads with swaps. 12926 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12927 DAGCombinerInfo &DCI) const { 12928 SelectionDAG &DAG = DCI.DAG; 12929 SDLoc dl(N); 12930 SDValue Chain; 12931 SDValue Base; 12932 MachineMemOperand *MMO; 12933 12934 switch (N->getOpcode()) { 12935 default: 12936 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12937 case ISD::LOAD: { 12938 LoadSDNode *LD = cast<LoadSDNode>(N); 12939 Chain = LD->getChain(); 12940 Base = LD->getBasePtr(); 12941 MMO = LD->getMemOperand(); 12942 // If the MMO suggests this isn't a load of a full vector, leave 12943 // things alone. For a built-in, we have to make the change for 12944 // correctness, so if there is a size problem that will be a bug. 12945 if (MMO->getSize() < 16) 12946 return SDValue(); 12947 break; 12948 } 12949 case ISD::INTRINSIC_W_CHAIN: { 12950 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12951 Chain = Intrin->getChain(); 12952 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12953 // us what we want. Get operand 2 instead. 12954 Base = Intrin->getOperand(2); 12955 MMO = Intrin->getMemOperand(); 12956 break; 12957 } 12958 } 12959 12960 MVT VecTy = N->getValueType(0).getSimpleVT(); 12961 12962 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12963 // aligned and the type is a vector with elements up to 4 bytes 12964 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12965 && VecTy.getScalarSizeInBits() <= 32 ) { 12966 return SDValue(); 12967 } 12968 12969 SDValue LoadOps[] = { Chain, Base }; 12970 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12971 DAG.getVTList(MVT::v2f64, MVT::Other), 12972 LoadOps, MVT::v2f64, MMO); 12973 12974 DCI.AddToWorklist(Load.getNode()); 12975 Chain = Load.getValue(1); 12976 SDValue Swap = DAG.getNode( 12977 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12978 DCI.AddToWorklist(Swap.getNode()); 12979 12980 // Add a bitcast if the resulting load type doesn't match v2f64. 12981 if (VecTy != MVT::v2f64) { 12982 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12983 DCI.AddToWorklist(N.getNode()); 12984 // Package {bitcast value, swap's chain} to match Load's shape. 12985 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12986 N, Swap.getValue(1)); 12987 } 12988 12989 return Swap; 12990 } 12991 12992 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12993 // builtins) into stores with swaps. 12994 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12995 DAGCombinerInfo &DCI) const { 12996 SelectionDAG &DAG = DCI.DAG; 12997 SDLoc dl(N); 12998 SDValue Chain; 12999 SDValue Base; 13000 unsigned SrcOpnd; 13001 MachineMemOperand *MMO; 13002 13003 switch (N->getOpcode()) { 13004 default: 13005 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13006 case ISD::STORE: { 13007 StoreSDNode *ST = cast<StoreSDNode>(N); 13008 Chain = ST->getChain(); 13009 Base = ST->getBasePtr(); 13010 MMO = ST->getMemOperand(); 13011 SrcOpnd = 1; 13012 // If the MMO suggests this isn't a store of a full vector, leave 13013 // things alone. For a built-in, we have to make the change for 13014 // correctness, so if there is a size problem that will be a bug. 13015 if (MMO->getSize() < 16) 13016 return SDValue(); 13017 break; 13018 } 13019 case ISD::INTRINSIC_VOID: { 13020 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13021 Chain = Intrin->getChain(); 13022 // Intrin->getBasePtr() oddly does not get what we want. 13023 Base = Intrin->getOperand(3); 13024 MMO = Intrin->getMemOperand(); 13025 SrcOpnd = 2; 13026 break; 13027 } 13028 } 13029 13030 SDValue Src = N->getOperand(SrcOpnd); 13031 MVT VecTy = Src.getValueType().getSimpleVT(); 13032 13033 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13034 // aligned and the type is a vector with elements up to 4 bytes 13035 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13036 && VecTy.getScalarSizeInBits() <= 32 ) { 13037 return SDValue(); 13038 } 13039 13040 // All stores are done as v2f64 and possible bit cast. 13041 if (VecTy != MVT::v2f64) { 13042 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13043 DCI.AddToWorklist(Src.getNode()); 13044 } 13045 13046 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13047 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13048 DCI.AddToWorklist(Swap.getNode()); 13049 Chain = Swap.getValue(1); 13050 SDValue StoreOps[] = { Chain, Swap, Base }; 13051 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13052 DAG.getVTList(MVT::Other), 13053 StoreOps, VecTy, MMO); 13054 DCI.AddToWorklist(Store.getNode()); 13055 return Store; 13056 } 13057 13058 // Handle DAG combine for STORE (FP_TO_INT F). 13059 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13060 DAGCombinerInfo &DCI) const { 13061 13062 SelectionDAG &DAG = DCI.DAG; 13063 SDLoc dl(N); 13064 unsigned Opcode = N->getOperand(1).getOpcode(); 13065 13066 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13067 && "Not a FP_TO_INT Instruction!"); 13068 13069 SDValue Val = N->getOperand(1).getOperand(0); 13070 EVT Op1VT = N->getOperand(1).getValueType(); 13071 EVT ResVT = Val.getValueType(); 13072 13073 // Floating point types smaller than 32 bits are not legal on Power. 13074 if (ResVT.getScalarSizeInBits() < 32) 13075 return SDValue(); 13076 13077 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13078 bool ValidTypeForStoreFltAsInt = 13079 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13080 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13081 13082 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13083 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13084 return SDValue(); 13085 13086 // Extend f32 values to f64 13087 if (ResVT.getScalarSizeInBits() == 32) { 13088 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13089 DCI.AddToWorklist(Val.getNode()); 13090 } 13091 13092 // Set signed or unsigned conversion opcode. 13093 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13094 PPCISD::FP_TO_SINT_IN_VSR : 13095 PPCISD::FP_TO_UINT_IN_VSR; 13096 13097 Val = DAG.getNode(ConvOpcode, 13098 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13099 DCI.AddToWorklist(Val.getNode()); 13100 13101 // Set number of bytes being converted. 13102 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13103 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13104 DAG.getIntPtrConstant(ByteSize, dl, false), 13105 DAG.getValueType(Op1VT) }; 13106 13107 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13108 DAG.getVTList(MVT::Other), Ops, 13109 cast<StoreSDNode>(N)->getMemoryVT(), 13110 cast<StoreSDNode>(N)->getMemOperand()); 13111 13112 DCI.AddToWorklist(Val.getNode()); 13113 return Val; 13114 } 13115 13116 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13117 DAGCombinerInfo &DCI) const { 13118 SelectionDAG &DAG = DCI.DAG; 13119 SDLoc dl(N); 13120 switch (N->getOpcode()) { 13121 default: break; 13122 case ISD::ADD: 13123 return combineADD(N, DCI); 13124 case ISD::SHL: 13125 return combineSHL(N, DCI); 13126 case ISD::SRA: 13127 return combineSRA(N, DCI); 13128 case ISD::SRL: 13129 return combineSRL(N, DCI); 13130 case ISD::MUL: 13131 return combineMUL(N, DCI); 13132 case PPCISD::SHL: 13133 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13134 return N->getOperand(0); 13135 break; 13136 case PPCISD::SRL: 13137 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13138 return N->getOperand(0); 13139 break; 13140 case PPCISD::SRA: 13141 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13142 if (C->isNullValue() || // 0 >>s V -> 0. 13143 C->isAllOnesValue()) // -1 >>s V -> -1. 13144 return N->getOperand(0); 13145 } 13146 break; 13147 case ISD::SIGN_EXTEND: 13148 case ISD::ZERO_EXTEND: 13149 case ISD::ANY_EXTEND: 13150 return DAGCombineExtBoolTrunc(N, DCI); 13151 case ISD::TRUNCATE: 13152 return combineTRUNCATE(N, DCI); 13153 case ISD::SETCC: 13154 if (SDValue CSCC = combineSetCC(N, DCI)) 13155 return CSCC; 13156 LLVM_FALLTHROUGH; 13157 case ISD::SELECT_CC: 13158 return DAGCombineTruncBoolExt(N, DCI); 13159 case ISD::SINT_TO_FP: 13160 case ISD::UINT_TO_FP: 13161 return combineFPToIntToFP(N, DCI); 13162 case ISD::STORE: { 13163 13164 EVT Op1VT = N->getOperand(1).getValueType(); 13165 unsigned Opcode = N->getOperand(1).getOpcode(); 13166 13167 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13168 SDValue Val= combineStoreFPToInt(N, DCI); 13169 if (Val) 13170 return Val; 13171 } 13172 13173 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13174 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13175 N->getOperand(1).getNode()->hasOneUse() && 13176 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13177 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13178 13179 // STBRX can only handle simple types and it makes no sense to store less 13180 // two bytes in byte-reversed order. 13181 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13182 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13183 break; 13184 13185 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13186 // Do an any-extend to 32-bits if this is a half-word input. 13187 if (BSwapOp.getValueType() == MVT::i16) 13188 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13189 13190 // If the type of BSWAP operand is wider than stored memory width 13191 // it need to be shifted to the right side before STBRX. 13192 if (Op1VT.bitsGT(mVT)) { 13193 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13194 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13195 DAG.getConstant(Shift, dl, MVT::i32)); 13196 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13197 if (Op1VT == MVT::i64) 13198 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13199 } 13200 13201 SDValue Ops[] = { 13202 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13203 }; 13204 return 13205 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13206 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13207 cast<StoreSDNode>(N)->getMemOperand()); 13208 } 13209 13210 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13211 // So it can increase the chance of CSE constant construction. 13212 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13213 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13214 // Need to sign-extended to 64-bits to handle negative values. 13215 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13216 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13217 MemVT.getSizeInBits()); 13218 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13219 13220 // DAG.getTruncStore() can't be used here because it doesn't accept 13221 // the general (base + offset) addressing mode. 13222 // So we use UpdateNodeOperands and setTruncatingStore instead. 13223 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13224 N->getOperand(3)); 13225 cast<StoreSDNode>(N)->setTruncatingStore(true); 13226 return SDValue(N, 0); 13227 } 13228 13229 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13230 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13231 if (Op1VT.isSimple()) { 13232 MVT StoreVT = Op1VT.getSimpleVT(); 13233 if (Subtarget.needsSwapsForVSXMemOps() && 13234 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13235 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13236 return expandVSXStoreForLE(N, DCI); 13237 } 13238 break; 13239 } 13240 case ISD::LOAD: { 13241 LoadSDNode *LD = cast<LoadSDNode>(N); 13242 EVT VT = LD->getValueType(0); 13243 13244 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13245 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13246 if (VT.isSimple()) { 13247 MVT LoadVT = VT.getSimpleVT(); 13248 if (Subtarget.needsSwapsForVSXMemOps() && 13249 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13250 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13251 return expandVSXLoadForLE(N, DCI); 13252 } 13253 13254 // We sometimes end up with a 64-bit integer load, from which we extract 13255 // two single-precision floating-point numbers. This happens with 13256 // std::complex<float>, and other similar structures, because of the way we 13257 // canonicalize structure copies. However, if we lack direct moves, 13258 // then the final bitcasts from the extracted integer values to the 13259 // floating-point numbers turn into store/load pairs. Even with direct moves, 13260 // just loading the two floating-point numbers is likely better. 13261 auto ReplaceTwoFloatLoad = [&]() { 13262 if (VT != MVT::i64) 13263 return false; 13264 13265 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13266 LD->isVolatile()) 13267 return false; 13268 13269 // We're looking for a sequence like this: 13270 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13271 // t16: i64 = srl t13, Constant:i32<32> 13272 // t17: i32 = truncate t16 13273 // t18: f32 = bitcast t17 13274 // t19: i32 = truncate t13 13275 // t20: f32 = bitcast t19 13276 13277 if (!LD->hasNUsesOfValue(2, 0)) 13278 return false; 13279 13280 auto UI = LD->use_begin(); 13281 while (UI.getUse().getResNo() != 0) ++UI; 13282 SDNode *Trunc = *UI++; 13283 while (UI.getUse().getResNo() != 0) ++UI; 13284 SDNode *RightShift = *UI; 13285 if (Trunc->getOpcode() != ISD::TRUNCATE) 13286 std::swap(Trunc, RightShift); 13287 13288 if (Trunc->getOpcode() != ISD::TRUNCATE || 13289 Trunc->getValueType(0) != MVT::i32 || 13290 !Trunc->hasOneUse()) 13291 return false; 13292 if (RightShift->getOpcode() != ISD::SRL || 13293 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13294 RightShift->getConstantOperandVal(1) != 32 || 13295 !RightShift->hasOneUse()) 13296 return false; 13297 13298 SDNode *Trunc2 = *RightShift->use_begin(); 13299 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13300 Trunc2->getValueType(0) != MVT::i32 || 13301 !Trunc2->hasOneUse()) 13302 return false; 13303 13304 SDNode *Bitcast = *Trunc->use_begin(); 13305 SDNode *Bitcast2 = *Trunc2->use_begin(); 13306 13307 if (Bitcast->getOpcode() != ISD::BITCAST || 13308 Bitcast->getValueType(0) != MVT::f32) 13309 return false; 13310 if (Bitcast2->getOpcode() != ISD::BITCAST || 13311 Bitcast2->getValueType(0) != MVT::f32) 13312 return false; 13313 13314 if (Subtarget.isLittleEndian()) 13315 std::swap(Bitcast, Bitcast2); 13316 13317 // Bitcast has the second float (in memory-layout order) and Bitcast2 13318 // has the first one. 13319 13320 SDValue BasePtr = LD->getBasePtr(); 13321 if (LD->isIndexed()) { 13322 assert(LD->getAddressingMode() == ISD::PRE_INC && 13323 "Non-pre-inc AM on PPC?"); 13324 BasePtr = 13325 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13326 LD->getOffset()); 13327 } 13328 13329 auto MMOFlags = 13330 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13331 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13332 LD->getPointerInfo(), LD->getAlignment(), 13333 MMOFlags, LD->getAAInfo()); 13334 SDValue AddPtr = 13335 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13336 BasePtr, DAG.getIntPtrConstant(4, dl)); 13337 SDValue FloatLoad2 = DAG.getLoad( 13338 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13339 LD->getPointerInfo().getWithOffset(4), 13340 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13341 13342 if (LD->isIndexed()) { 13343 // Note that DAGCombine should re-form any pre-increment load(s) from 13344 // what is produced here if that makes sense. 13345 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13346 } 13347 13348 DCI.CombineTo(Bitcast2, FloatLoad); 13349 DCI.CombineTo(Bitcast, FloatLoad2); 13350 13351 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13352 SDValue(FloatLoad2.getNode(), 1)); 13353 return true; 13354 }; 13355 13356 if (ReplaceTwoFloatLoad()) 13357 return SDValue(N, 0); 13358 13359 EVT MemVT = LD->getMemoryVT(); 13360 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13361 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13362 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13363 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13364 if (LD->isUnindexed() && VT.isVector() && 13365 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13366 // P8 and later hardware should just use LOAD. 13367 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13368 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13369 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13370 LD->getAlignment() >= ScalarABIAlignment)) && 13371 LD->getAlignment() < ABIAlignment) { 13372 // This is a type-legal unaligned Altivec or QPX load. 13373 SDValue Chain = LD->getChain(); 13374 SDValue Ptr = LD->getBasePtr(); 13375 bool isLittleEndian = Subtarget.isLittleEndian(); 13376 13377 // This implements the loading of unaligned vectors as described in 13378 // the venerable Apple Velocity Engine overview. Specifically: 13379 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13380 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13381 // 13382 // The general idea is to expand a sequence of one or more unaligned 13383 // loads into an alignment-based permutation-control instruction (lvsl 13384 // or lvsr), a series of regular vector loads (which always truncate 13385 // their input address to an aligned address), and a series of 13386 // permutations. The results of these permutations are the requested 13387 // loaded values. The trick is that the last "extra" load is not taken 13388 // from the address you might suspect (sizeof(vector) bytes after the 13389 // last requested load), but rather sizeof(vector) - 1 bytes after the 13390 // last requested vector. The point of this is to avoid a page fault if 13391 // the base address happened to be aligned. This works because if the 13392 // base address is aligned, then adding less than a full vector length 13393 // will cause the last vector in the sequence to be (re)loaded. 13394 // Otherwise, the next vector will be fetched as you might suspect was 13395 // necessary. 13396 13397 // We might be able to reuse the permutation generation from 13398 // a different base address offset from this one by an aligned amount. 13399 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13400 // optimization later. 13401 Intrinsic::ID Intr, IntrLD, IntrPerm; 13402 MVT PermCntlTy, PermTy, LDTy; 13403 if (Subtarget.hasAltivec()) { 13404 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13405 Intrinsic::ppc_altivec_lvsl; 13406 IntrLD = Intrinsic::ppc_altivec_lvx; 13407 IntrPerm = Intrinsic::ppc_altivec_vperm; 13408 PermCntlTy = MVT::v16i8; 13409 PermTy = MVT::v4i32; 13410 LDTy = MVT::v4i32; 13411 } else { 13412 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13413 Intrinsic::ppc_qpx_qvlpcls; 13414 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13415 Intrinsic::ppc_qpx_qvlfs; 13416 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13417 PermCntlTy = MVT::v4f64; 13418 PermTy = MVT::v4f64; 13419 LDTy = MemVT.getSimpleVT(); 13420 } 13421 13422 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13423 13424 // Create the new MMO for the new base load. It is like the original MMO, 13425 // but represents an area in memory almost twice the vector size centered 13426 // on the original address. If the address is unaligned, we might start 13427 // reading up to (sizeof(vector)-1) bytes below the address of the 13428 // original unaligned load. 13429 MachineFunction &MF = DAG.getMachineFunction(); 13430 MachineMemOperand *BaseMMO = 13431 MF.getMachineMemOperand(LD->getMemOperand(), 13432 -(long)MemVT.getStoreSize()+1, 13433 2*MemVT.getStoreSize()-1); 13434 13435 // Create the new base load. 13436 SDValue LDXIntID = 13437 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13438 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13439 SDValue BaseLoad = 13440 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13441 DAG.getVTList(PermTy, MVT::Other), 13442 BaseLoadOps, LDTy, BaseMMO); 13443 13444 // Note that the value of IncOffset (which is provided to the next 13445 // load's pointer info offset value, and thus used to calculate the 13446 // alignment), and the value of IncValue (which is actually used to 13447 // increment the pointer value) are different! This is because we 13448 // require the next load to appear to be aligned, even though it 13449 // is actually offset from the base pointer by a lesser amount. 13450 int IncOffset = VT.getSizeInBits() / 8; 13451 int IncValue = IncOffset; 13452 13453 // Walk (both up and down) the chain looking for another load at the real 13454 // (aligned) offset (the alignment of the other load does not matter in 13455 // this case). If found, then do not use the offset reduction trick, as 13456 // that will prevent the loads from being later combined (as they would 13457 // otherwise be duplicates). 13458 if (!findConsecutiveLoad(LD, DAG)) 13459 --IncValue; 13460 13461 SDValue Increment = 13462 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13463 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13464 13465 MachineMemOperand *ExtraMMO = 13466 MF.getMachineMemOperand(LD->getMemOperand(), 13467 1, 2*MemVT.getStoreSize()-1); 13468 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13469 SDValue ExtraLoad = 13470 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13471 DAG.getVTList(PermTy, MVT::Other), 13472 ExtraLoadOps, LDTy, ExtraMMO); 13473 13474 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13475 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13476 13477 // Because vperm has a big-endian bias, we must reverse the order 13478 // of the input vectors and complement the permute control vector 13479 // when generating little endian code. We have already handled the 13480 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13481 // and ExtraLoad here. 13482 SDValue Perm; 13483 if (isLittleEndian) 13484 Perm = BuildIntrinsicOp(IntrPerm, 13485 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13486 else 13487 Perm = BuildIntrinsicOp(IntrPerm, 13488 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13489 13490 if (VT != PermTy) 13491 Perm = Subtarget.hasAltivec() ? 13492 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13493 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13494 DAG.getTargetConstant(1, dl, MVT::i64)); 13495 // second argument is 1 because this rounding 13496 // is always exact. 13497 13498 // The output of the permutation is our loaded result, the TokenFactor is 13499 // our new chain. 13500 DCI.CombineTo(N, Perm, TF); 13501 return SDValue(N, 0); 13502 } 13503 } 13504 break; 13505 case ISD::INTRINSIC_WO_CHAIN: { 13506 bool isLittleEndian = Subtarget.isLittleEndian(); 13507 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13508 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13509 : Intrinsic::ppc_altivec_lvsl); 13510 if ((IID == Intr || 13511 IID == Intrinsic::ppc_qpx_qvlpcld || 13512 IID == Intrinsic::ppc_qpx_qvlpcls) && 13513 N->getOperand(1)->getOpcode() == ISD::ADD) { 13514 SDValue Add = N->getOperand(1); 13515 13516 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13517 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13518 13519 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13520 APInt::getAllOnesValue(Bits /* alignment */) 13521 .zext(Add.getScalarValueSizeInBits()))) { 13522 SDNode *BasePtr = Add->getOperand(0).getNode(); 13523 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13524 UE = BasePtr->use_end(); 13525 UI != UE; ++UI) { 13526 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13527 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13528 // We've found another LVSL/LVSR, and this address is an aligned 13529 // multiple of that one. The results will be the same, so use the 13530 // one we've just found instead. 13531 13532 return SDValue(*UI, 0); 13533 } 13534 } 13535 } 13536 13537 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13538 SDNode *BasePtr = Add->getOperand(0).getNode(); 13539 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13540 UE = BasePtr->use_end(); UI != UE; ++UI) { 13541 if (UI->getOpcode() == ISD::ADD && 13542 isa<ConstantSDNode>(UI->getOperand(1)) && 13543 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13544 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13545 (1ULL << Bits) == 0) { 13546 SDNode *OtherAdd = *UI; 13547 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13548 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13549 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13550 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13551 return SDValue(*VI, 0); 13552 } 13553 } 13554 } 13555 } 13556 } 13557 } 13558 13559 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13560 // Expose the vabsduw/h/b opportunity for down stream 13561 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13562 (IID == Intrinsic::ppc_altivec_vmaxsw || 13563 IID == Intrinsic::ppc_altivec_vmaxsh || 13564 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13565 SDValue V1 = N->getOperand(1); 13566 SDValue V2 = N->getOperand(2); 13567 if ((V1.getSimpleValueType() == MVT::v4i32 || 13568 V1.getSimpleValueType() == MVT::v8i16 || 13569 V1.getSimpleValueType() == MVT::v16i8) && 13570 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13571 // (0-a, a) 13572 if (V1.getOpcode() == ISD::SUB && 13573 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13574 V1.getOperand(1) == V2) { 13575 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13576 } 13577 // (a, 0-a) 13578 if (V2.getOpcode() == ISD::SUB && 13579 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13580 V2.getOperand(1) == V1) { 13581 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13582 } 13583 // (x-y, y-x) 13584 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13585 V1.getOperand(0) == V2.getOperand(1) && 13586 V1.getOperand(1) == V2.getOperand(0)) { 13587 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13588 } 13589 } 13590 } 13591 } 13592 13593 break; 13594 case ISD::INTRINSIC_W_CHAIN: 13595 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13596 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13597 if (Subtarget.needsSwapsForVSXMemOps()) { 13598 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13599 default: 13600 break; 13601 case Intrinsic::ppc_vsx_lxvw4x: 13602 case Intrinsic::ppc_vsx_lxvd2x: 13603 return expandVSXLoadForLE(N, DCI); 13604 } 13605 } 13606 break; 13607 case ISD::INTRINSIC_VOID: 13608 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13609 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13610 if (Subtarget.needsSwapsForVSXMemOps()) { 13611 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13612 default: 13613 break; 13614 case Intrinsic::ppc_vsx_stxvw4x: 13615 case Intrinsic::ppc_vsx_stxvd2x: 13616 return expandVSXStoreForLE(N, DCI); 13617 } 13618 } 13619 break; 13620 case ISD::BSWAP: 13621 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13622 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13623 N->getOperand(0).hasOneUse() && 13624 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13625 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13626 N->getValueType(0) == MVT::i64))) { 13627 SDValue Load = N->getOperand(0); 13628 LoadSDNode *LD = cast<LoadSDNode>(Load); 13629 // Create the byte-swapping load. 13630 SDValue Ops[] = { 13631 LD->getChain(), // Chain 13632 LD->getBasePtr(), // Ptr 13633 DAG.getValueType(N->getValueType(0)) // VT 13634 }; 13635 SDValue BSLoad = 13636 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13637 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13638 MVT::i64 : MVT::i32, MVT::Other), 13639 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13640 13641 // If this is an i16 load, insert the truncate. 13642 SDValue ResVal = BSLoad; 13643 if (N->getValueType(0) == MVT::i16) 13644 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13645 13646 // First, combine the bswap away. This makes the value produced by the 13647 // load dead. 13648 DCI.CombineTo(N, ResVal); 13649 13650 // Next, combine the load away, we give it a bogus result value but a real 13651 // chain result. The result value is dead because the bswap is dead. 13652 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13653 13654 // Return N so it doesn't get rechecked! 13655 return SDValue(N, 0); 13656 } 13657 break; 13658 case PPCISD::VCMP: 13659 // If a VCMPo node already exists with exactly the same operands as this 13660 // node, use its result instead of this node (VCMPo computes both a CR6 and 13661 // a normal output). 13662 // 13663 if (!N->getOperand(0).hasOneUse() && 13664 !N->getOperand(1).hasOneUse() && 13665 !N->getOperand(2).hasOneUse()) { 13666 13667 // Scan all of the users of the LHS, looking for VCMPo's that match. 13668 SDNode *VCMPoNode = nullptr; 13669 13670 SDNode *LHSN = N->getOperand(0).getNode(); 13671 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13672 UI != E; ++UI) 13673 if (UI->getOpcode() == PPCISD::VCMPo && 13674 UI->getOperand(1) == N->getOperand(1) && 13675 UI->getOperand(2) == N->getOperand(2) && 13676 UI->getOperand(0) == N->getOperand(0)) { 13677 VCMPoNode = *UI; 13678 break; 13679 } 13680 13681 // If there is no VCMPo node, or if the flag value has a single use, don't 13682 // transform this. 13683 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13684 break; 13685 13686 // Look at the (necessarily single) use of the flag value. If it has a 13687 // chain, this transformation is more complex. Note that multiple things 13688 // could use the value result, which we should ignore. 13689 SDNode *FlagUser = nullptr; 13690 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13691 FlagUser == nullptr; ++UI) { 13692 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13693 SDNode *User = *UI; 13694 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13695 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13696 FlagUser = User; 13697 break; 13698 } 13699 } 13700 } 13701 13702 // If the user is a MFOCRF instruction, we know this is safe. 13703 // Otherwise we give up for right now. 13704 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13705 return SDValue(VCMPoNode, 0); 13706 } 13707 break; 13708 case ISD::BRCOND: { 13709 SDValue Cond = N->getOperand(1); 13710 SDValue Target = N->getOperand(2); 13711 13712 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13713 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13714 Intrinsic::loop_decrement) { 13715 13716 // We now need to make the intrinsic dead (it cannot be instruction 13717 // selected). 13718 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13719 assert(Cond.getNode()->hasOneUse() && 13720 "Counter decrement has more than one use"); 13721 13722 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13723 N->getOperand(0), Target); 13724 } 13725 } 13726 break; 13727 case ISD::BR_CC: { 13728 // If this is a branch on an altivec predicate comparison, lower this so 13729 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13730 // lowering is done pre-legalize, because the legalizer lowers the predicate 13731 // compare down to code that is difficult to reassemble. 13732 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13733 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13734 13735 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13736 // value. If so, pass-through the AND to get to the intrinsic. 13737 if (LHS.getOpcode() == ISD::AND && 13738 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13739 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13740 Intrinsic::loop_decrement && 13741 isa<ConstantSDNode>(LHS.getOperand(1)) && 13742 !isNullConstant(LHS.getOperand(1))) 13743 LHS = LHS.getOperand(0); 13744 13745 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13746 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13747 Intrinsic::loop_decrement && 13748 isa<ConstantSDNode>(RHS)) { 13749 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13750 "Counter decrement comparison is not EQ or NE"); 13751 13752 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13753 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13754 (CC == ISD::SETNE && !Val); 13755 13756 // We now need to make the intrinsic dead (it cannot be instruction 13757 // selected). 13758 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13759 assert(LHS.getNode()->hasOneUse() && 13760 "Counter decrement has more than one use"); 13761 13762 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13763 N->getOperand(0), N->getOperand(4)); 13764 } 13765 13766 int CompareOpc; 13767 bool isDot; 13768 13769 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13770 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13771 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13772 assert(isDot && "Can't compare against a vector result!"); 13773 13774 // If this is a comparison against something other than 0/1, then we know 13775 // that the condition is never/always true. 13776 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13777 if (Val != 0 && Val != 1) { 13778 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13779 return N->getOperand(0); 13780 // Always !=, turn it into an unconditional branch. 13781 return DAG.getNode(ISD::BR, dl, MVT::Other, 13782 N->getOperand(0), N->getOperand(4)); 13783 } 13784 13785 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13786 13787 // Create the PPCISD altivec 'dot' comparison node. 13788 SDValue Ops[] = { 13789 LHS.getOperand(2), // LHS of compare 13790 LHS.getOperand(3), // RHS of compare 13791 DAG.getConstant(CompareOpc, dl, MVT::i32) 13792 }; 13793 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13794 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13795 13796 // Unpack the result based on how the target uses it. 13797 PPC::Predicate CompOpc; 13798 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13799 default: // Can't happen, don't crash on invalid number though. 13800 case 0: // Branch on the value of the EQ bit of CR6. 13801 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13802 break; 13803 case 1: // Branch on the inverted value of the EQ bit of CR6. 13804 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13805 break; 13806 case 2: // Branch on the value of the LT bit of CR6. 13807 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13808 break; 13809 case 3: // Branch on the inverted value of the LT bit of CR6. 13810 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13811 break; 13812 } 13813 13814 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13815 DAG.getConstant(CompOpc, dl, MVT::i32), 13816 DAG.getRegister(PPC::CR6, MVT::i32), 13817 N->getOperand(4), CompNode.getValue(1)); 13818 } 13819 break; 13820 } 13821 case ISD::BUILD_VECTOR: 13822 return DAGCombineBuildVector(N, DCI); 13823 case ISD::ABS: 13824 return combineABS(N, DCI); 13825 case ISD::VSELECT: 13826 return combineVSelect(N, DCI); 13827 } 13828 13829 return SDValue(); 13830 } 13831 13832 SDValue 13833 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13834 SelectionDAG &DAG, 13835 SmallVectorImpl<SDNode *> &Created) const { 13836 // fold (sdiv X, pow2) 13837 EVT VT = N->getValueType(0); 13838 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13839 return SDValue(); 13840 if ((VT != MVT::i32 && VT != MVT::i64) || 13841 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13842 return SDValue(); 13843 13844 SDLoc DL(N); 13845 SDValue N0 = N->getOperand(0); 13846 13847 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13848 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13849 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13850 13851 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13852 Created.push_back(Op.getNode()); 13853 13854 if (IsNegPow2) { 13855 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13856 Created.push_back(Op.getNode()); 13857 } 13858 13859 return Op; 13860 } 13861 13862 //===----------------------------------------------------------------------===// 13863 // Inline Assembly Support 13864 //===----------------------------------------------------------------------===// 13865 13866 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13867 KnownBits &Known, 13868 const APInt &DemandedElts, 13869 const SelectionDAG &DAG, 13870 unsigned Depth) const { 13871 Known.resetAll(); 13872 switch (Op.getOpcode()) { 13873 default: break; 13874 case PPCISD::LBRX: { 13875 // lhbrx is known to have the top bits cleared out. 13876 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13877 Known.Zero = 0xFFFF0000; 13878 break; 13879 } 13880 case ISD::INTRINSIC_WO_CHAIN: { 13881 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13882 default: break; 13883 case Intrinsic::ppc_altivec_vcmpbfp_p: 13884 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13885 case Intrinsic::ppc_altivec_vcmpequb_p: 13886 case Intrinsic::ppc_altivec_vcmpequh_p: 13887 case Intrinsic::ppc_altivec_vcmpequw_p: 13888 case Intrinsic::ppc_altivec_vcmpequd_p: 13889 case Intrinsic::ppc_altivec_vcmpgefp_p: 13890 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13891 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13892 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13893 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13894 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13895 case Intrinsic::ppc_altivec_vcmpgtub_p: 13896 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13897 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13898 case Intrinsic::ppc_altivec_vcmpgtud_p: 13899 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13900 break; 13901 } 13902 } 13903 } 13904 } 13905 13906 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13907 switch (Subtarget.getDarwinDirective()) { 13908 default: break; 13909 case PPC::DIR_970: 13910 case PPC::DIR_PWR4: 13911 case PPC::DIR_PWR5: 13912 case PPC::DIR_PWR5X: 13913 case PPC::DIR_PWR6: 13914 case PPC::DIR_PWR6X: 13915 case PPC::DIR_PWR7: 13916 case PPC::DIR_PWR8: 13917 case PPC::DIR_PWR9: { 13918 if (!ML) 13919 break; 13920 13921 if (!DisableInnermostLoopAlign32) { 13922 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 13923 // so that we can decrease cache misses and branch-prediction misses. 13924 // Actual alignment of the loop will depend on the hotness check and other 13925 // logic in alignBlocks. 13926 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 13927 return 5; 13928 } 13929 13930 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13931 13932 // For small loops (between 5 and 8 instructions), align to a 32-byte 13933 // boundary so that the entire loop fits in one instruction-cache line. 13934 uint64_t LoopSize = 0; 13935 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13936 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13937 LoopSize += TII->getInstSizeInBytes(*J); 13938 if (LoopSize > 32) 13939 break; 13940 } 13941 13942 if (LoopSize > 16 && LoopSize <= 32) 13943 return 5; 13944 13945 break; 13946 } 13947 } 13948 13949 return TargetLowering::getPrefLoopAlignment(ML); 13950 } 13951 13952 /// getConstraintType - Given a constraint, return the type of 13953 /// constraint it is for this target. 13954 PPCTargetLowering::ConstraintType 13955 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13956 if (Constraint.size() == 1) { 13957 switch (Constraint[0]) { 13958 default: break; 13959 case 'b': 13960 case 'r': 13961 case 'f': 13962 case 'd': 13963 case 'v': 13964 case 'y': 13965 return C_RegisterClass; 13966 case 'Z': 13967 // FIXME: While Z does indicate a memory constraint, it specifically 13968 // indicates an r+r address (used in conjunction with the 'y' modifier 13969 // in the replacement string). Currently, we're forcing the base 13970 // register to be r0 in the asm printer (which is interpreted as zero) 13971 // and forming the complete address in the second register. This is 13972 // suboptimal. 13973 return C_Memory; 13974 } 13975 } else if (Constraint == "wc") { // individual CR bits. 13976 return C_RegisterClass; 13977 } else if (Constraint == "wa" || Constraint == "wd" || 13978 Constraint == "wf" || Constraint == "ws" || 13979 Constraint == "wi" || Constraint == "ww") { 13980 return C_RegisterClass; // VSX registers. 13981 } 13982 return TargetLowering::getConstraintType(Constraint); 13983 } 13984 13985 /// Examine constraint type and operand type and determine a weight value. 13986 /// This object must already have been set up with the operand type 13987 /// and the current alternative constraint selected. 13988 TargetLowering::ConstraintWeight 13989 PPCTargetLowering::getSingleConstraintMatchWeight( 13990 AsmOperandInfo &info, const char *constraint) const { 13991 ConstraintWeight weight = CW_Invalid; 13992 Value *CallOperandVal = info.CallOperandVal; 13993 // If we don't have a value, we can't do a match, 13994 // but allow it at the lowest weight. 13995 if (!CallOperandVal) 13996 return CW_Default; 13997 Type *type = CallOperandVal->getType(); 13998 13999 // Look at the constraint type. 14000 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14001 return CW_Register; // an individual CR bit. 14002 else if ((StringRef(constraint) == "wa" || 14003 StringRef(constraint) == "wd" || 14004 StringRef(constraint) == "wf") && 14005 type->isVectorTy()) 14006 return CW_Register; 14007 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14008 return CW_Register; // just hold 64-bit integers data. 14009 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14010 return CW_Register; 14011 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14012 return CW_Register; 14013 14014 switch (*constraint) { 14015 default: 14016 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14017 break; 14018 case 'b': 14019 if (type->isIntegerTy()) 14020 weight = CW_Register; 14021 break; 14022 case 'f': 14023 if (type->isFloatTy()) 14024 weight = CW_Register; 14025 break; 14026 case 'd': 14027 if (type->isDoubleTy()) 14028 weight = CW_Register; 14029 break; 14030 case 'v': 14031 if (type->isVectorTy()) 14032 weight = CW_Register; 14033 break; 14034 case 'y': 14035 weight = CW_Register; 14036 break; 14037 case 'Z': 14038 weight = CW_Memory; 14039 break; 14040 } 14041 return weight; 14042 } 14043 14044 std::pair<unsigned, const TargetRegisterClass *> 14045 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14046 StringRef Constraint, 14047 MVT VT) const { 14048 if (Constraint.size() == 1) { 14049 // GCC RS6000 Constraint Letters 14050 switch (Constraint[0]) { 14051 case 'b': // R1-R31 14052 if (VT == MVT::i64 && Subtarget.isPPC64()) 14053 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14054 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14055 case 'r': // R0-R31 14056 if (VT == MVT::i64 && Subtarget.isPPC64()) 14057 return std::make_pair(0U, &PPC::G8RCRegClass); 14058 return std::make_pair(0U, &PPC::GPRCRegClass); 14059 // 'd' and 'f' constraints are both defined to be "the floating point 14060 // registers", where one is for 32-bit and the other for 64-bit. We don't 14061 // really care overly much here so just give them all the same reg classes. 14062 case 'd': 14063 case 'f': 14064 if (Subtarget.hasSPE()) { 14065 if (VT == MVT::f32 || VT == MVT::i32) 14066 return std::make_pair(0U, &PPC::SPE4RCRegClass); 14067 if (VT == MVT::f64 || VT == MVT::i64) 14068 return std::make_pair(0U, &PPC::SPERCRegClass); 14069 } else { 14070 if (VT == MVT::f32 || VT == MVT::i32) 14071 return std::make_pair(0U, &PPC::F4RCRegClass); 14072 if (VT == MVT::f64 || VT == MVT::i64) 14073 return std::make_pair(0U, &PPC::F8RCRegClass); 14074 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14075 return std::make_pair(0U, &PPC::QFRCRegClass); 14076 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14077 return std::make_pair(0U, &PPC::QSRCRegClass); 14078 } 14079 break; 14080 case 'v': 14081 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14082 return std::make_pair(0U, &PPC::QFRCRegClass); 14083 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14084 return std::make_pair(0U, &PPC::QSRCRegClass); 14085 if (Subtarget.hasAltivec()) 14086 return std::make_pair(0U, &PPC::VRRCRegClass); 14087 break; 14088 case 'y': // crrc 14089 return std::make_pair(0U, &PPC::CRRCRegClass); 14090 } 14091 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14092 // An individual CR bit. 14093 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14094 } else if ((Constraint == "wa" || Constraint == "wd" || 14095 Constraint == "wf" || Constraint == "wi") && 14096 Subtarget.hasVSX()) { 14097 return std::make_pair(0U, &PPC::VSRCRegClass); 14098 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14099 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14100 return std::make_pair(0U, &PPC::VSSRCRegClass); 14101 else 14102 return std::make_pair(0U, &PPC::VSFRCRegClass); 14103 } 14104 14105 std::pair<unsigned, const TargetRegisterClass *> R = 14106 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14107 14108 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14109 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14110 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14111 // register. 14112 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14113 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14114 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14115 PPC::GPRCRegClass.contains(R.first)) 14116 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14117 PPC::sub_32, &PPC::G8RCRegClass), 14118 &PPC::G8RCRegClass); 14119 14120 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14121 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14122 R.first = PPC::CR0; 14123 R.second = &PPC::CRRCRegClass; 14124 } 14125 14126 return R; 14127 } 14128 14129 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14130 /// vector. If it is invalid, don't add anything to Ops. 14131 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14132 std::string &Constraint, 14133 std::vector<SDValue>&Ops, 14134 SelectionDAG &DAG) const { 14135 SDValue Result; 14136 14137 // Only support length 1 constraints. 14138 if (Constraint.length() > 1) return; 14139 14140 char Letter = Constraint[0]; 14141 switch (Letter) { 14142 default: break; 14143 case 'I': 14144 case 'J': 14145 case 'K': 14146 case 'L': 14147 case 'M': 14148 case 'N': 14149 case 'O': 14150 case 'P': { 14151 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14152 if (!CST) return; // Must be an immediate to match. 14153 SDLoc dl(Op); 14154 int64_t Value = CST->getSExtValue(); 14155 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14156 // numbers are printed as such. 14157 switch (Letter) { 14158 default: llvm_unreachable("Unknown constraint letter!"); 14159 case 'I': // "I" is a signed 16-bit constant. 14160 if (isInt<16>(Value)) 14161 Result = DAG.getTargetConstant(Value, dl, TCVT); 14162 break; 14163 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14164 if (isShiftedUInt<16, 16>(Value)) 14165 Result = DAG.getTargetConstant(Value, dl, TCVT); 14166 break; 14167 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14168 if (isShiftedInt<16, 16>(Value)) 14169 Result = DAG.getTargetConstant(Value, dl, TCVT); 14170 break; 14171 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14172 if (isUInt<16>(Value)) 14173 Result = DAG.getTargetConstant(Value, dl, TCVT); 14174 break; 14175 case 'M': // "M" is a constant that is greater than 31. 14176 if (Value > 31) 14177 Result = DAG.getTargetConstant(Value, dl, TCVT); 14178 break; 14179 case 'N': // "N" is a positive constant that is an exact power of two. 14180 if (Value > 0 && isPowerOf2_64(Value)) 14181 Result = DAG.getTargetConstant(Value, dl, TCVT); 14182 break; 14183 case 'O': // "O" is the constant zero. 14184 if (Value == 0) 14185 Result = DAG.getTargetConstant(Value, dl, TCVT); 14186 break; 14187 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14188 if (isInt<16>(-Value)) 14189 Result = DAG.getTargetConstant(Value, dl, TCVT); 14190 break; 14191 } 14192 break; 14193 } 14194 } 14195 14196 if (Result.getNode()) { 14197 Ops.push_back(Result); 14198 return; 14199 } 14200 14201 // Handle standard constraint letters. 14202 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14203 } 14204 14205 // isLegalAddressingMode - Return true if the addressing mode represented 14206 // by AM is legal for this target, for a load/store of the specified type. 14207 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14208 const AddrMode &AM, Type *Ty, 14209 unsigned AS, Instruction *I) const { 14210 // PPC does not allow r+i addressing modes for vectors! 14211 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14212 return false; 14213 14214 // PPC allows a sign-extended 16-bit immediate field. 14215 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14216 return false; 14217 14218 // No global is ever allowed as a base. 14219 if (AM.BaseGV) 14220 return false; 14221 14222 // PPC only support r+r, 14223 switch (AM.Scale) { 14224 case 0: // "r+i" or just "i", depending on HasBaseReg. 14225 break; 14226 case 1: 14227 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14228 return false; 14229 // Otherwise we have r+r or r+i. 14230 break; 14231 case 2: 14232 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14233 return false; 14234 // Allow 2*r as r+r. 14235 break; 14236 default: 14237 // No other scales are supported. 14238 return false; 14239 } 14240 14241 return true; 14242 } 14243 14244 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14245 SelectionDAG &DAG) const { 14246 MachineFunction &MF = DAG.getMachineFunction(); 14247 MachineFrameInfo &MFI = MF.getFrameInfo(); 14248 MFI.setReturnAddressIsTaken(true); 14249 14250 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14251 return SDValue(); 14252 14253 SDLoc dl(Op); 14254 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14255 14256 // Make sure the function does not optimize away the store of the RA to 14257 // the stack. 14258 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14259 FuncInfo->setLRStoreRequired(); 14260 bool isPPC64 = Subtarget.isPPC64(); 14261 auto PtrVT = getPointerTy(MF.getDataLayout()); 14262 14263 if (Depth > 0) { 14264 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14265 SDValue Offset = 14266 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14267 isPPC64 ? MVT::i64 : MVT::i32); 14268 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14269 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14270 MachinePointerInfo()); 14271 } 14272 14273 // Just load the return address off the stack. 14274 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14275 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14276 MachinePointerInfo()); 14277 } 14278 14279 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14280 SelectionDAG &DAG) const { 14281 SDLoc dl(Op); 14282 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14283 14284 MachineFunction &MF = DAG.getMachineFunction(); 14285 MachineFrameInfo &MFI = MF.getFrameInfo(); 14286 MFI.setFrameAddressIsTaken(true); 14287 14288 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14289 bool isPPC64 = PtrVT == MVT::i64; 14290 14291 // Naked functions never have a frame pointer, and so we use r1. For all 14292 // other functions, this decision must be delayed until during PEI. 14293 unsigned FrameReg; 14294 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14295 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14296 else 14297 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14298 14299 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14300 PtrVT); 14301 while (Depth--) 14302 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14303 FrameAddr, MachinePointerInfo()); 14304 return FrameAddr; 14305 } 14306 14307 // FIXME? Maybe this could be a TableGen attribute on some registers and 14308 // this table could be generated automatically from RegInfo. 14309 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14310 SelectionDAG &DAG) const { 14311 bool isPPC64 = Subtarget.isPPC64(); 14312 bool isDarwinABI = Subtarget.isDarwinABI(); 14313 14314 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14315 (!isPPC64 && VT != MVT::i32)) 14316 report_fatal_error("Invalid register global variable type"); 14317 14318 bool is64Bit = isPPC64 && VT == MVT::i64; 14319 unsigned Reg = StringSwitch<unsigned>(RegName) 14320 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14321 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 14322 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 14323 (is64Bit ? PPC::X13 : PPC::R13)) 14324 .Default(0); 14325 14326 if (Reg) 14327 return Reg; 14328 report_fatal_error("Invalid register name global variable"); 14329 } 14330 14331 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14332 // 32-bit SVR4 ABI access everything as got-indirect. 14333 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 14334 return true; 14335 14336 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14337 // If it is small or large code model, module locals are accessed 14338 // indirectly by loading their address from .toc/.got. The difference 14339 // is that for large code model we have ADDISTocHa + LDtocL and for 14340 // small code model we simply have LDtoc. 14341 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14342 return true; 14343 14344 // JumpTable and BlockAddress are accessed as got-indirect. 14345 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14346 return true; 14347 14348 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 14349 const GlobalValue *GV = G->getGlobal(); 14350 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 14351 // The NLP flag indicates that a global access has to use an 14352 // extra indirection. 14353 if (GVFlags & PPCII::MO_NLP_FLAG) 14354 return true; 14355 } 14356 14357 return false; 14358 } 14359 14360 bool 14361 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14362 // The PowerPC target isn't yet aware of offsets. 14363 return false; 14364 } 14365 14366 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14367 const CallInst &I, 14368 MachineFunction &MF, 14369 unsigned Intrinsic) const { 14370 switch (Intrinsic) { 14371 case Intrinsic::ppc_qpx_qvlfd: 14372 case Intrinsic::ppc_qpx_qvlfs: 14373 case Intrinsic::ppc_qpx_qvlfcd: 14374 case Intrinsic::ppc_qpx_qvlfcs: 14375 case Intrinsic::ppc_qpx_qvlfiwa: 14376 case Intrinsic::ppc_qpx_qvlfiwz: 14377 case Intrinsic::ppc_altivec_lvx: 14378 case Intrinsic::ppc_altivec_lvxl: 14379 case Intrinsic::ppc_altivec_lvebx: 14380 case Intrinsic::ppc_altivec_lvehx: 14381 case Intrinsic::ppc_altivec_lvewx: 14382 case Intrinsic::ppc_vsx_lxvd2x: 14383 case Intrinsic::ppc_vsx_lxvw4x: { 14384 EVT VT; 14385 switch (Intrinsic) { 14386 case Intrinsic::ppc_altivec_lvebx: 14387 VT = MVT::i8; 14388 break; 14389 case Intrinsic::ppc_altivec_lvehx: 14390 VT = MVT::i16; 14391 break; 14392 case Intrinsic::ppc_altivec_lvewx: 14393 VT = MVT::i32; 14394 break; 14395 case Intrinsic::ppc_vsx_lxvd2x: 14396 VT = MVT::v2f64; 14397 break; 14398 case Intrinsic::ppc_qpx_qvlfd: 14399 VT = MVT::v4f64; 14400 break; 14401 case Intrinsic::ppc_qpx_qvlfs: 14402 VT = MVT::v4f32; 14403 break; 14404 case Intrinsic::ppc_qpx_qvlfcd: 14405 VT = MVT::v2f64; 14406 break; 14407 case Intrinsic::ppc_qpx_qvlfcs: 14408 VT = MVT::v2f32; 14409 break; 14410 default: 14411 VT = MVT::v4i32; 14412 break; 14413 } 14414 14415 Info.opc = ISD::INTRINSIC_W_CHAIN; 14416 Info.memVT = VT; 14417 Info.ptrVal = I.getArgOperand(0); 14418 Info.offset = -VT.getStoreSize()+1; 14419 Info.size = 2*VT.getStoreSize()-1; 14420 Info.align = 1; 14421 Info.flags = MachineMemOperand::MOLoad; 14422 return true; 14423 } 14424 case Intrinsic::ppc_qpx_qvlfda: 14425 case Intrinsic::ppc_qpx_qvlfsa: 14426 case Intrinsic::ppc_qpx_qvlfcda: 14427 case Intrinsic::ppc_qpx_qvlfcsa: 14428 case Intrinsic::ppc_qpx_qvlfiwaa: 14429 case Intrinsic::ppc_qpx_qvlfiwza: { 14430 EVT VT; 14431 switch (Intrinsic) { 14432 case Intrinsic::ppc_qpx_qvlfda: 14433 VT = MVT::v4f64; 14434 break; 14435 case Intrinsic::ppc_qpx_qvlfsa: 14436 VT = MVT::v4f32; 14437 break; 14438 case Intrinsic::ppc_qpx_qvlfcda: 14439 VT = MVT::v2f64; 14440 break; 14441 case Intrinsic::ppc_qpx_qvlfcsa: 14442 VT = MVT::v2f32; 14443 break; 14444 default: 14445 VT = MVT::v4i32; 14446 break; 14447 } 14448 14449 Info.opc = ISD::INTRINSIC_W_CHAIN; 14450 Info.memVT = VT; 14451 Info.ptrVal = I.getArgOperand(0); 14452 Info.offset = 0; 14453 Info.size = VT.getStoreSize(); 14454 Info.align = 1; 14455 Info.flags = MachineMemOperand::MOLoad; 14456 return true; 14457 } 14458 case Intrinsic::ppc_qpx_qvstfd: 14459 case Intrinsic::ppc_qpx_qvstfs: 14460 case Intrinsic::ppc_qpx_qvstfcd: 14461 case Intrinsic::ppc_qpx_qvstfcs: 14462 case Intrinsic::ppc_qpx_qvstfiw: 14463 case Intrinsic::ppc_altivec_stvx: 14464 case Intrinsic::ppc_altivec_stvxl: 14465 case Intrinsic::ppc_altivec_stvebx: 14466 case Intrinsic::ppc_altivec_stvehx: 14467 case Intrinsic::ppc_altivec_stvewx: 14468 case Intrinsic::ppc_vsx_stxvd2x: 14469 case Intrinsic::ppc_vsx_stxvw4x: { 14470 EVT VT; 14471 switch (Intrinsic) { 14472 case Intrinsic::ppc_altivec_stvebx: 14473 VT = MVT::i8; 14474 break; 14475 case Intrinsic::ppc_altivec_stvehx: 14476 VT = MVT::i16; 14477 break; 14478 case Intrinsic::ppc_altivec_stvewx: 14479 VT = MVT::i32; 14480 break; 14481 case Intrinsic::ppc_vsx_stxvd2x: 14482 VT = MVT::v2f64; 14483 break; 14484 case Intrinsic::ppc_qpx_qvstfd: 14485 VT = MVT::v4f64; 14486 break; 14487 case Intrinsic::ppc_qpx_qvstfs: 14488 VT = MVT::v4f32; 14489 break; 14490 case Intrinsic::ppc_qpx_qvstfcd: 14491 VT = MVT::v2f64; 14492 break; 14493 case Intrinsic::ppc_qpx_qvstfcs: 14494 VT = MVT::v2f32; 14495 break; 14496 default: 14497 VT = MVT::v4i32; 14498 break; 14499 } 14500 14501 Info.opc = ISD::INTRINSIC_VOID; 14502 Info.memVT = VT; 14503 Info.ptrVal = I.getArgOperand(1); 14504 Info.offset = -VT.getStoreSize()+1; 14505 Info.size = 2*VT.getStoreSize()-1; 14506 Info.align = 1; 14507 Info.flags = MachineMemOperand::MOStore; 14508 return true; 14509 } 14510 case Intrinsic::ppc_qpx_qvstfda: 14511 case Intrinsic::ppc_qpx_qvstfsa: 14512 case Intrinsic::ppc_qpx_qvstfcda: 14513 case Intrinsic::ppc_qpx_qvstfcsa: 14514 case Intrinsic::ppc_qpx_qvstfiwa: { 14515 EVT VT; 14516 switch (Intrinsic) { 14517 case Intrinsic::ppc_qpx_qvstfda: 14518 VT = MVT::v4f64; 14519 break; 14520 case Intrinsic::ppc_qpx_qvstfsa: 14521 VT = MVT::v4f32; 14522 break; 14523 case Intrinsic::ppc_qpx_qvstfcda: 14524 VT = MVT::v2f64; 14525 break; 14526 case Intrinsic::ppc_qpx_qvstfcsa: 14527 VT = MVT::v2f32; 14528 break; 14529 default: 14530 VT = MVT::v4i32; 14531 break; 14532 } 14533 14534 Info.opc = ISD::INTRINSIC_VOID; 14535 Info.memVT = VT; 14536 Info.ptrVal = I.getArgOperand(1); 14537 Info.offset = 0; 14538 Info.size = VT.getStoreSize(); 14539 Info.align = 1; 14540 Info.flags = MachineMemOperand::MOStore; 14541 return true; 14542 } 14543 default: 14544 break; 14545 } 14546 14547 return false; 14548 } 14549 14550 /// getOptimalMemOpType - Returns the target specific optimal type for load 14551 /// and store operations as a result of memset, memcpy, and memmove 14552 /// lowering. If DstAlign is zero that means it's safe to destination 14553 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14554 /// means there isn't a need to check it against alignment requirement, 14555 /// probably because the source does not need to be loaded. If 'IsMemset' is 14556 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14557 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14558 /// source is constant so it does not need to be loaded. 14559 /// It returns EVT::Other if the type should be determined using generic 14560 /// target-independent logic. 14561 EVT PPCTargetLowering::getOptimalMemOpType( 14562 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14563 bool ZeroMemset, bool MemcpyStrSrc, 14564 const AttributeList &FuncAttributes) const { 14565 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14566 // When expanding a memset, require at least two QPX instructions to cover 14567 // the cost of loading the value to be stored from the constant pool. 14568 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14569 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14570 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14571 return MVT::v4f64; 14572 } 14573 14574 // We should use Altivec/VSX loads and stores when available. For unaligned 14575 // addresses, unaligned VSX loads are only fast starting with the P8. 14576 if (Subtarget.hasAltivec() && Size >= 16 && 14577 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14578 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14579 return MVT::v4i32; 14580 } 14581 14582 if (Subtarget.isPPC64()) { 14583 return MVT::i64; 14584 } 14585 14586 return MVT::i32; 14587 } 14588 14589 /// Returns true if it is beneficial to convert a load of a constant 14590 /// to just the constant itself. 14591 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14592 Type *Ty) const { 14593 assert(Ty->isIntegerTy()); 14594 14595 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14596 return !(BitSize == 0 || BitSize > 64); 14597 } 14598 14599 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14600 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14601 return false; 14602 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14603 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14604 return NumBits1 == 64 && NumBits2 == 32; 14605 } 14606 14607 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14608 if (!VT1.isInteger() || !VT2.isInteger()) 14609 return false; 14610 unsigned NumBits1 = VT1.getSizeInBits(); 14611 unsigned NumBits2 = VT2.getSizeInBits(); 14612 return NumBits1 == 64 && NumBits2 == 32; 14613 } 14614 14615 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14616 // Generally speaking, zexts are not free, but they are free when they can be 14617 // folded with other operations. 14618 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14619 EVT MemVT = LD->getMemoryVT(); 14620 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14621 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14622 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14623 LD->getExtensionType() == ISD::ZEXTLOAD)) 14624 return true; 14625 } 14626 14627 // FIXME: Add other cases... 14628 // - 32-bit shifts with a zext to i64 14629 // - zext after ctlz, bswap, etc. 14630 // - zext after and by a constant mask 14631 14632 return TargetLowering::isZExtFree(Val, VT2); 14633 } 14634 14635 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14636 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14637 "invalid fpext types"); 14638 // Extending to float128 is not free. 14639 if (DestVT == MVT::f128) 14640 return false; 14641 return true; 14642 } 14643 14644 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14645 return isInt<16>(Imm) || isUInt<16>(Imm); 14646 } 14647 14648 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14649 return isInt<16>(Imm) || isUInt<16>(Imm); 14650 } 14651 14652 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14653 unsigned, 14654 unsigned, 14655 MachineMemOperand::Flags, 14656 bool *Fast) const { 14657 if (DisablePPCUnaligned) 14658 return false; 14659 14660 // PowerPC supports unaligned memory access for simple non-vector types. 14661 // Although accessing unaligned addresses is not as efficient as accessing 14662 // aligned addresses, it is generally more efficient than manual expansion, 14663 // and generally only traps for software emulation when crossing page 14664 // boundaries. 14665 14666 if (!VT.isSimple()) 14667 return false; 14668 14669 if (VT.getSimpleVT().isVector()) { 14670 if (Subtarget.hasVSX()) { 14671 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14672 VT != MVT::v4f32 && VT != MVT::v4i32) 14673 return false; 14674 } else { 14675 return false; 14676 } 14677 } 14678 14679 if (VT == MVT::ppcf128) 14680 return false; 14681 14682 if (Fast) 14683 *Fast = true; 14684 14685 return true; 14686 } 14687 14688 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14689 VT = VT.getScalarType(); 14690 14691 if (!VT.isSimple()) 14692 return false; 14693 14694 switch (VT.getSimpleVT().SimpleTy) { 14695 case MVT::f32: 14696 case MVT::f64: 14697 return true; 14698 case MVT::f128: 14699 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14700 default: 14701 break; 14702 } 14703 14704 return false; 14705 } 14706 14707 const MCPhysReg * 14708 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14709 // LR is a callee-save register, but we must treat it as clobbered by any call 14710 // site. Hence we include LR in the scratch registers, which are in turn added 14711 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14712 // to CTR, which is used by any indirect call. 14713 static const MCPhysReg ScratchRegs[] = { 14714 PPC::X12, PPC::LR8, PPC::CTR8, 0 14715 }; 14716 14717 return ScratchRegs; 14718 } 14719 14720 unsigned PPCTargetLowering::getExceptionPointerRegister( 14721 const Constant *PersonalityFn) const { 14722 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14723 } 14724 14725 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14726 const Constant *PersonalityFn) const { 14727 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14728 } 14729 14730 bool 14731 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14732 EVT VT , unsigned DefinedValues) const { 14733 if (VT == MVT::v2i64) 14734 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14735 14736 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14737 return true; 14738 14739 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14740 } 14741 14742 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14743 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14744 return TargetLowering::getSchedulingPreference(N); 14745 14746 return Sched::ILP; 14747 } 14748 14749 // Create a fast isel object. 14750 FastISel * 14751 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14752 const TargetLibraryInfo *LibInfo) const { 14753 return PPC::createFastISel(FuncInfo, LibInfo); 14754 } 14755 14756 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14757 if (Subtarget.isDarwinABI()) return; 14758 if (!Subtarget.isPPC64()) return; 14759 14760 // Update IsSplitCSR in PPCFunctionInfo 14761 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14762 PFI->setIsSplitCSR(true); 14763 } 14764 14765 void PPCTargetLowering::insertCopiesSplitCSR( 14766 MachineBasicBlock *Entry, 14767 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14768 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14769 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14770 if (!IStart) 14771 return; 14772 14773 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14774 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14775 MachineBasicBlock::iterator MBBI = Entry->begin(); 14776 for (const MCPhysReg *I = IStart; *I; ++I) { 14777 const TargetRegisterClass *RC = nullptr; 14778 if (PPC::G8RCRegClass.contains(*I)) 14779 RC = &PPC::G8RCRegClass; 14780 else if (PPC::F8RCRegClass.contains(*I)) 14781 RC = &PPC::F8RCRegClass; 14782 else if (PPC::CRRCRegClass.contains(*I)) 14783 RC = &PPC::CRRCRegClass; 14784 else if (PPC::VRRCRegClass.contains(*I)) 14785 RC = &PPC::VRRCRegClass; 14786 else 14787 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14788 14789 unsigned NewVR = MRI->createVirtualRegister(RC); 14790 // Create copy from CSR to a virtual register. 14791 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14792 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14793 // nounwind. If we want to generalize this later, we may need to emit 14794 // CFI pseudo-instructions. 14795 assert(Entry->getParent()->getFunction().hasFnAttribute( 14796 Attribute::NoUnwind) && 14797 "Function should be nounwind in insertCopiesSplitCSR!"); 14798 Entry->addLiveIn(*I); 14799 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14800 .addReg(*I); 14801 14802 // Insert the copy-back instructions right before the terminator. 14803 for (auto *Exit : Exits) 14804 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14805 TII->get(TargetOpcode::COPY), *I) 14806 .addReg(NewVR); 14807 } 14808 } 14809 14810 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14811 bool PPCTargetLowering::useLoadStackGuardNode() const { 14812 if (!Subtarget.isTargetLinux()) 14813 return TargetLowering::useLoadStackGuardNode(); 14814 return true; 14815 } 14816 14817 // Override to disable global variable loading on Linux. 14818 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14819 if (!Subtarget.isTargetLinux()) 14820 return TargetLowering::insertSSPDeclarations(M); 14821 } 14822 14823 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 14824 bool ForCodeSize) const { 14825 if (!VT.isSimple() || !Subtarget.hasVSX()) 14826 return false; 14827 14828 switch(VT.getSimpleVT().SimpleTy) { 14829 default: 14830 // For FP types that are currently not supported by PPC backend, return 14831 // false. Examples: f16, f80. 14832 return false; 14833 case MVT::f32: 14834 case MVT::f64: 14835 case MVT::ppcf128: 14836 return Imm.isPosZero(); 14837 } 14838 } 14839 14840 // For vector shift operation op, fold 14841 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14842 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14843 SelectionDAG &DAG) { 14844 SDValue N0 = N->getOperand(0); 14845 SDValue N1 = N->getOperand(1); 14846 EVT VT = N0.getValueType(); 14847 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14848 unsigned Opcode = N->getOpcode(); 14849 unsigned TargetOpcode; 14850 14851 switch (Opcode) { 14852 default: 14853 llvm_unreachable("Unexpected shift operation"); 14854 case ISD::SHL: 14855 TargetOpcode = PPCISD::SHL; 14856 break; 14857 case ISD::SRL: 14858 TargetOpcode = PPCISD::SRL; 14859 break; 14860 case ISD::SRA: 14861 TargetOpcode = PPCISD::SRA; 14862 break; 14863 } 14864 14865 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14866 N1->getOpcode() == ISD::AND) 14867 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14868 if (Mask->getZExtValue() == OpSizeInBits - 1) 14869 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14870 14871 return SDValue(); 14872 } 14873 14874 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14875 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14876 return Value; 14877 14878 SDValue N0 = N->getOperand(0); 14879 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14880 if (!Subtarget.isISA3_0() || 14881 N0.getOpcode() != ISD::SIGN_EXTEND || 14882 N0.getOperand(0).getValueType() != MVT::i32 || 14883 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14884 return SDValue(); 14885 14886 // We can't save an operation here if the value is already extended, and 14887 // the existing shift is easier to combine. 14888 SDValue ExtsSrc = N0.getOperand(0); 14889 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14890 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14891 return SDValue(); 14892 14893 SDLoc DL(N0); 14894 SDValue ShiftBy = SDValue(CN1, 0); 14895 // We want the shift amount to be i32 on the extswli, but the shift could 14896 // have an i64. 14897 if (ShiftBy.getValueType() == MVT::i64) 14898 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14899 14900 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14901 ShiftBy); 14902 } 14903 14904 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14905 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14906 return Value; 14907 14908 return SDValue(); 14909 } 14910 14911 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14912 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14913 return Value; 14914 14915 return SDValue(); 14916 } 14917 14918 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14919 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14920 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14921 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14922 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14923 const PPCSubtarget &Subtarget) { 14924 if (!Subtarget.isPPC64()) 14925 return SDValue(); 14926 14927 SDValue LHS = N->getOperand(0); 14928 SDValue RHS = N->getOperand(1); 14929 14930 auto isZextOfCompareWithConstant = [](SDValue Op) { 14931 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14932 Op.getValueType() != MVT::i64) 14933 return false; 14934 14935 SDValue Cmp = Op.getOperand(0); 14936 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14937 Cmp.getOperand(0).getValueType() != MVT::i64) 14938 return false; 14939 14940 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14941 int64_t NegConstant = 0 - Constant->getSExtValue(); 14942 // Due to the limitations of the addi instruction, 14943 // -C is required to be [-32768, 32767]. 14944 return isInt<16>(NegConstant); 14945 } 14946 14947 return false; 14948 }; 14949 14950 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14951 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14952 14953 // If there is a pattern, canonicalize a zext operand to the RHS. 14954 if (LHSHasPattern && !RHSHasPattern) 14955 std::swap(LHS, RHS); 14956 else if (!LHSHasPattern && !RHSHasPattern) 14957 return SDValue(); 14958 14959 SDLoc DL(N); 14960 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 14961 SDValue Cmp = RHS.getOperand(0); 14962 SDValue Z = Cmp.getOperand(0); 14963 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14964 14965 assert(Constant && "Constant Should not be a null pointer."); 14966 int64_t NegConstant = 0 - Constant->getSExtValue(); 14967 14968 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14969 default: break; 14970 case ISD::SETNE: { 14971 // when C == 0 14972 // --> addze X, (addic Z, -1).carry 14973 // / 14974 // add X, (zext(setne Z, C))-- 14975 // \ when -32768 <= -C <= 32767 && C != 0 14976 // --> addze X, (addic (addi Z, -C), -1).carry 14977 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14978 DAG.getConstant(NegConstant, DL, MVT::i64)); 14979 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14980 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14981 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14982 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14983 SDValue(Addc.getNode(), 1)); 14984 } 14985 case ISD::SETEQ: { 14986 // when C == 0 14987 // --> addze X, (subfic Z, 0).carry 14988 // / 14989 // add X, (zext(sete Z, C))-- 14990 // \ when -32768 <= -C <= 32767 && C != 0 14991 // --> addze X, (subfic (addi Z, -C), 0).carry 14992 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14993 DAG.getConstant(NegConstant, DL, MVT::i64)); 14994 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14995 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14996 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14997 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14998 SDValue(Subc.getNode(), 1)); 14999 } 15000 } 15001 15002 return SDValue(); 15003 } 15004 15005 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15006 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15007 return Value; 15008 15009 return SDValue(); 15010 } 15011 15012 // Detect TRUNCATE operations on bitcasts of float128 values. 15013 // What we are looking for here is the situtation where we extract a subset 15014 // of bits from a 128 bit float. 15015 // This can be of two forms: 15016 // 1) BITCAST of f128 feeding TRUNCATE 15017 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15018 // The reason this is required is because we do not have a legal i128 type 15019 // and so we want to prevent having to store the f128 and then reload part 15020 // of it. 15021 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15022 DAGCombinerInfo &DCI) const { 15023 // If we are using CRBits then try that first. 15024 if (Subtarget.useCRBits()) { 15025 // Check if CRBits did anything and return that if it did. 15026 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15027 return CRTruncValue; 15028 } 15029 15030 SDLoc dl(N); 15031 SDValue Op0 = N->getOperand(0); 15032 15033 // Looking for a truncate of i128 to i64. 15034 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15035 return SDValue(); 15036 15037 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15038 15039 // SRL feeding TRUNCATE. 15040 if (Op0.getOpcode() == ISD::SRL) { 15041 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15042 // The right shift has to be by 64 bits. 15043 if (!ConstNode || ConstNode->getZExtValue() != 64) 15044 return SDValue(); 15045 15046 // Switch the element number to extract. 15047 EltToExtract = EltToExtract ? 0 : 1; 15048 // Update Op0 past the SRL. 15049 Op0 = Op0.getOperand(0); 15050 } 15051 15052 // BITCAST feeding a TRUNCATE possibly via SRL. 15053 if (Op0.getOpcode() == ISD::BITCAST && 15054 Op0.getValueType() == MVT::i128 && 15055 Op0.getOperand(0).getValueType() == MVT::f128) { 15056 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15057 return DCI.DAG.getNode( 15058 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15059 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15060 } 15061 return SDValue(); 15062 } 15063 15064 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15065 SelectionDAG &DAG = DCI.DAG; 15066 15067 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15068 if (!ConstOpOrElement) 15069 return SDValue(); 15070 15071 // An imul is usually smaller than the alternative sequence for legal type. 15072 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15073 isOperationLegal(ISD::MUL, N->getValueType(0))) 15074 return SDValue(); 15075 15076 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15077 switch (this->Subtarget.getDarwinDirective()) { 15078 default: 15079 // TODO: enhance the condition for subtarget before pwr8 15080 return false; 15081 case PPC::DIR_PWR8: 15082 // type mul add shl 15083 // scalar 4 1 1 15084 // vector 7 2 2 15085 return true; 15086 case PPC::DIR_PWR9: 15087 // type mul add shl 15088 // scalar 5 2 2 15089 // vector 7 2 2 15090 15091 // The cycle RATIO of related operations are showed as a table above. 15092 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15093 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15094 // are 4, it is always profitable; but for 3 instrs patterns 15095 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15096 // So we should only do it for vector type. 15097 return IsAddOne && IsNeg ? VT.isVector() : true; 15098 } 15099 }; 15100 15101 EVT VT = N->getValueType(0); 15102 SDLoc DL(N); 15103 15104 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15105 bool IsNeg = MulAmt.isNegative(); 15106 APInt MulAmtAbs = MulAmt.abs(); 15107 15108 if ((MulAmtAbs - 1).isPowerOf2()) { 15109 // (mul x, 2^N + 1) => (add (shl x, N), x) 15110 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15111 15112 if (!IsProfitable(IsNeg, true, VT)) 15113 return SDValue(); 15114 15115 SDValue Op0 = N->getOperand(0); 15116 SDValue Op1 = 15117 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15118 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15119 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15120 15121 if (!IsNeg) 15122 return Res; 15123 15124 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15125 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15126 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15127 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15128 15129 if (!IsProfitable(IsNeg, false, VT)) 15130 return SDValue(); 15131 15132 SDValue Op0 = N->getOperand(0); 15133 SDValue Op1 = 15134 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15135 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15136 15137 if (!IsNeg) 15138 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15139 else 15140 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15141 15142 } else { 15143 return SDValue(); 15144 } 15145 } 15146 15147 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15148 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15149 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 15150 return false; 15151 15152 // If not a tail call then no need to proceed. 15153 if (!CI->isTailCall()) 15154 return false; 15155 15156 // If tail calls are disabled for the caller then we are done. 15157 const Function *Caller = CI->getParent()->getParent(); 15158 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15159 if (Attr.getValueAsString() == "true") 15160 return false; 15161 15162 // If sibling calls have been disabled and tail-calls aren't guaranteed 15163 // there is no reason to duplicate. 15164 auto &TM = getTargetMachine(); 15165 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15166 return false; 15167 15168 // Can't tail call a function called indirectly, or if it has variadic args. 15169 const Function *Callee = CI->getCalledFunction(); 15170 if (!Callee || Callee->isVarArg()) 15171 return false; 15172 15173 // Make sure the callee and caller calling conventions are eligible for tco. 15174 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15175 CI->getCallingConv())) 15176 return false; 15177 15178 // If the function is local then we have a good chance at tail-calling it 15179 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15180 } 15181 15182 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15183 if (!Subtarget.hasVSX()) 15184 return false; 15185 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15186 return true; 15187 return VT == MVT::f32 || VT == MVT::f64 || 15188 VT == MVT::v4f32 || VT == MVT::v2f64; 15189 } 15190 15191 bool PPCTargetLowering:: 15192 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15193 const Value *Mask = AndI.getOperand(1); 15194 // If the mask is suitable for andi. or andis. we should sink the and. 15195 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15196 // Can't handle constants wider than 64-bits. 15197 if (CI->getBitWidth() > 64) 15198 return false; 15199 int64_t ConstVal = CI->getZExtValue(); 15200 return isUInt<16>(ConstVal) || 15201 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15202 } 15203 15204 // For non-constant masks, we can always use the record-form and. 15205 return true; 15206 } 15207 15208 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15209 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15210 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15211 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15212 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15213 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15214 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15215 assert(Subtarget.hasP9Altivec() && 15216 "Only combine this when P9 altivec supported!"); 15217 EVT VT = N->getValueType(0); 15218 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15219 return SDValue(); 15220 15221 SelectionDAG &DAG = DCI.DAG; 15222 SDLoc dl(N); 15223 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15224 // Even for signed integers, if it's known to be positive (as signed 15225 // integer) due to zero-extended inputs. 15226 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15227 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15228 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15229 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15230 (SubOpcd1 == ISD::ZERO_EXTEND || 15231 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15232 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15233 N->getOperand(0)->getOperand(0), 15234 N->getOperand(0)->getOperand(1), 15235 DAG.getTargetConstant(0, dl, MVT::i32)); 15236 } 15237 15238 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15239 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15240 N->getOperand(0).hasOneUse()) { 15241 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15242 N->getOperand(0)->getOperand(0), 15243 N->getOperand(0)->getOperand(1), 15244 DAG.getTargetConstant(1, dl, MVT::i32)); 15245 } 15246 } 15247 15248 return SDValue(); 15249 } 15250 15251 // For type v4i32/v8ii16/v16i8, transform 15252 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15253 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15254 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15255 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15256 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15257 DAGCombinerInfo &DCI) const { 15258 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15259 assert(Subtarget.hasP9Altivec() && 15260 "Only combine this when P9 altivec supported!"); 15261 15262 SelectionDAG &DAG = DCI.DAG; 15263 SDLoc dl(N); 15264 SDValue Cond = N->getOperand(0); 15265 SDValue TrueOpnd = N->getOperand(1); 15266 SDValue FalseOpnd = N->getOperand(2); 15267 EVT VT = N->getOperand(1).getValueType(); 15268 15269 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15270 FalseOpnd.getOpcode() != ISD::SUB) 15271 return SDValue(); 15272 15273 // ABSD only available for type v4i32/v8i16/v16i8 15274 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15275 return SDValue(); 15276 15277 // At least to save one more dependent computation 15278 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15279 return SDValue(); 15280 15281 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15282 15283 // Can only handle unsigned comparison here 15284 switch (CC) { 15285 default: 15286 return SDValue(); 15287 case ISD::SETUGT: 15288 case ISD::SETUGE: 15289 break; 15290 case ISD::SETULT: 15291 case ISD::SETULE: 15292 std::swap(TrueOpnd, FalseOpnd); 15293 break; 15294 } 15295 15296 SDValue CmpOpnd1 = Cond.getOperand(0); 15297 SDValue CmpOpnd2 = Cond.getOperand(1); 15298 15299 // SETCC CmpOpnd1 CmpOpnd2 cond 15300 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15301 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15302 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15303 TrueOpnd.getOperand(1) == CmpOpnd2 && 15304 FalseOpnd.getOperand(0) == CmpOpnd2 && 15305 FalseOpnd.getOperand(1) == CmpOpnd1) { 15306 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15307 CmpOpnd1, CmpOpnd2, 15308 DAG.getTargetConstant(0, dl, MVT::i32)); 15309 } 15310 15311 return SDValue(); 15312 } 15313