1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGISel.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/IntrinsicsPowerPC.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MachineValueType.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <limits> 63 #include <memory> 64 #include <new> 65 #include <tuple> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "ppc-codegen" 71 72 STATISTIC(NumSextSetcc, 73 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 74 STATISTIC(NumZextSetcc, 75 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 76 STATISTIC(SignExtensionsAdded, 77 "Number of sign extensions for compare inputs added."); 78 STATISTIC(ZeroExtensionsAdded, 79 "Number of zero extensions for compare inputs added."); 80 STATISTIC(NumLogicOpsOnComparison, 81 "Number of logical ops on i1 values calculated in GPR."); 82 STATISTIC(OmittedForNonExtendUses, 83 "Number of compares not eliminated as they have non-extending uses."); 84 STATISTIC(NumP9Setb, 85 "Number of compares lowered to setb."); 86 87 // FIXME: Remove this once the bug has been fixed! 88 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 89 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 90 91 static cl::opt<bool> 92 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 93 cl::desc("use aggressive ppc isel for bit permutations"), 94 cl::Hidden); 95 static cl::opt<bool> BPermRewriterNoMasking( 96 "ppc-bit-perm-rewriter-stress-rotates", 97 cl::desc("stress rotate selection in aggressive ppc isel for " 98 "bit permutations"), 99 cl::Hidden); 100 101 static cl::opt<bool> EnableBranchHint( 102 "ppc-use-branch-hint", cl::init(true), 103 cl::desc("Enable static hinting of branches on ppc"), 104 cl::Hidden); 105 106 static cl::opt<bool> EnableTLSOpt( 107 "ppc-tls-opt", cl::init(true), 108 cl::desc("Enable tls optimization peephole"), 109 cl::Hidden); 110 111 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 112 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 113 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 114 115 static cl::opt<ICmpInGPRType> CmpInGPR( 116 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 117 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 118 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 119 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 120 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 121 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 122 clEnumValN(ICGPR_NonExtIn, "nonextin", 123 "Only comparisons where inputs don't need [sz]ext."), 124 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 125 clEnumValN(ICGPR_ZextI32, "zexti32", 126 "Only i32 comparisons with zext result."), 127 clEnumValN(ICGPR_ZextI64, "zexti64", 128 "Only i64 comparisons with zext result."), 129 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 130 clEnumValN(ICGPR_SextI32, "sexti32", 131 "Only i32 comparisons with sext result."), 132 clEnumValN(ICGPR_SextI64, "sexti64", 133 "Only i64 comparisons with sext result."))); 134 namespace { 135 136 //===--------------------------------------------------------------------===// 137 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 138 /// instructions for SelectionDAG operations. 139 /// 140 class PPCDAGToDAGISel : public SelectionDAGISel { 141 const PPCTargetMachine &TM; 142 const PPCSubtarget *Subtarget = nullptr; 143 const PPCTargetLowering *PPCLowering = nullptr; 144 unsigned GlobalBaseReg = 0; 145 146 public: 147 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) 148 : SelectionDAGISel(tm, OptLevel), TM(tm) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override { 151 // Make sure we re-emit a set of the global base reg if necessary 152 GlobalBaseReg = 0; 153 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 154 PPCLowering = Subtarget->getTargetLowering(); 155 if (Subtarget->hasROPProtect()) { 156 // Create a place on the stack for the ROP Protection Hash. 157 // The ROP Protection Hash will always be 8 bytes and aligned to 8 158 // bytes. 159 MachineFrameInfo &MFI = MF.getFrameInfo(); 160 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 161 const int Result = MFI.CreateStackObject(8, Align(8), false); 162 FI->setROPProtectionHashSaveIndex(Result); 163 } 164 SelectionDAGISel::runOnMachineFunction(MF); 165 166 return true; 167 } 168 169 void PreprocessISelDAG() override; 170 void PostprocessISelDAG() override; 171 172 /// getI16Imm - Return a target constant with the specified value, of type 173 /// i16. 174 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 175 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 176 } 177 178 /// getI32Imm - Return a target constant with the specified value, of type 179 /// i32. 180 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 181 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 182 } 183 184 /// getI64Imm - Return a target constant with the specified value, of type 185 /// i64. 186 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 187 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 188 } 189 190 /// getSmallIPtrImm - Return a target constant of pointer type. 191 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { 192 return CurDAG->getTargetConstant( 193 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 194 } 195 196 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 197 /// rotate and mask opcode and mask operation. 198 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 199 unsigned &SH, unsigned &MB, unsigned &ME); 200 201 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 202 /// base register. Return the virtual register that holds this value. 203 SDNode *getGlobalBaseReg(); 204 205 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 206 207 // Select - Convert the specified operand from a target-independent to a 208 // target-specific node if it hasn't already been changed. 209 void Select(SDNode *N) override; 210 211 bool tryBitfieldInsert(SDNode *N); 212 bool tryBitPermutation(SDNode *N); 213 bool tryIntCompareInGPR(SDNode *N); 214 215 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 216 // an X-Form load instruction with the offset being a relocation coming from 217 // the PPCISD::ADD_TLS. 218 bool tryTLSXFormLoad(LoadSDNode *N); 219 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 220 // an X-Form store instruction with the offset being a relocation coming from 221 // the PPCISD::ADD_TLS. 222 bool tryTLSXFormStore(StoreSDNode *N); 223 /// SelectCC - Select a comparison of the specified values with the 224 /// specified condition code, returning the CR# of the expression. 225 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 226 const SDLoc &dl, SDValue Chain = SDValue()); 227 228 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 229 /// immediate field. Note that the operand at this point is already the 230 /// result of a prior SelectAddressRegImm call. 231 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 232 if (N.getOpcode() == ISD::TargetConstant || 233 N.getOpcode() == ISD::TargetGlobalAddress) { 234 Out = N; 235 return true; 236 } 237 238 return false; 239 } 240 241 /// SelectDSForm - Returns true if address N can be represented by the 242 /// addressing mode of DSForm instructions (a base register, plus a signed 243 /// 16-bit displacement that is a multiple of 4. 244 bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 245 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 246 Align(4)) == PPC::AM_DSForm; 247 } 248 249 /// SelectDQForm - Returns true if address N can be represented by the 250 /// addressing mode of DQForm instructions (a base register, plus a signed 251 /// 16-bit displacement that is a multiple of 16. 252 bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 253 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 254 Align(16)) == PPC::AM_DQForm; 255 } 256 257 /// SelectDForm - Returns true if address N can be represented by 258 /// the addressing mode of DForm instructions (a base register, plus a 259 /// signed 16-bit immediate. 260 bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 261 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 262 None) == PPC::AM_DForm; 263 } 264 265 /// SelectPCRelForm - Returns true if address N can be represented by 266 /// PC-Relative addressing mode. 267 bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp, 268 SDValue &Base) { 269 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 270 None) == PPC::AM_PCRel; 271 } 272 273 /// SelectPDForm - Returns true if address N can be represented by Prefixed 274 /// DForm addressing mode (a base register, plus a signed 34-bit immediate. 275 bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 276 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 277 None) == PPC::AM_PrefixDForm; 278 } 279 280 /// SelectXForm - Returns true if address N can be represented by the 281 /// addressing mode of XForm instructions (an indexed [r+r] operation). 282 bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) { 283 return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG, 284 None) == PPC::AM_XForm; 285 } 286 287 /// SelectForceXForm - Given the specified address, force it to be 288 /// represented as an indexed [r+r] operation (an XForm instruction). 289 bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp, 290 SDValue &Base) { 291 return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) == 292 PPC::AM_XForm; 293 } 294 295 /// SelectAddrIdx - Given the specified address, check to see if it can be 296 /// represented as an indexed [r+r] operation. 297 /// This is for xform instructions whose associated displacement form is D. 298 /// The last parameter \p 0 means associated D form has no requirment for 16 299 /// bit signed displacement. 300 /// Returns false if it can be represented by [r+imm], which are preferred. 301 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 302 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None); 303 } 304 305 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 306 /// represented as an indexed [r+r] operation. 307 /// This is for xform instructions whose associated displacement form is DS. 308 /// The last parameter \p 4 means associated DS form 16 bit signed 309 /// displacement must be a multiple of 4. 310 /// Returns false if it can be represented by [r+imm], which are preferred. 311 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 312 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 313 Align(4)); 314 } 315 316 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 317 /// represented as an indexed [r+r] operation. 318 /// This is for xform instructions whose associated displacement form is DQ. 319 /// The last parameter \p 16 means associated DQ form 16 bit signed 320 /// displacement must be a multiple of 16. 321 /// Returns false if it can be represented by [r+imm], which are preferred. 322 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 323 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 324 Align(16)); 325 } 326 327 /// SelectAddrIdxOnly - Given the specified address, force it to be 328 /// represented as an indexed [r+r] operation. 329 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 330 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 331 } 332 333 /// SelectAddrImm - Returns true if the address N can be represented by 334 /// a base register plus a signed 16-bit displacement [r+imm]. 335 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 336 /// displacement. 337 bool SelectAddrImm(SDValue N, SDValue &Disp, 338 SDValue &Base) { 339 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None); 340 } 341 342 /// SelectAddrImmX4 - Returns true if the address N can be represented by 343 /// a base register plus a signed 16-bit displacement that is a multiple of 344 /// 4 (last parameter). Suitable for use by STD and friends. 345 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 346 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); 347 } 348 349 /// SelectAddrImmX16 - Returns true if the address N can be represented by 350 /// a base register plus a signed 16-bit displacement that is a multiple of 351 /// 16(last parameter). Suitable for use by STXV and friends. 352 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 353 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 354 Align(16)); 355 } 356 357 /// SelectAddrImmX34 - Returns true if the address N can be represented by 358 /// a base register plus a signed 34-bit displacement. Suitable for use by 359 /// PSTXVP and friends. 360 bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) { 361 return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG); 362 } 363 364 // Select an address into a single register. 365 bool SelectAddr(SDValue N, SDValue &Base) { 366 Base = N; 367 return true; 368 } 369 370 bool SelectAddrPCRel(SDValue N, SDValue &Base) { 371 return PPCLowering->SelectAddressPCRel(N, Base); 372 } 373 374 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 375 /// inline asm expressions. It is always correct to compute the value into 376 /// a register. The case of adding a (possibly relocatable) constant to a 377 /// register can be improved, but it is wrong to substitute Reg+Reg for 378 /// Reg in an asm, because the load or store opcode would have to change. 379 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 380 unsigned ConstraintID, 381 std::vector<SDValue> &OutOps) override { 382 switch(ConstraintID) { 383 default: 384 errs() << "ConstraintID: " << ConstraintID << "\n"; 385 llvm_unreachable("Unexpected asm memory constraint"); 386 case InlineAsm::Constraint_es: 387 case InlineAsm::Constraint_m: 388 case InlineAsm::Constraint_o: 389 case InlineAsm::Constraint_Q: 390 case InlineAsm::Constraint_Z: 391 case InlineAsm::Constraint_Zy: 392 // We need to make sure that this one operand does not end up in r0 393 // (because we might end up lowering this as 0(%op)). 394 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 395 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 396 SDLoc dl(Op); 397 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 398 SDValue NewOp = 399 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 400 dl, Op.getValueType(), 401 Op, RC), 0); 402 403 OutOps.push_back(NewOp); 404 return false; 405 } 406 return true; 407 } 408 409 StringRef getPassName() const override { 410 return "PowerPC DAG->DAG Pattern Instruction Selection"; 411 } 412 413 // Include the pieces autogenerated from the target description. 414 #include "PPCGenDAGISel.inc" 415 416 private: 417 bool trySETCC(SDNode *N); 418 bool tryFoldSWTestBRCC(SDNode *N); 419 bool tryAsSingleRLDICL(SDNode *N); 420 bool tryAsSingleRLDICR(SDNode *N); 421 bool tryAsSingleRLWINM(SDNode *N); 422 bool tryAsSingleRLWINM8(SDNode *N); 423 bool tryAsSingleRLWIMI(SDNode *N); 424 bool tryAsPairOfRLDICL(SDNode *N); 425 bool tryAsSingleRLDIMI(SDNode *N); 426 427 void PeepholePPC64(); 428 void PeepholePPC64ZExt(); 429 void PeepholeCROps(); 430 431 SDValue combineToCMPB(SDNode *N); 432 void foldBoolExts(SDValue &Res, SDNode *&N); 433 434 bool AllUsersSelectZero(SDNode *N); 435 void SwapAllSelectUsers(SDNode *N); 436 437 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 438 void transferMemOperands(SDNode *N, SDNode *Result); 439 }; 440 441 } // end anonymous namespace 442 443 /// getGlobalBaseReg - Output the instructions required to put the 444 /// base address to use for accessing globals into a register. 445 /// 446 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 447 if (!GlobalBaseReg) { 448 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 449 // Insert the set of GlobalBaseReg into the first MBB of the function 450 MachineBasicBlock &FirstMBB = MF->front(); 451 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 452 const Module *M = MF->getFunction().getParent(); 453 DebugLoc dl; 454 455 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 456 if (Subtarget->isTargetELF()) { 457 GlobalBaseReg = PPC::R30; 458 if (!Subtarget->isSecurePlt() && 459 M->getPICLevel() == PICLevel::SmallPIC) { 460 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 461 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 462 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 463 } else { 464 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 465 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 466 Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 467 BuildMI(FirstMBB, MBBI, dl, 468 TII.get(PPC::UpdateGBR), GlobalBaseReg) 469 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 470 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 471 } 472 } else { 473 GlobalBaseReg = 474 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 475 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 476 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 477 } 478 } else { 479 // We must ensure that this sequence is dominated by the prologue. 480 // FIXME: This is a bit of a big hammer since we don't get the benefits 481 // of shrink-wrapping whenever we emit this instruction. Considering 482 // this is used in any function where we emit a jump table, this may be 483 // a significant limitation. We should consider inserting this in the 484 // block where it is used and then commoning this sequence up if it 485 // appears in multiple places. 486 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 487 // MovePCtoLR8. 488 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 489 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 490 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 491 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 492 } 493 } 494 return CurDAG->getRegister(GlobalBaseReg, 495 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 496 .getNode(); 497 } 498 499 // Check if a SDValue has the toc-data attribute. 500 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) { 501 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val); 502 if (!GA) 503 return false; 504 505 const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal()); 506 if (!GV) 507 return false; 508 509 if (!GV->hasAttribute("toc-data")) 510 return false; 511 512 // TODO: These asserts should be updated as more support for the toc data 513 // transformation is added (struct support, etc.). 514 515 assert( 516 PointerSize >= GV->getAlign().valueOrOne().value() && 517 "GlobalVariables with an alignment requirement stricter than TOC entry " 518 "size not supported by the toc data transformation."); 519 520 Type *GVType = GV->getValueType(); 521 522 assert(GVType->isSized() && "A GlobalVariable's size must be known to be " 523 "supported by the toc data transformation."); 524 525 if (GVType->isVectorTy()) 526 report_fatal_error("A GlobalVariable of Vector type is not currently " 527 "supported by the toc data transformation."); 528 529 if (GVType->isArrayTy()) 530 report_fatal_error("A GlobalVariable of Array type is not currently " 531 "supported by the toc data transformation."); 532 533 if (GVType->isStructTy()) 534 report_fatal_error("A GlobalVariable of Struct type is not currently " 535 "supported by the toc data transformation."); 536 537 assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 && 538 "A GlobalVariable with size larger than a TOC entry is not currently " 539 "supported by the toc data transformation."); 540 541 if (GV->hasLocalLinkage() || GV->hasPrivateLinkage()) 542 report_fatal_error("A GlobalVariable with private or local linkage is not " 543 "currently supported by the toc data transformation."); 544 545 assert(!GV->hasCommonLinkage() && 546 "Tentative definitions cannot have the mapping class XMC_TD."); 547 548 return true; 549 } 550 551 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 552 /// operand. If so Imm will receive the 32-bit value. 553 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 554 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 555 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 556 return true; 557 } 558 return false; 559 } 560 561 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 562 /// operand. If so Imm will receive the 64-bit value. 563 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 564 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 565 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 566 return true; 567 } 568 return false; 569 } 570 571 // isInt32Immediate - This method tests to see if a constant operand. 572 // If so Imm will receive the 32 bit value. 573 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 574 return isInt32Immediate(N.getNode(), Imm); 575 } 576 577 /// isInt64Immediate - This method tests to see if the value is a 64-bit 578 /// constant operand. If so Imm will receive the 64-bit value. 579 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 580 return isInt64Immediate(N.getNode(), Imm); 581 } 582 583 static unsigned getBranchHint(unsigned PCC, 584 const FunctionLoweringInfo &FuncInfo, 585 const SDValue &DestMBB) { 586 assert(isa<BasicBlockSDNode>(DestMBB)); 587 588 if (!FuncInfo.BPI) return PPC::BR_NO_HINT; 589 590 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 591 const Instruction *BBTerm = BB->getTerminator(); 592 593 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 594 595 const BasicBlock *TBB = BBTerm->getSuccessor(0); 596 const BasicBlock *FBB = BBTerm->getSuccessor(1); 597 598 auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); 599 auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); 600 601 // We only want to handle cases which are easy to predict at static time, e.g. 602 // C++ throw statement, that is very likely not taken, or calling never 603 // returned function, e.g. stdlib exit(). So we set Threshold to filter 604 // unwanted cases. 605 // 606 // Below is LLVM branch weight table, we only want to handle case 1, 2 607 // 608 // Case Taken:Nontaken Example 609 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 610 // 2. Invoke-terminating 1:1048575 611 // 3. Coldblock 4:64 __builtin_expect 612 // 4. Loop Branch 124:4 For loop 613 // 5. PH/ZH/FPH 20:12 614 const uint32_t Threshold = 10000; 615 616 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 617 return PPC::BR_NO_HINT; 618 619 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() 620 << "::" << BB->getName() << "'\n" 621 << " -> " << TBB->getName() << ": " << TProb << "\n" 622 << " -> " << FBB->getName() << ": " << FProb << "\n"); 623 624 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 625 626 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 627 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 628 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 629 std::swap(TProb, FProb); 630 631 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 632 } 633 634 // isOpcWithIntImmediate - This method tests to see if the node is a specific 635 // opcode and that it has a immediate integer right operand. 636 // If so Imm will receive the 32 bit value. 637 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 638 return N->getOpcode() == Opc 639 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 640 } 641 642 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 643 SDLoc dl(SN); 644 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 645 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 646 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 647 if (SN->hasOneUse()) 648 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 649 getSmallIPtrImm(Offset, dl)); 650 else 651 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 652 getSmallIPtrImm(Offset, dl))); 653 } 654 655 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 656 bool isShiftMask, unsigned &SH, 657 unsigned &MB, unsigned &ME) { 658 // Don't even go down this path for i64, since different logic will be 659 // necessary for rldicl/rldicr/rldimi. 660 if (N->getValueType(0) != MVT::i32) 661 return false; 662 663 unsigned Shift = 32; 664 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 665 unsigned Opcode = N->getOpcode(); 666 if (N->getNumOperands() != 2 || 667 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 668 return false; 669 670 if (Opcode == ISD::SHL) { 671 // apply shift left to mask if it comes first 672 if (isShiftMask) Mask = Mask << Shift; 673 // determine which bits are made indeterminant by shift 674 Indeterminant = ~(0xFFFFFFFFu << Shift); 675 } else if (Opcode == ISD::SRL) { 676 // apply shift right to mask if it comes first 677 if (isShiftMask) Mask = Mask >> Shift; 678 // determine which bits are made indeterminant by shift 679 Indeterminant = ~(0xFFFFFFFFu >> Shift); 680 // adjust for the left rotate 681 Shift = 32 - Shift; 682 } else if (Opcode == ISD::ROTL) { 683 Indeterminant = 0; 684 } else { 685 return false; 686 } 687 688 // if the mask doesn't intersect any Indeterminant bits 689 if (Mask && !(Mask & Indeterminant)) { 690 SH = Shift & 31; 691 // make sure the mask is still a mask (wrap arounds may not be) 692 return isRunOfOnes(Mask, MB, ME); 693 } 694 return false; 695 } 696 697 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 698 SDValue Base = ST->getBasePtr(); 699 if (Base.getOpcode() != PPCISD::ADD_TLS) 700 return false; 701 SDValue Offset = ST->getOffset(); 702 if (!Offset.isUndef()) 703 return false; 704 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 705 return false; 706 707 SDLoc dl(ST); 708 EVT MemVT = ST->getMemoryVT(); 709 EVT RegVT = ST->getValue().getValueType(); 710 711 unsigned Opcode; 712 switch (MemVT.getSimpleVT().SimpleTy) { 713 default: 714 return false; 715 case MVT::i8: { 716 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 717 break; 718 } 719 case MVT::i16: { 720 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 721 break; 722 } 723 case MVT::i32: { 724 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 725 break; 726 } 727 case MVT::i64: { 728 Opcode = PPC::STDXTLS; 729 break; 730 } 731 } 732 SDValue Chain = ST->getChain(); 733 SDVTList VTs = ST->getVTList(); 734 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 735 Chain}; 736 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 737 transferMemOperands(ST, MN); 738 ReplaceNode(ST, MN); 739 return true; 740 } 741 742 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 743 SDValue Base = LD->getBasePtr(); 744 if (Base.getOpcode() != PPCISD::ADD_TLS) 745 return false; 746 SDValue Offset = LD->getOffset(); 747 if (!Offset.isUndef()) 748 return false; 749 if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR) 750 return false; 751 752 SDLoc dl(LD); 753 EVT MemVT = LD->getMemoryVT(); 754 EVT RegVT = LD->getValueType(0); 755 unsigned Opcode; 756 switch (MemVT.getSimpleVT().SimpleTy) { 757 default: 758 return false; 759 case MVT::i8: { 760 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 761 break; 762 } 763 case MVT::i16: { 764 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; 765 break; 766 } 767 case MVT::i32: { 768 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; 769 break; 770 } 771 case MVT::i64: { 772 Opcode = PPC::LDXTLS; 773 break; 774 } 775 } 776 SDValue Chain = LD->getChain(); 777 SDVTList VTs = LD->getVTList(); 778 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 779 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 780 transferMemOperands(LD, MN); 781 ReplaceNode(LD, MN); 782 return true; 783 } 784 785 /// Turn an or of two masked values into the rotate left word immediate then 786 /// mask insert (rlwimi) instruction. 787 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 788 SDValue Op0 = N->getOperand(0); 789 SDValue Op1 = N->getOperand(1); 790 SDLoc dl(N); 791 792 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 793 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 794 795 unsigned TargetMask = LKnown.Zero.getZExtValue(); 796 unsigned InsertMask = RKnown.Zero.getZExtValue(); 797 798 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 799 unsigned Op0Opc = Op0.getOpcode(); 800 unsigned Op1Opc = Op1.getOpcode(); 801 unsigned Value, SH = 0; 802 TargetMask = ~TargetMask; 803 InsertMask = ~InsertMask; 804 805 // If the LHS has a foldable shift and the RHS does not, then swap it to the 806 // RHS so that we can fold the shift into the insert. 807 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 808 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 809 Op0.getOperand(0).getOpcode() == ISD::SRL) { 810 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 811 Op1.getOperand(0).getOpcode() != ISD::SRL) { 812 std::swap(Op0, Op1); 813 std::swap(Op0Opc, Op1Opc); 814 std::swap(TargetMask, InsertMask); 815 } 816 } 817 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 818 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 819 Op1.getOperand(0).getOpcode() != ISD::SRL) { 820 std::swap(Op0, Op1); 821 std::swap(Op0Opc, Op1Opc); 822 std::swap(TargetMask, InsertMask); 823 } 824 } 825 826 unsigned MB, ME; 827 if (isRunOfOnes(InsertMask, MB, ME)) { 828 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 829 isInt32Immediate(Op1.getOperand(1), Value)) { 830 Op1 = Op1.getOperand(0); 831 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 832 } 833 if (Op1Opc == ISD::AND) { 834 // The AND mask might not be a constant, and we need to make sure that 835 // if we're going to fold the masking with the insert, all bits not 836 // know to be zero in the mask are known to be one. 837 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 838 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 839 840 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 841 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 842 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 843 // Note that Value must be in range here (less than 32) because 844 // otherwise there would not be any bits set in InsertMask. 845 Op1 = Op1.getOperand(0).getOperand(0); 846 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 847 } 848 } 849 850 SH &= 31; 851 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 852 getI32Imm(ME, dl) }; 853 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 854 return true; 855 } 856 } 857 return false; 858 } 859 860 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 861 unsigned MaxTruncation = 0; 862 // Cannot use range-based for loop here as we need the actual use (i.e. we 863 // need the operand number corresponding to the use). A range-based for 864 // will unbox the use and provide an SDNode*. 865 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 866 Use != UseEnd; ++Use) { 867 unsigned Opc = 868 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 869 switch (Opc) { 870 default: return 0; 871 case ISD::TRUNCATE: 872 if (Use->isMachineOpcode()) 873 return 0; 874 MaxTruncation = 875 std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); 876 continue; 877 case ISD::STORE: { 878 if (Use->isMachineOpcode()) 879 return 0; 880 StoreSDNode *STN = cast<StoreSDNode>(*Use); 881 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 882 if (MemVTSize == 64 || Use.getOperandNo() != 0) 883 return 0; 884 MaxTruncation = std::max(MaxTruncation, MemVTSize); 885 continue; 886 } 887 case PPC::STW8: 888 case PPC::STWX8: 889 case PPC::STWU8: 890 case PPC::STWUX8: 891 if (Use.getOperandNo() != 0) 892 return 0; 893 MaxTruncation = std::max(MaxTruncation, 32u); 894 continue; 895 case PPC::STH8: 896 case PPC::STHX8: 897 case PPC::STHU8: 898 case PPC::STHUX8: 899 if (Use.getOperandNo() != 0) 900 return 0; 901 MaxTruncation = std::max(MaxTruncation, 16u); 902 continue; 903 case PPC::STB8: 904 case PPC::STBX8: 905 case PPC::STBU8: 906 case PPC::STBUX8: 907 if (Use.getOperandNo() != 0) 908 return 0; 909 MaxTruncation = std::max(MaxTruncation, 8u); 910 continue; 911 } 912 } 913 return MaxTruncation; 914 } 915 916 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive 917 // zeros and return the number of bits by the left of these consecutive zeros. 918 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) { 919 unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm)); 920 unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm)); 921 if ((HiTZ + LoLZ) >= Num) 922 return (32 + HiTZ); 923 return 0; 924 } 925 926 // Direct materialization of 64-bit constants by enumerated patterns. 927 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 928 uint64_t Imm, unsigned &InstCnt) { 929 unsigned TZ = countTrailingZeros<uint64_t>(Imm); 930 unsigned LZ = countLeadingZeros<uint64_t>(Imm); 931 unsigned TO = countTrailingOnes<uint64_t>(Imm); 932 unsigned LO = countLeadingOnes<uint64_t>(Imm); 933 unsigned Hi32 = Hi_32(Imm); 934 unsigned Lo32 = Lo_32(Imm); 935 SDNode *Result = nullptr; 936 unsigned Shift = 0; 937 938 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 939 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 940 }; 941 942 // Following patterns use 1 instructions to materialize the Imm. 943 InstCnt = 1; 944 // 1-1) Patterns : {zeros}{15-bit valve} 945 // {ones}{15-bit valve} 946 if (isInt<16>(Imm)) { 947 SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64); 948 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 949 } 950 // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros} 951 // {ones}{15-bit valve}{16 zeros} 952 if (TZ > 15 && (LZ > 32 || LO > 32)) 953 return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 954 getI32Imm((Imm >> 16) & 0xffff)); 955 956 // Following patterns use 2 instructions to materialize the Imm. 957 InstCnt = 2; 958 assert(LZ < 64 && "Unexpected leading zeros here."); 959 // Count of ones follwing the leading zeros. 960 unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ); 961 // 2-1) Patterns : {zeros}{31-bit value} 962 // {ones}{31-bit value} 963 if (isInt<32>(Imm)) { 964 uint64_t ImmHi16 = (Imm >> 16) & 0xffff; 965 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 966 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 967 return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 968 getI32Imm(Imm & 0xffff)); 969 } 970 // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros} 971 // {zeros}{15-bit value}{zeros} 972 // {zeros}{ones}{15-bit value} 973 // {ones}{15-bit value}{zeros} 974 // We can take advantage of LI's sign-extension semantics to generate leading 975 // ones, and then use RLDIC to mask off the ones in both sides after rotation. 976 if ((LZ + FO + TZ) > 48) { 977 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 978 getI32Imm((Imm >> TZ) & 0xffff)); 979 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 980 getI32Imm(TZ), getI32Imm(LZ)); 981 } 982 // 2-3) Pattern : {zeros}{15-bit value}{ones} 983 // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value, 984 // therefore we can take advantage of LI's sign-extension semantics, and then 985 // mask them off after rotation. 986 // 987 // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+ 988 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 989 // +------------------------+ +------------------------+ 990 // 63 0 63 0 991 // Imm (Imm >> (48 - LZ) & 0xffff) 992 // +----sext-----|--16-bit--+ +clear-|-----------------+ 993 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 994 // +------------------------+ +------------------------+ 995 // 63 0 63 0 996 // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ 997 if ((LZ + TO) > 48) { 998 // Since the immediates with (LZ > 32) have been handled by previous 999 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1000 // the Imm by a negative value. 1001 assert(LZ <= 32 && "Unexpected shift value."); 1002 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1003 getI32Imm((Imm >> (48 - LZ) & 0xffff))); 1004 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1005 getI32Imm(48 - LZ), getI32Imm(LZ)); 1006 } 1007 // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones} 1008 // {ones}{15-bit value}{ones} 1009 // We can take advantage of LI's sign-extension semantics to generate leading 1010 // ones, and then use RLDICL to mask off the ones in left sides (if required) 1011 // after rotation. 1012 // 1013 // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+ 1014 // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb| 1015 // +------------------------+ +------------------------+ 1016 // 63 0 63 0 1017 // Imm (Imm >> TO) & 0xffff 1018 // +----sext-----|--16-bit--+ +LZ|---------------------+ 1019 // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111| 1020 // +------------------------+ +------------------------+ 1021 // 63 0 63 0 1022 // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ 1023 if ((LZ + FO + TO) > 48) { 1024 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1025 getI32Imm((Imm >> TO) & 0xffff)); 1026 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1027 getI32Imm(TO), getI32Imm(LZ)); 1028 } 1029 // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value} 1030 // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit 1031 // value, we can use LI for Lo16 without generating leading ones then add the 1032 // Hi16(in Lo32). 1033 if (LZ == 32 && ((Lo32 & 0x8000) == 0)) { 1034 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1035 getI32Imm(Lo32 & 0xffff)); 1036 return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), 1037 getI32Imm(Lo32 >> 16)); 1038 } 1039 // 2-6) Patterns : {******}{49 zeros}{******} 1040 // {******}{49 ones}{******} 1041 // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15 1042 // bits remain on both sides. Rotate right the Imm to construct an int<16> 1043 // value, use LI for int<16> value and then use RLDICL without mask to rotate 1044 // it back. 1045 // 1046 // 1) findContiguousZerosAtLeast(Imm, 49) 1047 // +------|--zeros-|------+ +---ones--||---15 bit--+ 1048 // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb| 1049 // +----------------------+ +----------------------+ 1050 // 63 0 63 0 1051 // 1052 // 2) findContiguousZerosAtLeast(~Imm, 49) 1053 // +------|--ones--|------+ +---ones--||---15 bit--+ 1054 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1055 // +----------------------+ +----------------------+ 1056 // 63 0 63 0 1057 if ((Shift = findContiguousZerosAtLeast(Imm, 49)) || 1058 (Shift = findContiguousZerosAtLeast(~Imm, 49))) { 1059 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1060 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, 1061 getI32Imm(RotImm & 0xffff)); 1062 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1063 getI32Imm(Shift), getI32Imm(0)); 1064 } 1065 1066 // Following patterns use 3 instructions to materialize the Imm. 1067 InstCnt = 3; 1068 // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros} 1069 // {zeros}{31-bit value}{zeros} 1070 // {zeros}{ones}{31-bit value} 1071 // {ones}{31-bit value}{zeros} 1072 // We can take advantage of LIS's sign-extension semantics to generate leading 1073 // ones, add the remaining bits with ORI, and then use RLDIC to mask off the 1074 // ones in both sides after rotation. 1075 if ((LZ + FO + TZ) > 32) { 1076 uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff; 1077 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1078 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1079 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1080 getI32Imm((Imm >> TZ) & 0xffff)); 1081 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1082 getI32Imm(TZ), getI32Imm(LZ)); 1083 } 1084 // 3-2) Pattern : {zeros}{31-bit value}{ones} 1085 // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value, 1086 // therefore we can take advantage of LIS's sign-extension semantics, add 1087 // the remaining bits with ORI, and then mask them off after rotation. 1088 // This is similar to Pattern 2-3, please refer to the diagram there. 1089 if ((LZ + TO) > 32) { 1090 // Since the immediates with (LZ > 32) have been handled by previous 1091 // patterns, here we have (LZ <= 32) to make sure we will not shift right 1092 // the Imm by a negative value. 1093 assert(LZ <= 32 && "Unexpected shift value."); 1094 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1095 getI32Imm((Imm >> (48 - LZ)) & 0xffff)); 1096 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1097 getI32Imm((Imm >> (32 - LZ)) & 0xffff)); 1098 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1099 getI32Imm(32 - LZ), getI32Imm(LZ)); 1100 } 1101 // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones} 1102 // {ones}{31-bit value}{ones} 1103 // We can take advantage of LIS's sign-extension semantics to generate leading 1104 // ones, add the remaining bits with ORI, and then use RLDICL to mask off the 1105 // ones in left sides (if required) after rotation. 1106 // This is similar to Pattern 2-4, please refer to the diagram there. 1107 if ((LZ + FO + TO) > 32) { 1108 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, 1109 getI32Imm((Imm >> (TO + 16)) & 0xffff)); 1110 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1111 getI32Imm((Imm >> TO) & 0xffff)); 1112 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1113 getI32Imm(TO), getI32Imm(LZ)); 1114 } 1115 // 3-4) Patterns : High word == Low word 1116 if (Hi32 == Lo32) { 1117 // Handle the first 32 bits. 1118 uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff; 1119 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1120 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1121 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1122 getI32Imm(Lo32 & 0xffff)); 1123 // Use rldimi to insert the Low word into High word. 1124 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1125 getI32Imm(0)}; 1126 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1127 } 1128 // 3-5) Patterns : {******}{33 zeros}{******} 1129 // {******}{33 ones}{******} 1130 // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31 1131 // bits remain on both sides. Rotate right the Imm to construct an int<32> 1132 // value, use LIS + ORI for int<32> value and then use RLDICL without mask to 1133 // rotate it back. 1134 // This is similar to Pattern 2-6, please refer to the diagram there. 1135 if ((Shift = findContiguousZerosAtLeast(Imm, 33)) || 1136 (Shift = findContiguousZerosAtLeast(~Imm, 33))) { 1137 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1138 uint64_t ImmHi16 = (RotImm >> 16) & 0xffff; 1139 unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8; 1140 Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16)); 1141 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1142 getI32Imm(RotImm & 0xffff)); 1143 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1144 getI32Imm(Shift), getI32Imm(0)); 1145 } 1146 1147 InstCnt = 0; 1148 return nullptr; 1149 } 1150 1151 // Try to select instructions to generate a 64 bit immediate using prefix as 1152 // well as non prefix instructions. The function will return the SDNode 1153 // to materialize that constant or it will return nullptr if it does not 1154 // find one. The variable InstCnt is set to the number of instructions that 1155 // were selected. 1156 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl, 1157 uint64_t Imm, unsigned &InstCnt) { 1158 unsigned TZ = countTrailingZeros<uint64_t>(Imm); 1159 unsigned LZ = countLeadingZeros<uint64_t>(Imm); 1160 unsigned TO = countTrailingOnes<uint64_t>(Imm); 1161 unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ)); 1162 unsigned Hi32 = Hi_32(Imm); 1163 unsigned Lo32 = Lo_32(Imm); 1164 1165 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1166 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1167 }; 1168 1169 auto getI64Imm = [CurDAG, dl](uint64_t Imm) { 1170 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 1171 }; 1172 1173 // Following patterns use 1 instruction to materialize Imm. 1174 InstCnt = 1; 1175 1176 // The pli instruction can materialize up to 34 bits directly. 1177 // If a constant fits within 34-bits, emit the pli instruction here directly. 1178 if (isInt<34>(Imm)) 1179 return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1180 CurDAG->getTargetConstant(Imm, dl, MVT::i64)); 1181 1182 // Require at least two instructions. 1183 InstCnt = 2; 1184 SDNode *Result = nullptr; 1185 // Patterns : {zeros}{ones}{33-bit value}{zeros} 1186 // {zeros}{33-bit value}{zeros} 1187 // {zeros}{ones}{33-bit value} 1188 // {ones}{33-bit value}{zeros} 1189 // We can take advantage of PLI's sign-extension semantics to generate leading 1190 // ones, and then use RLDIC to mask off the ones on both sides after rotation. 1191 if ((LZ + FO + TZ) > 30) { 1192 APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff); 1193 APInt Extended = SignedInt34.sext(64); 1194 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1195 getI64Imm(*Extended.getRawData())); 1196 return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0), 1197 getI32Imm(TZ), getI32Imm(LZ)); 1198 } 1199 // Pattern : {zeros}{33-bit value}{ones} 1200 // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value, 1201 // therefore we can take advantage of PLI's sign-extension semantics, and then 1202 // mask them off after rotation. 1203 // 1204 // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+ 1205 // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1| 1206 // +------------------------+ +------------------------+ 1207 // 63 0 63 0 1208 // 1209 // +----sext-----|--34-bit--+ +clear-|-----------------+ 1210 // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111| 1211 // +------------------------+ +------------------------+ 1212 // 63 0 63 0 1213 if ((LZ + TO) > 30) { 1214 APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff); 1215 APInt Extended = SignedInt34.sext(64); 1216 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1217 getI64Imm(*Extended.getRawData())); 1218 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1219 getI32Imm(30 - LZ), getI32Imm(LZ)); 1220 } 1221 // Patterns : {zeros}{ones}{33-bit value}{ones} 1222 // {ones}{33-bit value}{ones} 1223 // Similar to LI we can take advantage of PLI's sign-extension semantics to 1224 // generate leading ones, and then use RLDICL to mask off the ones in left 1225 // sides (if required) after rotation. 1226 if ((LZ + FO + TO) > 30) { 1227 APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff); 1228 APInt Extended = SignedInt34.sext(64); 1229 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, 1230 getI64Imm(*Extended.getRawData())); 1231 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0), 1232 getI32Imm(TO), getI32Imm(LZ)); 1233 } 1234 // Patterns : {******}{31 zeros}{******} 1235 // : {******}{31 ones}{******} 1236 // If Imm contains 31 consecutive zeros/ones then the remaining bit count 1237 // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI 1238 // for the int<33> value and then use RLDICL without a mask to rotate it back. 1239 // 1240 // +------|--ones--|------+ +---ones--||---33 bit--+ 1241 // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb| 1242 // +----------------------+ +----------------------+ 1243 // 63 0 63 0 1244 for (unsigned Shift = 0; Shift < 63; ++Shift) { 1245 uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue(); 1246 if (isInt<34>(RotImm)) { 1247 Result = 1248 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm)); 1249 return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 1250 SDValue(Result, 0), getI32Imm(Shift), 1251 getI32Imm(0)); 1252 } 1253 } 1254 1255 // Patterns : High word == Low word 1256 // This is basically a splat of a 32 bit immediate. 1257 if (Hi32 == Lo32) { 1258 Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1259 SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32), 1260 getI32Imm(0)}; 1261 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1262 } 1263 1264 InstCnt = 3; 1265 // Catch-all 1266 // This pattern can form any 64 bit immediate in 3 instructions. 1267 SDNode *ResultHi = 1268 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32)); 1269 SDNode *ResultLo = 1270 CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32)); 1271 SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32), 1272 getI32Imm(0)}; 1273 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 1274 } 1275 1276 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm, 1277 unsigned *InstCnt = nullptr) { 1278 unsigned InstCntDirect = 0; 1279 // No more than 3 instructions is used if we can select the i64 immediate 1280 // directly. 1281 SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect); 1282 1283 const PPCSubtarget &Subtarget = 1284 CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>(); 1285 1286 // If we have prefixed instructions and there is a chance we can 1287 // materialize the constant with fewer prefixed instructions than 1288 // non-prefixed, try that. 1289 if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) { 1290 unsigned InstCntDirectP = 0; 1291 SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP); 1292 // Use the prefix case in either of two cases: 1293 // 1) We have no result from the non-prefix case to use. 1294 // 2) The non-prefix case uses more instructions than the prefix case. 1295 // If the prefix and non-prefix cases use the same number of instructions 1296 // we will prefer the non-prefix case. 1297 if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) { 1298 if (InstCnt) 1299 *InstCnt = InstCntDirectP; 1300 return ResultP; 1301 } 1302 } 1303 1304 if (Result) { 1305 if (InstCnt) 1306 *InstCnt = InstCntDirect; 1307 return Result; 1308 } 1309 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1310 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1311 }; 1312 // Handle the upper 32 bit value. 1313 Result = 1314 selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect); 1315 // Add in the last bits as required. 1316 if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) { 1317 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 1318 SDValue(Result, 0), getI32Imm(Hi16)); 1319 ++InstCntDirect; 1320 } 1321 if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) { 1322 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), 1323 getI32Imm(Lo16)); 1324 ++InstCntDirect; 1325 } 1326 if (InstCnt) 1327 *InstCnt = InstCntDirect; 1328 return Result; 1329 } 1330 1331 // Select a 64-bit constant. 1332 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1333 SDLoc dl(N); 1334 1335 // Get 64 bit value. 1336 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 1337 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1338 uint64_t SextImm = SignExtend64(Imm, MinSize); 1339 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1340 if (isInt<16>(SextImm)) 1341 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1342 } 1343 return selectI64Imm(CurDAG, dl, Imm); 1344 } 1345 1346 namespace { 1347 1348 class BitPermutationSelector { 1349 struct ValueBit { 1350 SDValue V; 1351 1352 // The bit number in the value, using a convention where bit 0 is the 1353 // lowest-order bit. 1354 unsigned Idx; 1355 1356 // ConstZero means a bit we need to mask off. 1357 // Variable is a bit comes from an input variable. 1358 // VariableKnownToBeZero is also a bit comes from an input variable, 1359 // but it is known to be already zero. So we do not need to mask them. 1360 enum Kind { 1361 ConstZero, 1362 Variable, 1363 VariableKnownToBeZero 1364 } K; 1365 1366 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1367 : V(V), Idx(I), K(K) {} 1368 ValueBit(Kind K = Variable) 1369 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 1370 1371 bool isZero() const { 1372 return K == ConstZero || K == VariableKnownToBeZero; 1373 } 1374 1375 bool hasValue() const { 1376 return K == Variable || K == VariableKnownToBeZero; 1377 } 1378 1379 SDValue getValue() const { 1380 assert(hasValue() && "Cannot get the value of a constant bit"); 1381 return V; 1382 } 1383 1384 unsigned getValueBitIndex() const { 1385 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1386 return Idx; 1387 } 1388 }; 1389 1390 // A bit group has the same underlying value and the same rotate factor. 1391 struct BitGroup { 1392 SDValue V; 1393 unsigned RLAmt; 1394 unsigned StartIdx, EndIdx; 1395 1396 // This rotation amount assumes that the lower 32 bits of the quantity are 1397 // replicated in the high 32 bits by the rotation operator (which is done 1398 // by rlwinm and friends in 64-bit mode). 1399 bool Repl32; 1400 // Did converting to Repl32 == true change the rotation factor? If it did, 1401 // it decreased it by 32. 1402 bool Repl32CR; 1403 // Was this group coalesced after setting Repl32 to true? 1404 bool Repl32Coalesced; 1405 1406 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1407 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1408 Repl32Coalesced(false) { 1409 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1410 << " [" << S << ", " << E << "]\n"); 1411 } 1412 }; 1413 1414 // Information on each (Value, RLAmt) pair (like the number of groups 1415 // associated with each) used to choose the lowering method. 1416 struct ValueRotInfo { 1417 SDValue V; 1418 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1419 unsigned NumGroups = 0; 1420 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1421 bool Repl32 = false; 1422 1423 ValueRotInfo() = default; 1424 1425 // For sorting (in reverse order) by NumGroups, and then by 1426 // FirstGroupStartIdx. 1427 bool operator < (const ValueRotInfo &Other) const { 1428 // We need to sort so that the non-Repl32 come first because, when we're 1429 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1430 // masking operation. 1431 if (Repl32 < Other.Repl32) 1432 return true; 1433 else if (Repl32 > Other.Repl32) 1434 return false; 1435 else if (NumGroups > Other.NumGroups) 1436 return true; 1437 else if (NumGroups < Other.NumGroups) 1438 return false; 1439 else if (RLAmt == 0 && Other.RLAmt != 0) 1440 return true; 1441 else if (RLAmt != 0 && Other.RLAmt == 0) 1442 return false; 1443 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1444 return true; 1445 return false; 1446 } 1447 }; 1448 1449 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1450 using ValueBitsMemoizer = 1451 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1452 ValueBitsMemoizer Memoizer; 1453 1454 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1455 // The bool is true if something interesting was deduced, otherwise if we're 1456 // providing only a generic representation of V (or something else likewise 1457 // uninteresting for instruction selection) through the SmallVector. 1458 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1459 unsigned NumBits) { 1460 auto &ValueEntry = Memoizer[V]; 1461 if (ValueEntry) 1462 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1463 ValueEntry.reset(new ValueBitsMemoizedValue()); 1464 bool &Interesting = ValueEntry->first; 1465 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1466 Bits.resize(NumBits); 1467 1468 switch (V.getOpcode()) { 1469 default: break; 1470 case ISD::ROTL: 1471 if (isa<ConstantSDNode>(V.getOperand(1))) { 1472 unsigned RotAmt = V.getConstantOperandVal(1); 1473 1474 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1475 1476 for (unsigned i = 0; i < NumBits; ++i) 1477 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1478 1479 return std::make_pair(Interesting = true, &Bits); 1480 } 1481 break; 1482 case ISD::SHL: 1483 case PPCISD::SHL: 1484 if (isa<ConstantSDNode>(V.getOperand(1))) { 1485 unsigned ShiftAmt = V.getConstantOperandVal(1); 1486 1487 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1488 1489 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1490 Bits[i] = LHSBits[i - ShiftAmt]; 1491 1492 for (unsigned i = 0; i < ShiftAmt; ++i) 1493 Bits[i] = ValueBit(ValueBit::ConstZero); 1494 1495 return std::make_pair(Interesting = true, &Bits); 1496 } 1497 break; 1498 case ISD::SRL: 1499 case PPCISD::SRL: 1500 if (isa<ConstantSDNode>(V.getOperand(1))) { 1501 unsigned ShiftAmt = V.getConstantOperandVal(1); 1502 1503 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1504 1505 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1506 Bits[i] = LHSBits[i + ShiftAmt]; 1507 1508 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1509 Bits[i] = ValueBit(ValueBit::ConstZero); 1510 1511 return std::make_pair(Interesting = true, &Bits); 1512 } 1513 break; 1514 case ISD::AND: 1515 if (isa<ConstantSDNode>(V.getOperand(1))) { 1516 uint64_t Mask = V.getConstantOperandVal(1); 1517 1518 const SmallVector<ValueBit, 64> *LHSBits; 1519 // Mark this as interesting, only if the LHS was also interesting. This 1520 // prevents the overall procedure from matching a single immediate 'and' 1521 // (which is non-optimal because such an and might be folded with other 1522 // things if we don't select it here). 1523 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1524 1525 for (unsigned i = 0; i < NumBits; ++i) 1526 if (((Mask >> i) & 1) == 1) 1527 Bits[i] = (*LHSBits)[i]; 1528 else { 1529 // AND instruction masks this bit. If the input is already zero, 1530 // we have nothing to do here. Otherwise, make the bit ConstZero. 1531 if ((*LHSBits)[i].isZero()) 1532 Bits[i] = (*LHSBits)[i]; 1533 else 1534 Bits[i] = ValueBit(ValueBit::ConstZero); 1535 } 1536 1537 return std::make_pair(Interesting, &Bits); 1538 } 1539 break; 1540 case ISD::OR: { 1541 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1542 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1543 1544 bool AllDisjoint = true; 1545 SDValue LastVal = SDValue(); 1546 unsigned LastIdx = 0; 1547 for (unsigned i = 0; i < NumBits; ++i) { 1548 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1549 // If both inputs are known to be zero and one is ConstZero and 1550 // another is VariableKnownToBeZero, we can select whichever 1551 // we like. To minimize the number of bit groups, we select 1552 // VariableKnownToBeZero if this bit is the next bit of the same 1553 // input variable from the previous bit. Otherwise, we select 1554 // ConstZero. 1555 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1556 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1557 Bits[i] = LHSBits[i]; 1558 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1559 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1560 Bits[i] = RHSBits[i]; 1561 else 1562 Bits[i] = ValueBit(ValueBit::ConstZero); 1563 } 1564 else if (LHSBits[i].isZero()) 1565 Bits[i] = RHSBits[i]; 1566 else if (RHSBits[i].isZero()) 1567 Bits[i] = LHSBits[i]; 1568 else { 1569 AllDisjoint = false; 1570 break; 1571 } 1572 // We remember the value and bit index of this bit. 1573 if (Bits[i].hasValue()) { 1574 LastVal = Bits[i].getValue(); 1575 LastIdx = Bits[i].getValueBitIndex(); 1576 } 1577 else { 1578 if (LastVal) LastVal = SDValue(); 1579 LastIdx = 0; 1580 } 1581 } 1582 1583 if (!AllDisjoint) 1584 break; 1585 1586 return std::make_pair(Interesting = true, &Bits); 1587 } 1588 case ISD::ZERO_EXTEND: { 1589 // We support only the case with zero extension from i32 to i64 so far. 1590 if (V.getValueType() != MVT::i64 || 1591 V.getOperand(0).getValueType() != MVT::i32) 1592 break; 1593 1594 const SmallVector<ValueBit, 64> *LHSBits; 1595 const unsigned NumOperandBits = 32; 1596 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1597 NumOperandBits); 1598 1599 for (unsigned i = 0; i < NumOperandBits; ++i) 1600 Bits[i] = (*LHSBits)[i]; 1601 1602 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1603 Bits[i] = ValueBit(ValueBit::ConstZero); 1604 1605 return std::make_pair(Interesting, &Bits); 1606 } 1607 case ISD::TRUNCATE: { 1608 EVT FromType = V.getOperand(0).getValueType(); 1609 EVT ToType = V.getValueType(); 1610 // We support only the case with truncate from i64 to i32. 1611 if (FromType != MVT::i64 || ToType != MVT::i32) 1612 break; 1613 const unsigned NumAllBits = FromType.getSizeInBits(); 1614 SmallVector<ValueBit, 64> *InBits; 1615 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1616 NumAllBits); 1617 const unsigned NumValidBits = ToType.getSizeInBits(); 1618 1619 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1620 // So, we cannot include this truncate. 1621 bool UseUpper32bit = false; 1622 for (unsigned i = 0; i < NumValidBits; ++i) 1623 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1624 UseUpper32bit = true; 1625 break; 1626 } 1627 if (UseUpper32bit) 1628 break; 1629 1630 for (unsigned i = 0; i < NumValidBits; ++i) 1631 Bits[i] = (*InBits)[i]; 1632 1633 return std::make_pair(Interesting, &Bits); 1634 } 1635 case ISD::AssertZext: { 1636 // For AssertZext, we look through the operand and 1637 // mark the bits known to be zero. 1638 const SmallVector<ValueBit, 64> *LHSBits; 1639 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1640 NumBits); 1641 1642 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1643 const unsigned NumValidBits = FromType.getSizeInBits(); 1644 for (unsigned i = 0; i < NumValidBits; ++i) 1645 Bits[i] = (*LHSBits)[i]; 1646 1647 // These bits are known to be zero but the AssertZext may be from a value 1648 // that already has some constant zero bits (i.e. from a masking and). 1649 for (unsigned i = NumValidBits; i < NumBits; ++i) 1650 Bits[i] = (*LHSBits)[i].hasValue() 1651 ? ValueBit((*LHSBits)[i].getValue(), 1652 (*LHSBits)[i].getValueBitIndex(), 1653 ValueBit::VariableKnownToBeZero) 1654 : ValueBit(ValueBit::ConstZero); 1655 1656 return std::make_pair(Interesting, &Bits); 1657 } 1658 case ISD::LOAD: 1659 LoadSDNode *LD = cast<LoadSDNode>(V); 1660 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1661 EVT VT = LD->getMemoryVT(); 1662 const unsigned NumValidBits = VT.getSizeInBits(); 1663 1664 for (unsigned i = 0; i < NumValidBits; ++i) 1665 Bits[i] = ValueBit(V, i); 1666 1667 // These bits are known to be zero. 1668 for (unsigned i = NumValidBits; i < NumBits; ++i) 1669 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1670 1671 // Zero-extending load itself cannot be optimized. So, it is not 1672 // interesting by itself though it gives useful information. 1673 return std::make_pair(Interesting = false, &Bits); 1674 } 1675 break; 1676 } 1677 1678 for (unsigned i = 0; i < NumBits; ++i) 1679 Bits[i] = ValueBit(V, i); 1680 1681 return std::make_pair(Interesting = false, &Bits); 1682 } 1683 1684 // For each value (except the constant ones), compute the left-rotate amount 1685 // to get it from its original to final position. 1686 void computeRotationAmounts() { 1687 NeedMask = false; 1688 RLAmt.resize(Bits.size()); 1689 for (unsigned i = 0; i < Bits.size(); ++i) 1690 if (Bits[i].hasValue()) { 1691 unsigned VBI = Bits[i].getValueBitIndex(); 1692 if (i >= VBI) 1693 RLAmt[i] = i - VBI; 1694 else 1695 RLAmt[i] = Bits.size() - (VBI - i); 1696 } else if (Bits[i].isZero()) { 1697 NeedMask = true; 1698 RLAmt[i] = UINT32_MAX; 1699 } else { 1700 llvm_unreachable("Unknown value bit type"); 1701 } 1702 } 1703 1704 // Collect groups of consecutive bits with the same underlying value and 1705 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1706 // they break up groups. 1707 void collectBitGroups(bool LateMask) { 1708 BitGroups.clear(); 1709 1710 unsigned LastRLAmt = RLAmt[0]; 1711 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1712 unsigned LastGroupStartIdx = 0; 1713 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1714 for (unsigned i = 1; i < Bits.size(); ++i) { 1715 unsigned ThisRLAmt = RLAmt[i]; 1716 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1717 if (LateMask && !ThisValue) { 1718 ThisValue = LastValue; 1719 ThisRLAmt = LastRLAmt; 1720 // If we're doing late masking, then the first bit group always starts 1721 // at zero (even if the first bits were zero). 1722 if (BitGroups.empty()) 1723 LastGroupStartIdx = 0; 1724 } 1725 1726 // If this bit is known to be zero and the current group is a bit group 1727 // of zeros, we do not need to terminate the current bit group even the 1728 // Value or RLAmt does not match here. Instead, we terminate this group 1729 // when the first non-zero bit appears later. 1730 if (IsGroupOfZeros && Bits[i].isZero()) 1731 continue; 1732 1733 // If this bit has the same underlying value and the same rotate factor as 1734 // the last one, then they're part of the same group. 1735 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1736 // We cannot continue the current group if this bits is not known to 1737 // be zero in a bit group of zeros. 1738 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1739 continue; 1740 1741 if (LastValue.getNode()) 1742 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1743 i-1)); 1744 LastRLAmt = ThisRLAmt; 1745 LastValue = ThisValue; 1746 LastGroupStartIdx = i; 1747 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1748 } 1749 if (LastValue.getNode()) 1750 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1751 Bits.size()-1)); 1752 1753 if (BitGroups.empty()) 1754 return; 1755 1756 // We might be able to combine the first and last groups. 1757 if (BitGroups.size() > 1) { 1758 // If the first and last groups are the same, then remove the first group 1759 // in favor of the last group, making the ending index of the last group 1760 // equal to the ending index of the to-be-removed first group. 1761 if (BitGroups[0].StartIdx == 0 && 1762 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1763 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1764 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1765 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1766 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1767 BitGroups.erase(BitGroups.begin()); 1768 } 1769 } 1770 } 1771 1772 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1773 // associated with each. If the number of groups are same, we prefer a group 1774 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1775 // instruction. If there is a degeneracy, pick the one that occurs 1776 // first (in the final value). 1777 void collectValueRotInfo() { 1778 ValueRots.clear(); 1779 1780 for (auto &BG : BitGroups) { 1781 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1782 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1783 VRI.V = BG.V; 1784 VRI.RLAmt = BG.RLAmt; 1785 VRI.Repl32 = BG.Repl32; 1786 VRI.NumGroups += 1; 1787 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1788 } 1789 1790 // Now that we've collected the various ValueRotInfo instances, we need to 1791 // sort them. 1792 ValueRotsVec.clear(); 1793 for (auto &I : ValueRots) { 1794 ValueRotsVec.push_back(I.second); 1795 } 1796 llvm::sort(ValueRotsVec); 1797 } 1798 1799 // In 64-bit mode, rlwinm and friends have a rotation operator that 1800 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1801 // indices of these instructions can only be in the lower 32 bits, so they 1802 // can only represent some 64-bit bit groups. However, when they can be used, 1803 // the 32-bit replication can be used to represent, as a single bit group, 1804 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1805 // groups when possible. Returns true if any of the bit groups were 1806 // converted. 1807 void assignRepl32BitGroups() { 1808 // If we have bits like this: 1809 // 1810 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1811 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1812 // Groups: | RLAmt = 8 | RLAmt = 40 | 1813 // 1814 // But, making use of a 32-bit operation that replicates the low-order 32 1815 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1816 // of 8. 1817 1818 auto IsAllLow32 = [this](BitGroup & BG) { 1819 if (BG.StartIdx <= BG.EndIdx) { 1820 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1821 if (!Bits[i].hasValue()) 1822 continue; 1823 if (Bits[i].getValueBitIndex() >= 32) 1824 return false; 1825 } 1826 } else { 1827 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1828 if (!Bits[i].hasValue()) 1829 continue; 1830 if (Bits[i].getValueBitIndex() >= 32) 1831 return false; 1832 } 1833 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1834 if (!Bits[i].hasValue()) 1835 continue; 1836 if (Bits[i].getValueBitIndex() >= 32) 1837 return false; 1838 } 1839 } 1840 1841 return true; 1842 }; 1843 1844 for (auto &BG : BitGroups) { 1845 // If this bit group has RLAmt of 0 and will not be merged with 1846 // another bit group, we don't benefit from Repl32. We don't mark 1847 // such group to give more freedom for later instruction selection. 1848 if (BG.RLAmt == 0) { 1849 auto PotentiallyMerged = [this](BitGroup & BG) { 1850 for (auto &BG2 : BitGroups) 1851 if (&BG != &BG2 && BG.V == BG2.V && 1852 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 1853 return true; 1854 return false; 1855 }; 1856 if (!PotentiallyMerged(BG)) 1857 continue; 1858 } 1859 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1860 if (IsAllLow32(BG)) { 1861 if (BG.RLAmt >= 32) { 1862 BG.RLAmt -= 32; 1863 BG.Repl32CR = true; 1864 } 1865 1866 BG.Repl32 = true; 1867 1868 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 1869 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 1870 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1871 } 1872 } 1873 } 1874 1875 // Now walk through the bit groups, consolidating where possible. 1876 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1877 // We might want to remove this bit group by merging it with the previous 1878 // group (which might be the ending group). 1879 auto IP = (I == BitGroups.begin()) ? 1880 std::prev(BitGroups.end()) : std::prev(I); 1881 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1882 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1883 1884 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 1885 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 1886 << I->StartIdx << ", " << I->EndIdx 1887 << "] with group with range [" << IP->StartIdx << ", " 1888 << IP->EndIdx << "]\n"); 1889 1890 IP->EndIdx = I->EndIdx; 1891 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1892 IP->Repl32Coalesced = true; 1893 I = BitGroups.erase(I); 1894 continue; 1895 } else { 1896 // There is a special case worth handling: If there is a single group 1897 // covering the entire upper 32 bits, and it can be merged with both 1898 // the next and previous groups (which might be the same group), then 1899 // do so. If it is the same group (so there will be only one group in 1900 // total), then we need to reverse the order of the range so that it 1901 // covers the entire 64 bits. 1902 if (I->StartIdx == 32 && I->EndIdx == 63) { 1903 assert(std::next(I) == BitGroups.end() && 1904 "bit group ends at index 63 but there is another?"); 1905 auto IN = BitGroups.begin(); 1906 1907 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1908 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1909 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1910 IsAllLow32(*I)) { 1911 1912 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 1913 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 1914 << ", " << I->EndIdx 1915 << "] with 32-bit replicated groups with ranges [" 1916 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 1917 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1918 1919 if (IP == IN) { 1920 // There is only one other group; change it to cover the whole 1921 // range (backward, so that it can still be Repl32 but cover the 1922 // whole 64-bit range). 1923 IP->StartIdx = 31; 1924 IP->EndIdx = 30; 1925 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1926 IP->Repl32Coalesced = true; 1927 I = BitGroups.erase(I); 1928 } else { 1929 // There are two separate groups, one before this group and one 1930 // after us (at the beginning). We're going to remove this group, 1931 // but also the group at the very beginning. 1932 IP->EndIdx = IN->EndIdx; 1933 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1934 IP->Repl32Coalesced = true; 1935 I = BitGroups.erase(I); 1936 BitGroups.erase(BitGroups.begin()); 1937 } 1938 1939 // This must be the last group in the vector (and we might have 1940 // just invalidated the iterator above), so break here. 1941 break; 1942 } 1943 } 1944 } 1945 1946 ++I; 1947 } 1948 } 1949 1950 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 1951 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1952 } 1953 1954 uint64_t getZerosMask() { 1955 uint64_t Mask = 0; 1956 for (unsigned i = 0; i < Bits.size(); ++i) { 1957 if (Bits[i].hasValue()) 1958 continue; 1959 Mask |= (UINT64_C(1) << i); 1960 } 1961 1962 return ~Mask; 1963 } 1964 1965 // This method extends an input value to 64 bit if input is 32-bit integer. 1966 // While selecting instructions in BitPermutationSelector in 64-bit mode, 1967 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 1968 // In such case, we extend it to 64 bit to be consistent with other values. 1969 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 1970 if (V.getValueSizeInBits() == 64) 1971 return V; 1972 1973 assert(V.getValueSizeInBits() == 32); 1974 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1975 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 1976 MVT::i64), 0); 1977 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 1978 MVT::i64, ImDef, V, 1979 SubRegIdx), 0); 1980 return ExtVal; 1981 } 1982 1983 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 1984 if (V.getValueSizeInBits() == 32) 1985 return V; 1986 1987 assert(V.getValueSizeInBits() == 64); 1988 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1989 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 1990 MVT::i32, V, SubRegIdx), 0); 1991 return SubVal; 1992 } 1993 1994 // Depending on the number of groups for a particular value, it might be 1995 // better to rotate, mask explicitly (using andi/andis), and then or the 1996 // result. Select this part of the result first. 1997 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1998 if (BPermRewriterNoMasking) 1999 return; 2000 2001 for (ValueRotInfo &VRI : ValueRotsVec) { 2002 unsigned Mask = 0; 2003 for (unsigned i = 0; i < Bits.size(); ++i) { 2004 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 2005 continue; 2006 if (RLAmt[i] != VRI.RLAmt) 2007 continue; 2008 Mask |= (1u << i); 2009 } 2010 2011 // Compute the masks for andi/andis that would be necessary. 2012 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2013 assert((ANDIMask != 0 || ANDISMask != 0) && 2014 "No set bits in mask for value bit groups"); 2015 bool NeedsRotate = VRI.RLAmt != 0; 2016 2017 // We're trying to minimize the number of instructions. If we have one 2018 // group, using one of andi/andis can break even. If we have three 2019 // groups, we can use both andi and andis and break even (to use both 2020 // andi and andis we also need to or the results together). We need four 2021 // groups if we also need to rotate. To use andi/andis we need to do more 2022 // than break even because rotate-and-mask instructions tend to be easier 2023 // to schedule. 2024 2025 // FIXME: We've biased here against using andi/andis, which is right for 2026 // POWER cores, but not optimal everywhere. For example, on the A2, 2027 // andi/andis have single-cycle latency whereas the rotate-and-mask 2028 // instructions take two cycles, and it would be better to bias toward 2029 // andi/andis in break-even cases. 2030 2031 unsigned NumAndInsts = (unsigned) NeedsRotate + 2032 (unsigned) (ANDIMask != 0) + 2033 (unsigned) (ANDISMask != 0) + 2034 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 2035 (unsigned) (bool) Res; 2036 2037 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2038 << " RL: " << VRI.RLAmt << ":" 2039 << "\n\t\t\tisel using masking: " << NumAndInsts 2040 << " using rotates: " << VRI.NumGroups << "\n"); 2041 2042 if (NumAndInsts >= VRI.NumGroups) 2043 continue; 2044 2045 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2046 2047 if (InstCnt) *InstCnt += NumAndInsts; 2048 2049 SDValue VRot; 2050 if (VRI.RLAmt) { 2051 SDValue Ops[] = 2052 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2053 getI32Imm(0, dl), getI32Imm(31, dl) }; 2054 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2055 Ops), 0); 2056 } else { 2057 VRot = TruncateToInt32(VRI.V, dl); 2058 } 2059 2060 SDValue ANDIVal, ANDISVal; 2061 if (ANDIMask != 0) 2062 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2063 VRot, getI32Imm(ANDIMask, dl)), 2064 0); 2065 if (ANDISMask != 0) 2066 ANDISVal = 2067 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, 2068 getI32Imm(ANDISMask, dl)), 2069 0); 2070 2071 SDValue TotalVal; 2072 if (!ANDIVal) 2073 TotalVal = ANDISVal; 2074 else if (!ANDISVal) 2075 TotalVal = ANDIVal; 2076 else 2077 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2078 ANDIVal, ANDISVal), 0); 2079 2080 if (!Res) 2081 Res = TotalVal; 2082 else 2083 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2084 Res, TotalVal), 0); 2085 2086 // Now, remove all groups with this underlying value and rotation 2087 // factor. 2088 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2089 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2090 }); 2091 } 2092 } 2093 2094 // Instruction selection for the 32-bit case. 2095 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 2096 SDLoc dl(N); 2097 SDValue Res; 2098 2099 if (InstCnt) *InstCnt = 0; 2100 2101 // Take care of cases that should use andi/andis first. 2102 SelectAndParts32(dl, Res, InstCnt); 2103 2104 // If we've not yet selected a 'starting' instruction, and we have no zeros 2105 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2106 // number of groups), and start with this rotated value. 2107 if ((!NeedMask || LateMask) && !Res) { 2108 ValueRotInfo &VRI = ValueRotsVec[0]; 2109 if (VRI.RLAmt) { 2110 if (InstCnt) *InstCnt += 1; 2111 SDValue Ops[] = 2112 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 2113 getI32Imm(0, dl), getI32Imm(31, dl) }; 2114 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2115 0); 2116 } else { 2117 Res = TruncateToInt32(VRI.V, dl); 2118 } 2119 2120 // Now, remove all groups with this underlying value and rotation factor. 2121 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2122 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 2123 }); 2124 } 2125 2126 if (InstCnt) *InstCnt += BitGroups.size(); 2127 2128 // Insert the other groups (one at a time). 2129 for (auto &BG : BitGroups) { 2130 if (!Res) { 2131 SDValue Ops[] = 2132 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2133 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2134 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2135 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2136 } else { 2137 SDValue Ops[] = 2138 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 2139 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 2140 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 2141 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 2142 } 2143 } 2144 2145 if (LateMask) { 2146 unsigned Mask = (unsigned) getZerosMask(); 2147 2148 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 2149 assert((ANDIMask != 0 || ANDISMask != 0) && 2150 "No set bits in zeros mask?"); 2151 2152 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2153 (unsigned) (ANDISMask != 0) + 2154 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2155 2156 SDValue ANDIVal, ANDISVal; 2157 if (ANDIMask != 0) 2158 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, 2159 Res, getI32Imm(ANDIMask, dl)), 2160 0); 2161 if (ANDISMask != 0) 2162 ANDISVal = 2163 SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, 2164 getI32Imm(ANDISMask, dl)), 2165 0); 2166 2167 if (!ANDIVal) 2168 Res = ANDISVal; 2169 else if (!ANDISVal) 2170 Res = ANDIVal; 2171 else 2172 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 2173 ANDIVal, ANDISVal), 0); 2174 } 2175 2176 return Res.getNode(); 2177 } 2178 2179 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 2180 unsigned MaskStart, unsigned MaskEnd, 2181 bool IsIns) { 2182 // In the notation used by the instructions, 'start' and 'end' are reversed 2183 // because bits are counted from high to low order. 2184 unsigned InstMaskStart = 64 - MaskEnd - 1, 2185 InstMaskEnd = 64 - MaskStart - 1; 2186 2187 if (Repl32) 2188 return 1; 2189 2190 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 2191 InstMaskEnd == 63 - RLAmt) 2192 return 1; 2193 2194 return 2; 2195 } 2196 2197 // For 64-bit values, not all combinations of rotates and masks are 2198 // available. Produce one if it is available. 2199 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 2200 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 2201 unsigned *InstCnt = nullptr) { 2202 // In the notation used by the instructions, 'start' and 'end' are reversed 2203 // because bits are counted from high to low order. 2204 unsigned InstMaskStart = 64 - MaskEnd - 1, 2205 InstMaskEnd = 64 - MaskStart - 1; 2206 2207 if (InstCnt) *InstCnt += 1; 2208 2209 if (Repl32) { 2210 // This rotation amount assumes that the lower 32 bits of the quantity 2211 // are replicated in the high 32 bits by the rotation operator (which is 2212 // done by rlwinm and friends). 2213 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2214 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2215 SDValue Ops[] = 2216 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2217 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2218 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 2219 Ops), 0); 2220 } 2221 2222 if (InstMaskEnd == 63) { 2223 SDValue Ops[] = 2224 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2225 getI32Imm(InstMaskStart, dl) }; 2226 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 2227 } 2228 2229 if (InstMaskStart == 0) { 2230 SDValue Ops[] = 2231 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2232 getI32Imm(InstMaskEnd, dl) }; 2233 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 2234 } 2235 2236 if (InstMaskEnd == 63 - RLAmt) { 2237 SDValue Ops[] = 2238 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2239 getI32Imm(InstMaskStart, dl) }; 2240 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 2241 } 2242 2243 // We cannot do this with a single instruction, so we'll use two. The 2244 // problem is that we're not free to choose both a rotation amount and mask 2245 // start and end independently. We can choose an arbitrary mask start and 2246 // end, but then the rotation amount is fixed. Rotation, however, can be 2247 // inverted, and so by applying an "inverse" rotation first, we can get the 2248 // desired result. 2249 if (InstCnt) *InstCnt += 1; 2250 2251 // The rotation mask for the second instruction must be MaskStart. 2252 unsigned RLAmt2 = MaskStart; 2253 // The first instruction must rotate V so that the overall rotation amount 2254 // is RLAmt. 2255 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2256 if (RLAmt1) 2257 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2258 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2259 } 2260 2261 // For 64-bit values, not all combinations of rotates and masks are 2262 // available. Produce a rotate-mask-and-insert if one is available. 2263 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2264 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2265 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2266 // In the notation used by the instructions, 'start' and 'end' are reversed 2267 // because bits are counted from high to low order. 2268 unsigned InstMaskStart = 64 - MaskEnd - 1, 2269 InstMaskEnd = 64 - MaskStart - 1; 2270 2271 if (InstCnt) *InstCnt += 1; 2272 2273 if (Repl32) { 2274 // This rotation amount assumes that the lower 32 bits of the quantity 2275 // are replicated in the high 32 bits by the rotation operator (which is 2276 // done by rlwinm and friends). 2277 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2278 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2279 SDValue Ops[] = 2280 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2281 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2282 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2283 Ops), 0); 2284 } 2285 2286 if (InstMaskEnd == 63 - RLAmt) { 2287 SDValue Ops[] = 2288 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2289 getI32Imm(InstMaskStart, dl) }; 2290 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2291 } 2292 2293 // We cannot do this with a single instruction, so we'll use two. The 2294 // problem is that we're not free to choose both a rotation amount and mask 2295 // start and end independently. We can choose an arbitrary mask start and 2296 // end, but then the rotation amount is fixed. Rotation, however, can be 2297 // inverted, and so by applying an "inverse" rotation first, we can get the 2298 // desired result. 2299 if (InstCnt) *InstCnt += 1; 2300 2301 // The rotation mask for the second instruction must be MaskStart. 2302 unsigned RLAmt2 = MaskStart; 2303 // The first instruction must rotate V so that the overall rotation amount 2304 // is RLAmt. 2305 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2306 if (RLAmt1) 2307 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2308 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2309 } 2310 2311 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2312 if (BPermRewriterNoMasking) 2313 return; 2314 2315 // The idea here is the same as in the 32-bit version, but with additional 2316 // complications from the fact that Repl32 might be true. Because we 2317 // aggressively convert bit groups to Repl32 form (which, for small 2318 // rotation factors, involves no other change), and then coalesce, it might 2319 // be the case that a single 64-bit masking operation could handle both 2320 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2321 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2322 // completely capture the new combined bit group. 2323 2324 for (ValueRotInfo &VRI : ValueRotsVec) { 2325 uint64_t Mask = 0; 2326 2327 // We need to add to the mask all bits from the associated bit groups. 2328 // If Repl32 is false, we need to add bits from bit groups that have 2329 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2330 // group is trivially convertable if it overlaps only with the lower 32 2331 // bits, and the group has not been coalesced. 2332 auto MatchingBG = [VRI](const BitGroup &BG) { 2333 if (VRI.V != BG.V) 2334 return false; 2335 2336 unsigned EffRLAmt = BG.RLAmt; 2337 if (!VRI.Repl32 && BG.Repl32) { 2338 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2339 !BG.Repl32Coalesced) { 2340 if (BG.Repl32CR) 2341 EffRLAmt += 32; 2342 } else { 2343 return false; 2344 } 2345 } else if (VRI.Repl32 != BG.Repl32) { 2346 return false; 2347 } 2348 2349 return VRI.RLAmt == EffRLAmt; 2350 }; 2351 2352 for (auto &BG : BitGroups) { 2353 if (!MatchingBG(BG)) 2354 continue; 2355 2356 if (BG.StartIdx <= BG.EndIdx) { 2357 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2358 Mask |= (UINT64_C(1) << i); 2359 } else { 2360 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2361 Mask |= (UINT64_C(1) << i); 2362 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2363 Mask |= (UINT64_C(1) << i); 2364 } 2365 } 2366 2367 // We can use the 32-bit andi/andis technique if the mask does not 2368 // require any higher-order bits. This can save an instruction compared 2369 // to always using the general 64-bit technique. 2370 bool Use32BitInsts = isUInt<32>(Mask); 2371 // Compute the masks for andi/andis that would be necessary. 2372 unsigned ANDIMask = (Mask & UINT16_MAX), 2373 ANDISMask = (Mask >> 16) & UINT16_MAX; 2374 2375 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2376 2377 unsigned NumAndInsts = (unsigned) NeedsRotate + 2378 (unsigned) (bool) Res; 2379 unsigned NumOfSelectInsts = 0; 2380 selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts); 2381 assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant."); 2382 if (Use32BitInsts) 2383 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2384 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2385 else 2386 NumAndInsts += NumOfSelectInsts + /* and */ 1; 2387 2388 unsigned NumRLInsts = 0; 2389 bool FirstBG = true; 2390 bool MoreBG = false; 2391 for (auto &BG : BitGroups) { 2392 if (!MatchingBG(BG)) { 2393 MoreBG = true; 2394 continue; 2395 } 2396 NumRLInsts += 2397 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2398 !FirstBG); 2399 FirstBG = false; 2400 } 2401 2402 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2403 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2404 << "\n\t\t\tisel using masking: " << NumAndInsts 2405 << " using rotates: " << NumRLInsts << "\n"); 2406 2407 // When we'd use andi/andis, we bias toward using the rotates (andi only 2408 // has a record form, and is cracked on POWER cores). However, when using 2409 // general 64-bit constant formation, bias toward the constant form, 2410 // because that exposes more opportunities for CSE. 2411 if (NumAndInsts > NumRLInsts) 2412 continue; 2413 // When merging multiple bit groups, instruction or is used. 2414 // But when rotate is used, rldimi can inert the rotated value into any 2415 // register, so instruction or can be avoided. 2416 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2417 continue; 2418 2419 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2420 2421 if (InstCnt) *InstCnt += NumAndInsts; 2422 2423 SDValue VRot; 2424 // We actually need to generate a rotation if we have a non-zero rotation 2425 // factor or, in the Repl32 case, if we care about any of the 2426 // higher-order replicated bits. In the latter case, we generate a mask 2427 // backward so that it actually includes the entire 64 bits. 2428 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2429 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2430 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2431 else 2432 VRot = VRI.V; 2433 2434 SDValue TotalVal; 2435 if (Use32BitInsts) { 2436 assert((ANDIMask != 0 || ANDISMask != 0) && 2437 "No set bits in mask when using 32-bit ands for 64-bit value"); 2438 2439 SDValue ANDIVal, ANDISVal; 2440 if (ANDIMask != 0) 2441 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2442 ExtendToInt64(VRot, dl), 2443 getI32Imm(ANDIMask, dl)), 2444 0); 2445 if (ANDISMask != 0) 2446 ANDISVal = 2447 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2448 ExtendToInt64(VRot, dl), 2449 getI32Imm(ANDISMask, dl)), 2450 0); 2451 2452 if (!ANDIVal) 2453 TotalVal = ANDISVal; 2454 else if (!ANDISVal) 2455 TotalVal = ANDIVal; 2456 else 2457 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2458 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2459 } else { 2460 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2461 TotalVal = 2462 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2463 ExtendToInt64(VRot, dl), TotalVal), 2464 0); 2465 } 2466 2467 if (!Res) 2468 Res = TotalVal; 2469 else 2470 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2471 ExtendToInt64(Res, dl), TotalVal), 2472 0); 2473 2474 // Now, remove all groups with this underlying value and rotation 2475 // factor. 2476 eraseMatchingBitGroups(MatchingBG); 2477 } 2478 } 2479 2480 // Instruction selection for the 64-bit case. 2481 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2482 SDLoc dl(N); 2483 SDValue Res; 2484 2485 if (InstCnt) *InstCnt = 0; 2486 2487 // Take care of cases that should use andi/andis first. 2488 SelectAndParts64(dl, Res, InstCnt); 2489 2490 // If we've not yet selected a 'starting' instruction, and we have no zeros 2491 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2492 // number of groups), and start with this rotated value. 2493 if ((!NeedMask || LateMask) && !Res) { 2494 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2495 // groups will come first, and so the VRI representing the largest number 2496 // of groups might not be first (it might be the first Repl32 groups). 2497 unsigned MaxGroupsIdx = 0; 2498 if (!ValueRotsVec[0].Repl32) { 2499 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2500 if (ValueRotsVec[i].Repl32) { 2501 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2502 MaxGroupsIdx = i; 2503 break; 2504 } 2505 } 2506 2507 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2508 bool NeedsRotate = false; 2509 if (VRI.RLAmt) { 2510 NeedsRotate = true; 2511 } else if (VRI.Repl32) { 2512 for (auto &BG : BitGroups) { 2513 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2514 BG.Repl32 != VRI.Repl32) 2515 continue; 2516 2517 // We don't need a rotate if the bit group is confined to the lower 2518 // 32 bits. 2519 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2520 continue; 2521 2522 NeedsRotate = true; 2523 break; 2524 } 2525 } 2526 2527 if (NeedsRotate) 2528 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2529 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2530 InstCnt); 2531 else 2532 Res = VRI.V; 2533 2534 // Now, remove all groups with this underlying value and rotation factor. 2535 if (Res) 2536 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2537 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2538 BG.Repl32 == VRI.Repl32; 2539 }); 2540 } 2541 2542 // Because 64-bit rotates are more flexible than inserts, we might have a 2543 // preference regarding which one we do first (to save one instruction). 2544 if (!Res) 2545 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2546 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2547 false) < 2548 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2549 true)) { 2550 if (I != BitGroups.begin()) { 2551 BitGroup BG = *I; 2552 BitGroups.erase(I); 2553 BitGroups.insert(BitGroups.begin(), BG); 2554 } 2555 2556 break; 2557 } 2558 } 2559 2560 // Insert the other groups (one at a time). 2561 for (auto &BG : BitGroups) { 2562 if (!Res) 2563 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2564 BG.EndIdx, InstCnt); 2565 else 2566 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2567 BG.StartIdx, BG.EndIdx, InstCnt); 2568 } 2569 2570 if (LateMask) { 2571 uint64_t Mask = getZerosMask(); 2572 2573 // We can use the 32-bit andi/andis technique if the mask does not 2574 // require any higher-order bits. This can save an instruction compared 2575 // to always using the general 64-bit technique. 2576 bool Use32BitInsts = isUInt<32>(Mask); 2577 // Compute the masks for andi/andis that would be necessary. 2578 unsigned ANDIMask = (Mask & UINT16_MAX), 2579 ANDISMask = (Mask >> 16) & UINT16_MAX; 2580 2581 if (Use32BitInsts) { 2582 assert((ANDIMask != 0 || ANDISMask != 0) && 2583 "No set bits in mask when using 32-bit ands for 64-bit value"); 2584 2585 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2586 (unsigned) (ANDISMask != 0) + 2587 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2588 2589 SDValue ANDIVal, ANDISVal; 2590 if (ANDIMask != 0) 2591 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, 2592 ExtendToInt64(Res, dl), 2593 getI32Imm(ANDIMask, dl)), 2594 0); 2595 if (ANDISMask != 0) 2596 ANDISVal = 2597 SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, 2598 ExtendToInt64(Res, dl), 2599 getI32Imm(ANDISMask, dl)), 2600 0); 2601 2602 if (!ANDIVal) 2603 Res = ANDISVal; 2604 else if (!ANDISVal) 2605 Res = ANDIVal; 2606 else 2607 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2608 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2609 } else { 2610 unsigned NumOfSelectInsts = 0; 2611 SDValue MaskVal = 2612 SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0); 2613 Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2614 ExtendToInt64(Res, dl), MaskVal), 2615 0); 2616 if (InstCnt) 2617 *InstCnt += NumOfSelectInsts + /* and */ 1; 2618 } 2619 } 2620 2621 return Res.getNode(); 2622 } 2623 2624 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2625 // Fill in BitGroups. 2626 collectBitGroups(LateMask); 2627 if (BitGroups.empty()) 2628 return nullptr; 2629 2630 // For 64-bit values, figure out when we can use 32-bit instructions. 2631 if (Bits.size() == 64) 2632 assignRepl32BitGroups(); 2633 2634 // Fill in ValueRotsVec. 2635 collectValueRotInfo(); 2636 2637 if (Bits.size() == 32) { 2638 return Select32(N, LateMask, InstCnt); 2639 } else { 2640 assert(Bits.size() == 64 && "Not 64 bits here?"); 2641 return Select64(N, LateMask, InstCnt); 2642 } 2643 2644 return nullptr; 2645 } 2646 2647 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2648 erase_if(BitGroups, F); 2649 } 2650 2651 SmallVector<ValueBit, 64> Bits; 2652 2653 bool NeedMask = false; 2654 SmallVector<unsigned, 64> RLAmt; 2655 2656 SmallVector<BitGroup, 16> BitGroups; 2657 2658 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2659 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2660 2661 SelectionDAG *CurDAG = nullptr; 2662 2663 public: 2664 BitPermutationSelector(SelectionDAG *DAG) 2665 : CurDAG(DAG) {} 2666 2667 // Here we try to match complex bit permutations into a set of 2668 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2669 // known to produce optimal code for common cases (like i32 byte swapping). 2670 SDNode *Select(SDNode *N) { 2671 Memoizer.clear(); 2672 auto Result = 2673 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2674 if (!Result.first) 2675 return nullptr; 2676 Bits = std::move(*Result.second); 2677 2678 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2679 " selection for: "); 2680 LLVM_DEBUG(N->dump(CurDAG)); 2681 2682 // Fill it RLAmt and set NeedMask. 2683 computeRotationAmounts(); 2684 2685 if (!NeedMask) 2686 return Select(N, false); 2687 2688 // We currently have two techniques for handling results with zeros: early 2689 // masking (the default) and late masking. Late masking is sometimes more 2690 // efficient, but because the structure of the bit groups is different, it 2691 // is hard to tell without generating both and comparing the results. With 2692 // late masking, we ignore zeros in the resulting value when inserting each 2693 // set of bit groups, and then mask in the zeros at the end. With early 2694 // masking, we only insert the non-zero parts of the result at every step. 2695 2696 unsigned InstCnt = 0, InstCntLateMask = 0; 2697 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2698 SDNode *RN = Select(N, false, &InstCnt); 2699 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2700 2701 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2702 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2703 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2704 << " instructions\n"); 2705 2706 if (InstCnt <= InstCntLateMask) { 2707 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2708 return RN; 2709 } 2710 2711 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2712 return RNLM; 2713 } 2714 }; 2715 2716 class IntegerCompareEliminator { 2717 SelectionDAG *CurDAG; 2718 PPCDAGToDAGISel *S; 2719 // Conversion type for interpreting results of a 32-bit instruction as 2720 // a 64-bit value or vice versa. 2721 enum ExtOrTruncConversion { Ext, Trunc }; 2722 2723 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2724 // in a GPR. 2725 // ZExtOrig - use the original condition code, zero-extend value 2726 // ZExtInvert - invert the condition code, zero-extend value 2727 // SExtOrig - use the original condition code, sign-extend value 2728 // SExtInvert - invert the condition code, sign-extend value 2729 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2730 2731 // Comparisons against zero to emit GPR code sequences for. Each of these 2732 // sequences may need to be emitted for two or more equivalent patterns. 2733 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2734 // matters as well as the extension type: sext (-1/0), zext (1/0). 2735 // GEZExt - (zext (LHS >= 0)) 2736 // GESExt - (sext (LHS >= 0)) 2737 // LEZExt - (zext (LHS <= 0)) 2738 // LESExt - (sext (LHS <= 0)) 2739 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2740 2741 SDNode *tryEXTEND(SDNode *N); 2742 SDNode *tryLogicOpOfCompares(SDNode *N); 2743 SDValue computeLogicOpInGPR(SDValue LogicOp); 2744 SDValue signExtendInputIfNeeded(SDValue Input); 2745 SDValue zeroExtendInputIfNeeded(SDValue Input); 2746 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2747 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2748 ZeroCompare CmpTy); 2749 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2750 int64_t RHSValue, SDLoc dl); 2751 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2752 int64_t RHSValue, SDLoc dl); 2753 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2754 int64_t RHSValue, SDLoc dl); 2755 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2756 int64_t RHSValue, SDLoc dl); 2757 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2758 2759 public: 2760 IntegerCompareEliminator(SelectionDAG *DAG, 2761 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2762 assert(CurDAG->getTargetLoweringInfo() 2763 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2764 "Only expecting to use this on 64 bit targets."); 2765 } 2766 SDNode *Select(SDNode *N) { 2767 if (CmpInGPR == ICGPR_None) 2768 return nullptr; 2769 switch (N->getOpcode()) { 2770 default: break; 2771 case ISD::ZERO_EXTEND: 2772 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2773 CmpInGPR == ICGPR_SextI64) 2774 return nullptr; 2775 LLVM_FALLTHROUGH; 2776 case ISD::SIGN_EXTEND: 2777 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2778 CmpInGPR == ICGPR_ZextI64) 2779 return nullptr; 2780 return tryEXTEND(N); 2781 case ISD::AND: 2782 case ISD::OR: 2783 case ISD::XOR: 2784 return tryLogicOpOfCompares(N); 2785 } 2786 return nullptr; 2787 } 2788 }; 2789 2790 static bool isLogicOp(unsigned Opc) { 2791 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; 2792 } 2793 // The obvious case for wanting to keep the value in a GPR. Namely, the 2794 // result of the comparison is actually needed in a GPR. 2795 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2796 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2797 N->getOpcode() == ISD::SIGN_EXTEND) && 2798 "Expecting a zero/sign extend node!"); 2799 SDValue WideRes; 2800 // If we are zero-extending the result of a logical operation on i1 2801 // values, we can keep the values in GPRs. 2802 if (isLogicOp(N->getOperand(0).getOpcode()) && 2803 N->getOperand(0).getValueType() == MVT::i1 && 2804 N->getOpcode() == ISD::ZERO_EXTEND) 2805 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2806 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2807 return nullptr; 2808 else 2809 WideRes = 2810 getSETCCInGPR(N->getOperand(0), 2811 N->getOpcode() == ISD::SIGN_EXTEND ? 2812 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2813 2814 if (!WideRes) 2815 return nullptr; 2816 2817 SDLoc dl(N); 2818 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2819 bool Output32Bit = N->getValueType(0) == MVT::i32; 2820 2821 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2822 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2823 2824 SDValue ConvOp = WideRes; 2825 if (Input32Bit != Output32Bit) 2826 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2827 ExtOrTruncConversion::Trunc); 2828 return ConvOp.getNode(); 2829 } 2830 2831 // Attempt to perform logical operations on the results of comparisons while 2832 // keeping the values in GPRs. Without doing so, these would end up being 2833 // lowered to CR-logical operations which suffer from significant latency and 2834 // low ILP. 2835 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2836 if (N->getValueType(0) != MVT::i1) 2837 return nullptr; 2838 assert(isLogicOp(N->getOpcode()) && 2839 "Expected a logic operation on setcc results."); 2840 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 2841 if (!LoweredLogical) 2842 return nullptr; 2843 2844 SDLoc dl(N); 2845 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 2846 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 2847 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2848 SDValue LHS = LoweredLogical.getOperand(0); 2849 SDValue RHS = LoweredLogical.getOperand(1); 2850 SDValue WideOp; 2851 SDValue OpToConvToRecForm; 2852 2853 // Look through any 32-bit to 64-bit implicit extend nodes to find the 2854 // opcode that is input to the XORI. 2855 if (IsBitwiseNegate && 2856 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 2857 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 2858 else if (IsBitwiseNegate) 2859 // If the input to the XORI isn't an extension, that's what we're after. 2860 OpToConvToRecForm = LoweredLogical.getOperand(0); 2861 else 2862 // If this is not an XORI, it is a reg-reg logical op and we can convert 2863 // it to record-form. 2864 OpToConvToRecForm = LoweredLogical; 2865 2866 // Get the record-form version of the node we're looking to use to get the 2867 // CR result from. 2868 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 2869 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 2870 2871 // Convert the right node to record-form. This is either the logical we're 2872 // looking at or it is the input node to the negation (if we're looking at 2873 // a bitwise negation). 2874 if (NewOpc != -1 && IsBitwiseNegate) { 2875 // The input to the XORI has a record-form. Use it. 2876 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 2877 "Expected a PPC::XORI8 only for bitwise negation."); 2878 // Emit the record-form instruction. 2879 std::vector<SDValue> Ops; 2880 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 2881 Ops.push_back(OpToConvToRecForm.getOperand(i)); 2882 2883 WideOp = 2884 SDValue(CurDAG->getMachineNode(NewOpc, dl, 2885 OpToConvToRecForm.getValueType(), 2886 MVT::Glue, Ops), 0); 2887 } else { 2888 assert((NewOpc != -1 || !IsBitwiseNegate) && 2889 "No record form available for AND8/OR8/XOR8?"); 2890 WideOp = 2891 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, 2892 dl, MVT::i64, MVT::Glue, LHS, RHS), 2893 0); 2894 } 2895 2896 // Select this node to a single bit from CR0 set by the record-form node 2897 // just created. For bitwise negation, use the EQ bit which is the equivalent 2898 // of negating the result (i.e. it is a bit set when the result of the 2899 // operation is zero). 2900 SDValue SRIdxVal = 2901 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 2902 SDValue CRBit = 2903 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 2904 MVT::i1, CR0Reg, SRIdxVal, 2905 WideOp.getValue(1)), 0); 2906 return CRBit.getNode(); 2907 } 2908 2909 // Lower a logical operation on i1 values into a GPR sequence if possible. 2910 // The result can be kept in a GPR if requested. 2911 // Three types of inputs can be handled: 2912 // - SETCC 2913 // - TRUNCATE 2914 // - Logical operation (AND/OR/XOR) 2915 // There is also a special case that is handled (namely a complement operation 2916 // achieved with xor %a, -1). 2917 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 2918 assert(isLogicOp(LogicOp.getOpcode()) && 2919 "Can only handle logic operations here."); 2920 assert(LogicOp.getValueType() == MVT::i1 && 2921 "Can only handle logic operations on i1 values here."); 2922 SDLoc dl(LogicOp); 2923 SDValue LHS, RHS; 2924 2925 // Special case: xor %a, -1 2926 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 2927 2928 // Produces a GPR sequence for each operand of the binary logic operation. 2929 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 2930 // the value in a GPR and for logic operations, it will recursively produce 2931 // a GPR sequence for the operation. 2932 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 2933 unsigned OperandOpcode = Operand.getOpcode(); 2934 if (OperandOpcode == ISD::SETCC) 2935 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 2936 else if (OperandOpcode == ISD::TRUNCATE) { 2937 SDValue InputOp = Operand.getOperand(0); 2938 EVT InVT = InputOp.getValueType(); 2939 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 2940 PPC::RLDICL, dl, InVT, InputOp, 2941 S->getI64Imm(0, dl), 2942 S->getI64Imm(63, dl)), 0); 2943 } else if (isLogicOp(OperandOpcode)) 2944 return computeLogicOpInGPR(Operand); 2945 return SDValue(); 2946 }; 2947 LHS = getLogicOperand(LogicOp.getOperand(0)); 2948 RHS = getLogicOperand(LogicOp.getOperand(1)); 2949 2950 // If a GPR sequence can't be produced for the LHS we can't proceed. 2951 // Not producing a GPR sequence for the RHS is only a problem if this isn't 2952 // a bitwise negation operation. 2953 if (!LHS || (!RHS && !IsBitwiseNegation)) 2954 return SDValue(); 2955 2956 NumLogicOpsOnComparison++; 2957 2958 // We will use the inputs as 64-bit values. 2959 if (LHS.getValueType() == MVT::i32) 2960 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 2961 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 2962 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 2963 2964 unsigned NewOpc; 2965 switch (LogicOp.getOpcode()) { 2966 default: llvm_unreachable("Unknown logic operation."); 2967 case ISD::AND: NewOpc = PPC::AND8; break; 2968 case ISD::OR: NewOpc = PPC::OR8; break; 2969 case ISD::XOR: NewOpc = PPC::XOR8; break; 2970 } 2971 2972 if (IsBitwiseNegation) { 2973 RHS = S->getI64Imm(1, dl); 2974 NewOpc = PPC::XORI8; 2975 } 2976 2977 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 2978 2979 } 2980 2981 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 2982 /// Otherwise just reinterpret it as a 64-bit value. 2983 /// Useful when emitting comparison code for 32-bit values without using 2984 /// the compare instruction (which only considers the lower 32-bits). 2985 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 2986 assert(Input.getValueType() == MVT::i32 && 2987 "Can only sign-extend 32-bit values here."); 2988 unsigned Opc = Input.getOpcode(); 2989 2990 // The value was sign extended and then truncated to 32-bits. No need to 2991 // sign extend it again. 2992 if (Opc == ISD::TRUNCATE && 2993 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 2994 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 2995 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2996 2997 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2998 // The input is a sign-extending load. All ppc sign-extending loads 2999 // sign-extend to the full 64-bits. 3000 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 3001 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3002 3003 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3004 // We don't sign-extend constants. 3005 if (InputConst) 3006 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3007 3008 SDLoc dl(Input); 3009 SignExtensionsAdded++; 3010 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 3011 MVT::i64, Input), 0); 3012 } 3013 3014 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 3015 /// Otherwise just reinterpret it as a 64-bit value. 3016 /// Useful when emitting comparison code for 32-bit values without using 3017 /// the compare instruction (which only considers the lower 32-bits). 3018 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 3019 assert(Input.getValueType() == MVT::i32 && 3020 "Can only zero-extend 32-bit values here."); 3021 unsigned Opc = Input.getOpcode(); 3022 3023 // The only condition under which we can omit the actual extend instruction: 3024 // - The value is a positive constant 3025 // - The value comes from a load that isn't a sign-extending load 3026 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 3027 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 3028 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 3029 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 3030 if (IsTruncateOfZExt) 3031 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3032 3033 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 3034 if (InputConst && InputConst->getSExtValue() >= 0) 3035 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3036 3037 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 3038 // The input is a load that doesn't sign-extend (it will be zero-extended). 3039 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 3040 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 3041 3042 // None of the above, need to zero-extend. 3043 SDLoc dl(Input); 3044 ZeroExtensionsAdded++; 3045 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 3046 S->getI64Imm(0, dl), 3047 S->getI64Imm(32, dl)), 0); 3048 } 3049 3050 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 3051 // course not actual zero/sign extensions that will generate machine code, 3052 // they're just a way to reinterpret a 32 bit value in a register as a 3053 // 64 bit value and vice-versa. 3054 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 3055 ExtOrTruncConversion Conv) { 3056 SDLoc dl(NatWidthRes); 3057 3058 // For reinterpreting 32-bit values as 64 bit values, we generate 3059 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 3060 if (Conv == ExtOrTruncConversion::Ext) { 3061 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 3062 SDValue SubRegIdx = 3063 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3064 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 3065 ImDef, NatWidthRes, SubRegIdx), 0); 3066 } 3067 3068 assert(Conv == ExtOrTruncConversion::Trunc && 3069 "Unknown convertion between 32 and 64 bit values."); 3070 // For reinterpreting 64-bit values as 32-bit values, we just need to 3071 // EXTRACT_SUBREG (i.e. extract the low word). 3072 SDValue SubRegIdx = 3073 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 3074 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 3075 NatWidthRes, SubRegIdx), 0); 3076 } 3077 3078 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 3079 // Handle both zero-extensions and sign-extensions. 3080 SDValue 3081 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 3082 ZeroCompare CmpTy) { 3083 EVT InVT = LHS.getValueType(); 3084 bool Is32Bit = InVT == MVT::i32; 3085 SDValue ToExtend; 3086 3087 // Produce the value that needs to be either zero or sign extended. 3088 switch (CmpTy) { 3089 case ZeroCompare::GEZExt: 3090 case ZeroCompare::GESExt: 3091 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 3092 dl, InVT, LHS, LHS), 0); 3093 break; 3094 case ZeroCompare::LEZExt: 3095 case ZeroCompare::LESExt: { 3096 if (Is32Bit) { 3097 // Upper 32 bits cannot be undefined for this sequence. 3098 LHS = signExtendInputIfNeeded(LHS); 3099 SDValue Neg = 3100 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3101 ToExtend = 3102 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3103 Neg, S->getI64Imm(1, dl), 3104 S->getI64Imm(63, dl)), 0); 3105 } else { 3106 SDValue Addi = 3107 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3108 S->getI64Imm(~0ULL, dl)), 0); 3109 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 3110 Addi, LHS), 0); 3111 } 3112 break; 3113 } 3114 } 3115 3116 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 3117 if (!Is32Bit && 3118 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 3119 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3120 ToExtend, S->getI64Imm(1, dl), 3121 S->getI64Imm(63, dl)), 0); 3122 if (!Is32Bit && 3123 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 3124 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 3125 S->getI64Imm(63, dl)), 0); 3126 3127 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 3128 // For 32-bit sequences, the extensions differ between GE/LE cases. 3129 switch (CmpTy) { 3130 case ZeroCompare::GEZExt: { 3131 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3132 S->getI32Imm(31, dl) }; 3133 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3134 ShiftOps), 0); 3135 } 3136 case ZeroCompare::GESExt: 3137 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 3138 S->getI32Imm(31, dl)), 0); 3139 case ZeroCompare::LEZExt: 3140 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 3141 S->getI32Imm(1, dl)), 0); 3142 case ZeroCompare::LESExt: 3143 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 3144 S->getI32Imm(-1, dl)), 0); 3145 } 3146 3147 // The above case covers all the enumerators so it can't have a default clause 3148 // to avoid compiler warnings. 3149 llvm_unreachable("Unknown zero-comparison type."); 3150 } 3151 3152 /// Produces a zero-extended result of comparing two 32-bit values according to 3153 /// the passed condition code. 3154 SDValue 3155 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 3156 ISD::CondCode CC, 3157 int64_t RHSValue, SDLoc dl) { 3158 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3159 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 3160 return SDValue(); 3161 bool IsRHSZero = RHSValue == 0; 3162 bool IsRHSOne = RHSValue == 1; 3163 bool IsRHSNegOne = RHSValue == -1LL; 3164 switch (CC) { 3165 default: return SDValue(); 3166 case ISD::SETEQ: { 3167 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 3168 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 3169 SDValue Xor = IsRHSZero ? LHS : 3170 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3171 SDValue Clz = 3172 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3173 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3174 S->getI32Imm(31, dl) }; 3175 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3176 ShiftOps), 0); 3177 } 3178 case ISD::SETNE: { 3179 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 3180 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 3181 SDValue Xor = IsRHSZero ? LHS : 3182 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3183 SDValue Clz = 3184 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3185 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 3186 S->getI32Imm(31, dl) }; 3187 SDValue Shift = 3188 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3189 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3190 S->getI32Imm(1, dl)), 0); 3191 } 3192 case ISD::SETGE: { 3193 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 3194 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 3195 if(IsRHSZero) 3196 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3197 3198 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3199 // by swapping inputs and falling through. 3200 std::swap(LHS, RHS); 3201 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3202 IsRHSZero = RHSConst && RHSConst->isZero(); 3203 LLVM_FALLTHROUGH; 3204 } 3205 case ISD::SETLE: { 3206 if (CmpInGPR == ICGPR_NonExtIn) 3207 return SDValue(); 3208 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 3209 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 3210 if(IsRHSZero) { 3211 if (CmpInGPR == ICGPR_NonExtIn) 3212 return SDValue(); 3213 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3214 } 3215 3216 // The upper 32-bits of the register can't be undefined for this sequence. 3217 LHS = signExtendInputIfNeeded(LHS); 3218 RHS = signExtendInputIfNeeded(RHS); 3219 SDValue Sub = 3220 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3221 SDValue Shift = 3222 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 3223 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 3224 0); 3225 return 3226 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 3227 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 3228 } 3229 case ISD::SETGT: { 3230 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 3231 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 3232 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 3233 // Handle SETLT -1 (which is equivalent to SETGE 0). 3234 if (IsRHSNegOne) 3235 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3236 3237 if (IsRHSZero) { 3238 if (CmpInGPR == ICGPR_NonExtIn) 3239 return SDValue(); 3240 // The upper 32-bits of the register can't be undefined for this sequence. 3241 LHS = signExtendInputIfNeeded(LHS); 3242 RHS = signExtendInputIfNeeded(RHS); 3243 SDValue Neg = 3244 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3245 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3246 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 3247 } 3248 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3249 // (%b < %a) by swapping inputs and falling through. 3250 std::swap(LHS, RHS); 3251 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3252 IsRHSZero = RHSConst && RHSConst->isZero(); 3253 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3254 LLVM_FALLTHROUGH; 3255 } 3256 case ISD::SETLT: { 3257 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 3258 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 3259 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 3260 // Handle SETLT 1 (which is equivalent to SETLE 0). 3261 if (IsRHSOne) { 3262 if (CmpInGPR == ICGPR_NonExtIn) 3263 return SDValue(); 3264 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3265 } 3266 3267 if (IsRHSZero) { 3268 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3269 S->getI32Imm(31, dl) }; 3270 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3271 ShiftOps), 0); 3272 } 3273 3274 if (CmpInGPR == ICGPR_NonExtIn) 3275 return SDValue(); 3276 // The upper 32-bits of the register can't be undefined for this sequence. 3277 LHS = signExtendInputIfNeeded(LHS); 3278 RHS = signExtendInputIfNeeded(RHS); 3279 SDValue SUBFNode = 3280 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3281 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3282 SUBFNode, S->getI64Imm(1, dl), 3283 S->getI64Imm(63, dl)), 0); 3284 } 3285 case ISD::SETUGE: 3286 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3287 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3288 std::swap(LHS, RHS); 3289 LLVM_FALLTHROUGH; 3290 case ISD::SETULE: { 3291 if (CmpInGPR == ICGPR_NonExtIn) 3292 return SDValue(); 3293 // The upper 32-bits of the register can't be undefined for this sequence. 3294 LHS = zeroExtendInputIfNeeded(LHS); 3295 RHS = zeroExtendInputIfNeeded(RHS); 3296 SDValue Subtract = 3297 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3298 SDValue SrdiNode = 3299 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3300 Subtract, S->getI64Imm(1, dl), 3301 S->getI64Imm(63, dl)), 0); 3302 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3303 S->getI32Imm(1, dl)), 0); 3304 } 3305 case ISD::SETUGT: 3306 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3307 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3308 std::swap(LHS, RHS); 3309 LLVM_FALLTHROUGH; 3310 case ISD::SETULT: { 3311 if (CmpInGPR == ICGPR_NonExtIn) 3312 return SDValue(); 3313 // The upper 32-bits of the register can't be undefined for this sequence. 3314 LHS = zeroExtendInputIfNeeded(LHS); 3315 RHS = zeroExtendInputIfNeeded(RHS); 3316 SDValue Subtract = 3317 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3318 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3319 Subtract, S->getI64Imm(1, dl), 3320 S->getI64Imm(63, dl)), 0); 3321 } 3322 } 3323 } 3324 3325 /// Produces a sign-extended result of comparing two 32-bit values according to 3326 /// the passed condition code. 3327 SDValue 3328 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3329 ISD::CondCode CC, 3330 int64_t RHSValue, SDLoc dl) { 3331 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3332 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3333 return SDValue(); 3334 bool IsRHSZero = RHSValue == 0; 3335 bool IsRHSOne = RHSValue == 1; 3336 bool IsRHSNegOne = RHSValue == -1LL; 3337 3338 switch (CC) { 3339 default: return SDValue(); 3340 case ISD::SETEQ: { 3341 // (sext (setcc %a, %b, seteq)) -> 3342 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3343 // (sext (setcc %a, 0, seteq)) -> 3344 // (ashr (shl (ctlz %a), 58), 63) 3345 SDValue CountInput = IsRHSZero ? LHS : 3346 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3347 SDValue Cntlzw = 3348 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3349 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3350 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3351 SDValue Slwi = 3352 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3353 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3354 } 3355 case ISD::SETNE: { 3356 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3357 // flip the bit, finally take 2's complement. 3358 // (sext (setcc %a, %b, setne)) -> 3359 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3360 // Same as above, but the first xor is not needed. 3361 // (sext (setcc %a, 0, setne)) -> 3362 // (neg (xor (lshr (ctlz %a), 5), 1)) 3363 SDValue Xor = IsRHSZero ? LHS : 3364 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3365 SDValue Clz = 3366 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3367 SDValue ShiftOps[] = 3368 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3369 SDValue Shift = 3370 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3371 SDValue Xori = 3372 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3373 S->getI32Imm(1, dl)), 0); 3374 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3375 } 3376 case ISD::SETGE: { 3377 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3378 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3379 if (IsRHSZero) 3380 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3381 3382 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3383 // by swapping inputs and falling through. 3384 std::swap(LHS, RHS); 3385 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3386 IsRHSZero = RHSConst && RHSConst->isZero(); 3387 LLVM_FALLTHROUGH; 3388 } 3389 case ISD::SETLE: { 3390 if (CmpInGPR == ICGPR_NonExtIn) 3391 return SDValue(); 3392 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3393 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3394 if (IsRHSZero) 3395 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3396 3397 // The upper 32-bits of the register can't be undefined for this sequence. 3398 LHS = signExtendInputIfNeeded(LHS); 3399 RHS = signExtendInputIfNeeded(RHS); 3400 SDValue SUBFNode = 3401 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3402 LHS, RHS), 0); 3403 SDValue Srdi = 3404 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3405 SUBFNode, S->getI64Imm(1, dl), 3406 S->getI64Imm(63, dl)), 0); 3407 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3408 S->getI32Imm(-1, dl)), 0); 3409 } 3410 case ISD::SETGT: { 3411 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3412 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3413 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3414 if (IsRHSNegOne) 3415 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3416 if (IsRHSZero) { 3417 if (CmpInGPR == ICGPR_NonExtIn) 3418 return SDValue(); 3419 // The upper 32-bits of the register can't be undefined for this sequence. 3420 LHS = signExtendInputIfNeeded(LHS); 3421 RHS = signExtendInputIfNeeded(RHS); 3422 SDValue Neg = 3423 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3424 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3425 S->getI64Imm(63, dl)), 0); 3426 } 3427 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3428 // (%b < %a) by swapping inputs and falling through. 3429 std::swap(LHS, RHS); 3430 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3431 IsRHSZero = RHSConst && RHSConst->isZero(); 3432 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3433 LLVM_FALLTHROUGH; 3434 } 3435 case ISD::SETLT: { 3436 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3437 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3438 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3439 if (IsRHSOne) { 3440 if (CmpInGPR == ICGPR_NonExtIn) 3441 return SDValue(); 3442 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3443 } 3444 if (IsRHSZero) 3445 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3446 S->getI32Imm(31, dl)), 0); 3447 3448 if (CmpInGPR == ICGPR_NonExtIn) 3449 return SDValue(); 3450 // The upper 32-bits of the register can't be undefined for this sequence. 3451 LHS = signExtendInputIfNeeded(LHS); 3452 RHS = signExtendInputIfNeeded(RHS); 3453 SDValue SUBFNode = 3454 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3455 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3456 SUBFNode, S->getI64Imm(63, dl)), 0); 3457 } 3458 case ISD::SETUGE: 3459 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3460 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3461 std::swap(LHS, RHS); 3462 LLVM_FALLTHROUGH; 3463 case ISD::SETULE: { 3464 if (CmpInGPR == ICGPR_NonExtIn) 3465 return SDValue(); 3466 // The upper 32-bits of the register can't be undefined for this sequence. 3467 LHS = zeroExtendInputIfNeeded(LHS); 3468 RHS = zeroExtendInputIfNeeded(RHS); 3469 SDValue Subtract = 3470 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3471 SDValue Shift = 3472 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3473 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3474 0); 3475 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3476 S->getI32Imm(-1, dl)), 0); 3477 } 3478 case ISD::SETUGT: 3479 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3480 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3481 std::swap(LHS, RHS); 3482 LLVM_FALLTHROUGH; 3483 case ISD::SETULT: { 3484 if (CmpInGPR == ICGPR_NonExtIn) 3485 return SDValue(); 3486 // The upper 32-bits of the register can't be undefined for this sequence. 3487 LHS = zeroExtendInputIfNeeded(LHS); 3488 RHS = zeroExtendInputIfNeeded(RHS); 3489 SDValue Subtract = 3490 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3491 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3492 Subtract, S->getI64Imm(63, dl)), 0); 3493 } 3494 } 3495 } 3496 3497 /// Produces a zero-extended result of comparing two 64-bit values according to 3498 /// the passed condition code. 3499 SDValue 3500 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3501 ISD::CondCode CC, 3502 int64_t RHSValue, SDLoc dl) { 3503 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3504 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3505 return SDValue(); 3506 bool IsRHSZero = RHSValue == 0; 3507 bool IsRHSOne = RHSValue == 1; 3508 bool IsRHSNegOne = RHSValue == -1LL; 3509 switch (CC) { 3510 default: return SDValue(); 3511 case ISD::SETEQ: { 3512 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3513 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3514 SDValue Xor = IsRHSZero ? LHS : 3515 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3516 SDValue Clz = 3517 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3518 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3519 S->getI64Imm(58, dl), 3520 S->getI64Imm(63, dl)), 0); 3521 } 3522 case ISD::SETNE: { 3523 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3524 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3525 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3526 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3527 SDValue Xor = IsRHSZero ? LHS : 3528 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3529 SDValue AC = 3530 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3531 Xor, S->getI32Imm(~0U, dl)), 0); 3532 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3533 Xor, AC.getValue(1)), 0); 3534 } 3535 case ISD::SETGE: { 3536 // {subc.reg, subc.CA} = (subcarry %a, %b) 3537 // (zext (setcc %a, %b, setge)) -> 3538 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3539 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3540 if (IsRHSZero) 3541 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3542 std::swap(LHS, RHS); 3543 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3544 IsRHSZero = RHSConst && RHSConst->isZero(); 3545 LLVM_FALLTHROUGH; 3546 } 3547 case ISD::SETLE: { 3548 // {subc.reg, subc.CA} = (subcarry %b, %a) 3549 // (zext (setcc %a, %b, setge)) -> 3550 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3551 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3552 if (IsRHSZero) 3553 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3554 SDValue ShiftL = 3555 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3556 S->getI64Imm(1, dl), 3557 S->getI64Imm(63, dl)), 0); 3558 SDValue ShiftR = 3559 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3560 S->getI64Imm(63, dl)), 0); 3561 SDValue SubtractCarry = 3562 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3563 LHS, RHS), 1); 3564 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3565 ShiftR, ShiftL, SubtractCarry), 0); 3566 } 3567 case ISD::SETGT: { 3568 // {subc.reg, subc.CA} = (subcarry %b, %a) 3569 // (zext (setcc %a, %b, setgt)) -> 3570 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3571 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3572 if (IsRHSNegOne) 3573 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3574 if (IsRHSZero) { 3575 SDValue Addi = 3576 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3577 S->getI64Imm(~0ULL, dl)), 0); 3578 SDValue Nor = 3579 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3580 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3581 S->getI64Imm(1, dl), 3582 S->getI64Imm(63, dl)), 0); 3583 } 3584 std::swap(LHS, RHS); 3585 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3586 IsRHSZero = RHSConst && RHSConst->isZero(); 3587 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3588 LLVM_FALLTHROUGH; 3589 } 3590 case ISD::SETLT: { 3591 // {subc.reg, subc.CA} = (subcarry %a, %b) 3592 // (zext (setcc %a, %b, setlt)) -> 3593 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3594 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3595 if (IsRHSOne) 3596 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3597 if (IsRHSZero) 3598 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3599 S->getI64Imm(1, dl), 3600 S->getI64Imm(63, dl)), 0); 3601 SDValue SRADINode = 3602 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3603 LHS, S->getI64Imm(63, dl)), 0); 3604 SDValue SRDINode = 3605 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3606 RHS, S->getI64Imm(1, dl), 3607 S->getI64Imm(63, dl)), 0); 3608 SDValue SUBFC8Carry = 3609 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3610 RHS, LHS), 1); 3611 SDValue ADDE8Node = 3612 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3613 SRDINode, SRADINode, SUBFC8Carry), 0); 3614 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3615 ADDE8Node, S->getI64Imm(1, dl)), 0); 3616 } 3617 case ISD::SETUGE: 3618 // {subc.reg, subc.CA} = (subcarry %a, %b) 3619 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3620 std::swap(LHS, RHS); 3621 LLVM_FALLTHROUGH; 3622 case ISD::SETULE: { 3623 // {subc.reg, subc.CA} = (subcarry %b, %a) 3624 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3625 SDValue SUBFC8Carry = 3626 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3627 LHS, RHS), 1); 3628 SDValue SUBFE8Node = 3629 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3630 LHS, LHS, SUBFC8Carry), 0); 3631 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3632 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3633 } 3634 case ISD::SETUGT: 3635 // {subc.reg, subc.CA} = (subcarry %b, %a) 3636 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3637 std::swap(LHS, RHS); 3638 LLVM_FALLTHROUGH; 3639 case ISD::SETULT: { 3640 // {subc.reg, subc.CA} = (subcarry %a, %b) 3641 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3642 SDValue SubtractCarry = 3643 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3644 RHS, LHS), 1); 3645 SDValue ExtSub = 3646 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3647 LHS, LHS, SubtractCarry), 0); 3648 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3649 ExtSub), 0); 3650 } 3651 } 3652 } 3653 3654 /// Produces a sign-extended result of comparing two 64-bit values according to 3655 /// the passed condition code. 3656 SDValue 3657 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3658 ISD::CondCode CC, 3659 int64_t RHSValue, SDLoc dl) { 3660 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3661 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3662 return SDValue(); 3663 bool IsRHSZero = RHSValue == 0; 3664 bool IsRHSOne = RHSValue == 1; 3665 bool IsRHSNegOne = RHSValue == -1LL; 3666 switch (CC) { 3667 default: return SDValue(); 3668 case ISD::SETEQ: { 3669 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3670 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3671 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3672 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3673 SDValue AddInput = IsRHSZero ? LHS : 3674 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3675 SDValue Addic = 3676 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3677 AddInput, S->getI32Imm(~0U, dl)), 0); 3678 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3679 Addic, Addic.getValue(1)), 0); 3680 } 3681 case ISD::SETNE: { 3682 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3683 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3684 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3685 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3686 SDValue Xor = IsRHSZero ? LHS : 3687 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3688 SDValue SC = 3689 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3690 Xor, S->getI32Imm(0, dl)), 0); 3691 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3692 SC, SC.getValue(1)), 0); 3693 } 3694 case ISD::SETGE: { 3695 // {subc.reg, subc.CA} = (subcarry %a, %b) 3696 // (zext (setcc %a, %b, setge)) -> 3697 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3698 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3699 if (IsRHSZero) 3700 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3701 std::swap(LHS, RHS); 3702 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3703 IsRHSZero = RHSConst && RHSConst->isZero(); 3704 LLVM_FALLTHROUGH; 3705 } 3706 case ISD::SETLE: { 3707 // {subc.reg, subc.CA} = (subcarry %b, %a) 3708 // (zext (setcc %a, %b, setge)) -> 3709 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3710 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3711 if (IsRHSZero) 3712 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3713 SDValue ShiftR = 3714 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3715 S->getI64Imm(63, dl)), 0); 3716 SDValue ShiftL = 3717 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3718 S->getI64Imm(1, dl), 3719 S->getI64Imm(63, dl)), 0); 3720 SDValue SubtractCarry = 3721 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3722 LHS, RHS), 1); 3723 SDValue Adde = 3724 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3725 ShiftR, ShiftL, SubtractCarry), 0); 3726 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3727 } 3728 case ISD::SETGT: { 3729 // {subc.reg, subc.CA} = (subcarry %b, %a) 3730 // (zext (setcc %a, %b, setgt)) -> 3731 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3732 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3733 if (IsRHSNegOne) 3734 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3735 if (IsRHSZero) { 3736 SDValue Add = 3737 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3738 S->getI64Imm(-1, dl)), 0); 3739 SDValue Nor = 3740 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3741 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3742 S->getI64Imm(63, dl)), 0); 3743 } 3744 std::swap(LHS, RHS); 3745 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3746 IsRHSZero = RHSConst && RHSConst->isZero(); 3747 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3748 LLVM_FALLTHROUGH; 3749 } 3750 case ISD::SETLT: { 3751 // {subc.reg, subc.CA} = (subcarry %a, %b) 3752 // (zext (setcc %a, %b, setlt)) -> 3753 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3754 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3755 if (IsRHSOne) 3756 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3757 if (IsRHSZero) { 3758 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3759 S->getI64Imm(63, dl)), 0); 3760 } 3761 SDValue SRADINode = 3762 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3763 LHS, S->getI64Imm(63, dl)), 0); 3764 SDValue SRDINode = 3765 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3766 RHS, S->getI64Imm(1, dl), 3767 S->getI64Imm(63, dl)), 0); 3768 SDValue SUBFC8Carry = 3769 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3770 RHS, LHS), 1); 3771 SDValue ADDE8Node = 3772 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3773 SRDINode, SRADINode, SUBFC8Carry), 0); 3774 SDValue XORI8Node = 3775 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3776 ADDE8Node, S->getI64Imm(1, dl)), 0); 3777 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3778 XORI8Node), 0); 3779 } 3780 case ISD::SETUGE: 3781 // {subc.reg, subc.CA} = (subcarry %a, %b) 3782 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3783 std::swap(LHS, RHS); 3784 LLVM_FALLTHROUGH; 3785 case ISD::SETULE: { 3786 // {subc.reg, subc.CA} = (subcarry %b, %a) 3787 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3788 SDValue SubtractCarry = 3789 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3790 LHS, RHS), 1); 3791 SDValue ExtSub = 3792 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3793 LHS, SubtractCarry), 0); 3794 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3795 ExtSub, ExtSub), 0); 3796 } 3797 case ISD::SETUGT: 3798 // {subc.reg, subc.CA} = (subcarry %b, %a) 3799 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3800 std::swap(LHS, RHS); 3801 LLVM_FALLTHROUGH; 3802 case ISD::SETULT: { 3803 // {subc.reg, subc.CA} = (subcarry %a, %b) 3804 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3805 SDValue SubCarry = 3806 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3807 RHS, LHS), 1); 3808 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3809 LHS, LHS, SubCarry), 0); 3810 } 3811 } 3812 } 3813 3814 /// Do all uses of this SDValue need the result in a GPR? 3815 /// This is meant to be used on values that have type i1 since 3816 /// it is somewhat meaningless to ask if values of other types 3817 /// should be kept in GPR's. 3818 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3819 assert(Compare.getOpcode() == ISD::SETCC && 3820 "An ISD::SETCC node required here."); 3821 3822 // For values that have a single use, the caller should obviously already have 3823 // checked if that use is an extending use. We check the other uses here. 3824 if (Compare.hasOneUse()) 3825 return true; 3826 // We want the value in a GPR if it is being extended, used for a select, or 3827 // used in logical operations. 3828 for (auto CompareUse : Compare.getNode()->uses()) 3829 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3830 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3831 CompareUse->getOpcode() != ISD::SELECT && 3832 !isLogicOp(CompareUse->getOpcode())) { 3833 OmittedForNonExtendUses++; 3834 return false; 3835 } 3836 return true; 3837 } 3838 3839 /// Returns an equivalent of a SETCC node but with the result the same width as 3840 /// the inputs. This can also be used for SELECT_CC if either the true or false 3841 /// values is a power of two while the other is zero. 3842 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 3843 SetccInGPROpts ConvOpts) { 3844 assert((Compare.getOpcode() == ISD::SETCC || 3845 Compare.getOpcode() == ISD::SELECT_CC) && 3846 "An ISD::SETCC node required here."); 3847 3848 // Don't convert this comparison to a GPR sequence because there are uses 3849 // of the i1 result (i.e. uses that require the result in the CR). 3850 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 3851 return SDValue(); 3852 3853 SDValue LHS = Compare.getOperand(0); 3854 SDValue RHS = Compare.getOperand(1); 3855 3856 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 3857 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 3858 ISD::CondCode CC = 3859 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 3860 EVT InputVT = LHS.getValueType(); 3861 if (InputVT != MVT::i32 && InputVT != MVT::i64) 3862 return SDValue(); 3863 3864 if (ConvOpts == SetccInGPROpts::ZExtInvert || 3865 ConvOpts == SetccInGPROpts::SExtInvert) 3866 CC = ISD::getSetCCInverse(CC, InputVT); 3867 3868 bool Inputs32Bit = InputVT == MVT::i32; 3869 3870 SDLoc dl(Compare); 3871 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3872 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 3873 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 3874 ConvOpts == SetccInGPROpts::SExtInvert; 3875 3876 if (IsSext && Inputs32Bit) 3877 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3878 else if (Inputs32Bit) 3879 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3880 else if (IsSext) 3881 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3882 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3883 } 3884 3885 } // end anonymous namespace 3886 3887 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 3888 if (N->getValueType(0) != MVT::i32 && 3889 N->getValueType(0) != MVT::i64) 3890 return false; 3891 3892 // This optimization will emit code that assumes 64-bit registers 3893 // so we don't want to run it in 32-bit mode. Also don't run it 3894 // on functions that are not to be optimized. 3895 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) 3896 return false; 3897 3898 // For POWER10, it is more profitable to use the set boolean extension 3899 // instructions rather than the integer compare elimination codegen. 3900 // Users can override this via the command line option, `--ppc-gpr-icmps`. 3901 if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1()) 3902 return false; 3903 3904 switch (N->getOpcode()) { 3905 default: break; 3906 case ISD::ZERO_EXTEND: 3907 case ISD::SIGN_EXTEND: 3908 case ISD::AND: 3909 case ISD::OR: 3910 case ISD::XOR: { 3911 IntegerCompareEliminator ICmpElim(CurDAG, this); 3912 if (SDNode *New = ICmpElim.Select(N)) { 3913 ReplaceNode(N, New); 3914 return true; 3915 } 3916 } 3917 } 3918 return false; 3919 } 3920 3921 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 3922 if (N->getValueType(0) != MVT::i32 && 3923 N->getValueType(0) != MVT::i64) 3924 return false; 3925 3926 if (!UseBitPermRewriter) 3927 return false; 3928 3929 switch (N->getOpcode()) { 3930 default: break; 3931 case ISD::ROTL: 3932 case ISD::SHL: 3933 case ISD::SRL: 3934 case ISD::AND: 3935 case ISD::OR: { 3936 BitPermutationSelector BPS(CurDAG); 3937 if (SDNode *New = BPS.Select(N)) { 3938 ReplaceNode(N, New); 3939 return true; 3940 } 3941 return false; 3942 } 3943 } 3944 3945 return false; 3946 } 3947 3948 /// SelectCC - Select a comparison of the specified values with the specified 3949 /// condition code, returning the CR# of the expression. 3950 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3951 const SDLoc &dl, SDValue Chain) { 3952 // Always select the LHS. 3953 unsigned Opc; 3954 3955 if (LHS.getValueType() == MVT::i32) { 3956 unsigned Imm; 3957 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3958 if (isInt32Immediate(RHS, Imm)) { 3959 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3960 if (isUInt<16>(Imm)) 3961 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3962 getI32Imm(Imm & 0xFFFF, dl)), 3963 0); 3964 // If this is a 16-bit signed immediate, fold it. 3965 if (isInt<16>((int)Imm)) 3966 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3967 getI32Imm(Imm & 0xFFFF, dl)), 3968 0); 3969 3970 // For non-equality comparisons, the default code would materialize the 3971 // constant, then compare against it, like this: 3972 // lis r2, 4660 3973 // ori r2, r2, 22136 3974 // cmpw cr0, r3, r2 3975 // Since we are just comparing for equality, we can emit this instead: 3976 // xoris r0,r3,0x1234 3977 // cmplwi cr0,r0,0x5678 3978 // beq cr0,L6 3979 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 3980 getI32Imm(Imm >> 16, dl)), 0); 3981 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 3982 getI32Imm(Imm & 0xFFFF, dl)), 0); 3983 } 3984 Opc = PPC::CMPLW; 3985 } else if (ISD::isUnsignedIntSetCC(CC)) { 3986 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 3987 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3988 getI32Imm(Imm & 0xFFFF, dl)), 0); 3989 Opc = PPC::CMPLW; 3990 } else { 3991 int16_t SImm; 3992 if (isIntS16Immediate(RHS, SImm)) 3993 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3994 getI32Imm((int)SImm & 0xFFFF, 3995 dl)), 3996 0); 3997 Opc = PPC::CMPW; 3998 } 3999 } else if (LHS.getValueType() == MVT::i64) { 4000 uint64_t Imm; 4001 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 4002 if (isInt64Immediate(RHS.getNode(), Imm)) { 4003 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 4004 if (isUInt<16>(Imm)) 4005 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4006 getI32Imm(Imm & 0xFFFF, dl)), 4007 0); 4008 // If this is a 16-bit signed immediate, fold it. 4009 if (isInt<16>(Imm)) 4010 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4011 getI32Imm(Imm & 0xFFFF, dl)), 4012 0); 4013 4014 // For non-equality comparisons, the default code would materialize the 4015 // constant, then compare against it, like this: 4016 // lis r2, 4660 4017 // ori r2, r2, 22136 4018 // cmpd cr0, r3, r2 4019 // Since we are just comparing for equality, we can emit this instead: 4020 // xoris r0,r3,0x1234 4021 // cmpldi cr0,r0,0x5678 4022 // beq cr0,L6 4023 if (isUInt<32>(Imm)) { 4024 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 4025 getI64Imm(Imm >> 16, dl)), 0); 4026 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 4027 getI64Imm(Imm & 0xFFFF, dl)), 4028 0); 4029 } 4030 } 4031 Opc = PPC::CMPLD; 4032 } else if (ISD::isUnsignedIntSetCC(CC)) { 4033 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 4034 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 4035 getI64Imm(Imm & 0xFFFF, dl)), 0); 4036 Opc = PPC::CMPLD; 4037 } else { 4038 int16_t SImm; 4039 if (isIntS16Immediate(RHS, SImm)) 4040 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 4041 getI64Imm(SImm & 0xFFFF, dl)), 4042 0); 4043 Opc = PPC::CMPD; 4044 } 4045 } else if (LHS.getValueType() == MVT::f32) { 4046 if (Subtarget->hasSPE()) { 4047 switch (CC) { 4048 default: 4049 case ISD::SETEQ: 4050 case ISD::SETNE: 4051 Opc = PPC::EFSCMPEQ; 4052 break; 4053 case ISD::SETLT: 4054 case ISD::SETGE: 4055 case ISD::SETOLT: 4056 case ISD::SETOGE: 4057 case ISD::SETULT: 4058 case ISD::SETUGE: 4059 Opc = PPC::EFSCMPLT; 4060 break; 4061 case ISD::SETGT: 4062 case ISD::SETLE: 4063 case ISD::SETOGT: 4064 case ISD::SETOLE: 4065 case ISD::SETUGT: 4066 case ISD::SETULE: 4067 Opc = PPC::EFSCMPGT; 4068 break; 4069 } 4070 } else 4071 Opc = PPC::FCMPUS; 4072 } else if (LHS.getValueType() == MVT::f64) { 4073 if (Subtarget->hasSPE()) { 4074 switch (CC) { 4075 default: 4076 case ISD::SETEQ: 4077 case ISD::SETNE: 4078 Opc = PPC::EFDCMPEQ; 4079 break; 4080 case ISD::SETLT: 4081 case ISD::SETGE: 4082 case ISD::SETOLT: 4083 case ISD::SETOGE: 4084 case ISD::SETULT: 4085 case ISD::SETUGE: 4086 Opc = PPC::EFDCMPLT; 4087 break; 4088 case ISD::SETGT: 4089 case ISD::SETLE: 4090 case ISD::SETOGT: 4091 case ISD::SETOLE: 4092 case ISD::SETUGT: 4093 case ISD::SETULE: 4094 Opc = PPC::EFDCMPGT; 4095 break; 4096 } 4097 } else 4098 Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 4099 } else { 4100 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 4101 assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector"); 4102 Opc = PPC::XSCMPUQP; 4103 } 4104 if (Chain) 4105 return SDValue( 4106 CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain), 4107 0); 4108 else 4109 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 4110 } 4111 4112 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, 4113 const PPCSubtarget *Subtarget) { 4114 // For SPE instructions, the result is in GT bit of the CR 4115 bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); 4116 4117 switch (CC) { 4118 case ISD::SETUEQ: 4119 case ISD::SETONE: 4120 case ISD::SETOLE: 4121 case ISD::SETOGE: 4122 llvm_unreachable("Should be lowered by legalize!"); 4123 default: llvm_unreachable("Unknown condition!"); 4124 case ISD::SETOEQ: 4125 case ISD::SETEQ: 4126 return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; 4127 case ISD::SETUNE: 4128 case ISD::SETNE: 4129 return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; 4130 case ISD::SETOLT: 4131 case ISD::SETLT: 4132 return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; 4133 case ISD::SETULE: 4134 case ISD::SETLE: 4135 return PPC::PRED_LE; 4136 case ISD::SETOGT: 4137 case ISD::SETGT: 4138 return PPC::PRED_GT; 4139 case ISD::SETUGE: 4140 case ISD::SETGE: 4141 return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; 4142 case ISD::SETO: return PPC::PRED_NU; 4143 case ISD::SETUO: return PPC::PRED_UN; 4144 // These two are invalid for floating point. Assume we have int. 4145 case ISD::SETULT: return PPC::PRED_LT; 4146 case ISD::SETUGT: return PPC::PRED_GT; 4147 } 4148 } 4149 4150 /// getCRIdxForSetCC - Return the index of the condition register field 4151 /// associated with the SetCC condition, and whether or not the field is 4152 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 4153 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 4154 Invert = false; 4155 switch (CC) { 4156 default: llvm_unreachable("Unknown condition!"); 4157 case ISD::SETOLT: 4158 case ISD::SETLT: return 0; // Bit #0 = SETOLT 4159 case ISD::SETOGT: 4160 case ISD::SETGT: return 1; // Bit #1 = SETOGT 4161 case ISD::SETOEQ: 4162 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 4163 case ISD::SETUO: return 3; // Bit #3 = SETUO 4164 case ISD::SETUGE: 4165 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 4166 case ISD::SETULE: 4167 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 4168 case ISD::SETUNE: 4169 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 4170 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 4171 case ISD::SETUEQ: 4172 case ISD::SETOGE: 4173 case ISD::SETOLE: 4174 case ISD::SETONE: 4175 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 4176 // These are invalid for floating point. Assume integer. 4177 case ISD::SETULT: return 0; 4178 case ISD::SETUGT: return 1; 4179 } 4180 } 4181 4182 // getVCmpInst: return the vector compare instruction for the specified 4183 // vector type and condition code. Since this is for altivec specific code, 4184 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128, 4185 // and v4f32). 4186 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 4187 bool HasVSX, bool &Swap, bool &Negate) { 4188 Swap = false; 4189 Negate = false; 4190 4191 if (VecVT.isFloatingPoint()) { 4192 /* Handle some cases by swapping input operands. */ 4193 switch (CC) { 4194 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 4195 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4196 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 4197 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 4198 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4199 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 4200 default: break; 4201 } 4202 /* Handle some cases by negating the result. */ 4203 switch (CC) { 4204 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4205 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 4206 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 4207 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 4208 default: break; 4209 } 4210 /* We have instructions implementing the remaining cases. */ 4211 switch (CC) { 4212 case ISD::SETEQ: 4213 case ISD::SETOEQ: 4214 if (VecVT == MVT::v4f32) 4215 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 4216 else if (VecVT == MVT::v2f64) 4217 return PPC::XVCMPEQDP; 4218 break; 4219 case ISD::SETGT: 4220 case ISD::SETOGT: 4221 if (VecVT == MVT::v4f32) 4222 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 4223 else if (VecVT == MVT::v2f64) 4224 return PPC::XVCMPGTDP; 4225 break; 4226 case ISD::SETGE: 4227 case ISD::SETOGE: 4228 if (VecVT == MVT::v4f32) 4229 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 4230 else if (VecVT == MVT::v2f64) 4231 return PPC::XVCMPGEDP; 4232 break; 4233 default: 4234 break; 4235 } 4236 llvm_unreachable("Invalid floating-point vector compare condition"); 4237 } else { 4238 /* Handle some cases by swapping input operands. */ 4239 switch (CC) { 4240 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 4241 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 4242 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 4243 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 4244 default: break; 4245 } 4246 /* Handle some cases by negating the result. */ 4247 switch (CC) { 4248 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 4249 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 4250 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 4251 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 4252 default: break; 4253 } 4254 /* We have instructions implementing the remaining cases. */ 4255 switch (CC) { 4256 case ISD::SETEQ: 4257 case ISD::SETUEQ: 4258 if (VecVT == MVT::v16i8) 4259 return PPC::VCMPEQUB; 4260 else if (VecVT == MVT::v8i16) 4261 return PPC::VCMPEQUH; 4262 else if (VecVT == MVT::v4i32) 4263 return PPC::VCMPEQUW; 4264 else if (VecVT == MVT::v2i64) 4265 return PPC::VCMPEQUD; 4266 else if (VecVT == MVT::v1i128) 4267 return PPC::VCMPEQUQ; 4268 break; 4269 case ISD::SETGT: 4270 if (VecVT == MVT::v16i8) 4271 return PPC::VCMPGTSB; 4272 else if (VecVT == MVT::v8i16) 4273 return PPC::VCMPGTSH; 4274 else if (VecVT == MVT::v4i32) 4275 return PPC::VCMPGTSW; 4276 else if (VecVT == MVT::v2i64) 4277 return PPC::VCMPGTSD; 4278 else if (VecVT == MVT::v1i128) 4279 return PPC::VCMPGTSQ; 4280 break; 4281 case ISD::SETUGT: 4282 if (VecVT == MVT::v16i8) 4283 return PPC::VCMPGTUB; 4284 else if (VecVT == MVT::v8i16) 4285 return PPC::VCMPGTUH; 4286 else if (VecVT == MVT::v4i32) 4287 return PPC::VCMPGTUW; 4288 else if (VecVT == MVT::v2i64) 4289 return PPC::VCMPGTUD; 4290 else if (VecVT == MVT::v1i128) 4291 return PPC::VCMPGTUQ; 4292 break; 4293 default: 4294 break; 4295 } 4296 llvm_unreachable("Invalid integer vector compare condition"); 4297 } 4298 } 4299 4300 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4301 SDLoc dl(N); 4302 unsigned Imm; 4303 bool IsStrict = N->isStrictFPOpcode(); 4304 ISD::CondCode CC = 4305 cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get(); 4306 EVT PtrVT = 4307 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4308 bool isPPC64 = (PtrVT == MVT::i64); 4309 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4310 4311 SDValue LHS = N->getOperand(IsStrict ? 1 : 0); 4312 SDValue RHS = N->getOperand(IsStrict ? 2 : 1); 4313 4314 if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) { 4315 // We can codegen setcc op, imm very efficiently compared to a brcond. 4316 // Check for those cases here. 4317 // setcc op, 0 4318 if (Imm == 0) { 4319 SDValue Op = LHS; 4320 switch (CC) { 4321 default: break; 4322 case ISD::SETEQ: { 4323 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4324 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4325 getI32Imm(31, dl) }; 4326 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4327 return true; 4328 } 4329 case ISD::SETNE: { 4330 if (isPPC64) break; 4331 SDValue AD = 4332 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4333 Op, getI32Imm(~0U, dl)), 0); 4334 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4335 return true; 4336 } 4337 case ISD::SETLT: { 4338 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4339 getI32Imm(31, dl) }; 4340 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4341 return true; 4342 } 4343 case ISD::SETGT: { 4344 SDValue T = 4345 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4346 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4347 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4348 getI32Imm(31, dl) }; 4349 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4350 return true; 4351 } 4352 } 4353 } else if (Imm == ~0U) { // setcc op, -1 4354 SDValue Op = LHS; 4355 switch (CC) { 4356 default: break; 4357 case ISD::SETEQ: 4358 if (isPPC64) break; 4359 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4360 Op, getI32Imm(1, dl)), 0); 4361 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4362 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4363 MVT::i32, 4364 getI32Imm(0, dl)), 4365 0), Op.getValue(1)); 4366 return true; 4367 case ISD::SETNE: { 4368 if (isPPC64) break; 4369 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4370 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4371 Op, getI32Imm(~0U, dl)); 4372 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4373 SDValue(AD, 1)); 4374 return true; 4375 } 4376 case ISD::SETLT: { 4377 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4378 getI32Imm(1, dl)), 0); 4379 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4380 Op), 0); 4381 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4382 getI32Imm(31, dl) }; 4383 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4384 return true; 4385 } 4386 case ISD::SETGT: { 4387 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4388 getI32Imm(31, dl) }; 4389 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4390 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4391 return true; 4392 } 4393 } 4394 } 4395 } 4396 4397 // Altivec Vector compare instructions do not set any CR register by default and 4398 // vector compare operations return the same type as the operands. 4399 if (!IsStrict && LHS.getValueType().isVector()) { 4400 if (Subtarget->hasSPE()) 4401 return false; 4402 4403 EVT VecVT = LHS.getValueType(); 4404 bool Swap, Negate; 4405 unsigned int VCmpInst = 4406 getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); 4407 if (Swap) 4408 std::swap(LHS, RHS); 4409 4410 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4411 if (Negate) { 4412 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4413 CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4414 ResVT, VCmp, VCmp); 4415 return true; 4416 } 4417 4418 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4419 return true; 4420 } 4421 4422 if (Subtarget->useCRBits()) 4423 return false; 4424 4425 bool Inv; 4426 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4427 SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain); 4428 if (IsStrict) 4429 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1)); 4430 SDValue IntCR; 4431 4432 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4433 // The correct compare instruction is already set by SelectCC() 4434 if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4435 Idx = 1; 4436 } 4437 4438 // Force the ccreg into CR7. 4439 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4440 4441 SDValue InFlag(nullptr, 0); // Null incoming flag value. 4442 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4443 InFlag).getValue(1); 4444 4445 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4446 CCReg), 0); 4447 4448 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4449 getI32Imm(31, dl), getI32Imm(31, dl) }; 4450 if (!Inv) { 4451 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4452 return true; 4453 } 4454 4455 // Get the specified bit. 4456 SDValue Tmp = 4457 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4458 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4459 return true; 4460 } 4461 4462 /// Does this node represent a load/store node whose address can be represented 4463 /// with a register plus an immediate that's a multiple of \p Val: 4464 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4465 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4466 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4467 MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N); 4468 SDValue AddrOp; 4469 if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT)) 4470 AddrOp = N->getOperand(1); 4471 else if (STN) 4472 AddrOp = STN->getOperand(2); 4473 4474 // If the address points a frame object or a frame object with an offset, 4475 // we need to check the object alignment. 4476 short Imm = 0; 4477 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4478 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4479 AddrOp)) { 4480 // If op0 is a frame index that is under aligned, we can't do it either, 4481 // because it is translated to r31 or r1 + slot + offset. We won't know the 4482 // slot number until the stack frame is finalized. 4483 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4484 unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); 4485 if ((SlotAlign % Val) != 0) 4486 return false; 4487 4488 // If we have an offset, we need further check on the offset. 4489 if (AddrOp.getOpcode() != ISD::ADD) 4490 return true; 4491 } 4492 4493 if (AddrOp.getOpcode() == ISD::ADD) 4494 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4495 4496 // If the address comes from the outside, the offset will be zero. 4497 return AddrOp.getOpcode() == ISD::CopyFromReg; 4498 } 4499 4500 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4501 // Transfer memoperands. 4502 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4503 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4504 } 4505 4506 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4507 bool &NeedSwapOps, bool &IsUnCmp) { 4508 4509 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4510 4511 SDValue LHS = N->getOperand(0); 4512 SDValue RHS = N->getOperand(1); 4513 SDValue TrueRes = N->getOperand(2); 4514 SDValue FalseRes = N->getOperand(3); 4515 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4516 if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && 4517 N->getSimpleValueType(0) != MVT::i32)) 4518 return false; 4519 4520 // We are looking for any of: 4521 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4522 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4523 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4524 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4525 int64_t TrueResVal = TrueConst->getSExtValue(); 4526 if ((TrueResVal < -1 || TrueResVal > 1) || 4527 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4528 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4529 (TrueResVal == 0 && 4530 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4531 return false; 4532 4533 SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC 4534 ? FalseRes 4535 : FalseRes.getOperand(0); 4536 bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC; 4537 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4538 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4539 return false; 4540 4541 // Without this setb optimization, the outer SELECT_CC will be manually 4542 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4543 // transforms pseudo instruction to isel instruction. When there are more than 4544 // one use for result like zext/sext, with current optimization we only see 4545 // isel is replaced by setb but can't see any significant gain. Since 4546 // setb has longer latency than original isel, we should avoid this. Another 4547 // point is that setb requires comparison always kept, it can break the 4548 // opportunity to get the comparison away if we have in future. 4549 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4550 return false; 4551 4552 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4553 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4554 ISD::CondCode InnerCC = 4555 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4556 // If the inner comparison is a select_cc, make sure the true/false values are 4557 // 1/-1 and canonicalize it if needed. 4558 if (InnerIsSel) { 4559 ConstantSDNode *SelCCTrueConst = 4560 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4561 ConstantSDNode *SelCCFalseConst = 4562 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4563 if (!SelCCTrueConst || !SelCCFalseConst) 4564 return false; 4565 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4566 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4567 // The values must be -1/1 (requiring a swap) or 1/-1. 4568 if (SelCCTVal == -1 && SelCCFVal == 1) { 4569 std::swap(InnerLHS, InnerRHS); 4570 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4571 return false; 4572 } 4573 4574 // Canonicalize unsigned case 4575 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4576 IsUnCmp = true; 4577 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4578 } 4579 4580 bool InnerSwapped = false; 4581 if (LHS == InnerRHS && RHS == InnerLHS) 4582 InnerSwapped = true; 4583 else if (LHS != InnerLHS || RHS != InnerRHS) 4584 return false; 4585 4586 switch (CC) { 4587 // (select_cc lhs, rhs, 0, \ 4588 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4589 case ISD::SETEQ: 4590 if (!InnerIsSel) 4591 return false; 4592 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4593 return false; 4594 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4595 break; 4596 4597 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4598 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4599 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4600 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4601 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4602 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4603 case ISD::SETULT: 4604 if (!IsUnCmp && InnerCC != ISD::SETNE) 4605 return false; 4606 IsUnCmp = true; 4607 LLVM_FALLTHROUGH; 4608 case ISD::SETLT: 4609 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4610 (InnerCC == ISD::SETLT && InnerSwapped)) 4611 NeedSwapOps = (TrueResVal == 1); 4612 else 4613 return false; 4614 break; 4615 4616 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4617 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4618 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4619 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4620 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4621 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4622 case ISD::SETUGT: 4623 if (!IsUnCmp && InnerCC != ISD::SETNE) 4624 return false; 4625 IsUnCmp = true; 4626 LLVM_FALLTHROUGH; 4627 case ISD::SETGT: 4628 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4629 (InnerCC == ISD::SETGT && InnerSwapped)) 4630 NeedSwapOps = (TrueResVal == -1); 4631 else 4632 return false; 4633 break; 4634 4635 default: 4636 return false; 4637 } 4638 4639 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4640 LLVM_DEBUG(N->dump()); 4641 4642 return true; 4643 } 4644 4645 // Return true if it's a software square-root/divide operand. 4646 static bool isSWTestOp(SDValue N) { 4647 if (N.getOpcode() == PPCISD::FTSQRT) 4648 return true; 4649 if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0))) 4650 return false; 4651 switch (N.getConstantOperandVal(0)) { 4652 case Intrinsic::ppc_vsx_xvtdivdp: 4653 case Intrinsic::ppc_vsx_xvtdivsp: 4654 case Intrinsic::ppc_vsx_xvtsqrtdp: 4655 case Intrinsic::ppc_vsx_xvtsqrtsp: 4656 return true; 4657 } 4658 return false; 4659 } 4660 4661 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) { 4662 assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected."); 4663 // We are looking for following patterns, where `truncate to i1` actually has 4664 // the same semantic with `and 1`. 4665 // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp) 4666 // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp) 4667 // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp) 4668 // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp) 4669 // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp) 4670 // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp) 4671 // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp) 4672 // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp) 4673 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 4674 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4675 return false; 4676 4677 SDValue CmpRHS = N->getOperand(3); 4678 if (!isa<ConstantSDNode>(CmpRHS) || 4679 cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0) 4680 return false; 4681 4682 SDValue CmpLHS = N->getOperand(2); 4683 if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0))) 4684 return false; 4685 4686 unsigned PCC = 0; 4687 bool IsCCNE = CC == ISD::SETNE; 4688 if (CmpLHS.getOpcode() == ISD::AND && 4689 isa<ConstantSDNode>(CmpLHS.getOperand(1))) 4690 switch (CmpLHS.getConstantOperandVal(1)) { 4691 case 1: 4692 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4693 break; 4694 case 2: 4695 PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE; 4696 break; 4697 case 4: 4698 PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE; 4699 break; 4700 case 8: 4701 PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE; 4702 break; 4703 default: 4704 return false; 4705 } 4706 else if (CmpLHS.getOpcode() == ISD::TRUNCATE && 4707 CmpLHS.getValueType() == MVT::i1) 4708 PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU; 4709 4710 if (PCC) { 4711 SDLoc dl(N); 4712 SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4), 4713 N->getOperand(0)}; 4714 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { 4721 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4722 unsigned Imm; 4723 if (!isInt32Immediate(N->getOperand(1), Imm)) 4724 return false; 4725 4726 SDLoc dl(N); 4727 SDValue Val = N->getOperand(0); 4728 unsigned SH, MB, ME; 4729 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4730 // with a mask, emit rlwinm 4731 if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { 4732 Val = Val.getOperand(0); 4733 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4734 getI32Imm(ME, dl)}; 4735 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4736 return true; 4737 } 4738 4739 // If this is just a masked value where the input is not handled, and 4740 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4741 if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { 4742 SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4743 getI32Imm(ME, dl)}; 4744 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4745 return true; 4746 } 4747 4748 // AND X, 0 -> 0, not "rlwinm 32". 4749 if (Imm == 0) { 4750 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4751 return true; 4752 } 4753 4754 return false; 4755 } 4756 4757 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { 4758 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4759 uint64_t Imm64; 4760 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4761 return false; 4762 4763 unsigned MB, ME; 4764 if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { 4765 // MB ME 4766 // +----------------------+ 4767 // |xxxxxxxxxxx00011111000| 4768 // +----------------------+ 4769 // 0 32 64 4770 // We can only do it if the MB is larger than 32 and MB <= ME 4771 // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even 4772 // we didn't rotate it. 4773 SDLoc dl(N); 4774 SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), 4775 getI64Imm(ME - 32, dl)}; 4776 CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); 4777 return true; 4778 } 4779 4780 return false; 4781 } 4782 4783 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { 4784 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4785 uint64_t Imm64; 4786 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) 4787 return false; 4788 4789 // Do nothing if it is 16-bit imm as the pattern in the .td file handle 4790 // it well with "andi.". 4791 if (isUInt<16>(Imm64)) 4792 return false; 4793 4794 SDLoc Loc(N); 4795 SDValue Val = N->getOperand(0); 4796 4797 // Optimized with two rldicl's as follows: 4798 // Add missing bits on left to the mask and check that the mask is a 4799 // wrapped run of ones, i.e. 4800 // Change pattern |0001111100000011111111| 4801 // to |1111111100000011111111|. 4802 unsigned NumOfLeadingZeros = countLeadingZeros(Imm64); 4803 if (NumOfLeadingZeros != 0) 4804 Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); 4805 4806 unsigned MB, ME; 4807 if (!isRunOfOnes64(Imm64, MB, ME)) 4808 return false; 4809 4810 // ME MB MB-ME+63 4811 // +----------------------+ +----------------------+ 4812 // |1111111100000011111111| -> |0000001111111111111111| 4813 // +----------------------+ +----------------------+ 4814 // 0 63 0 63 4815 // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. 4816 unsigned OnesOnLeft = ME + 1; 4817 unsigned ZerosInBetween = (MB - ME + 63) & 63; 4818 // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear 4819 // on the left the bits that are already zeros in the mask. 4820 Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, 4821 getI64Imm(OnesOnLeft, Loc), 4822 getI64Imm(ZerosInBetween, Loc)), 4823 0); 4824 // MB-ME+63 ME MB 4825 // +----------------------+ +----------------------+ 4826 // |0000001111111111111111| -> |0001111100000011111111| 4827 // +----------------------+ +----------------------+ 4828 // 0 63 0 63 4829 // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the 4830 // left the number of ones we previously added. 4831 SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), 4832 getI64Imm(NumOfLeadingZeros, Loc)}; 4833 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4834 return true; 4835 } 4836 4837 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { 4838 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4839 unsigned Imm; 4840 if (!isInt32Immediate(N->getOperand(1), Imm)) 4841 return false; 4842 4843 SDValue Val = N->getOperand(0); 4844 unsigned Imm2; 4845 // ISD::OR doesn't get all the bitfield insertion fun. 4846 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 4847 // bitfield insert. 4848 if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) 4849 return false; 4850 4851 // The idea here is to check whether this is equivalent to: 4852 // (c1 & m) | (x & ~m) 4853 // where m is a run-of-ones mask. The logic here is that, for each bit in 4854 // c1 and c2: 4855 // - if both are 1, then the output will be 1. 4856 // - if both are 0, then the output will be 0. 4857 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 4858 // come from x. 4859 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 4860 // be 0. 4861 // If that last condition is never the case, then we can form m from the 4862 // bits that are the same between c1 and c2. 4863 unsigned MB, ME; 4864 if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { 4865 SDLoc dl(N); 4866 SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), 4867 getI32Imm(MB, dl), getI32Imm(ME, dl)}; 4868 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 4869 return true; 4870 } 4871 4872 return false; 4873 } 4874 4875 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { 4876 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4877 uint64_t Imm64; 4878 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) 4879 return false; 4880 4881 // If this is a 64-bit zero-extension mask, emit rldicl. 4882 unsigned MB = 64 - countTrailingOnes(Imm64); 4883 unsigned SH = 0; 4884 unsigned Imm; 4885 SDValue Val = N->getOperand(0); 4886 SDLoc dl(N); 4887 4888 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4889 auto Op0 = Val.getOperand(0); 4890 if (Op0.getOpcode() == ISD::SRL && 4891 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 4892 4893 auto ResultType = Val.getNode()->getValueType(0); 4894 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); 4895 SDValue IDVal(ImDef, 0); 4896 4897 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, 4898 IDVal, Op0.getOperand(0), 4899 getI32Imm(1, dl)), 4900 0); 4901 SH = 64 - Imm; 4902 } 4903 } 4904 4905 // If the operand is a logical right shift, we can fold it into this 4906 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 4907 // for n <= mb. The right shift is really a left rotate followed by a 4908 // mask, and this mask is a more-restrictive sub-mask of the mask implied 4909 // by the shift. 4910 if (Val.getOpcode() == ISD::SRL && 4911 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 4912 assert(Imm < 64 && "Illegal shift amount"); 4913 Val = Val.getOperand(0); 4914 SH = 64 - Imm; 4915 } 4916 4917 SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; 4918 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4919 return true; 4920 } 4921 4922 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { 4923 assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); 4924 uint64_t Imm64; 4925 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 4926 !isMask_64(~Imm64)) 4927 return false; 4928 4929 // If this is a negated 64-bit zero-extension mask, 4930 // i.e. the immediate is a sequence of ones from most significant side 4931 // and all zero for reminder, we should use rldicr. 4932 unsigned MB = 63 - countTrailingOnes(~Imm64); 4933 unsigned SH = 0; 4934 SDLoc dl(N); 4935 SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; 4936 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 4937 return true; 4938 } 4939 4940 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { 4941 assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); 4942 uint64_t Imm64; 4943 unsigned MB, ME; 4944 SDValue N0 = N->getOperand(0); 4945 4946 // We won't get fewer instructions if the imm is 32-bit integer. 4947 // rldimi requires the imm to have consecutive ones with both sides zero. 4948 // Also, make sure the first Op has only one use, otherwise this may increase 4949 // register pressure since rldimi is destructive. 4950 if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || 4951 isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) 4952 return false; 4953 4954 unsigned SH = 63 - ME; 4955 SDLoc Dl(N); 4956 // Use select64Imm for making LI instr instead of directly putting Imm64 4957 SDValue Ops[] = { 4958 N->getOperand(0), 4959 SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), 4960 getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; 4961 CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); 4962 return true; 4963 } 4964 4965 // Select - Convert the specified operand from a target-independent to a 4966 // target-specific node if it hasn't already been changed. 4967 void PPCDAGToDAGISel::Select(SDNode *N) { 4968 SDLoc dl(N); 4969 if (N->isMachineOpcode()) { 4970 N->setNodeId(-1); 4971 return; // Already selected. 4972 } 4973 4974 // In case any misguided DAG-level optimizations form an ADD with a 4975 // TargetConstant operand, crash here instead of miscompiling (by selecting 4976 // an r+r add instead of some kind of r+i add). 4977 if (N->getOpcode() == ISD::ADD && 4978 N->getOperand(1).getOpcode() == ISD::TargetConstant) 4979 llvm_unreachable("Invalid ADD with TargetConstant operand"); 4980 4981 // Try matching complex bit permutations before doing anything else. 4982 if (tryBitPermutation(N)) 4983 return; 4984 4985 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 4986 if (tryIntCompareInGPR(N)) 4987 return; 4988 4989 switch (N->getOpcode()) { 4990 default: break; 4991 4992 case ISD::Constant: 4993 if (N->getValueType(0) == MVT::i64) { 4994 ReplaceNode(N, selectI64Imm(CurDAG, N)); 4995 return; 4996 } 4997 break; 4998 4999 case ISD::INTRINSIC_VOID: { 5000 auto IntrinsicID = N->getConstantOperandVal(1); 5001 if (IntrinsicID == Intrinsic::ppc_tdw || IntrinsicID == Intrinsic::ppc_tw) { 5002 unsigned Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TDI : PPC::TWI; 5003 SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)}; 5004 int16_t SImmOperand2; 5005 int16_t SImmOperand3; 5006 int16_t SImmOperand4; 5007 bool isOperand2IntS16Immediate = 5008 isIntS16Immediate(N->getOperand(2), SImmOperand2); 5009 bool isOperand3IntS16Immediate = 5010 isIntS16Immediate(N->getOperand(3), SImmOperand3); 5011 // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg + 5012 // reg or imm + imm. The imm + imm form will be optimized to either an 5013 // unconditional trap or a nop in a later pass. 5014 if (isOperand2IntS16Immediate == isOperand3IntS16Immediate) 5015 Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW; 5016 else if (isOperand3IntS16Immediate) 5017 // The 2nd and 3rd operands are reg + imm. 5018 Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl); 5019 else { 5020 // The 2nd and 3rd operands are imm + reg. 5021 bool isOperand4IntS16Immediate = 5022 isIntS16Immediate(N->getOperand(4), SImmOperand4); 5023 (void)isOperand4IntS16Immediate; 5024 assert(isOperand4IntS16Immediate && 5025 "The 4th operand is not an Immediate"); 5026 // We need to flip the condition immediate TO. 5027 int16_t TO = int(SImmOperand4) & 0x1F; 5028 // We swap the first and second bit of TO if they are not same. 5029 if ((TO & 0x1) != ((TO & 0x2) >> 1)) 5030 TO = (TO & 0x1) ? TO + 1 : TO - 1; 5031 // We swap the fourth and fifth bit of TO if they are not same. 5032 if ((TO & 0x8) != ((TO & 0x10) >> 1)) 5033 TO = (TO & 0x8) ? TO + 8 : TO - 8; 5034 Ops[0] = getI32Imm(TO, dl); 5035 Ops[1] = N->getOperand(3); 5036 Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl); 5037 } 5038 CurDAG->SelectNodeTo(N, Opcode, MVT::Other, Ops); 5039 return; 5040 } 5041 break; 5042 } 5043 5044 case ISD::INTRINSIC_WO_CHAIN: { 5045 // We emit the PPC::FSELS instruction here because of type conflicts with 5046 // the comparison operand. The FSELS instruction is defined to use an 8-byte 5047 // comparison like the FSELD version. The fsels intrinsic takes a 4-byte 5048 // value for the comparison. When selecting through a .td file, a type 5049 // error is raised. Must check this first so we never break on the 5050 // !Subtarget->isISA3_1() check. 5051 auto IntID = N->getConstantOperandVal(0); 5052 if (IntID == Intrinsic::ppc_fsels) { 5053 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)}; 5054 CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops); 5055 return; 5056 } 5057 5058 if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) { 5059 auto Pred = N->getConstantOperandVal(1); 5060 unsigned Opcode = 5061 IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec; 5062 unsigned SubReg = 0; 5063 unsigned ShiftVal = 0; 5064 bool Reverse = false; 5065 switch (Pred) { 5066 case 0: 5067 SubReg = PPC::sub_eq; 5068 ShiftVal = 1; 5069 break; 5070 case 1: 5071 SubReg = PPC::sub_eq; 5072 ShiftVal = 1; 5073 Reverse = true; 5074 break; 5075 case 2: 5076 SubReg = PPC::sub_lt; 5077 ShiftVal = 3; 5078 break; 5079 case 3: 5080 SubReg = PPC::sub_lt; 5081 ShiftVal = 3; 5082 Reverse = true; 5083 break; 5084 case 4: 5085 SubReg = PPC::sub_gt; 5086 ShiftVal = 2; 5087 break; 5088 case 5: 5089 SubReg = PPC::sub_gt; 5090 ShiftVal = 2; 5091 Reverse = true; 5092 break; 5093 case 6: 5094 SubReg = PPC::sub_un; 5095 break; 5096 case 7: 5097 SubReg = PPC::sub_un; 5098 Reverse = true; 5099 break; 5100 } 5101 5102 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5103 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), 5104 CurDAG->getTargetConstant(0, dl, MVT::i32)}; 5105 SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0); 5106 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5107 // On Power10, we can use SETBC[R]. On prior architectures, we have to use 5108 // MFOCRF and shift/negate the value. 5109 if (Subtarget->isISA3_1()) { 5110 SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32); 5111 SDValue CRBit = SDValue( 5112 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5113 CR6Reg, SubRegIdx, BCDOp.getValue(1)), 5114 0); 5115 CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32, 5116 CRBit); 5117 } else { 5118 SDValue Move = 5119 SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg, 5120 BCDOp.getValue(1)), 5121 0); 5122 SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl), 5123 getI32Imm(31, dl), getI32Imm(31, dl)}; 5124 if (!Reverse) 5125 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5126 else { 5127 SDValue Shift = SDValue( 5128 CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 5129 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl)); 5130 } 5131 } 5132 return; 5133 } 5134 5135 if (!Subtarget->isISA3_1()) 5136 break; 5137 unsigned Opcode = 0; 5138 switch (IntID) { 5139 default: 5140 break; 5141 case Intrinsic::ppc_altivec_vstribr_p: 5142 Opcode = PPC::VSTRIBR_rec; 5143 break; 5144 case Intrinsic::ppc_altivec_vstribl_p: 5145 Opcode = PPC::VSTRIBL_rec; 5146 break; 5147 case Intrinsic::ppc_altivec_vstrihr_p: 5148 Opcode = PPC::VSTRIHR_rec; 5149 break; 5150 case Intrinsic::ppc_altivec_vstrihl_p: 5151 Opcode = PPC::VSTRIHL_rec; 5152 break; 5153 } 5154 if (!Opcode) 5155 break; 5156 5157 // Generate the appropriate vector string isolate intrinsic to match. 5158 EVT VTs[] = {MVT::v16i8, MVT::Glue}; 5159 SDValue VecStrOp = 5160 SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0); 5161 // Vector string isolate instructions update the EQ bit of CR6. 5162 // Generate a SETBC instruction to extract the bit and place it in a GPR. 5163 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32); 5164 SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32); 5165 SDValue CRBit = SDValue( 5166 CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1, 5167 CR6Reg, SubRegIdx, VecStrOp.getValue(1)), 5168 0); 5169 CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit); 5170 return; 5171 } 5172 5173 case ISD::SETCC: 5174 case ISD::STRICT_FSETCC: 5175 case ISD::STRICT_FSETCCS: 5176 if (trySETCC(N)) 5177 return; 5178 break; 5179 // These nodes will be transformed into GETtlsADDR32 node, which 5180 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 5181 case PPCISD::ADDI_TLSLD_L_ADDR: 5182 case PPCISD::ADDI_TLSGD_L_ADDR: { 5183 const Module *Mod = MF->getFunction().getParent(); 5184 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5185 !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || 5186 Mod->getPICLevel() == PICLevel::SmallPIC) 5187 break; 5188 // Attach global base pointer on GETtlsADDR32 node in order to 5189 // generate secure plt code for TLS symbols. 5190 getGlobalBaseReg(); 5191 } break; 5192 case PPCISD::CALL: { 5193 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 5194 !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || 5195 !Subtarget->isTargetELF()) 5196 break; 5197 5198 SDValue Op = N->getOperand(1); 5199 5200 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5201 if (GA->getTargetFlags() == PPCII::MO_PLT) 5202 getGlobalBaseReg(); 5203 } 5204 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 5205 if (ES->getTargetFlags() == PPCII::MO_PLT) 5206 getGlobalBaseReg(); 5207 } 5208 } 5209 break; 5210 5211 case PPCISD::GlobalBaseReg: 5212 ReplaceNode(N, getGlobalBaseReg()); 5213 return; 5214 5215 case ISD::FrameIndex: 5216 selectFrameIndex(N, N); 5217 return; 5218 5219 case PPCISD::MFOCRF: { 5220 SDValue InFlag = N->getOperand(1); 5221 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 5222 N->getOperand(0), InFlag)); 5223 return; 5224 } 5225 5226 case PPCISD::READ_TIME_BASE: 5227 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 5228 MVT::Other, N->getOperand(0))); 5229 return; 5230 5231 case PPCISD::SRA_ADDZE: { 5232 SDValue N0 = N->getOperand(0); 5233 SDValue ShiftAmt = 5234 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 5235 getConstantIntValue(), dl, 5236 N->getValueType(0)); 5237 if (N->getValueType(0) == MVT::i64) { 5238 SDNode *Op = 5239 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 5240 N0, ShiftAmt); 5241 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 5242 SDValue(Op, 1)); 5243 return; 5244 } else { 5245 assert(N->getValueType(0) == MVT::i32 && 5246 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 5247 SDNode *Op = 5248 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 5249 N0, ShiftAmt); 5250 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 5251 SDValue(Op, 1)); 5252 return; 5253 } 5254 } 5255 5256 case ISD::STORE: { 5257 // Change TLS initial-exec D-form stores to X-form stores. 5258 StoreSDNode *ST = cast<StoreSDNode>(N); 5259 if (EnableTLSOpt && Subtarget->isELFv2ABI() && 5260 ST->getAddressingMode() != ISD::PRE_INC) 5261 if (tryTLSXFormStore(ST)) 5262 return; 5263 break; 5264 } 5265 case ISD::LOAD: { 5266 // Handle preincrement loads. 5267 LoadSDNode *LD = cast<LoadSDNode>(N); 5268 EVT LoadedVT = LD->getMemoryVT(); 5269 5270 // Normal loads are handled by code generated from the .td file. 5271 if (LD->getAddressingMode() != ISD::PRE_INC) { 5272 // Change TLS initial-exec D-form loads to X-form loads. 5273 if (EnableTLSOpt && Subtarget->isELFv2ABI()) 5274 if (tryTLSXFormLoad(LD)) 5275 return; 5276 break; 5277 } 5278 5279 SDValue Offset = LD->getOffset(); 5280 if (Offset.getOpcode() == ISD::TargetConstant || 5281 Offset.getOpcode() == ISD::TargetGlobalAddress) { 5282 5283 unsigned Opcode; 5284 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5285 if (LD->getValueType(0) != MVT::i64) { 5286 // Handle PPC32 integer and normal FP loads. 5287 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5288 switch (LoadedVT.getSimpleVT().SimpleTy) { 5289 default: llvm_unreachable("Invalid PPC load type!"); 5290 case MVT::f64: Opcode = PPC::LFDU; break; 5291 case MVT::f32: Opcode = PPC::LFSU; break; 5292 case MVT::i32: Opcode = PPC::LWZU; break; 5293 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 5294 case MVT::i1: 5295 case MVT::i8: Opcode = PPC::LBZU; break; 5296 } 5297 } else { 5298 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5299 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5300 switch (LoadedVT.getSimpleVT().SimpleTy) { 5301 default: llvm_unreachable("Invalid PPC load type!"); 5302 case MVT::i64: Opcode = PPC::LDU; break; 5303 case MVT::i32: Opcode = PPC::LWZU8; break; 5304 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 5305 case MVT::i1: 5306 case MVT::i8: Opcode = PPC::LBZU8; break; 5307 } 5308 } 5309 5310 SDValue Chain = LD->getChain(); 5311 SDValue Base = LD->getBasePtr(); 5312 SDValue Ops[] = { Offset, Base, Chain }; 5313 SDNode *MN = CurDAG->getMachineNode( 5314 Opcode, dl, LD->getValueType(0), 5315 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5316 transferMemOperands(N, MN); 5317 ReplaceNode(N, MN); 5318 return; 5319 } else { 5320 unsigned Opcode; 5321 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 5322 if (LD->getValueType(0) != MVT::i64) { 5323 // Handle PPC32 integer and normal FP loads. 5324 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 5325 switch (LoadedVT.getSimpleVT().SimpleTy) { 5326 default: llvm_unreachable("Invalid PPC load type!"); 5327 case MVT::f64: Opcode = PPC::LFDUX; break; 5328 case MVT::f32: Opcode = PPC::LFSUX; break; 5329 case MVT::i32: Opcode = PPC::LWZUX; break; 5330 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 5331 case MVT::i1: 5332 case MVT::i8: Opcode = PPC::LBZUX; break; 5333 } 5334 } else { 5335 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 5336 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 5337 "Invalid sext update load"); 5338 switch (LoadedVT.getSimpleVT().SimpleTy) { 5339 default: llvm_unreachable("Invalid PPC load type!"); 5340 case MVT::i64: Opcode = PPC::LDUX; break; 5341 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 5342 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 5343 case MVT::i1: 5344 case MVT::i8: Opcode = PPC::LBZUX8; break; 5345 } 5346 } 5347 5348 SDValue Chain = LD->getChain(); 5349 SDValue Base = LD->getBasePtr(); 5350 SDValue Ops[] = { Base, Offset, Chain }; 5351 SDNode *MN = CurDAG->getMachineNode( 5352 Opcode, dl, LD->getValueType(0), 5353 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 5354 transferMemOperands(N, MN); 5355 ReplaceNode(N, MN); 5356 return; 5357 } 5358 } 5359 5360 case ISD::AND: 5361 // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr 5362 if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || 5363 tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) 5364 return; 5365 5366 // Other cases are autogenerated. 5367 break; 5368 case ISD::OR: { 5369 if (N->getValueType(0) == MVT::i32) 5370 if (tryBitfieldInsert(N)) 5371 return; 5372 5373 int16_t Imm; 5374 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5375 isIntS16Immediate(N->getOperand(1), Imm)) { 5376 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 5377 5378 // If this is equivalent to an add, then we can fold it with the 5379 // FrameIndex calculation. 5380 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 5381 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 5382 return; 5383 } 5384 } 5385 5386 // If this is 'or' against an imm with consecutive ones and both sides zero, 5387 // try to emit rldimi 5388 if (tryAsSingleRLDIMI(N)) 5389 return; 5390 5391 // OR with a 32-bit immediate can be handled by ori + oris 5392 // without creating an immediate in a GPR. 5393 uint64_t Imm64 = 0; 5394 bool IsPPC64 = Subtarget->isPPC64(); 5395 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5396 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5397 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 5398 uint64_t ImmHi = Imm64 >> 16; 5399 uint64_t ImmLo = Imm64 & 0xFFFF; 5400 if (ImmHi != 0 && ImmLo != 0) { 5401 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 5402 N->getOperand(0), 5403 getI16Imm(ImmLo, dl)); 5404 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5405 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 5406 return; 5407 } 5408 } 5409 5410 // Other cases are autogenerated. 5411 break; 5412 } 5413 case ISD::XOR: { 5414 // XOR with a 32-bit immediate can be handled by xori + xoris 5415 // without creating an immediate in a GPR. 5416 uint64_t Imm64 = 0; 5417 bool IsPPC64 = Subtarget->isPPC64(); 5418 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 5419 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 5420 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 5421 uint64_t ImmHi = Imm64 >> 16; 5422 uint64_t ImmLo = Imm64 & 0xFFFF; 5423 if (ImmHi != 0 && ImmLo != 0) { 5424 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 5425 N->getOperand(0), 5426 getI16Imm(ImmLo, dl)); 5427 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 5428 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 5429 return; 5430 } 5431 } 5432 5433 break; 5434 } 5435 case ISD::ADD: { 5436 int16_t Imm; 5437 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 5438 isIntS16Immediate(N->getOperand(1), Imm)) { 5439 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 5440 return; 5441 } 5442 5443 break; 5444 } 5445 case ISD::SHL: { 5446 unsigned Imm, SH, MB, ME; 5447 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5448 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5449 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5450 getI32Imm(SH, dl), getI32Imm(MB, dl), 5451 getI32Imm(ME, dl) }; 5452 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5453 return; 5454 } 5455 5456 // Other cases are autogenerated. 5457 break; 5458 } 5459 case ISD::SRL: { 5460 unsigned Imm, SH, MB, ME; 5461 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 5462 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 5463 SDValue Ops[] = { N->getOperand(0).getOperand(0), 5464 getI32Imm(SH, dl), getI32Imm(MB, dl), 5465 getI32Imm(ME, dl) }; 5466 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 5467 return; 5468 } 5469 5470 // Other cases are autogenerated. 5471 break; 5472 } 5473 case ISD::MUL: { 5474 SDValue Op1 = N->getOperand(1); 5475 if (Op1.getOpcode() != ISD::Constant || Op1.getValueType() != MVT::i64) 5476 break; 5477 5478 // If the multiplier fits int16, we can handle it with mulli. 5479 int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); 5480 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 5481 if (isInt<16>(Imm) || !Shift) 5482 break; 5483 5484 // If the shifted value fits int16, we can do this transformation: 5485 // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to 5486 // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2). 5487 uint64_t ImmSh = Imm >> Shift; 5488 if (isInt<16>(ImmSh)) { 5489 uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16); 5490 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 5491 SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64, 5492 N->getOperand(0), SDImm); 5493 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, SDValue(MulNode, 0), 5494 getI32Imm(Shift, dl), getI32Imm(63 - Shift, dl)); 5495 return; 5496 } 5497 break; 5498 } 5499 // FIXME: Remove this once the ANDI glue bug is fixed: 5500 case PPCISD::ANDI_rec_1_EQ_BIT: 5501 case PPCISD::ANDI_rec_1_GT_BIT: { 5502 if (!ANDIGlueBug) 5503 break; 5504 5505 EVT InVT = N->getOperand(0).getValueType(); 5506 assert((InVT == MVT::i64 || InVT == MVT::i32) && 5507 "Invalid input type for ANDI_rec_1_EQ_BIT"); 5508 5509 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; 5510 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 5511 N->getOperand(0), 5512 CurDAG->getTargetConstant(1, dl, InVT)), 5513 0); 5514 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 5515 SDValue SRIdxVal = CurDAG->getTargetConstant( 5516 N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, 5517 dl, MVT::i32); 5518 5519 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 5520 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 5521 return; 5522 } 5523 case ISD::SELECT_CC: { 5524 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 5525 EVT PtrVT = 5526 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 5527 bool isPPC64 = (PtrVT == MVT::i64); 5528 5529 // If this is a select of i1 operands, we'll pattern match it. 5530 if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) 5531 break; 5532 5533 if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { 5534 bool NeedSwapOps = false; 5535 bool IsUnCmp = false; 5536 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 5537 SDValue LHS = N->getOperand(0); 5538 SDValue RHS = N->getOperand(1); 5539 if (NeedSwapOps) 5540 std::swap(LHS, RHS); 5541 5542 // Make use of SelectCC to generate the comparison to set CR bits, for 5543 // equality comparisons having one literal operand, SelectCC probably 5544 // doesn't need to materialize the whole literal and just use xoris to 5545 // check it first, it leads the following comparison result can't 5546 // exactly represent GT/LT relationship. So to avoid this we specify 5547 // SETGT/SETUGT here instead of SETEQ. 5548 SDValue GenCC = 5549 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 5550 CurDAG->SelectNodeTo( 5551 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 5552 N->getValueType(0), GenCC); 5553 NumP9Setb++; 5554 return; 5555 } 5556 } 5557 5558 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 5559 if (!isPPC64) 5560 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 5561 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 5562 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 5563 if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL && 5564 CC == ISD::SETNE && 5565 // FIXME: Implement this optzn for PPC64. 5566 N->getValueType(0) == MVT::i32) { 5567 SDNode *Tmp = 5568 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 5569 N->getOperand(0), getI32Imm(~0U, dl)); 5570 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 5571 N->getOperand(0), SDValue(Tmp, 1)); 5572 return; 5573 } 5574 5575 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 5576 5577 if (N->getValueType(0) == MVT::i1) { 5578 // An i1 select is: (c & t) | (!c & f). 5579 bool Inv; 5580 unsigned Idx = getCRIdxForSetCC(CC, Inv); 5581 5582 unsigned SRI; 5583 switch (Idx) { 5584 default: llvm_unreachable("Invalid CC index"); 5585 case 0: SRI = PPC::sub_lt; break; 5586 case 1: SRI = PPC::sub_gt; break; 5587 case 2: SRI = PPC::sub_eq; break; 5588 case 3: SRI = PPC::sub_un; break; 5589 } 5590 5591 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 5592 5593 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 5594 CCBit, CCBit), 0); 5595 SDValue C = Inv ? NotCCBit : CCBit, 5596 NotC = Inv ? CCBit : NotCCBit; 5597 5598 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5599 C, N->getOperand(2)), 0); 5600 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 5601 NotC, N->getOperand(3)), 0); 5602 5603 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 5604 return; 5605 } 5606 5607 unsigned BROpc = 5608 getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); 5609 5610 unsigned SelectCCOp; 5611 if (N->getValueType(0) == MVT::i32) 5612 SelectCCOp = PPC::SELECT_CC_I4; 5613 else if (N->getValueType(0) == MVT::i64) 5614 SelectCCOp = PPC::SELECT_CC_I8; 5615 else if (N->getValueType(0) == MVT::f32) { 5616 if (Subtarget->hasP8Vector()) 5617 SelectCCOp = PPC::SELECT_CC_VSSRC; 5618 else if (Subtarget->hasSPE()) 5619 SelectCCOp = PPC::SELECT_CC_SPE4; 5620 else 5621 SelectCCOp = PPC::SELECT_CC_F4; 5622 } else if (N->getValueType(0) == MVT::f64) { 5623 if (Subtarget->hasVSX()) 5624 SelectCCOp = PPC::SELECT_CC_VSFRC; 5625 else if (Subtarget->hasSPE()) 5626 SelectCCOp = PPC::SELECT_CC_SPE; 5627 else 5628 SelectCCOp = PPC::SELECT_CC_F8; 5629 } else if (N->getValueType(0) == MVT::f128) 5630 SelectCCOp = PPC::SELECT_CC_F16; 5631 else if (Subtarget->hasSPE()) 5632 SelectCCOp = PPC::SELECT_CC_SPE; 5633 else if (N->getValueType(0) == MVT::v2f64 || 5634 N->getValueType(0) == MVT::v2i64) 5635 SelectCCOp = PPC::SELECT_CC_VSRC; 5636 else 5637 SelectCCOp = PPC::SELECT_CC_VRRC; 5638 5639 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 5640 getI32Imm(BROpc, dl) }; 5641 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 5642 return; 5643 } 5644 case ISD::VECTOR_SHUFFLE: 5645 if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 5646 N->getValueType(0) == MVT::v2i64)) { 5647 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5648 5649 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 5650 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 5651 unsigned DM[2]; 5652 5653 for (int i = 0; i < 2; ++i) 5654 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 5655 DM[i] = 0; 5656 else 5657 DM[i] = 1; 5658 5659 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 5660 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 5661 isa<LoadSDNode>(Op1.getOperand(0))) { 5662 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 5663 SDValue Base, Offset; 5664 5665 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 5666 (LD->getMemoryVT() == MVT::f64 || 5667 LD->getMemoryVT() == MVT::i64) && 5668 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 5669 SDValue Chain = LD->getChain(); 5670 SDValue Ops[] = { Base, Offset, Chain }; 5671 MachineMemOperand *MemOp = LD->getMemOperand(); 5672 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 5673 N->getValueType(0), Ops); 5674 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 5675 return; 5676 } 5677 } 5678 5679 // For little endian, we must swap the input operands and adjust 5680 // the mask elements (reverse and invert them). 5681 if (Subtarget->isLittleEndian()) { 5682 std::swap(Op1, Op2); 5683 unsigned tmp = DM[0]; 5684 DM[0] = 1 - DM[1]; 5685 DM[1] = 1 - tmp; 5686 } 5687 5688 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 5689 MVT::i32); 5690 SDValue Ops[] = { Op1, Op2, DMV }; 5691 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 5692 return; 5693 } 5694 5695 break; 5696 case PPCISD::BDNZ: 5697 case PPCISD::BDZ: { 5698 bool IsPPC64 = Subtarget->isPPC64(); 5699 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 5700 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 5701 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 5702 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 5703 MVT::Other, Ops); 5704 return; 5705 } 5706 case PPCISD::COND_BRANCH: { 5707 // Op #0 is the Chain. 5708 // Op #1 is the PPC::PRED_* number. 5709 // Op #2 is the CR# 5710 // Op #3 is the Dest MBB 5711 // Op #4 is the Flag. 5712 // Prevent PPC::PRED_* from being selected into LI. 5713 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 5714 if (EnableBranchHint) 5715 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); 5716 5717 SDValue Pred = getI32Imm(PCC, dl); 5718 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 5719 N->getOperand(0), N->getOperand(4) }; 5720 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5721 return; 5722 } 5723 case ISD::BR_CC: { 5724 if (tryFoldSWTestBRCC(N)) 5725 return; 5726 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5727 unsigned PCC = 5728 getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); 5729 5730 if (N->getOperand(2).getValueType() == MVT::i1) { 5731 unsigned Opc; 5732 bool Swap; 5733 switch (PCC) { 5734 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 5735 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 5736 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 5737 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 5738 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 5739 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 5740 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 5741 } 5742 5743 // A signed comparison of i1 values produces the opposite result to an 5744 // unsigned one if the condition code includes less-than or greater-than. 5745 // This is because 1 is the most negative signed i1 number and the most 5746 // positive unsigned i1 number. The CR-logical operations used for such 5747 // comparisons are non-commutative so for signed comparisons vs. unsigned 5748 // ones, the input operands just need to be swapped. 5749 if (ISD::isSignedIntSetCC(CC)) 5750 Swap = !Swap; 5751 5752 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 5753 N->getOperand(Swap ? 3 : 2), 5754 N->getOperand(Swap ? 2 : 3)), 0); 5755 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 5756 N->getOperand(0)); 5757 return; 5758 } 5759 5760 if (EnableBranchHint) 5761 PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); 5762 5763 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 5764 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 5765 N->getOperand(4), N->getOperand(0) }; 5766 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5767 return; 5768 } 5769 case ISD::BRIND: { 5770 // FIXME: Should custom lower this. 5771 SDValue Chain = N->getOperand(0); 5772 SDValue Target = N->getOperand(1); 5773 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 5774 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 5775 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 5776 Chain), 0); 5777 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 5778 return; 5779 } 5780 case PPCISD::TOC_ENTRY: { 5781 const bool isPPC64 = Subtarget->isPPC64(); 5782 const bool isELFABI = Subtarget->isSVR4ABI(); 5783 const bool isAIXABI = Subtarget->isAIXABI(); 5784 5785 // PowerPC only support small, medium and large code model. 5786 const CodeModel::Model CModel = TM.getCodeModel(); 5787 assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && 5788 "PowerPC doesn't support tiny or kernel code models."); 5789 5790 if (isAIXABI && CModel == CodeModel::Medium) 5791 report_fatal_error("Medium code model is not supported on AIX."); 5792 5793 // For 64-bit ELF small code model, we allow SelectCodeCommon to handle 5794 // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX 5795 // small code model, we need to check for a toc-data attribute. 5796 if (isPPC64 && !isAIXABI && CModel == CodeModel::Small) 5797 break; 5798 5799 auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry, 5800 EVT OperandTy) { 5801 SDValue GA = TocEntry->getOperand(0); 5802 SDValue TocBase = TocEntry->getOperand(1); 5803 SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase); 5804 transferMemOperands(TocEntry, MN); 5805 ReplaceNode(TocEntry, MN); 5806 }; 5807 5808 // Handle 32-bit small code model. 5809 if (!isPPC64 && CModel == CodeModel::Small) { 5810 // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either 5811 // PPC::ADDItoc, or PPC::LWZtoc 5812 if (isELFABI) { 5813 assert(TM.isPositionIndependent() && 5814 "32-bit ELF can only have TOC entries in position independent" 5815 " code."); 5816 // 32-bit ELF always uses a small code model toc access. 5817 replaceWith(PPC::LWZtoc, N, MVT::i32); 5818 return; 5819 } 5820 5821 assert(isAIXABI && "ELF ABI already handled"); 5822 5823 if (hasTocDataAttr(N->getOperand(0), 5824 CurDAG->getDataLayout().getPointerSize())) { 5825 replaceWith(PPC::ADDItoc, N, MVT::i32); 5826 return; 5827 } 5828 5829 replaceWith(PPC::LWZtoc, N, MVT::i32); 5830 return; 5831 } 5832 5833 if (isPPC64 && CModel == CodeModel::Small) { 5834 assert(isAIXABI && "ELF ABI handled in common SelectCode"); 5835 5836 if (hasTocDataAttr(N->getOperand(0), 5837 CurDAG->getDataLayout().getPointerSize())) { 5838 replaceWith(PPC::ADDItoc8, N, MVT::i64); 5839 return; 5840 } 5841 // Break if it doesn't have toc data attribute. Proceed with common 5842 // SelectCode. 5843 break; 5844 } 5845 5846 assert(CModel != CodeModel::Small && "All small code models handled."); 5847 5848 assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" 5849 " ELF/AIX or 32-bit AIX in the following."); 5850 5851 // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode 5852 // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We 5853 // generate two instructions as described below. The first source operand 5854 // is a symbol reference. If it must be toc-referenced according to 5855 // Subtarget, we generate: 5856 // [32-bit AIX] 5857 // LWZtocL(@sym, ADDIStocHA(%r2, @sym)) 5858 // [64-bit ELF/AIX] 5859 // LDtocL(@sym, ADDIStocHA8(%x2, @sym)) 5860 // Otherwise we generate: 5861 // ADDItocL(ADDIStocHA8(%x2, @sym), @sym) 5862 SDValue GA = N->getOperand(0); 5863 SDValue TOCbase = N->getOperand(1); 5864 5865 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5866 SDNode *Tmp = CurDAG->getMachineNode( 5867 isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); 5868 5869 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 5870 // If it is accessed as got-indirect, we need an extra LWZ/LD to load 5871 // the address. 5872 SDNode *MN = CurDAG->getMachineNode( 5873 isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); 5874 5875 transferMemOperands(N, MN); 5876 ReplaceNode(N, MN); 5877 return; 5878 } 5879 5880 // Build the address relative to the TOC-pointer. 5881 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 5882 SDValue(Tmp, 0), GA)); 5883 return; 5884 } 5885 case PPCISD::PPC32_PICGOT: 5886 // Generate a PIC-safe GOT reference. 5887 assert(Subtarget->is32BitELFABI() && 5888 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 5889 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 5890 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 5891 MVT::i32); 5892 return; 5893 5894 case PPCISD::VADD_SPLAT: { 5895 // This expands into one of three sequences, depending on whether 5896 // the first operand is odd or even, positive or negative. 5897 assert(isa<ConstantSDNode>(N->getOperand(0)) && 5898 isa<ConstantSDNode>(N->getOperand(1)) && 5899 "Invalid operand on VADD_SPLAT!"); 5900 5901 int Elt = N->getConstantOperandVal(0); 5902 int EltSize = N->getConstantOperandVal(1); 5903 unsigned Opc1, Opc2, Opc3; 5904 EVT VT; 5905 5906 if (EltSize == 1) { 5907 Opc1 = PPC::VSPLTISB; 5908 Opc2 = PPC::VADDUBM; 5909 Opc3 = PPC::VSUBUBM; 5910 VT = MVT::v16i8; 5911 } else if (EltSize == 2) { 5912 Opc1 = PPC::VSPLTISH; 5913 Opc2 = PPC::VADDUHM; 5914 Opc3 = PPC::VSUBUHM; 5915 VT = MVT::v8i16; 5916 } else { 5917 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 5918 Opc1 = PPC::VSPLTISW; 5919 Opc2 = PPC::VADDUWM; 5920 Opc3 = PPC::VSUBUWM; 5921 VT = MVT::v4i32; 5922 } 5923 5924 if ((Elt & 1) == 0) { 5925 // Elt is even, in the range [-32,-18] + [16,30]. 5926 // 5927 // Convert: VADD_SPLAT elt, size 5928 // Into: tmp = VSPLTIS[BHW] elt 5929 // VADDU[BHW]M tmp, tmp 5930 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 5931 SDValue EltVal = getI32Imm(Elt >> 1, dl); 5932 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5933 SDValue TmpVal = SDValue(Tmp, 0); 5934 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 5935 return; 5936 } else if (Elt > 0) { 5937 // Elt is odd and positive, in the range [17,31]. 5938 // 5939 // Convert: VADD_SPLAT elt, size 5940 // Into: tmp1 = VSPLTIS[BHW] elt-16 5941 // tmp2 = VSPLTIS[BHW] -16 5942 // VSUBU[BHW]M tmp1, tmp2 5943 SDValue EltVal = getI32Imm(Elt - 16, dl); 5944 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5945 EltVal = getI32Imm(-16, dl); 5946 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5947 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 5948 SDValue(Tmp2, 0))); 5949 return; 5950 } else { 5951 // Elt is odd and negative, in the range [-31,-17]. 5952 // 5953 // Convert: VADD_SPLAT elt, size 5954 // Into: tmp1 = VSPLTIS[BHW] elt+16 5955 // tmp2 = VSPLTIS[BHW] -16 5956 // VADDU[BHW]M tmp1, tmp2 5957 SDValue EltVal = getI32Imm(Elt + 16, dl); 5958 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5959 EltVal = getI32Imm(-16, dl); 5960 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5961 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 5962 SDValue(Tmp2, 0))); 5963 return; 5964 } 5965 } 5966 case PPCISD::LD_SPLAT: { 5967 // Here we want to handle splat load for type v16i8 and v8i16 when there is 5968 // no direct move, we don't need to use stack for this case. If target has 5969 // direct move, we should be able to get the best selection in the .td file. 5970 if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove()) 5971 break; 5972 5973 EVT Type = N->getValueType(0); 5974 if (Type != MVT::v16i8 && Type != MVT::v8i16) 5975 break; 5976 5977 // If the alignment for the load is 16 or bigger, we don't need the 5978 // permutated mask to get the required value. The value must be the 0 5979 // element in big endian target or 7/15 in little endian target in the 5980 // result vsx register of lvx instruction. 5981 // Select the instruction in the .td file. 5982 if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) && 5983 isOffsetMultipleOf(N, 16)) 5984 break; 5985 5986 SDValue ZeroReg = 5987 CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO, 5988 Subtarget->isPPC64() ? MVT::i64 : MVT::i32); 5989 unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI; 5990 // v16i8 LD_SPLAT addr 5991 // ======> 5992 // Mask = LVSR/LVSL 0, addr 5993 // LoadLow = LVX 0, addr 5994 // Perm = VPERM LoadLow, LoadLow, Mask 5995 // Splat = VSPLTB 15/0, Perm 5996 // 5997 // v8i16 LD_SPLAT addr 5998 // ======> 5999 // Mask = LVSR/LVSL 0, addr 6000 // LoadLow = LVX 0, addr 6001 // LoadHigh = LVX (LI, 1), addr 6002 // Perm = VPERM LoadLow, LoadHigh, Mask 6003 // Splat = VSPLTH 7/0, Perm 6004 unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH; 6005 unsigned SplatElemIndex = 6006 Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0; 6007 6008 SDNode *Mask = CurDAG->getMachineNode( 6009 Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg, 6010 N->getOperand(1)); 6011 6012 SDNode *LoadLow = 6013 CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other, 6014 {ZeroReg, N->getOperand(1), N->getOperand(0)}); 6015 6016 SDNode *LoadHigh = LoadLow; 6017 if (Type == MVT::v8i16) { 6018 LoadHigh = CurDAG->getMachineNode( 6019 PPC::LVX, dl, MVT::v16i8, MVT::Other, 6020 {SDValue(CurDAG->getMachineNode( 6021 LIOpcode, dl, MVT::i32, 6022 CurDAG->getTargetConstant(1, dl, MVT::i8)), 6023 0), 6024 N->getOperand(1), SDValue(LoadLow, 1)}); 6025 } 6026 6027 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1)); 6028 transferMemOperands(N, LoadHigh); 6029 6030 SDNode *Perm = 6031 CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0), 6032 SDValue(LoadHigh, 0), SDValue(Mask, 0)); 6033 CurDAG->SelectNodeTo(N, SplatOp, Type, 6034 CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8), 6035 SDValue(Perm, 0)); 6036 return; 6037 } 6038 } 6039 6040 SelectCode(N); 6041 } 6042 6043 // If the target supports the cmpb instruction, do the idiom recognition here. 6044 // We don't do this as a DAG combine because we don't want to do it as nodes 6045 // are being combined (because we might miss part of the eventual idiom). We 6046 // don't want to do it during instruction selection because we want to reuse 6047 // the logic for lowering the masking operations already part of the 6048 // instruction selector. 6049 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 6050 SDLoc dl(N); 6051 6052 assert(N->getOpcode() == ISD::OR && 6053 "Only OR nodes are supported for CMPB"); 6054 6055 SDValue Res; 6056 if (!Subtarget->hasCMPB()) 6057 return Res; 6058 6059 if (N->getValueType(0) != MVT::i32 && 6060 N->getValueType(0) != MVT::i64) 6061 return Res; 6062 6063 EVT VT = N->getValueType(0); 6064 6065 SDValue RHS, LHS; 6066 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 6067 uint64_t Mask = 0, Alt = 0; 6068 6069 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 6070 uint64_t &Mask, uint64_t &Alt, 6071 SDValue &LHS, SDValue &RHS) { 6072 if (O.getOpcode() != ISD::SELECT_CC) 6073 return false; 6074 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 6075 6076 if (!isa<ConstantSDNode>(O.getOperand(2)) || 6077 !isa<ConstantSDNode>(O.getOperand(3))) 6078 return false; 6079 6080 uint64_t PM = O.getConstantOperandVal(2); 6081 uint64_t PAlt = O.getConstantOperandVal(3); 6082 for (b = 0; b < 8; ++b) { 6083 uint64_t Mask = UINT64_C(0xFF) << (8*b); 6084 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 6085 break; 6086 } 6087 6088 if (b == 8) 6089 return false; 6090 Mask |= PM; 6091 Alt |= PAlt; 6092 6093 if (!isa<ConstantSDNode>(O.getOperand(1)) || 6094 O.getConstantOperandVal(1) != 0) { 6095 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 6096 if (Op0.getOpcode() == ISD::TRUNCATE) 6097 Op0 = Op0.getOperand(0); 6098 if (Op1.getOpcode() == ISD::TRUNCATE) 6099 Op1 = Op1.getOperand(0); 6100 6101 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 6102 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 6103 isa<ConstantSDNode>(Op0.getOperand(1))) { 6104 6105 unsigned Bits = Op0.getValueSizeInBits(); 6106 if (b != Bits/8-1) 6107 return false; 6108 if (Op0.getConstantOperandVal(1) != Bits-8) 6109 return false; 6110 6111 LHS = Op0.getOperand(0); 6112 RHS = Op1.getOperand(0); 6113 return true; 6114 } 6115 6116 // When we have small integers (i16 to be specific), the form present 6117 // post-legalization uses SETULT in the SELECT_CC for the 6118 // higher-order byte, depending on the fact that the 6119 // even-higher-order bytes are known to all be zero, for example: 6120 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 6121 // (so when the second byte is the same, because all higher-order 6122 // bits from bytes 3 and 4 are known to be zero, the result of the 6123 // xor can be at most 255) 6124 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 6125 isa<ConstantSDNode>(O.getOperand(1))) { 6126 6127 uint64_t ULim = O.getConstantOperandVal(1); 6128 if (ULim != (UINT64_C(1) << b*8)) 6129 return false; 6130 6131 // Now we need to make sure that the upper bytes are known to be 6132 // zero. 6133 unsigned Bits = Op0.getValueSizeInBits(); 6134 if (!CurDAG->MaskedValueIsZero( 6135 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 6136 return false; 6137 6138 LHS = Op0.getOperand(0); 6139 RHS = Op0.getOperand(1); 6140 return true; 6141 } 6142 6143 return false; 6144 } 6145 6146 if (CC != ISD::SETEQ) 6147 return false; 6148 6149 SDValue Op = O.getOperand(0); 6150 if (Op.getOpcode() == ISD::AND) { 6151 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6152 return false; 6153 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 6154 return false; 6155 6156 SDValue XOR = Op.getOperand(0); 6157 if (XOR.getOpcode() == ISD::TRUNCATE) 6158 XOR = XOR.getOperand(0); 6159 if (XOR.getOpcode() != ISD::XOR) 6160 return false; 6161 6162 LHS = XOR.getOperand(0); 6163 RHS = XOR.getOperand(1); 6164 return true; 6165 } else if (Op.getOpcode() == ISD::SRL) { 6166 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6167 return false; 6168 unsigned Bits = Op.getValueSizeInBits(); 6169 if (b != Bits/8-1) 6170 return false; 6171 if (Op.getConstantOperandVal(1) != Bits-8) 6172 return false; 6173 6174 SDValue XOR = Op.getOperand(0); 6175 if (XOR.getOpcode() == ISD::TRUNCATE) 6176 XOR = XOR.getOperand(0); 6177 if (XOR.getOpcode() != ISD::XOR) 6178 return false; 6179 6180 LHS = XOR.getOperand(0); 6181 RHS = XOR.getOperand(1); 6182 return true; 6183 } 6184 6185 return false; 6186 }; 6187 6188 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 6189 while (!Queue.empty()) { 6190 SDValue V = Queue.pop_back_val(); 6191 6192 for (const SDValue &O : V.getNode()->ops()) { 6193 unsigned b = 0; 6194 uint64_t M = 0, A = 0; 6195 SDValue OLHS, ORHS; 6196 if (O.getOpcode() == ISD::OR) { 6197 Queue.push_back(O); 6198 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 6199 if (!LHS) { 6200 LHS = OLHS; 6201 RHS = ORHS; 6202 BytesFound[b] = true; 6203 Mask |= M; 6204 Alt |= A; 6205 } else if ((LHS == ORHS && RHS == OLHS) || 6206 (RHS == ORHS && LHS == OLHS)) { 6207 BytesFound[b] = true; 6208 Mask |= M; 6209 Alt |= A; 6210 } else { 6211 return Res; 6212 } 6213 } else { 6214 return Res; 6215 } 6216 } 6217 } 6218 6219 unsigned LastB = 0, BCnt = 0; 6220 for (unsigned i = 0; i < 8; ++i) 6221 if (BytesFound[LastB]) { 6222 ++BCnt; 6223 LastB = i; 6224 } 6225 6226 if (!LastB || BCnt < 2) 6227 return Res; 6228 6229 // Because we'll be zero-extending the output anyway if don't have a specific 6230 // value for each input byte (via the Mask), we can 'anyext' the inputs. 6231 if (LHS.getValueType() != VT) { 6232 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 6233 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 6234 } 6235 6236 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 6237 6238 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 6239 if (NonTrivialMask && !Alt) { 6240 // Res = Mask & CMPB 6241 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6242 CurDAG->getConstant(Mask, dl, VT)); 6243 } else if (Alt) { 6244 // Res = (CMPB & Mask) | (~CMPB & Alt) 6245 // Which, as suggested here: 6246 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 6247 // can be written as: 6248 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 6249 // useful because the (Alt ^ Mask) can be pre-computed. 6250 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 6251 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 6252 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 6253 CurDAG->getConstant(Alt, dl, VT)); 6254 } 6255 6256 return Res; 6257 } 6258 6259 // When CR bit registers are enabled, an extension of an i1 variable to a i32 6260 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 6261 // involves constant materialization of a 0 or a 1 or both. If the result of 6262 // the extension is then operated upon by some operator that can be constant 6263 // folded with a constant 0 or 1, and that constant can be materialized using 6264 // only one instruction (like a zero or one), then we should fold in those 6265 // operations with the select. 6266 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 6267 if (!Subtarget->useCRBits()) 6268 return; 6269 6270 if (N->getOpcode() != ISD::ZERO_EXTEND && 6271 N->getOpcode() != ISD::SIGN_EXTEND && 6272 N->getOpcode() != ISD::ANY_EXTEND) 6273 return; 6274 6275 if (N->getOperand(0).getValueType() != MVT::i1) 6276 return; 6277 6278 if (!N->hasOneUse()) 6279 return; 6280 6281 SDLoc dl(N); 6282 EVT VT = N->getValueType(0); 6283 SDValue Cond = N->getOperand(0); 6284 SDValue ConstTrue = 6285 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 6286 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 6287 6288 do { 6289 SDNode *User = *N->use_begin(); 6290 if (User->getNumOperands() != 2) 6291 break; 6292 6293 auto TryFold = [this, N, User, dl](SDValue Val) { 6294 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 6295 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 6296 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 6297 6298 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 6299 User->getValueType(0), {O0, O1}); 6300 }; 6301 6302 // FIXME: When the semantics of the interaction between select and undef 6303 // are clearly defined, it may turn out to be unnecessary to break here. 6304 SDValue TrueRes = TryFold(ConstTrue); 6305 if (!TrueRes || TrueRes.isUndef()) 6306 break; 6307 SDValue FalseRes = TryFold(ConstFalse); 6308 if (!FalseRes || FalseRes.isUndef()) 6309 break; 6310 6311 // For us to materialize these using one instruction, we must be able to 6312 // represent them as signed 16-bit integers. 6313 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 6314 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 6315 if (!isInt<16>(True) || !isInt<16>(False)) 6316 break; 6317 6318 // We can replace User with a new SELECT node, and try again to see if we 6319 // can fold the select with its user. 6320 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 6321 N = User; 6322 ConstTrue = TrueRes; 6323 ConstFalse = FalseRes; 6324 } while (N->hasOneUse()); 6325 } 6326 6327 void PPCDAGToDAGISel::PreprocessISelDAG() { 6328 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6329 6330 bool MadeChange = false; 6331 while (Position != CurDAG->allnodes_begin()) { 6332 SDNode *N = &*--Position; 6333 if (N->use_empty()) 6334 continue; 6335 6336 SDValue Res; 6337 switch (N->getOpcode()) { 6338 default: break; 6339 case ISD::OR: 6340 Res = combineToCMPB(N); 6341 break; 6342 } 6343 6344 if (!Res) 6345 foldBoolExts(Res, N); 6346 6347 if (Res) { 6348 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 6349 LLVM_DEBUG(N->dump(CurDAG)); 6350 LLVM_DEBUG(dbgs() << "\nNew: "); 6351 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 6352 LLVM_DEBUG(dbgs() << "\n"); 6353 6354 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 6355 MadeChange = true; 6356 } 6357 } 6358 6359 if (MadeChange) 6360 CurDAG->RemoveDeadNodes(); 6361 } 6362 6363 /// PostprocessISelDAG - Perform some late peephole optimizations 6364 /// on the DAG representation. 6365 void PPCDAGToDAGISel::PostprocessISelDAG() { 6366 // Skip peepholes at -O0. 6367 if (TM.getOptLevel() == CodeGenOpt::None) 6368 return; 6369 6370 PeepholePPC64(); 6371 PeepholeCROps(); 6372 PeepholePPC64ZExt(); 6373 } 6374 6375 // Check if all users of this node will become isel where the second operand 6376 // is the constant zero. If this is so, and if we can negate the condition, 6377 // then we can flip the true and false operands. This will allow the zero to 6378 // be folded with the isel so that we don't need to materialize a register 6379 // containing zero. 6380 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 6381 for (const SDNode *User : N->uses()) { 6382 if (!User->isMachineOpcode()) 6383 return false; 6384 if (User->getMachineOpcode() != PPC::SELECT_I4 && 6385 User->getMachineOpcode() != PPC::SELECT_I8) 6386 return false; 6387 6388 SDNode *Op1 = User->getOperand(1).getNode(); 6389 SDNode *Op2 = User->getOperand(2).getNode(); 6390 // If we have a degenerate select with two equal operands, swapping will 6391 // not do anything, and we may run into an infinite loop. 6392 if (Op1 == Op2) 6393 return false; 6394 6395 if (!Op2->isMachineOpcode()) 6396 return false; 6397 6398 if (Op2->getMachineOpcode() != PPC::LI && 6399 Op2->getMachineOpcode() != PPC::LI8) 6400 return false; 6401 6402 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 6403 if (!C) 6404 return false; 6405 6406 if (!C->isZero()) 6407 return false; 6408 } 6409 6410 return true; 6411 } 6412 6413 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 6414 SmallVector<SDNode *, 4> ToReplace; 6415 for (SDNode *User : N->uses()) { 6416 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 6417 User->getMachineOpcode() == PPC::SELECT_I8) && 6418 "Must have all select users"); 6419 ToReplace.push_back(User); 6420 } 6421 6422 for (SDNode *User : ToReplace) { 6423 SDNode *ResNode = 6424 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 6425 User->getValueType(0), User->getOperand(0), 6426 User->getOperand(2), 6427 User->getOperand(1)); 6428 6429 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6430 LLVM_DEBUG(User->dump(CurDAG)); 6431 LLVM_DEBUG(dbgs() << "\nNew: "); 6432 LLVM_DEBUG(ResNode->dump(CurDAG)); 6433 LLVM_DEBUG(dbgs() << "\n"); 6434 6435 ReplaceUses(User, ResNode); 6436 } 6437 } 6438 6439 void PPCDAGToDAGISel::PeepholeCROps() { 6440 bool IsModified; 6441 do { 6442 IsModified = false; 6443 for (SDNode &Node : CurDAG->allnodes()) { 6444 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 6445 if (!MachineNode || MachineNode->use_empty()) 6446 continue; 6447 SDNode *ResNode = MachineNode; 6448 6449 bool Op1Set = false, Op1Unset = false, 6450 Op1Not = false, 6451 Op2Set = false, Op2Unset = false, 6452 Op2Not = false; 6453 6454 unsigned Opcode = MachineNode->getMachineOpcode(); 6455 switch (Opcode) { 6456 default: break; 6457 case PPC::CRAND: 6458 case PPC::CRNAND: 6459 case PPC::CROR: 6460 case PPC::CRXOR: 6461 case PPC::CRNOR: 6462 case PPC::CREQV: 6463 case PPC::CRANDC: 6464 case PPC::CRORC: { 6465 SDValue Op = MachineNode->getOperand(1); 6466 if (Op.isMachineOpcode()) { 6467 if (Op.getMachineOpcode() == PPC::CRSET) 6468 Op2Set = true; 6469 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6470 Op2Unset = true; 6471 else if (Op.getMachineOpcode() == PPC::CRNOR && 6472 Op.getOperand(0) == Op.getOperand(1)) 6473 Op2Not = true; 6474 } 6475 LLVM_FALLTHROUGH; 6476 } 6477 case PPC::BC: 6478 case PPC::BCn: 6479 case PPC::SELECT_I4: 6480 case PPC::SELECT_I8: 6481 case PPC::SELECT_F4: 6482 case PPC::SELECT_F8: 6483 case PPC::SELECT_SPE: 6484 case PPC::SELECT_SPE4: 6485 case PPC::SELECT_VRRC: 6486 case PPC::SELECT_VSFRC: 6487 case PPC::SELECT_VSSRC: 6488 case PPC::SELECT_VSRC: { 6489 SDValue Op = MachineNode->getOperand(0); 6490 if (Op.isMachineOpcode()) { 6491 if (Op.getMachineOpcode() == PPC::CRSET) 6492 Op1Set = true; 6493 else if (Op.getMachineOpcode() == PPC::CRUNSET) 6494 Op1Unset = true; 6495 else if (Op.getMachineOpcode() == PPC::CRNOR && 6496 Op.getOperand(0) == Op.getOperand(1)) 6497 Op1Not = true; 6498 } 6499 } 6500 break; 6501 } 6502 6503 bool SelectSwap = false; 6504 switch (Opcode) { 6505 default: break; 6506 case PPC::CRAND: 6507 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6508 // x & x = x 6509 ResNode = MachineNode->getOperand(0).getNode(); 6510 else if (Op1Set) 6511 // 1 & y = y 6512 ResNode = MachineNode->getOperand(1).getNode(); 6513 else if (Op2Set) 6514 // x & 1 = x 6515 ResNode = MachineNode->getOperand(0).getNode(); 6516 else if (Op1Unset || Op2Unset) 6517 // x & 0 = 0 & y = 0 6518 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6519 MVT::i1); 6520 else if (Op1Not) 6521 // ~x & y = andc(y, x) 6522 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6523 MVT::i1, MachineNode->getOperand(1), 6524 MachineNode->getOperand(0). 6525 getOperand(0)); 6526 else if (Op2Not) 6527 // x & ~y = andc(x, y) 6528 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6529 MVT::i1, MachineNode->getOperand(0), 6530 MachineNode->getOperand(1). 6531 getOperand(0)); 6532 else if (AllUsersSelectZero(MachineNode)) { 6533 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6534 MVT::i1, MachineNode->getOperand(0), 6535 MachineNode->getOperand(1)); 6536 SelectSwap = true; 6537 } 6538 break; 6539 case PPC::CRNAND: 6540 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6541 // nand(x, x) -> nor(x, x) 6542 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6543 MVT::i1, MachineNode->getOperand(0), 6544 MachineNode->getOperand(0)); 6545 else if (Op1Set) 6546 // nand(1, y) -> nor(y, y) 6547 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6548 MVT::i1, MachineNode->getOperand(1), 6549 MachineNode->getOperand(1)); 6550 else if (Op2Set) 6551 // nand(x, 1) -> nor(x, x) 6552 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6553 MVT::i1, MachineNode->getOperand(0), 6554 MachineNode->getOperand(0)); 6555 else if (Op1Unset || Op2Unset) 6556 // nand(x, 0) = nand(0, y) = 1 6557 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6558 MVT::i1); 6559 else if (Op1Not) 6560 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 6561 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6562 MVT::i1, MachineNode->getOperand(0). 6563 getOperand(0), 6564 MachineNode->getOperand(1)); 6565 else if (Op2Not) 6566 // nand(x, ~y) = ~x | y = orc(y, x) 6567 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6568 MVT::i1, MachineNode->getOperand(1). 6569 getOperand(0), 6570 MachineNode->getOperand(0)); 6571 else if (AllUsersSelectZero(MachineNode)) { 6572 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6573 MVT::i1, MachineNode->getOperand(0), 6574 MachineNode->getOperand(1)); 6575 SelectSwap = true; 6576 } 6577 break; 6578 case PPC::CROR: 6579 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6580 // x | x = x 6581 ResNode = MachineNode->getOperand(0).getNode(); 6582 else if (Op1Set || Op2Set) 6583 // x | 1 = 1 | y = 1 6584 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6585 MVT::i1); 6586 else if (Op1Unset) 6587 // 0 | y = y 6588 ResNode = MachineNode->getOperand(1).getNode(); 6589 else if (Op2Unset) 6590 // x | 0 = x 6591 ResNode = MachineNode->getOperand(0).getNode(); 6592 else if (Op1Not) 6593 // ~x | y = orc(y, x) 6594 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6595 MVT::i1, MachineNode->getOperand(1), 6596 MachineNode->getOperand(0). 6597 getOperand(0)); 6598 else if (Op2Not) 6599 // x | ~y = orc(x, y) 6600 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6601 MVT::i1, MachineNode->getOperand(0), 6602 MachineNode->getOperand(1). 6603 getOperand(0)); 6604 else if (AllUsersSelectZero(MachineNode)) { 6605 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6606 MVT::i1, MachineNode->getOperand(0), 6607 MachineNode->getOperand(1)); 6608 SelectSwap = true; 6609 } 6610 break; 6611 case PPC::CRXOR: 6612 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6613 // xor(x, x) = 0 6614 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6615 MVT::i1); 6616 else if (Op1Set) 6617 // xor(1, y) -> nor(y, y) 6618 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6619 MVT::i1, MachineNode->getOperand(1), 6620 MachineNode->getOperand(1)); 6621 else if (Op2Set) 6622 // xor(x, 1) -> nor(x, x) 6623 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6624 MVT::i1, MachineNode->getOperand(0), 6625 MachineNode->getOperand(0)); 6626 else if (Op1Unset) 6627 // xor(0, y) = y 6628 ResNode = MachineNode->getOperand(1).getNode(); 6629 else if (Op2Unset) 6630 // xor(x, 0) = x 6631 ResNode = MachineNode->getOperand(0).getNode(); 6632 else if (Op1Not) 6633 // xor(~x, y) = eqv(x, y) 6634 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6635 MVT::i1, MachineNode->getOperand(0). 6636 getOperand(0), 6637 MachineNode->getOperand(1)); 6638 else if (Op2Not) 6639 // xor(x, ~y) = eqv(x, y) 6640 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6641 MVT::i1, MachineNode->getOperand(0), 6642 MachineNode->getOperand(1). 6643 getOperand(0)); 6644 else if (AllUsersSelectZero(MachineNode)) { 6645 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 6646 MVT::i1, MachineNode->getOperand(0), 6647 MachineNode->getOperand(1)); 6648 SelectSwap = true; 6649 } 6650 break; 6651 case PPC::CRNOR: 6652 if (Op1Set || Op2Set) 6653 // nor(1, y) -> 0 6654 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6655 MVT::i1); 6656 else if (Op1Unset) 6657 // nor(0, y) = ~y -> nor(y, y) 6658 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6659 MVT::i1, MachineNode->getOperand(1), 6660 MachineNode->getOperand(1)); 6661 else if (Op2Unset) 6662 // nor(x, 0) = ~x 6663 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6664 MVT::i1, MachineNode->getOperand(0), 6665 MachineNode->getOperand(0)); 6666 else if (Op1Not) 6667 // nor(~x, y) = andc(x, y) 6668 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6669 MVT::i1, MachineNode->getOperand(0). 6670 getOperand(0), 6671 MachineNode->getOperand(1)); 6672 else if (Op2Not) 6673 // nor(x, ~y) = andc(y, x) 6674 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6675 MVT::i1, MachineNode->getOperand(1). 6676 getOperand(0), 6677 MachineNode->getOperand(0)); 6678 else if (AllUsersSelectZero(MachineNode)) { 6679 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6680 MVT::i1, MachineNode->getOperand(0), 6681 MachineNode->getOperand(1)); 6682 SelectSwap = true; 6683 } 6684 break; 6685 case PPC::CREQV: 6686 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6687 // eqv(x, x) = 1 6688 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6689 MVT::i1); 6690 else if (Op1Set) 6691 // eqv(1, y) = y 6692 ResNode = MachineNode->getOperand(1).getNode(); 6693 else if (Op2Set) 6694 // eqv(x, 1) = x 6695 ResNode = MachineNode->getOperand(0).getNode(); 6696 else if (Op1Unset) 6697 // eqv(0, y) = ~y -> nor(y, y) 6698 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6699 MVT::i1, MachineNode->getOperand(1), 6700 MachineNode->getOperand(1)); 6701 else if (Op2Unset) 6702 // eqv(x, 0) = ~x 6703 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6704 MVT::i1, MachineNode->getOperand(0), 6705 MachineNode->getOperand(0)); 6706 else if (Op1Not) 6707 // eqv(~x, y) = xor(x, y) 6708 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6709 MVT::i1, MachineNode->getOperand(0). 6710 getOperand(0), 6711 MachineNode->getOperand(1)); 6712 else if (Op2Not) 6713 // eqv(x, ~y) = xor(x, y) 6714 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6715 MVT::i1, MachineNode->getOperand(0), 6716 MachineNode->getOperand(1). 6717 getOperand(0)); 6718 else if (AllUsersSelectZero(MachineNode)) { 6719 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 6720 MVT::i1, MachineNode->getOperand(0), 6721 MachineNode->getOperand(1)); 6722 SelectSwap = true; 6723 } 6724 break; 6725 case PPC::CRANDC: 6726 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6727 // andc(x, x) = 0 6728 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6729 MVT::i1); 6730 else if (Op1Set) 6731 // andc(1, y) = ~y 6732 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6733 MVT::i1, MachineNode->getOperand(1), 6734 MachineNode->getOperand(1)); 6735 else if (Op1Unset || Op2Set) 6736 // andc(0, y) = andc(x, 1) = 0 6737 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 6738 MVT::i1); 6739 else if (Op2Unset) 6740 // andc(x, 0) = x 6741 ResNode = MachineNode->getOperand(0).getNode(); 6742 else if (Op1Not) 6743 // andc(~x, y) = ~(x | y) = nor(x, y) 6744 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6745 MVT::i1, MachineNode->getOperand(0). 6746 getOperand(0), 6747 MachineNode->getOperand(1)); 6748 else if (Op2Not) 6749 // andc(x, ~y) = x & y 6750 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 6751 MVT::i1, MachineNode->getOperand(0), 6752 MachineNode->getOperand(1). 6753 getOperand(0)); 6754 else if (AllUsersSelectZero(MachineNode)) { 6755 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 6756 MVT::i1, MachineNode->getOperand(1), 6757 MachineNode->getOperand(0)); 6758 SelectSwap = true; 6759 } 6760 break; 6761 case PPC::CRORC: 6762 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 6763 // orc(x, x) = 1 6764 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6765 MVT::i1); 6766 else if (Op1Set || Op2Unset) 6767 // orc(1, y) = orc(x, 0) = 1 6768 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 6769 MVT::i1); 6770 else if (Op2Set) 6771 // orc(x, 1) = x 6772 ResNode = MachineNode->getOperand(0).getNode(); 6773 else if (Op1Unset) 6774 // orc(0, y) = ~y 6775 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 6776 MVT::i1, MachineNode->getOperand(1), 6777 MachineNode->getOperand(1)); 6778 else if (Op1Not) 6779 // orc(~x, y) = ~(x & y) = nand(x, y) 6780 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 6781 MVT::i1, MachineNode->getOperand(0). 6782 getOperand(0), 6783 MachineNode->getOperand(1)); 6784 else if (Op2Not) 6785 // orc(x, ~y) = x | y 6786 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 6787 MVT::i1, MachineNode->getOperand(0), 6788 MachineNode->getOperand(1). 6789 getOperand(0)); 6790 else if (AllUsersSelectZero(MachineNode)) { 6791 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 6792 MVT::i1, MachineNode->getOperand(1), 6793 MachineNode->getOperand(0)); 6794 SelectSwap = true; 6795 } 6796 break; 6797 case PPC::SELECT_I4: 6798 case PPC::SELECT_I8: 6799 case PPC::SELECT_F4: 6800 case PPC::SELECT_F8: 6801 case PPC::SELECT_SPE: 6802 case PPC::SELECT_SPE4: 6803 case PPC::SELECT_VRRC: 6804 case PPC::SELECT_VSFRC: 6805 case PPC::SELECT_VSSRC: 6806 case PPC::SELECT_VSRC: 6807 if (Op1Set) 6808 ResNode = MachineNode->getOperand(1).getNode(); 6809 else if (Op1Unset) 6810 ResNode = MachineNode->getOperand(2).getNode(); 6811 else if (Op1Not) 6812 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 6813 SDLoc(MachineNode), 6814 MachineNode->getValueType(0), 6815 MachineNode->getOperand(0). 6816 getOperand(0), 6817 MachineNode->getOperand(2), 6818 MachineNode->getOperand(1)); 6819 break; 6820 case PPC::BC: 6821 case PPC::BCn: 6822 if (Op1Not) 6823 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 6824 PPC::BC, 6825 SDLoc(MachineNode), 6826 MVT::Other, 6827 MachineNode->getOperand(0). 6828 getOperand(0), 6829 MachineNode->getOperand(1), 6830 MachineNode->getOperand(2)); 6831 // FIXME: Handle Op1Set, Op1Unset here too. 6832 break; 6833 } 6834 6835 // If we're inverting this node because it is used only by selects that 6836 // we'd like to swap, then swap the selects before the node replacement. 6837 if (SelectSwap) 6838 SwapAllSelectUsers(MachineNode); 6839 6840 if (ResNode != MachineNode) { 6841 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6842 LLVM_DEBUG(MachineNode->dump(CurDAG)); 6843 LLVM_DEBUG(dbgs() << "\nNew: "); 6844 LLVM_DEBUG(ResNode->dump(CurDAG)); 6845 LLVM_DEBUG(dbgs() << "\n"); 6846 6847 ReplaceUses(MachineNode, ResNode); 6848 IsModified = true; 6849 } 6850 } 6851 if (IsModified) 6852 CurDAG->RemoveDeadNodes(); 6853 } while (IsModified); 6854 } 6855 6856 // Gather the set of 32-bit operations that are known to have their 6857 // higher-order 32 bits zero, where ToPromote contains all such operations. 6858 static bool PeepholePPC64ZExtGather(SDValue Op32, 6859 SmallPtrSetImpl<SDNode *> &ToPromote) { 6860 if (!Op32.isMachineOpcode()) 6861 return false; 6862 6863 // First, check for the "frontier" instructions (those that will clear the 6864 // higher-order 32 bits. 6865 6866 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 6867 // around. If it does not, then these instructions will clear the 6868 // higher-order bits. 6869 if ((Op32.getMachineOpcode() == PPC::RLWINM || 6870 Op32.getMachineOpcode() == PPC::RLWNM) && 6871 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 6872 ToPromote.insert(Op32.getNode()); 6873 return true; 6874 } 6875 6876 // SLW and SRW always clear the higher-order bits. 6877 if (Op32.getMachineOpcode() == PPC::SLW || 6878 Op32.getMachineOpcode() == PPC::SRW) { 6879 ToPromote.insert(Op32.getNode()); 6880 return true; 6881 } 6882 6883 // For LI and LIS, we need the immediate to be positive (so that it is not 6884 // sign extended). 6885 if (Op32.getMachineOpcode() == PPC::LI || 6886 Op32.getMachineOpcode() == PPC::LIS) { 6887 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 6888 return false; 6889 6890 ToPromote.insert(Op32.getNode()); 6891 return true; 6892 } 6893 6894 // LHBRX and LWBRX always clear the higher-order bits. 6895 if (Op32.getMachineOpcode() == PPC::LHBRX || 6896 Op32.getMachineOpcode() == PPC::LWBRX) { 6897 ToPromote.insert(Op32.getNode()); 6898 return true; 6899 } 6900 6901 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 6902 if (Op32.getMachineOpcode() == PPC::CNTLZW || 6903 Op32.getMachineOpcode() == PPC::CNTTZW) { 6904 ToPromote.insert(Op32.getNode()); 6905 return true; 6906 } 6907 6908 // Next, check for those instructions we can look through. 6909 6910 // Assuming the mask does not wrap around, then the higher-order bits are 6911 // taken directly from the first operand. 6912 if (Op32.getMachineOpcode() == PPC::RLWIMI && 6913 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 6914 SmallPtrSet<SDNode *, 16> ToPromote1; 6915 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6916 return false; 6917 6918 ToPromote.insert(Op32.getNode()); 6919 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6920 return true; 6921 } 6922 6923 // For OR, the higher-order bits are zero if that is true for both operands. 6924 // For SELECT_I4, the same is true (but the relevant operand numbers are 6925 // shifted by 1). 6926 if (Op32.getMachineOpcode() == PPC::OR || 6927 Op32.getMachineOpcode() == PPC::SELECT_I4) { 6928 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 6929 SmallPtrSet<SDNode *, 16> ToPromote1; 6930 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 6931 return false; 6932 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 6933 return false; 6934 6935 ToPromote.insert(Op32.getNode()); 6936 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6937 return true; 6938 } 6939 6940 // For ORI and ORIS, we need the higher-order bits of the first operand to be 6941 // zero, and also for the constant to be positive (so that it is not sign 6942 // extended). 6943 if (Op32.getMachineOpcode() == PPC::ORI || 6944 Op32.getMachineOpcode() == PPC::ORIS) { 6945 SmallPtrSet<SDNode *, 16> ToPromote1; 6946 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6947 return false; 6948 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 6949 return false; 6950 6951 ToPromote.insert(Op32.getNode()); 6952 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6953 return true; 6954 } 6955 6956 // The higher-order bits of AND are zero if that is true for at least one of 6957 // the operands. 6958 if (Op32.getMachineOpcode() == PPC::AND) { 6959 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 6960 bool Op0OK = 6961 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6962 bool Op1OK = 6963 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 6964 if (!Op0OK && !Op1OK) 6965 return false; 6966 6967 ToPromote.insert(Op32.getNode()); 6968 6969 if (Op0OK) 6970 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6971 6972 if (Op1OK) 6973 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 6974 6975 return true; 6976 } 6977 6978 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 6979 // of the first operand, or if the second operand is positive (so that it is 6980 // not sign extended). 6981 if (Op32.getMachineOpcode() == PPC::ANDI_rec || 6982 Op32.getMachineOpcode() == PPC::ANDIS_rec) { 6983 SmallPtrSet<SDNode *, 16> ToPromote1; 6984 bool Op0OK = 6985 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6986 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 6987 if (!Op0OK && !Op1OK) 6988 return false; 6989 6990 ToPromote.insert(Op32.getNode()); 6991 6992 if (Op0OK) 6993 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6994 6995 return true; 6996 } 6997 6998 return false; 6999 } 7000 7001 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 7002 if (!Subtarget->isPPC64()) 7003 return; 7004 7005 // When we zero-extend from i32 to i64, we use a pattern like this: 7006 // def : Pat<(i64 (zext i32:$in)), 7007 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 7008 // 0, 32)>; 7009 // There are several 32-bit shift/rotate instructions, however, that will 7010 // clear the higher-order bits of their output, rendering the RLDICL 7011 // unnecessary. When that happens, we remove it here, and redefine the 7012 // relevant 32-bit operation to be a 64-bit operation. 7013 7014 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7015 7016 bool MadeChange = false; 7017 while (Position != CurDAG->allnodes_begin()) { 7018 SDNode *N = &*--Position; 7019 // Skip dead nodes and any non-machine opcodes. 7020 if (N->use_empty() || !N->isMachineOpcode()) 7021 continue; 7022 7023 if (N->getMachineOpcode() != PPC::RLDICL) 7024 continue; 7025 7026 if (N->getConstantOperandVal(1) != 0 || 7027 N->getConstantOperandVal(2) != 32) 7028 continue; 7029 7030 SDValue ISR = N->getOperand(0); 7031 if (!ISR.isMachineOpcode() || 7032 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 7033 continue; 7034 7035 if (!ISR.hasOneUse()) 7036 continue; 7037 7038 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 7039 continue; 7040 7041 SDValue IDef = ISR.getOperand(0); 7042 if (!IDef.isMachineOpcode() || 7043 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 7044 continue; 7045 7046 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 7047 // can get rid of it. 7048 7049 SDValue Op32 = ISR->getOperand(1); 7050 if (!Op32.isMachineOpcode()) 7051 continue; 7052 7053 // There are some 32-bit instructions that always clear the high-order 32 7054 // bits, there are also some instructions (like AND) that we can look 7055 // through. 7056 SmallPtrSet<SDNode *, 16> ToPromote; 7057 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 7058 continue; 7059 7060 // If the ToPromote set contains nodes that have uses outside of the set 7061 // (except for the original INSERT_SUBREG), then abort the transformation. 7062 bool OutsideUse = false; 7063 for (SDNode *PN : ToPromote) { 7064 for (SDNode *UN : PN->uses()) { 7065 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 7066 OutsideUse = true; 7067 break; 7068 } 7069 } 7070 7071 if (OutsideUse) 7072 break; 7073 } 7074 if (OutsideUse) 7075 continue; 7076 7077 MadeChange = true; 7078 7079 // We now know that this zero extension can be removed by promoting to 7080 // nodes in ToPromote to 64-bit operations, where for operations in the 7081 // frontier of the set, we need to insert INSERT_SUBREGs for their 7082 // operands. 7083 for (SDNode *PN : ToPromote) { 7084 unsigned NewOpcode; 7085 switch (PN->getMachineOpcode()) { 7086 default: 7087 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 7088 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 7089 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 7090 case PPC::SLW: NewOpcode = PPC::SLW8; break; 7091 case PPC::SRW: NewOpcode = PPC::SRW8; break; 7092 case PPC::LI: NewOpcode = PPC::LI8; break; 7093 case PPC::LIS: NewOpcode = PPC::LIS8; break; 7094 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 7095 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 7096 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 7097 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 7098 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 7099 case PPC::OR: NewOpcode = PPC::OR8; break; 7100 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 7101 case PPC::ORI: NewOpcode = PPC::ORI8; break; 7102 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 7103 case PPC::AND: NewOpcode = PPC::AND8; break; 7104 case PPC::ANDI_rec: 7105 NewOpcode = PPC::ANDI8_rec; 7106 break; 7107 case PPC::ANDIS_rec: 7108 NewOpcode = PPC::ANDIS8_rec; 7109 break; 7110 } 7111 7112 // Note: During the replacement process, the nodes will be in an 7113 // inconsistent state (some instructions will have operands with values 7114 // of the wrong type). Once done, however, everything should be right 7115 // again. 7116 7117 SmallVector<SDValue, 4> Ops; 7118 for (const SDValue &V : PN->ops()) { 7119 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 7120 !isa<ConstantSDNode>(V)) { 7121 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 7122 SDNode *ReplOp = 7123 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 7124 ISR.getNode()->getVTList(), ReplOpOps); 7125 Ops.push_back(SDValue(ReplOp, 0)); 7126 } else { 7127 Ops.push_back(V); 7128 } 7129 } 7130 7131 // Because all to-be-promoted nodes only have users that are other 7132 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 7133 // the i32 result value type with i64. 7134 7135 SmallVector<EVT, 2> NewVTs; 7136 SDVTList VTs = PN->getVTList(); 7137 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 7138 if (VTs.VTs[i] == MVT::i32) 7139 NewVTs.push_back(MVT::i64); 7140 else 7141 NewVTs.push_back(VTs.VTs[i]); 7142 7143 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 7144 LLVM_DEBUG(PN->dump(CurDAG)); 7145 7146 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 7147 7148 LLVM_DEBUG(dbgs() << "\nNew: "); 7149 LLVM_DEBUG(PN->dump(CurDAG)); 7150 LLVM_DEBUG(dbgs() << "\n"); 7151 } 7152 7153 // Now we replace the original zero extend and its associated INSERT_SUBREG 7154 // with the value feeding the INSERT_SUBREG (which has now been promoted to 7155 // return an i64). 7156 7157 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 7158 LLVM_DEBUG(N->dump(CurDAG)); 7159 LLVM_DEBUG(dbgs() << "\nNew: "); 7160 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 7161 LLVM_DEBUG(dbgs() << "\n"); 7162 7163 ReplaceUses(N, Op32.getNode()); 7164 } 7165 7166 if (MadeChange) 7167 CurDAG->RemoveDeadNodes(); 7168 } 7169 7170 static bool isVSXSwap(SDValue N) { 7171 if (!N->isMachineOpcode()) 7172 return false; 7173 unsigned Opc = N->getMachineOpcode(); 7174 7175 // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate 7176 // operand is 2. 7177 if (Opc == PPC::XXPERMDIs) { 7178 return isa<ConstantSDNode>(N->getOperand(1)) && 7179 N->getConstantOperandVal(1) == 2; 7180 } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) { 7181 return N->getOperand(0) == N->getOperand(1) && 7182 isa<ConstantSDNode>(N->getOperand(2)) && 7183 N->getConstantOperandVal(2) == 2; 7184 } 7185 7186 return false; 7187 } 7188 7189 // TODO: Make this complete and replace with a table-gen bit. 7190 static bool isLaneInsensitive(SDValue N) { 7191 if (!N->isMachineOpcode()) 7192 return false; 7193 unsigned Opc = N->getMachineOpcode(); 7194 7195 switch (Opc) { 7196 default: 7197 return false; 7198 case PPC::VAVGSB: 7199 case PPC::VAVGUB: 7200 case PPC::VAVGSH: 7201 case PPC::VAVGUH: 7202 case PPC::VAVGSW: 7203 case PPC::VAVGUW: 7204 case PPC::VMAXFP: 7205 case PPC::VMAXSB: 7206 case PPC::VMAXUB: 7207 case PPC::VMAXSH: 7208 case PPC::VMAXUH: 7209 case PPC::VMAXSW: 7210 case PPC::VMAXUW: 7211 case PPC::VMINFP: 7212 case PPC::VMINSB: 7213 case PPC::VMINUB: 7214 case PPC::VMINSH: 7215 case PPC::VMINUH: 7216 case PPC::VMINSW: 7217 case PPC::VMINUW: 7218 case PPC::VADDFP: 7219 case PPC::VADDUBM: 7220 case PPC::VADDUHM: 7221 case PPC::VADDUWM: 7222 case PPC::VSUBFP: 7223 case PPC::VSUBUBM: 7224 case PPC::VSUBUHM: 7225 case PPC::VSUBUWM: 7226 case PPC::VAND: 7227 case PPC::VANDC: 7228 case PPC::VOR: 7229 case PPC::VORC: 7230 case PPC::VXOR: 7231 case PPC::VNOR: 7232 case PPC::VMULUWM: 7233 return true; 7234 } 7235 } 7236 7237 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is 7238 // lane-insensitive. 7239 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) { 7240 // Our desired xxswap might be source of COPY_TO_REGCLASS. 7241 // TODO: Can we put this a common method for DAG? 7242 auto SkipRCCopy = [](SDValue V) { 7243 while (V->isMachineOpcode() && 7244 V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) { 7245 // All values in the chain should have single use. 7246 if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode())) 7247 return SDValue(); 7248 V = V->getOperand(0); 7249 } 7250 return V.hasOneUse() ? V : SDValue(); 7251 }; 7252 7253 SDValue VecOp = SkipRCCopy(N->getOperand(0)); 7254 if (!VecOp || !isLaneInsensitive(VecOp)) 7255 return; 7256 7257 SDValue LHS = SkipRCCopy(VecOp.getOperand(0)), 7258 RHS = SkipRCCopy(VecOp.getOperand(1)); 7259 if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS)) 7260 return; 7261 7262 // These swaps may still have chain-uses here, count on dead code elimination 7263 // in following passes to remove them. 7264 DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0)); 7265 DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0)); 7266 DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0)); 7267 } 7268 7269 void PPCDAGToDAGISel::PeepholePPC64() { 7270 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 7271 7272 while (Position != CurDAG->allnodes_begin()) { 7273 SDNode *N = &*--Position; 7274 // Skip dead nodes and any non-machine opcodes. 7275 if (N->use_empty() || !N->isMachineOpcode()) 7276 continue; 7277 7278 if (isVSXSwap(SDValue(N, 0))) 7279 reduceVSXSwap(N, CurDAG); 7280 7281 unsigned FirstOp; 7282 unsigned StorageOpcode = N->getMachineOpcode(); 7283 bool RequiresMod4Offset = false; 7284 7285 switch (StorageOpcode) { 7286 default: continue; 7287 7288 case PPC::LWA: 7289 case PPC::LD: 7290 case PPC::DFLOADf64: 7291 case PPC::DFLOADf32: 7292 RequiresMod4Offset = true; 7293 LLVM_FALLTHROUGH; 7294 case PPC::LBZ: 7295 case PPC::LBZ8: 7296 case PPC::LFD: 7297 case PPC::LFS: 7298 case PPC::LHA: 7299 case PPC::LHA8: 7300 case PPC::LHZ: 7301 case PPC::LHZ8: 7302 case PPC::LWZ: 7303 case PPC::LWZ8: 7304 FirstOp = 0; 7305 break; 7306 7307 case PPC::STD: 7308 case PPC::DFSTOREf64: 7309 case PPC::DFSTOREf32: 7310 RequiresMod4Offset = true; 7311 LLVM_FALLTHROUGH; 7312 case PPC::STB: 7313 case PPC::STB8: 7314 case PPC::STFD: 7315 case PPC::STFS: 7316 case PPC::STH: 7317 case PPC::STH8: 7318 case PPC::STW: 7319 case PPC::STW8: 7320 FirstOp = 1; 7321 break; 7322 } 7323 7324 // If this is a load or store with a zero offset, or within the alignment, 7325 // we may be able to fold an add-immediate into the memory operation. 7326 // The check against alignment is below, as it can't occur until we check 7327 // the arguments to N 7328 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 7329 continue; 7330 7331 SDValue Base = N->getOperand(FirstOp + 1); 7332 if (!Base.isMachineOpcode()) 7333 continue; 7334 7335 unsigned Flags = 0; 7336 bool ReplaceFlags = true; 7337 7338 // When the feeding operation is an add-immediate of some sort, 7339 // determine whether we need to add relocation information to the 7340 // target flags on the immediate operand when we fold it into the 7341 // load instruction. 7342 // 7343 // For something like ADDItocL, the relocation information is 7344 // inferred from the opcode; when we process it in the AsmPrinter, 7345 // we add the necessary relocation there. A load, though, can receive 7346 // relocation from various flavors of ADDIxxx, so we need to carry 7347 // the relocation information in the target flags. 7348 switch (Base.getMachineOpcode()) { 7349 default: continue; 7350 7351 case PPC::ADDI8: 7352 case PPC::ADDI: 7353 // In some cases (such as TLS) the relocation information 7354 // is already in place on the operand, so copying the operand 7355 // is sufficient. 7356 ReplaceFlags = false; 7357 // For these cases, the immediate may not be divisible by 4, in 7358 // which case the fold is illegal for DS-form instructions. (The 7359 // other cases provide aligned addresses and are always safe.) 7360 if (RequiresMod4Offset && 7361 (!isa<ConstantSDNode>(Base.getOperand(1)) || 7362 Base.getConstantOperandVal(1) % 4 != 0)) 7363 continue; 7364 break; 7365 case PPC::ADDIdtprelL: 7366 Flags = PPCII::MO_DTPREL_LO; 7367 break; 7368 case PPC::ADDItlsldL: 7369 Flags = PPCII::MO_TLSLD_LO; 7370 break; 7371 case PPC::ADDItocL: 7372 Flags = PPCII::MO_TOC_LO; 7373 break; 7374 } 7375 7376 SDValue ImmOpnd = Base.getOperand(1); 7377 7378 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 7379 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 7380 // we might have needed different @ha relocation values for the offset 7381 // pointers). 7382 int MaxDisplacement = 7; 7383 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7384 const GlobalValue *GV = GA->getGlobal(); 7385 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7386 MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); 7387 } 7388 7389 bool UpdateHBase = false; 7390 SDValue HBase = Base.getOperand(0); 7391 7392 int Offset = N->getConstantOperandVal(FirstOp); 7393 if (ReplaceFlags) { 7394 if (Offset < 0 || Offset > MaxDisplacement) { 7395 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 7396 // one use, then we can do this for any offset, we just need to also 7397 // update the offset (i.e. the symbol addend) on the addis also. 7398 if (Base.getMachineOpcode() != PPC::ADDItocL) 7399 continue; 7400 7401 if (!HBase.isMachineOpcode() || 7402 HBase.getMachineOpcode() != PPC::ADDIStocHA8) 7403 continue; 7404 7405 if (!Base.hasOneUse() || !HBase.hasOneUse()) 7406 continue; 7407 7408 SDValue HImmOpnd = HBase.getOperand(1); 7409 if (HImmOpnd != ImmOpnd) 7410 continue; 7411 7412 UpdateHBase = true; 7413 } 7414 } else { 7415 // If we're directly folding the addend from an addi instruction, then: 7416 // 1. In general, the offset on the memory access must be zero. 7417 // 2. If the addend is a constant, then it can be combined with a 7418 // non-zero offset, but only if the result meets the encoding 7419 // requirements. 7420 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 7421 Offset += C->getSExtValue(); 7422 7423 if (RequiresMod4Offset && (Offset % 4) != 0) 7424 continue; 7425 7426 if (!isInt<16>(Offset)) 7427 continue; 7428 7429 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 7430 ImmOpnd.getValueType()); 7431 } else if (Offset != 0) { 7432 continue; 7433 } 7434 } 7435 7436 // We found an opportunity. Reverse the operands from the add 7437 // immediate and substitute them into the load or store. If 7438 // needed, update the target flags for the immediate operand to 7439 // reflect the necessary relocation information. 7440 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 7441 LLVM_DEBUG(Base->dump(CurDAG)); 7442 LLVM_DEBUG(dbgs() << "\nN: "); 7443 LLVM_DEBUG(N->dump(CurDAG)); 7444 LLVM_DEBUG(dbgs() << "\n"); 7445 7446 // If the relocation information isn't already present on the 7447 // immediate operand, add it now. 7448 if (ReplaceFlags) { 7449 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 7450 SDLoc dl(GA); 7451 const GlobalValue *GV = GA->getGlobal(); 7452 Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); 7453 // We can't perform this optimization for data whose alignment 7454 // is insufficient for the instruction encoding. 7455 if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { 7456 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 7457 continue; 7458 } 7459 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 7460 } else if (ConstantPoolSDNode *CP = 7461 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 7462 const Constant *C = CP->getConstVal(); 7463 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), 7464 Offset, Flags); 7465 } 7466 } 7467 7468 if (FirstOp == 1) // Store 7469 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 7470 Base.getOperand(0), N->getOperand(3)); 7471 else // Load 7472 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 7473 N->getOperand(2)); 7474 7475 if (UpdateHBase) 7476 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 7477 ImmOpnd); 7478 7479 // The add-immediate may now be dead, in which case remove it. 7480 if (Base.getNode()->use_empty()) 7481 CurDAG->RemoveDeadNode(Base.getNode()); 7482 } 7483 } 7484 7485 /// createPPCISelDag - This pass converts a legalized DAG into a 7486 /// PowerPC-specific DAG, ready for instruction scheduling. 7487 /// 7488 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 7489 CodeGenOpt::Level OptLevel) { 7490 return new PPCDAGToDAGISel(TM, OptLevel); 7491 } 7492