1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is 11 // the output mechanism used by `llc'. 12 // 13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/ 14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "MCTargetDesc/PPCInstPrinter.h" 19 #include "MCTargetDesc/PPCMCExpr.h" 20 #include "MCTargetDesc/PPCMCTargetDesc.h" 21 #include "MCTargetDesc/PPCPredicates.h" 22 #include "PPC.h" 23 #include "PPCInstrInfo.h" 24 #include "PPCMachineFunctionInfo.h" 25 #include "PPCSubtarget.h" 26 #include "PPCTargetMachine.h" 27 #include "PPCTargetStreamer.h" 28 #include "TargetInfo/PowerPCTargetInfo.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Triple.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/AsmPrinter.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCContext.h" 50 #include "llvm/MC/MCDirectives.h" 51 #include "llvm/MC/MCExpr.h" 52 #include "llvm/MC/MCInst.h" 53 #include "llvm/MC/MCInstBuilder.h" 54 #include "llvm/MC/MCSectionELF.h" 55 #include "llvm/MC/MCSectionXCOFF.h" 56 #include "llvm/MC/MCStreamer.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/MCSymbolELF.h" 59 #include "llvm/MC/MCSymbolXCOFF.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/Process.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Transforms/Utils/ModuleUtils.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <memory> 75 #include <new> 76 77 using namespace llvm; 78 using namespace llvm::XCOFF; 79 80 #define DEBUG_TYPE "asmprinter" 81 82 static cl::opt<bool> EnableSSPCanaryBitInTB( 83 "aix-ssp-tb-bit", cl::init(false), 84 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden); 85 86 // Specialize DenseMapInfo to allow 87 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap. 88 // This specialization is needed here because that type is used as keys in the 89 // map representing TOC entries. 90 namespace llvm { 91 template <> 92 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> { 93 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>; 94 95 static inline TOCKey getEmptyKey() { 96 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None}; 97 } 98 static inline TOCKey getTombstoneKey() { 99 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid}; 100 } 101 static unsigned getHashValue(const TOCKey &PairVal) { 102 return detail::combineHashValue( 103 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first), 104 DenseMapInfo<int>::getHashValue(PairVal.second)); 105 } 106 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; } 107 }; 108 } // end namespace llvm 109 110 namespace { 111 112 class PPCAsmPrinter : public AsmPrinter { 113 protected: 114 // For TLS on AIX, we need to be able to identify TOC entries of specific 115 // VariantKind so we can add the right relocations when we generate the 116 // entries. So each entry is represented by a pair of MCSymbol and 117 // VariantKind. For example, we need to be able to identify the following 118 // entry as a TLSGD entry so we can add the @m relocation: 119 // .tc .i[TC],i[TL]@m 120 // By default, VK_None is used for the VariantKind. 121 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>, 122 MCSymbol *> 123 TOC; 124 const PPCSubtarget *Subtarget = nullptr; 125 StackMaps SM; 126 127 public: 128 explicit PPCAsmPrinter(TargetMachine &TM, 129 std::unique_ptr<MCStreamer> Streamer) 130 : AsmPrinter(TM, std::move(Streamer)), SM(*this) {} 131 132 StringRef getPassName() const override { return "PowerPC Assembly Printer"; } 133 134 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, 135 MCSymbolRefExpr::VariantKind Kind = 136 MCSymbolRefExpr::VariantKind::VK_None); 137 138 bool doInitialization(Module &M) override { 139 if (!TOC.empty()) 140 TOC.clear(); 141 return AsmPrinter::doInitialization(M); 142 } 143 144 void emitInstruction(const MachineInstr *MI) override; 145 146 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand, 147 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only. 148 /// The \p MI would be INLINEASM ONLY. 149 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O); 150 151 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override; 152 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 153 const char *ExtraCode, raw_ostream &O) override; 154 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 155 const char *ExtraCode, raw_ostream &O) override; 156 157 void emitEndOfAsmFile(Module &M) override; 158 159 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI); 160 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI); 161 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK); 162 bool runOnMachineFunction(MachineFunction &MF) override { 163 Subtarget = &MF.getSubtarget<PPCSubtarget>(); 164 bool Changed = AsmPrinter::runOnMachineFunction(MF); 165 emitXRayTable(); 166 return Changed; 167 } 168 }; 169 170 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux 171 class PPCLinuxAsmPrinter : public PPCAsmPrinter { 172 public: 173 explicit PPCLinuxAsmPrinter(TargetMachine &TM, 174 std::unique_ptr<MCStreamer> Streamer) 175 : PPCAsmPrinter(TM, std::move(Streamer)) {} 176 177 StringRef getPassName() const override { 178 return "Linux PPC Assembly Printer"; 179 } 180 181 void emitStartOfAsmFile(Module &M) override; 182 void emitEndOfAsmFile(Module &) override; 183 184 void emitFunctionEntryLabel() override; 185 186 void emitFunctionBodyStart() override; 187 void emitFunctionBodyEnd() override; 188 void emitInstruction(const MachineInstr *MI) override; 189 }; 190 191 class PPCAIXAsmPrinter : public PPCAsmPrinter { 192 private: 193 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern 194 /// linkage for them in AIX. 195 SmallPtrSet<MCSymbol *, 8> ExtSymSDNodeSymbols; 196 197 /// A format indicator and unique trailing identifier to form part of the 198 /// sinit/sterm function names. 199 std::string FormatIndicatorAndUniqueModId; 200 201 // Record a list of GlobalAlias associated with a GlobalObject. 202 // This is used for AIX's extra-label-at-definition aliasing strategy. 203 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>> 204 GOAliasMap; 205 206 uint16_t getNumberOfVRSaved(); 207 void emitTracebackTable(); 208 209 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars; 210 211 void emitGlobalVariableHelper(const GlobalVariable *); 212 213 public: 214 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 215 : PPCAsmPrinter(TM, std::move(Streamer)) { 216 if (MAI->isLittleEndian()) 217 report_fatal_error( 218 "cannot create AIX PPC Assembly Printer for a little-endian target"); 219 } 220 221 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; } 222 223 bool doInitialization(Module &M) override; 224 225 void emitXXStructorList(const DataLayout &DL, const Constant *List, 226 bool IsCtor) override; 227 228 void SetupMachineFunction(MachineFunction &MF) override; 229 230 void emitGlobalVariable(const GlobalVariable *GV) override; 231 232 void emitFunctionDescriptor() override; 233 234 void emitFunctionEntryLabel() override; 235 236 void emitFunctionBodyEnd() override; 237 238 void emitEndOfAsmFile(Module &) override; 239 240 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override; 241 242 void emitInstruction(const MachineInstr *MI) override; 243 244 bool doFinalization(Module &M) override; 245 246 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override; 247 }; 248 249 } // end anonymous namespace 250 251 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 252 raw_ostream &O) { 253 // Computing the address of a global symbol, not calling it. 254 const GlobalValue *GV = MO.getGlobal(); 255 getSymbol(GV)->print(O, MAI); 256 printOffset(MO.getOffset(), O); 257 } 258 259 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, 260 raw_ostream &O) { 261 const DataLayout &DL = getDataLayout(); 262 const MachineOperand &MO = MI->getOperand(OpNo); 263 264 switch (MO.getType()) { 265 case MachineOperand::MO_Register: { 266 // The MI is INLINEASM ONLY and UseVSXReg is always false. 267 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg()); 268 269 // Linux assembler (Others?) does not take register mnemonics. 270 // FIXME - What about special registers used in mfspr/mtspr? 271 O << PPCRegisterInfo::stripRegisterPrefix(RegName); 272 return; 273 } 274 case MachineOperand::MO_Immediate: 275 O << MO.getImm(); 276 return; 277 278 case MachineOperand::MO_MachineBasicBlock: 279 MO.getMBB()->getSymbol()->print(O, MAI); 280 return; 281 case MachineOperand::MO_ConstantPoolIndex: 282 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' 283 << MO.getIndex(); 284 return; 285 case MachineOperand::MO_BlockAddress: 286 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI); 287 return; 288 case MachineOperand::MO_GlobalAddress: { 289 PrintSymbolOperand(MO, O); 290 return; 291 } 292 293 default: 294 O << "<unknown operand type: " << (unsigned)MO.getType() << ">"; 295 return; 296 } 297 } 298 299 /// PrintAsmOperand - Print out an operand for an inline asm expression. 300 /// 301 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 302 const char *ExtraCode, raw_ostream &O) { 303 // Does this asm operand have a single letter operand modifier? 304 if (ExtraCode && ExtraCode[0]) { 305 if (ExtraCode[1] != 0) return true; // Unknown modifier. 306 307 switch (ExtraCode[0]) { 308 default: 309 // See if this is a generic print operand 310 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 311 case 'L': // Write second word of DImode reference. 312 // Verify that this operand has two consecutive registers. 313 if (!MI->getOperand(OpNo).isReg() || 314 OpNo+1 == MI->getNumOperands() || 315 !MI->getOperand(OpNo+1).isReg()) 316 return true; 317 ++OpNo; // Return the high-part. 318 break; 319 case 'I': 320 // Write 'i' if an integer constant, otherwise nothing. Used to print 321 // addi vs add, etc. 322 if (MI->getOperand(OpNo).isImm()) 323 O << "i"; 324 return false; 325 case 'x': 326 if(!MI->getOperand(OpNo).isReg()) 327 return true; 328 // This operand uses VSX numbering. 329 // If the operand is a VMX register, convert it to a VSX register. 330 Register Reg = MI->getOperand(OpNo).getReg(); 331 if (PPCInstrInfo::isVRRegister(Reg)) 332 Reg = PPC::VSX32 + (Reg - PPC::V0); 333 else if (PPCInstrInfo::isVFRegister(Reg)) 334 Reg = PPC::VSX32 + (Reg - PPC::VF0); 335 const char *RegName; 336 RegName = PPCInstPrinter::getRegisterName(Reg); 337 RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); 338 O << RegName; 339 return false; 340 } 341 } 342 343 printOperand(MI, OpNo, O); 344 return false; 345 } 346 347 // At the moment, all inline asm memory operands are a single register. 348 // In any case, the output of this routine should always be just one 349 // assembler operand. 350 351 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 352 const char *ExtraCode, 353 raw_ostream &O) { 354 if (ExtraCode && ExtraCode[0]) { 355 if (ExtraCode[1] != 0) return true; // Unknown modifier. 356 357 switch (ExtraCode[0]) { 358 default: return true; // Unknown modifier. 359 case 'L': // A memory reference to the upper word of a double word op. 360 O << getDataLayout().getPointerSize() << "("; 361 printOperand(MI, OpNo, O); 362 O << ")"; 363 return false; 364 case 'y': // A memory reference for an X-form instruction 365 O << "0, "; 366 printOperand(MI, OpNo, O); 367 return false; 368 case 'I': 369 // Write 'i' if an integer constant, otherwise nothing. Used to print 370 // addi vs add, etc. 371 if (MI->getOperand(OpNo).isImm()) 372 O << "i"; 373 return false; 374 case 'U': // Print 'u' for update form. 375 case 'X': // Print 'x' for indexed form. 376 // FIXME: Currently for PowerPC memory operands are always loaded 377 // into a register, so we never get an update or indexed form. 378 // This is bad even for offset forms, since even if we know we 379 // have a value in -16(r1), we will generate a load into r<n> 380 // and then load from 0(r<n>). Until that issue is fixed, 381 // tolerate 'U' and 'X' but don't output anything. 382 assert(MI->getOperand(OpNo).isReg()); 383 return false; 384 } 385 } 386 387 assert(MI->getOperand(OpNo).isReg()); 388 O << "0("; 389 printOperand(MI, OpNo, O); 390 O << ")"; 391 return false; 392 } 393 394 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry 395 /// exists for it. If not, create one. Then return a symbol that references 396 /// the TOC entry. 397 MCSymbol * 398 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, 399 MCSymbolRefExpr::VariantKind Kind) { 400 MCSymbol *&TOCEntry = TOC[{Sym, Kind}]; 401 if (!TOCEntry) 402 TOCEntry = createTempSymbol("C"); 403 return TOCEntry; 404 } 405 406 void PPCAsmPrinter::emitEndOfAsmFile(Module &M) { 407 emitStackMaps(SM); 408 } 409 410 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) { 411 unsigned NumNOPBytes = MI.getOperand(1).getImm(); 412 413 auto &Ctx = OutStreamer->getContext(); 414 MCSymbol *MILabel = Ctx.createTempSymbol(); 415 OutStreamer->emitLabel(MILabel); 416 417 SM.recordStackMap(*MILabel, MI); 418 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 419 420 // Scan ahead to trim the shadow. 421 const MachineBasicBlock &MBB = *MI.getParent(); 422 MachineBasicBlock::const_iterator MII(MI); 423 ++MII; 424 while (NumNOPBytes > 0) { 425 if (MII == MBB.end() || MII->isCall() || 426 MII->getOpcode() == PPC::DBG_VALUE || 427 MII->getOpcode() == TargetOpcode::PATCHPOINT || 428 MII->getOpcode() == TargetOpcode::STACKMAP) 429 break; 430 ++MII; 431 NumNOPBytes -= 4; 432 } 433 434 // Emit nops. 435 for (unsigned i = 0; i < NumNOPBytes; i += 4) 436 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 437 } 438 439 // Lower a patchpoint of the form: 440 // [<def>], <id>, <numBytes>, <target>, <numArgs> 441 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) { 442 auto &Ctx = OutStreamer->getContext(); 443 MCSymbol *MILabel = Ctx.createTempSymbol(); 444 OutStreamer->emitLabel(MILabel); 445 446 SM.recordPatchPoint(*MILabel, MI); 447 PatchPointOpers Opers(&MI); 448 449 unsigned EncodedBytes = 0; 450 const MachineOperand &CalleeMO = Opers.getCallTarget(); 451 452 if (CalleeMO.isImm()) { 453 int64_t CallTarget = CalleeMO.getImm(); 454 if (CallTarget) { 455 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 456 "High 16 bits of call target should be zero."); 457 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 458 EncodedBytes = 0; 459 // Materialize the jump address: 460 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8) 461 .addReg(ScratchReg) 462 .addImm((CallTarget >> 32) & 0xFFFF)); 463 ++EncodedBytes; 464 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC) 465 .addReg(ScratchReg) 466 .addReg(ScratchReg) 467 .addImm(32).addImm(16)); 468 ++EncodedBytes; 469 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8) 470 .addReg(ScratchReg) 471 .addReg(ScratchReg) 472 .addImm((CallTarget >> 16) & 0xFFFF)); 473 ++EncodedBytes; 474 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8) 475 .addReg(ScratchReg) 476 .addReg(ScratchReg) 477 .addImm(CallTarget & 0xFFFF)); 478 479 // Save the current TOC pointer before the remote call. 480 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset(); 481 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD) 482 .addReg(PPC::X2) 483 .addImm(TOCSaveOffset) 484 .addReg(PPC::X1)); 485 ++EncodedBytes; 486 487 // If we're on ELFv1, then we need to load the actual function pointer 488 // from the function descriptor. 489 if (!Subtarget->isELFv2ABI()) { 490 // Load the new TOC pointer and the function address, but not r11 491 // (needing this is rare, and loading it here would prevent passing it 492 // via a 'nest' parameter. 493 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 494 .addReg(PPC::X2) 495 .addImm(8) 496 .addReg(ScratchReg)); 497 ++EncodedBytes; 498 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 499 .addReg(ScratchReg) 500 .addImm(0) 501 .addReg(ScratchReg)); 502 ++EncodedBytes; 503 } 504 505 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8) 506 .addReg(ScratchReg)); 507 ++EncodedBytes; 508 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8)); 509 ++EncodedBytes; 510 511 // Restore the TOC pointer after the call. 512 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 513 .addReg(PPC::X2) 514 .addImm(TOCSaveOffset) 515 .addReg(PPC::X1)); 516 ++EncodedBytes; 517 } 518 } else if (CalleeMO.isGlobal()) { 519 const GlobalValue *GValue = CalleeMO.getGlobal(); 520 MCSymbol *MOSymbol = getSymbol(GValue); 521 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext); 522 523 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP) 524 .addExpr(SymVar)); 525 EncodedBytes += 2; 526 } 527 528 // Each instruction is 4 bytes. 529 EncodedBytes *= 4; 530 531 // Emit padding. 532 unsigned NumBytes = Opers.getNumPatchBytes(); 533 assert(NumBytes >= EncodedBytes && 534 "Patchpoint can't request size less than the length of a call."); 535 assert((NumBytes - EncodedBytes) % 4 == 0 && 536 "Invalid number of NOP bytes requested!"); 537 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 538 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 539 } 540 541 /// This helper function creates the TlsGetAddr MCSymbol for AIX. We will 542 /// create the csect and use the qual-name symbol instead of creating just the 543 /// external symbol. 544 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx) { 545 return Ctx 546 .getXCOFFSection(".__tls_get_addr", SectionKind::getText(), 547 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)) 548 ->getQualNameSymbol(); 549 } 550 551 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a 552 /// call to __tls_get_addr to the current output stream. 553 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI, 554 MCSymbolRefExpr::VariantKind VK) { 555 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 556 unsigned Opcode = PPC::BL8_NOP_TLS; 557 558 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI"); 559 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG || 560 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) { 561 Kind = MCSymbolRefExpr::VK_PPC_NOTOC; 562 Opcode = PPC::BL8_NOTOC_TLS; 563 } 564 const Module *M = MF->getFunction().getParent(); 565 566 assert(MI->getOperand(0).isReg() && 567 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) || 568 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) && 569 "GETtls[ld]ADDR[32] must define GPR3"); 570 assert(MI->getOperand(1).isReg() && 571 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) || 572 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) && 573 "GETtls[ld]ADDR[32] must read GPR3"); 574 575 if (Subtarget->isAIXABI()) { 576 // On AIX, the variable offset should already be in R4 and the region handle 577 // should already be in R3. 578 // For TLSGD, which currently is the only supported access model, we only 579 // need to generate an absolute branch to .__tls_get_addr. 580 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4; 581 (void)VarOffsetReg; 582 assert(MI->getOperand(2).isReg() && 583 MI->getOperand(2).getReg() == VarOffsetReg && 584 "GETtls[ld]ADDR[32] must read GPR4"); 585 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 586 const MCExpr *TlsRef = MCSymbolRefExpr::create( 587 TlsGetAddr, MCSymbolRefExpr::VK_None, OutContext); 588 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef)); 589 return; 590 } 591 592 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr"); 593 594 if (Subtarget->is32BitELFABI() && isPositionIndependent()) 595 Kind = MCSymbolRefExpr::VK_PLT; 596 597 const MCExpr *TlsRef = 598 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext); 599 600 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI. 601 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() && 602 M->getPICLevel() == PICLevel::BigPIC) 603 TlsRef = MCBinaryExpr::createAdd( 604 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext); 605 const MachineOperand &MO = MI->getOperand(2); 606 const GlobalValue *GValue = MO.getGlobal(); 607 MCSymbol *MOSymbol = getSymbol(GValue); 608 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 609 EmitToStreamer(*OutStreamer, 610 MCInstBuilder(Subtarget->isPPC64() ? Opcode 611 : (unsigned)PPC::BL_TLS) 612 .addExpr(TlsRef) 613 .addExpr(SymVar)); 614 } 615 616 /// Map a machine operand for a TOC pseudo-machine instruction to its 617 /// corresponding MCSymbol. 618 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO, 619 AsmPrinter &AP) { 620 switch (MO.getType()) { 621 case MachineOperand::MO_GlobalAddress: 622 return AP.getSymbol(MO.getGlobal()); 623 case MachineOperand::MO_ConstantPoolIndex: 624 return AP.GetCPISymbol(MO.getIndex()); 625 case MachineOperand::MO_JumpTableIndex: 626 return AP.GetJTISymbol(MO.getIndex()); 627 case MachineOperand::MO_BlockAddress: 628 return AP.GetBlockAddressSymbol(MO.getBlockAddress()); 629 default: 630 llvm_unreachable("Unexpected operand type to get symbol."); 631 } 632 } 633 634 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to 635 /// the current output stream. 636 /// 637 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) { 638 MCInst TmpInst; 639 const bool IsPPC64 = Subtarget->isPPC64(); 640 const bool IsAIX = Subtarget->isAIXABI(); 641 const Module *M = MF->getFunction().getParent(); 642 PICLevel::Level PL = M->getPICLevel(); 643 644 #ifndef NDEBUG 645 // Validate that SPE and FPU are mutually exclusive in codegen 646 if (!MI->isInlineAsm()) { 647 for (const MachineOperand &MO: MI->operands()) { 648 if (MO.isReg()) { 649 Register Reg = MO.getReg(); 650 if (Subtarget->hasSPE()) { 651 if (PPC::F4RCRegClass.contains(Reg) || 652 PPC::F8RCRegClass.contains(Reg) || 653 PPC::VFRCRegClass.contains(Reg) || 654 PPC::VRRCRegClass.contains(Reg) || 655 PPC::VSFRCRegClass.contains(Reg) || 656 PPC::VSSRCRegClass.contains(Reg) 657 ) 658 llvm_unreachable("SPE targets cannot have FPRegs!"); 659 } else { 660 if (PPC::SPERCRegClass.contains(Reg)) 661 llvm_unreachable("SPE register found in FPU-targeted code!"); 662 } 663 } 664 } 665 } 666 #endif 667 668 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr, 669 ptrdiff_t OriginalOffset) { 670 // Apply an offset to the TOC-based expression such that the adjusted 671 // notional offset from the TOC base (to be encoded into the instruction's D 672 // or DS field) is the signed 16-bit truncation of the original notional 673 // offset from the TOC base. 674 // This is consistent with the treatment used both by XL C/C++ and 675 // by AIX ld -r. 676 ptrdiff_t Adjustment = 677 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset); 678 return MCBinaryExpr::createAdd( 679 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext); 680 }; 681 682 auto getTOCEntryLoadingExprForXCOFF = 683 [IsPPC64, getTOCRelocAdjustedExprForXCOFF, 684 this](const MCSymbol *MOSymbol, const MCExpr *Expr, 685 MCSymbolRefExpr::VariantKind VK = 686 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * { 687 const unsigned EntryByteSize = IsPPC64 ? 8 : 4; 688 const auto TOCEntryIter = TOC.find({MOSymbol, VK}); 689 assert(TOCEntryIter != TOC.end() && 690 "Could not find the TOC entry for this symbol."); 691 const ptrdiff_t EntryDistanceFromTOCBase = 692 (TOCEntryIter - TOC.begin()) * EntryByteSize; 693 constexpr int16_t PositiveTOCRange = INT16_MAX; 694 695 if (EntryDistanceFromTOCBase > PositiveTOCRange) 696 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase); 697 698 return Expr; 699 }; 700 auto GetVKForMO = [&](const MachineOperand &MO) { 701 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for 702 // the variable offset and the other for the region handle). They are 703 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG. 704 if (MO.getTargetFlags() & PPCII::MO_TLSGDM_FLAG) 705 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM; 706 if (MO.getTargetFlags() & PPCII::MO_TLSGD_FLAG) 707 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD; 708 return MCSymbolRefExpr::VariantKind::VK_None; 709 }; 710 711 // Lower multi-instruction pseudo operations. 712 switch (MI->getOpcode()) { 713 default: break; 714 case TargetOpcode::DBG_VALUE: 715 llvm_unreachable("Should be handled target independently"); 716 case TargetOpcode::STACKMAP: 717 return LowerSTACKMAP(SM, *MI); 718 case TargetOpcode::PATCHPOINT: 719 return LowerPATCHPOINT(SM, *MI); 720 721 case PPC::MoveGOTtoLR: { 722 // Transform %lr = MoveGOTtoLR 723 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4 724 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding 725 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction: 726 // blrl 727 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local 728 MCSymbol *GOTSymbol = 729 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 730 const MCExpr *OffsExpr = 731 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, 732 MCSymbolRefExpr::VK_PPC_LOCAL, 733 OutContext), 734 MCConstantExpr::create(4, OutContext), 735 OutContext); 736 737 // Emit the 'bl'. 738 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr)); 739 return; 740 } 741 case PPC::MovePCtoLR: 742 case PPC::MovePCtoLR8: { 743 // Transform %lr = MovePCtoLR 744 // Into this, where the label is the PIC base: 745 // bl L1$pb 746 // L1$pb: 747 MCSymbol *PICBase = MF->getPICBaseSymbol(); 748 749 // Emit the 'bl'. 750 EmitToStreamer(*OutStreamer, 751 MCInstBuilder(PPC::BL) 752 // FIXME: We would like an efficient form for this, so we 753 // don't have to do a lot of extra uniquing. 754 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); 755 756 // Emit the label. 757 OutStreamer->emitLabel(PICBase); 758 return; 759 } 760 case PPC::UpdateGBR: { 761 // Transform %rd = UpdateGBR(%rt, %ri) 762 // Into: lwz %rt, .L0$poff - .L0$pb(%ri) 763 // add %rd, %rt, %ri 764 // or into (if secure plt mode is on): 765 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha 766 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l 767 // Get the offset from the GOT Base Register to the GOT 768 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 769 if (Subtarget->isSecurePlt() && isPositionIndependent() ) { 770 unsigned PICR = TmpInst.getOperand(0).getReg(); 771 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol( 772 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_" 773 : ".LTOC"); 774 const MCExpr *PB = 775 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); 776 777 const MCExpr *DeltaExpr = MCBinaryExpr::createSub( 778 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext); 779 780 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext); 781 EmitToStreamer( 782 *OutStreamer, 783 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi)); 784 785 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext); 786 EmitToStreamer( 787 *OutStreamer, 788 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo)); 789 return; 790 } else { 791 MCSymbol *PICOffset = 792 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF); 793 TmpInst.setOpcode(PPC::LWZ); 794 const MCExpr *Exp = 795 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext); 796 const MCExpr *PB = 797 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), 798 MCSymbolRefExpr::VK_None, 799 OutContext); 800 const MCOperand TR = TmpInst.getOperand(1); 801 const MCOperand PICR = TmpInst.getOperand(0); 802 803 // Step 1: lwz %rt, .L$poff - .L$pb(%ri) 804 TmpInst.getOperand(1) = 805 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext)); 806 TmpInst.getOperand(0) = TR; 807 TmpInst.getOperand(2) = PICR; 808 EmitToStreamer(*OutStreamer, TmpInst); 809 810 TmpInst.setOpcode(PPC::ADD4); 811 TmpInst.getOperand(0) = PICR; 812 TmpInst.getOperand(1) = TR; 813 TmpInst.getOperand(2) = PICR; 814 EmitToStreamer(*OutStreamer, TmpInst); 815 return; 816 } 817 } 818 case PPC::LWZtoc: { 819 // Transform %rN = LWZtoc @op1, %r2 820 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 821 822 // Change the opcode to LWZ. 823 TmpInst.setOpcode(PPC::LWZ); 824 825 const MachineOperand &MO = MI->getOperand(1); 826 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 827 "Invalid operand for LWZtoc."); 828 829 // Map the operand to its corresponding MCSymbol. 830 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 831 832 // Create a reference to the GOT entry for the symbol. The GOT entry will be 833 // synthesized later. 834 if (PL == PICLevel::SmallPIC && !IsAIX) { 835 const MCExpr *Exp = 836 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT, 837 OutContext); 838 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 839 EmitToStreamer(*OutStreamer, TmpInst); 840 return; 841 } 842 843 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 844 845 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the 846 // storage allocated in the TOC which contains the address of 847 // 'MOSymbol'. Said TOC entry will be synthesized later. 848 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 849 const MCExpr *Exp = 850 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext); 851 852 // AIX uses the label directly as the lwz displacement operand for 853 // references into the toc section. The displacement value will be generated 854 // relative to the toc-base. 855 if (IsAIX) { 856 assert( 857 TM.getCodeModel() == CodeModel::Small && 858 "This pseudo should only be selected for 32-bit small code model."); 859 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK); 860 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 861 862 // Print MO for better readability 863 if (isVerbose()) 864 OutStreamer->GetCommentOS() << MO << '\n'; 865 EmitToStreamer(*OutStreamer, TmpInst); 866 return; 867 } 868 869 // Create an explicit subtract expression between the local symbol and 870 // '.LTOC' to manifest the toc-relative offset. 871 const MCExpr *PB = MCSymbolRefExpr::create( 872 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext); 873 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext); 874 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 875 EmitToStreamer(*OutStreamer, TmpInst); 876 return; 877 } 878 case PPC::ADDItoc: 879 case PPC::ADDItoc8: { 880 assert(IsAIX && TM.getCodeModel() == CodeModel::Small && 881 "PseudoOp only valid for small code model AIX"); 882 883 // Transform %rN = ADDItoc/8 @op1, %r2. 884 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 885 886 // Change the opcode to load address. 887 TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8)); 888 889 const MachineOperand &MO = MI->getOperand(1); 890 assert(MO.isGlobal() && "Invalid operand for ADDItoc[8]."); 891 892 // Map the operand to its corresponding MCSymbol. 893 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 894 895 const MCExpr *Exp = 896 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext); 897 898 TmpInst.getOperand(1) = TmpInst.getOperand(2); 899 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 900 EmitToStreamer(*OutStreamer, TmpInst); 901 return; 902 } 903 case PPC::LDtocJTI: 904 case PPC::LDtocCPT: 905 case PPC::LDtocBA: 906 case PPC::LDtoc: { 907 // Transform %x3 = LDtoc @min1, %x2 908 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 909 910 // Change the opcode to LD. 911 TmpInst.setOpcode(PPC::LD); 912 913 const MachineOperand &MO = MI->getOperand(1); 914 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 915 "Invalid operand!"); 916 917 // Map the operand to its corresponding MCSymbol. 918 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 919 920 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 921 922 // Map the machine operand to its corresponding MCSymbol, then map the 923 // global address operand to be a reference to the TOC entry we will 924 // synthesize later. 925 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 926 927 MCSymbolRefExpr::VariantKind VKExpr = 928 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC; 929 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext); 930 TmpInst.getOperand(1) = MCOperand::createExpr( 931 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp); 932 933 // Print MO for better readability 934 if (isVerbose() && IsAIX) 935 OutStreamer->GetCommentOS() << MO << '\n'; 936 EmitToStreamer(*OutStreamer, TmpInst); 937 return; 938 } 939 case PPC::ADDIStocHA: { 940 assert((IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large) && 941 "This pseudo should only be selected for 32-bit large code model on" 942 " AIX."); 943 944 // Transform %rd = ADDIStocHA %rA, @sym(%r2) 945 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 946 947 // Change the opcode to ADDIS. 948 TmpInst.setOpcode(PPC::ADDIS); 949 950 const MachineOperand &MO = MI->getOperand(2); 951 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 952 "Invalid operand for ADDIStocHA."); 953 954 // Map the machine operand to its corresponding MCSymbol. 955 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 956 957 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 958 959 // Always use TOC on AIX. Map the global address operand to be a reference 960 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 961 // reference the storage allocated in the TOC which contains the address of 962 // 'MOSymbol'. 963 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 964 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 965 MCSymbolRefExpr::VK_PPC_U, 966 OutContext); 967 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 968 EmitToStreamer(*OutStreamer, TmpInst); 969 return; 970 } 971 case PPC::LWZtocL: { 972 assert(IsAIX && !IsPPC64 && TM.getCodeModel() == CodeModel::Large && 973 "This pseudo should only be selected for 32-bit large code model on" 974 " AIX."); 975 976 // Transform %rd = LWZtocL @sym, %rs. 977 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 978 979 // Change the opcode to lwz. 980 TmpInst.setOpcode(PPC::LWZ); 981 982 const MachineOperand &MO = MI->getOperand(1); 983 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 984 "Invalid operand for LWZtocL."); 985 986 // Map the machine operand to its corresponding MCSymbol. 987 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 988 989 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 990 991 // Always use TOC on AIX. Map the global address operand to be a reference 992 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to 993 // reference the storage allocated in the TOC which contains the address of 994 // 'MOSymbol'. 995 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol, VK); 996 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, 997 MCSymbolRefExpr::VK_PPC_L, 998 OutContext); 999 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1000 EmitToStreamer(*OutStreamer, TmpInst); 1001 return; 1002 } 1003 case PPC::ADDIStocHA8: { 1004 // Transform %xd = ADDIStocHA8 %x2, @sym 1005 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1006 1007 // Change the opcode to ADDIS8. If the global address is the address of 1008 // an external symbol, is a jump table address, is a block address, or is a 1009 // constant pool index with large code model enabled, then generate a TOC 1010 // entry and reference that. Otherwise, reference the symbol directly. 1011 TmpInst.setOpcode(PPC::ADDIS8); 1012 1013 const MachineOperand &MO = MI->getOperand(2); 1014 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) && 1015 "Invalid operand for ADDIStocHA8!"); 1016 1017 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1018 1019 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1020 1021 const bool GlobalToc = 1022 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal()); 1023 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() || 1024 (MO.isCPI() && TM.getCodeModel() == CodeModel::Large)) 1025 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1026 1027 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA; 1028 1029 const MCExpr *Exp = 1030 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1031 1032 if (!MO.isJTI() && MO.getOffset()) 1033 Exp = MCBinaryExpr::createAdd(Exp, 1034 MCConstantExpr::create(MO.getOffset(), 1035 OutContext), 1036 OutContext); 1037 1038 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1039 EmitToStreamer(*OutStreamer, TmpInst); 1040 return; 1041 } 1042 case PPC::LDtocL: { 1043 // Transform %xd = LDtocL @sym, %xs 1044 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1045 1046 // Change the opcode to LD. If the global address is the address of 1047 // an external symbol, is a jump table address, is a block address, or is 1048 // a constant pool index with large code model enabled, then generate a 1049 // TOC entry and reference that. Otherwise, reference the symbol directly. 1050 TmpInst.setOpcode(PPC::LD); 1051 1052 const MachineOperand &MO = MI->getOperand(1); 1053 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || 1054 MO.isBlockAddress()) && 1055 "Invalid operand for LDtocL!"); 1056 1057 LLVM_DEBUG(assert( 1058 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1059 "LDtocL used on symbol that could be accessed directly is " 1060 "invalid. Must match ADDIStocHA8.")); 1061 1062 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this); 1063 1064 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO); 1065 1066 if (!MO.isCPI() || TM.getCodeModel() == CodeModel::Large) 1067 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, VK); 1068 1069 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO; 1070 const MCExpr *Exp = 1071 MCSymbolRefExpr::create(MOSymbol, VK, OutContext); 1072 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1073 EmitToStreamer(*OutStreamer, TmpInst); 1074 return; 1075 } 1076 case PPC::ADDItocL: { 1077 // Transform %xd = ADDItocL %xs, @sym 1078 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1079 1080 // Change the opcode to ADDI8. If the global address is external, then 1081 // generate a TOC entry and reference that. Otherwise, reference the 1082 // symbol directly. 1083 TmpInst.setOpcode(PPC::ADDI8); 1084 1085 const MachineOperand &MO = MI->getOperand(2); 1086 assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL."); 1087 1088 LLVM_DEBUG(assert( 1089 !(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) && 1090 "Interposable definitions must use indirect access.")); 1091 1092 const MCExpr *Exp = 1093 MCSymbolRefExpr::create(getMCSymbolForTOCPseudoMO(MO, *this), 1094 MCSymbolRefExpr::VK_PPC_TOC_LO, OutContext); 1095 TmpInst.getOperand(2) = MCOperand::createExpr(Exp); 1096 EmitToStreamer(*OutStreamer, TmpInst); 1097 return; 1098 } 1099 case PPC::ADDISgotTprelHA: { 1100 // Transform: %xd = ADDISgotTprelHA %x2, @sym 1101 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1102 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1103 const MachineOperand &MO = MI->getOperand(2); 1104 const GlobalValue *GValue = MO.getGlobal(); 1105 MCSymbol *MOSymbol = getSymbol(GValue); 1106 const MCExpr *SymGotTprel = 1107 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA, 1108 OutContext); 1109 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1110 .addReg(MI->getOperand(0).getReg()) 1111 .addReg(MI->getOperand(1).getReg()) 1112 .addExpr(SymGotTprel)); 1113 return; 1114 } 1115 case PPC::LDgotTprelL: 1116 case PPC::LDgotTprelL32: { 1117 // Transform %xd = LDgotTprelL @sym, %xs 1118 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1119 1120 // Change the opcode to LD. 1121 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ); 1122 const MachineOperand &MO = MI->getOperand(1); 1123 const GlobalValue *GValue = MO.getGlobal(); 1124 MCSymbol *MOSymbol = getSymbol(GValue); 1125 const MCExpr *Exp = MCSymbolRefExpr::create( 1126 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO 1127 : MCSymbolRefExpr::VK_PPC_GOT_TPREL, 1128 OutContext); 1129 TmpInst.getOperand(1) = MCOperand::createExpr(Exp); 1130 EmitToStreamer(*OutStreamer, TmpInst); 1131 return; 1132 } 1133 1134 case PPC::PPC32PICGOT: { 1135 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1136 MCSymbol *GOTRef = OutContext.createTempSymbol(); 1137 MCSymbol *NextInstr = OutContext.createTempSymbol(); 1138 1139 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL) 1140 // FIXME: We would like an efficient form for this, so we don't have to do 1141 // a lot of extra uniquing. 1142 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext))); 1143 const MCExpr *OffsExpr = 1144 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext), 1145 MCSymbolRefExpr::create(GOTRef, OutContext), 1146 OutContext); 1147 OutStreamer->emitLabel(GOTRef); 1148 OutStreamer->emitValue(OffsExpr, 4); 1149 OutStreamer->emitLabel(NextInstr); 1150 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR) 1151 .addReg(MI->getOperand(0).getReg())); 1152 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ) 1153 .addReg(MI->getOperand(1).getReg()) 1154 .addImm(0) 1155 .addReg(MI->getOperand(0).getReg())); 1156 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4) 1157 .addReg(MI->getOperand(0).getReg()) 1158 .addReg(MI->getOperand(1).getReg()) 1159 .addReg(MI->getOperand(0).getReg())); 1160 return; 1161 } 1162 case PPC::PPC32GOT: { 1163 MCSymbol *GOTSymbol = 1164 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_")); 1165 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create( 1166 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext); 1167 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create( 1168 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext); 1169 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI) 1170 .addReg(MI->getOperand(0).getReg()) 1171 .addExpr(SymGotTlsL)); 1172 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1173 .addReg(MI->getOperand(0).getReg()) 1174 .addReg(MI->getOperand(0).getReg()) 1175 .addExpr(SymGotTlsHA)); 1176 return; 1177 } 1178 case PPC::ADDIStlsgdHA: { 1179 // Transform: %xd = ADDIStlsgdHA %x2, @sym 1180 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha 1181 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1182 const MachineOperand &MO = MI->getOperand(2); 1183 const GlobalValue *GValue = MO.getGlobal(); 1184 MCSymbol *MOSymbol = getSymbol(GValue); 1185 const MCExpr *SymGotTlsGD = 1186 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA, 1187 OutContext); 1188 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1189 .addReg(MI->getOperand(0).getReg()) 1190 .addReg(MI->getOperand(1).getReg()) 1191 .addExpr(SymGotTlsGD)); 1192 return; 1193 } 1194 case PPC::ADDItlsgdL: 1195 // Transform: %xd = ADDItlsgdL %xs, @sym 1196 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l 1197 case PPC::ADDItlsgdL32: { 1198 // Transform: %rd = ADDItlsgdL32 %rs, @sym 1199 // Into: %rd = ADDI %rs, sym@got@tlsgd 1200 const MachineOperand &MO = MI->getOperand(2); 1201 const GlobalValue *GValue = MO.getGlobal(); 1202 MCSymbol *MOSymbol = getSymbol(GValue); 1203 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create( 1204 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO 1205 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD, 1206 OutContext); 1207 EmitToStreamer(*OutStreamer, 1208 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1209 .addReg(MI->getOperand(0).getReg()) 1210 .addReg(MI->getOperand(1).getReg()) 1211 .addExpr(SymGotTlsGD)); 1212 return; 1213 } 1214 case PPC::GETtlsADDR: 1215 // Transform: %x3 = GETtlsADDR %x3, @sym 1216 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd) 1217 case PPC::GETtlsADDRPCREL: 1218 case PPC::GETtlsADDR32AIX: 1219 case PPC::GETtlsADDR64AIX: 1220 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64). 1221 // Into: BLA .__tls_get_addr() 1222 // Unlike on Linux, there is no symbol or relocation needed for this call. 1223 case PPC::GETtlsADDR32: { 1224 // Transform: %r3 = GETtlsADDR32 %r3, @sym 1225 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT 1226 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD); 1227 return; 1228 } 1229 case PPC::ADDIStlsldHA: { 1230 // Transform: %xd = ADDIStlsldHA %x2, @sym 1231 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha 1232 assert(IsPPC64 && "Not supported for 32-bit PowerPC"); 1233 const MachineOperand &MO = MI->getOperand(2); 1234 const GlobalValue *GValue = MO.getGlobal(); 1235 MCSymbol *MOSymbol = getSymbol(GValue); 1236 const MCExpr *SymGotTlsLD = 1237 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA, 1238 OutContext); 1239 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8) 1240 .addReg(MI->getOperand(0).getReg()) 1241 .addReg(MI->getOperand(1).getReg()) 1242 .addExpr(SymGotTlsLD)); 1243 return; 1244 } 1245 case PPC::ADDItlsldL: 1246 // Transform: %xd = ADDItlsldL %xs, @sym 1247 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l 1248 case PPC::ADDItlsldL32: { 1249 // Transform: %rd = ADDItlsldL32 %rs, @sym 1250 // Into: %rd = ADDI %rs, sym@got@tlsld 1251 const MachineOperand &MO = MI->getOperand(2); 1252 const GlobalValue *GValue = MO.getGlobal(); 1253 MCSymbol *MOSymbol = getSymbol(GValue); 1254 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create( 1255 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO 1256 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD, 1257 OutContext); 1258 EmitToStreamer(*OutStreamer, 1259 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1260 .addReg(MI->getOperand(0).getReg()) 1261 .addReg(MI->getOperand(1).getReg()) 1262 .addExpr(SymGotTlsLD)); 1263 return; 1264 } 1265 case PPC::GETtlsldADDR: 1266 // Transform: %x3 = GETtlsldADDR %x3, @sym 1267 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld) 1268 case PPC::GETtlsldADDRPCREL: 1269 case PPC::GETtlsldADDR32: { 1270 // Transform: %r3 = GETtlsldADDR32 %r3, @sym 1271 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT 1272 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD); 1273 return; 1274 } 1275 case PPC::ADDISdtprelHA: 1276 // Transform: %xd = ADDISdtprelHA %xs, @sym 1277 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha 1278 case PPC::ADDISdtprelHA32: { 1279 // Transform: %rd = ADDISdtprelHA32 %rs, @sym 1280 // Into: %rd = ADDIS %rs, sym@dtprel@ha 1281 const MachineOperand &MO = MI->getOperand(2); 1282 const GlobalValue *GValue = MO.getGlobal(); 1283 MCSymbol *MOSymbol = getSymbol(GValue); 1284 const MCExpr *SymDtprel = 1285 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA, 1286 OutContext); 1287 EmitToStreamer( 1288 *OutStreamer, 1289 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS) 1290 .addReg(MI->getOperand(0).getReg()) 1291 .addReg(MI->getOperand(1).getReg()) 1292 .addExpr(SymDtprel)); 1293 return; 1294 } 1295 case PPC::PADDIdtprel: { 1296 // Transform: %rd = PADDIdtprel %rs, @sym 1297 // Into: %rd = PADDI8 %rs, sym@dtprel 1298 const MachineOperand &MO = MI->getOperand(2); 1299 const GlobalValue *GValue = MO.getGlobal(); 1300 MCSymbol *MOSymbol = getSymbol(GValue); 1301 const MCExpr *SymDtprel = MCSymbolRefExpr::create( 1302 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext); 1303 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8) 1304 .addReg(MI->getOperand(0).getReg()) 1305 .addReg(MI->getOperand(1).getReg()) 1306 .addExpr(SymDtprel)); 1307 return; 1308 } 1309 1310 case PPC::ADDIdtprelL: 1311 // Transform: %xd = ADDIdtprelL %xs, @sym 1312 // Into: %xd = ADDI8 %xs, sym@dtprel@l 1313 case PPC::ADDIdtprelL32: { 1314 // Transform: %rd = ADDIdtprelL32 %rs, @sym 1315 // Into: %rd = ADDI %rs, sym@dtprel@l 1316 const MachineOperand &MO = MI->getOperand(2); 1317 const GlobalValue *GValue = MO.getGlobal(); 1318 MCSymbol *MOSymbol = getSymbol(GValue); 1319 const MCExpr *SymDtprel = 1320 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO, 1321 OutContext); 1322 EmitToStreamer(*OutStreamer, 1323 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI) 1324 .addReg(MI->getOperand(0).getReg()) 1325 .addReg(MI->getOperand(1).getReg()) 1326 .addExpr(SymDtprel)); 1327 return; 1328 } 1329 case PPC::MFOCRF: 1330 case PPC::MFOCRF8: 1331 if (!Subtarget->hasMFOCRF()) { 1332 // Transform: %r3 = MFOCRF %cr7 1333 // Into: %r3 = MFCR ;; cr7 1334 unsigned NewOpcode = 1335 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8; 1336 OutStreamer->AddComment(PPCInstPrinter:: 1337 getRegisterName(MI->getOperand(1).getReg())); 1338 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1339 .addReg(MI->getOperand(0).getReg())); 1340 return; 1341 } 1342 break; 1343 case PPC::MTOCRF: 1344 case PPC::MTOCRF8: 1345 if (!Subtarget->hasMFOCRF()) { 1346 // Transform: %cr7 = MTOCRF %r3 1347 // Into: MTCRF mask, %r3 ;; cr7 1348 unsigned NewOpcode = 1349 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8; 1350 unsigned Mask = 0x80 >> OutContext.getRegisterInfo() 1351 ->getEncodingValue(MI->getOperand(0).getReg()); 1352 OutStreamer->AddComment(PPCInstPrinter:: 1353 getRegisterName(MI->getOperand(0).getReg())); 1354 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode) 1355 .addImm(Mask) 1356 .addReg(MI->getOperand(1).getReg())); 1357 return; 1358 } 1359 break; 1360 case PPC::LD: 1361 case PPC::STD: 1362 case PPC::LWA_32: 1363 case PPC::LWA: { 1364 // Verify alignment is legal, so we don't create relocations 1365 // that can't be supported. 1366 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1; 1367 const MachineOperand &MO = MI->getOperand(OpNum); 1368 if (MO.isGlobal()) { 1369 const DataLayout &DL = MO.getGlobal()->getParent()->getDataLayout(); 1370 if (MO.getGlobal()->getPointerAlignment(DL) < 4) 1371 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!"); 1372 } 1373 // Now process the instruction normally. 1374 break; 1375 } 1376 case PPC::PseudoEIEIO: { 1377 EmitToStreamer( 1378 *OutStreamer, 1379 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1380 EmitToStreamer( 1381 *OutStreamer, 1382 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0)); 1383 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO)); 1384 return; 1385 } 1386 } 1387 1388 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this); 1389 EmitToStreamer(*OutStreamer, TmpInst); 1390 } 1391 1392 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) { 1393 if (!Subtarget->isPPC64()) 1394 return PPCAsmPrinter::emitInstruction(MI); 1395 1396 switch (MI->getOpcode()) { 1397 default: 1398 return PPCAsmPrinter::emitInstruction(MI); 1399 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: { 1400 // .begin: 1401 // b .end # lis 0, FuncId[16..32] 1402 // nop # li 0, FuncId[0..15] 1403 // std 0, -8(1) 1404 // mflr 0 1405 // bl __xray_FunctionEntry 1406 // mtlr 0 1407 // .end: 1408 // 1409 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1410 // of instructions change. 1411 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1412 MCSymbol *EndOfSled = OutContext.createTempSymbol(); 1413 OutStreamer->emitLabel(BeginOfSled); 1414 EmitToStreamer(*OutStreamer, 1415 MCInstBuilder(PPC::B).addExpr( 1416 MCSymbolRefExpr::create(EndOfSled, OutContext))); 1417 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1418 EmitToStreamer( 1419 *OutStreamer, 1420 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1421 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1422 EmitToStreamer(*OutStreamer, 1423 MCInstBuilder(PPC::BL8_NOP) 1424 .addExpr(MCSymbolRefExpr::create( 1425 OutContext.getOrCreateSymbol("__xray_FunctionEntry"), 1426 OutContext))); 1427 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1428 OutStreamer->emitLabel(EndOfSled); 1429 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2); 1430 break; 1431 } 1432 case TargetOpcode::PATCHABLE_RET: { 1433 unsigned RetOpcode = MI->getOperand(0).getImm(); 1434 MCInst RetInst; 1435 RetInst.setOpcode(RetOpcode); 1436 for (const auto &MO : llvm::drop_begin(MI->operands())) { 1437 MCOperand MCOp; 1438 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this)) 1439 RetInst.addOperand(MCOp); 1440 } 1441 1442 bool IsConditional; 1443 if (RetOpcode == PPC::BCCLR) { 1444 IsConditional = true; 1445 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 || 1446 RetOpcode == PPC::TCRETURNai8) { 1447 break; 1448 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) { 1449 IsConditional = false; 1450 } else { 1451 EmitToStreamer(*OutStreamer, RetInst); 1452 break; 1453 } 1454 1455 MCSymbol *FallthroughLabel; 1456 if (IsConditional) { 1457 // Before: 1458 // bgtlr cr0 1459 // 1460 // After: 1461 // ble cr0, .end 1462 // .p2align 3 1463 // .begin: 1464 // blr # lis 0, FuncId[16..32] 1465 // nop # li 0, FuncId[0..15] 1466 // std 0, -8(1) 1467 // mflr 0 1468 // bl __xray_FunctionExit 1469 // mtlr 0 1470 // blr 1471 // .end: 1472 // 1473 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1474 // of instructions change. 1475 FallthroughLabel = OutContext.createTempSymbol(); 1476 EmitToStreamer( 1477 *OutStreamer, 1478 MCInstBuilder(PPC::BCC) 1479 .addImm(PPC::InvertPredicate( 1480 static_cast<PPC::Predicate>(MI->getOperand(1).getImm()))) 1481 .addReg(MI->getOperand(2).getReg()) 1482 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext))); 1483 RetInst = MCInst(); 1484 RetInst.setOpcode(PPC::BLR8); 1485 } 1486 // .p2align 3 1487 // .begin: 1488 // b(lr)? # lis 0, FuncId[16..32] 1489 // nop # li 0, FuncId[0..15] 1490 // std 0, -8(1) 1491 // mflr 0 1492 // bl __xray_FunctionExit 1493 // mtlr 0 1494 // b(lr)? 1495 // 1496 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number 1497 // of instructions change. 1498 OutStreamer->emitCodeAlignment(8, &getSubtargetInfo()); 1499 MCSymbol *BeginOfSled = OutContext.createTempSymbol(); 1500 OutStreamer->emitLabel(BeginOfSled); 1501 EmitToStreamer(*OutStreamer, RetInst); 1502 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP)); 1503 EmitToStreamer( 1504 *OutStreamer, 1505 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1)); 1506 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0)); 1507 EmitToStreamer(*OutStreamer, 1508 MCInstBuilder(PPC::BL8_NOP) 1509 .addExpr(MCSymbolRefExpr::create( 1510 OutContext.getOrCreateSymbol("__xray_FunctionExit"), 1511 OutContext))); 1512 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0)); 1513 EmitToStreamer(*OutStreamer, RetInst); 1514 if (IsConditional) 1515 OutStreamer->emitLabel(FallthroughLabel); 1516 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2); 1517 break; 1518 } 1519 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1520 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted"); 1521 case TargetOpcode::PATCHABLE_TAIL_CALL: 1522 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a 1523 // normal function exit from a tail exit. 1524 llvm_unreachable("Tail call is handled in the normal case. See comments " 1525 "around this assert."); 1526 } 1527 } 1528 1529 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) { 1530 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) { 1531 PPCTargetStreamer *TS = 1532 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1533 1534 if (TS) 1535 TS->emitAbiVersion(2); 1536 } 1537 1538 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() || 1539 !isPositionIndependent()) 1540 return AsmPrinter::emitStartOfAsmFile(M); 1541 1542 if (M.getPICLevel() == PICLevel::SmallPIC) 1543 return AsmPrinter::emitStartOfAsmFile(M); 1544 1545 OutStreamer->SwitchSection(OutContext.getELFSection( 1546 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC)); 1547 1548 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC")); 1549 MCSymbol *CurrentPos = OutContext.createTempSymbol(); 1550 1551 OutStreamer->emitLabel(CurrentPos); 1552 1553 // The GOT pointer points to the middle of the GOT, in order to reference the 1554 // entire 64kB range. 0x8000 is the midpoint. 1555 const MCExpr *tocExpr = 1556 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext), 1557 MCConstantExpr::create(0x8000, OutContext), 1558 OutContext); 1559 1560 OutStreamer->emitAssignment(TOCSym, tocExpr); 1561 1562 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 1563 } 1564 1565 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() { 1566 // linux/ppc32 - Normal entry label. 1567 if (!Subtarget->isPPC64() && 1568 (!isPositionIndependent() || 1569 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC)) 1570 return AsmPrinter::emitFunctionEntryLabel(); 1571 1572 if (!Subtarget->isPPC64()) { 1573 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1574 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) { 1575 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF); 1576 MCSymbol *PICBase = MF->getPICBaseSymbol(); 1577 OutStreamer->emitLabel(RelocSymbol); 1578 1579 const MCExpr *OffsExpr = 1580 MCBinaryExpr::createSub( 1581 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")), 1582 OutContext), 1583 MCSymbolRefExpr::create(PICBase, OutContext), 1584 OutContext); 1585 OutStreamer->emitValue(OffsExpr, 4); 1586 OutStreamer->emitLabel(CurrentFnSym); 1587 return; 1588 } else 1589 return AsmPrinter::emitFunctionEntryLabel(); 1590 } 1591 1592 // ELFv2 ABI - Normal entry label. 1593 if (Subtarget->isELFv2ABI()) { 1594 // In the Large code model, we allow arbitrary displacements between 1595 // the text section and its associated TOC section. We place the 1596 // full 8-byte offset to the TOC in memory immediately preceding 1597 // the function global entry point. 1598 if (TM.getCodeModel() == CodeModel::Large 1599 && !MF->getRegInfo().use_empty(PPC::X2)) { 1600 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1601 1602 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1603 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF); 1604 const MCExpr *TOCDeltaExpr = 1605 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1606 MCSymbolRefExpr::create(GlobalEPSymbol, 1607 OutContext), 1608 OutContext); 1609 1610 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF)); 1611 OutStreamer->emitValue(TOCDeltaExpr, 8); 1612 } 1613 return AsmPrinter::emitFunctionEntryLabel(); 1614 } 1615 1616 // Emit an official procedure descriptor. 1617 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 1618 MCSectionELF *Section = OutStreamer->getContext().getELFSection( 1619 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1620 OutStreamer->SwitchSection(Section); 1621 OutStreamer->emitLabel(CurrentFnSym); 1622 OutStreamer->emitValueToAlignment(8); 1623 MCSymbol *Symbol1 = CurrentFnSymForSize; 1624 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function 1625 // entry point. 1626 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext), 1627 8 /*size*/); 1628 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1629 // Generates a R_PPC64_TOC relocation for TOC base insertion. 1630 OutStreamer->emitValue( 1631 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext), 1632 8/*size*/); 1633 // Emit a null environment pointer. 1634 OutStreamer->emitIntValue(0, 8 /* size */); 1635 OutStreamer->SwitchSection(Current.first, Current.second); 1636 } 1637 1638 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) { 1639 const DataLayout &DL = getDataLayout(); 1640 1641 bool isPPC64 = DL.getPointerSizeInBits() == 64; 1642 1643 PPCTargetStreamer *TS = 1644 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1645 1646 if (!TOC.empty()) { 1647 const char *Name = isPPC64 ? ".toc" : ".got2"; 1648 MCSectionELF *Section = OutContext.getELFSection( 1649 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); 1650 OutStreamer->SwitchSection(Section); 1651 if (!isPPC64) 1652 OutStreamer->emitValueToAlignment(4); 1653 1654 for (const auto &TOCMapPair : TOC) { 1655 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first; 1656 MCSymbol *const TOCEntryLabel = TOCMapPair.second; 1657 1658 OutStreamer->emitLabel(TOCEntryLabel); 1659 if (isPPC64 && TS != nullptr) 1660 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second); 1661 else 1662 OutStreamer->emitSymbolValue(TOCEntryTarget, 4); 1663 } 1664 } 1665 1666 PPCAsmPrinter::emitEndOfAsmFile(M); 1667 } 1668 1669 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2. 1670 void PPCLinuxAsmPrinter::emitFunctionBodyStart() { 1671 // In the ELFv2 ABI, in functions that use the TOC register, we need to 1672 // provide two entry points. The ABI guarantees that when calling the 1673 // local entry point, r2 is set up by the caller to contain the TOC base 1674 // for this function, and when calling the global entry point, r12 is set 1675 // up by the caller to hold the address of the global entry point. We 1676 // thus emit a prefix sequence along the following lines: 1677 // 1678 // func: 1679 // .Lfunc_gepNN: 1680 // # global entry point 1681 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha 1682 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l 1683 // .Lfunc_lepNN: 1684 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1685 // # local entry point, followed by function body 1686 // 1687 // For the Large code model, we create 1688 // 1689 // .Lfunc_tocNN: 1690 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel 1691 // func: 1692 // .Lfunc_gepNN: 1693 // # global entry point 1694 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12) 1695 // add r2,r2,r12 1696 // .Lfunc_lepNN: 1697 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN 1698 // # local entry point, followed by function body 1699 // 1700 // This ensures we have r2 set up correctly while executing the function 1701 // body, no matter which entry point is called. 1702 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>(); 1703 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) || 1704 !MF->getRegInfo().use_empty(PPC::R2); 1705 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() && 1706 UsesX2OrR2 && PPCFI->usesTOCBasePtr(); 1707 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() && 1708 Subtarget->isELFv2ABI() && UsesX2OrR2; 1709 1710 // Only do all that if the function uses R2 as the TOC pointer 1711 // in the first place. We don't need the global entry point if the 1712 // function uses R2 as an allocatable register. 1713 if (NonPCrelGEPRequired || PCrelGEPRequired) { 1714 // Note: The logic here must be synchronized with the code in the 1715 // branch-selection pass which sets the offset of the first block in the 1716 // function. This matters because it affects the alignment. 1717 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF); 1718 OutStreamer->emitLabel(GlobalEntryLabel); 1719 const MCSymbolRefExpr *GlobalEntryLabelExp = 1720 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext); 1721 1722 if (TM.getCodeModel() != CodeModel::Large) { 1723 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC.")); 1724 const MCExpr *TOCDeltaExpr = 1725 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext), 1726 GlobalEntryLabelExp, OutContext); 1727 1728 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext); 1729 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS) 1730 .addReg(PPC::X2) 1731 .addReg(PPC::X12) 1732 .addExpr(TOCDeltaHi)); 1733 1734 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext); 1735 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI) 1736 .addReg(PPC::X2) 1737 .addReg(PPC::X2) 1738 .addExpr(TOCDeltaLo)); 1739 } else { 1740 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF); 1741 const MCExpr *TOCOffsetDeltaExpr = 1742 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext), 1743 GlobalEntryLabelExp, OutContext); 1744 1745 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD) 1746 .addReg(PPC::X2) 1747 .addExpr(TOCOffsetDeltaExpr) 1748 .addReg(PPC::X12)); 1749 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8) 1750 .addReg(PPC::X2) 1751 .addReg(PPC::X2) 1752 .addReg(PPC::X12)); 1753 } 1754 1755 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF); 1756 OutStreamer->emitLabel(LocalEntryLabel); 1757 const MCSymbolRefExpr *LocalEntryLabelExp = 1758 MCSymbolRefExpr::create(LocalEntryLabel, OutContext); 1759 const MCExpr *LocalOffsetExp = 1760 MCBinaryExpr::createSub(LocalEntryLabelExp, 1761 GlobalEntryLabelExp, OutContext); 1762 1763 PPCTargetStreamer *TS = 1764 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1765 1766 if (TS) 1767 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp); 1768 } else if (Subtarget->isUsingPCRelativeCalls()) { 1769 // When generating the entry point for a function we have a few scenarios 1770 // based on whether or not that function uses R2 and whether or not that 1771 // function makes calls (or is a leaf function). 1772 // 1) A leaf function that does not use R2 (or treats it as callee-saved 1773 // and preserves it). In this case st_other=0 and both 1774 // the local and global entry points for the function are the same. 1775 // No special entry point code is required. 1776 // 2) A function uses the TOC pointer R2. This function may or may not have 1777 // calls. In this case st_other=[2,6] and the global and local entry 1778 // points are different. Code to correctly setup the TOC pointer in R2 1779 // is put between the global and local entry points. This case is 1780 // covered by the if statatement above. 1781 // 3) A function does not use the TOC pointer R2 but does have calls. 1782 // In this case st_other=1 since we do not know whether or not any 1783 // of the callees clobber R2. This case is dealt with in this else if 1784 // block. Tail calls are considered calls and the st_other should also 1785 // be set to 1 in that case as well. 1786 // 4) The function does not use the TOC pointer but R2 is used inside 1787 // the function. In this case st_other=1 once again. 1788 // 5) This function uses inline asm. We mark R2 as reserved if the function 1789 // has inline asm as we have to assume that it may be used. 1790 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() || 1791 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) { 1792 PPCTargetStreamer *TS = 1793 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 1794 if (TS) 1795 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), 1796 MCConstantExpr::create(1, OutContext)); 1797 } 1798 } 1799 } 1800 1801 /// EmitFunctionBodyEnd - Print the traceback table before the .size 1802 /// directive. 1803 /// 1804 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() { 1805 // Only the 64-bit target requires a traceback table. For now, 1806 // we only emit the word of zeroes that GDB requires to find 1807 // the end of the function, and zeroes for the eight-byte 1808 // mandatory fields. 1809 // FIXME: We should fill in the eight-byte mandatory fields as described in 1810 // the PPC64 ELF ABI (this is a low-priority item because GDB does not 1811 // currently make use of these fields). 1812 if (Subtarget->isPPC64()) { 1813 OutStreamer->emitIntValue(0, 4/*size*/); 1814 OutStreamer->emitIntValue(0, 8/*size*/); 1815 } 1816 } 1817 1818 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV, 1819 MCSymbol *GVSym) const { 1820 1821 assert(MAI->hasVisibilityOnlyWithLinkage() && 1822 "AIX's linkage directives take a visibility setting."); 1823 1824 MCSymbolAttr LinkageAttr = MCSA_Invalid; 1825 switch (GV->getLinkage()) { 1826 case GlobalValue::ExternalLinkage: 1827 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global; 1828 break; 1829 case GlobalValue::LinkOnceAnyLinkage: 1830 case GlobalValue::LinkOnceODRLinkage: 1831 case GlobalValue::WeakAnyLinkage: 1832 case GlobalValue::WeakODRLinkage: 1833 case GlobalValue::ExternalWeakLinkage: 1834 LinkageAttr = MCSA_Weak; 1835 break; 1836 case GlobalValue::AvailableExternallyLinkage: 1837 LinkageAttr = MCSA_Extern; 1838 break; 1839 case GlobalValue::PrivateLinkage: 1840 return; 1841 case GlobalValue::InternalLinkage: 1842 assert(GV->getVisibility() == GlobalValue::DefaultVisibility && 1843 "InternalLinkage should not have other visibility setting."); 1844 LinkageAttr = MCSA_LGlobal; 1845 break; 1846 case GlobalValue::AppendingLinkage: 1847 llvm_unreachable("Should never emit this"); 1848 case GlobalValue::CommonLinkage: 1849 llvm_unreachable("CommonLinkage of XCOFF should not come to this path"); 1850 } 1851 1852 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid."); 1853 1854 MCSymbolAttr VisibilityAttr = MCSA_Invalid; 1855 if (!TM.getIgnoreXCOFFVisibility()) { 1856 switch (GV->getVisibility()) { 1857 1858 // TODO: "exported" and "internal" Visibility needs to go here. 1859 case GlobalValue::DefaultVisibility: 1860 break; 1861 case GlobalValue::HiddenVisibility: 1862 VisibilityAttr = MAI->getHiddenVisibilityAttr(); 1863 break; 1864 case GlobalValue::ProtectedVisibility: 1865 VisibilityAttr = MAI->getProtectedVisibilityAttr(); 1866 break; 1867 } 1868 } 1869 1870 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr, 1871 VisibilityAttr); 1872 } 1873 1874 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1875 // Setup CurrentFnDescSym and its containing csect. 1876 MCSectionXCOFF *FnDescSec = 1877 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor( 1878 &MF.getFunction(), TM)); 1879 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4)); 1880 1881 CurrentFnDescSym = FnDescSec->getQualNameSymbol(); 1882 1883 return AsmPrinter::SetupMachineFunction(MF); 1884 } 1885 1886 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() { 1887 // Calculate the number of VRs be saved. 1888 // Vector registers 20 through 31 are marked as reserved and cannot be used 1889 // in the default ABI. 1890 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 1891 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 1892 TM.getAIXExtendedAltivecABI()) { 1893 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1894 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg) 1895 if (MRI.isPhysRegModified(Reg)) 1896 // Number of VRs saved. 1897 return PPC::V31 - Reg + 1; 1898 } 1899 return 0; 1900 } 1901 1902 void PPCAIXAsmPrinter::emitFunctionBodyEnd() { 1903 1904 if (!TM.getXCOFFTracebackTable()) 1905 return; 1906 1907 emitTracebackTable(); 1908 1909 // If ShouldEmitEHBlock returns true, then the eh info table 1910 // will be emitted via `AIXException::endFunction`. Otherwise, we 1911 // need to emit a dumy eh info table when VRs are saved. We could not 1912 // consolidate these two places into one because there is no easy way 1913 // to access register information in `AIXException` class. 1914 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) && 1915 (getNumberOfVRSaved() > 0)) { 1916 // Emit dummy EH Info Table. 1917 OutStreamer->SwitchSection(getObjFileLowering().getCompactUnwindSection()); 1918 MCSymbol *EHInfoLabel = 1919 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 1920 OutStreamer->emitLabel(EHInfoLabel); 1921 1922 // Version number. 1923 OutStreamer->emitInt32(0); 1924 1925 const DataLayout &DL = MMI->getModule()->getDataLayout(); 1926 const unsigned PointerSize = DL.getPointerSize(); 1927 // Add necessary paddings in 64 bit mode. 1928 OutStreamer->emitValueToAlignment(PointerSize); 1929 1930 OutStreamer->emitIntValue(0, PointerSize); 1931 OutStreamer->emitIntValue(0, PointerSize); 1932 OutStreamer->SwitchSection(MF->getSection()); 1933 } 1934 } 1935 1936 void PPCAIXAsmPrinter::emitTracebackTable() { 1937 1938 // Create a symbol for the end of function. 1939 MCSymbol *FuncEnd = createTempSymbol(MF->getName()); 1940 OutStreamer->emitLabel(FuncEnd); 1941 1942 OutStreamer->AddComment("Traceback table begin"); 1943 // Begin with a fullword of zero. 1944 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/); 1945 1946 SmallString<128> CommentString; 1947 raw_svector_ostream CommentOS(CommentString); 1948 1949 auto EmitComment = [&]() { 1950 OutStreamer->AddComment(CommentOS.str()); 1951 CommentString.clear(); 1952 }; 1953 1954 auto EmitCommentAndValue = [&](uint64_t Value, int Size) { 1955 EmitComment(); 1956 OutStreamer->emitIntValueInHexWithPadding(Value, Size); 1957 }; 1958 1959 unsigned int Version = 0; 1960 CommentOS << "Version = " << Version; 1961 EmitCommentAndValue(Version, 1); 1962 1963 // There is a lack of information in the IR to assist with determining the 1964 // source language. AIX exception handling mechanism would only search for 1965 // personality routine and LSDA area when such language supports exception 1966 // handling. So to be conservatively correct and allow runtime to do its job, 1967 // we need to set it to C++ for now. 1968 TracebackTable::LanguageID LanguageIdentifier = 1969 TracebackTable::CPlusPlus; // C++ 1970 1971 CommentOS << "Language = " 1972 << getNameForTracebackTableLanguageId(LanguageIdentifier); 1973 EmitCommentAndValue(LanguageIdentifier, 1); 1974 1975 // This is only populated for the third and fourth bytes. 1976 uint32_t FirstHalfOfMandatoryField = 0; 1977 1978 // Emit the 3rd byte of the mandatory field. 1979 1980 // We always set traceback offset bit to true. 1981 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask; 1982 1983 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1984 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1985 1986 // Check the function uses floating-point processor instructions or not 1987 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) { 1988 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 1989 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask; 1990 break; 1991 } 1992 } 1993 1994 #define GENBOOLCOMMENT(Prefix, V, Field) \ 1995 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \ 1996 << #Field 1997 1998 #define GENVALUECOMMENT(PrefixAndName, V, Field) \ 1999 CommentOS << (PrefixAndName) << " = " \ 2000 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \ 2001 (TracebackTable::Field##Shift)) 2002 2003 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage); 2004 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue); 2005 EmitComment(); 2006 2007 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset); 2008 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure); 2009 EmitComment(); 2010 2011 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage); 2012 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless); 2013 EmitComment(); 2014 2015 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent); 2016 EmitComment(); 2017 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, 2018 IsFloatingPointOperationLogOrAbortEnabled); 2019 EmitComment(); 2020 2021 OutStreamer->emitIntValueInHexWithPadding( 2022 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2023 2024 // Set the 4th byte of the mandatory field. 2025 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask; 2026 2027 const PPCRegisterInfo *RegInfo = 2028 static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo()); 2029 Register FrameReg = RegInfo->getFrameRegister(*MF); 2030 if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31)) 2031 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask; 2032 2033 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 2034 if (!MustSaveCRs.empty()) 2035 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask; 2036 2037 if (FI->mustSaveLR()) 2038 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask; 2039 2040 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler); 2041 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent); 2042 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed); 2043 EmitComment(); 2044 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField, 2045 OnConditionDirective); 2046 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved); 2047 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved); 2048 EmitComment(); 2049 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff), 2050 1); 2051 2052 // Set the 5th byte of mandatory field. 2053 uint32_t SecondHalfOfMandatoryField = 0; 2054 2055 // Always store back chain. 2056 SecondHalfOfMandatoryField |= TracebackTable::IsBackChainStoredMask; 2057 2058 uint32_t FPRSaved = 0; 2059 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) { 2060 if (MRI.isPhysRegModified(Reg)) { 2061 FPRSaved = PPC::F31 - Reg + 1; 2062 break; 2063 } 2064 } 2065 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) & 2066 TracebackTable::FPRSavedMask; 2067 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored); 2068 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup); 2069 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved); 2070 EmitComment(); 2071 OutStreamer->emitIntValueInHexWithPadding( 2072 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1); 2073 2074 // Set the 6th byte of mandatory field. 2075 2076 // Check whether has Vector Instruction,We only treat instructions uses vector 2077 // register as vector instructions. 2078 bool HasVectorInst = false; 2079 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg) 2080 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) { 2081 // Has VMX instruction. 2082 HasVectorInst = true; 2083 break; 2084 } 2085 2086 if (FI->hasVectorParms() || HasVectorInst) 2087 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask; 2088 2089 uint16_t NumOfVRSaved = getNumberOfVRSaved(); 2090 bool ShouldEmitEHBlock = 2091 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0; 2092 2093 if (ShouldEmitEHBlock) 2094 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask; 2095 2096 uint32_t GPRSaved = 0; 2097 2098 // X13 is reserved under 64-bit environment. 2099 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13; 2100 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31; 2101 2102 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) { 2103 if (MRI.isPhysRegModified(Reg)) { 2104 GPRSaved = GPREnd - Reg + 1; 2105 break; 2106 } 2107 } 2108 2109 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) & 2110 TracebackTable::GPRSavedMask; 2111 2112 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable); 2113 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo); 2114 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved); 2115 EmitComment(); 2116 OutStreamer->emitIntValueInHexWithPadding( 2117 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1); 2118 2119 // Set the 7th byte of mandatory field. 2120 uint32_t NumberOfFixedParms = FI->getFixedParmsNum(); 2121 SecondHalfOfMandatoryField |= 2122 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) & 2123 TracebackTable::NumberOfFixedParmsMask; 2124 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField, 2125 NumberOfFixedParms); 2126 EmitComment(); 2127 OutStreamer->emitIntValueInHexWithPadding( 2128 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1); 2129 2130 // Set the 8th byte of mandatory field. 2131 2132 // Always set parameter on stack. 2133 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask; 2134 2135 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum(); 2136 SecondHalfOfMandatoryField |= 2137 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) & 2138 TracebackTable::NumberOfFloatingPointParmsMask; 2139 2140 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField, 2141 NumberOfFloatingPointParms); 2142 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack); 2143 EmitComment(); 2144 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff, 2145 1); 2146 2147 // Generate the optional fields of traceback table. 2148 2149 // Parameter type. 2150 if (NumberOfFixedParms || NumberOfFPParms) { 2151 uint32_t ParmsTypeValue = FI->getParmsType(); 2152 2153 Expected<SmallString<32>> ParmsType = 2154 FI->hasVectorParms() 2155 ? XCOFF::parseParmsTypeWithVecInfo( 2156 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms, 2157 FI->getVectorParmsNum()) 2158 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms, 2159 NumberOfFPParms); 2160 2161 assert(ParmsType && toString(ParmsType.takeError()).c_str()); 2162 if (ParmsType) { 2163 CommentOS << "Parameter type = " << ParmsType.get(); 2164 EmitComment(); 2165 } 2166 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue, 2167 sizeof(ParmsTypeValue)); 2168 } 2169 // Traceback table offset. 2170 OutStreamer->AddComment("Function size"); 2171 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) { 2172 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol( 2173 &(MF->getFunction()), TM); 2174 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4); 2175 } 2176 2177 // Since we unset the Int_Handler. 2178 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask) 2179 report_fatal_error("Hand_Mask not implement yet"); 2180 2181 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask) 2182 report_fatal_error("Ctl_Info not implement yet"); 2183 2184 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) { 2185 StringRef Name = MF->getName().substr(0, INT16_MAX); 2186 int16_t NameLength = Name.size(); 2187 CommentOS << "Function name len = " 2188 << static_cast<unsigned int>(NameLength); 2189 EmitCommentAndValue(NameLength, 2); 2190 OutStreamer->AddComment("Function Name"); 2191 OutStreamer->emitBytes(Name); 2192 } 2193 2194 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) { 2195 uint8_t AllocReg = XCOFF::AllocRegNo; 2196 OutStreamer->AddComment("AllocaUsed"); 2197 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg)); 2198 } 2199 2200 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) { 2201 uint16_t VRData = 0; 2202 if (NumOfVRSaved) { 2203 // Number of VRs saved. 2204 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) & 2205 TracebackTable::NumberOfVRSavedMask; 2206 // This bit is supposed to set only when the special register 2207 // VRSAVE is saved on stack. 2208 // However, IBM XL compiler sets the bit when any vector registers 2209 // are saved on the stack. We will follow XL's behavior on AIX 2210 // so that we don't get surprise behavior change for C code. 2211 VRData |= TracebackTable::IsVRSavedOnStackMask; 2212 } 2213 2214 // Set has_varargs. 2215 if (FI->getVarArgsFrameIndex()) 2216 VRData |= TracebackTable::HasVarArgsMask; 2217 2218 // Vector parameters number. 2219 unsigned VectorParmsNum = FI->getVectorParmsNum(); 2220 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) & 2221 TracebackTable::NumberOfVectorParmsMask; 2222 2223 if (HasVectorInst) 2224 VRData |= TracebackTable::HasVMXInstructionMask; 2225 2226 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved); 2227 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack); 2228 GENBOOLCOMMENT(", ", VRData, HasVarArgs); 2229 EmitComment(); 2230 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1); 2231 2232 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms); 2233 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction); 2234 EmitComment(); 2235 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1); 2236 2237 uint32_t VecParmTypeValue = FI->getVecExtParmsType(); 2238 2239 Expected<SmallString<32>> VecParmsType = 2240 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum); 2241 assert(VecParmsType && toString(VecParmsType.takeError()).c_str()); 2242 if (VecParmsType) { 2243 CommentOS << "Vector Parameter type = " << VecParmsType.get(); 2244 EmitComment(); 2245 } 2246 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue, 2247 sizeof(VecParmTypeValue)); 2248 // Padding 2 bytes. 2249 CommentOS << "Padding"; 2250 EmitCommentAndValue(0, 2); 2251 } 2252 2253 uint8_t ExtensionTableFlag = 0; 2254 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) { 2255 if (ShouldEmitEHBlock) 2256 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO; 2257 if (EnableSSPCanaryBitInTB && 2258 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF)) 2259 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY; 2260 2261 CommentOS << "ExtensionTableFlag = " 2262 << getExtendedTBTableFlagString(ExtensionTableFlag); 2263 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag)); 2264 } 2265 2266 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) { 2267 auto &Ctx = OutStreamer->getContext(); 2268 MCSymbol *EHInfoSym = 2269 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF); 2270 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym); 2271 const MCSymbol *TOCBaseSym = 2272 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2273 ->getQualNameSymbol(); 2274 const MCExpr *Exp = 2275 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2276 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2277 2278 const DataLayout &DL = getDataLayout(); 2279 OutStreamer->emitValueToAlignment(4); 2280 OutStreamer->AddComment("EHInfo Table"); 2281 OutStreamer->emitValue(Exp, DL.getPointerSize()); 2282 } 2283 #undef GENBOOLCOMMENT 2284 #undef GENVALUECOMMENT 2285 } 2286 2287 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) { 2288 return GV->hasAppendingLinkage() && 2289 StringSwitch<bool>(GV->getName()) 2290 // TODO: Linker could still eliminate the GV if we just skip 2291 // handling llvm.used array. Skipping them for now until we or the 2292 // AIX OS team come up with a good solution. 2293 .Case("llvm.used", true) 2294 // It's correct to just skip llvm.compiler.used array here. 2295 .Case("llvm.compiler.used", true) 2296 .Default(false); 2297 } 2298 2299 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) { 2300 return StringSwitch<bool>(GV->getName()) 2301 .Cases("llvm.global_ctors", "llvm.global_dtors", true) 2302 .Default(false); 2303 } 2304 2305 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 2306 // Special LLVM global arrays have been handled at the initialization. 2307 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV)) 2308 return; 2309 2310 // If the Global Variable has the toc-data attribute, it needs to be emitted 2311 // when we emit the .toc section. 2312 if (GV->hasAttribute("toc-data")) { 2313 TOCDataGlobalVars.push_back(GV); 2314 return; 2315 } 2316 2317 emitGlobalVariableHelper(GV); 2318 } 2319 2320 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) { 2321 assert(!GV->getName().startswith("llvm.") && 2322 "Unhandled intrinsic global variable."); 2323 2324 if (GV->hasComdat()) 2325 report_fatal_error("COMDAT not yet supported by AIX."); 2326 2327 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV)); 2328 2329 if (GV->isDeclarationForLinker()) { 2330 emitLinkage(GV, GVSym); 2331 return; 2332 } 2333 2334 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM); 2335 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() && 2336 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS. 2337 report_fatal_error("Encountered a global variable kind that is " 2338 "not supported yet."); 2339 2340 // Print GV in verbose mode 2341 if (isVerbose()) { 2342 if (GV->hasInitializer()) { 2343 GV->printAsOperand(OutStreamer->GetCommentOS(), 2344 /*PrintType=*/false, GV->getParent()); 2345 OutStreamer->GetCommentOS() << '\n'; 2346 } 2347 } 2348 2349 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2350 getObjFileLowering().SectionForGlobal(GV, GVKind, TM)); 2351 2352 // Switch to the containing csect. 2353 OutStreamer->SwitchSection(Csect); 2354 2355 const DataLayout &DL = GV->getParent()->getDataLayout(); 2356 2357 // Handle common and zero-initialized local symbols. 2358 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() || 2359 GVKind.isThreadBSSLocal()) { 2360 Align Alignment = GV->getAlign().getValueOr(DL.getPreferredAlign(GV)); 2361 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 2362 GVSym->setStorageClass( 2363 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV)); 2364 2365 if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) 2366 OutStreamer->emitXCOFFLocalCommonSymbol( 2367 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size, 2368 GVSym, Alignment.value()); 2369 else 2370 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment.value()); 2371 return; 2372 } 2373 2374 MCSymbol *EmittedInitSym = GVSym; 2375 emitLinkage(GV, EmittedInitSym); 2376 emitAlignment(getGVAlignment(GV, DL), GV); 2377 2378 // When -fdata-sections is enabled, every GlobalVariable will 2379 // be put into its own csect; therefore, label is not necessary here. 2380 if (!TM.getDataSections() || GV->hasSection()) { 2381 OutStreamer->emitLabel(EmittedInitSym); 2382 } 2383 2384 // Emit aliasing label for global variable. 2385 llvm::for_each(GOAliasMap[GV], [this](const GlobalAlias *Alias) { 2386 OutStreamer->emitLabel(getSymbol(Alias)); 2387 }); 2388 2389 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 2390 } 2391 2392 void PPCAIXAsmPrinter::emitFunctionDescriptor() { 2393 const DataLayout &DL = getDataLayout(); 2394 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4; 2395 2396 MCSectionSubPair Current = OutStreamer->getCurrentSection(); 2397 // Emit function descriptor. 2398 OutStreamer->SwitchSection( 2399 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect()); 2400 2401 // Emit aliasing label for function descriptor csect. 2402 llvm::for_each(GOAliasMap[&MF->getFunction()], 2403 [this](const GlobalAlias *Alias) { 2404 OutStreamer->emitLabel(getSymbol(Alias)); 2405 }); 2406 2407 // Emit function entry point address. 2408 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext), 2409 PointerSize); 2410 // Emit TOC base address. 2411 const MCSymbol *TOCBaseSym = 2412 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2413 ->getQualNameSymbol(); 2414 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext), 2415 PointerSize); 2416 // Emit a null environment pointer. 2417 OutStreamer->emitIntValue(0, PointerSize); 2418 2419 OutStreamer->SwitchSection(Current.first, Current.second); 2420 } 2421 2422 void PPCAIXAsmPrinter::emitFunctionEntryLabel() { 2423 // It's not necessary to emit the label when we have individual 2424 // function in its own csect. 2425 if (!TM.getFunctionSections()) 2426 PPCAsmPrinter::emitFunctionEntryLabel(); 2427 2428 // Emit aliasing label for function entry point label. 2429 llvm::for_each( 2430 GOAliasMap[&MF->getFunction()], [this](const GlobalAlias *Alias) { 2431 OutStreamer->emitLabel( 2432 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM)); 2433 }); 2434 } 2435 2436 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) { 2437 // If there are no functions and there are no toc-data definitions in this 2438 // module, we will never need to reference the TOC base. 2439 if (M.empty() && TOCDataGlobalVars.empty()) 2440 return; 2441 2442 // Switch to section to emit TOC base. 2443 OutStreamer->SwitchSection(getObjFileLowering().getTOCBaseSection()); 2444 2445 PPCTargetStreamer *TS = 2446 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer()); 2447 2448 for (auto &I : TOC) { 2449 MCSectionXCOFF *TCEntry; 2450 // Setup the csect for the current TC entry. If the variant kind is 2451 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a 2452 // new symbol to prefix the name with a dot. 2453 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM) { 2454 SmallString<128> Name; 2455 StringRef Prefix = "."; 2456 Name += Prefix; 2457 Name += I.first.first->getName(); 2458 MCSymbol *S = OutContext.getOrCreateSymbol(Name); 2459 TCEntry = cast<MCSectionXCOFF>( 2460 getObjFileLowering().getSectionForTOCEntry(S, TM)); 2461 } else { 2462 TCEntry = cast<MCSectionXCOFF>( 2463 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM)); 2464 } 2465 OutStreamer->SwitchSection(TCEntry); 2466 2467 OutStreamer->emitLabel(I.second); 2468 if (TS != nullptr) 2469 TS->emitTCEntry(*I.first.first, I.first.second); 2470 } 2471 2472 for (const auto *GV : TOCDataGlobalVars) 2473 emitGlobalVariableHelper(GV); 2474 } 2475 2476 bool PPCAIXAsmPrinter::doInitialization(Module &M) { 2477 const bool Result = PPCAsmPrinter::doInitialization(M); 2478 2479 auto setCsectAlignment = [this](const GlobalObject *GO) { 2480 // Declarations have 0 alignment which is set by default. 2481 if (GO->isDeclarationForLinker()) 2482 return; 2483 2484 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM); 2485 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>( 2486 getObjFileLowering().SectionForGlobal(GO, GOKind, TM)); 2487 2488 Align GOAlign = getGVAlignment(GO, GO->getParent()->getDataLayout()); 2489 if (GOAlign > Csect->getAlignment()) 2490 Csect->setAlignment(GOAlign); 2491 }; 2492 2493 // We need to know, up front, the alignment of csects for the assembly path, 2494 // because once a .csect directive gets emitted, we could not change the 2495 // alignment value on it. 2496 for (const auto &G : M.globals()) { 2497 if (isSpecialLLVMGlobalArrayToSkip(&G)) 2498 continue; 2499 2500 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) { 2501 // Generate a format indicator and a unique module id to be a part of 2502 // the sinit and sterm function names. 2503 if (FormatIndicatorAndUniqueModId.empty()) { 2504 std::string UniqueModuleId = getUniqueModuleId(&M); 2505 if (UniqueModuleId != "") 2506 // TODO: Use source file full path to generate the unique module id 2507 // and add a format indicator as a part of function name in case we 2508 // will support more than one format. 2509 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1); 2510 else 2511 // Use the Pid and current time as the unique module id when we cannot 2512 // generate one based on a module's strong external symbols. 2513 // FIXME: Adjust the comment accordingly after we use source file full 2514 // path instead. 2515 FormatIndicatorAndUniqueModId = 2516 "clangPidTime_" + llvm::itostr(sys::Process::getProcessId()) + 2517 "_" + llvm::itostr(time(nullptr)); 2518 } 2519 2520 emitSpecialLLVMGlobal(&G); 2521 continue; 2522 } 2523 2524 setCsectAlignment(&G); 2525 } 2526 2527 for (const auto &F : M) 2528 setCsectAlignment(&F); 2529 2530 // Construct an aliasing list for each GlobalObject. 2531 for (const auto &Alias : M.aliases()) { 2532 const GlobalObject *Base = Alias.getAliaseeObject(); 2533 if (!Base) 2534 report_fatal_error( 2535 "alias without a base object is not yet supported on AIX"); 2536 GOAliasMap[Base].push_back(&Alias); 2537 } 2538 2539 return Result; 2540 } 2541 2542 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) { 2543 switch (MI->getOpcode()) { 2544 default: 2545 break; 2546 case PPC::GETtlsADDR64AIX: 2547 case PPC::GETtlsADDR32AIX: { 2548 // The reference to .__tls_get_addr is unknown to the assembler 2549 // so we need to emit an external symbol reference. 2550 MCSymbol *TlsGetAddr = createMCSymbolForTlsGetAddr(OutContext); 2551 ExtSymSDNodeSymbols.insert(TlsGetAddr); 2552 break; 2553 } 2554 case PPC::BL8: 2555 case PPC::BL: 2556 case PPC::BL8_NOP: 2557 case PPC::BL_NOP: { 2558 const MachineOperand &MO = MI->getOperand(0); 2559 if (MO.isSymbol()) { 2560 MCSymbolXCOFF *S = 2561 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName())); 2562 ExtSymSDNodeSymbols.insert(S); 2563 } 2564 } break; 2565 case PPC::BL_TLS: 2566 case PPC::BL8_TLS: 2567 case PPC::BL8_TLS_: 2568 case PPC::BL8_NOP_TLS: 2569 report_fatal_error("TLS call not yet implemented"); 2570 case PPC::TAILB: 2571 case PPC::TAILB8: 2572 case PPC::TAILBA: 2573 case PPC::TAILBA8: 2574 case PPC::TAILBCTR: 2575 case PPC::TAILBCTR8: 2576 if (MI->getOperand(0).isSymbol()) 2577 report_fatal_error("Tail call for extern symbol not yet supported."); 2578 break; 2579 case PPC::DST: 2580 case PPC::DST64: 2581 case PPC::DSTT: 2582 case PPC::DSTT64: 2583 case PPC::DSTST: 2584 case PPC::DSTST64: 2585 case PPC::DSTSTT: 2586 case PPC::DSTSTT64: 2587 EmitToStreamer( 2588 *OutStreamer, 2589 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0)); 2590 return; 2591 } 2592 return PPCAsmPrinter::emitInstruction(MI); 2593 } 2594 2595 bool PPCAIXAsmPrinter::doFinalization(Module &M) { 2596 // Do streamer related finalization for DWARF. 2597 if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo()) 2598 OutStreamer->doFinalizationAtSectionEnd( 2599 OutStreamer->getContext().getObjectFileInfo()->getTextSection()); 2600 2601 for (MCSymbol *Sym : ExtSymSDNodeSymbols) 2602 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern); 2603 return PPCAsmPrinter::doFinalization(M); 2604 } 2605 2606 static unsigned mapToSinitPriority(int P) { 2607 if (P < 0 || P > 65535) 2608 report_fatal_error("invalid init priority"); 2609 2610 if (P <= 20) 2611 return P; 2612 2613 if (P < 81) 2614 return 20 + (P - 20) * 16; 2615 2616 if (P <= 1124) 2617 return 1004 + (P - 81); 2618 2619 if (P < 64512) 2620 return 2047 + (P - 1124) * 33878; 2621 2622 return 2147482625u + (P - 64512); 2623 } 2624 2625 static std::string convertToSinitPriority(int Priority) { 2626 // This helper function converts clang init priority to values used in sinit 2627 // and sterm functions. 2628 // 2629 // The conversion strategies are: 2630 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm 2631 // reserved priority range [0, 1023] by 2632 // - directly mapping the first 21 and the last 20 elements of the ranges 2633 // - linear interpolating the intermediate values with a step size of 16. 2634 // 2635 // We map the non reserved clang/gnu priority range of [101, 65535] into the 2636 // sinit/sterm priority range [1024, 2147483648] by: 2637 // - directly mapping the first and the last 1024 elements of the ranges 2638 // - linear interpolating the intermediate values with a step size of 33878. 2639 unsigned int P = mapToSinitPriority(Priority); 2640 2641 std::string PrioritySuffix; 2642 llvm::raw_string_ostream os(PrioritySuffix); 2643 os << llvm::format_hex_no_prefix(P, 8); 2644 os.flush(); 2645 return PrioritySuffix; 2646 } 2647 2648 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL, 2649 const Constant *List, bool IsCtor) { 2650 SmallVector<Structor, 8> Structors; 2651 preprocessXXStructorList(DL, List, Structors); 2652 if (Structors.empty()) 2653 return; 2654 2655 unsigned Index = 0; 2656 for (Structor &S : Structors) { 2657 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func)) 2658 S.Func = CE->getOperand(0); 2659 2660 llvm::GlobalAlias::create( 2661 GlobalValue::ExternalLinkage, 2662 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) + 2663 llvm::Twine(convertToSinitPriority(S.Priority)) + 2664 llvm::Twine("_", FormatIndicatorAndUniqueModId) + 2665 llvm::Twine("_", llvm::utostr(Index++)), 2666 cast<Function>(S.Func)); 2667 } 2668 } 2669 2670 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV, 2671 unsigned Encoding) { 2672 if (GV) { 2673 MCSymbol *TypeInfoSym = TM.getSymbol(GV); 2674 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym); 2675 const MCSymbol *TOCBaseSym = 2676 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection()) 2677 ->getQualNameSymbol(); 2678 auto &Ctx = OutStreamer->getContext(); 2679 const MCExpr *Exp = 2680 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx), 2681 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx); 2682 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding)); 2683 } else 2684 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding)); 2685 } 2686 2687 // Return a pass that prints the PPC assembly code for a MachineFunction to the 2688 // given output stream. 2689 static AsmPrinter * 2690 createPPCAsmPrinterPass(TargetMachine &tm, 2691 std::unique_ptr<MCStreamer> &&Streamer) { 2692 if (tm.getTargetTriple().isOSAIX()) 2693 return new PPCAIXAsmPrinter(tm, std::move(Streamer)); 2694 2695 return new PPCLinuxAsmPrinter(tm, std::move(Streamer)); 2696 } 2697 2698 // Force static initialization. 2699 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() { 2700 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(), 2701 createPPCAsmPrinterPass); 2702 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(), 2703 createPPCAsmPrinterPass); 2704 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(), 2705 createPPCAsmPrinterPass); 2706 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(), 2707 createPPCAsmPrinterPass); 2708 } 2709