xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1*e8d8bef9SDimitry Andric //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2*e8d8bef9SDimitry Andric //
3*e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*e8d8bef9SDimitry Andric //
7*e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8*e8d8bef9SDimitry Andric // HexagonVectorCombine is a utility class implementing a variety of functions
9*e8d8bef9SDimitry Andric // that assist in vector-based optimizations.
10*e8d8bef9SDimitry Andric //
11*e8d8bef9SDimitry Andric // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12*e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
13*e8d8bef9SDimitry Andric 
14*e8d8bef9SDimitry Andric #include "llvm/ADT/APInt.h"
15*e8d8bef9SDimitry Andric #include "llvm/ADT/ArrayRef.h"
16*e8d8bef9SDimitry Andric #include "llvm/ADT/DenseMap.h"
17*e8d8bef9SDimitry Andric #include "llvm/ADT/Optional.h"
18*e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h"
19*e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h"
20*e8d8bef9SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
21*e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
22*e8d8bef9SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
23*e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
24*e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
25*e8d8bef9SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
26*e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
27*e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
28*e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
29*e8d8bef9SDimitry Andric #include "llvm/IR/Intrinsics.h"
30*e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsHexagon.h"
31*e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h"
32*e8d8bef9SDimitry Andric #include "llvm/Pass.h"
33*e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h"
34*e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h"
35*e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h"
36*e8d8bef9SDimitry Andric #include "llvm/Target/TargetMachine.h"
37*e8d8bef9SDimitry Andric 
38*e8d8bef9SDimitry Andric #include "HexagonSubtarget.h"
39*e8d8bef9SDimitry Andric #include "HexagonTargetMachine.h"
40*e8d8bef9SDimitry Andric 
41*e8d8bef9SDimitry Andric #include <algorithm>
42*e8d8bef9SDimitry Andric #include <deque>
43*e8d8bef9SDimitry Andric #include <map>
44*e8d8bef9SDimitry Andric #include <set>
45*e8d8bef9SDimitry Andric #include <utility>
46*e8d8bef9SDimitry Andric #include <vector>
47*e8d8bef9SDimitry Andric 
48*e8d8bef9SDimitry Andric #define DEBUG_TYPE "hexagon-vc"
49*e8d8bef9SDimitry Andric 
50*e8d8bef9SDimitry Andric using namespace llvm;
51*e8d8bef9SDimitry Andric 
52*e8d8bef9SDimitry Andric namespace {
53*e8d8bef9SDimitry Andric class HexagonVectorCombine {
54*e8d8bef9SDimitry Andric public:
55*e8d8bef9SDimitry Andric   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
56*e8d8bef9SDimitry Andric                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
57*e8d8bef9SDimitry Andric                        const TargetMachine &TM_)
58*e8d8bef9SDimitry Andric       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
59*e8d8bef9SDimitry Andric         TLI(TLI_),
60*e8d8bef9SDimitry Andric         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
61*e8d8bef9SDimitry Andric 
62*e8d8bef9SDimitry Andric   bool run();
63*e8d8bef9SDimitry Andric 
64*e8d8bef9SDimitry Andric   // Common integer type.
65*e8d8bef9SDimitry Andric   IntegerType *getIntTy() const;
66*e8d8bef9SDimitry Andric   // Byte type: either scalar (when Length = 0), or vector with given
67*e8d8bef9SDimitry Andric   // element count.
68*e8d8bef9SDimitry Andric   Type *getByteTy(int ElemCount = 0) const;
69*e8d8bef9SDimitry Andric   // Boolean type: either scalar (when Length = 0), or vector with given
70*e8d8bef9SDimitry Andric   // element count.
71*e8d8bef9SDimitry Andric   Type *getBoolTy(int ElemCount = 0) const;
72*e8d8bef9SDimitry Andric   // Create a ConstantInt of type returned by getIntTy with the value Val.
73*e8d8bef9SDimitry Andric   ConstantInt *getConstInt(int Val) const;
74*e8d8bef9SDimitry Andric   // Get the integer value of V, if it exists.
75*e8d8bef9SDimitry Andric   Optional<APInt> getIntValue(const Value *Val) const;
76*e8d8bef9SDimitry Andric   // Is V a constant 0, or a vector of 0s?
77*e8d8bef9SDimitry Andric   bool isZero(const Value *Val) const;
78*e8d8bef9SDimitry Andric   // Is V an undef value?
79*e8d8bef9SDimitry Andric   bool isUndef(const Value *Val) const;
80*e8d8bef9SDimitry Andric 
81*e8d8bef9SDimitry Andric   int getSizeOf(const Value *Val) const;
82*e8d8bef9SDimitry Andric   int getSizeOf(const Type *Ty) const;
83*e8d8bef9SDimitry Andric   int getTypeAlignment(Type *Ty) const;
84*e8d8bef9SDimitry Andric 
85*e8d8bef9SDimitry Andric   VectorType *getByteVectorTy(int ScLen) const;
86*e8d8bef9SDimitry Andric   Constant *getNullValue(Type *Ty) const;
87*e8d8bef9SDimitry Andric   Constant *getFullValue(Type *Ty) const;
88*e8d8bef9SDimitry Andric 
89*e8d8bef9SDimitry Andric   Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
90*e8d8bef9SDimitry Andric                  int Length, int Where) const;
91*e8d8bef9SDimitry Andric   Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
92*e8d8bef9SDimitry Andric   Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
93*e8d8bef9SDimitry Andric   Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
94*e8d8bef9SDimitry Andric   Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
95*e8d8bef9SDimitry Andric                  Value *Pad) const;
96*e8d8bef9SDimitry Andric   Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
97*e8d8bef9SDimitry Andric                  Type *ToTy) const;
98*e8d8bef9SDimitry Andric   Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
99*e8d8bef9SDimitry Andric   Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
100*e8d8bef9SDimitry Andric 
101*e8d8bef9SDimitry Andric   Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
102*e8d8bef9SDimitry Andric                             Type *RetTy, ArrayRef<Value *> Args) const;
103*e8d8bef9SDimitry Andric 
104*e8d8bef9SDimitry Andric   Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
105*e8d8bef9SDimitry Andric 
106*e8d8bef9SDimitry Andric   template <typename T = std::vector<Instruction *>>
107*e8d8bef9SDimitry Andric   bool isSafeToMoveBeforeInBB(const Instruction &In,
108*e8d8bef9SDimitry Andric                               BasicBlock::const_iterator To,
109*e8d8bef9SDimitry Andric                               const T &Ignore = {}) const;
110*e8d8bef9SDimitry Andric 
111*e8d8bef9SDimitry Andric   Function &F;
112*e8d8bef9SDimitry Andric   const DataLayout &DL;
113*e8d8bef9SDimitry Andric   AliasAnalysis &AA;
114*e8d8bef9SDimitry Andric   AssumptionCache &AC;
115*e8d8bef9SDimitry Andric   DominatorTree &DT;
116*e8d8bef9SDimitry Andric   TargetLibraryInfo &TLI;
117*e8d8bef9SDimitry Andric   const HexagonSubtarget &HST;
118*e8d8bef9SDimitry Andric 
119*e8d8bef9SDimitry Andric private:
120*e8d8bef9SDimitry Andric #ifndef NDEBUG
121*e8d8bef9SDimitry Andric   // These two functions are only used for assertions at the moment.
122*e8d8bef9SDimitry Andric   bool isByteVecTy(Type *Ty) const;
123*e8d8bef9SDimitry Andric   bool isSectorTy(Type *Ty) const;
124*e8d8bef9SDimitry Andric #endif
125*e8d8bef9SDimitry Andric   Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
126*e8d8bef9SDimitry Andric                          int Length) const;
127*e8d8bef9SDimitry Andric };
128*e8d8bef9SDimitry Andric 
129*e8d8bef9SDimitry Andric class AlignVectors {
130*e8d8bef9SDimitry Andric public:
131*e8d8bef9SDimitry Andric   AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
132*e8d8bef9SDimitry Andric 
133*e8d8bef9SDimitry Andric   bool run();
134*e8d8bef9SDimitry Andric 
135*e8d8bef9SDimitry Andric private:
136*e8d8bef9SDimitry Andric   using InstList = std::vector<Instruction *>;
137*e8d8bef9SDimitry Andric 
138*e8d8bef9SDimitry Andric   struct Segment {
139*e8d8bef9SDimitry Andric     void *Data;
140*e8d8bef9SDimitry Andric     int Start;
141*e8d8bef9SDimitry Andric     int Size;
142*e8d8bef9SDimitry Andric   };
143*e8d8bef9SDimitry Andric 
144*e8d8bef9SDimitry Andric   struct AddrInfo {
145*e8d8bef9SDimitry Andric     AddrInfo(const AddrInfo &) = default;
146*e8d8bef9SDimitry Andric     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
147*e8d8bef9SDimitry Andric              Align H)
148*e8d8bef9SDimitry Andric         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
149*e8d8bef9SDimitry Andric           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
150*e8d8bef9SDimitry Andric 
151*e8d8bef9SDimitry Andric     // XXX: add Size member?
152*e8d8bef9SDimitry Andric     Instruction *Inst;
153*e8d8bef9SDimitry Andric     Value *Addr;
154*e8d8bef9SDimitry Andric     Type *ValTy;
155*e8d8bef9SDimitry Andric     Align HaveAlign;
156*e8d8bef9SDimitry Andric     Align NeedAlign;
157*e8d8bef9SDimitry Andric     int Offset = 0; // Offset (in bytes) from the first member of the
158*e8d8bef9SDimitry Andric                     // containing AddrList.
159*e8d8bef9SDimitry Andric   };
160*e8d8bef9SDimitry Andric   using AddrList = std::vector<AddrInfo>;
161*e8d8bef9SDimitry Andric 
162*e8d8bef9SDimitry Andric   struct InstrLess {
163*e8d8bef9SDimitry Andric     bool operator()(const Instruction *A, const Instruction *B) const {
164*e8d8bef9SDimitry Andric       return A->comesBefore(B);
165*e8d8bef9SDimitry Andric     }
166*e8d8bef9SDimitry Andric   };
167*e8d8bef9SDimitry Andric   using DepList = std::set<Instruction *, InstrLess>;
168*e8d8bef9SDimitry Andric 
169*e8d8bef9SDimitry Andric   struct MoveGroup {
170*e8d8bef9SDimitry Andric     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
171*e8d8bef9SDimitry Andric         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
172*e8d8bef9SDimitry Andric     Instruction *Base; // Base instruction of the parent address group.
173*e8d8bef9SDimitry Andric     InstList Main;     // Main group of instructions.
174*e8d8bef9SDimitry Andric     InstList Deps;     // List of dependencies.
175*e8d8bef9SDimitry Andric     bool IsHvx;        // Is this group of HVX instructions?
176*e8d8bef9SDimitry Andric     bool IsLoad;       // Is this a load group?
177*e8d8bef9SDimitry Andric   };
178*e8d8bef9SDimitry Andric   using MoveList = std::vector<MoveGroup>;
179*e8d8bef9SDimitry Andric 
180*e8d8bef9SDimitry Andric   struct ByteSpan {
181*e8d8bef9SDimitry Andric     struct Segment {
182*e8d8bef9SDimitry Andric       Segment(Value *Val, int Begin, int Len)
183*e8d8bef9SDimitry Andric           : Val(Val), Start(Begin), Size(Len) {}
184*e8d8bef9SDimitry Andric       Segment(const Segment &Seg) = default;
185*e8d8bef9SDimitry Andric       Value *Val;
186*e8d8bef9SDimitry Andric       int Start;
187*e8d8bef9SDimitry Andric       int Size;
188*e8d8bef9SDimitry Andric     };
189*e8d8bef9SDimitry Andric 
190*e8d8bef9SDimitry Andric     struct Block {
191*e8d8bef9SDimitry Andric       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
192*e8d8bef9SDimitry Andric       Block(Value *Val, int Off, int Len, int Pos)
193*e8d8bef9SDimitry Andric           : Seg(Val, Off, Len), Pos(Pos) {}
194*e8d8bef9SDimitry Andric       Block(const Block &Blk) = default;
195*e8d8bef9SDimitry Andric       Segment Seg;
196*e8d8bef9SDimitry Andric       int Pos;
197*e8d8bef9SDimitry Andric     };
198*e8d8bef9SDimitry Andric 
199*e8d8bef9SDimitry Andric     int extent() const;
200*e8d8bef9SDimitry Andric     ByteSpan section(int Start, int Length) const;
201*e8d8bef9SDimitry Andric     ByteSpan &shift(int Offset);
202*e8d8bef9SDimitry Andric 
203*e8d8bef9SDimitry Andric     int size() const { return Blocks.size(); }
204*e8d8bef9SDimitry Andric     Block &operator[](int i) { return Blocks[i]; }
205*e8d8bef9SDimitry Andric 
206*e8d8bef9SDimitry Andric     std::vector<Block> Blocks;
207*e8d8bef9SDimitry Andric 
208*e8d8bef9SDimitry Andric     using iterator = decltype(Blocks)::iterator;
209*e8d8bef9SDimitry Andric     iterator begin() { return Blocks.begin(); }
210*e8d8bef9SDimitry Andric     iterator end() { return Blocks.end(); }
211*e8d8bef9SDimitry Andric     using const_iterator = decltype(Blocks)::const_iterator;
212*e8d8bef9SDimitry Andric     const_iterator begin() const { return Blocks.begin(); }
213*e8d8bef9SDimitry Andric     const_iterator end() const { return Blocks.end(); }
214*e8d8bef9SDimitry Andric   };
215*e8d8bef9SDimitry Andric 
216*e8d8bef9SDimitry Andric   Align getAlignFromValue(const Value *V) const;
217*e8d8bef9SDimitry Andric   Optional<MemoryLocation> getLocation(const Instruction &In) const;
218*e8d8bef9SDimitry Andric   Optional<AddrInfo> getAddrInfo(Instruction &In) const;
219*e8d8bef9SDimitry Andric   bool isHvx(const AddrInfo &AI) const;
220*e8d8bef9SDimitry Andric 
221*e8d8bef9SDimitry Andric   Value *getPayload(Value *Val) const;
222*e8d8bef9SDimitry Andric   Value *getMask(Value *Val) const;
223*e8d8bef9SDimitry Andric   Value *getPassThrough(Value *Val) const;
224*e8d8bef9SDimitry Andric 
225*e8d8bef9SDimitry Andric   Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
226*e8d8bef9SDimitry Andric                                int Adjust) const;
227*e8d8bef9SDimitry Andric   Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
228*e8d8bef9SDimitry Andric                               int Alignment) const;
229*e8d8bef9SDimitry Andric   Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
230*e8d8bef9SDimitry Andric                            int Alignment, Value *Mask, Value *PassThru) const;
231*e8d8bef9SDimitry Andric   Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
232*e8d8bef9SDimitry Andric                             int Alignment, Value *Mask) const;
233*e8d8bef9SDimitry Andric 
234*e8d8bef9SDimitry Andric   bool createAddressGroups();
235*e8d8bef9SDimitry Andric   MoveList createLoadGroups(const AddrList &Group) const;
236*e8d8bef9SDimitry Andric   MoveList createStoreGroups(const AddrList &Group) const;
237*e8d8bef9SDimitry Andric   bool move(const MoveGroup &Move) const;
238*e8d8bef9SDimitry Andric   bool realignGroup(const MoveGroup &Move) const;
239*e8d8bef9SDimitry Andric 
240*e8d8bef9SDimitry Andric   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
241*e8d8bef9SDimitry Andric   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
242*e8d8bef9SDimitry Andric   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
243*e8d8bef9SDimitry Andric 
244*e8d8bef9SDimitry Andric   std::map<Instruction *, AddrList> AddrGroups;
245*e8d8bef9SDimitry Andric   HexagonVectorCombine &HVC;
246*e8d8bef9SDimitry Andric };
247*e8d8bef9SDimitry Andric 
248*e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
249*e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
250*e8d8bef9SDimitry Andric   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
251*e8d8bef9SDimitry Andric   OS << "Addr: " << *AI.Addr << '\n';
252*e8d8bef9SDimitry Andric   OS << "Type: " << *AI.ValTy << '\n';
253*e8d8bef9SDimitry Andric   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
254*e8d8bef9SDimitry Andric   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
255*e8d8bef9SDimitry Andric   OS << "Offset: " << AI.Offset;
256*e8d8bef9SDimitry Andric   return OS;
257*e8d8bef9SDimitry Andric }
258*e8d8bef9SDimitry Andric 
259*e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
260*e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
261*e8d8bef9SDimitry Andric   OS << "Main\n";
262*e8d8bef9SDimitry Andric   for (Instruction *I : MG.Main)
263*e8d8bef9SDimitry Andric     OS << "  " << *I << '\n';
264*e8d8bef9SDimitry Andric   OS << "Deps\n";
265*e8d8bef9SDimitry Andric   for (Instruction *I : MG.Deps)
266*e8d8bef9SDimitry Andric     OS << "  " << *I << '\n';
267*e8d8bef9SDimitry Andric   return OS;
268*e8d8bef9SDimitry Andric }
269*e8d8bef9SDimitry Andric 
270*e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED
271*e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
272*e8d8bef9SDimitry Andric   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
273*e8d8bef9SDimitry Andric   for (const AlignVectors::ByteSpan::Block &B : BS) {
274*e8d8bef9SDimitry Andric     OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
275*e8d8bef9SDimitry Andric        << *B.Seg.Val << '\n';
276*e8d8bef9SDimitry Andric   }
277*e8d8bef9SDimitry Andric   OS << ']';
278*e8d8bef9SDimitry Andric   return OS;
279*e8d8bef9SDimitry Andric }
280*e8d8bef9SDimitry Andric 
281*e8d8bef9SDimitry Andric } // namespace
282*e8d8bef9SDimitry Andric 
283*e8d8bef9SDimitry Andric namespace {
284*e8d8bef9SDimitry Andric 
285*e8d8bef9SDimitry Andric template <typename T> T *getIfUnordered(T *MaybeT) {
286*e8d8bef9SDimitry Andric   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
287*e8d8bef9SDimitry Andric }
288*e8d8bef9SDimitry Andric template <typename T> T *isCandidate(Instruction *In) {
289*e8d8bef9SDimitry Andric   return dyn_cast<T>(In);
290*e8d8bef9SDimitry Andric }
291*e8d8bef9SDimitry Andric template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
292*e8d8bef9SDimitry Andric   return getIfUnordered(dyn_cast<LoadInst>(In));
293*e8d8bef9SDimitry Andric }
294*e8d8bef9SDimitry Andric template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
295*e8d8bef9SDimitry Andric   return getIfUnordered(dyn_cast<StoreInst>(In));
296*e8d8bef9SDimitry Andric }
297*e8d8bef9SDimitry Andric 
298*e8d8bef9SDimitry Andric #if !defined(_MSC_VER) || _MSC_VER >= 1924
299*e8d8bef9SDimitry Andric // VS2017 has trouble compiling this:
300*e8d8bef9SDimitry Andric // error C2976: 'std::map': too few template arguments
301*e8d8bef9SDimitry Andric template <typename Pred, typename... Ts>
302*e8d8bef9SDimitry Andric void erase_if(std::map<Ts...> &map, Pred p)
303*e8d8bef9SDimitry Andric #else
304*e8d8bef9SDimitry Andric template <typename Pred, typename T, typename U>
305*e8d8bef9SDimitry Andric void erase_if(std::map<T, U> &map, Pred p)
306*e8d8bef9SDimitry Andric #endif
307*e8d8bef9SDimitry Andric {
308*e8d8bef9SDimitry Andric   for (auto i = map.begin(), e = map.end(); i != e;) {
309*e8d8bef9SDimitry Andric     if (p(*i))
310*e8d8bef9SDimitry Andric       i = map.erase(i);
311*e8d8bef9SDimitry Andric     else
312*e8d8bef9SDimitry Andric       i = std::next(i);
313*e8d8bef9SDimitry Andric   }
314*e8d8bef9SDimitry Andric }
315*e8d8bef9SDimitry Andric 
316*e8d8bef9SDimitry Andric // Forward other erase_ifs to the LLVM implementations.
317*e8d8bef9SDimitry Andric template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
318*e8d8bef9SDimitry Andric   llvm::erase_if(std::forward<T>(container), p);
319*e8d8bef9SDimitry Andric }
320*e8d8bef9SDimitry Andric 
321*e8d8bef9SDimitry Andric } // namespace
322*e8d8bef9SDimitry Andric 
323*e8d8bef9SDimitry Andric // --- Begin AlignVectors
324*e8d8bef9SDimitry Andric 
325*e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::extent() const -> int {
326*e8d8bef9SDimitry Andric   if (size() == 0)
327*e8d8bef9SDimitry Andric     return 0;
328*e8d8bef9SDimitry Andric   int Min = Blocks[0].Pos;
329*e8d8bef9SDimitry Andric   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
330*e8d8bef9SDimitry Andric   for (int i = 1, e = size(); i != e; ++i) {
331*e8d8bef9SDimitry Andric     Min = std::min(Min, Blocks[i].Pos);
332*e8d8bef9SDimitry Andric     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
333*e8d8bef9SDimitry Andric   }
334*e8d8bef9SDimitry Andric   return Max - Min;
335*e8d8bef9SDimitry Andric }
336*e8d8bef9SDimitry Andric 
337*e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
338*e8d8bef9SDimitry Andric   ByteSpan Section;
339*e8d8bef9SDimitry Andric   for (const ByteSpan::Block &B : Blocks) {
340*e8d8bef9SDimitry Andric     int L = std::max(B.Pos, Start);                       // Left end.
341*e8d8bef9SDimitry Andric     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
342*e8d8bef9SDimitry Andric     if (L < R) {
343*e8d8bef9SDimitry Andric       // How much to chop off the beginning of the segment:
344*e8d8bef9SDimitry Andric       int Off = L > B.Pos ? L - B.Pos : 0;
345*e8d8bef9SDimitry Andric       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
346*e8d8bef9SDimitry Andric     }
347*e8d8bef9SDimitry Andric   }
348*e8d8bef9SDimitry Andric   return Section;
349*e8d8bef9SDimitry Andric }
350*e8d8bef9SDimitry Andric 
351*e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
352*e8d8bef9SDimitry Andric   for (Block &B : Blocks)
353*e8d8bef9SDimitry Andric     B.Pos += Offset;
354*e8d8bef9SDimitry Andric   return *this;
355*e8d8bef9SDimitry Andric }
356*e8d8bef9SDimitry Andric 
357*e8d8bef9SDimitry Andric auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
358*e8d8bef9SDimitry Andric   const auto *C = dyn_cast<ConstantInt>(V);
359*e8d8bef9SDimitry Andric   assert(C && "Alignment must be a compile-time constant integer");
360*e8d8bef9SDimitry Andric   return C->getAlignValue();
361*e8d8bef9SDimitry Andric }
362*e8d8bef9SDimitry Andric 
363*e8d8bef9SDimitry Andric auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
364*e8d8bef9SDimitry Andric   if (auto *L = isCandidate<LoadInst>(&In))
365*e8d8bef9SDimitry Andric     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
366*e8d8bef9SDimitry Andric                     L->getAlign());
367*e8d8bef9SDimitry Andric   if (auto *S = isCandidate<StoreInst>(&In))
368*e8d8bef9SDimitry Andric     return AddrInfo(HVC, S, S->getPointerOperand(),
369*e8d8bef9SDimitry Andric                     S->getValueOperand()->getType(), S->getAlign());
370*e8d8bef9SDimitry Andric   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
371*e8d8bef9SDimitry Andric     Intrinsic::ID ID = II->getIntrinsicID();
372*e8d8bef9SDimitry Andric     switch (ID) {
373*e8d8bef9SDimitry Andric     case Intrinsic::masked_load:
374*e8d8bef9SDimitry Andric       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
375*e8d8bef9SDimitry Andric                       getAlignFromValue(II->getArgOperand(1)));
376*e8d8bef9SDimitry Andric     case Intrinsic::masked_store:
377*e8d8bef9SDimitry Andric       return AddrInfo(HVC, II, II->getArgOperand(1),
378*e8d8bef9SDimitry Andric                       II->getArgOperand(0)->getType(),
379*e8d8bef9SDimitry Andric                       getAlignFromValue(II->getArgOperand(2)));
380*e8d8bef9SDimitry Andric     }
381*e8d8bef9SDimitry Andric   }
382*e8d8bef9SDimitry Andric   return Optional<AddrInfo>();
383*e8d8bef9SDimitry Andric }
384*e8d8bef9SDimitry Andric 
385*e8d8bef9SDimitry Andric auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
386*e8d8bef9SDimitry Andric   return HVC.HST.isTypeForHVX(AI.ValTy);
387*e8d8bef9SDimitry Andric }
388*e8d8bef9SDimitry Andric 
389*e8d8bef9SDimitry Andric auto AlignVectors::getPayload(Value *Val) const -> Value * {
390*e8d8bef9SDimitry Andric   if (auto *In = dyn_cast<Instruction>(Val)) {
391*e8d8bef9SDimitry Andric     Intrinsic::ID ID = 0;
392*e8d8bef9SDimitry Andric     if (auto *II = dyn_cast<IntrinsicInst>(In))
393*e8d8bef9SDimitry Andric       ID = II->getIntrinsicID();
394*e8d8bef9SDimitry Andric     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
395*e8d8bef9SDimitry Andric       return In->getOperand(0);
396*e8d8bef9SDimitry Andric   }
397*e8d8bef9SDimitry Andric   return Val;
398*e8d8bef9SDimitry Andric }
399*e8d8bef9SDimitry Andric 
400*e8d8bef9SDimitry Andric auto AlignVectors::getMask(Value *Val) const -> Value * {
401*e8d8bef9SDimitry Andric   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
402*e8d8bef9SDimitry Andric     switch (II->getIntrinsicID()) {
403*e8d8bef9SDimitry Andric     case Intrinsic::masked_load:
404*e8d8bef9SDimitry Andric       return II->getArgOperand(2);
405*e8d8bef9SDimitry Andric     case Intrinsic::masked_store:
406*e8d8bef9SDimitry Andric       return II->getArgOperand(3);
407*e8d8bef9SDimitry Andric     }
408*e8d8bef9SDimitry Andric   }
409*e8d8bef9SDimitry Andric 
410*e8d8bef9SDimitry Andric   Type *ValTy = getPayload(Val)->getType();
411*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
412*e8d8bef9SDimitry Andric     int ElemCount = VecTy->getElementCount().getFixedValue();
413*e8d8bef9SDimitry Andric     return HVC.getFullValue(HVC.getBoolTy(ElemCount));
414*e8d8bef9SDimitry Andric   }
415*e8d8bef9SDimitry Andric   return HVC.getFullValue(HVC.getBoolTy());
416*e8d8bef9SDimitry Andric }
417*e8d8bef9SDimitry Andric 
418*e8d8bef9SDimitry Andric auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
419*e8d8bef9SDimitry Andric   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
420*e8d8bef9SDimitry Andric     if (II->getIntrinsicID() == Intrinsic::masked_load)
421*e8d8bef9SDimitry Andric       return II->getArgOperand(3);
422*e8d8bef9SDimitry Andric   }
423*e8d8bef9SDimitry Andric   return UndefValue::get(getPayload(Val)->getType());
424*e8d8bef9SDimitry Andric }
425*e8d8bef9SDimitry Andric 
426*e8d8bef9SDimitry Andric auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
427*e8d8bef9SDimitry Andric                                          Type *ValTy, int Adjust) const
428*e8d8bef9SDimitry Andric     -> Value * {
429*e8d8bef9SDimitry Andric   // The adjustment is in bytes, but if it's a multiple of the type size,
430*e8d8bef9SDimitry Andric   // we don't need to do pointer casts.
431*e8d8bef9SDimitry Andric   Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType();
432*e8d8bef9SDimitry Andric   int ElemSize = HVC.getSizeOf(ElemTy);
433*e8d8bef9SDimitry Andric   if (Adjust % ElemSize == 0) {
434*e8d8bef9SDimitry Andric     Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize));
435*e8d8bef9SDimitry Andric     return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
436*e8d8bef9SDimitry Andric   }
437*e8d8bef9SDimitry Andric 
438*e8d8bef9SDimitry Andric   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
439*e8d8bef9SDimitry Andric   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
440*e8d8bef9SDimitry Andric   Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust));
441*e8d8bef9SDimitry Andric   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
442*e8d8bef9SDimitry Andric }
443*e8d8bef9SDimitry Andric 
444*e8d8bef9SDimitry Andric auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
445*e8d8bef9SDimitry Andric                                         Type *ValTy, int Alignment) const
446*e8d8bef9SDimitry Andric     -> Value * {
447*e8d8bef9SDimitry Andric   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
448*e8d8bef9SDimitry Andric   Value *Mask = HVC.getConstInt(-Alignment);
449*e8d8bef9SDimitry Andric   Value *And = Builder.CreateAnd(AsInt, Mask);
450*e8d8bef9SDimitry Andric   return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
451*e8d8bef9SDimitry Andric }
452*e8d8bef9SDimitry Andric 
453*e8d8bef9SDimitry Andric auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
454*e8d8bef9SDimitry Andric                                      Value *Ptr, int Alignment, Value *Mask,
455*e8d8bef9SDimitry Andric                                      Value *PassThru) const -> Value * {
456*e8d8bef9SDimitry Andric   assert(!HVC.isUndef(Mask)); // Should this be allowed?
457*e8d8bef9SDimitry Andric   if (HVC.isZero(Mask))
458*e8d8bef9SDimitry Andric     return PassThru;
459*e8d8bef9SDimitry Andric   if (Mask == ConstantInt::getTrue(Mask->getType()))
460*e8d8bef9SDimitry Andric     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
461*e8d8bef9SDimitry Andric   return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru);
462*e8d8bef9SDimitry Andric }
463*e8d8bef9SDimitry Andric 
464*e8d8bef9SDimitry Andric auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
465*e8d8bef9SDimitry Andric                                       Value *Ptr, int Alignment,
466*e8d8bef9SDimitry Andric                                       Value *Mask) const -> Value * {
467*e8d8bef9SDimitry Andric   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
468*e8d8bef9SDimitry Andric     return UndefValue::get(Val->getType());
469*e8d8bef9SDimitry Andric   if (Mask == ConstantInt::getTrue(Mask->getType()))
470*e8d8bef9SDimitry Andric     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
471*e8d8bef9SDimitry Andric   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
472*e8d8bef9SDimitry Andric }
473*e8d8bef9SDimitry Andric 
474*e8d8bef9SDimitry Andric auto AlignVectors::createAddressGroups() -> bool {
475*e8d8bef9SDimitry Andric   // An address group created here may contain instructions spanning
476*e8d8bef9SDimitry Andric   // multiple basic blocks.
477*e8d8bef9SDimitry Andric   AddrList WorkStack;
478*e8d8bef9SDimitry Andric 
479*e8d8bef9SDimitry Andric   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
480*e8d8bef9SDimitry Andric     for (AddrInfo &W : WorkStack) {
481*e8d8bef9SDimitry Andric       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
482*e8d8bef9SDimitry Andric         return std::make_pair(W.Inst, *D);
483*e8d8bef9SDimitry Andric     }
484*e8d8bef9SDimitry Andric     return std::make_pair(nullptr, 0);
485*e8d8bef9SDimitry Andric   };
486*e8d8bef9SDimitry Andric 
487*e8d8bef9SDimitry Andric   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
488*e8d8bef9SDimitry Andric     BasicBlock &Block = *DomN->getBlock();
489*e8d8bef9SDimitry Andric     for (Instruction &I : Block) {
490*e8d8bef9SDimitry Andric       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
491*e8d8bef9SDimitry Andric       if (!AI)
492*e8d8bef9SDimitry Andric         continue;
493*e8d8bef9SDimitry Andric       auto F = findBaseAndOffset(*AI);
494*e8d8bef9SDimitry Andric       Instruction *GroupInst;
495*e8d8bef9SDimitry Andric       if (Instruction *BI = F.first) {
496*e8d8bef9SDimitry Andric         AI->Offset = F.second;
497*e8d8bef9SDimitry Andric         GroupInst = BI;
498*e8d8bef9SDimitry Andric       } else {
499*e8d8bef9SDimitry Andric         WorkStack.push_back(*AI);
500*e8d8bef9SDimitry Andric         GroupInst = AI->Inst;
501*e8d8bef9SDimitry Andric       }
502*e8d8bef9SDimitry Andric       AddrGroups[GroupInst].push_back(*AI);
503*e8d8bef9SDimitry Andric     }
504*e8d8bef9SDimitry Andric 
505*e8d8bef9SDimitry Andric     for (DomTreeNode *C : DomN->children())
506*e8d8bef9SDimitry Andric       Visit(C, Visit);
507*e8d8bef9SDimitry Andric 
508*e8d8bef9SDimitry Andric     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
509*e8d8bef9SDimitry Andric       WorkStack.pop_back();
510*e8d8bef9SDimitry Andric   };
511*e8d8bef9SDimitry Andric 
512*e8d8bef9SDimitry Andric   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
513*e8d8bef9SDimitry Andric   assert(WorkStack.empty());
514*e8d8bef9SDimitry Andric 
515*e8d8bef9SDimitry Andric   // AddrGroups are formed.
516*e8d8bef9SDimitry Andric 
517*e8d8bef9SDimitry Andric   // Remove groups of size 1.
518*e8d8bef9SDimitry Andric   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
519*e8d8bef9SDimitry Andric   // Remove groups that don't use HVX types.
520*e8d8bef9SDimitry Andric   erase_if(AddrGroups, [&](auto &G) {
521*e8d8bef9SDimitry Andric     return !llvm::any_of(
522*e8d8bef9SDimitry Andric         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
523*e8d8bef9SDimitry Andric   });
524*e8d8bef9SDimitry Andric   // Remove groups where everything is properly aligned.
525*e8d8bef9SDimitry Andric   erase_if(AddrGroups, [&](auto &G) {
526*e8d8bef9SDimitry Andric     return llvm::all_of(G.second,
527*e8d8bef9SDimitry Andric                         [&](auto &I) { return I.HaveAlign >= I.NeedAlign; });
528*e8d8bef9SDimitry Andric   });
529*e8d8bef9SDimitry Andric 
530*e8d8bef9SDimitry Andric   return !AddrGroups.empty();
531*e8d8bef9SDimitry Andric }
532*e8d8bef9SDimitry Andric 
533*e8d8bef9SDimitry Andric auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
534*e8d8bef9SDimitry Andric   // Form load groups.
535*e8d8bef9SDimitry Andric   // To avoid complications with moving code across basic blocks, only form
536*e8d8bef9SDimitry Andric   // groups that are contained within a single basic block.
537*e8d8bef9SDimitry Andric 
538*e8d8bef9SDimitry Andric   auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
539*e8d8bef9SDimitry Andric     BasicBlock *Parent = Base->getParent();
540*e8d8bef9SDimitry Andric     assert(In->getParent() == Parent &&
541*e8d8bef9SDimitry Andric            "Base and In should be in the same block");
542*e8d8bef9SDimitry Andric     assert(Base->comesBefore(In) && "Base should come before In");
543*e8d8bef9SDimitry Andric 
544*e8d8bef9SDimitry Andric     DepList Deps;
545*e8d8bef9SDimitry Andric     std::deque<Instruction *> WorkQ = {In};
546*e8d8bef9SDimitry Andric     while (!WorkQ.empty()) {
547*e8d8bef9SDimitry Andric       Instruction *D = WorkQ.front();
548*e8d8bef9SDimitry Andric       WorkQ.pop_front();
549*e8d8bef9SDimitry Andric       Deps.insert(D);
550*e8d8bef9SDimitry Andric       for (Value *Op : D->operands()) {
551*e8d8bef9SDimitry Andric         if (auto *I = dyn_cast<Instruction>(Op)) {
552*e8d8bef9SDimitry Andric           if (I->getParent() == Parent && Base->comesBefore(I))
553*e8d8bef9SDimitry Andric             WorkQ.push_back(I);
554*e8d8bef9SDimitry Andric         }
555*e8d8bef9SDimitry Andric       }
556*e8d8bef9SDimitry Andric     }
557*e8d8bef9SDimitry Andric     return Deps;
558*e8d8bef9SDimitry Andric   };
559*e8d8bef9SDimitry Andric 
560*e8d8bef9SDimitry Andric   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
561*e8d8bef9SDimitry Andric     assert(!Move.Main.empty() && "Move group should have non-empty Main");
562*e8d8bef9SDimitry Andric     // Don't mix HVX and non-HVX instructions.
563*e8d8bef9SDimitry Andric     if (Move.IsHvx != isHvx(Info))
564*e8d8bef9SDimitry Andric       return false;
565*e8d8bef9SDimitry Andric     // Leading instruction in the load group.
566*e8d8bef9SDimitry Andric     Instruction *Base = Move.Main.front();
567*e8d8bef9SDimitry Andric     if (Base->getParent() != Info.Inst->getParent())
568*e8d8bef9SDimitry Andric       return false;
569*e8d8bef9SDimitry Andric 
570*e8d8bef9SDimitry Andric     auto isSafeToMoveToBase = [&](const Instruction *I) {
571*e8d8bef9SDimitry Andric       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
572*e8d8bef9SDimitry Andric     };
573*e8d8bef9SDimitry Andric     DepList Deps = getUpwardDeps(Info.Inst, Base);
574*e8d8bef9SDimitry Andric     if (!llvm::all_of(Deps, isSafeToMoveToBase))
575*e8d8bef9SDimitry Andric       return false;
576*e8d8bef9SDimitry Andric 
577*e8d8bef9SDimitry Andric     // The dependencies will be moved together with the load, so make sure
578*e8d8bef9SDimitry Andric     // that none of them could be moved independently in another group.
579*e8d8bef9SDimitry Andric     Deps.erase(Info.Inst);
580*e8d8bef9SDimitry Andric     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
581*e8d8bef9SDimitry Andric     if (llvm::any_of(Deps, inAddrMap))
582*e8d8bef9SDimitry Andric       return false;
583*e8d8bef9SDimitry Andric     Move.Main.push_back(Info.Inst);
584*e8d8bef9SDimitry Andric     llvm::append_range(Move.Deps, Deps);
585*e8d8bef9SDimitry Andric     return true;
586*e8d8bef9SDimitry Andric   };
587*e8d8bef9SDimitry Andric 
588*e8d8bef9SDimitry Andric   MoveList LoadGroups;
589*e8d8bef9SDimitry Andric 
590*e8d8bef9SDimitry Andric   for (const AddrInfo &Info : Group) {
591*e8d8bef9SDimitry Andric     if (!Info.Inst->mayReadFromMemory())
592*e8d8bef9SDimitry Andric       continue;
593*e8d8bef9SDimitry Andric     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
594*e8d8bef9SDimitry Andric       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
595*e8d8bef9SDimitry Andric   }
596*e8d8bef9SDimitry Andric 
597*e8d8bef9SDimitry Andric   // Erase singleton groups.
598*e8d8bef9SDimitry Andric   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
599*e8d8bef9SDimitry Andric   return LoadGroups;
600*e8d8bef9SDimitry Andric }
601*e8d8bef9SDimitry Andric 
602*e8d8bef9SDimitry Andric auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
603*e8d8bef9SDimitry Andric   // Form store groups.
604*e8d8bef9SDimitry Andric   // To avoid complications with moving code across basic blocks, only form
605*e8d8bef9SDimitry Andric   // groups that are contained within a single basic block.
606*e8d8bef9SDimitry Andric 
607*e8d8bef9SDimitry Andric   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
608*e8d8bef9SDimitry Andric     assert(!Move.Main.empty() && "Move group should have non-empty Main");
609*e8d8bef9SDimitry Andric     // For stores with return values we'd have to collect downward depenencies.
610*e8d8bef9SDimitry Andric     // There are no such stores that we handle at the moment, so omit that.
611*e8d8bef9SDimitry Andric     assert(Info.Inst->getType()->isVoidTy() &&
612*e8d8bef9SDimitry Andric            "Not handling stores with return values");
613*e8d8bef9SDimitry Andric     // Don't mix HVX and non-HVX instructions.
614*e8d8bef9SDimitry Andric     if (Move.IsHvx != isHvx(Info))
615*e8d8bef9SDimitry Andric       return false;
616*e8d8bef9SDimitry Andric     // For stores we need to be careful whether it's safe to move them.
617*e8d8bef9SDimitry Andric     // Stores that are otherwise safe to move together may not appear safe
618*e8d8bef9SDimitry Andric     // to move over one another (i.e. isSafeToMoveBefore may return false).
619*e8d8bef9SDimitry Andric     Instruction *Base = Move.Main.front();
620*e8d8bef9SDimitry Andric     if (Base->getParent() != Info.Inst->getParent())
621*e8d8bef9SDimitry Andric       return false;
622*e8d8bef9SDimitry Andric     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
623*e8d8bef9SDimitry Andric       return false;
624*e8d8bef9SDimitry Andric     Move.Main.push_back(Info.Inst);
625*e8d8bef9SDimitry Andric     return true;
626*e8d8bef9SDimitry Andric   };
627*e8d8bef9SDimitry Andric 
628*e8d8bef9SDimitry Andric   MoveList StoreGroups;
629*e8d8bef9SDimitry Andric 
630*e8d8bef9SDimitry Andric   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
631*e8d8bef9SDimitry Andric     const AddrInfo &Info = *I;
632*e8d8bef9SDimitry Andric     if (!Info.Inst->mayWriteToMemory())
633*e8d8bef9SDimitry Andric       continue;
634*e8d8bef9SDimitry Andric     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
635*e8d8bef9SDimitry Andric       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
636*e8d8bef9SDimitry Andric   }
637*e8d8bef9SDimitry Andric 
638*e8d8bef9SDimitry Andric   // Erase singleton groups.
639*e8d8bef9SDimitry Andric   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
640*e8d8bef9SDimitry Andric   return StoreGroups;
641*e8d8bef9SDimitry Andric }
642*e8d8bef9SDimitry Andric 
643*e8d8bef9SDimitry Andric auto AlignVectors::move(const MoveGroup &Move) const -> bool {
644*e8d8bef9SDimitry Andric   assert(!Move.Main.empty() && "Move group should have non-empty Main");
645*e8d8bef9SDimitry Andric   Instruction *Where = Move.Main.front();
646*e8d8bef9SDimitry Andric 
647*e8d8bef9SDimitry Andric   if (Move.IsLoad) {
648*e8d8bef9SDimitry Andric     // Move all deps to before Where, keeping order.
649*e8d8bef9SDimitry Andric     for (Instruction *D : Move.Deps)
650*e8d8bef9SDimitry Andric       D->moveBefore(Where);
651*e8d8bef9SDimitry Andric     // Move all main instructions to after Where, keeping order.
652*e8d8bef9SDimitry Andric     ArrayRef<Instruction *> Main(Move.Main);
653*e8d8bef9SDimitry Andric     for (Instruction *M : Main.drop_front(1)) {
654*e8d8bef9SDimitry Andric       M->moveAfter(Where);
655*e8d8bef9SDimitry Andric       Where = M;
656*e8d8bef9SDimitry Andric     }
657*e8d8bef9SDimitry Andric   } else {
658*e8d8bef9SDimitry Andric     // NOTE: Deps are empty for "store" groups. If they need to be
659*e8d8bef9SDimitry Andric     // non-empty, decide on the order.
660*e8d8bef9SDimitry Andric     assert(Move.Deps.empty());
661*e8d8bef9SDimitry Andric     // Move all main instructions to before Where, inverting order.
662*e8d8bef9SDimitry Andric     ArrayRef<Instruction *> Main(Move.Main);
663*e8d8bef9SDimitry Andric     for (Instruction *M : Main.drop_front(1)) {
664*e8d8bef9SDimitry Andric       M->moveBefore(Where);
665*e8d8bef9SDimitry Andric       Where = M;
666*e8d8bef9SDimitry Andric     }
667*e8d8bef9SDimitry Andric   }
668*e8d8bef9SDimitry Andric 
669*e8d8bef9SDimitry Andric   return Move.Main.size() + Move.Deps.size() > 1;
670*e8d8bef9SDimitry Andric }
671*e8d8bef9SDimitry Andric 
672*e8d8bef9SDimitry Andric auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
673*e8d8bef9SDimitry Andric   // TODO: Needs support for masked loads/stores of "scalar" vectors.
674*e8d8bef9SDimitry Andric   if (!Move.IsHvx)
675*e8d8bef9SDimitry Andric     return false;
676*e8d8bef9SDimitry Andric 
677*e8d8bef9SDimitry Andric   // Return the element with the maximum alignment from Range,
678*e8d8bef9SDimitry Andric   // where GetValue obtains the value to compare from an element.
679*e8d8bef9SDimitry Andric   auto getMaxOf = [](auto Range, auto GetValue) {
680*e8d8bef9SDimitry Andric     return *std::max_element(
681*e8d8bef9SDimitry Andric         Range.begin(), Range.end(),
682*e8d8bef9SDimitry Andric         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
683*e8d8bef9SDimitry Andric   };
684*e8d8bef9SDimitry Andric 
685*e8d8bef9SDimitry Andric   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
686*e8d8bef9SDimitry Andric 
687*e8d8bef9SDimitry Andric   // Conceptually, there is a vector of N bytes covering the addresses
688*e8d8bef9SDimitry Andric   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
689*e8d8bef9SDimitry Andric   // represents a contiguous memory region that spans all accessed memory
690*e8d8bef9SDimitry Andric   // locations.
691*e8d8bef9SDimitry Andric   // The correspondence between loaded or stored values will be expressed
692*e8d8bef9SDimitry Andric   // in terms of this vector. For example, the 0th element of the vector
693*e8d8bef9SDimitry Andric   // from the Base address info will start at byte Start from the beginning
694*e8d8bef9SDimitry Andric   // of this conceptual vector.
695*e8d8bef9SDimitry Andric   //
696*e8d8bef9SDimitry Andric   // This vector will be loaded/stored starting at the nearest down-aligned
697*e8d8bef9SDimitry Andric   // address and the amount od the down-alignment will be AlignVal:
698*e8d8bef9SDimitry Andric   //   valign(load_vector(align_down(Base+Start)), AlignVal)
699*e8d8bef9SDimitry Andric 
700*e8d8bef9SDimitry Andric   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
701*e8d8bef9SDimitry Andric   AddrList MoveInfos;
702*e8d8bef9SDimitry Andric   llvm::copy_if(
703*e8d8bef9SDimitry Andric       BaseInfos, std::back_inserter(MoveInfos),
704*e8d8bef9SDimitry Andric       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
705*e8d8bef9SDimitry Andric 
706*e8d8bef9SDimitry Andric   // Maximum alignment present in the whole address group.
707*e8d8bef9SDimitry Andric   const AddrInfo &WithMaxAlign =
708*e8d8bef9SDimitry Andric       getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
709*e8d8bef9SDimitry Andric   Align MaxGiven = WithMaxAlign.HaveAlign;
710*e8d8bef9SDimitry Andric 
711*e8d8bef9SDimitry Andric   // Minimum alignment present in the move address group.
712*e8d8bef9SDimitry Andric   const AddrInfo &WithMinOffset =
713*e8d8bef9SDimitry Andric       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
714*e8d8bef9SDimitry Andric 
715*e8d8bef9SDimitry Andric   const AddrInfo &WithMaxNeeded =
716*e8d8bef9SDimitry Andric       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
717*e8d8bef9SDimitry Andric   Align MinNeeded = WithMaxNeeded.NeedAlign;
718*e8d8bef9SDimitry Andric 
719*e8d8bef9SDimitry Andric   // Set the builder at the top instruction in the move group.
720*e8d8bef9SDimitry Andric   Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
721*e8d8bef9SDimitry Andric   IRBuilder<> Builder(TopIn);
722*e8d8bef9SDimitry Andric   Value *AlignAddr = nullptr; // Actual aligned address.
723*e8d8bef9SDimitry Andric   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
724*e8d8bef9SDimitry Andric 
725*e8d8bef9SDimitry Andric   if (MinNeeded <= MaxGiven) {
726*e8d8bef9SDimitry Andric     int Start = WithMinOffset.Offset;
727*e8d8bef9SDimitry Andric     int OffAtMax = WithMaxAlign.Offset;
728*e8d8bef9SDimitry Andric     // Shift the offset of the maximally aligned instruction (OffAtMax)
729*e8d8bef9SDimitry Andric     // back by just enough multiples of the required alignment to cover the
730*e8d8bef9SDimitry Andric     // distance from Start to OffAtMax.
731*e8d8bef9SDimitry Andric     // Calculate the address adjustment amount based on the address with the
732*e8d8bef9SDimitry Andric     // maximum alignment. This is to allow a simple gep instruction instead
733*e8d8bef9SDimitry Andric     // of potential bitcasts to i8*.
734*e8d8bef9SDimitry Andric     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
735*e8d8bef9SDimitry Andric     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
736*e8d8bef9SDimitry Andric                                       WithMaxAlign.ValTy, Adjust);
737*e8d8bef9SDimitry Andric     int Diff = Start - (OffAtMax + Adjust);
738*e8d8bef9SDimitry Andric     AlignVal = HVC.getConstInt(Diff);
739*e8d8bef9SDimitry Andric     // Sanity.
740*e8d8bef9SDimitry Andric     assert(Diff >= 0);
741*e8d8bef9SDimitry Andric     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
742*e8d8bef9SDimitry Andric   } else {
743*e8d8bef9SDimitry Andric     // WithMinOffset is the lowest address in the group,
744*e8d8bef9SDimitry Andric     //   WithMinOffset.Addr = Base+Start.
745*e8d8bef9SDimitry Andric     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
746*e8d8bef9SDimitry Andric     // mask off unnecessary bits, so it's ok to just the original pointer as
747*e8d8bef9SDimitry Andric     // the alignment amount.
748*e8d8bef9SDimitry Andric     // Do an explicit down-alignment of the address to avoid creating an
749*e8d8bef9SDimitry Andric     // aligned instruction with an address that is not really aligned.
750*e8d8bef9SDimitry Andric     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
751*e8d8bef9SDimitry Andric                                      WithMinOffset.ValTy, MinNeeded.value());
752*e8d8bef9SDimitry Andric     AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
753*e8d8bef9SDimitry Andric   }
754*e8d8bef9SDimitry Andric 
755*e8d8bef9SDimitry Andric   ByteSpan VSpan;
756*e8d8bef9SDimitry Andric   for (const AddrInfo &AI : MoveInfos) {
757*e8d8bef9SDimitry Andric     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
758*e8d8bef9SDimitry Andric                               AI.Offset - WithMinOffset.Offset);
759*e8d8bef9SDimitry Andric   }
760*e8d8bef9SDimitry Andric 
761*e8d8bef9SDimitry Andric   // The aligned loads/stores will use blocks that are either scalars,
762*e8d8bef9SDimitry Andric   // or HVX vectors. Let "sector" be the unified term for such a block.
763*e8d8bef9SDimitry Andric   // blend(scalar, vector) -> sector...
764*e8d8bef9SDimitry Andric   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
765*e8d8bef9SDimitry Andric                          : std::max<int>(MinNeeded.value(), 4);
766*e8d8bef9SDimitry Andric   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
767*e8d8bef9SDimitry Andric   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
768*e8d8bef9SDimitry Andric 
769*e8d8bef9SDimitry Andric   Type *SecTy = HVC.getByteTy(ScLen);
770*e8d8bef9SDimitry Andric   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
771*e8d8bef9SDimitry Andric 
772*e8d8bef9SDimitry Andric   if (Move.IsLoad) {
773*e8d8bef9SDimitry Andric     ByteSpan ASpan;
774*e8d8bef9SDimitry Andric     auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
775*e8d8bef9SDimitry Andric     auto *Undef = UndefValue::get(SecTy);
776*e8d8bef9SDimitry Andric 
777*e8d8bef9SDimitry Andric     for (int i = 0; i != NumSectors + 1; ++i) {
778*e8d8bef9SDimitry Andric       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
779*e8d8bef9SDimitry Andric       // FIXME: generate a predicated load?
780*e8d8bef9SDimitry Andric       Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
781*e8d8bef9SDimitry Andric       ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
782*e8d8bef9SDimitry Andric     }
783*e8d8bef9SDimitry Andric 
784*e8d8bef9SDimitry Andric     for (int j = 0; j != NumSectors; ++j) {
785*e8d8bef9SDimitry Andric       ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
786*e8d8bef9SDimitry Andric                                       ASpan[j + 1].Seg.Val, AlignVal);
787*e8d8bef9SDimitry Andric     }
788*e8d8bef9SDimitry Andric 
789*e8d8bef9SDimitry Andric     for (ByteSpan::Block &B : VSpan) {
790*e8d8bef9SDimitry Andric       ByteSpan Section = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
791*e8d8bef9SDimitry Andric       Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
792*e8d8bef9SDimitry Andric       for (ByteSpan::Block &S : Section) {
793*e8d8bef9SDimitry Andric         Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
794*e8d8bef9SDimitry Andric         Accum =
795*e8d8bef9SDimitry Andric             HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
796*e8d8bef9SDimitry Andric       }
797*e8d8bef9SDimitry Andric       // Instead of casting everything to bytes for the vselect, cast to the
798*e8d8bef9SDimitry Andric       // original value type. This will avoid complications with casting masks.
799*e8d8bef9SDimitry Andric       // For example, in cases when the original mask applied to i32, it could
800*e8d8bef9SDimitry Andric       // be converted to a mask applicable to i8 via pred_typecast intrinsic,
801*e8d8bef9SDimitry Andric       // but if the mask is not exactly of HVX length, extra handling would be
802*e8d8bef9SDimitry Andric       // needed to make it work.
803*e8d8bef9SDimitry Andric       Type *ValTy = getPayload(B.Seg.Val)->getType();
804*e8d8bef9SDimitry Andric       Value *Cast = Builder.CreateBitCast(Accum, ValTy);
805*e8d8bef9SDimitry Andric       Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
806*e8d8bef9SDimitry Andric                                         getPassThrough(B.Seg.Val));
807*e8d8bef9SDimitry Andric       B.Seg.Val->replaceAllUsesWith(Sel);
808*e8d8bef9SDimitry Andric     }
809*e8d8bef9SDimitry Andric   } else {
810*e8d8bef9SDimitry Andric     // Stores.
811*e8d8bef9SDimitry Andric     ByteSpan ASpanV, ASpanM;
812*e8d8bef9SDimitry Andric 
813*e8d8bef9SDimitry Andric     // Return a vector value corresponding to the input value Val:
814*e8d8bef9SDimitry Andric     // either <1 x Val> for scalar Val, or Val itself for vector Val.
815*e8d8bef9SDimitry Andric     auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
816*e8d8bef9SDimitry Andric       Type *Ty = Val->getType();
817*e8d8bef9SDimitry Andric       if (Ty->isVectorTy())
818*e8d8bef9SDimitry Andric         return Val;
819*e8d8bef9SDimitry Andric       auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
820*e8d8bef9SDimitry Andric       return Builder.CreateBitCast(Val, VecTy);
821*e8d8bef9SDimitry Andric     };
822*e8d8bef9SDimitry Andric 
823*e8d8bef9SDimitry Andric     // Create an extra "undef" sector at the beginning and at the end.
824*e8d8bef9SDimitry Andric     // They will be used as the left/right filler in the vlalign step.
825*e8d8bef9SDimitry Andric     for (int i = -1; i != NumSectors + 1; ++i) {
826*e8d8bef9SDimitry Andric       // For stores, the size of each section is an aligned vector length.
827*e8d8bef9SDimitry Andric       // Adjust the store offsets relative to the section start offset.
828*e8d8bef9SDimitry Andric       ByteSpan Section = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
829*e8d8bef9SDimitry Andric       Value *AccumV = UndefValue::get(SecTy);
830*e8d8bef9SDimitry Andric       Value *AccumM = HVC.getNullValue(SecTy);
831*e8d8bef9SDimitry Andric       for (ByteSpan::Block &S : Section) {
832*e8d8bef9SDimitry Andric         Value *Pay = getPayload(S.Seg.Val);
833*e8d8bef9SDimitry Andric         Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
834*e8d8bef9SDimitry Andric                                   Pay->getType(), HVC.getByteTy());
835*e8d8bef9SDimitry Andric         AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
836*e8d8bef9SDimitry Andric                              S.Seg.Start, S.Seg.Size, S.Pos);
837*e8d8bef9SDimitry Andric         AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
838*e8d8bef9SDimitry Andric                              S.Seg.Start, S.Seg.Size, S.Pos);
839*e8d8bef9SDimitry Andric       }
840*e8d8bef9SDimitry Andric       ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
841*e8d8bef9SDimitry Andric       ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
842*e8d8bef9SDimitry Andric     }
843*e8d8bef9SDimitry Andric 
844*e8d8bef9SDimitry Andric     // vlalign
845*e8d8bef9SDimitry Andric     for (int j = 1; j != NumSectors + 2; ++j) {
846*e8d8bef9SDimitry Andric       ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
847*e8d8bef9SDimitry Andric                                            ASpanV[j].Seg.Val, AlignVal);
848*e8d8bef9SDimitry Andric       ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
849*e8d8bef9SDimitry Andric                                            ASpanM[j].Seg.Val, AlignVal);
850*e8d8bef9SDimitry Andric     }
851*e8d8bef9SDimitry Andric 
852*e8d8bef9SDimitry Andric     for (int i = 0; i != NumSectors + 1; ++i) {
853*e8d8bef9SDimitry Andric       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
854*e8d8bef9SDimitry Andric       Value *Val = ASpanV[i].Seg.Val;
855*e8d8bef9SDimitry Andric       Value *Mask = ASpanM[i].Seg.Val; // bytes
856*e8d8bef9SDimitry Andric       if (!HVC.isUndef(Val) && !HVC.isZero(Mask))
857*e8d8bef9SDimitry Andric         createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask));
858*e8d8bef9SDimitry Andric     }
859*e8d8bef9SDimitry Andric   }
860*e8d8bef9SDimitry Andric 
861*e8d8bef9SDimitry Andric   for (auto *Inst : Move.Main)
862*e8d8bef9SDimitry Andric     Inst->eraseFromParent();
863*e8d8bef9SDimitry Andric 
864*e8d8bef9SDimitry Andric   return true;
865*e8d8bef9SDimitry Andric }
866*e8d8bef9SDimitry Andric 
867*e8d8bef9SDimitry Andric auto AlignVectors::run() -> bool {
868*e8d8bef9SDimitry Andric   if (!createAddressGroups())
869*e8d8bef9SDimitry Andric     return false;
870*e8d8bef9SDimitry Andric 
871*e8d8bef9SDimitry Andric   bool Changed = false;
872*e8d8bef9SDimitry Andric   MoveList LoadGroups, StoreGroups;
873*e8d8bef9SDimitry Andric 
874*e8d8bef9SDimitry Andric   for (auto &G : AddrGroups) {
875*e8d8bef9SDimitry Andric     llvm::append_range(LoadGroups, createLoadGroups(G.second));
876*e8d8bef9SDimitry Andric     llvm::append_range(StoreGroups, createStoreGroups(G.second));
877*e8d8bef9SDimitry Andric   }
878*e8d8bef9SDimitry Andric 
879*e8d8bef9SDimitry Andric   for (auto &M : LoadGroups)
880*e8d8bef9SDimitry Andric     Changed |= move(M);
881*e8d8bef9SDimitry Andric   for (auto &M : StoreGroups)
882*e8d8bef9SDimitry Andric     Changed |= move(M);
883*e8d8bef9SDimitry Andric 
884*e8d8bef9SDimitry Andric   for (auto &M : LoadGroups)
885*e8d8bef9SDimitry Andric     Changed |= realignGroup(M);
886*e8d8bef9SDimitry Andric   for (auto &M : StoreGroups)
887*e8d8bef9SDimitry Andric     Changed |= realignGroup(M);
888*e8d8bef9SDimitry Andric 
889*e8d8bef9SDimitry Andric   return Changed;
890*e8d8bef9SDimitry Andric }
891*e8d8bef9SDimitry Andric 
892*e8d8bef9SDimitry Andric // --- End AlignVectors
893*e8d8bef9SDimitry Andric 
894*e8d8bef9SDimitry Andric auto HexagonVectorCombine::run() -> bool {
895*e8d8bef9SDimitry Andric   if (!HST.useHVXOps())
896*e8d8bef9SDimitry Andric     return false;
897*e8d8bef9SDimitry Andric 
898*e8d8bef9SDimitry Andric   bool Changed = AlignVectors(*this).run();
899*e8d8bef9SDimitry Andric   return Changed;
900*e8d8bef9SDimitry Andric }
901*e8d8bef9SDimitry Andric 
902*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
903*e8d8bef9SDimitry Andric   return Type::getInt32Ty(F.getContext());
904*e8d8bef9SDimitry Andric }
905*e8d8bef9SDimitry Andric 
906*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
907*e8d8bef9SDimitry Andric   assert(ElemCount >= 0);
908*e8d8bef9SDimitry Andric   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
909*e8d8bef9SDimitry Andric   if (ElemCount == 0)
910*e8d8bef9SDimitry Andric     return ByteTy;
911*e8d8bef9SDimitry Andric   return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
912*e8d8bef9SDimitry Andric }
913*e8d8bef9SDimitry Andric 
914*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
915*e8d8bef9SDimitry Andric   assert(ElemCount >= 0);
916*e8d8bef9SDimitry Andric   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
917*e8d8bef9SDimitry Andric   if (ElemCount == 0)
918*e8d8bef9SDimitry Andric     return BoolTy;
919*e8d8bef9SDimitry Andric   return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
920*e8d8bef9SDimitry Andric }
921*e8d8bef9SDimitry Andric 
922*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
923*e8d8bef9SDimitry Andric   return ConstantInt::getSigned(getIntTy(), Val);
924*e8d8bef9SDimitry Andric }
925*e8d8bef9SDimitry Andric 
926*e8d8bef9SDimitry Andric auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
927*e8d8bef9SDimitry Andric   if (auto *C = dyn_cast<Constant>(Val))
928*e8d8bef9SDimitry Andric     return C->isZeroValue();
929*e8d8bef9SDimitry Andric   return false;
930*e8d8bef9SDimitry Andric }
931*e8d8bef9SDimitry Andric 
932*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getIntValue(const Value *Val) const
933*e8d8bef9SDimitry Andric     -> Optional<APInt> {
934*e8d8bef9SDimitry Andric   if (auto *CI = dyn_cast<ConstantInt>(Val))
935*e8d8bef9SDimitry Andric     return CI->getValue();
936*e8d8bef9SDimitry Andric   return None;
937*e8d8bef9SDimitry Andric }
938*e8d8bef9SDimitry Andric 
939*e8d8bef9SDimitry Andric auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
940*e8d8bef9SDimitry Andric   return isa<UndefValue>(Val);
941*e8d8bef9SDimitry Andric }
942*e8d8bef9SDimitry Andric 
943*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
944*e8d8bef9SDimitry Andric   return getSizeOf(Val->getType());
945*e8d8bef9SDimitry Andric }
946*e8d8bef9SDimitry Andric 
947*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
948*e8d8bef9SDimitry Andric   return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
949*e8d8bef9SDimitry Andric }
950*e8d8bef9SDimitry Andric 
951*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
952*e8d8bef9SDimitry Andric   // The actual type may be shorter than the HVX vector, so determine
953*e8d8bef9SDimitry Andric   // the alignment based on subtarget info.
954*e8d8bef9SDimitry Andric   if (HST.isTypeForHVX(Ty))
955*e8d8bef9SDimitry Andric     return HST.getVectorLength();
956*e8d8bef9SDimitry Andric   return DL.getABITypeAlign(Ty).value();
957*e8d8bef9SDimitry Andric }
958*e8d8bef9SDimitry Andric 
959*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
960*e8d8bef9SDimitry Andric   assert(Ty->isIntOrIntVectorTy());
961*e8d8bef9SDimitry Andric   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
962*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(Ty))
963*e8d8bef9SDimitry Andric     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
964*e8d8bef9SDimitry Andric   return Zero;
965*e8d8bef9SDimitry Andric }
966*e8d8bef9SDimitry Andric 
967*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
968*e8d8bef9SDimitry Andric   assert(Ty->isIntOrIntVectorTy());
969*e8d8bef9SDimitry Andric   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
970*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(Ty))
971*e8d8bef9SDimitry Andric     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
972*e8d8bef9SDimitry Andric   return Minus1;
973*e8d8bef9SDimitry Andric }
974*e8d8bef9SDimitry Andric 
975*e8d8bef9SDimitry Andric // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
976*e8d8bef9SDimitry Andric auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
977*e8d8bef9SDimitry Andric                                    int Start, int Length, int Where) const
978*e8d8bef9SDimitry Andric     -> Value * {
979*e8d8bef9SDimitry Andric   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
980*e8d8bef9SDimitry Andric   int SrcLen = getSizeOf(Src);
981*e8d8bef9SDimitry Andric   int DstLen = getSizeOf(Dst);
982*e8d8bef9SDimitry Andric   assert(0 <= Start && Start + Length <= SrcLen);
983*e8d8bef9SDimitry Andric   assert(0 <= Where && Where + Length <= DstLen);
984*e8d8bef9SDimitry Andric 
985*e8d8bef9SDimitry Andric   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
986*e8d8bef9SDimitry Andric   auto *Undef = UndefValue::get(getByteTy());
987*e8d8bef9SDimitry Andric   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
988*e8d8bef9SDimitry Andric   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
989*e8d8bef9SDimitry Andric 
990*e8d8bef9SDimitry Andric   SmallVector<int, 256> SMask(P2Len);
991*e8d8bef9SDimitry Andric   for (int i = 0; i != P2Len; ++i) {
992*e8d8bef9SDimitry Andric     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
993*e8d8bef9SDimitry Andric     // Otherwise, pick Dst[i];
994*e8d8bef9SDimitry Andric     SMask[i] =
995*e8d8bef9SDimitry Andric         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
996*e8d8bef9SDimitry Andric   }
997*e8d8bef9SDimitry Andric 
998*e8d8bef9SDimitry Andric   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
999*e8d8bef9SDimitry Andric   return vresize(Builder, P2Insert, DstLen, Undef);
1000*e8d8bef9SDimitry Andric }
1001*e8d8bef9SDimitry Andric 
1002*e8d8bef9SDimitry Andric auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1003*e8d8bef9SDimitry Andric                                     Value *Amt) const -> Value * {
1004*e8d8bef9SDimitry Andric   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1005*e8d8bef9SDimitry Andric   assert(isSectorTy(Hi->getType()));
1006*e8d8bef9SDimitry Andric   if (isZero(Amt))
1007*e8d8bef9SDimitry Andric     return Hi;
1008*e8d8bef9SDimitry Andric   int VecLen = getSizeOf(Hi);
1009*e8d8bef9SDimitry Andric   if (auto IntAmt = getIntValue(Amt))
1010*e8d8bef9SDimitry Andric     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1011*e8d8bef9SDimitry Andric                            VecLen);
1012*e8d8bef9SDimitry Andric 
1013*e8d8bef9SDimitry Andric   if (HST.isTypeForHVX(Hi->getType())) {
1014*e8d8bef9SDimitry Andric     int HwLen = HST.getVectorLength();
1015*e8d8bef9SDimitry Andric     assert(VecLen == HwLen && "Expecting an exact HVX type");
1016*e8d8bef9SDimitry Andric     Intrinsic::ID V6_vlalignb = HwLen == 64
1017*e8d8bef9SDimitry Andric                                     ? Intrinsic::hexagon_V6_vlalignb
1018*e8d8bef9SDimitry Andric                                     : Intrinsic::hexagon_V6_vlalignb_128B;
1019*e8d8bef9SDimitry Andric     return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1020*e8d8bef9SDimitry Andric                               {Hi, Lo, Amt});
1021*e8d8bef9SDimitry Andric   }
1022*e8d8bef9SDimitry Andric 
1023*e8d8bef9SDimitry Andric   if (VecLen == 4) {
1024*e8d8bef9SDimitry Andric     Value *Pair = concat(Builder, {Lo, Hi});
1025*e8d8bef9SDimitry Andric     Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1026*e8d8bef9SDimitry Andric     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1027*e8d8bef9SDimitry Andric     return Builder.CreateBitCast(Trunc, Hi->getType());
1028*e8d8bef9SDimitry Andric   }
1029*e8d8bef9SDimitry Andric   if (VecLen == 8) {
1030*e8d8bef9SDimitry Andric     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1031*e8d8bef9SDimitry Andric     return vralignb(Builder, Lo, Hi, Sub);
1032*e8d8bef9SDimitry Andric   }
1033*e8d8bef9SDimitry Andric   llvm_unreachable("Unexpected vector length");
1034*e8d8bef9SDimitry Andric }
1035*e8d8bef9SDimitry Andric 
1036*e8d8bef9SDimitry Andric auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1037*e8d8bef9SDimitry Andric                                     Value *Amt) const -> Value * {
1038*e8d8bef9SDimitry Andric   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1039*e8d8bef9SDimitry Andric   assert(isSectorTy(Lo->getType()));
1040*e8d8bef9SDimitry Andric   if (isZero(Amt))
1041*e8d8bef9SDimitry Andric     return Lo;
1042*e8d8bef9SDimitry Andric   int VecLen = getSizeOf(Lo);
1043*e8d8bef9SDimitry Andric   if (auto IntAmt = getIntValue(Amt))
1044*e8d8bef9SDimitry Andric     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1045*e8d8bef9SDimitry Andric 
1046*e8d8bef9SDimitry Andric   if (HST.isTypeForHVX(Lo->getType())) {
1047*e8d8bef9SDimitry Andric     int HwLen = HST.getVectorLength();
1048*e8d8bef9SDimitry Andric     assert(VecLen == HwLen && "Expecting an exact HVX type");
1049*e8d8bef9SDimitry Andric     Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1050*e8d8bef9SDimitry Andric                                            : Intrinsic::hexagon_V6_valignb_128B;
1051*e8d8bef9SDimitry Andric     return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1052*e8d8bef9SDimitry Andric                               {Hi, Lo, Amt});
1053*e8d8bef9SDimitry Andric   }
1054*e8d8bef9SDimitry Andric 
1055*e8d8bef9SDimitry Andric   if (VecLen == 4) {
1056*e8d8bef9SDimitry Andric     Value *Pair = concat(Builder, {Lo, Hi});
1057*e8d8bef9SDimitry Andric     Value *Shift = Builder.CreateLShr(Pair, Amt);
1058*e8d8bef9SDimitry Andric     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1059*e8d8bef9SDimitry Andric     return Builder.CreateBitCast(Trunc, Lo->getType());
1060*e8d8bef9SDimitry Andric   }
1061*e8d8bef9SDimitry Andric   if (VecLen == 8) {
1062*e8d8bef9SDimitry Andric     Type *Int64Ty = Type::getInt64Ty(F.getContext());
1063*e8d8bef9SDimitry Andric     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1064*e8d8bef9SDimitry Andric     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1065*e8d8bef9SDimitry Andric     Function *FI = Intrinsic::getDeclaration(F.getParent(),
1066*e8d8bef9SDimitry Andric                                              Intrinsic::hexagon_S2_valignrb);
1067*e8d8bef9SDimitry Andric     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1068*e8d8bef9SDimitry Andric     return Builder.CreateBitCast(Call, Lo->getType());
1069*e8d8bef9SDimitry Andric   }
1070*e8d8bef9SDimitry Andric   llvm_unreachable("Unexpected vector length");
1071*e8d8bef9SDimitry Andric }
1072*e8d8bef9SDimitry Andric 
1073*e8d8bef9SDimitry Andric // Concatenates a sequence of vectors of the same type.
1074*e8d8bef9SDimitry Andric auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1075*e8d8bef9SDimitry Andric                                   ArrayRef<Value *> Vecs) const -> Value * {
1076*e8d8bef9SDimitry Andric   assert(!Vecs.empty());
1077*e8d8bef9SDimitry Andric   SmallVector<int, 256> SMask;
1078*e8d8bef9SDimitry Andric   std::vector<Value *> Work[2];
1079*e8d8bef9SDimitry Andric   int ThisW = 0, OtherW = 1;
1080*e8d8bef9SDimitry Andric 
1081*e8d8bef9SDimitry Andric   Work[ThisW].assign(Vecs.begin(), Vecs.end());
1082*e8d8bef9SDimitry Andric   while (Work[ThisW].size() > 1) {
1083*e8d8bef9SDimitry Andric     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1084*e8d8bef9SDimitry Andric     int ElemCount = Ty->getElementCount().getFixedValue();
1085*e8d8bef9SDimitry Andric     SMask.resize(ElemCount * 2);
1086*e8d8bef9SDimitry Andric     std::iota(SMask.begin(), SMask.end(), 0);
1087*e8d8bef9SDimitry Andric 
1088*e8d8bef9SDimitry Andric     Work[OtherW].clear();
1089*e8d8bef9SDimitry Andric     if (Work[ThisW].size() % 2 != 0)
1090*e8d8bef9SDimitry Andric       Work[ThisW].push_back(UndefValue::get(Ty));
1091*e8d8bef9SDimitry Andric     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1092*e8d8bef9SDimitry Andric       Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1093*e8d8bef9SDimitry Andric                                                   Work[ThisW][i + 1], SMask);
1094*e8d8bef9SDimitry Andric       Work[OtherW].push_back(Joined);
1095*e8d8bef9SDimitry Andric     }
1096*e8d8bef9SDimitry Andric     std::swap(ThisW, OtherW);
1097*e8d8bef9SDimitry Andric   }
1098*e8d8bef9SDimitry Andric 
1099*e8d8bef9SDimitry Andric   // Since there may have been some undefs appended to make shuffle operands
1100*e8d8bef9SDimitry Andric   // have the same type, perform the last shuffle to only pick the original
1101*e8d8bef9SDimitry Andric   // elements.
1102*e8d8bef9SDimitry Andric   SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1103*e8d8bef9SDimitry Andric   std::iota(SMask.begin(), SMask.end(), 0);
1104*e8d8bef9SDimitry Andric   Value *Total = Work[OtherW].front();
1105*e8d8bef9SDimitry Andric   return Builder.CreateShuffleVector(Total, SMask);
1106*e8d8bef9SDimitry Andric }
1107*e8d8bef9SDimitry Andric 
1108*e8d8bef9SDimitry Andric auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1109*e8d8bef9SDimitry Andric                                    int NewSize, Value *Pad) const -> Value * {
1110*e8d8bef9SDimitry Andric   assert(isa<VectorType>(Val->getType()));
1111*e8d8bef9SDimitry Andric   auto *ValTy = cast<VectorType>(Val->getType());
1112*e8d8bef9SDimitry Andric   assert(ValTy->getElementType() == Pad->getType());
1113*e8d8bef9SDimitry Andric 
1114*e8d8bef9SDimitry Andric   int CurSize = ValTy->getElementCount().getFixedValue();
1115*e8d8bef9SDimitry Andric   if (CurSize == NewSize)
1116*e8d8bef9SDimitry Andric     return Val;
1117*e8d8bef9SDimitry Andric   // Truncate?
1118*e8d8bef9SDimitry Andric   if (CurSize > NewSize)
1119*e8d8bef9SDimitry Andric     return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1120*e8d8bef9SDimitry Andric   // Extend.
1121*e8d8bef9SDimitry Andric   SmallVector<int, 128> SMask(NewSize);
1122*e8d8bef9SDimitry Andric   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1123*e8d8bef9SDimitry Andric   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1124*e8d8bef9SDimitry Andric   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1125*e8d8bef9SDimitry Andric   return Builder.CreateShuffleVector(Val, PadVec, SMask);
1126*e8d8bef9SDimitry Andric }
1127*e8d8bef9SDimitry Andric 
1128*e8d8bef9SDimitry Andric auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1129*e8d8bef9SDimitry Andric                                    Type *FromTy, Type *ToTy) const -> Value * {
1130*e8d8bef9SDimitry Andric   // Mask is a vector <N x i1>, where each element corresponds to an
1131*e8d8bef9SDimitry Andric   // element of FromTy. Remap it so that each element will correspond
1132*e8d8bef9SDimitry Andric   // to an element of ToTy.
1133*e8d8bef9SDimitry Andric   assert(isa<VectorType>(Mask->getType()));
1134*e8d8bef9SDimitry Andric 
1135*e8d8bef9SDimitry Andric   Type *FromSTy = FromTy->getScalarType();
1136*e8d8bef9SDimitry Andric   Type *ToSTy = ToTy->getScalarType();
1137*e8d8bef9SDimitry Andric   if (FromSTy == ToSTy)
1138*e8d8bef9SDimitry Andric     return Mask;
1139*e8d8bef9SDimitry Andric 
1140*e8d8bef9SDimitry Andric   int FromSize = getSizeOf(FromSTy);
1141*e8d8bef9SDimitry Andric   int ToSize = getSizeOf(ToSTy);
1142*e8d8bef9SDimitry Andric   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1143*e8d8bef9SDimitry Andric 
1144*e8d8bef9SDimitry Andric   auto *MaskTy = cast<VectorType>(Mask->getType());
1145*e8d8bef9SDimitry Andric   int FromCount = MaskTy->getElementCount().getFixedValue();
1146*e8d8bef9SDimitry Andric   int ToCount = (FromCount * FromSize) / ToSize;
1147*e8d8bef9SDimitry Andric   assert((FromCount * FromSize) % ToSize == 0);
1148*e8d8bef9SDimitry Andric 
1149*e8d8bef9SDimitry Andric   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1150*e8d8bef9SDimitry Andric   // -> trunc to <M x i1>.
1151*e8d8bef9SDimitry Andric   Value *Ext = Builder.CreateSExt(
1152*e8d8bef9SDimitry Andric       Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false));
1153*e8d8bef9SDimitry Andric   Value *Cast = Builder.CreateBitCast(
1154*e8d8bef9SDimitry Andric       Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false));
1155*e8d8bef9SDimitry Andric   return Builder.CreateTrunc(
1156*e8d8bef9SDimitry Andric       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1157*e8d8bef9SDimitry Andric }
1158*e8d8bef9SDimitry Andric 
1159*e8d8bef9SDimitry Andric // Bitcast to bytes, and return least significant bits.
1160*e8d8bef9SDimitry Andric auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1161*e8d8bef9SDimitry Andric     -> Value * {
1162*e8d8bef9SDimitry Andric   Type *ScalarTy = Val->getType()->getScalarType();
1163*e8d8bef9SDimitry Andric   if (ScalarTy == getBoolTy())
1164*e8d8bef9SDimitry Andric     return Val;
1165*e8d8bef9SDimitry Andric 
1166*e8d8bef9SDimitry Andric   Value *Bytes = vbytes(Builder, Val);
1167*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1168*e8d8bef9SDimitry Andric     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1169*e8d8bef9SDimitry Andric   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1170*e8d8bef9SDimitry Andric   // <1 x i1>.
1171*e8d8bef9SDimitry Andric   return Builder.CreateTrunc(Bytes, getBoolTy());
1172*e8d8bef9SDimitry Andric }
1173*e8d8bef9SDimitry Andric 
1174*e8d8bef9SDimitry Andric // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
1175*e8d8bef9SDimitry Andric auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1176*e8d8bef9SDimitry Andric     -> Value * {
1177*e8d8bef9SDimitry Andric   Type *ScalarTy = Val->getType()->getScalarType();
1178*e8d8bef9SDimitry Andric   if (ScalarTy == getByteTy())
1179*e8d8bef9SDimitry Andric     return Val;
1180*e8d8bef9SDimitry Andric 
1181*e8d8bef9SDimitry Andric   if (ScalarTy != getBoolTy())
1182*e8d8bef9SDimitry Andric     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1183*e8d8bef9SDimitry Andric   // For bool, return a sext from i1 to i8.
1184*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1185*e8d8bef9SDimitry Andric     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1186*e8d8bef9SDimitry Andric   return Builder.CreateSExt(Val, getByteTy());
1187*e8d8bef9SDimitry Andric }
1188*e8d8bef9SDimitry Andric 
1189*e8d8bef9SDimitry Andric auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1190*e8d8bef9SDimitry Andric                                               Intrinsic::ID IntID, Type *RetTy,
1191*e8d8bef9SDimitry Andric                                               ArrayRef<Value *> Args) const
1192*e8d8bef9SDimitry Andric     -> Value * {
1193*e8d8bef9SDimitry Andric   int HwLen = HST.getVectorLength();
1194*e8d8bef9SDimitry Andric   Type *BoolTy = Type::getInt1Ty(F.getContext());
1195*e8d8bef9SDimitry Andric   Type *Int32Ty = Type::getInt32Ty(F.getContext());
1196*e8d8bef9SDimitry Andric   // HVX vector -> v16i32/v32i32
1197*e8d8bef9SDimitry Andric   // HVX vector predicate -> v512i1/v1024i1
1198*e8d8bef9SDimitry Andric   auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1199*e8d8bef9SDimitry Andric     if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1200*e8d8bef9SDimitry Andric       Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1201*e8d8bef9SDimitry Andric       if (ElemTy == Int32Ty)
1202*e8d8bef9SDimitry Andric         return Ty;
1203*e8d8bef9SDimitry Andric       if (ElemTy == BoolTy)
1204*e8d8bef9SDimitry Andric         return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1205*e8d8bef9SDimitry Andric       return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1206*e8d8bef9SDimitry Andric     }
1207*e8d8bef9SDimitry Andric     // Non-HVX type. It should be a scalar.
1208*e8d8bef9SDimitry Andric     assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1209*e8d8bef9SDimitry Andric     return Ty;
1210*e8d8bef9SDimitry Andric   };
1211*e8d8bef9SDimitry Andric 
1212*e8d8bef9SDimitry Andric   auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1213*e8d8bef9SDimitry Andric                      Type *DestTy) -> Value * {
1214*e8d8bef9SDimitry Andric     Type *SrcTy = Val->getType();
1215*e8d8bef9SDimitry Andric     if (SrcTy == DestTy)
1216*e8d8bef9SDimitry Andric       return Val;
1217*e8d8bef9SDimitry Andric     if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1218*e8d8bef9SDimitry Andric       if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1219*e8d8bef9SDimitry Andric         // This should take care of casts the other way too, for example
1220*e8d8bef9SDimitry Andric         // v1024i1 -> v32i1.
1221*e8d8bef9SDimitry Andric         Intrinsic::ID TC = HwLen == 64
1222*e8d8bef9SDimitry Andric                                ? Intrinsic::hexagon_V6_pred_typecast
1223*e8d8bef9SDimitry Andric                                : Intrinsic::hexagon_V6_pred_typecast_128B;
1224*e8d8bef9SDimitry Andric         Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1225*e8d8bef9SDimitry Andric                                                  {DestTy, Val->getType()});
1226*e8d8bef9SDimitry Andric         return Builder.CreateCall(FI, {Val});
1227*e8d8bef9SDimitry Andric       }
1228*e8d8bef9SDimitry Andric       // Non-predicate HVX vector.
1229*e8d8bef9SDimitry Andric       return Builder.CreateBitCast(Val, DestTy);
1230*e8d8bef9SDimitry Andric     }
1231*e8d8bef9SDimitry Andric     // Non-HVX type. It should be a scalar, and it should already have
1232*e8d8bef9SDimitry Andric     // a valid type.
1233*e8d8bef9SDimitry Andric     llvm_unreachable("Unexpected type");
1234*e8d8bef9SDimitry Andric   };
1235*e8d8bef9SDimitry Andric 
1236*e8d8bef9SDimitry Andric   SmallVector<Value *, 4> IntOps;
1237*e8d8bef9SDimitry Andric   for (Value *A : Args)
1238*e8d8bef9SDimitry Andric     IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1239*e8d8bef9SDimitry Andric   Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1240*e8d8bef9SDimitry Andric   Value *Call = Builder.CreateCall(FI, IntOps);
1241*e8d8bef9SDimitry Andric 
1242*e8d8bef9SDimitry Andric   Type *CallTy = Call->getType();
1243*e8d8bef9SDimitry Andric   if (CallTy == RetTy)
1244*e8d8bef9SDimitry Andric     return Call;
1245*e8d8bef9SDimitry Andric   // Scalar types should have RetTy matching the call return type.
1246*e8d8bef9SDimitry Andric   assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1247*e8d8bef9SDimitry Andric   if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1248*e8d8bef9SDimitry Andric     return getCast(Builder, Call, RetTy);
1249*e8d8bef9SDimitry Andric   return Builder.CreateBitCast(Call, RetTy);
1250*e8d8bef9SDimitry Andric }
1251*e8d8bef9SDimitry Andric 
1252*e8d8bef9SDimitry Andric auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1253*e8d8bef9SDimitry Andric                                                       Value *Ptr1) const
1254*e8d8bef9SDimitry Andric     -> Optional<int> {
1255*e8d8bef9SDimitry Andric   struct Builder : IRBuilder<> {
1256*e8d8bef9SDimitry Andric     Builder(BasicBlock *B) : IRBuilder<>(B) {}
1257*e8d8bef9SDimitry Andric     ~Builder() {
1258*e8d8bef9SDimitry Andric       for (Instruction *I : llvm::reverse(ToErase))
1259*e8d8bef9SDimitry Andric         I->eraseFromParent();
1260*e8d8bef9SDimitry Andric     }
1261*e8d8bef9SDimitry Andric     SmallVector<Instruction *, 8> ToErase;
1262*e8d8bef9SDimitry Andric   };
1263*e8d8bef9SDimitry Andric 
1264*e8d8bef9SDimitry Andric #define CallBuilder(B, F)                                                      \
1265*e8d8bef9SDimitry Andric   [&](auto &B_) {                                                              \
1266*e8d8bef9SDimitry Andric     Value *V = B_.F;                                                           \
1267*e8d8bef9SDimitry Andric     if (auto *I = dyn_cast<Instruction>(V))                                    \
1268*e8d8bef9SDimitry Andric       B_.ToErase.push_back(I);                                                 \
1269*e8d8bef9SDimitry Andric     return V;                                                                  \
1270*e8d8bef9SDimitry Andric   }(B)
1271*e8d8bef9SDimitry Andric 
1272*e8d8bef9SDimitry Andric   auto Simplify = [&](Value *V) {
1273*e8d8bef9SDimitry Andric     if (auto *I = dyn_cast<Instruction>(V)) {
1274*e8d8bef9SDimitry Andric       SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1275*e8d8bef9SDimitry Andric       if (Value *S = SimplifyInstruction(I, Q))
1276*e8d8bef9SDimitry Andric         return S;
1277*e8d8bef9SDimitry Andric     }
1278*e8d8bef9SDimitry Andric     return V;
1279*e8d8bef9SDimitry Andric   };
1280*e8d8bef9SDimitry Andric 
1281*e8d8bef9SDimitry Andric   auto StripBitCast = [](Value *V) {
1282*e8d8bef9SDimitry Andric     while (auto *C = dyn_cast<BitCastInst>(V))
1283*e8d8bef9SDimitry Andric       V = C->getOperand(0);
1284*e8d8bef9SDimitry Andric     return V;
1285*e8d8bef9SDimitry Andric   };
1286*e8d8bef9SDimitry Andric 
1287*e8d8bef9SDimitry Andric   Ptr0 = StripBitCast(Ptr0);
1288*e8d8bef9SDimitry Andric   Ptr1 = StripBitCast(Ptr1);
1289*e8d8bef9SDimitry Andric   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1290*e8d8bef9SDimitry Andric     return None;
1291*e8d8bef9SDimitry Andric 
1292*e8d8bef9SDimitry Andric   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1293*e8d8bef9SDimitry Andric   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1294*e8d8bef9SDimitry Andric   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1295*e8d8bef9SDimitry Andric     return None;
1296*e8d8bef9SDimitry Andric 
1297*e8d8bef9SDimitry Andric   Builder B(Gep0->getParent());
1298*e8d8bef9SDimitry Andric   Value *BasePtr = Gep0->getPointerOperand();
1299*e8d8bef9SDimitry Andric   int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType());
1300*e8d8bef9SDimitry Andric 
1301*e8d8bef9SDimitry Andric   // FIXME: for now only check GEPs with a single index.
1302*e8d8bef9SDimitry Andric   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1303*e8d8bef9SDimitry Andric     return None;
1304*e8d8bef9SDimitry Andric 
1305*e8d8bef9SDimitry Andric   Value *Idx0 = Gep0->getOperand(1);
1306*e8d8bef9SDimitry Andric   Value *Idx1 = Gep1->getOperand(1);
1307*e8d8bef9SDimitry Andric 
1308*e8d8bef9SDimitry Andric   // First, try to simplify the subtraction directly.
1309*e8d8bef9SDimitry Andric   if (auto *Diff = dyn_cast<ConstantInt>(
1310*e8d8bef9SDimitry Andric           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1311*e8d8bef9SDimitry Andric     return Diff->getSExtValue() * Scale;
1312*e8d8bef9SDimitry Andric 
1313*e8d8bef9SDimitry Andric   KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1314*e8d8bef9SDimitry Andric   KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1315*e8d8bef9SDimitry Andric   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1316*e8d8bef9SDimitry Andric   if (Unknown.isAllOnesValue())
1317*e8d8bef9SDimitry Andric     return None;
1318*e8d8bef9SDimitry Andric 
1319*e8d8bef9SDimitry Andric   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1320*e8d8bef9SDimitry Andric   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1321*e8d8bef9SDimitry Andric   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1322*e8d8bef9SDimitry Andric   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1323*e8d8bef9SDimitry Andric   int Diff0 = 0;
1324*e8d8bef9SDimitry Andric   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1325*e8d8bef9SDimitry Andric     Diff0 = C->getSExtValue();
1326*e8d8bef9SDimitry Andric   } else {
1327*e8d8bef9SDimitry Andric     return None;
1328*e8d8bef9SDimitry Andric   }
1329*e8d8bef9SDimitry Andric 
1330*e8d8bef9SDimitry Andric   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1331*e8d8bef9SDimitry Andric   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1332*e8d8bef9SDimitry Andric   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1333*e8d8bef9SDimitry Andric   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1334*e8d8bef9SDimitry Andric   int Diff1 = 0;
1335*e8d8bef9SDimitry Andric   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1336*e8d8bef9SDimitry Andric     Diff1 = C->getSExtValue();
1337*e8d8bef9SDimitry Andric   } else {
1338*e8d8bef9SDimitry Andric     return None;
1339*e8d8bef9SDimitry Andric   }
1340*e8d8bef9SDimitry Andric 
1341*e8d8bef9SDimitry Andric   return (Diff0 + Diff1) * Scale;
1342*e8d8bef9SDimitry Andric 
1343*e8d8bef9SDimitry Andric #undef CallBuilder
1344*e8d8bef9SDimitry Andric }
1345*e8d8bef9SDimitry Andric 
1346*e8d8bef9SDimitry Andric template <typename T>
1347*e8d8bef9SDimitry Andric auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1348*e8d8bef9SDimitry Andric                                                   BasicBlock::const_iterator To,
1349*e8d8bef9SDimitry Andric                                                   const T &Ignore) const
1350*e8d8bef9SDimitry Andric     -> bool {
1351*e8d8bef9SDimitry Andric   auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1352*e8d8bef9SDimitry Andric     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1353*e8d8bef9SDimitry Andric       switch (II->getIntrinsicID()) {
1354*e8d8bef9SDimitry Andric       case Intrinsic::masked_load:
1355*e8d8bef9SDimitry Andric         return MemoryLocation::getForArgument(II, 0, TLI);
1356*e8d8bef9SDimitry Andric       case Intrinsic::masked_store:
1357*e8d8bef9SDimitry Andric         return MemoryLocation::getForArgument(II, 1, TLI);
1358*e8d8bef9SDimitry Andric       }
1359*e8d8bef9SDimitry Andric     }
1360*e8d8bef9SDimitry Andric     return MemoryLocation::getOrNone(&I);
1361*e8d8bef9SDimitry Andric   };
1362*e8d8bef9SDimitry Andric 
1363*e8d8bef9SDimitry Andric   // The source and the destination must be in the same basic block.
1364*e8d8bef9SDimitry Andric   const BasicBlock &Block = *In.getParent();
1365*e8d8bef9SDimitry Andric   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1366*e8d8bef9SDimitry Andric   // No PHIs.
1367*e8d8bef9SDimitry Andric   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1368*e8d8bef9SDimitry Andric     return false;
1369*e8d8bef9SDimitry Andric 
1370*e8d8bef9SDimitry Andric   if (!mayBeMemoryDependent(In))
1371*e8d8bef9SDimitry Andric     return true;
1372*e8d8bef9SDimitry Andric   bool MayWrite = In.mayWriteToMemory();
1373*e8d8bef9SDimitry Andric   auto MaybeLoc = getLocOrNone(In);
1374*e8d8bef9SDimitry Andric 
1375*e8d8bef9SDimitry Andric   auto From = In.getIterator();
1376*e8d8bef9SDimitry Andric   if (From == To)
1377*e8d8bef9SDimitry Andric     return true;
1378*e8d8bef9SDimitry Andric   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1379*e8d8bef9SDimitry Andric   auto Range =
1380*e8d8bef9SDimitry Andric       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1381*e8d8bef9SDimitry Andric   for (auto It = Range.first; It != Range.second; ++It) {
1382*e8d8bef9SDimitry Andric     const Instruction &I = *It;
1383*e8d8bef9SDimitry Andric     if (llvm::is_contained(Ignore, &I))
1384*e8d8bef9SDimitry Andric       continue;
1385*e8d8bef9SDimitry Andric     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1386*e8d8bef9SDimitry Andric     if (I.mayThrow())
1387*e8d8bef9SDimitry Andric       return false;
1388*e8d8bef9SDimitry Andric     if (auto *CB = dyn_cast<CallBase>(&I)) {
1389*e8d8bef9SDimitry Andric       if (!CB->hasFnAttr(Attribute::WillReturn))
1390*e8d8bef9SDimitry Andric         return false;
1391*e8d8bef9SDimitry Andric       if (!CB->hasFnAttr(Attribute::NoSync))
1392*e8d8bef9SDimitry Andric         return false;
1393*e8d8bef9SDimitry Andric     }
1394*e8d8bef9SDimitry Andric     if (I.mayReadOrWriteMemory()) {
1395*e8d8bef9SDimitry Andric       auto MaybeLocI = getLocOrNone(I);
1396*e8d8bef9SDimitry Andric       if (MayWrite || I.mayWriteToMemory()) {
1397*e8d8bef9SDimitry Andric         if (!MaybeLoc || !MaybeLocI)
1398*e8d8bef9SDimitry Andric           return false;
1399*e8d8bef9SDimitry Andric         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1400*e8d8bef9SDimitry Andric           return false;
1401*e8d8bef9SDimitry Andric       }
1402*e8d8bef9SDimitry Andric     }
1403*e8d8bef9SDimitry Andric   }
1404*e8d8bef9SDimitry Andric   return true;
1405*e8d8bef9SDimitry Andric }
1406*e8d8bef9SDimitry Andric 
1407*e8d8bef9SDimitry Andric #ifndef NDEBUG
1408*e8d8bef9SDimitry Andric auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1409*e8d8bef9SDimitry Andric   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1410*e8d8bef9SDimitry Andric     return VecTy->getElementType() == getByteTy();
1411*e8d8bef9SDimitry Andric   return false;
1412*e8d8bef9SDimitry Andric }
1413*e8d8bef9SDimitry Andric 
1414*e8d8bef9SDimitry Andric auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1415*e8d8bef9SDimitry Andric   if (!isByteVecTy(Ty))
1416*e8d8bef9SDimitry Andric     return false;
1417*e8d8bef9SDimitry Andric   int Size = getSizeOf(Ty);
1418*e8d8bef9SDimitry Andric   if (HST.isTypeForHVX(Ty))
1419*e8d8bef9SDimitry Andric     return Size == static_cast<int>(HST.getVectorLength());
1420*e8d8bef9SDimitry Andric   return Size == 4 || Size == 8;
1421*e8d8bef9SDimitry Andric }
1422*e8d8bef9SDimitry Andric #endif
1423*e8d8bef9SDimitry Andric 
1424*e8d8bef9SDimitry Andric auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1425*e8d8bef9SDimitry Andric                                            Value *Hi, int Start,
1426*e8d8bef9SDimitry Andric                                            int Length) const -> Value * {
1427*e8d8bef9SDimitry Andric   assert(0 <= Start && Start < Length);
1428*e8d8bef9SDimitry Andric   SmallVector<int, 128> SMask(Length);
1429*e8d8bef9SDimitry Andric   std::iota(SMask.begin(), SMask.end(), Start);
1430*e8d8bef9SDimitry Andric   return Builder.CreateShuffleVector(Lo, Hi, SMask);
1431*e8d8bef9SDimitry Andric }
1432*e8d8bef9SDimitry Andric 
1433*e8d8bef9SDimitry Andric // Pass management.
1434*e8d8bef9SDimitry Andric 
1435*e8d8bef9SDimitry Andric namespace llvm {
1436*e8d8bef9SDimitry Andric void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1437*e8d8bef9SDimitry Andric FunctionPass *createHexagonVectorCombineLegacyPass();
1438*e8d8bef9SDimitry Andric } // namespace llvm
1439*e8d8bef9SDimitry Andric 
1440*e8d8bef9SDimitry Andric namespace {
1441*e8d8bef9SDimitry Andric class HexagonVectorCombineLegacy : public FunctionPass {
1442*e8d8bef9SDimitry Andric public:
1443*e8d8bef9SDimitry Andric   static char ID;
1444*e8d8bef9SDimitry Andric 
1445*e8d8bef9SDimitry Andric   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1446*e8d8bef9SDimitry Andric 
1447*e8d8bef9SDimitry Andric   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1448*e8d8bef9SDimitry Andric 
1449*e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
1450*e8d8bef9SDimitry Andric     AU.setPreservesCFG();
1451*e8d8bef9SDimitry Andric     AU.addRequired<AAResultsWrapperPass>();
1452*e8d8bef9SDimitry Andric     AU.addRequired<AssumptionCacheTracker>();
1453*e8d8bef9SDimitry Andric     AU.addRequired<DominatorTreeWrapperPass>();
1454*e8d8bef9SDimitry Andric     AU.addRequired<TargetLibraryInfoWrapperPass>();
1455*e8d8bef9SDimitry Andric     AU.addRequired<TargetPassConfig>();
1456*e8d8bef9SDimitry Andric     FunctionPass::getAnalysisUsage(AU);
1457*e8d8bef9SDimitry Andric   }
1458*e8d8bef9SDimitry Andric 
1459*e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override {
1460*e8d8bef9SDimitry Andric     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1461*e8d8bef9SDimitry Andric     AssumptionCache &AC =
1462*e8d8bef9SDimitry Andric         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1463*e8d8bef9SDimitry Andric     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1464*e8d8bef9SDimitry Andric     TargetLibraryInfo &TLI =
1465*e8d8bef9SDimitry Andric         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1466*e8d8bef9SDimitry Andric     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1467*e8d8bef9SDimitry Andric     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1468*e8d8bef9SDimitry Andric     return HVC.run();
1469*e8d8bef9SDimitry Andric   }
1470*e8d8bef9SDimitry Andric };
1471*e8d8bef9SDimitry Andric } // namespace
1472*e8d8bef9SDimitry Andric 
1473*e8d8bef9SDimitry Andric char HexagonVectorCombineLegacy::ID = 0;
1474*e8d8bef9SDimitry Andric 
1475*e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1476*e8d8bef9SDimitry Andric                       "Hexagon Vector Combine", false, false)
1477*e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1478*e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1479*e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1480*e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1481*e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1482*e8d8bef9SDimitry Andric INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1483*e8d8bef9SDimitry Andric                     "Hexagon Vector Combine", false, false)
1484*e8d8bef9SDimitry Andric 
1485*e8d8bef9SDimitry Andric FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1486*e8d8bef9SDimitry Andric   return new HexagonVectorCombineLegacy();
1487*e8d8bef9SDimitry Andric }
1488