1e8d8bef9SDimitry Andric //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // HexagonVectorCombine is a utility class implementing a variety of functions 9e8d8bef9SDimitry Andric // that assist in vector-based optimizations. 10e8d8bef9SDimitry Andric // 11e8d8bef9SDimitry Andric // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 13e8d8bef9SDimitry Andric 14e8d8bef9SDimitry Andric #include "llvm/ADT/APInt.h" 15e8d8bef9SDimitry Andric #include "llvm/ADT/ArrayRef.h" 16e8d8bef9SDimitry Andric #include "llvm/ADT/DenseMap.h" 17e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h" 18e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h" 19e8d8bef9SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h" 20e8d8bef9SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 21*bdd1243dSDimitry Andric #include "llvm/Analysis/InstSimplifyFolder.h" 22e8d8bef9SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 23e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 24e8d8bef9SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 25fe6060f1SDimitry Andric #include "llvm/Analysis/VectorUtils.h" 26e8d8bef9SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 27*bdd1243dSDimitry Andric #include "llvm/CodeGen/ValueTypes.h" 28e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 29e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 30e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 31e8d8bef9SDimitry Andric #include "llvm/IR/Intrinsics.h" 32e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsHexagon.h" 33fe6060f1SDimitry Andric #include "llvm/IR/Metadata.h" 34*bdd1243dSDimitry Andric #include "llvm/IR/PatternMatch.h" 35e8d8bef9SDimitry Andric #include "llvm/InitializePasses.h" 36e8d8bef9SDimitry Andric #include "llvm/Pass.h" 37e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h" 38e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h" 39e8d8bef9SDimitry Andric #include "llvm/Support/raw_ostream.h" 40e8d8bef9SDimitry Andric #include "llvm/Target/TargetMachine.h" 41*bdd1243dSDimitry Andric #include "llvm/Transforms/Utils/Local.h" 42e8d8bef9SDimitry Andric 43e8d8bef9SDimitry Andric #include "HexagonSubtarget.h" 44e8d8bef9SDimitry Andric #include "HexagonTargetMachine.h" 45e8d8bef9SDimitry Andric 46e8d8bef9SDimitry Andric #include <algorithm> 47e8d8bef9SDimitry Andric #include <deque> 48e8d8bef9SDimitry Andric #include <map> 49*bdd1243dSDimitry Andric #include <optional> 50e8d8bef9SDimitry Andric #include <set> 51e8d8bef9SDimitry Andric #include <utility> 52e8d8bef9SDimitry Andric #include <vector> 53e8d8bef9SDimitry Andric 54e8d8bef9SDimitry Andric #define DEBUG_TYPE "hexagon-vc" 55e8d8bef9SDimitry Andric 56e8d8bef9SDimitry Andric using namespace llvm; 57e8d8bef9SDimitry Andric 58e8d8bef9SDimitry Andric namespace { 59e8d8bef9SDimitry Andric class HexagonVectorCombine { 60e8d8bef9SDimitry Andric public: 61e8d8bef9SDimitry Andric HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 62e8d8bef9SDimitry Andric DominatorTree &DT_, TargetLibraryInfo &TLI_, 63e8d8bef9SDimitry Andric const TargetMachine &TM_) 64e8d8bef9SDimitry Andric : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 65e8d8bef9SDimitry Andric TLI(TLI_), 66e8d8bef9SDimitry Andric HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 67e8d8bef9SDimitry Andric 68e8d8bef9SDimitry Andric bool run(); 69e8d8bef9SDimitry Andric 70e8d8bef9SDimitry Andric // Common integer type. 71*bdd1243dSDimitry Andric IntegerType *getIntTy(unsigned Width = 32) const; 72e8d8bef9SDimitry Andric // Byte type: either scalar (when Length = 0), or vector with given 73e8d8bef9SDimitry Andric // element count. 74e8d8bef9SDimitry Andric Type *getByteTy(int ElemCount = 0) const; 75e8d8bef9SDimitry Andric // Boolean type: either scalar (when Length = 0), or vector with given 76e8d8bef9SDimitry Andric // element count. 77e8d8bef9SDimitry Andric Type *getBoolTy(int ElemCount = 0) const; 78e8d8bef9SDimitry Andric // Create a ConstantInt of type returned by getIntTy with the value Val. 79*bdd1243dSDimitry Andric ConstantInt *getConstInt(int Val, unsigned Width = 32) const; 80e8d8bef9SDimitry Andric // Get the integer value of V, if it exists. 81*bdd1243dSDimitry Andric std::optional<APInt> getIntValue(const Value *Val) const; 82e8d8bef9SDimitry Andric // Is V a constant 0, or a vector of 0s? 83e8d8bef9SDimitry Andric bool isZero(const Value *Val) const; 84e8d8bef9SDimitry Andric // Is V an undef value? 85e8d8bef9SDimitry Andric bool isUndef(const Value *Val) const; 86e8d8bef9SDimitry Andric 87*bdd1243dSDimitry Andric // Get HVX vector type with the given element type. 88*bdd1243dSDimitry Andric VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 89*bdd1243dSDimitry Andric 90*bdd1243dSDimitry Andric enum SizeKind { 91*bdd1243dSDimitry Andric Store, // Store size 92*bdd1243dSDimitry Andric Alloc, // Alloc size 93*bdd1243dSDimitry Andric }; 94*bdd1243dSDimitry Andric int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 95*bdd1243dSDimitry Andric int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 96e8d8bef9SDimitry Andric int getTypeAlignment(Type *Ty) const; 97*bdd1243dSDimitry Andric size_t length(Value *Val) const; 98*bdd1243dSDimitry Andric size_t length(Type *Ty) const; 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric Constant *getNullValue(Type *Ty) const; 101e8d8bef9SDimitry Andric Constant *getFullValue(Type *Ty) const; 102*bdd1243dSDimitry Andric Constant *getConstSplat(Type *Ty, int Val) const; 103e8d8bef9SDimitry Andric 104*bdd1243dSDimitry Andric Value *simplify(Value *Val) const; 105*bdd1243dSDimitry Andric 106*bdd1243dSDimitry Andric Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 107e8d8bef9SDimitry Andric int Length, int Where) const; 108*bdd1243dSDimitry Andric Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 109*bdd1243dSDimitry Andric Value *Amt) const; 110*bdd1243dSDimitry Andric Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 111*bdd1243dSDimitry Andric Value *Amt) const; 112*bdd1243dSDimitry Andric Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 113*bdd1243dSDimitry Andric Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 114e8d8bef9SDimitry Andric Value *Pad) const; 115*bdd1243dSDimitry Andric Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 116e8d8bef9SDimitry Andric Type *ToTy) const; 117*bdd1243dSDimitry Andric Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 118*bdd1243dSDimitry Andric Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 119*bdd1243dSDimitry Andric Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 120*bdd1243dSDimitry Andric unsigned Length) const; 121*bdd1243dSDimitry Andric Value *sublo(IRBuilderBase &Builder, Value *Val) const; 122*bdd1243dSDimitry Andric Value *subhi(IRBuilderBase &Builder, Value *Val) const; 123*bdd1243dSDimitry Andric Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 124*bdd1243dSDimitry Andric Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 125e8d8bef9SDimitry Andric 126*bdd1243dSDimitry Andric Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 127*bdd1243dSDimitry Andric Type *RetTy, ArrayRef<Value *> Args, 128*bdd1243dSDimitry Andric ArrayRef<Type *> ArgTys = std::nullopt) const; 129*bdd1243dSDimitry Andric SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 130*bdd1243dSDimitry Andric unsigned ToWidth) const; 131*bdd1243dSDimitry Andric Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 132*bdd1243dSDimitry Andric VectorType *ToType) const; 133e8d8bef9SDimitry Andric 134*bdd1243dSDimitry Andric std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 135*bdd1243dSDimitry Andric 136*bdd1243dSDimitry Andric unsigned getNumSignificantBits(const Value *V, 137*bdd1243dSDimitry Andric const Instruction *CtxI = nullptr) const; 138*bdd1243dSDimitry Andric KnownBits getKnownBits(const Value *V, 139*bdd1243dSDimitry Andric const Instruction *CtxI = nullptr) const; 140e8d8bef9SDimitry Andric 141e8d8bef9SDimitry Andric template <typename T = std::vector<Instruction *>> 142e8d8bef9SDimitry Andric bool isSafeToMoveBeforeInBB(const Instruction &In, 143e8d8bef9SDimitry Andric BasicBlock::const_iterator To, 144*bdd1243dSDimitry Andric const T &IgnoreInsts = {}) const; 145*bdd1243dSDimitry Andric 146*bdd1243dSDimitry Andric // This function is only used for assertions at the moment. 147*bdd1243dSDimitry Andric [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 148e8d8bef9SDimitry Andric 149e8d8bef9SDimitry Andric Function &F; 150e8d8bef9SDimitry Andric const DataLayout &DL; 151e8d8bef9SDimitry Andric AliasAnalysis &AA; 152e8d8bef9SDimitry Andric AssumptionCache &AC; 153e8d8bef9SDimitry Andric DominatorTree &DT; 154e8d8bef9SDimitry Andric TargetLibraryInfo &TLI; 155e8d8bef9SDimitry Andric const HexagonSubtarget &HST; 156e8d8bef9SDimitry Andric 157e8d8bef9SDimitry Andric private: 158*bdd1243dSDimitry Andric Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 159*bdd1243dSDimitry Andric int Start, int Length) const; 160e8d8bef9SDimitry Andric }; 161e8d8bef9SDimitry Andric 162e8d8bef9SDimitry Andric class AlignVectors { 163e8d8bef9SDimitry Andric public: 164*bdd1243dSDimitry Andric AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 165e8d8bef9SDimitry Andric 166e8d8bef9SDimitry Andric bool run(); 167e8d8bef9SDimitry Andric 168e8d8bef9SDimitry Andric private: 169e8d8bef9SDimitry Andric using InstList = std::vector<Instruction *>; 170e8d8bef9SDimitry Andric 171e8d8bef9SDimitry Andric struct Segment { 172e8d8bef9SDimitry Andric void *Data; 173e8d8bef9SDimitry Andric int Start; 174e8d8bef9SDimitry Andric int Size; 175e8d8bef9SDimitry Andric }; 176e8d8bef9SDimitry Andric 177e8d8bef9SDimitry Andric struct AddrInfo { 178e8d8bef9SDimitry Andric AddrInfo(const AddrInfo &) = default; 179e8d8bef9SDimitry Andric AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 180e8d8bef9SDimitry Andric Align H) 181e8d8bef9SDimitry Andric : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 182e8d8bef9SDimitry Andric NeedAlign(HVC.getTypeAlignment(ValTy)) {} 1836246ae0bSDimitry Andric AddrInfo &operator=(const AddrInfo &) = default; 184e8d8bef9SDimitry Andric 185e8d8bef9SDimitry Andric // XXX: add Size member? 186e8d8bef9SDimitry Andric Instruction *Inst; 187e8d8bef9SDimitry Andric Value *Addr; 188e8d8bef9SDimitry Andric Type *ValTy; 189e8d8bef9SDimitry Andric Align HaveAlign; 190e8d8bef9SDimitry Andric Align NeedAlign; 191e8d8bef9SDimitry Andric int Offset = 0; // Offset (in bytes) from the first member of the 192e8d8bef9SDimitry Andric // containing AddrList. 193e8d8bef9SDimitry Andric }; 194e8d8bef9SDimitry Andric using AddrList = std::vector<AddrInfo>; 195e8d8bef9SDimitry Andric 196e8d8bef9SDimitry Andric struct InstrLess { 197e8d8bef9SDimitry Andric bool operator()(const Instruction *A, const Instruction *B) const { 198e8d8bef9SDimitry Andric return A->comesBefore(B); 199e8d8bef9SDimitry Andric } 200e8d8bef9SDimitry Andric }; 201e8d8bef9SDimitry Andric using DepList = std::set<Instruction *, InstrLess>; 202e8d8bef9SDimitry Andric 203e8d8bef9SDimitry Andric struct MoveGroup { 204e8d8bef9SDimitry Andric MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 205e8d8bef9SDimitry Andric : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 206e8d8bef9SDimitry Andric Instruction *Base; // Base instruction of the parent address group. 207e8d8bef9SDimitry Andric InstList Main; // Main group of instructions. 208e8d8bef9SDimitry Andric InstList Deps; // List of dependencies. 209e8d8bef9SDimitry Andric bool IsHvx; // Is this group of HVX instructions? 210e8d8bef9SDimitry Andric bool IsLoad; // Is this a load group? 211e8d8bef9SDimitry Andric }; 212e8d8bef9SDimitry Andric using MoveList = std::vector<MoveGroup>; 213e8d8bef9SDimitry Andric 214e8d8bef9SDimitry Andric struct ByteSpan { 215e8d8bef9SDimitry Andric struct Segment { 216fe6060f1SDimitry Andric // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 217e8d8bef9SDimitry Andric Segment(Value *Val, int Begin, int Len) 218e8d8bef9SDimitry Andric : Val(Val), Start(Begin), Size(Len) {} 219e8d8bef9SDimitry Andric Segment(const Segment &Seg) = default; 2206246ae0bSDimitry Andric Segment &operator=(const Segment &Seg) = default; 221fe6060f1SDimitry Andric Value *Val; // Value representable as a sequence of bytes. 222fe6060f1SDimitry Andric int Start; // First byte of the value that belongs to the segment. 223fe6060f1SDimitry Andric int Size; // Number of bytes in the segment. 224e8d8bef9SDimitry Andric }; 225e8d8bef9SDimitry Andric 226e8d8bef9SDimitry Andric struct Block { 227e8d8bef9SDimitry Andric Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 228e8d8bef9SDimitry Andric Block(Value *Val, int Off, int Len, int Pos) 229e8d8bef9SDimitry Andric : Seg(Val, Off, Len), Pos(Pos) {} 230e8d8bef9SDimitry Andric Block(const Block &Blk) = default; 2316246ae0bSDimitry Andric Block &operator=(const Block &Blk) = default; 232fe6060f1SDimitry Andric Segment Seg; // Value segment. 233fe6060f1SDimitry Andric int Pos; // Position (offset) of the segment in the Block. 234e8d8bef9SDimitry Andric }; 235e8d8bef9SDimitry Andric 236e8d8bef9SDimitry Andric int extent() const; 237e8d8bef9SDimitry Andric ByteSpan section(int Start, int Length) const; 238e8d8bef9SDimitry Andric ByteSpan &shift(int Offset); 239fe6060f1SDimitry Andric SmallVector<Value *, 8> values() const; 240e8d8bef9SDimitry Andric 241e8d8bef9SDimitry Andric int size() const { return Blocks.size(); } 242e8d8bef9SDimitry Andric Block &operator[](int i) { return Blocks[i]; } 243e8d8bef9SDimitry Andric 244e8d8bef9SDimitry Andric std::vector<Block> Blocks; 245e8d8bef9SDimitry Andric 246e8d8bef9SDimitry Andric using iterator = decltype(Blocks)::iterator; 247e8d8bef9SDimitry Andric iterator begin() { return Blocks.begin(); } 248e8d8bef9SDimitry Andric iterator end() { return Blocks.end(); } 249e8d8bef9SDimitry Andric using const_iterator = decltype(Blocks)::const_iterator; 250e8d8bef9SDimitry Andric const_iterator begin() const { return Blocks.begin(); } 251e8d8bef9SDimitry Andric const_iterator end() const { return Blocks.end(); } 252e8d8bef9SDimitry Andric }; 253e8d8bef9SDimitry Andric 254e8d8bef9SDimitry Andric Align getAlignFromValue(const Value *V) const; 255*bdd1243dSDimitry Andric std::optional<MemoryLocation> getLocation(const Instruction &In) const; 256*bdd1243dSDimitry Andric std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 257e8d8bef9SDimitry Andric bool isHvx(const AddrInfo &AI) const; 258*bdd1243dSDimitry Andric // This function is only used for assertions at the moment. 259*bdd1243dSDimitry Andric [[maybe_unused]] bool isSectorTy(Type *Ty) const; 260e8d8bef9SDimitry Andric 261e8d8bef9SDimitry Andric Value *getPayload(Value *Val) const; 262e8d8bef9SDimitry Andric Value *getMask(Value *Val) const; 263e8d8bef9SDimitry Andric Value *getPassThrough(Value *Val) const; 264e8d8bef9SDimitry Andric 265*bdd1243dSDimitry Andric Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 266e8d8bef9SDimitry Andric int Adjust) const; 267*bdd1243dSDimitry Andric Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 268e8d8bef9SDimitry Andric int Alignment) const; 269*bdd1243dSDimitry Andric Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 270e8d8bef9SDimitry Andric int Alignment, Value *Mask, Value *PassThru) const; 271*bdd1243dSDimitry Andric Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 272e8d8bef9SDimitry Andric int Alignment, Value *Mask) const; 273e8d8bef9SDimitry Andric 274*bdd1243dSDimitry Andric DepList getUpwardDeps(Instruction *In, Instruction *Base) const; 275e8d8bef9SDimitry Andric bool createAddressGroups(); 276e8d8bef9SDimitry Andric MoveList createLoadGroups(const AddrList &Group) const; 277e8d8bef9SDimitry Andric MoveList createStoreGroups(const AddrList &Group) const; 278e8d8bef9SDimitry Andric bool move(const MoveGroup &Move) const; 279*bdd1243dSDimitry Andric void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 280*bdd1243dSDimitry Andric int ScLen, Value *AlignVal, Value *AlignAddr) const; 281*bdd1243dSDimitry Andric void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 282*bdd1243dSDimitry Andric int ScLen, Value *AlignVal, Value *AlignAddr) const; 283e8d8bef9SDimitry Andric bool realignGroup(const MoveGroup &Move) const; 284e8d8bef9SDimitry Andric 285e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 286e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 287*bdd1243dSDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B); 288e8d8bef9SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 289e8d8bef9SDimitry Andric 290e8d8bef9SDimitry Andric std::map<Instruction *, AddrList> AddrGroups; 291*bdd1243dSDimitry Andric const HexagonVectorCombine &HVC; 292e8d8bef9SDimitry Andric }; 293e8d8bef9SDimitry Andric 294e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED 295e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 296e8d8bef9SDimitry Andric OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 297e8d8bef9SDimitry Andric OS << "Addr: " << *AI.Addr << '\n'; 298e8d8bef9SDimitry Andric OS << "Type: " << *AI.ValTy << '\n'; 299e8d8bef9SDimitry Andric OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 300e8d8bef9SDimitry Andric OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 301e8d8bef9SDimitry Andric OS << "Offset: " << AI.Offset; 302e8d8bef9SDimitry Andric return OS; 303e8d8bef9SDimitry Andric } 304e8d8bef9SDimitry Andric 305e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED 306e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 307e8d8bef9SDimitry Andric OS << "Main\n"; 308e8d8bef9SDimitry Andric for (Instruction *I : MG.Main) 309e8d8bef9SDimitry Andric OS << " " << *I << '\n'; 310e8d8bef9SDimitry Andric OS << "Deps\n"; 311e8d8bef9SDimitry Andric for (Instruction *I : MG.Deps) 312e8d8bef9SDimitry Andric OS << " " << *I << '\n'; 313e8d8bef9SDimitry Andric return OS; 314e8d8bef9SDimitry Andric } 315e8d8bef9SDimitry Andric 316e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED 317*bdd1243dSDimitry Andric raw_ostream &operator<<(raw_ostream &OS, 318*bdd1243dSDimitry Andric const AlignVectors::ByteSpan::Block &B) { 319*bdd1243dSDimitry Andric OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 320*bdd1243dSDimitry Andric << *B.Seg.Val; 321*bdd1243dSDimitry Andric return OS; 322*bdd1243dSDimitry Andric } 323*bdd1243dSDimitry Andric 324*bdd1243dSDimitry Andric LLVM_ATTRIBUTE_UNUSED 325e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 326e8d8bef9SDimitry Andric OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 327*bdd1243dSDimitry Andric for (const AlignVectors::ByteSpan::Block &B : BS) 328*bdd1243dSDimitry Andric OS << B << '\n'; 329e8d8bef9SDimitry Andric OS << ']'; 330e8d8bef9SDimitry Andric return OS; 331e8d8bef9SDimitry Andric } 332e8d8bef9SDimitry Andric 333*bdd1243dSDimitry Andric class HvxIdioms { 334*bdd1243dSDimitry Andric public: 335*bdd1243dSDimitry Andric HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 336*bdd1243dSDimitry Andric auto *Int32Ty = HVC.getIntTy(32); 337*bdd1243dSDimitry Andric HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 338*bdd1243dSDimitry Andric HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 339*bdd1243dSDimitry Andric } 340*bdd1243dSDimitry Andric 341*bdd1243dSDimitry Andric bool run(); 342*bdd1243dSDimitry Andric 343*bdd1243dSDimitry Andric private: 344*bdd1243dSDimitry Andric enum Signedness { Positive, Signed, Unsigned }; 345*bdd1243dSDimitry Andric 346*bdd1243dSDimitry Andric // Value + sign 347*bdd1243dSDimitry Andric // This is to keep track of whether the value should be treated as signed 348*bdd1243dSDimitry Andric // or unsigned, or is known to be positive. 349*bdd1243dSDimitry Andric struct SValue { 350*bdd1243dSDimitry Andric Value *Val; 351*bdd1243dSDimitry Andric Signedness Sgn; 352*bdd1243dSDimitry Andric }; 353*bdd1243dSDimitry Andric 354*bdd1243dSDimitry Andric struct FxpOp { 355*bdd1243dSDimitry Andric unsigned Opcode; 356*bdd1243dSDimitry Andric unsigned Frac; // Number of fraction bits 357*bdd1243dSDimitry Andric SValue X, Y; 358*bdd1243dSDimitry Andric // If present, add 1 << RoundAt before shift: 359*bdd1243dSDimitry Andric std::optional<unsigned> RoundAt; 360*bdd1243dSDimitry Andric VectorType *ResTy; 361*bdd1243dSDimitry Andric }; 362*bdd1243dSDimitry Andric 363*bdd1243dSDimitry Andric auto getNumSignificantBits(Value *V, Instruction *In) const 364*bdd1243dSDimitry Andric -> std::pair<unsigned, Signedness>; 365*bdd1243dSDimitry Andric auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>; 366*bdd1243dSDimitry Andric 367*bdd1243dSDimitry Andric auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>; 368*bdd1243dSDimitry Andric auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *; 369*bdd1243dSDimitry Andric 370*bdd1243dSDimitry Andric auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 371*bdd1243dSDimitry Andric const FxpOp &Op) const -> Value *; 372*bdd1243dSDimitry Andric auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 373*bdd1243dSDimitry Andric bool Rounding) const -> Value *; 374*bdd1243dSDimitry Andric auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 375*bdd1243dSDimitry Andric bool Rounding) const -> Value *; 376*bdd1243dSDimitry Andric // Return {Result, Carry}, where Carry is a vector predicate. 377*bdd1243dSDimitry Andric auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 378*bdd1243dSDimitry Andric Value *CarryIn = nullptr) const 379*bdd1243dSDimitry Andric -> std::pair<Value *, Value *>; 380*bdd1243dSDimitry Andric auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *; 381*bdd1243dSDimitry Andric auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 382*bdd1243dSDimitry Andric -> Value *; 383*bdd1243dSDimitry Andric auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 384*bdd1243dSDimitry Andric -> std::pair<Value *, Value *>; 385*bdd1243dSDimitry Andric auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 386*bdd1243dSDimitry Andric ArrayRef<Value *> WordY) const -> SmallVector<Value *>; 387*bdd1243dSDimitry Andric auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 388*bdd1243dSDimitry Andric Signedness SgnX, ArrayRef<Value *> WordY, 389*bdd1243dSDimitry Andric Signedness SgnY) const -> SmallVector<Value *>; 390*bdd1243dSDimitry Andric 391*bdd1243dSDimitry Andric VectorType *HvxI32Ty; 392*bdd1243dSDimitry Andric VectorType *HvxP32Ty; 393*bdd1243dSDimitry Andric const HexagonVectorCombine &HVC; 394*bdd1243dSDimitry Andric 395*bdd1243dSDimitry Andric friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 396*bdd1243dSDimitry Andric }; 397*bdd1243dSDimitry Andric 398*bdd1243dSDimitry Andric [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 399*bdd1243dSDimitry Andric const HvxIdioms::FxpOp &Op) { 400*bdd1243dSDimitry Andric static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"}; 401*bdd1243dSDimitry Andric OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 402*bdd1243dSDimitry Andric if (Op.RoundAt.has_value()) { 403*bdd1243dSDimitry Andric if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) { 404*bdd1243dSDimitry Andric OS << ":rnd"; 405*bdd1243dSDimitry Andric } else { 406*bdd1243dSDimitry Andric OS << " + 1<<" << *Op.RoundAt; 407*bdd1243dSDimitry Andric } 408*bdd1243dSDimitry Andric } 409*bdd1243dSDimitry Andric OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n" 410*bdd1243dSDimitry Andric << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val; 411*bdd1243dSDimitry Andric return OS; 412*bdd1243dSDimitry Andric } 413*bdd1243dSDimitry Andric 414e8d8bef9SDimitry Andric } // namespace 415e8d8bef9SDimitry Andric 416e8d8bef9SDimitry Andric namespace { 417e8d8bef9SDimitry Andric 418e8d8bef9SDimitry Andric template <typename T> T *getIfUnordered(T *MaybeT) { 419e8d8bef9SDimitry Andric return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 420e8d8bef9SDimitry Andric } 421e8d8bef9SDimitry Andric template <typename T> T *isCandidate(Instruction *In) { 422e8d8bef9SDimitry Andric return dyn_cast<T>(In); 423e8d8bef9SDimitry Andric } 424e8d8bef9SDimitry Andric template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 425e8d8bef9SDimitry Andric return getIfUnordered(dyn_cast<LoadInst>(In)); 426e8d8bef9SDimitry Andric } 427e8d8bef9SDimitry Andric template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 428e8d8bef9SDimitry Andric return getIfUnordered(dyn_cast<StoreInst>(In)); 429e8d8bef9SDimitry Andric } 430e8d8bef9SDimitry Andric 431fe6060f1SDimitry Andric #if !defined(_MSC_VER) || _MSC_VER >= 1926 432fe6060f1SDimitry Andric // VS2017 and some versions of VS2019 have trouble compiling this: 433e8d8bef9SDimitry Andric // error C2976: 'std::map': too few template arguments 434fe6060f1SDimitry Andric // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 435e8d8bef9SDimitry Andric template <typename Pred, typename... Ts> 436e8d8bef9SDimitry Andric void erase_if(std::map<Ts...> &map, Pred p) 437e8d8bef9SDimitry Andric #else 438e8d8bef9SDimitry Andric template <typename Pred, typename T, typename U> 439e8d8bef9SDimitry Andric void erase_if(std::map<T, U> &map, Pred p) 440e8d8bef9SDimitry Andric #endif 441e8d8bef9SDimitry Andric { 442e8d8bef9SDimitry Andric for (auto i = map.begin(), e = map.end(); i != e;) { 443e8d8bef9SDimitry Andric if (p(*i)) 444e8d8bef9SDimitry Andric i = map.erase(i); 445e8d8bef9SDimitry Andric else 446e8d8bef9SDimitry Andric i = std::next(i); 447e8d8bef9SDimitry Andric } 448e8d8bef9SDimitry Andric } 449e8d8bef9SDimitry Andric 450e8d8bef9SDimitry Andric // Forward other erase_ifs to the LLVM implementations. 451e8d8bef9SDimitry Andric template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 452e8d8bef9SDimitry Andric llvm::erase_if(std::forward<T>(container), p); 453e8d8bef9SDimitry Andric } 454e8d8bef9SDimitry Andric 455e8d8bef9SDimitry Andric } // namespace 456e8d8bef9SDimitry Andric 457e8d8bef9SDimitry Andric // --- Begin AlignVectors 458e8d8bef9SDimitry Andric 459e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::extent() const -> int { 460e8d8bef9SDimitry Andric if (size() == 0) 461e8d8bef9SDimitry Andric return 0; 462e8d8bef9SDimitry Andric int Min = Blocks[0].Pos; 463e8d8bef9SDimitry Andric int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 464e8d8bef9SDimitry Andric for (int i = 1, e = size(); i != e; ++i) { 465e8d8bef9SDimitry Andric Min = std::min(Min, Blocks[i].Pos); 466e8d8bef9SDimitry Andric Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 467e8d8bef9SDimitry Andric } 468e8d8bef9SDimitry Andric return Max - Min; 469e8d8bef9SDimitry Andric } 470e8d8bef9SDimitry Andric 471e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 472e8d8bef9SDimitry Andric ByteSpan Section; 473e8d8bef9SDimitry Andric for (const ByteSpan::Block &B : Blocks) { 474e8d8bef9SDimitry Andric int L = std::max(B.Pos, Start); // Left end. 475e8d8bef9SDimitry Andric int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 476e8d8bef9SDimitry Andric if (L < R) { 477e8d8bef9SDimitry Andric // How much to chop off the beginning of the segment: 478e8d8bef9SDimitry Andric int Off = L > B.Pos ? L - B.Pos : 0; 479e8d8bef9SDimitry Andric Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 480e8d8bef9SDimitry Andric } 481e8d8bef9SDimitry Andric } 482e8d8bef9SDimitry Andric return Section; 483e8d8bef9SDimitry Andric } 484e8d8bef9SDimitry Andric 485e8d8bef9SDimitry Andric auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 486e8d8bef9SDimitry Andric for (Block &B : Blocks) 487e8d8bef9SDimitry Andric B.Pos += Offset; 488e8d8bef9SDimitry Andric return *this; 489e8d8bef9SDimitry Andric } 490e8d8bef9SDimitry Andric 491fe6060f1SDimitry Andric auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 492fe6060f1SDimitry Andric SmallVector<Value *, 8> Values(Blocks.size()); 493fe6060f1SDimitry Andric for (int i = 0, e = Blocks.size(); i != e; ++i) 494fe6060f1SDimitry Andric Values[i] = Blocks[i].Seg.Val; 495fe6060f1SDimitry Andric return Values; 496fe6060f1SDimitry Andric } 497fe6060f1SDimitry Andric 498e8d8bef9SDimitry Andric auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 499e8d8bef9SDimitry Andric const auto *C = dyn_cast<ConstantInt>(V); 500e8d8bef9SDimitry Andric assert(C && "Alignment must be a compile-time constant integer"); 501e8d8bef9SDimitry Andric return C->getAlignValue(); 502e8d8bef9SDimitry Andric } 503e8d8bef9SDimitry Andric 504*bdd1243dSDimitry Andric auto AlignVectors::getAddrInfo(Instruction &In) const 505*bdd1243dSDimitry Andric -> std::optional<AddrInfo> { 506e8d8bef9SDimitry Andric if (auto *L = isCandidate<LoadInst>(&In)) 507e8d8bef9SDimitry Andric return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 508e8d8bef9SDimitry Andric L->getAlign()); 509e8d8bef9SDimitry Andric if (auto *S = isCandidate<StoreInst>(&In)) 510e8d8bef9SDimitry Andric return AddrInfo(HVC, S, S->getPointerOperand(), 511e8d8bef9SDimitry Andric S->getValueOperand()->getType(), S->getAlign()); 512e8d8bef9SDimitry Andric if (auto *II = isCandidate<IntrinsicInst>(&In)) { 513e8d8bef9SDimitry Andric Intrinsic::ID ID = II->getIntrinsicID(); 514e8d8bef9SDimitry Andric switch (ID) { 515e8d8bef9SDimitry Andric case Intrinsic::masked_load: 516e8d8bef9SDimitry Andric return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 517e8d8bef9SDimitry Andric getAlignFromValue(II->getArgOperand(1))); 518e8d8bef9SDimitry Andric case Intrinsic::masked_store: 519e8d8bef9SDimitry Andric return AddrInfo(HVC, II, II->getArgOperand(1), 520e8d8bef9SDimitry Andric II->getArgOperand(0)->getType(), 521e8d8bef9SDimitry Andric getAlignFromValue(II->getArgOperand(2))); 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric } 524*bdd1243dSDimitry Andric return std::nullopt; 525e8d8bef9SDimitry Andric } 526e8d8bef9SDimitry Andric 527e8d8bef9SDimitry Andric auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 528e8d8bef9SDimitry Andric return HVC.HST.isTypeForHVX(AI.ValTy); 529e8d8bef9SDimitry Andric } 530e8d8bef9SDimitry Andric 531e8d8bef9SDimitry Andric auto AlignVectors::getPayload(Value *Val) const -> Value * { 532e8d8bef9SDimitry Andric if (auto *In = dyn_cast<Instruction>(Val)) { 533e8d8bef9SDimitry Andric Intrinsic::ID ID = 0; 534e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(In)) 535e8d8bef9SDimitry Andric ID = II->getIntrinsicID(); 536e8d8bef9SDimitry Andric if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 537e8d8bef9SDimitry Andric return In->getOperand(0); 538e8d8bef9SDimitry Andric } 539e8d8bef9SDimitry Andric return Val; 540e8d8bef9SDimitry Andric } 541e8d8bef9SDimitry Andric 542e8d8bef9SDimitry Andric auto AlignVectors::getMask(Value *Val) const -> Value * { 543e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 544e8d8bef9SDimitry Andric switch (II->getIntrinsicID()) { 545e8d8bef9SDimitry Andric case Intrinsic::masked_load: 546e8d8bef9SDimitry Andric return II->getArgOperand(2); 547e8d8bef9SDimitry Andric case Intrinsic::masked_store: 548e8d8bef9SDimitry Andric return II->getArgOperand(3); 549e8d8bef9SDimitry Andric } 550e8d8bef9SDimitry Andric } 551e8d8bef9SDimitry Andric 552e8d8bef9SDimitry Andric Type *ValTy = getPayload(Val)->getType(); 553*bdd1243dSDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 554*bdd1243dSDimitry Andric return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 555e8d8bef9SDimitry Andric return HVC.getFullValue(HVC.getBoolTy()); 556e8d8bef9SDimitry Andric } 557e8d8bef9SDimitry Andric 558e8d8bef9SDimitry Andric auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 559e8d8bef9SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 560e8d8bef9SDimitry Andric if (II->getIntrinsicID() == Intrinsic::masked_load) 561e8d8bef9SDimitry Andric return II->getArgOperand(3); 562e8d8bef9SDimitry Andric } 563e8d8bef9SDimitry Andric return UndefValue::get(getPayload(Val)->getType()); 564e8d8bef9SDimitry Andric } 565e8d8bef9SDimitry Andric 566*bdd1243dSDimitry Andric auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 567e8d8bef9SDimitry Andric Type *ValTy, int Adjust) const 568e8d8bef9SDimitry Andric -> Value * { 569e8d8bef9SDimitry Andric // The adjustment is in bytes, but if it's a multiple of the type size, 570e8d8bef9SDimitry Andric // we don't need to do pointer casts. 571fe6060f1SDimitry Andric auto *PtrTy = cast<PointerType>(Ptr->getType()); 572fe6060f1SDimitry Andric if (!PtrTy->isOpaque()) { 57304eeddc0SDimitry Andric Type *ElemTy = PtrTy->getNonOpaquePointerElementType(); 574*bdd1243dSDimitry Andric int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc); 575349cc55cSDimitry Andric if (Adjust % ElemSize == 0 && Adjust != 0) { 576fe6060f1SDimitry Andric Value *Tmp0 = 577fe6060f1SDimitry Andric Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 578e8d8bef9SDimitry Andric return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 579e8d8bef9SDimitry Andric } 580fe6060f1SDimitry Andric } 581e8d8bef9SDimitry Andric 582e8d8bef9SDimitry Andric PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 583e8d8bef9SDimitry Andric Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 584fe6060f1SDimitry Andric Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 585fe6060f1SDimitry Andric HVC.getConstInt(Adjust)); 586e8d8bef9SDimitry Andric return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 587e8d8bef9SDimitry Andric } 588e8d8bef9SDimitry Andric 589*bdd1243dSDimitry Andric auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 590e8d8bef9SDimitry Andric Type *ValTy, int Alignment) const 591e8d8bef9SDimitry Andric -> Value * { 592e8d8bef9SDimitry Andric Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 593e8d8bef9SDimitry Andric Value *Mask = HVC.getConstInt(-Alignment); 594e8d8bef9SDimitry Andric Value *And = Builder.CreateAnd(AsInt, Mask); 595e8d8bef9SDimitry Andric return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 596e8d8bef9SDimitry Andric } 597e8d8bef9SDimitry Andric 598*bdd1243dSDimitry Andric auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, 599e8d8bef9SDimitry Andric Value *Ptr, int Alignment, Value *Mask, 600e8d8bef9SDimitry Andric Value *PassThru) const -> Value * { 601e8d8bef9SDimitry Andric assert(!HVC.isUndef(Mask)); // Should this be allowed? 602e8d8bef9SDimitry Andric if (HVC.isZero(Mask)) 603e8d8bef9SDimitry Andric return PassThru; 604e8d8bef9SDimitry Andric if (Mask == ConstantInt::getTrue(Mask->getType())) 605e8d8bef9SDimitry Andric return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 606fe6060f1SDimitry Andric return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); 607e8d8bef9SDimitry Andric } 608e8d8bef9SDimitry Andric 609*bdd1243dSDimitry Andric auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val, 610e8d8bef9SDimitry Andric Value *Ptr, int Alignment, 611e8d8bef9SDimitry Andric Value *Mask) const -> Value * { 612e8d8bef9SDimitry Andric if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 613e8d8bef9SDimitry Andric return UndefValue::get(Val->getType()); 614e8d8bef9SDimitry Andric if (Mask == ConstantInt::getTrue(Mask->getType())) 615e8d8bef9SDimitry Andric return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 616e8d8bef9SDimitry Andric return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 617e8d8bef9SDimitry Andric } 618e8d8bef9SDimitry Andric 619*bdd1243dSDimitry Andric auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const 620*bdd1243dSDimitry Andric -> DepList { 621*bdd1243dSDimitry Andric BasicBlock *Parent = Base->getParent(); 622*bdd1243dSDimitry Andric assert(In->getParent() == Parent && 623*bdd1243dSDimitry Andric "Base and In should be in the same block"); 624*bdd1243dSDimitry Andric assert(Base->comesBefore(In) && "Base should come before In"); 625*bdd1243dSDimitry Andric 626*bdd1243dSDimitry Andric DepList Deps; 627*bdd1243dSDimitry Andric std::deque<Instruction *> WorkQ = {In}; 628*bdd1243dSDimitry Andric while (!WorkQ.empty()) { 629*bdd1243dSDimitry Andric Instruction *D = WorkQ.front(); 630*bdd1243dSDimitry Andric WorkQ.pop_front(); 631*bdd1243dSDimitry Andric Deps.insert(D); 632*bdd1243dSDimitry Andric for (Value *Op : D->operands()) { 633*bdd1243dSDimitry Andric if (auto *I = dyn_cast<Instruction>(Op)) { 634*bdd1243dSDimitry Andric if (I->getParent() == Parent && Base->comesBefore(I)) 635*bdd1243dSDimitry Andric WorkQ.push_back(I); 636*bdd1243dSDimitry Andric } 637*bdd1243dSDimitry Andric } 638*bdd1243dSDimitry Andric } 639*bdd1243dSDimitry Andric return Deps; 640*bdd1243dSDimitry Andric } 641*bdd1243dSDimitry Andric 642e8d8bef9SDimitry Andric auto AlignVectors::createAddressGroups() -> bool { 643e8d8bef9SDimitry Andric // An address group created here may contain instructions spanning 644e8d8bef9SDimitry Andric // multiple basic blocks. 645e8d8bef9SDimitry Andric AddrList WorkStack; 646e8d8bef9SDimitry Andric 647e8d8bef9SDimitry Andric auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 648e8d8bef9SDimitry Andric for (AddrInfo &W : WorkStack) { 649e8d8bef9SDimitry Andric if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 650e8d8bef9SDimitry Andric return std::make_pair(W.Inst, *D); 651e8d8bef9SDimitry Andric } 652e8d8bef9SDimitry Andric return std::make_pair(nullptr, 0); 653e8d8bef9SDimitry Andric }; 654e8d8bef9SDimitry Andric 655e8d8bef9SDimitry Andric auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 656e8d8bef9SDimitry Andric BasicBlock &Block = *DomN->getBlock(); 657e8d8bef9SDimitry Andric for (Instruction &I : Block) { 658e8d8bef9SDimitry Andric auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 659e8d8bef9SDimitry Andric if (!AI) 660e8d8bef9SDimitry Andric continue; 661e8d8bef9SDimitry Andric auto F = findBaseAndOffset(*AI); 662e8d8bef9SDimitry Andric Instruction *GroupInst; 663e8d8bef9SDimitry Andric if (Instruction *BI = F.first) { 664e8d8bef9SDimitry Andric AI->Offset = F.second; 665e8d8bef9SDimitry Andric GroupInst = BI; 666e8d8bef9SDimitry Andric } else { 667e8d8bef9SDimitry Andric WorkStack.push_back(*AI); 668e8d8bef9SDimitry Andric GroupInst = AI->Inst; 669e8d8bef9SDimitry Andric } 670e8d8bef9SDimitry Andric AddrGroups[GroupInst].push_back(*AI); 671e8d8bef9SDimitry Andric } 672e8d8bef9SDimitry Andric 673e8d8bef9SDimitry Andric for (DomTreeNode *C : DomN->children()) 674e8d8bef9SDimitry Andric Visit(C, Visit); 675e8d8bef9SDimitry Andric 676e8d8bef9SDimitry Andric while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 677e8d8bef9SDimitry Andric WorkStack.pop_back(); 678e8d8bef9SDimitry Andric }; 679e8d8bef9SDimitry Andric 680e8d8bef9SDimitry Andric traverseBlock(HVC.DT.getRootNode(), traverseBlock); 681e8d8bef9SDimitry Andric assert(WorkStack.empty()); 682e8d8bef9SDimitry Andric 683e8d8bef9SDimitry Andric // AddrGroups are formed. 684e8d8bef9SDimitry Andric 685e8d8bef9SDimitry Andric // Remove groups of size 1. 686e8d8bef9SDimitry Andric erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 687e8d8bef9SDimitry Andric // Remove groups that don't use HVX types. 688e8d8bef9SDimitry Andric erase_if(AddrGroups, [&](auto &G) { 6890eae32dcSDimitry Andric return llvm::none_of( 690e8d8bef9SDimitry Andric G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 691e8d8bef9SDimitry Andric }); 692e8d8bef9SDimitry Andric 693e8d8bef9SDimitry Andric return !AddrGroups.empty(); 694e8d8bef9SDimitry Andric } 695e8d8bef9SDimitry Andric 696e8d8bef9SDimitry Andric auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 697e8d8bef9SDimitry Andric // Form load groups. 698e8d8bef9SDimitry Andric // To avoid complications with moving code across basic blocks, only form 699e8d8bef9SDimitry Andric // groups that are contained within a single basic block. 700e8d8bef9SDimitry Andric 701e8d8bef9SDimitry Andric auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 702e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main"); 703e8d8bef9SDimitry Andric // Don't mix HVX and non-HVX instructions. 704e8d8bef9SDimitry Andric if (Move.IsHvx != isHvx(Info)) 705e8d8bef9SDimitry Andric return false; 706e8d8bef9SDimitry Andric // Leading instruction in the load group. 707e8d8bef9SDimitry Andric Instruction *Base = Move.Main.front(); 708e8d8bef9SDimitry Andric if (Base->getParent() != Info.Inst->getParent()) 709e8d8bef9SDimitry Andric return false; 710e8d8bef9SDimitry Andric 711e8d8bef9SDimitry Andric auto isSafeToMoveToBase = [&](const Instruction *I) { 712e8d8bef9SDimitry Andric return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 713e8d8bef9SDimitry Andric }; 714e8d8bef9SDimitry Andric DepList Deps = getUpwardDeps(Info.Inst, Base); 715e8d8bef9SDimitry Andric if (!llvm::all_of(Deps, isSafeToMoveToBase)) 716e8d8bef9SDimitry Andric return false; 717e8d8bef9SDimitry Andric 718e8d8bef9SDimitry Andric // The dependencies will be moved together with the load, so make sure 719e8d8bef9SDimitry Andric // that none of them could be moved independently in another group. 720e8d8bef9SDimitry Andric Deps.erase(Info.Inst); 721e8d8bef9SDimitry Andric auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 722e8d8bef9SDimitry Andric if (llvm::any_of(Deps, inAddrMap)) 723e8d8bef9SDimitry Andric return false; 724e8d8bef9SDimitry Andric Move.Main.push_back(Info.Inst); 725e8d8bef9SDimitry Andric llvm::append_range(Move.Deps, Deps); 726e8d8bef9SDimitry Andric return true; 727e8d8bef9SDimitry Andric }; 728e8d8bef9SDimitry Andric 729e8d8bef9SDimitry Andric MoveList LoadGroups; 730e8d8bef9SDimitry Andric 731e8d8bef9SDimitry Andric for (const AddrInfo &Info : Group) { 732e8d8bef9SDimitry Andric if (!Info.Inst->mayReadFromMemory()) 733e8d8bef9SDimitry Andric continue; 734e8d8bef9SDimitry Andric if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 735e8d8bef9SDimitry Andric LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 736e8d8bef9SDimitry Andric } 737e8d8bef9SDimitry Andric 738e8d8bef9SDimitry Andric // Erase singleton groups. 739e8d8bef9SDimitry Andric erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 740e8d8bef9SDimitry Andric return LoadGroups; 741e8d8bef9SDimitry Andric } 742e8d8bef9SDimitry Andric 743e8d8bef9SDimitry Andric auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 744e8d8bef9SDimitry Andric // Form store groups. 745e8d8bef9SDimitry Andric // To avoid complications with moving code across basic blocks, only form 746e8d8bef9SDimitry Andric // groups that are contained within a single basic block. 747e8d8bef9SDimitry Andric 748e8d8bef9SDimitry Andric auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 749e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main"); 750e8d8bef9SDimitry Andric // For stores with return values we'd have to collect downward depenencies. 751e8d8bef9SDimitry Andric // There are no such stores that we handle at the moment, so omit that. 752e8d8bef9SDimitry Andric assert(Info.Inst->getType()->isVoidTy() && 753e8d8bef9SDimitry Andric "Not handling stores with return values"); 754e8d8bef9SDimitry Andric // Don't mix HVX and non-HVX instructions. 755e8d8bef9SDimitry Andric if (Move.IsHvx != isHvx(Info)) 756e8d8bef9SDimitry Andric return false; 757e8d8bef9SDimitry Andric // For stores we need to be careful whether it's safe to move them. 758e8d8bef9SDimitry Andric // Stores that are otherwise safe to move together may not appear safe 759e8d8bef9SDimitry Andric // to move over one another (i.e. isSafeToMoveBefore may return false). 760e8d8bef9SDimitry Andric Instruction *Base = Move.Main.front(); 761e8d8bef9SDimitry Andric if (Base->getParent() != Info.Inst->getParent()) 762e8d8bef9SDimitry Andric return false; 763e8d8bef9SDimitry Andric if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 764e8d8bef9SDimitry Andric return false; 765e8d8bef9SDimitry Andric Move.Main.push_back(Info.Inst); 766e8d8bef9SDimitry Andric return true; 767e8d8bef9SDimitry Andric }; 768e8d8bef9SDimitry Andric 769e8d8bef9SDimitry Andric MoveList StoreGroups; 770e8d8bef9SDimitry Andric 771e8d8bef9SDimitry Andric for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 772e8d8bef9SDimitry Andric const AddrInfo &Info = *I; 773e8d8bef9SDimitry Andric if (!Info.Inst->mayWriteToMemory()) 774e8d8bef9SDimitry Andric continue; 775e8d8bef9SDimitry Andric if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 776e8d8bef9SDimitry Andric StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 777e8d8bef9SDimitry Andric } 778e8d8bef9SDimitry Andric 779e8d8bef9SDimitry Andric // Erase singleton groups. 780e8d8bef9SDimitry Andric erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 781e8d8bef9SDimitry Andric return StoreGroups; 782e8d8bef9SDimitry Andric } 783e8d8bef9SDimitry Andric 784e8d8bef9SDimitry Andric auto AlignVectors::move(const MoveGroup &Move) const -> bool { 785e8d8bef9SDimitry Andric assert(!Move.Main.empty() && "Move group should have non-empty Main"); 786e8d8bef9SDimitry Andric Instruction *Where = Move.Main.front(); 787e8d8bef9SDimitry Andric 788e8d8bef9SDimitry Andric if (Move.IsLoad) { 789e8d8bef9SDimitry Andric // Move all deps to before Where, keeping order. 790e8d8bef9SDimitry Andric for (Instruction *D : Move.Deps) 791e8d8bef9SDimitry Andric D->moveBefore(Where); 792e8d8bef9SDimitry Andric // Move all main instructions to after Where, keeping order. 793e8d8bef9SDimitry Andric ArrayRef<Instruction *> Main(Move.Main); 794e8d8bef9SDimitry Andric for (Instruction *M : Main.drop_front(1)) { 795e8d8bef9SDimitry Andric M->moveAfter(Where); 796e8d8bef9SDimitry Andric Where = M; 797e8d8bef9SDimitry Andric } 798e8d8bef9SDimitry Andric } else { 799e8d8bef9SDimitry Andric // NOTE: Deps are empty for "store" groups. If they need to be 800e8d8bef9SDimitry Andric // non-empty, decide on the order. 801e8d8bef9SDimitry Andric assert(Move.Deps.empty()); 802e8d8bef9SDimitry Andric // Move all main instructions to before Where, inverting order. 803e8d8bef9SDimitry Andric ArrayRef<Instruction *> Main(Move.Main); 804e8d8bef9SDimitry Andric for (Instruction *M : Main.drop_front(1)) { 805e8d8bef9SDimitry Andric M->moveBefore(Where); 806e8d8bef9SDimitry Andric Where = M; 807e8d8bef9SDimitry Andric } 808e8d8bef9SDimitry Andric } 809e8d8bef9SDimitry Andric 810e8d8bef9SDimitry Andric return Move.Main.size() + Move.Deps.size() > 1; 811e8d8bef9SDimitry Andric } 812e8d8bef9SDimitry Andric 813*bdd1243dSDimitry Andric auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder, 814*bdd1243dSDimitry Andric const ByteSpan &VSpan, int ScLen, 815*bdd1243dSDimitry Andric Value *AlignVal, Value *AlignAddr) const 816*bdd1243dSDimitry Andric -> void { 817*bdd1243dSDimitry Andric Type *SecTy = HVC.getByteTy(ScLen); 818*bdd1243dSDimitry Andric int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 819*bdd1243dSDimitry Andric bool DoAlign = !HVC.isZero(AlignVal); 820*bdd1243dSDimitry Andric BasicBlock::iterator BasePos = Builder.GetInsertPoint(); 821*bdd1243dSDimitry Andric BasicBlock *BaseBlock = Builder.GetInsertBlock(); 822*bdd1243dSDimitry Andric 823*bdd1243dSDimitry Andric ByteSpan ASpan; 824*bdd1243dSDimitry Andric auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 825*bdd1243dSDimitry Andric auto *Undef = UndefValue::get(SecTy); 826*bdd1243dSDimitry Andric 827*bdd1243dSDimitry Andric SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr); 828*bdd1243dSDimitry Andric 829*bdd1243dSDimitry Andric // We could create all of the aligned loads, and generate the valigns 830*bdd1243dSDimitry Andric // at the location of the first load, but for large load groups, this 831*bdd1243dSDimitry Andric // could create highly suboptimal code (there have been groups of 140+ 832*bdd1243dSDimitry Andric // loads in real code). 833*bdd1243dSDimitry Andric // Instead, place the loads/valigns as close to the users as possible. 834*bdd1243dSDimitry Andric // In any case we need to have a mapping from the blocks of VSpan (the 835*bdd1243dSDimitry Andric // span covered by the pre-existing loads) to ASpan (the span covered 836*bdd1243dSDimitry Andric // by the aligned loads). There is a small problem, though: ASpan needs 837*bdd1243dSDimitry Andric // to have pointers to the loads/valigns, but we don't know where to put 838*bdd1243dSDimitry Andric // them yet. We can't use nullptr, because when we create sections of 839*bdd1243dSDimitry Andric // ASpan (corresponding to blocks from VSpan), for each block in the 840*bdd1243dSDimitry Andric // section we need to know which blocks of ASpan they are a part of. 841*bdd1243dSDimitry Andric // To have 1-1 mapping between blocks of ASpan and the temporary value 842*bdd1243dSDimitry Andric // pointers, use the addresses of the blocks themselves. 843*bdd1243dSDimitry Andric 844*bdd1243dSDimitry Andric // Populate the blocks first, to avoid reallocations of the vector 845*bdd1243dSDimitry Andric // interfering with generating the placeholder addresses. 846*bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index) 847*bdd1243dSDimitry Andric ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen); 848*bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index) { 849*bdd1243dSDimitry Andric ASpan.Blocks[Index].Seg.Val = 850*bdd1243dSDimitry Andric reinterpret_cast<Value *>(&ASpan.Blocks[Index]); 851*bdd1243dSDimitry Andric } 852*bdd1243dSDimitry Andric 853*bdd1243dSDimitry Andric // Multiple values from VSpan can map to the same value in ASpan. Since we 854*bdd1243dSDimitry Andric // try to create loads lazily, we need to find the earliest use for each 855*bdd1243dSDimitry Andric // value from ASpan. 856*bdd1243dSDimitry Andric DenseMap<void *, Instruction *> EarliestUser; 857*bdd1243dSDimitry Andric auto isEarlier = [](Instruction *A, Instruction *B) { 858*bdd1243dSDimitry Andric if (B == nullptr) 859*bdd1243dSDimitry Andric return true; 860*bdd1243dSDimitry Andric if (A == nullptr) 861*bdd1243dSDimitry Andric return false; 862*bdd1243dSDimitry Andric assert(A->getParent() == B->getParent()); 863*bdd1243dSDimitry Andric return A->comesBefore(B); 864*bdd1243dSDimitry Andric }; 865*bdd1243dSDimitry Andric auto earliestUser = [&](const auto &Uses) { 866*bdd1243dSDimitry Andric Instruction *User = nullptr; 867*bdd1243dSDimitry Andric for (const Use &U : Uses) { 868*bdd1243dSDimitry Andric auto *I = dyn_cast<Instruction>(U.getUser()); 869*bdd1243dSDimitry Andric assert(I != nullptr && "Load used in a non-instruction?"); 870*bdd1243dSDimitry Andric // Make sure we only consider at users in this block, but we need 871*bdd1243dSDimitry Andric // to remember if there were users outside the block too. This is 872*bdd1243dSDimitry Andric // because if there are no users, aligned loads will not be created. 873*bdd1243dSDimitry Andric if (I->getParent() == BaseBlock) { 874*bdd1243dSDimitry Andric if (!isa<PHINode>(I)) 875*bdd1243dSDimitry Andric User = std::min(User, I, isEarlier); 876*bdd1243dSDimitry Andric } else { 877*bdd1243dSDimitry Andric User = std::min(User, BaseBlock->getTerminator(), isEarlier); 878*bdd1243dSDimitry Andric } 879*bdd1243dSDimitry Andric } 880*bdd1243dSDimitry Andric return User; 881*bdd1243dSDimitry Andric }; 882*bdd1243dSDimitry Andric 883*bdd1243dSDimitry Andric for (const ByteSpan::Block &B : VSpan) { 884*bdd1243dSDimitry Andric ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size); 885*bdd1243dSDimitry Andric for (const ByteSpan::Block &S : ASection) { 886*bdd1243dSDimitry Andric EarliestUser[S.Seg.Val] = std::min( 887*bdd1243dSDimitry Andric EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier); 888*bdd1243dSDimitry Andric } 889*bdd1243dSDimitry Andric } 890*bdd1243dSDimitry Andric 891*bdd1243dSDimitry Andric auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan, 892*bdd1243dSDimitry Andric int Index) { 893*bdd1243dSDimitry Andric Value *Ptr = 894*bdd1243dSDimitry Andric createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 895*bdd1243dSDimitry Andric // FIXME: generate a predicated load? 896*bdd1243dSDimitry Andric Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 897*bdd1243dSDimitry Andric // If vector shifting is potentially needed, accumulate metadata 898*bdd1243dSDimitry Andric // from source sections of twice the load width. 899*bdd1243dSDimitry Andric int Start = (Index - DoAlign) * ScLen; 900*bdd1243dSDimitry Andric int Width = (1 + DoAlign) * ScLen; 901*bdd1243dSDimitry Andric propagateMetadata(cast<Instruction>(Load), 902*bdd1243dSDimitry Andric VSpan.section(Start, Width).values()); 903*bdd1243dSDimitry Andric return cast<Instruction>(Load); 904*bdd1243dSDimitry Andric }; 905*bdd1243dSDimitry Andric 906*bdd1243dSDimitry Andric auto moveBefore = [this](Instruction *In, Instruction *To) { 907*bdd1243dSDimitry Andric // Move In and its upward dependencies to before To. 908*bdd1243dSDimitry Andric assert(In->getParent() == To->getParent()); 909*bdd1243dSDimitry Andric DepList Deps = getUpwardDeps(In, To); 910*bdd1243dSDimitry Andric // DepList is sorted with respect to positions in the basic block. 911*bdd1243dSDimitry Andric for (Instruction *I : Deps) 912*bdd1243dSDimitry Andric I->moveBefore(To); 913*bdd1243dSDimitry Andric }; 914*bdd1243dSDimitry Andric 915*bdd1243dSDimitry Andric // Generate necessary loads at appropriate locations. 916*bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors + 1; ++Index) { 917*bdd1243dSDimitry Andric // In ASpan, each block will be either a single aligned load, or a 918*bdd1243dSDimitry Andric // valign of a pair of loads. In the latter case, an aligned load j 919*bdd1243dSDimitry Andric // will belong to the current valign, and the one in the previous 920*bdd1243dSDimitry Andric // block (for j > 0). 921*bdd1243dSDimitry Andric Instruction *PrevAt = 922*bdd1243dSDimitry Andric DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr; 923*bdd1243dSDimitry Andric Instruction *ThisAt = 924*bdd1243dSDimitry Andric Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr; 925*bdd1243dSDimitry Andric if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) { 926*bdd1243dSDimitry Andric Builder.SetInsertPoint(Where); 927*bdd1243dSDimitry Andric Loads[Index] = createLoad(Builder, VSpan, Index); 928*bdd1243dSDimitry Andric // We know it's safe to put the load at BasePos, so if it's not safe 929*bdd1243dSDimitry Andric // to move it from this location to BasePos, then the current location 930*bdd1243dSDimitry Andric // is not valid. 931*bdd1243dSDimitry Andric // We can't do this check proactively because we need the load to exist 932*bdd1243dSDimitry Andric // in order to check legality. 933*bdd1243dSDimitry Andric if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos)) 934*bdd1243dSDimitry Andric moveBefore(Loads[Index], &*BasePos); 935*bdd1243dSDimitry Andric } 936*bdd1243dSDimitry Andric } 937*bdd1243dSDimitry Andric // Generate valigns if needed, and fill in proper values in ASpan 938*bdd1243dSDimitry Andric for (int Index = 0; Index != NumSectors; ++Index) { 939*bdd1243dSDimitry Andric ASpan[Index].Seg.Val = nullptr; 940*bdd1243dSDimitry Andric if (auto *Where = EarliestUser[&ASpan[Index]]) { 941*bdd1243dSDimitry Andric Builder.SetInsertPoint(Where); 942*bdd1243dSDimitry Andric Value *Val = Loads[Index]; 943*bdd1243dSDimitry Andric assert(Val != nullptr); 944*bdd1243dSDimitry Andric if (DoAlign) { 945*bdd1243dSDimitry Andric Value *NextLoad = Loads[Index + 1]; 946*bdd1243dSDimitry Andric assert(NextLoad != nullptr); 947*bdd1243dSDimitry Andric Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal); 948*bdd1243dSDimitry Andric } 949*bdd1243dSDimitry Andric ASpan[Index].Seg.Val = Val; 950*bdd1243dSDimitry Andric } 951*bdd1243dSDimitry Andric } 952*bdd1243dSDimitry Andric 953*bdd1243dSDimitry Andric for (const ByteSpan::Block &B : VSpan) { 954*bdd1243dSDimitry Andric ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 955*bdd1243dSDimitry Andric Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 956*bdd1243dSDimitry Andric Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val)); 957*bdd1243dSDimitry Andric 958*bdd1243dSDimitry Andric for (ByteSpan::Block &S : ASection) { 959*bdd1243dSDimitry Andric if (S.Seg.Val == nullptr) 960*bdd1243dSDimitry Andric continue; 961*bdd1243dSDimitry Andric // The processing of the data loaded by the aligned loads 962*bdd1243dSDimitry Andric // needs to be inserted after the data is available. 963*bdd1243dSDimitry Andric Instruction *SegI = cast<Instruction>(S.Seg.Val); 964*bdd1243dSDimitry Andric Builder.SetInsertPoint(&*std::next(SegI->getIterator())); 965*bdd1243dSDimitry Andric Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 966*bdd1243dSDimitry Andric Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 967*bdd1243dSDimitry Andric } 968*bdd1243dSDimitry Andric // Instead of casting everything to bytes for the vselect, cast to the 969*bdd1243dSDimitry Andric // original value type. This will avoid complications with casting masks. 970*bdd1243dSDimitry Andric // For example, in cases when the original mask applied to i32, it could 971*bdd1243dSDimitry Andric // be converted to a mask applicable to i8 via pred_typecast intrinsic, 972*bdd1243dSDimitry Andric // but if the mask is not exactly of HVX length, extra handling would be 973*bdd1243dSDimitry Andric // needed to make it work. 974*bdd1243dSDimitry Andric Type *ValTy = getPayload(B.Seg.Val)->getType(); 975*bdd1243dSDimitry Andric Value *Cast = Builder.CreateBitCast(Accum, ValTy); 976*bdd1243dSDimitry Andric Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 977*bdd1243dSDimitry Andric getPassThrough(B.Seg.Val)); 978*bdd1243dSDimitry Andric B.Seg.Val->replaceAllUsesWith(Sel); 979*bdd1243dSDimitry Andric } 980*bdd1243dSDimitry Andric } 981*bdd1243dSDimitry Andric 982*bdd1243dSDimitry Andric auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder, 983*bdd1243dSDimitry Andric const ByteSpan &VSpan, int ScLen, 984*bdd1243dSDimitry Andric Value *AlignVal, Value *AlignAddr) const 985*bdd1243dSDimitry Andric -> void { 986*bdd1243dSDimitry Andric Type *SecTy = HVC.getByteTy(ScLen); 987*bdd1243dSDimitry Andric int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 988*bdd1243dSDimitry Andric bool DoAlign = !HVC.isZero(AlignVal); 989*bdd1243dSDimitry Andric 990*bdd1243dSDimitry Andric // Stores. 991*bdd1243dSDimitry Andric ByteSpan ASpanV, ASpanM; 992*bdd1243dSDimitry Andric 993*bdd1243dSDimitry Andric // Return a vector value corresponding to the input value Val: 994*bdd1243dSDimitry Andric // either <1 x Val> for scalar Val, or Val itself for vector Val. 995*bdd1243dSDimitry Andric auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 996*bdd1243dSDimitry Andric Type *Ty = Val->getType(); 997*bdd1243dSDimitry Andric if (Ty->isVectorTy()) 998*bdd1243dSDimitry Andric return Val; 999*bdd1243dSDimitry Andric auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 1000*bdd1243dSDimitry Andric return Builder.CreateBitCast(Val, VecTy); 1001*bdd1243dSDimitry Andric }; 1002*bdd1243dSDimitry Andric 1003*bdd1243dSDimitry Andric // Create an extra "undef" sector at the beginning and at the end. 1004*bdd1243dSDimitry Andric // They will be used as the left/right filler in the vlalign step. 1005*bdd1243dSDimitry Andric for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 1006*bdd1243dSDimitry Andric // For stores, the size of each section is an aligned vector length. 1007*bdd1243dSDimitry Andric // Adjust the store offsets relative to the section start offset. 1008*bdd1243dSDimitry Andric ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 1009*bdd1243dSDimitry Andric Value *AccumV = UndefValue::get(SecTy); 1010*bdd1243dSDimitry Andric Value *AccumM = HVC.getNullValue(SecTy); 1011*bdd1243dSDimitry Andric for (ByteSpan::Block &S : VSection) { 1012*bdd1243dSDimitry Andric Value *Pay = getPayload(S.Seg.Val); 1013*bdd1243dSDimitry Andric Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 1014*bdd1243dSDimitry Andric Pay->getType(), HVC.getByteTy()); 1015*bdd1243dSDimitry Andric AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 1016*bdd1243dSDimitry Andric S.Seg.Start, S.Seg.Size, S.Pos); 1017*bdd1243dSDimitry Andric AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 1018*bdd1243dSDimitry Andric S.Seg.Start, S.Seg.Size, S.Pos); 1019*bdd1243dSDimitry Andric } 1020*bdd1243dSDimitry Andric ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 1021*bdd1243dSDimitry Andric ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 1022*bdd1243dSDimitry Andric } 1023*bdd1243dSDimitry Andric 1024*bdd1243dSDimitry Andric // vlalign 1025*bdd1243dSDimitry Andric if (DoAlign) { 1026*bdd1243dSDimitry Andric for (int j = 1; j != NumSectors + 2; ++j) { 1027*bdd1243dSDimitry Andric Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val; 1028*bdd1243dSDimitry Andric Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val; 1029*bdd1243dSDimitry Andric assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 1030*bdd1243dSDimitry Andric ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 1031*bdd1243dSDimitry Andric ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 1032*bdd1243dSDimitry Andric } 1033*bdd1243dSDimitry Andric } 1034*bdd1243dSDimitry Andric 1035*bdd1243dSDimitry Andric for (int i = 0; i != NumSectors + DoAlign; ++i) { 1036*bdd1243dSDimitry Andric Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 1037*bdd1243dSDimitry Andric Value *Val = ASpanV[i].Seg.Val; 1038*bdd1243dSDimitry Andric Value *Mask = ASpanM[i].Seg.Val; // bytes 1039*bdd1243dSDimitry Andric if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 1040*bdd1243dSDimitry Andric Value *Store = 1041*bdd1243dSDimitry Andric createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); 1042*bdd1243dSDimitry Andric // If vector shifting is potentially needed, accumulate metadata 1043*bdd1243dSDimitry Andric // from source sections of twice the store width. 1044*bdd1243dSDimitry Andric int Start = (i - DoAlign) * ScLen; 1045*bdd1243dSDimitry Andric int Width = (1 + DoAlign) * ScLen; 1046*bdd1243dSDimitry Andric propagateMetadata(cast<Instruction>(Store), 1047*bdd1243dSDimitry Andric VSpan.section(Start, Width).values()); 1048*bdd1243dSDimitry Andric } 1049*bdd1243dSDimitry Andric } 1050*bdd1243dSDimitry Andric } 1051*bdd1243dSDimitry Andric 1052e8d8bef9SDimitry Andric auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 1053e8d8bef9SDimitry Andric // TODO: Needs support for masked loads/stores of "scalar" vectors. 1054e8d8bef9SDimitry Andric if (!Move.IsHvx) 1055e8d8bef9SDimitry Andric return false; 1056e8d8bef9SDimitry Andric 1057e8d8bef9SDimitry Andric // Return the element with the maximum alignment from Range, 1058e8d8bef9SDimitry Andric // where GetValue obtains the value to compare from an element. 1059e8d8bef9SDimitry Andric auto getMaxOf = [](auto Range, auto GetValue) { 1060e8d8bef9SDimitry Andric return *std::max_element( 1061e8d8bef9SDimitry Andric Range.begin(), Range.end(), 1062e8d8bef9SDimitry Andric [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 1063e8d8bef9SDimitry Andric }; 1064e8d8bef9SDimitry Andric 1065e8d8bef9SDimitry Andric const AddrList &BaseInfos = AddrGroups.at(Move.Base); 1066e8d8bef9SDimitry Andric 1067e8d8bef9SDimitry Andric // Conceptually, there is a vector of N bytes covering the addresses 1068e8d8bef9SDimitry Andric // starting from the minimum offset (i.e. Base.Addr+Start). This vector 1069e8d8bef9SDimitry Andric // represents a contiguous memory region that spans all accessed memory 1070e8d8bef9SDimitry Andric // locations. 1071e8d8bef9SDimitry Andric // The correspondence between loaded or stored values will be expressed 1072e8d8bef9SDimitry Andric // in terms of this vector. For example, the 0th element of the vector 1073e8d8bef9SDimitry Andric // from the Base address info will start at byte Start from the beginning 1074e8d8bef9SDimitry Andric // of this conceptual vector. 1075e8d8bef9SDimitry Andric // 1076e8d8bef9SDimitry Andric // This vector will be loaded/stored starting at the nearest down-aligned 1077e8d8bef9SDimitry Andric // address and the amount od the down-alignment will be AlignVal: 1078e8d8bef9SDimitry Andric // valign(load_vector(align_down(Base+Start)), AlignVal) 1079e8d8bef9SDimitry Andric 1080e8d8bef9SDimitry Andric std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 1081e8d8bef9SDimitry Andric AddrList MoveInfos; 1082e8d8bef9SDimitry Andric llvm::copy_if( 1083e8d8bef9SDimitry Andric BaseInfos, std::back_inserter(MoveInfos), 1084e8d8bef9SDimitry Andric [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 1085e8d8bef9SDimitry Andric 1086e8d8bef9SDimitry Andric // Maximum alignment present in the whole address group. 1087e8d8bef9SDimitry Andric const AddrInfo &WithMaxAlign = 108804eeddc0SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 1089e8d8bef9SDimitry Andric Align MaxGiven = WithMaxAlign.HaveAlign; 1090e8d8bef9SDimitry Andric 1091e8d8bef9SDimitry Andric // Minimum alignment present in the move address group. 1092e8d8bef9SDimitry Andric const AddrInfo &WithMinOffset = 1093e8d8bef9SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 1094e8d8bef9SDimitry Andric 1095e8d8bef9SDimitry Andric const AddrInfo &WithMaxNeeded = 1096e8d8bef9SDimitry Andric getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 1097e8d8bef9SDimitry Andric Align MinNeeded = WithMaxNeeded.NeedAlign; 1098e8d8bef9SDimitry Andric 1099*bdd1243dSDimitry Andric // Set the builder's insertion point right before the load group, or 1100*bdd1243dSDimitry Andric // immediately after the store group. (Instructions in a store group are 1101*bdd1243dSDimitry Andric // listed in reverse order.) 1102*bdd1243dSDimitry Andric Instruction *InsertAt = Move.Main.front(); 1103*bdd1243dSDimitry Andric if (!Move.IsLoad) { 1104*bdd1243dSDimitry Andric // There should be a terminator (which store isn't, but check anyways). 1105*bdd1243dSDimitry Andric assert(InsertAt->getIterator() != InsertAt->getParent()->end()); 1106*bdd1243dSDimitry Andric InsertAt = &*std::next(InsertAt->getIterator()); 1107*bdd1243dSDimitry Andric } 1108*bdd1243dSDimitry Andric 1109*bdd1243dSDimitry Andric IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(), 1110*bdd1243dSDimitry Andric InstSimplifyFolder(HVC.DL)); 1111e8d8bef9SDimitry Andric Value *AlignAddr = nullptr; // Actual aligned address. 1112e8d8bef9SDimitry Andric Value *AlignVal = nullptr; // Right-shift amount (for valign). 1113e8d8bef9SDimitry Andric 1114e8d8bef9SDimitry Andric if (MinNeeded <= MaxGiven) { 1115e8d8bef9SDimitry Andric int Start = WithMinOffset.Offset; 1116e8d8bef9SDimitry Andric int OffAtMax = WithMaxAlign.Offset; 1117e8d8bef9SDimitry Andric // Shift the offset of the maximally aligned instruction (OffAtMax) 1118e8d8bef9SDimitry Andric // back by just enough multiples of the required alignment to cover the 1119e8d8bef9SDimitry Andric // distance from Start to OffAtMax. 1120e8d8bef9SDimitry Andric // Calculate the address adjustment amount based on the address with the 1121e8d8bef9SDimitry Andric // maximum alignment. This is to allow a simple gep instruction instead 1122e8d8bef9SDimitry Andric // of potential bitcasts to i8*. 1123e8d8bef9SDimitry Andric int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 1124e8d8bef9SDimitry Andric AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 1125e8d8bef9SDimitry Andric WithMaxAlign.ValTy, Adjust); 1126e8d8bef9SDimitry Andric int Diff = Start - (OffAtMax + Adjust); 1127e8d8bef9SDimitry Andric AlignVal = HVC.getConstInt(Diff); 1128e8d8bef9SDimitry Andric assert(Diff >= 0); 1129e8d8bef9SDimitry Andric assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 1130e8d8bef9SDimitry Andric } else { 1131e8d8bef9SDimitry Andric // WithMinOffset is the lowest address in the group, 1132e8d8bef9SDimitry Andric // WithMinOffset.Addr = Base+Start. 1133e8d8bef9SDimitry Andric // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 1134e8d8bef9SDimitry Andric // mask off unnecessary bits, so it's ok to just the original pointer as 1135e8d8bef9SDimitry Andric // the alignment amount. 1136e8d8bef9SDimitry Andric // Do an explicit down-alignment of the address to avoid creating an 1137e8d8bef9SDimitry Andric // aligned instruction with an address that is not really aligned. 1138e8d8bef9SDimitry Andric AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 1139e8d8bef9SDimitry Andric WithMinOffset.ValTy, MinNeeded.value()); 1140e8d8bef9SDimitry Andric AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 1141e8d8bef9SDimitry Andric } 1142e8d8bef9SDimitry Andric 1143e8d8bef9SDimitry Andric ByteSpan VSpan; 1144e8d8bef9SDimitry Andric for (const AddrInfo &AI : MoveInfos) { 1145e8d8bef9SDimitry Andric VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 1146e8d8bef9SDimitry Andric AI.Offset - WithMinOffset.Offset); 1147e8d8bef9SDimitry Andric } 1148e8d8bef9SDimitry Andric 1149e8d8bef9SDimitry Andric // The aligned loads/stores will use blocks that are either scalars, 1150e8d8bef9SDimitry Andric // or HVX vectors. Let "sector" be the unified term for such a block. 1151e8d8bef9SDimitry Andric // blend(scalar, vector) -> sector... 1152e8d8bef9SDimitry Andric int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 1153e8d8bef9SDimitry Andric : std::max<int>(MinNeeded.value(), 4); 1154e8d8bef9SDimitry Andric assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 1155e8d8bef9SDimitry Andric assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 1156e8d8bef9SDimitry Andric 1157*bdd1243dSDimitry Andric if (Move.IsLoad) 1158*bdd1243dSDimitry Andric realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1159*bdd1243dSDimitry Andric else 1160*bdd1243dSDimitry Andric realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1161e8d8bef9SDimitry Andric 1162e8d8bef9SDimitry Andric for (auto *Inst : Move.Main) 1163e8d8bef9SDimitry Andric Inst->eraseFromParent(); 1164e8d8bef9SDimitry Andric 1165e8d8bef9SDimitry Andric return true; 1166e8d8bef9SDimitry Andric } 1167e8d8bef9SDimitry Andric 1168*bdd1243dSDimitry Andric auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 1169*bdd1243dSDimitry Andric if (!HVC.isByteVecTy(Ty)) 1170*bdd1243dSDimitry Andric return false; 1171*bdd1243dSDimitry Andric int Size = HVC.getSizeOf(Ty); 1172*bdd1243dSDimitry Andric if (HVC.HST.isTypeForHVX(Ty)) 1173*bdd1243dSDimitry Andric return Size == static_cast<int>(HVC.HST.getVectorLength()); 1174*bdd1243dSDimitry Andric return Size == 4 || Size == 8; 1175*bdd1243dSDimitry Andric } 1176*bdd1243dSDimitry Andric 1177e8d8bef9SDimitry Andric auto AlignVectors::run() -> bool { 1178e8d8bef9SDimitry Andric if (!createAddressGroups()) 1179e8d8bef9SDimitry Andric return false; 1180e8d8bef9SDimitry Andric 1181e8d8bef9SDimitry Andric bool Changed = false; 1182e8d8bef9SDimitry Andric MoveList LoadGroups, StoreGroups; 1183e8d8bef9SDimitry Andric 1184e8d8bef9SDimitry Andric for (auto &G : AddrGroups) { 1185e8d8bef9SDimitry Andric llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1186e8d8bef9SDimitry Andric llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1187e8d8bef9SDimitry Andric } 1188e8d8bef9SDimitry Andric 1189e8d8bef9SDimitry Andric for (auto &M : LoadGroups) 1190e8d8bef9SDimitry Andric Changed |= move(M); 1191e8d8bef9SDimitry Andric for (auto &M : StoreGroups) 1192e8d8bef9SDimitry Andric Changed |= move(M); 1193e8d8bef9SDimitry Andric 1194e8d8bef9SDimitry Andric for (auto &M : LoadGroups) 1195e8d8bef9SDimitry Andric Changed |= realignGroup(M); 1196e8d8bef9SDimitry Andric for (auto &M : StoreGroups) 1197e8d8bef9SDimitry Andric Changed |= realignGroup(M); 1198e8d8bef9SDimitry Andric 1199e8d8bef9SDimitry Andric return Changed; 1200e8d8bef9SDimitry Andric } 1201e8d8bef9SDimitry Andric 1202e8d8bef9SDimitry Andric // --- End AlignVectors 1203e8d8bef9SDimitry Andric 1204*bdd1243dSDimitry Andric // --- Begin HvxIdioms 1205*bdd1243dSDimitry Andric 1206*bdd1243dSDimitry Andric auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const 1207*bdd1243dSDimitry Andric -> std::pair<unsigned, Signedness> { 1208*bdd1243dSDimitry Andric unsigned Bits = HVC.getNumSignificantBits(V, In); 1209*bdd1243dSDimitry Andric // The significant bits are calculated including the sign bit. This may 1210*bdd1243dSDimitry Andric // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1211*bdd1243dSDimitry Andric // result in 33 significant bits. To avoid extra words, skip the extra 1212*bdd1243dSDimitry Andric // sign bit, but keep information that the value is to be treated as 1213*bdd1243dSDimitry Andric // unsigned. 1214*bdd1243dSDimitry Andric KnownBits Known = HVC.getKnownBits(V, In); 1215*bdd1243dSDimitry Andric Signedness Sign = Signed; 1216*bdd1243dSDimitry Andric unsigned NumToTest = 0; // Number of bits used in test for unsignedness. 1217*bdd1243dSDimitry Andric if (isPowerOf2_32(Bits)) 1218*bdd1243dSDimitry Andric NumToTest = Bits; 1219*bdd1243dSDimitry Andric else if (Bits > 1 && isPowerOf2_32(Bits - 1)) 1220*bdd1243dSDimitry Andric NumToTest = Bits - 1; 1221*bdd1243dSDimitry Andric 1222*bdd1243dSDimitry Andric if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) { 1223*bdd1243dSDimitry Andric Sign = Unsigned; 1224*bdd1243dSDimitry Andric Bits = NumToTest; 1225*bdd1243dSDimitry Andric } 1226*bdd1243dSDimitry Andric 1227*bdd1243dSDimitry Andric // If the top bit of the nearest power-of-2 is zero, this value is 1228*bdd1243dSDimitry Andric // positive. It could be treated as either signed or unsigned. 1229*bdd1243dSDimitry Andric if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1230*bdd1243dSDimitry Andric if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1231*bdd1243dSDimitry Andric Sign = Positive; 1232*bdd1243dSDimitry Andric } 1233*bdd1243dSDimitry Andric return {Bits, Sign}; 1234*bdd1243dSDimitry Andric } 1235*bdd1243dSDimitry Andric 1236*bdd1243dSDimitry Andric auto HvxIdioms::canonSgn(SValue X, SValue Y) const 1237*bdd1243dSDimitry Andric -> std::pair<SValue, SValue> { 1238*bdd1243dSDimitry Andric // Canonicalize the signedness of X and Y, so that the result is one of: 1239*bdd1243dSDimitry Andric // S, S 1240*bdd1243dSDimitry Andric // U/P, S 1241*bdd1243dSDimitry Andric // U/P, U/P 1242*bdd1243dSDimitry Andric if (X.Sgn == Signed && Y.Sgn != Signed) 1243*bdd1243dSDimitry Andric std::swap(X, Y); 1244*bdd1243dSDimitry Andric return {X, Y}; 1245*bdd1243dSDimitry Andric } 1246*bdd1243dSDimitry Andric 1247*bdd1243dSDimitry Andric // Match 1248*bdd1243dSDimitry Andric // (X * Y) [>> N], or 1249*bdd1243dSDimitry Andric // ((X * Y) + (1 << M)) >> N 1250*bdd1243dSDimitry Andric auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1251*bdd1243dSDimitry Andric using namespace PatternMatch; 1252*bdd1243dSDimitry Andric auto *Ty = In.getType(); 1253*bdd1243dSDimitry Andric 1254*bdd1243dSDimitry Andric if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1255*bdd1243dSDimitry Andric return std::nullopt; 1256*bdd1243dSDimitry Andric 1257*bdd1243dSDimitry Andric unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1258*bdd1243dSDimitry Andric 1259*bdd1243dSDimitry Andric FxpOp Op; 1260*bdd1243dSDimitry Andric Value *Exp = &In; 1261*bdd1243dSDimitry Andric 1262*bdd1243dSDimitry Andric // Fixed-point multiplication is always shifted right (except when the 1263*bdd1243dSDimitry Andric // fraction is 0 bits). 1264*bdd1243dSDimitry Andric auto m_Shr = [](auto &&V, auto &&S) { 1265*bdd1243dSDimitry Andric return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1266*bdd1243dSDimitry Andric }; 1267*bdd1243dSDimitry Andric 1268*bdd1243dSDimitry Andric const APInt *Qn = nullptr; 1269*bdd1243dSDimitry Andric if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1270*bdd1243dSDimitry Andric Op.Frac = Qn->getZExtValue(); 1271*bdd1243dSDimitry Andric Exp = T; 1272*bdd1243dSDimitry Andric } else { 1273*bdd1243dSDimitry Andric Op.Frac = 0; 1274*bdd1243dSDimitry Andric } 1275*bdd1243dSDimitry Andric 1276*bdd1243dSDimitry Andric if (Op.Frac > Width) 1277*bdd1243dSDimitry Andric return std::nullopt; 1278*bdd1243dSDimitry Andric 1279*bdd1243dSDimitry Andric // Check if there is rounding added. 1280*bdd1243dSDimitry Andric const APInt *C = nullptr; 1281*bdd1243dSDimitry Andric if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1282*bdd1243dSDimitry Andric uint64_t CV = C->getZExtValue(); 1283*bdd1243dSDimitry Andric if (CV != 0 && !isPowerOf2_64(CV)) 1284*bdd1243dSDimitry Andric return std::nullopt; 1285*bdd1243dSDimitry Andric if (CV != 0) 1286*bdd1243dSDimitry Andric Op.RoundAt = Log2_64(CV); 1287*bdd1243dSDimitry Andric Exp = T; 1288*bdd1243dSDimitry Andric } 1289*bdd1243dSDimitry Andric 1290*bdd1243dSDimitry Andric // Check if the rest is a multiplication. 1291*bdd1243dSDimitry Andric if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) { 1292*bdd1243dSDimitry Andric Op.Opcode = Instruction::Mul; 1293*bdd1243dSDimitry Andric // FIXME: The information below is recomputed. 1294*bdd1243dSDimitry Andric Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second; 1295*bdd1243dSDimitry Andric Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second; 1296*bdd1243dSDimitry Andric Op.ResTy = cast<VectorType>(Ty); 1297*bdd1243dSDimitry Andric return Op; 1298*bdd1243dSDimitry Andric } 1299*bdd1243dSDimitry Andric 1300*bdd1243dSDimitry Andric return std::nullopt; 1301*bdd1243dSDimitry Andric } 1302*bdd1243dSDimitry Andric 1303*bdd1243dSDimitry Andric auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1304*bdd1243dSDimitry Andric -> Value * { 1305*bdd1243dSDimitry Andric assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1306*bdd1243dSDimitry Andric 1307*bdd1243dSDimitry Andric auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType()); 1308*bdd1243dSDimitry Andric if (VecTy == nullptr) 1309*bdd1243dSDimitry Andric return nullptr; 1310*bdd1243dSDimitry Andric auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1311*bdd1243dSDimitry Andric unsigned ElemWidth = ElemTy->getBitWidth(); 1312*bdd1243dSDimitry Andric 1313*bdd1243dSDimitry Andric // TODO: This can be relaxed after legalization is done pre-isel. 1314*bdd1243dSDimitry Andric if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0) 1315*bdd1243dSDimitry Andric return nullptr; 1316*bdd1243dSDimitry Andric 1317*bdd1243dSDimitry Andric // There are no special intrinsics that should be used for multiplying 1318*bdd1243dSDimitry Andric // signed 8-bit values, so just skip them. Normal codegen should handle 1319*bdd1243dSDimitry Andric // this just fine. 1320*bdd1243dSDimitry Andric if (ElemWidth <= 8) 1321*bdd1243dSDimitry Andric return nullptr; 1322*bdd1243dSDimitry Andric // Similarly, if this is just a multiplication that can be handled without 1323*bdd1243dSDimitry Andric // intervention, then leave it alone. 1324*bdd1243dSDimitry Andric if (ElemWidth <= 32 && Op.Frac == 0) 1325*bdd1243dSDimitry Andric return nullptr; 1326*bdd1243dSDimitry Andric 1327*bdd1243dSDimitry Andric auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In); 1328*bdd1243dSDimitry Andric auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In); 1329*bdd1243dSDimitry Andric 1330*bdd1243dSDimitry Andric // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes). 1331*bdd1243dSDimitry Andric 1332*bdd1243dSDimitry Andric Value *X = Op.X.Val, *Y = Op.Y.Val; 1333*bdd1243dSDimitry Andric IRBuilder Builder(In.getParent(), In.getIterator(), 1334*bdd1243dSDimitry Andric InstSimplifyFolder(HVC.DL)); 1335*bdd1243dSDimitry Andric 1336*bdd1243dSDimitry Andric auto roundUpWidth = [](unsigned Width) -> unsigned { 1337*bdd1243dSDimitry Andric if (Width <= 32 && !isPowerOf2_32(Width)) { 1338*bdd1243dSDimitry Andric // If the element width is not a power of 2, round it up 1339*bdd1243dSDimitry Andric // to the next one. Do this for widths not exceeding 32. 1340*bdd1243dSDimitry Andric return PowerOf2Ceil(Width); 1341*bdd1243dSDimitry Andric } 1342*bdd1243dSDimitry Andric if (Width > 32 && Width % 32 != 0) { 1343*bdd1243dSDimitry Andric // For wider elements, round it up to the multiple of 32. 1344*bdd1243dSDimitry Andric return alignTo(Width, 32u); 1345*bdd1243dSDimitry Andric } 1346*bdd1243dSDimitry Andric return Width; 1347*bdd1243dSDimitry Andric }; 1348*bdd1243dSDimitry Andric 1349*bdd1243dSDimitry Andric BitsX = roundUpWidth(BitsX); 1350*bdd1243dSDimitry Andric BitsY = roundUpWidth(BitsY); 1351*bdd1243dSDimitry Andric 1352*bdd1243dSDimitry Andric // For elementwise multiplication vectors must have the same lengths, so 1353*bdd1243dSDimitry Andric // resize the elements of both inputs to the same width, the max of the 1354*bdd1243dSDimitry Andric // calculated significant bits. 1355*bdd1243dSDimitry Andric unsigned Width = std::max(BitsX, BitsY); 1356*bdd1243dSDimitry Andric 1357*bdd1243dSDimitry Andric auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy); 1358*bdd1243dSDimitry Andric if (Width < ElemWidth) { 1359*bdd1243dSDimitry Andric X = Builder.CreateTrunc(X, ResizeTy); 1360*bdd1243dSDimitry Andric Y = Builder.CreateTrunc(Y, ResizeTy); 1361*bdd1243dSDimitry Andric } else if (Width > ElemWidth) { 1362*bdd1243dSDimitry Andric X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy) 1363*bdd1243dSDimitry Andric : Builder.CreateZExt(X, ResizeTy); 1364*bdd1243dSDimitry Andric Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy) 1365*bdd1243dSDimitry Andric : Builder.CreateZExt(Y, ResizeTy); 1366*bdd1243dSDimitry Andric }; 1367*bdd1243dSDimitry Andric 1368*bdd1243dSDimitry Andric assert(X->getType() == Y->getType() && X->getType() == ResizeTy); 1369*bdd1243dSDimitry Andric 1370*bdd1243dSDimitry Andric unsigned VecLen = HVC.length(ResizeTy); 1371*bdd1243dSDimitry Andric unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u); 1372*bdd1243dSDimitry Andric 1373*bdd1243dSDimitry Andric SmallVector<Value *> Results; 1374*bdd1243dSDimitry Andric FxpOp ChopOp = Op; 1375*bdd1243dSDimitry Andric ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false); 1376*bdd1243dSDimitry Andric 1377*bdd1243dSDimitry Andric for (unsigned V = 0; V != VecLen / ChopLen; ++V) { 1378*bdd1243dSDimitry Andric ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen); 1379*bdd1243dSDimitry Andric ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen); 1380*bdd1243dSDimitry Andric Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1381*bdd1243dSDimitry Andric if (Results.back() == nullptr) 1382*bdd1243dSDimitry Andric break; 1383*bdd1243dSDimitry Andric } 1384*bdd1243dSDimitry Andric 1385*bdd1243dSDimitry Andric if (Results.empty() || Results.back() == nullptr) 1386*bdd1243dSDimitry Andric return nullptr; 1387*bdd1243dSDimitry Andric 1388*bdd1243dSDimitry Andric Value *Cat = HVC.concat(Builder, Results); 1389*bdd1243dSDimitry Andric Value *Ext = SignX == Signed || SignY == Signed 1390*bdd1243dSDimitry Andric ? Builder.CreateSExt(Cat, VecTy) 1391*bdd1243dSDimitry Andric : Builder.CreateZExt(Cat, VecTy); 1392*bdd1243dSDimitry Andric return Ext; 1393*bdd1243dSDimitry Andric } 1394*bdd1243dSDimitry Andric 1395*bdd1243dSDimitry Andric auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1396*bdd1243dSDimitry Andric const FxpOp &Op) const -> Value * { 1397*bdd1243dSDimitry Andric assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1398*bdd1243dSDimitry Andric auto *InpTy = cast<VectorType>(Op.X.Val->getType()); 1399*bdd1243dSDimitry Andric unsigned Width = InpTy->getScalarSizeInBits(); 1400*bdd1243dSDimitry Andric bool Rounding = Op.RoundAt.has_value(); 1401*bdd1243dSDimitry Andric 1402*bdd1243dSDimitry Andric if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1403*bdd1243dSDimitry Andric // The fixed-point intrinsics do signed multiplication. 1404*bdd1243dSDimitry Andric if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) { 1405*bdd1243dSDimitry Andric Value *QMul = nullptr; 1406*bdd1243dSDimitry Andric if (Width == 16) { 1407*bdd1243dSDimitry Andric QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding); 1408*bdd1243dSDimitry Andric } else if (Width == 32) { 1409*bdd1243dSDimitry Andric QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding); 1410*bdd1243dSDimitry Andric } 1411*bdd1243dSDimitry Andric if (QMul != nullptr) 1412*bdd1243dSDimitry Andric return QMul; 1413*bdd1243dSDimitry Andric } 1414*bdd1243dSDimitry Andric } 1415*bdd1243dSDimitry Andric 1416*bdd1243dSDimitry Andric assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n 1417*bdd1243dSDimitry Andric assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k 1418*bdd1243dSDimitry Andric 1419*bdd1243dSDimitry Andric // If Width < 32, then it should really be 16. 1420*bdd1243dSDimitry Andric if (Width < 32) { 1421*bdd1243dSDimitry Andric if (Width < 16) 1422*bdd1243dSDimitry Andric return nullptr; 1423*bdd1243dSDimitry Andric // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we 1424*bdd1243dSDimitry Andric // generate a full precision products, which is unnecessary if there is 1425*bdd1243dSDimitry Andric // no shift. 1426*bdd1243dSDimitry Andric assert(Width == 16); 1427*bdd1243dSDimitry Andric assert(Op.Frac != 0 && "Unshifted mul should have been skipped"); 1428*bdd1243dSDimitry Andric if (Op.Frac == 16) { 1429*bdd1243dSDimitry Andric // Multiply high 1430*bdd1243dSDimitry Andric if (Value *MulH = createMulH16(Builder, Op.X, Op.Y)) 1431*bdd1243dSDimitry Andric return MulH; 1432*bdd1243dSDimitry Andric } 1433*bdd1243dSDimitry Andric // Do full-precision multiply and shift. 1434*bdd1243dSDimitry Andric Value *Prod32 = createMul16(Builder, Op.X, Op.Y); 1435*bdd1243dSDimitry Andric if (Rounding) { 1436*bdd1243dSDimitry Andric Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt); 1437*bdd1243dSDimitry Andric Prod32 = Builder.CreateAdd(Prod32, RoundVal); 1438*bdd1243dSDimitry Andric } 1439*bdd1243dSDimitry Andric 1440*bdd1243dSDimitry Andric Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac); 1441*bdd1243dSDimitry Andric Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed 1442*bdd1243dSDimitry Andric ? Builder.CreateAShr(Prod32, ShiftAmt) 1443*bdd1243dSDimitry Andric : Builder.CreateLShr(Prod32, ShiftAmt); 1444*bdd1243dSDimitry Andric return Builder.CreateTrunc(Shifted, InpTy); 1445*bdd1243dSDimitry Andric } 1446*bdd1243dSDimitry Andric 1447*bdd1243dSDimitry Andric // Width >= 32 1448*bdd1243dSDimitry Andric 1449*bdd1243dSDimitry Andric // Break up the arguments Op.X and Op.Y into vectors of smaller widths 1450*bdd1243dSDimitry Andric // in preparation of doing the multiplication by 32-bit parts. 1451*bdd1243dSDimitry Andric auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32); 1452*bdd1243dSDimitry Andric auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32); 1453*bdd1243dSDimitry Andric auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn); 1454*bdd1243dSDimitry Andric 1455*bdd1243dSDimitry Andric auto *HvxWordTy = cast<VectorType>(WordP.front()->getType()); 1456*bdd1243dSDimitry Andric 1457*bdd1243dSDimitry Andric // Add the optional rounding to the proper word. 1458*bdd1243dSDimitry Andric if (Op.RoundAt.has_value()) { 1459*bdd1243dSDimitry Andric Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1460*bdd1243dSDimitry Andric SmallVector<Value *> RoundV(WordP.size(), Zero); 1461*bdd1243dSDimitry Andric RoundV[*Op.RoundAt / 32] = 1462*bdd1243dSDimitry Andric HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32)); 1463*bdd1243dSDimitry Andric WordP = createAddLong(Builder, WordP, RoundV); 1464*bdd1243dSDimitry Andric } 1465*bdd1243dSDimitry Andric 1466*bdd1243dSDimitry Andric // createRightShiftLong? 1467*bdd1243dSDimitry Andric 1468*bdd1243dSDimitry Andric // Shift all products right by Op.Frac. 1469*bdd1243dSDimitry Andric unsigned SkipWords = Op.Frac / 32; 1470*bdd1243dSDimitry Andric Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1471*bdd1243dSDimitry Andric 1472*bdd1243dSDimitry Andric for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1473*bdd1243dSDimitry Andric int Src = Dst + SkipWords; 1474*bdd1243dSDimitry Andric Value *Lo = WordP[Src]; 1475*bdd1243dSDimitry Andric if (Src + 1 < End) { 1476*bdd1243dSDimitry Andric Value *Hi = WordP[Src + 1]; 1477*bdd1243dSDimitry Andric WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1478*bdd1243dSDimitry Andric {Hi, Lo, ShiftAmt}); 1479*bdd1243dSDimitry Andric } else { 1480*bdd1243dSDimitry Andric // The shift of the most significant word. 1481*bdd1243dSDimitry Andric WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt); 1482*bdd1243dSDimitry Andric } 1483*bdd1243dSDimitry Andric } 1484*bdd1243dSDimitry Andric if (SkipWords != 0) 1485*bdd1243dSDimitry Andric WordP.resize(WordP.size() - SkipWords); 1486*bdd1243dSDimitry Andric 1487*bdd1243dSDimitry Andric return HVC.joinVectorElements(Builder, WordP, Op.ResTy); 1488*bdd1243dSDimitry Andric } 1489*bdd1243dSDimitry Andric 1490*bdd1243dSDimitry Andric auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 1491*bdd1243dSDimitry Andric bool Rounding) const -> Value * { 1492*bdd1243dSDimitry Andric assert(X.Val->getType() == Y.Val->getType()); 1493*bdd1243dSDimitry Andric assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16)); 1494*bdd1243dSDimitry Andric assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false))); 1495*bdd1243dSDimitry Andric 1496*bdd1243dSDimitry Andric // There is no non-rounding intrinsic for i16. 1497*bdd1243dSDimitry Andric if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned) 1498*bdd1243dSDimitry Andric return nullptr; 1499*bdd1243dSDimitry Andric 1500*bdd1243dSDimitry Andric auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1501*bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(), 1502*bdd1243dSDimitry Andric {X.Val, Y.Val}); 1503*bdd1243dSDimitry Andric } 1504*bdd1243dSDimitry Andric 1505*bdd1243dSDimitry Andric auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 1506*bdd1243dSDimitry Andric bool Rounding) const -> Value * { 1507*bdd1243dSDimitry Andric Type *InpTy = X.Val->getType(); 1508*bdd1243dSDimitry Andric assert(InpTy == Y.Val->getType()); 1509*bdd1243dSDimitry Andric assert(InpTy->getScalarType() == HVC.getIntTy(32)); 1510*bdd1243dSDimitry Andric assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false))); 1511*bdd1243dSDimitry Andric 1512*bdd1243dSDimitry Andric if (X.Sgn == Unsigned || Y.Sgn == Unsigned) 1513*bdd1243dSDimitry Andric return nullptr; 1514*bdd1243dSDimitry Andric 1515*bdd1243dSDimitry Andric auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1516*bdd1243dSDimitry Andric auto V6_vmpyo_acc = Rounding 1517*bdd1243dSDimitry Andric ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1518*bdd1243dSDimitry Andric : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1519*bdd1243dSDimitry Andric Value *V1 = 1520*bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val}); 1521*bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy, 1522*bdd1243dSDimitry Andric {V1, X.Val, Y.Val}); 1523*bdd1243dSDimitry Andric } 1524*bdd1243dSDimitry Andric 1525*bdd1243dSDimitry Andric auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 1526*bdd1243dSDimitry Andric Value *CarryIn) const 1527*bdd1243dSDimitry Andric -> std::pair<Value *, Value *> { 1528*bdd1243dSDimitry Andric assert(X->getType() == Y->getType()); 1529*bdd1243dSDimitry Andric auto VecTy = cast<VectorType>(X->getType()); 1530*bdd1243dSDimitry Andric if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) { 1531*bdd1243dSDimitry Andric SmallVector<Value *> Args = {X, Y}; 1532*bdd1243dSDimitry Andric Intrinsic::ID AddCarry; 1533*bdd1243dSDimitry Andric if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) { 1534*bdd1243dSDimitry Andric AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo); 1535*bdd1243dSDimitry Andric } else { 1536*bdd1243dSDimitry Andric AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1537*bdd1243dSDimitry Andric if (CarryIn == nullptr) 1538*bdd1243dSDimitry Andric CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy))); 1539*bdd1243dSDimitry Andric Args.push_back(CarryIn); 1540*bdd1243dSDimitry Andric } 1541*bdd1243dSDimitry Andric Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry, 1542*bdd1243dSDimitry Andric /*RetTy=*/nullptr, Args); 1543*bdd1243dSDimitry Andric Value *Result = Builder.CreateExtractValue(Ret, {0}); 1544*bdd1243dSDimitry Andric Value *CarryOut = Builder.CreateExtractValue(Ret, {1}); 1545*bdd1243dSDimitry Andric return {Result, CarryOut}; 1546*bdd1243dSDimitry Andric } 1547*bdd1243dSDimitry Andric 1548*bdd1243dSDimitry Andric // In other cases, do a regular add, and unsigned compare-less-than. 1549*bdd1243dSDimitry Andric // The carry-out can originate in two places: adding the carry-in or adding 1550*bdd1243dSDimitry Andric // the two input values. 1551*bdd1243dSDimitry Andric Value *Result1 = X; // Result1 = X + CarryIn 1552*bdd1243dSDimitry Andric if (CarryIn != nullptr) { 1553*bdd1243dSDimitry Andric unsigned Width = VecTy->getScalarSizeInBits(); 1554*bdd1243dSDimitry Andric uint32_t Mask = 1; 1555*bdd1243dSDimitry Andric if (Width < 32) { 1556*bdd1243dSDimitry Andric for (unsigned i = 0, e = 32 / Width; i != e; ++i) 1557*bdd1243dSDimitry Andric Mask = (Mask << Width) | 1; 1558*bdd1243dSDimitry Andric } 1559*bdd1243dSDimitry Andric auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt); 1560*bdd1243dSDimitry Andric Value *ValueIn = 1561*bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr, 1562*bdd1243dSDimitry Andric {CarryIn, HVC.getConstInt(Mask)}); 1563*bdd1243dSDimitry Andric Result1 = Builder.CreateAdd(X, ValueIn); 1564*bdd1243dSDimitry Andric } 1565*bdd1243dSDimitry Andric 1566*bdd1243dSDimitry Andric Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X); 1567*bdd1243dSDimitry Andric Value *Result2 = Builder.CreateAdd(Result1, Y); 1568*bdd1243dSDimitry Andric Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y); 1569*bdd1243dSDimitry Andric return {Result2, Builder.CreateOr(CarryOut1, CarryOut2)}; 1570*bdd1243dSDimitry Andric } 1571*bdd1243dSDimitry Andric 1572*bdd1243dSDimitry Andric auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const 1573*bdd1243dSDimitry Andric -> Value * { 1574*bdd1243dSDimitry Andric Intrinsic::ID V6_vmpyh = 0; 1575*bdd1243dSDimitry Andric std::tie(X, Y) = canonSgn(X, Y); 1576*bdd1243dSDimitry Andric 1577*bdd1243dSDimitry Andric if (X.Sgn == Signed) { 1578*bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1579*bdd1243dSDimitry Andric } else if (Y.Sgn == Signed) { 1580*bdd1243dSDimitry Andric // In vmpyhus the second operand is unsigned 1581*bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus); 1582*bdd1243dSDimitry Andric } else { 1583*bdd1243dSDimitry Andric V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv); 1584*bdd1243dSDimitry Andric } 1585*bdd1243dSDimitry Andric 1586*bdd1243dSDimitry Andric // i16*i16 -> i32 / interleaved 1587*bdd1243dSDimitry Andric Value *P = 1588*bdd1243dSDimitry Andric HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val}); 1589*bdd1243dSDimitry Andric // Deinterleave 1590*bdd1243dSDimitry Andric return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P)); 1591*bdd1243dSDimitry Andric } 1592*bdd1243dSDimitry Andric 1593*bdd1243dSDimitry Andric auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 1594*bdd1243dSDimitry Andric -> Value * { 1595*bdd1243dSDimitry Andric Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false); 1596*bdd1243dSDimitry Andric 1597*bdd1243dSDimitry Andric if (HVC.HST.useHVXV69Ops()) { 1598*bdd1243dSDimitry Andric if (X.Sgn != Signed && Y.Sgn != Signed) { 1599*bdd1243dSDimitry Andric auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs); 1600*bdd1243dSDimitry Andric return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty, 1601*bdd1243dSDimitry Andric {X.Val, Y.Val}); 1602*bdd1243dSDimitry Andric } 1603*bdd1243dSDimitry Andric } 1604*bdd1243dSDimitry Andric 1605*bdd1243dSDimitry Andric Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 1606*bdd1243dSDimitry Andric Value *Pair16 = Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty); 1607*bdd1243dSDimitry Andric unsigned Len = HVC.length(HvxP16Ty) / 2; 1608*bdd1243dSDimitry Andric 1609*bdd1243dSDimitry Andric SmallVector<int, 128> PickOdd(Len); 1610*bdd1243dSDimitry Andric for (int i = 0; i != static_cast<int>(Len); ++i) 1611*bdd1243dSDimitry Andric PickOdd[i] = 2 * i + 1; 1612*bdd1243dSDimitry Andric 1613*bdd1243dSDimitry Andric return Builder.CreateShuffleVector(HVC.sublo(Builder, Pair16), 1614*bdd1243dSDimitry Andric HVC.subhi(Builder, Pair16), PickOdd); 1615*bdd1243dSDimitry Andric } 1616*bdd1243dSDimitry Andric 1617*bdd1243dSDimitry Andric auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 1618*bdd1243dSDimitry Andric -> std::pair<Value *, Value *> { 1619*bdd1243dSDimitry Andric assert(X.Val->getType() == Y.Val->getType()); 1620*bdd1243dSDimitry Andric assert(X.Val->getType() == HvxI32Ty); 1621*bdd1243dSDimitry Andric 1622*bdd1243dSDimitry Andric Intrinsic::ID V6_vmpy_parts; 1623*bdd1243dSDimitry Andric std::tie(X, Y) = canonSgn(X, Y); 1624*bdd1243dSDimitry Andric 1625*bdd1243dSDimitry Andric if (X.Sgn == Signed) { 1626*bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts; 1627*bdd1243dSDimitry Andric } else if (Y.Sgn == Signed) { 1628*bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 1629*bdd1243dSDimitry Andric } else { 1630*bdd1243dSDimitry Andric V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts; 1631*bdd1243dSDimitry Andric } 1632*bdd1243dSDimitry Andric 1633*bdd1243dSDimitry Andric Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 1634*bdd1243dSDimitry Andric {X.Val, Y.Val}, {HvxI32Ty}); 1635*bdd1243dSDimitry Andric Value *Hi = Builder.CreateExtractValue(Parts, {0}); 1636*bdd1243dSDimitry Andric Value *Lo = Builder.CreateExtractValue(Parts, {1}); 1637*bdd1243dSDimitry Andric return {Lo, Hi}; 1638*bdd1243dSDimitry Andric } 1639*bdd1243dSDimitry Andric 1640*bdd1243dSDimitry Andric auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1641*bdd1243dSDimitry Andric ArrayRef<Value *> WordY) const 1642*bdd1243dSDimitry Andric -> SmallVector<Value *> { 1643*bdd1243dSDimitry Andric assert(WordX.size() == WordY.size()); 1644*bdd1243dSDimitry Andric unsigned Idx = 0, Length = WordX.size(); 1645*bdd1243dSDimitry Andric SmallVector<Value *> Sum(Length); 1646*bdd1243dSDimitry Andric 1647*bdd1243dSDimitry Andric while (Idx != Length) { 1648*bdd1243dSDimitry Andric if (HVC.isZero(WordX[Idx])) 1649*bdd1243dSDimitry Andric Sum[Idx] = WordY[Idx]; 1650*bdd1243dSDimitry Andric else if (HVC.isZero(WordY[Idx])) 1651*bdd1243dSDimitry Andric Sum[Idx] = WordX[Idx]; 1652*bdd1243dSDimitry Andric else 1653*bdd1243dSDimitry Andric break; 1654*bdd1243dSDimitry Andric ++Idx; 1655*bdd1243dSDimitry Andric } 1656*bdd1243dSDimitry Andric 1657*bdd1243dSDimitry Andric Value *Carry = nullptr; 1658*bdd1243dSDimitry Andric for (; Idx != Length; ++Idx) { 1659*bdd1243dSDimitry Andric std::tie(Sum[Idx], Carry) = 1660*bdd1243dSDimitry Andric createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry); 1661*bdd1243dSDimitry Andric } 1662*bdd1243dSDimitry Andric 1663*bdd1243dSDimitry Andric // This drops the final carry beyond the highest word. 1664*bdd1243dSDimitry Andric return Sum; 1665*bdd1243dSDimitry Andric } 1666*bdd1243dSDimitry Andric 1667*bdd1243dSDimitry Andric auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1668*bdd1243dSDimitry Andric Signedness SgnX, ArrayRef<Value *> WordY, 1669*bdd1243dSDimitry Andric Signedness SgnY) const -> SmallVector<Value *> { 1670*bdd1243dSDimitry Andric SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 1671*bdd1243dSDimitry Andric 1672*bdd1243dSDimitry Andric // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 1673*bdd1243dSDimitry Andric // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 1674*bdd1243dSDimitry Andric for (int i = 0, e = WordX.size(); i != e; ++i) { 1675*bdd1243dSDimitry Andric for (int j = 0, f = WordY.size(); j != f; ++j) { 1676*bdd1243dSDimitry Andric // Check the 4 halves that this multiplication can generate. 1677*bdd1243dSDimitry Andric Signedness SX = (i + 1 == e) ? SgnX : Unsigned; 1678*bdd1243dSDimitry Andric Signedness SY = (j + 1 == f) ? SgnY : Unsigned; 1679*bdd1243dSDimitry Andric auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY}); 1680*bdd1243dSDimitry Andric Products[i + j + 0].push_back(Lo); 1681*bdd1243dSDimitry Andric Products[i + j + 1].push_back(Hi); 1682*bdd1243dSDimitry Andric } 1683*bdd1243dSDimitry Andric } 1684*bdd1243dSDimitry Andric 1685*bdd1243dSDimitry Andric Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1686*bdd1243dSDimitry Andric 1687*bdd1243dSDimitry Andric auto pop_back_or_zero = [Zero](auto &Vector) -> Value * { 1688*bdd1243dSDimitry Andric if (Vector.empty()) 1689*bdd1243dSDimitry Andric return Zero; 1690*bdd1243dSDimitry Andric auto Last = Vector.back(); 1691*bdd1243dSDimitry Andric Vector.pop_back(); 1692*bdd1243dSDimitry Andric return Last; 1693*bdd1243dSDimitry Andric }; 1694*bdd1243dSDimitry Andric 1695*bdd1243dSDimitry Andric for (int i = 0, e = Products.size(); i != e; ++i) { 1696*bdd1243dSDimitry Andric while (Products[i].size() > 1) { 1697*bdd1243dSDimitry Andric Value *Carry = nullptr; // no carry-in 1698*bdd1243dSDimitry Andric for (int j = i; j != e; ++j) { 1699*bdd1243dSDimitry Andric auto &ProdJ = Products[j]; 1700*bdd1243dSDimitry Andric auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ), 1701*bdd1243dSDimitry Andric pop_back_or_zero(ProdJ), Carry); 1702*bdd1243dSDimitry Andric ProdJ.insert(ProdJ.begin(), Sum); 1703*bdd1243dSDimitry Andric Carry = CarryOut; 1704*bdd1243dSDimitry Andric } 1705*bdd1243dSDimitry Andric } 1706*bdd1243dSDimitry Andric } 1707*bdd1243dSDimitry Andric 1708*bdd1243dSDimitry Andric SmallVector<Value *> WordP; 1709*bdd1243dSDimitry Andric for (auto &P : Products) { 1710*bdd1243dSDimitry Andric assert(P.size() == 1 && "Should have been added together"); 1711*bdd1243dSDimitry Andric WordP.push_back(P.front()); 1712*bdd1243dSDimitry Andric } 1713*bdd1243dSDimitry Andric 1714*bdd1243dSDimitry Andric return WordP; 1715*bdd1243dSDimitry Andric } 1716*bdd1243dSDimitry Andric 1717*bdd1243dSDimitry Andric auto HvxIdioms::run() -> bool { 1718*bdd1243dSDimitry Andric bool Changed = false; 1719*bdd1243dSDimitry Andric 1720*bdd1243dSDimitry Andric for (BasicBlock &B : HVC.F) { 1721*bdd1243dSDimitry Andric for (auto It = B.rbegin(); It != B.rend(); ++It) { 1722*bdd1243dSDimitry Andric if (auto Fxm = matchFxpMul(*It)) { 1723*bdd1243dSDimitry Andric Value *New = processFxpMul(*It, *Fxm); 1724*bdd1243dSDimitry Andric // Always report "changed" for now. 1725*bdd1243dSDimitry Andric Changed = true; 1726*bdd1243dSDimitry Andric if (!New) 1727*bdd1243dSDimitry Andric continue; 1728*bdd1243dSDimitry Andric bool StartOver = !isa<Instruction>(New); 1729*bdd1243dSDimitry Andric It->replaceAllUsesWith(New); 1730*bdd1243dSDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 1731*bdd1243dSDimitry Andric It = StartOver ? B.rbegin() 1732*bdd1243dSDimitry Andric : cast<Instruction>(New)->getReverseIterator(); 1733*bdd1243dSDimitry Andric Changed = true; 1734*bdd1243dSDimitry Andric } 1735*bdd1243dSDimitry Andric } 1736*bdd1243dSDimitry Andric } 1737*bdd1243dSDimitry Andric 1738*bdd1243dSDimitry Andric return Changed; 1739*bdd1243dSDimitry Andric } 1740*bdd1243dSDimitry Andric 1741*bdd1243dSDimitry Andric // --- End HvxIdioms 1742*bdd1243dSDimitry Andric 1743e8d8bef9SDimitry Andric auto HexagonVectorCombine::run() -> bool { 1744e8d8bef9SDimitry Andric if (!HST.useHVXOps()) 1745e8d8bef9SDimitry Andric return false; 1746e8d8bef9SDimitry Andric 1747*bdd1243dSDimitry Andric bool Changed = false; 1748*bdd1243dSDimitry Andric Changed |= AlignVectors(*this).run(); 1749*bdd1243dSDimitry Andric Changed |= HvxIdioms(*this).run(); 1750*bdd1243dSDimitry Andric 1751e8d8bef9SDimitry Andric return Changed; 1752e8d8bef9SDimitry Andric } 1753e8d8bef9SDimitry Andric 1754*bdd1243dSDimitry Andric auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 1755*bdd1243dSDimitry Andric return IntegerType::get(F.getContext(), Width); 1756e8d8bef9SDimitry Andric } 1757e8d8bef9SDimitry Andric 1758e8d8bef9SDimitry Andric auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 1759e8d8bef9SDimitry Andric assert(ElemCount >= 0); 1760e8d8bef9SDimitry Andric IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 1761e8d8bef9SDimitry Andric if (ElemCount == 0) 1762e8d8bef9SDimitry Andric return ByteTy; 1763*bdd1243dSDimitry Andric return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 1764e8d8bef9SDimitry Andric } 1765e8d8bef9SDimitry Andric 1766e8d8bef9SDimitry Andric auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 1767e8d8bef9SDimitry Andric assert(ElemCount >= 0); 1768e8d8bef9SDimitry Andric IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 1769e8d8bef9SDimitry Andric if (ElemCount == 0) 1770e8d8bef9SDimitry Andric return BoolTy; 1771*bdd1243dSDimitry Andric return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 1772e8d8bef9SDimitry Andric } 1773e8d8bef9SDimitry Andric 1774*bdd1243dSDimitry Andric auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const 1775*bdd1243dSDimitry Andric -> ConstantInt * { 1776*bdd1243dSDimitry Andric return ConstantInt::getSigned(getIntTy(Width), Val); 1777e8d8bef9SDimitry Andric } 1778e8d8bef9SDimitry Andric 1779e8d8bef9SDimitry Andric auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 1780e8d8bef9SDimitry Andric if (auto *C = dyn_cast<Constant>(Val)) 1781e8d8bef9SDimitry Andric return C->isZeroValue(); 1782e8d8bef9SDimitry Andric return false; 1783e8d8bef9SDimitry Andric } 1784e8d8bef9SDimitry Andric 1785e8d8bef9SDimitry Andric auto HexagonVectorCombine::getIntValue(const Value *Val) const 1786*bdd1243dSDimitry Andric -> std::optional<APInt> { 1787e8d8bef9SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(Val)) 1788e8d8bef9SDimitry Andric return CI->getValue(); 1789*bdd1243dSDimitry Andric return std::nullopt; 1790e8d8bef9SDimitry Andric } 1791e8d8bef9SDimitry Andric 1792e8d8bef9SDimitry Andric auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 1793e8d8bef9SDimitry Andric return isa<UndefValue>(Val); 1794e8d8bef9SDimitry Andric } 1795e8d8bef9SDimitry Andric 1796*bdd1243dSDimitry Andric auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 1797*bdd1243dSDimitry Andric -> VectorType * { 1798*bdd1243dSDimitry Andric EVT ETy = EVT::getEVT(ElemTy, false); 1799*bdd1243dSDimitry Andric assert(ETy.isSimple() && "Invalid HVX element type"); 1800*bdd1243dSDimitry Andric // Do not allow boolean types here: they don't have a fixed length. 1801*bdd1243dSDimitry Andric assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 1802*bdd1243dSDimitry Andric "Invalid HVX element type"); 1803*bdd1243dSDimitry Andric unsigned HwLen = HST.getVectorLength(); 1804*bdd1243dSDimitry Andric unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 1805*bdd1243dSDimitry Andric return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 1806*bdd1243dSDimitry Andric /*Scalable=*/false); 1807e8d8bef9SDimitry Andric } 1808e8d8bef9SDimitry Andric 1809*bdd1243dSDimitry Andric auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 1810*bdd1243dSDimitry Andric -> int { 1811*bdd1243dSDimitry Andric return getSizeOf(Val->getType(), Kind); 1812e8d8bef9SDimitry Andric } 1813e8d8bef9SDimitry Andric 1814*bdd1243dSDimitry Andric auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 1815*bdd1243dSDimitry Andric -> int { 1816*bdd1243dSDimitry Andric auto *NcTy = const_cast<Type *>(Ty); 1817*bdd1243dSDimitry Andric switch (Kind) { 1818*bdd1243dSDimitry Andric case Store: 1819*bdd1243dSDimitry Andric return DL.getTypeStoreSize(NcTy).getFixedValue(); 1820*bdd1243dSDimitry Andric case Alloc: 1821*bdd1243dSDimitry Andric return DL.getTypeAllocSize(NcTy).getFixedValue(); 1822*bdd1243dSDimitry Andric } 1823*bdd1243dSDimitry Andric llvm_unreachable("Unhandled SizeKind enum"); 1824349cc55cSDimitry Andric } 1825349cc55cSDimitry Andric 1826e8d8bef9SDimitry Andric auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 1827e8d8bef9SDimitry Andric // The actual type may be shorter than the HVX vector, so determine 1828e8d8bef9SDimitry Andric // the alignment based on subtarget info. 1829e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Ty)) 1830e8d8bef9SDimitry Andric return HST.getVectorLength(); 1831e8d8bef9SDimitry Andric return DL.getABITypeAlign(Ty).value(); 1832e8d8bef9SDimitry Andric } 1833e8d8bef9SDimitry Andric 1834*bdd1243dSDimitry Andric auto HexagonVectorCombine::length(Value *Val) const -> size_t { 1835*bdd1243dSDimitry Andric return length(Val->getType()); 1836*bdd1243dSDimitry Andric } 1837*bdd1243dSDimitry Andric 1838*bdd1243dSDimitry Andric auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 1839*bdd1243dSDimitry Andric auto *VecTy = dyn_cast<VectorType>(Ty); 1840*bdd1243dSDimitry Andric assert(VecTy && "Must be a vector type"); 1841*bdd1243dSDimitry Andric return VecTy->getElementCount().getFixedValue(); 1842*bdd1243dSDimitry Andric } 1843*bdd1243dSDimitry Andric 1844e8d8bef9SDimitry Andric auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 1845e8d8bef9SDimitry Andric assert(Ty->isIntOrIntVectorTy()); 1846e8d8bef9SDimitry Andric auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 1847e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1848e8d8bef9SDimitry Andric return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 1849e8d8bef9SDimitry Andric return Zero; 1850e8d8bef9SDimitry Andric } 1851e8d8bef9SDimitry Andric 1852e8d8bef9SDimitry Andric auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 1853e8d8bef9SDimitry Andric assert(Ty->isIntOrIntVectorTy()); 1854e8d8bef9SDimitry Andric auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 1855e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1856e8d8bef9SDimitry Andric return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1857e8d8bef9SDimitry Andric return Minus1; 1858e8d8bef9SDimitry Andric } 1859e8d8bef9SDimitry Andric 1860*bdd1243dSDimitry Andric auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 1861*bdd1243dSDimitry Andric -> Constant * { 1862*bdd1243dSDimitry Andric assert(Ty->isVectorTy()); 1863*bdd1243dSDimitry Andric auto VecTy = cast<VectorType>(Ty); 1864*bdd1243dSDimitry Andric Type *ElemTy = VecTy->getElementType(); 1865*bdd1243dSDimitry Andric // Add support for floats if needed. 1866*bdd1243dSDimitry Andric auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 1867*bdd1243dSDimitry Andric ConstantInt::get(ElemTy, Val)); 1868*bdd1243dSDimitry Andric return Splat; 1869*bdd1243dSDimitry Andric } 1870*bdd1243dSDimitry Andric 1871*bdd1243dSDimitry Andric auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 1872*bdd1243dSDimitry Andric if (auto *In = dyn_cast<Instruction>(V)) { 1873*bdd1243dSDimitry Andric SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 1874*bdd1243dSDimitry Andric return simplifyInstruction(In, Q); 1875*bdd1243dSDimitry Andric } 1876*bdd1243dSDimitry Andric return nullptr; 1877*bdd1243dSDimitry Andric } 1878*bdd1243dSDimitry Andric 1879e8d8bef9SDimitry Andric // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1880*bdd1243dSDimitry Andric auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 1881*bdd1243dSDimitry Andric Value *Src, int Start, int Length, 1882*bdd1243dSDimitry Andric int Where) const -> Value * { 1883e8d8bef9SDimitry Andric assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1884e8d8bef9SDimitry Andric int SrcLen = getSizeOf(Src); 1885e8d8bef9SDimitry Andric int DstLen = getSizeOf(Dst); 1886e8d8bef9SDimitry Andric assert(0 <= Start && Start + Length <= SrcLen); 1887e8d8bef9SDimitry Andric assert(0 <= Where && Where + Length <= DstLen); 1888e8d8bef9SDimitry Andric 1889e8d8bef9SDimitry Andric int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1890e8d8bef9SDimitry Andric auto *Undef = UndefValue::get(getByteTy()); 1891e8d8bef9SDimitry Andric Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1892e8d8bef9SDimitry Andric Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1893e8d8bef9SDimitry Andric 1894e8d8bef9SDimitry Andric SmallVector<int, 256> SMask(P2Len); 1895e8d8bef9SDimitry Andric for (int i = 0; i != P2Len; ++i) { 1896e8d8bef9SDimitry Andric // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1897e8d8bef9SDimitry Andric // Otherwise, pick Dst[i]; 1898e8d8bef9SDimitry Andric SMask[i] = 1899e8d8bef9SDimitry Andric (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1900e8d8bef9SDimitry Andric } 1901e8d8bef9SDimitry Andric 1902e8d8bef9SDimitry Andric Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1903e8d8bef9SDimitry Andric return vresize(Builder, P2Insert, DstLen, Undef); 1904e8d8bef9SDimitry Andric } 1905e8d8bef9SDimitry Andric 1906*bdd1243dSDimitry Andric auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 1907*bdd1243dSDimitry Andric Value *Hi, Value *Amt) const -> Value * { 1908e8d8bef9SDimitry Andric assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1909e8d8bef9SDimitry Andric if (isZero(Amt)) 1910e8d8bef9SDimitry Andric return Hi; 1911e8d8bef9SDimitry Andric int VecLen = getSizeOf(Hi); 1912e8d8bef9SDimitry Andric if (auto IntAmt = getIntValue(Amt)) 1913e8d8bef9SDimitry Andric return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1914e8d8bef9SDimitry Andric VecLen); 1915e8d8bef9SDimitry Andric 1916e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Hi->getType())) { 1917*bdd1243dSDimitry Andric assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1918*bdd1243dSDimitry Andric "Expecting an exact HVX type"); 1919*bdd1243dSDimitry Andric return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 1920*bdd1243dSDimitry Andric Hi->getType(), {Hi, Lo, Amt}); 1921e8d8bef9SDimitry Andric } 1922e8d8bef9SDimitry Andric 1923e8d8bef9SDimitry Andric if (VecLen == 4) { 1924e8d8bef9SDimitry Andric Value *Pair = concat(Builder, {Lo, Hi}); 1925e8d8bef9SDimitry Andric Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1926e8d8bef9SDimitry Andric Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1927e8d8bef9SDimitry Andric return Builder.CreateBitCast(Trunc, Hi->getType()); 1928e8d8bef9SDimitry Andric } 1929e8d8bef9SDimitry Andric if (VecLen == 8) { 1930e8d8bef9SDimitry Andric Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1931e8d8bef9SDimitry Andric return vralignb(Builder, Lo, Hi, Sub); 1932e8d8bef9SDimitry Andric } 1933e8d8bef9SDimitry Andric llvm_unreachable("Unexpected vector length"); 1934e8d8bef9SDimitry Andric } 1935e8d8bef9SDimitry Andric 1936*bdd1243dSDimitry Andric auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 1937*bdd1243dSDimitry Andric Value *Hi, Value *Amt) const -> Value * { 1938e8d8bef9SDimitry Andric assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1939e8d8bef9SDimitry Andric if (isZero(Amt)) 1940e8d8bef9SDimitry Andric return Lo; 1941e8d8bef9SDimitry Andric int VecLen = getSizeOf(Lo); 1942e8d8bef9SDimitry Andric if (auto IntAmt = getIntValue(Amt)) 1943e8d8bef9SDimitry Andric return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1944e8d8bef9SDimitry Andric 1945e8d8bef9SDimitry Andric if (HST.isTypeForHVX(Lo->getType())) { 1946*bdd1243dSDimitry Andric assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1947*bdd1243dSDimitry Andric "Expecting an exact HVX type"); 1948*bdd1243dSDimitry Andric return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 1949*bdd1243dSDimitry Andric Lo->getType(), {Hi, Lo, Amt}); 1950e8d8bef9SDimitry Andric } 1951e8d8bef9SDimitry Andric 1952e8d8bef9SDimitry Andric if (VecLen == 4) { 1953e8d8bef9SDimitry Andric Value *Pair = concat(Builder, {Lo, Hi}); 1954e8d8bef9SDimitry Andric Value *Shift = Builder.CreateLShr(Pair, Amt); 1955e8d8bef9SDimitry Andric Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1956e8d8bef9SDimitry Andric return Builder.CreateBitCast(Trunc, Lo->getType()); 1957e8d8bef9SDimitry Andric } 1958e8d8bef9SDimitry Andric if (VecLen == 8) { 1959e8d8bef9SDimitry Andric Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1960e8d8bef9SDimitry Andric Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1961e8d8bef9SDimitry Andric Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1962e8d8bef9SDimitry Andric Function *FI = Intrinsic::getDeclaration(F.getParent(), 1963e8d8bef9SDimitry Andric Intrinsic::hexagon_S2_valignrb); 1964e8d8bef9SDimitry Andric Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1965e8d8bef9SDimitry Andric return Builder.CreateBitCast(Call, Lo->getType()); 1966e8d8bef9SDimitry Andric } 1967e8d8bef9SDimitry Andric llvm_unreachable("Unexpected vector length"); 1968e8d8bef9SDimitry Andric } 1969e8d8bef9SDimitry Andric 1970e8d8bef9SDimitry Andric // Concatenates a sequence of vectors of the same type. 1971*bdd1243dSDimitry Andric auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 1972e8d8bef9SDimitry Andric ArrayRef<Value *> Vecs) const -> Value * { 1973e8d8bef9SDimitry Andric assert(!Vecs.empty()); 1974e8d8bef9SDimitry Andric SmallVector<int, 256> SMask; 1975e8d8bef9SDimitry Andric std::vector<Value *> Work[2]; 1976e8d8bef9SDimitry Andric int ThisW = 0, OtherW = 1; 1977e8d8bef9SDimitry Andric 1978e8d8bef9SDimitry Andric Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1979e8d8bef9SDimitry Andric while (Work[ThisW].size() > 1) { 1980e8d8bef9SDimitry Andric auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1981*bdd1243dSDimitry Andric SMask.resize(length(Ty) * 2); 1982e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), 0); 1983e8d8bef9SDimitry Andric 1984e8d8bef9SDimitry Andric Work[OtherW].clear(); 1985e8d8bef9SDimitry Andric if (Work[ThisW].size() % 2 != 0) 1986e8d8bef9SDimitry Andric Work[ThisW].push_back(UndefValue::get(Ty)); 1987e8d8bef9SDimitry Andric for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1988e8d8bef9SDimitry Andric Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1989e8d8bef9SDimitry Andric Work[ThisW][i + 1], SMask); 1990e8d8bef9SDimitry Andric Work[OtherW].push_back(Joined); 1991e8d8bef9SDimitry Andric } 1992e8d8bef9SDimitry Andric std::swap(ThisW, OtherW); 1993e8d8bef9SDimitry Andric } 1994e8d8bef9SDimitry Andric 1995e8d8bef9SDimitry Andric // Since there may have been some undefs appended to make shuffle operands 1996e8d8bef9SDimitry Andric // have the same type, perform the last shuffle to only pick the original 1997e8d8bef9SDimitry Andric // elements. 1998*bdd1243dSDimitry Andric SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 1999e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), 0); 2000*bdd1243dSDimitry Andric Value *Total = Work[ThisW].front(); 2001e8d8bef9SDimitry Andric return Builder.CreateShuffleVector(Total, SMask); 2002e8d8bef9SDimitry Andric } 2003e8d8bef9SDimitry Andric 2004*bdd1243dSDimitry Andric auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 2005e8d8bef9SDimitry Andric int NewSize, Value *Pad) const -> Value * { 2006e8d8bef9SDimitry Andric assert(isa<VectorType>(Val->getType())); 2007e8d8bef9SDimitry Andric auto *ValTy = cast<VectorType>(Val->getType()); 2008e8d8bef9SDimitry Andric assert(ValTy->getElementType() == Pad->getType()); 2009e8d8bef9SDimitry Andric 2010*bdd1243dSDimitry Andric int CurSize = length(ValTy); 2011e8d8bef9SDimitry Andric if (CurSize == NewSize) 2012e8d8bef9SDimitry Andric return Val; 2013e8d8bef9SDimitry Andric // Truncate? 2014e8d8bef9SDimitry Andric if (CurSize > NewSize) 2015*bdd1243dSDimitry Andric return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 2016e8d8bef9SDimitry Andric // Extend. 2017e8d8bef9SDimitry Andric SmallVector<int, 128> SMask(NewSize); 2018e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 2019e8d8bef9SDimitry Andric std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 2020e8d8bef9SDimitry Andric Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 2021e8d8bef9SDimitry Andric return Builder.CreateShuffleVector(Val, PadVec, SMask); 2022e8d8bef9SDimitry Andric } 2023e8d8bef9SDimitry Andric 2024*bdd1243dSDimitry Andric auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 2025e8d8bef9SDimitry Andric Type *FromTy, Type *ToTy) const -> Value * { 2026e8d8bef9SDimitry Andric // Mask is a vector <N x i1>, where each element corresponds to an 2027e8d8bef9SDimitry Andric // element of FromTy. Remap it so that each element will correspond 2028e8d8bef9SDimitry Andric // to an element of ToTy. 2029e8d8bef9SDimitry Andric assert(isa<VectorType>(Mask->getType())); 2030e8d8bef9SDimitry Andric 2031e8d8bef9SDimitry Andric Type *FromSTy = FromTy->getScalarType(); 2032e8d8bef9SDimitry Andric Type *ToSTy = ToTy->getScalarType(); 2033e8d8bef9SDimitry Andric if (FromSTy == ToSTy) 2034e8d8bef9SDimitry Andric return Mask; 2035e8d8bef9SDimitry Andric 2036e8d8bef9SDimitry Andric int FromSize = getSizeOf(FromSTy); 2037e8d8bef9SDimitry Andric int ToSize = getSizeOf(ToSTy); 2038e8d8bef9SDimitry Andric assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 2039e8d8bef9SDimitry Andric 2040e8d8bef9SDimitry Andric auto *MaskTy = cast<VectorType>(Mask->getType()); 2041*bdd1243dSDimitry Andric int FromCount = length(MaskTy); 2042e8d8bef9SDimitry Andric int ToCount = (FromCount * FromSize) / ToSize; 2043e8d8bef9SDimitry Andric assert((FromCount * FromSize) % ToSize == 0); 2044e8d8bef9SDimitry Andric 2045*bdd1243dSDimitry Andric auto *FromITy = getIntTy(FromSize * 8); 2046*bdd1243dSDimitry Andric auto *ToITy = getIntTy(ToSize * 8); 204704eeddc0SDimitry Andric 2048e8d8bef9SDimitry Andric // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 2049e8d8bef9SDimitry Andric // -> trunc to <M x i1>. 2050e8d8bef9SDimitry Andric Value *Ext = Builder.CreateSExt( 2051*bdd1243dSDimitry Andric Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false)); 2052e8d8bef9SDimitry Andric Value *Cast = Builder.CreateBitCast( 2053*bdd1243dSDimitry Andric Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false)); 2054e8d8bef9SDimitry Andric return Builder.CreateTrunc( 2055*bdd1243dSDimitry Andric Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false)); 2056e8d8bef9SDimitry Andric } 2057e8d8bef9SDimitry Andric 2058e8d8bef9SDimitry Andric // Bitcast to bytes, and return least significant bits. 2059*bdd1243dSDimitry Andric auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 2060e8d8bef9SDimitry Andric -> Value * { 2061e8d8bef9SDimitry Andric Type *ScalarTy = Val->getType()->getScalarType(); 2062e8d8bef9SDimitry Andric if (ScalarTy == getBoolTy()) 2063e8d8bef9SDimitry Andric return Val; 2064e8d8bef9SDimitry Andric 2065e8d8bef9SDimitry Andric Value *Bytes = vbytes(Builder, Val); 2066e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 2067e8d8bef9SDimitry Andric return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 2068e8d8bef9SDimitry Andric // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 2069e8d8bef9SDimitry Andric // <1 x i1>. 2070e8d8bef9SDimitry Andric return Builder.CreateTrunc(Bytes, getBoolTy()); 2071e8d8bef9SDimitry Andric } 2072e8d8bef9SDimitry Andric 2073e8d8bef9SDimitry Andric // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 2074*bdd1243dSDimitry Andric auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 2075e8d8bef9SDimitry Andric -> Value * { 2076e8d8bef9SDimitry Andric Type *ScalarTy = Val->getType()->getScalarType(); 2077e8d8bef9SDimitry Andric if (ScalarTy == getByteTy()) 2078e8d8bef9SDimitry Andric return Val; 2079e8d8bef9SDimitry Andric 2080e8d8bef9SDimitry Andric if (ScalarTy != getBoolTy()) 2081e8d8bef9SDimitry Andric return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 2082e8d8bef9SDimitry Andric // For bool, return a sext from i1 to i8. 2083e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 2084e8d8bef9SDimitry Andric return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 2085e8d8bef9SDimitry Andric return Builder.CreateSExt(Val, getByteTy()); 2086e8d8bef9SDimitry Andric } 2087e8d8bef9SDimitry Andric 2088*bdd1243dSDimitry Andric auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 2089*bdd1243dSDimitry Andric unsigned Start, unsigned Length) const 2090e8d8bef9SDimitry Andric -> Value * { 2091*bdd1243dSDimitry Andric assert(Start + Length <= length(Val)); 2092*bdd1243dSDimitry Andric return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 2093e8d8bef9SDimitry Andric } 2094e8d8bef9SDimitry Andric 2095*bdd1243dSDimitry Andric auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 2096*bdd1243dSDimitry Andric -> Value * { 2097*bdd1243dSDimitry Andric size_t Len = length(Val); 2098*bdd1243dSDimitry Andric assert(Len % 2 == 0 && "Length should be even"); 2099*bdd1243dSDimitry Andric return subvector(Builder, Val, 0, Len / 2); 2100*bdd1243dSDimitry Andric } 2101*bdd1243dSDimitry Andric 2102*bdd1243dSDimitry Andric auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 2103*bdd1243dSDimitry Andric -> Value * { 2104*bdd1243dSDimitry Andric size_t Len = length(Val); 2105*bdd1243dSDimitry Andric assert(Len % 2 == 0 && "Length should be even"); 2106*bdd1243dSDimitry Andric return subvector(Builder, Val, Len / 2, Len / 2); 2107*bdd1243dSDimitry Andric } 2108*bdd1243dSDimitry Andric 2109*bdd1243dSDimitry Andric auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 2110*bdd1243dSDimitry Andric Value *Val1) const -> Value * { 2111*bdd1243dSDimitry Andric assert(Val0->getType() == Val1->getType()); 2112*bdd1243dSDimitry Andric int Len = length(Val0); 2113*bdd1243dSDimitry Andric SmallVector<int, 128> Mask(2 * Len); 2114*bdd1243dSDimitry Andric 2115*bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) { 2116*bdd1243dSDimitry Andric Mask[i] = 2 * i; // Even 2117*bdd1243dSDimitry Andric Mask[i + Len] = 2 * i + 1; // Odd 2118*bdd1243dSDimitry Andric } 2119*bdd1243dSDimitry Andric return Builder.CreateShuffleVector(Val0, Val1, Mask); 2120*bdd1243dSDimitry Andric } 2121*bdd1243dSDimitry Andric 2122*bdd1243dSDimitry Andric auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 2123*bdd1243dSDimitry Andric Value *Val1) const -> Value * { // 2124*bdd1243dSDimitry Andric assert(Val0->getType() == Val1->getType()); 2125*bdd1243dSDimitry Andric int Len = length(Val0); 2126*bdd1243dSDimitry Andric SmallVector<int, 128> Mask(2 * Len); 2127*bdd1243dSDimitry Andric 2128*bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) { 2129*bdd1243dSDimitry Andric Mask[2 * i + 0] = i; // Val0 2130*bdd1243dSDimitry Andric Mask[2 * i + 1] = i + Len; // Val1 2131*bdd1243dSDimitry Andric } 2132*bdd1243dSDimitry Andric return Builder.CreateShuffleVector(Val0, Val1, Mask); 2133*bdd1243dSDimitry Andric } 2134*bdd1243dSDimitry Andric 2135*bdd1243dSDimitry Andric auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 2136*bdd1243dSDimitry Andric Intrinsic::ID IntID, Type *RetTy, 2137*bdd1243dSDimitry Andric ArrayRef<Value *> Args, 2138*bdd1243dSDimitry Andric ArrayRef<Type *> ArgTys) const 2139*bdd1243dSDimitry Andric -> Value * { 2140*bdd1243dSDimitry Andric auto getCast = [&](IRBuilderBase &Builder, Value *Val, 2141e8d8bef9SDimitry Andric Type *DestTy) -> Value * { 2142e8d8bef9SDimitry Andric Type *SrcTy = Val->getType(); 2143e8d8bef9SDimitry Andric if (SrcTy == DestTy) 2144e8d8bef9SDimitry Andric return Val; 2145*bdd1243dSDimitry Andric 2146e8d8bef9SDimitry Andric // Non-HVX type. It should be a scalar, and it should already have 2147e8d8bef9SDimitry Andric // a valid type. 2148*bdd1243dSDimitry Andric assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 2149*bdd1243dSDimitry Andric 2150*bdd1243dSDimitry Andric Type *BoolTy = Type::getInt1Ty(F.getContext()); 2151*bdd1243dSDimitry Andric if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 2152*bdd1243dSDimitry Andric return Builder.CreateBitCast(Val, DestTy); 2153*bdd1243dSDimitry Andric 2154*bdd1243dSDimitry Andric // Predicate HVX vector. 2155*bdd1243dSDimitry Andric unsigned HwLen = HST.getVectorLength(); 2156*bdd1243dSDimitry Andric Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 2157*bdd1243dSDimitry Andric : Intrinsic::hexagon_V6_pred_typecast_128B; 2158*bdd1243dSDimitry Andric Function *FI = 2159*bdd1243dSDimitry Andric Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 2160*bdd1243dSDimitry Andric return Builder.CreateCall(FI, {Val}); 2161e8d8bef9SDimitry Andric }; 2162e8d8bef9SDimitry Andric 2163*bdd1243dSDimitry Andric Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 2164*bdd1243dSDimitry Andric FunctionType *IntrTy = IntrFn->getFunctionType(); 2165*bdd1243dSDimitry Andric 2166*bdd1243dSDimitry Andric SmallVector<Value *, 4> IntrArgs; 2167*bdd1243dSDimitry Andric for (int i = 0, e = Args.size(); i != e; ++i) { 2168*bdd1243dSDimitry Andric Value *A = Args[i]; 2169*bdd1243dSDimitry Andric Type *T = IntrTy->getParamType(i); 2170*bdd1243dSDimitry Andric if (A->getType() != T) { 2171*bdd1243dSDimitry Andric IntrArgs.push_back(getCast(Builder, A, T)); 2172*bdd1243dSDimitry Andric } else { 2173*bdd1243dSDimitry Andric IntrArgs.push_back(A); 2174*bdd1243dSDimitry Andric } 2175*bdd1243dSDimitry Andric } 2176*bdd1243dSDimitry Andric Value *Call = Builder.CreateCall(IntrFn, IntrArgs); 2177e8d8bef9SDimitry Andric 2178e8d8bef9SDimitry Andric Type *CallTy = Call->getType(); 2179*bdd1243dSDimitry Andric if (RetTy == nullptr || CallTy == RetTy) 2180e8d8bef9SDimitry Andric return Call; 2181e8d8bef9SDimitry Andric // Scalar types should have RetTy matching the call return type. 2182*bdd1243dSDimitry Andric assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 2183e8d8bef9SDimitry Andric return getCast(Builder, Call, RetTy); 2184*bdd1243dSDimitry Andric } 2185*bdd1243dSDimitry Andric 2186*bdd1243dSDimitry Andric auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 2187*bdd1243dSDimitry Andric Value *Vec, 2188*bdd1243dSDimitry Andric unsigned ToWidth) const 2189*bdd1243dSDimitry Andric -> SmallVector<Value *> { 2190*bdd1243dSDimitry Andric // Break a vector of wide elements into a series of vectors with narrow 2191*bdd1243dSDimitry Andric // elements: 2192*bdd1243dSDimitry Andric // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 2193*bdd1243dSDimitry Andric // --> 2194*bdd1243dSDimitry Andric // (a0, a1, a2, ...) // lowest "ToWidth" bits 2195*bdd1243dSDimitry Andric // (b0, b1, b2, ...) // the next lowest... 2196*bdd1243dSDimitry Andric // (c0, c1, c2, ...) // ... 2197*bdd1243dSDimitry Andric // ... 2198*bdd1243dSDimitry Andric // 2199*bdd1243dSDimitry Andric // The number of elements in each resulting vector is the same as 2200*bdd1243dSDimitry Andric // in the original vector. 2201*bdd1243dSDimitry Andric 2202*bdd1243dSDimitry Andric auto *VecTy = cast<VectorType>(Vec->getType()); 2203*bdd1243dSDimitry Andric assert(VecTy->getElementType()->isIntegerTy()); 2204*bdd1243dSDimitry Andric unsigned FromWidth = VecTy->getScalarSizeInBits(); 2205*bdd1243dSDimitry Andric assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 2206*bdd1243dSDimitry Andric assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 2207*bdd1243dSDimitry Andric unsigned NumResults = FromWidth / ToWidth; 2208*bdd1243dSDimitry Andric 2209*bdd1243dSDimitry Andric SmallVector<Value *> Results(NumResults); 2210*bdd1243dSDimitry Andric Results[0] = Vec; 2211*bdd1243dSDimitry Andric unsigned Length = length(VecTy); 2212*bdd1243dSDimitry Andric 2213*bdd1243dSDimitry Andric // Do it by splitting in half, since those operations correspond to deal 2214*bdd1243dSDimitry Andric // instructions. 2215*bdd1243dSDimitry Andric auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 2216*bdd1243dSDimitry Andric // Take V = Results[Begin], split it in L, H. 2217*bdd1243dSDimitry Andric // Store Results[Begin] = L, Results[(Begin+End)/2] = H 2218*bdd1243dSDimitry Andric // Call itself recursively split(Begin, Half), split(Half+1, End) 2219*bdd1243dSDimitry Andric if (Begin + 1 == End) 2220*bdd1243dSDimitry Andric return; 2221*bdd1243dSDimitry Andric 2222*bdd1243dSDimitry Andric Value *Val = Results[Begin]; 2223*bdd1243dSDimitry Andric unsigned Width = Val->getType()->getScalarSizeInBits(); 2224*bdd1243dSDimitry Andric 2225*bdd1243dSDimitry Andric auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 2226*bdd1243dSDimitry Andric Value *VVal = Builder.CreateBitCast(Val, VTy); 2227*bdd1243dSDimitry Andric 2228*bdd1243dSDimitry Andric Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 2229*bdd1243dSDimitry Andric 2230*bdd1243dSDimitry Andric unsigned Half = (Begin + End) / 2; 2231*bdd1243dSDimitry Andric Results[Begin] = sublo(Builder, Res); 2232*bdd1243dSDimitry Andric Results[Half] = subhi(Builder, Res); 2233*bdd1243dSDimitry Andric 2234*bdd1243dSDimitry Andric splitFunc(Begin, Half, splitFunc); 2235*bdd1243dSDimitry Andric splitFunc(Half, End, splitFunc); 2236*bdd1243dSDimitry Andric }; 2237*bdd1243dSDimitry Andric 2238*bdd1243dSDimitry Andric splitInHalf(0, NumResults, splitInHalf); 2239*bdd1243dSDimitry Andric return Results; 2240*bdd1243dSDimitry Andric } 2241*bdd1243dSDimitry Andric 2242*bdd1243dSDimitry Andric auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 2243*bdd1243dSDimitry Andric ArrayRef<Value *> Values, 2244*bdd1243dSDimitry Andric VectorType *ToType) const 2245*bdd1243dSDimitry Andric -> Value * { 2246*bdd1243dSDimitry Andric assert(ToType->getElementType()->isIntegerTy()); 2247*bdd1243dSDimitry Andric 2248*bdd1243dSDimitry Andric // If the list of values does not have power-of-2 elements, append copies 2249*bdd1243dSDimitry Andric // of the sign bit to it, to make the size be 2^n. 2250*bdd1243dSDimitry Andric // The reason for this is that the values will be joined in pairs, because 2251*bdd1243dSDimitry Andric // otherwise the shuffles will result in convoluted code. With pairwise 2252*bdd1243dSDimitry Andric // joins, the shuffles will hopefully be folded into a perfect shuffle. 2253*bdd1243dSDimitry Andric // The output will need to be sign-extended to a type with element width 2254*bdd1243dSDimitry Andric // being a power-of-2 anyways. 2255*bdd1243dSDimitry Andric SmallVector<Value *> Inputs(Values.begin(), Values.end()); 2256*bdd1243dSDimitry Andric 2257*bdd1243dSDimitry Andric unsigned ToWidth = ToType->getScalarSizeInBits(); 2258*bdd1243dSDimitry Andric unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 2259*bdd1243dSDimitry Andric assert(Width <= ToWidth); 2260*bdd1243dSDimitry Andric assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 2261*bdd1243dSDimitry Andric unsigned Length = length(Inputs.front()->getType()); 2262*bdd1243dSDimitry Andric 2263*bdd1243dSDimitry Andric unsigned NeedInputs = ToWidth / Width; 2264*bdd1243dSDimitry Andric if (Inputs.size() != NeedInputs) { 2265*bdd1243dSDimitry Andric // Having too many inputs is ok: drop the high bits (usual wrap-around). 2266*bdd1243dSDimitry Andric // If there are too few, fill them with the sign bit. 2267*bdd1243dSDimitry Andric Value *Last = Inputs.back(); 2268*bdd1243dSDimitry Andric Value *Sign = 2269*bdd1243dSDimitry Andric Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1)); 2270*bdd1243dSDimitry Andric Inputs.resize(NeedInputs, Sign); 2271*bdd1243dSDimitry Andric } 2272*bdd1243dSDimitry Andric 2273*bdd1243dSDimitry Andric while (Inputs.size() > 1) { 2274*bdd1243dSDimitry Andric Width *= 2; 2275*bdd1243dSDimitry Andric auto *VTy = VectorType::get(getIntTy(Width), Length, false); 2276*bdd1243dSDimitry Andric for (int i = 0, e = Inputs.size(); i < e; i += 2) { 2277*bdd1243dSDimitry Andric Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 2278*bdd1243dSDimitry Andric Inputs[i / 2] = Builder.CreateBitCast(Res, VTy); 2279*bdd1243dSDimitry Andric } 2280*bdd1243dSDimitry Andric Inputs.resize(Inputs.size() / 2); 2281*bdd1243dSDimitry Andric } 2282*bdd1243dSDimitry Andric 2283*bdd1243dSDimitry Andric assert(Inputs.front()->getType() == ToType); 2284*bdd1243dSDimitry Andric return Inputs.front(); 2285e8d8bef9SDimitry Andric } 2286e8d8bef9SDimitry Andric 2287e8d8bef9SDimitry Andric auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 2288e8d8bef9SDimitry Andric Value *Ptr1) const 2289*bdd1243dSDimitry Andric -> std::optional<int> { 2290e8d8bef9SDimitry Andric struct Builder : IRBuilder<> { 2291*bdd1243dSDimitry Andric Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 2292e8d8bef9SDimitry Andric ~Builder() { 2293e8d8bef9SDimitry Andric for (Instruction *I : llvm::reverse(ToErase)) 2294e8d8bef9SDimitry Andric I->eraseFromParent(); 2295e8d8bef9SDimitry Andric } 2296e8d8bef9SDimitry Andric SmallVector<Instruction *, 8> ToErase; 2297e8d8bef9SDimitry Andric }; 2298e8d8bef9SDimitry Andric 2299e8d8bef9SDimitry Andric #define CallBuilder(B, F) \ 2300e8d8bef9SDimitry Andric [&](auto &B_) { \ 2301e8d8bef9SDimitry Andric Value *V = B_.F; \ 2302e8d8bef9SDimitry Andric if (auto *I = dyn_cast<Instruction>(V)) \ 2303e8d8bef9SDimitry Andric B_.ToErase.push_back(I); \ 2304e8d8bef9SDimitry Andric return V; \ 2305e8d8bef9SDimitry Andric }(B) 2306e8d8bef9SDimitry Andric 2307*bdd1243dSDimitry Andric auto Simplify = [this](Value *V) { 2308*bdd1243dSDimitry Andric if (Value *S = simplify(V)) 2309e8d8bef9SDimitry Andric return S; 2310e8d8bef9SDimitry Andric return V; 2311e8d8bef9SDimitry Andric }; 2312e8d8bef9SDimitry Andric 2313e8d8bef9SDimitry Andric auto StripBitCast = [](Value *V) { 2314e8d8bef9SDimitry Andric while (auto *C = dyn_cast<BitCastInst>(V)) 2315e8d8bef9SDimitry Andric V = C->getOperand(0); 2316e8d8bef9SDimitry Andric return V; 2317e8d8bef9SDimitry Andric }; 2318e8d8bef9SDimitry Andric 2319e8d8bef9SDimitry Andric Ptr0 = StripBitCast(Ptr0); 2320e8d8bef9SDimitry Andric Ptr1 = StripBitCast(Ptr1); 2321e8d8bef9SDimitry Andric if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2322*bdd1243dSDimitry Andric return std::nullopt; 2323e8d8bef9SDimitry Andric 2324e8d8bef9SDimitry Andric auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2325e8d8bef9SDimitry Andric auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2326e8d8bef9SDimitry Andric if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2327*bdd1243dSDimitry Andric return std::nullopt; 2328*bdd1243dSDimitry Andric if (Gep0->getSourceElementType() != Gep1->getSourceElementType()) 2329*bdd1243dSDimitry Andric return std::nullopt; 2330e8d8bef9SDimitry Andric 2331e8d8bef9SDimitry Andric Builder B(Gep0->getParent()); 2332*bdd1243dSDimitry Andric int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2333e8d8bef9SDimitry Andric 2334e8d8bef9SDimitry Andric // FIXME: for now only check GEPs with a single index. 2335e8d8bef9SDimitry Andric if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2336*bdd1243dSDimitry Andric return std::nullopt; 2337e8d8bef9SDimitry Andric 2338e8d8bef9SDimitry Andric Value *Idx0 = Gep0->getOperand(1); 2339e8d8bef9SDimitry Andric Value *Idx1 = Gep1->getOperand(1); 2340e8d8bef9SDimitry Andric 2341e8d8bef9SDimitry Andric // First, try to simplify the subtraction directly. 2342e8d8bef9SDimitry Andric if (auto *Diff = dyn_cast<ConstantInt>( 2343e8d8bef9SDimitry Andric Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2344e8d8bef9SDimitry Andric return Diff->getSExtValue() * Scale; 2345e8d8bef9SDimitry Andric 2346*bdd1243dSDimitry Andric KnownBits Known0 = getKnownBits(Idx0, Gep0); 2347*bdd1243dSDimitry Andric KnownBits Known1 = getKnownBits(Idx1, Gep1); 2348e8d8bef9SDimitry Andric APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2349349cc55cSDimitry Andric if (Unknown.isAllOnes()) 2350*bdd1243dSDimitry Andric return std::nullopt; 2351e8d8bef9SDimitry Andric 2352e8d8bef9SDimitry Andric Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2353e8d8bef9SDimitry Andric Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2354e8d8bef9SDimitry Andric Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2355e8d8bef9SDimitry Andric Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2356e8d8bef9SDimitry Andric int Diff0 = 0; 2357e8d8bef9SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2358e8d8bef9SDimitry Andric Diff0 = C->getSExtValue(); 2359e8d8bef9SDimitry Andric } else { 2360*bdd1243dSDimitry Andric return std::nullopt; 2361e8d8bef9SDimitry Andric } 2362e8d8bef9SDimitry Andric 2363e8d8bef9SDimitry Andric Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2364e8d8bef9SDimitry Andric Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2365e8d8bef9SDimitry Andric Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2366e8d8bef9SDimitry Andric Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2367e8d8bef9SDimitry Andric int Diff1 = 0; 2368e8d8bef9SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2369e8d8bef9SDimitry Andric Diff1 = C->getSExtValue(); 2370e8d8bef9SDimitry Andric } else { 2371*bdd1243dSDimitry Andric return std::nullopt; 2372e8d8bef9SDimitry Andric } 2373e8d8bef9SDimitry Andric 2374e8d8bef9SDimitry Andric return (Diff0 + Diff1) * Scale; 2375e8d8bef9SDimitry Andric 2376e8d8bef9SDimitry Andric #undef CallBuilder 2377e8d8bef9SDimitry Andric } 2378e8d8bef9SDimitry Andric 2379*bdd1243dSDimitry Andric auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2380*bdd1243dSDimitry Andric const Instruction *CtxI) const 2381*bdd1243dSDimitry Andric -> unsigned { 2382*bdd1243dSDimitry Andric return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2383*bdd1243dSDimitry Andric } 2384*bdd1243dSDimitry Andric 2385*bdd1243dSDimitry Andric auto HexagonVectorCombine::getKnownBits(const Value *V, 2386*bdd1243dSDimitry Andric const Instruction *CtxI) const 2387*bdd1243dSDimitry Andric -> KnownBits { 2388*bdd1243dSDimitry Andric return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr, 2389*bdd1243dSDimitry Andric /*UseInstrInfo=*/true); 2390*bdd1243dSDimitry Andric } 2391*bdd1243dSDimitry Andric 2392e8d8bef9SDimitry Andric template <typename T> 2393e8d8bef9SDimitry Andric auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2394e8d8bef9SDimitry Andric BasicBlock::const_iterator To, 2395*bdd1243dSDimitry Andric const T &IgnoreInsts) const 2396e8d8bef9SDimitry Andric -> bool { 2397*bdd1243dSDimitry Andric auto getLocOrNone = 2398*bdd1243dSDimitry Andric [this](const Instruction &I) -> std::optional<MemoryLocation> { 2399e8d8bef9SDimitry Andric if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2400e8d8bef9SDimitry Andric switch (II->getIntrinsicID()) { 2401e8d8bef9SDimitry Andric case Intrinsic::masked_load: 2402e8d8bef9SDimitry Andric return MemoryLocation::getForArgument(II, 0, TLI); 2403e8d8bef9SDimitry Andric case Intrinsic::masked_store: 2404e8d8bef9SDimitry Andric return MemoryLocation::getForArgument(II, 1, TLI); 2405e8d8bef9SDimitry Andric } 2406e8d8bef9SDimitry Andric } 2407e8d8bef9SDimitry Andric return MemoryLocation::getOrNone(&I); 2408e8d8bef9SDimitry Andric }; 2409e8d8bef9SDimitry Andric 2410e8d8bef9SDimitry Andric // The source and the destination must be in the same basic block. 2411e8d8bef9SDimitry Andric const BasicBlock &Block = *In.getParent(); 2412e8d8bef9SDimitry Andric assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2413e8d8bef9SDimitry Andric // No PHIs. 2414e8d8bef9SDimitry Andric if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2415e8d8bef9SDimitry Andric return false; 2416e8d8bef9SDimitry Andric 241781ad6265SDimitry Andric if (!mayHaveNonDefUseDependency(In)) 2418e8d8bef9SDimitry Andric return true; 2419e8d8bef9SDimitry Andric bool MayWrite = In.mayWriteToMemory(); 2420e8d8bef9SDimitry Andric auto MaybeLoc = getLocOrNone(In); 2421e8d8bef9SDimitry Andric 2422e8d8bef9SDimitry Andric auto From = In.getIterator(); 2423e8d8bef9SDimitry Andric if (From == To) 2424e8d8bef9SDimitry Andric return true; 2425e8d8bef9SDimitry Andric bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2426e8d8bef9SDimitry Andric auto Range = 2427e8d8bef9SDimitry Andric MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2428e8d8bef9SDimitry Andric for (auto It = Range.first; It != Range.second; ++It) { 2429e8d8bef9SDimitry Andric const Instruction &I = *It; 2430*bdd1243dSDimitry Andric if (llvm::is_contained(IgnoreInsts, &I)) 2431e8d8bef9SDimitry Andric continue; 2432fe6060f1SDimitry Andric // assume intrinsic can be ignored 2433fe6060f1SDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2434fe6060f1SDimitry Andric if (II->getIntrinsicID() == Intrinsic::assume) 2435fe6060f1SDimitry Andric continue; 2436fe6060f1SDimitry Andric } 2437e8d8bef9SDimitry Andric // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2438e8d8bef9SDimitry Andric if (I.mayThrow()) 2439e8d8bef9SDimitry Andric return false; 2440e8d8bef9SDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) { 2441e8d8bef9SDimitry Andric if (!CB->hasFnAttr(Attribute::WillReturn)) 2442e8d8bef9SDimitry Andric return false; 2443e8d8bef9SDimitry Andric if (!CB->hasFnAttr(Attribute::NoSync)) 2444e8d8bef9SDimitry Andric return false; 2445e8d8bef9SDimitry Andric } 2446e8d8bef9SDimitry Andric if (I.mayReadOrWriteMemory()) { 2447e8d8bef9SDimitry Andric auto MaybeLocI = getLocOrNone(I); 2448e8d8bef9SDimitry Andric if (MayWrite || I.mayWriteToMemory()) { 2449e8d8bef9SDimitry Andric if (!MaybeLoc || !MaybeLocI) 2450e8d8bef9SDimitry Andric return false; 2451e8d8bef9SDimitry Andric if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2452e8d8bef9SDimitry Andric return false; 2453e8d8bef9SDimitry Andric } 2454e8d8bef9SDimitry Andric } 2455e8d8bef9SDimitry Andric } 2456e8d8bef9SDimitry Andric return true; 2457e8d8bef9SDimitry Andric } 2458e8d8bef9SDimitry Andric 2459e8d8bef9SDimitry Andric auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2460e8d8bef9SDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2461e8d8bef9SDimitry Andric return VecTy->getElementType() == getByteTy(); 2462e8d8bef9SDimitry Andric return false; 2463e8d8bef9SDimitry Andric } 2464e8d8bef9SDimitry Andric 2465*bdd1243dSDimitry Andric auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2466e8d8bef9SDimitry Andric Value *Hi, int Start, 2467e8d8bef9SDimitry Andric int Length) const -> Value * { 2468*bdd1243dSDimitry Andric assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2469e8d8bef9SDimitry Andric SmallVector<int, 128> SMask(Length); 2470e8d8bef9SDimitry Andric std::iota(SMask.begin(), SMask.end(), Start); 2471e8d8bef9SDimitry Andric return Builder.CreateShuffleVector(Lo, Hi, SMask); 2472e8d8bef9SDimitry Andric } 2473e8d8bef9SDimitry Andric 2474e8d8bef9SDimitry Andric // Pass management. 2475e8d8bef9SDimitry Andric 2476e8d8bef9SDimitry Andric namespace llvm { 2477e8d8bef9SDimitry Andric void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2478e8d8bef9SDimitry Andric FunctionPass *createHexagonVectorCombineLegacyPass(); 2479e8d8bef9SDimitry Andric } // namespace llvm 2480e8d8bef9SDimitry Andric 2481e8d8bef9SDimitry Andric namespace { 2482e8d8bef9SDimitry Andric class HexagonVectorCombineLegacy : public FunctionPass { 2483e8d8bef9SDimitry Andric public: 2484e8d8bef9SDimitry Andric static char ID; 2485e8d8bef9SDimitry Andric 2486e8d8bef9SDimitry Andric HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2487e8d8bef9SDimitry Andric 2488e8d8bef9SDimitry Andric StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2489e8d8bef9SDimitry Andric 2490e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 2491e8d8bef9SDimitry Andric AU.setPreservesCFG(); 2492e8d8bef9SDimitry Andric AU.addRequired<AAResultsWrapperPass>(); 2493e8d8bef9SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 2494e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 2495e8d8bef9SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 2496e8d8bef9SDimitry Andric AU.addRequired<TargetPassConfig>(); 2497e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 2498e8d8bef9SDimitry Andric } 2499e8d8bef9SDimitry Andric 2500e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override { 2501fe6060f1SDimitry Andric if (skipFunction(F)) 2502fe6060f1SDimitry Andric return false; 2503e8d8bef9SDimitry Andric AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2504e8d8bef9SDimitry Andric AssumptionCache &AC = 2505e8d8bef9SDimitry Andric getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2506e8d8bef9SDimitry Andric DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2507e8d8bef9SDimitry Andric TargetLibraryInfo &TLI = 2508e8d8bef9SDimitry Andric getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2509e8d8bef9SDimitry Andric auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2510e8d8bef9SDimitry Andric HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 2511e8d8bef9SDimitry Andric return HVC.run(); 2512e8d8bef9SDimitry Andric } 2513e8d8bef9SDimitry Andric }; 2514e8d8bef9SDimitry Andric } // namespace 2515e8d8bef9SDimitry Andric 2516e8d8bef9SDimitry Andric char HexagonVectorCombineLegacy::ID = 0; 2517e8d8bef9SDimitry Andric 2518e8d8bef9SDimitry Andric INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2519e8d8bef9SDimitry Andric "Hexagon Vector Combine", false, false) 2520e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2521e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2522e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2523e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2524e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2525e8d8bef9SDimitry Andric INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2526e8d8bef9SDimitry Andric "Hexagon Vector Combine", false, false) 2527e8d8bef9SDimitry Andric 2528e8d8bef9SDimitry Andric FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2529e8d8bef9SDimitry Andric return new HexagonVectorCombineLegacy(); 2530e8d8bef9SDimitry Andric } 2531