xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Support/CommandLine.h"
13 
14 using namespace llvm;
15 
16 static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
17 static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
18 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
19 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
20 
21 
22 void
23 HexagonTargetLowering::initializeHVXLowering() {
24   if (Subtarget.useHVX64BOps()) {
25     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
26     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
27     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
28     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
29     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
30     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
31     // These "short" boolean vector types should be legal because
32     // they will appear as results of vector compares. If they were
33     // not legal, type legalization would try to make them legal
34     // and that would require using operations that do not use or
35     // produce such types. That, in turn, would imply using custom
36     // nodes, which would be unoptimizable by the DAG combiner.
37     // The idea is to rely on target-independent operations as much
38     // as possible.
39     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
40     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
41     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
42     addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
43   } else if (Subtarget.useHVX128BOps()) {
44     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
45     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
46     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
47     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
48     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
49     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
50     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
51     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
52     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
53     addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
54   }
55 
56   // Set up operation actions.
57 
58   bool Use64b = Subtarget.useHVX64BOps();
59   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
60   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
61   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
62   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
63 
64   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
65     setOperationAction(Opc, FromTy, Promote);
66     AddPromotedToType(Opc, FromTy, ToTy);
67   };
68 
69   setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
70   setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
71 
72   for (MVT T : LegalV) {
73     setIndexedLoadAction(ISD::POST_INC,  T, Legal);
74     setIndexedStoreAction(ISD::POST_INC, T, Legal);
75 
76     setOperationAction(ISD::AND,            T, Legal);
77     setOperationAction(ISD::OR,             T, Legal);
78     setOperationAction(ISD::XOR,            T, Legal);
79     setOperationAction(ISD::ADD,            T, Legal);
80     setOperationAction(ISD::SUB,            T, Legal);
81     setOperationAction(ISD::CTPOP,          T, Legal);
82     setOperationAction(ISD::CTLZ,           T, Legal);
83     if (T != ByteV) {
84       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
85       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
86       setOperationAction(ISD::BSWAP,                    T, Legal);
87     }
88 
89     setOperationAction(ISD::CTTZ,               T, Custom);
90     setOperationAction(ISD::LOAD,               T, Custom);
91     setOperationAction(ISD::MUL,                T, Custom);
92     setOperationAction(ISD::MULHS,              T, Custom);
93     setOperationAction(ISD::MULHU,              T, Custom);
94     setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
95     // Make concat-vectors custom to handle concats of more than 2 vectors.
96     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
97     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
98     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
99     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
100     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
101     setOperationAction(ISD::ANY_EXTEND,         T, Custom);
102     setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
103     setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
104     if (T != ByteV) {
105       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
106       // HVX only has shifts of words and halfwords.
107       setOperationAction(ISD::SRA,                     T, Custom);
108       setOperationAction(ISD::SHL,                     T, Custom);
109       setOperationAction(ISD::SRL,                     T, Custom);
110 
111       // Promote all shuffles to operate on vectors of bytes.
112       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
113     }
114 
115     setCondCodeAction(ISD::SETNE,  T, Expand);
116     setCondCodeAction(ISD::SETLE,  T, Expand);
117     setCondCodeAction(ISD::SETGE,  T, Expand);
118     setCondCodeAction(ISD::SETLT,  T, Expand);
119     setCondCodeAction(ISD::SETULE, T, Expand);
120     setCondCodeAction(ISD::SETUGE, T, Expand);
121     setCondCodeAction(ISD::SETULT, T, Expand);
122   }
123 
124   for (MVT T : LegalW) {
125     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
126     // independent) handling of it would convert it to a load, which is
127     // not always the optimal choice.
128     setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
129     // Make concat-vectors custom to handle concats of more than 2 vectors.
130     setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
131 
132     // Custom-lower these operations for pairs. Expand them into a concat
133     // of the corresponding operations on individual vectors.
134     setOperationAction(ISD::ANY_EXTEND,               T, Custom);
135     setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
136     setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
137     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
138     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
139     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
140     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
141 
142     setOperationAction(ISD::LOAD,     T, Custom);
143     setOperationAction(ISD::STORE,    T, Custom);
144     setOperationAction(ISD::CTLZ,     T, Custom);
145     setOperationAction(ISD::CTTZ,     T, Custom);
146     setOperationAction(ISD::CTPOP,    T, Custom);
147 
148     setOperationAction(ISD::ADD,      T, Legal);
149     setOperationAction(ISD::SUB,      T, Legal);
150     setOperationAction(ISD::MUL,      T, Custom);
151     setOperationAction(ISD::MULHS,    T, Custom);
152     setOperationAction(ISD::MULHU,    T, Custom);
153     setOperationAction(ISD::AND,      T, Custom);
154     setOperationAction(ISD::OR,       T, Custom);
155     setOperationAction(ISD::XOR,      T, Custom);
156     setOperationAction(ISD::SETCC,    T, Custom);
157     setOperationAction(ISD::VSELECT,  T, Custom);
158     if (T != ByteW) {
159       setOperationAction(ISD::SRA,      T, Custom);
160       setOperationAction(ISD::SHL,      T, Custom);
161       setOperationAction(ISD::SRL,      T, Custom);
162 
163       // Promote all shuffles to operate on vectors of bytes.
164       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
165     }
166   }
167 
168   // Boolean vectors.
169 
170   for (MVT T : LegalW) {
171     // Boolean types for vector pairs will overlap with the boolean
172     // types for single vectors, e.g.
173     //   v64i8  -> v64i1 (single)
174     //   v64i16 -> v64i1 (pair)
175     // Set these actions first, and allow the single actions to overwrite
176     // any duplicates.
177     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
178     setOperationAction(ISD::SETCC,              BoolW, Custom);
179     setOperationAction(ISD::AND,                BoolW, Custom);
180     setOperationAction(ISD::OR,                 BoolW, Custom);
181     setOperationAction(ISD::XOR,                BoolW, Custom);
182   }
183 
184   for (MVT T : LegalV) {
185     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
186     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
187     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
188     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
189     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
190     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
191     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
192     setOperationAction(ISD::AND,                BoolV, Legal);
193     setOperationAction(ISD::OR,                 BoolV, Legal);
194     setOperationAction(ISD::XOR,                BoolV, Legal);
195   }
196 
197   setTargetDAGCombine(ISD::VSELECT);
198 }
199 
200 SDValue
201 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
202                               const SDLoc &dl, SelectionDAG &DAG) const {
203   SmallVector<SDValue,4> IntOps;
204   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
205   for (const SDValue &Op : Ops)
206     IntOps.push_back(Op);
207   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
208 }
209 
210 MVT
211 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
212   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
213 
214   MVT ElemTy = Tys.first.getVectorElementType();
215   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
216                                   Tys.second.getVectorNumElements());
217 }
218 
219 HexagonTargetLowering::TypePair
220 HexagonTargetLowering::typeSplit(MVT VecTy) const {
221   assert(VecTy.isVector());
222   unsigned NumElem = VecTy.getVectorNumElements();
223   assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
224   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
225   return { HalfTy, HalfTy };
226 }
227 
228 MVT
229 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
230   MVT ElemTy = VecTy.getVectorElementType();
231   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
232   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
233 }
234 
235 MVT
236 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
237   MVT ElemTy = VecTy.getVectorElementType();
238   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
239   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
240 }
241 
242 SDValue
243 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
244                                   SelectionDAG &DAG) const {
245   if (ty(Vec).getVectorElementType() == ElemTy)
246     return Vec;
247   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
248   return DAG.getBitcast(CastTy, Vec);
249 }
250 
251 SDValue
252 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
253                               SelectionDAG &DAG) const {
254   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
255                      Ops.second, Ops.first);
256 }
257 
258 HexagonTargetLowering::VectorPair
259 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
260                                SelectionDAG &DAG) const {
261   TypePair Tys = typeSplit(ty(Vec));
262   if (Vec.getOpcode() == HexagonISD::QCAT)
263     return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
264   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
265 }
266 
267 bool
268 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
269   return Subtarget.isHVXVectorType(Ty) &&
270          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
271 }
272 
273 bool
274 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
275   return Subtarget.isHVXVectorType(Ty) &&
276          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
277 }
278 
279 SDValue
280 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
281                                           SelectionDAG &DAG) const {
282   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
283     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
284 
285   unsigned ElemWidth = ElemTy.getSizeInBits();
286   if (ElemWidth == 8)
287     return ElemIdx;
288 
289   unsigned L = Log2_32(ElemWidth/8);
290   const SDLoc &dl(ElemIdx);
291   return DAG.getNode(ISD::SHL, dl, MVT::i32,
292                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
293 }
294 
295 SDValue
296 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
297                                         SelectionDAG &DAG) const {
298   unsigned ElemWidth = ElemTy.getSizeInBits();
299   assert(ElemWidth >= 8 && ElemWidth <= 32);
300   if (ElemWidth == 32)
301     return Idx;
302 
303   if (ty(Idx) != MVT::i32)
304     Idx = DAG.getBitcast(MVT::i32, Idx);
305   const SDLoc &dl(Idx);
306   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
307   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
308   return SubIdx;
309 }
310 
311 SDValue
312 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
313                                       SDValue Op1, ArrayRef<int> Mask,
314                                       SelectionDAG &DAG) const {
315   MVT OpTy = ty(Op0);
316   assert(OpTy == ty(Op1));
317 
318   MVT ElemTy = OpTy.getVectorElementType();
319   if (ElemTy == MVT::i8)
320     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
321   assert(ElemTy.getSizeInBits() >= 8);
322 
323   MVT ResTy = tyVector(OpTy, MVT::i8);
324   unsigned ElemSize = ElemTy.getSizeInBits() / 8;
325 
326   SmallVector<int,128> ByteMask;
327   for (int M : Mask) {
328     if (M < 0) {
329       for (unsigned I = 0; I != ElemSize; ++I)
330         ByteMask.push_back(-1);
331     } else {
332       int NewM = M*ElemSize;
333       for (unsigned I = 0; I != ElemSize; ++I)
334         ByteMask.push_back(NewM+I);
335     }
336   }
337   assert(ResTy.getVectorNumElements() == ByteMask.size());
338   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
339                               opCastElem(Op1, MVT::i8, DAG), ByteMask);
340 }
341 
342 SDValue
343 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
344                                          const SDLoc &dl, MVT VecTy,
345                                          SelectionDAG &DAG) const {
346   unsigned VecLen = Values.size();
347   MachineFunction &MF = DAG.getMachineFunction();
348   MVT ElemTy = VecTy.getVectorElementType();
349   unsigned ElemWidth = ElemTy.getSizeInBits();
350   unsigned HwLen = Subtarget.getVectorLength();
351 
352   unsigned ElemSize = ElemWidth / 8;
353   assert(ElemSize*VecLen == HwLen);
354   SmallVector<SDValue,32> Words;
355 
356   if (VecTy.getVectorElementType() != MVT::i32) {
357     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
358     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
359     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
360     for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
361       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
362       Words.push_back(DAG.getBitcast(MVT::i32, W));
363     }
364   } else {
365     Words.assign(Values.begin(), Values.end());
366   }
367 
368   unsigned NumWords = Words.size();
369   bool IsSplat = true, IsUndef = true;
370   SDValue SplatV;
371   for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
372     if (isUndef(Words[i]))
373       continue;
374     IsUndef = false;
375     if (!SplatV.getNode())
376       SplatV = Words[i];
377     else if (SplatV != Words[i])
378       IsSplat = false;
379   }
380   if (IsUndef)
381     return DAG.getUNDEF(VecTy);
382   if (IsSplat) {
383     assert(SplatV.getNode());
384     auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
385     if (IdxN && IdxN->isNullValue())
386       return getZero(dl, VecTy, DAG);
387     return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
388   }
389 
390   // Delay recognizing constant vectors until here, so that we can generate
391   // a vsplat.
392   SmallVector<ConstantInt*, 128> Consts(VecLen);
393   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
394   if (AllConst) {
395     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
396                             (Constant**)Consts.end());
397     Constant *CV = ConstantVector::get(Tmp);
398     unsigned Align = HwLen;
399     SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
400     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
401                        MachinePointerInfo::getConstantPool(MF), Align);
402   }
403 
404   // A special case is a situation where the vector is built entirely from
405   // elements extracted from another vector. This could be done via a shuffle
406   // more efficiently, but typically, the size of the source vector will not
407   // match the size of the vector being built (which precludes the use of a
408   // shuffle directly).
409   // This only handles a single source vector, and the vector being built
410   // should be of a sub-vector type of the source vector type.
411   auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
412                                              SmallVectorImpl<int> &SrcIdx) {
413     SDValue Vec;
414     for (SDValue V : Values) {
415       if (isUndef(V)) {
416         SrcIdx.push_back(-1);
417         continue;
418       }
419       if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
420         return false;
421       // All extracts should come from the same vector.
422       SDValue T = V.getOperand(0);
423       if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
424         return false;
425       Vec = T;
426       ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
427       if (C == nullptr)
428         return false;
429       int I = C->getSExtValue();
430       assert(I >= 0 && "Negative element index");
431       SrcIdx.push_back(I);
432     }
433     SrcVec = Vec;
434     return true;
435   };
436 
437   SmallVector<int,128> ExtIdx;
438   SDValue ExtVec;
439   if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
440     MVT ExtTy = ty(ExtVec);
441     unsigned ExtLen = ExtTy.getVectorNumElements();
442     if (ExtLen == VecLen || ExtLen == 2*VecLen) {
443       // Construct a new shuffle mask that will produce a vector with the same
444       // number of elements as the input vector, and such that the vector we
445       // want will be the initial subvector of it.
446       SmallVector<int,128> Mask;
447       BitVector Used(ExtLen);
448 
449       for (int M : ExtIdx) {
450         Mask.push_back(M);
451         if (M >= 0)
452           Used.set(M);
453       }
454       // Fill the rest of the mask with the unused elements of ExtVec in hopes
455       // that it will result in a permutation of ExtVec's elements. It's still
456       // fine if it doesn't (e.g. if undefs are present, or elements are
457       // repeated), but permutations can always be done efficiently via vdelta
458       // and vrdelta.
459       for (unsigned I = 0; I != ExtLen; ++I) {
460         if (Mask.size() == ExtLen)
461           break;
462         if (!Used.test(I))
463           Mask.push_back(I);
464       }
465 
466       SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
467                                        DAG.getUNDEF(ExtTy), Mask);
468       if (ExtLen == VecLen)
469         return S;
470       return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
471     }
472   }
473 
474   // Construct two halves in parallel, then or them together.
475   assert(4*Words.size() == Subtarget.getVectorLength());
476   SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
477   SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
478   SDValue S = DAG.getConstant(4, dl, MVT::i32);
479   for (unsigned i = 0; i != NumWords/2; ++i) {
480     SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
481                             {HalfV0, Words[i]});
482     SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
483                             {HalfV1, Words[i+NumWords/2]});
484     HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
485     HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
486   }
487 
488   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
489                        {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
490   SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
491   return DstV;
492 }
493 
494 SDValue
495 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
496       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
497   MVT PredTy = ty(PredV);
498   unsigned HwLen = Subtarget.getVectorLength();
499   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
500 
501   if (Subtarget.isHVXVectorType(PredTy, true)) {
502     // Move the vector predicate SubV to a vector register, and scale it
503     // down to match the representation (bytes per type element) that VecV
504     // uses. The scaling down will pick every 2nd or 4th (every Scale-th
505     // in general) element and put them at the front of the resulting
506     // vector. This subvector will then be inserted into the Q2V of VecV.
507     // To avoid having an operation that generates an illegal type (short
508     // vector), generate a full size vector.
509     //
510     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
511     SmallVector<int,128> Mask(HwLen);
512     // Scale = BitBytes(PredV) / Given BitBytes.
513     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
514     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
515 
516     for (unsigned i = 0; i != HwLen; ++i) {
517       unsigned Num = i % Scale;
518       unsigned Off = i / Scale;
519       Mask[BlockLen*Num + Off] = i;
520     }
521     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
522     if (!ZeroFill)
523       return S;
524     // Fill the bytes beyond BlockLen with 0s.
525     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
526     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
527                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
528     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
529     return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
530   }
531 
532   // Make sure that this is a valid scalar predicate.
533   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
534 
535   unsigned Bytes = 8 / PredTy.getVectorNumElements();
536   SmallVector<SDValue,4> Words[2];
537   unsigned IdxW = 0;
538 
539   auto Lo32 = [&DAG, &dl] (SDValue P) {
540     return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
541   };
542   auto Hi32 = [&DAG, &dl] (SDValue P) {
543     return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
544   };
545 
546   SDValue W0 = isUndef(PredV)
547                   ? DAG.getUNDEF(MVT::i64)
548                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
549   Words[IdxW].push_back(Hi32(W0));
550   Words[IdxW].push_back(Lo32(W0));
551 
552   while (Bytes < BitBytes) {
553     IdxW ^= 1;
554     Words[IdxW].clear();
555 
556     if (Bytes < 4) {
557       for (const SDValue &W : Words[IdxW ^ 1]) {
558         SDValue T = expandPredicate(W, dl, DAG);
559         Words[IdxW].push_back(Hi32(T));
560         Words[IdxW].push_back(Lo32(T));
561       }
562     } else {
563       for (const SDValue &W : Words[IdxW ^ 1]) {
564         Words[IdxW].push_back(W);
565         Words[IdxW].push_back(W);
566       }
567     }
568     Bytes *= 2;
569   }
570 
571   assert(Bytes == BitBytes);
572 
573   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
574   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
575   for (const SDValue &W : Words[IdxW]) {
576     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
577     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
578   }
579 
580   return Vec;
581 }
582 
583 SDValue
584 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
585                                           const SDLoc &dl, MVT VecTy,
586                                           SelectionDAG &DAG) const {
587   // Construct a vector V of bytes, such that a comparison V >u 0 would
588   // produce the required vector predicate.
589   unsigned VecLen = Values.size();
590   unsigned HwLen = Subtarget.getVectorLength();
591   assert(VecLen <= HwLen || VecLen == 8*HwLen);
592   SmallVector<SDValue,128> Bytes;
593   bool AllT = true, AllF = true;
594 
595   auto IsTrue = [] (SDValue V) {
596     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
597       return !N->isNullValue();
598     return false;
599   };
600   auto IsFalse = [] (SDValue V) {
601     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
602       return N->isNullValue();
603     return false;
604   };
605 
606   if (VecLen <= HwLen) {
607     // In the hardware, each bit of a vector predicate corresponds to a byte
608     // of a vector register. Calculate how many bytes does a bit of VecTy
609     // correspond to.
610     assert(HwLen % VecLen == 0);
611     unsigned BitBytes = HwLen / VecLen;
612     for (SDValue V : Values) {
613       AllT &= IsTrue(V);
614       AllF &= IsFalse(V);
615 
616       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
617                                  : DAG.getUNDEF(MVT::i8);
618       for (unsigned B = 0; B != BitBytes; ++B)
619         Bytes.push_back(Ext);
620     }
621   } else {
622     // There are as many i1 values, as there are bits in a vector register.
623     // Divide the values into groups of 8 and check that each group consists
624     // of the same value (ignoring undefs).
625     for (unsigned I = 0; I != VecLen; I += 8) {
626       unsigned B = 0;
627       // Find the first non-undef value in this group.
628       for (; B != 8; ++B) {
629         if (!Values[I+B].isUndef())
630           break;
631       }
632       SDValue F = Values[I+B];
633       AllT &= IsTrue(F);
634       AllF &= IsFalse(F);
635 
636       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
637                             : DAG.getUNDEF(MVT::i8);
638       Bytes.push_back(Ext);
639       // Verify that the rest of values in the group are the same as the
640       // first.
641       for (; B != 8; ++B)
642         assert(Values[I+B].isUndef() || Values[I+B] == F);
643     }
644   }
645 
646   if (AllT)
647     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
648   if (AllF)
649     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
650 
651   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
652   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
653   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
654 }
655 
656 SDValue
657 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
658       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
659   MVT ElemTy = ty(VecV).getVectorElementType();
660 
661   unsigned ElemWidth = ElemTy.getSizeInBits();
662   assert(ElemWidth >= 8 && ElemWidth <= 32);
663   (void)ElemWidth;
664 
665   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
666   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
667                                {VecV, ByteIdx});
668   if (ElemTy == MVT::i32)
669     return ExWord;
670 
671   // Have an extracted word, need to extract the smaller element out of it.
672   // 1. Extract the bits of (the original) IdxV that correspond to the index
673   //    of the desired element in the 32-bit word.
674   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
675   // 2. Extract the element from the word.
676   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
677   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
678 }
679 
680 SDValue
681 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
682       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
683   // Implement other return types if necessary.
684   assert(ResTy == MVT::i1);
685 
686   unsigned HwLen = Subtarget.getVectorLength();
687   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
688   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
689 
690   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
691   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
692   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
693 
694   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
695   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
696   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
697 }
698 
699 SDValue
700 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
701       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
702   MVT ElemTy = ty(VecV).getVectorElementType();
703 
704   unsigned ElemWidth = ElemTy.getSizeInBits();
705   assert(ElemWidth >= 8 && ElemWidth <= 32);
706   (void)ElemWidth;
707 
708   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
709                                      SDValue ByteIdxV) {
710     MVT VecTy = ty(VecV);
711     unsigned HwLen = Subtarget.getVectorLength();
712     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
713                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
714     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
715     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
716     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
717                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
718     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
719     return TorV;
720   };
721 
722   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
723   if (ElemTy == MVT::i32)
724     return InsertWord(VecV, ValV, ByteIdx);
725 
726   // If this is not inserting a 32-bit word, convert it into such a thing.
727   // 1. Extract the existing word from the target vector.
728   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
729                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
730   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
731                                      dl, MVT::i32, DAG);
732 
733   // 2. Treating the extracted word as a 32-bit vector, insert the given
734   //    value into it.
735   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
736   MVT SubVecTy = tyVector(ty(Ext), ElemTy);
737   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
738                              ValV, SubIdx, dl, ElemTy, DAG);
739 
740   // 3. Insert the 32-bit word back into the original vector.
741   return InsertWord(VecV, Ins, ByteIdx);
742 }
743 
744 SDValue
745 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
746       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
747   unsigned HwLen = Subtarget.getVectorLength();
748   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
749   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
750 
751   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
752   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
753   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
754   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
755 
756   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
757   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
758 }
759 
760 SDValue
761 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
762       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
763   MVT VecTy = ty(VecV);
764   unsigned HwLen = Subtarget.getVectorLength();
765   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
766   MVT ElemTy = VecTy.getVectorElementType();
767   unsigned ElemWidth = ElemTy.getSizeInBits();
768 
769   // If the source vector is a vector pair, get the single vector containing
770   // the subvector of interest. The subvector will never overlap two single
771   // vectors.
772   if (isHvxPairTy(VecTy)) {
773     unsigned SubIdx;
774     if (Idx * ElemWidth >= 8*HwLen) {
775       SubIdx = Hexagon::vsub_hi;
776       Idx -= VecTy.getVectorNumElements() / 2;
777     } else {
778       SubIdx = Hexagon::vsub_lo;
779     }
780     VecTy = typeSplit(VecTy).first;
781     VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
782     if (VecTy == ResTy)
783       return VecV;
784   }
785 
786   // The only meaningful subvectors of a single HVX vector are those that
787   // fit in a scalar register.
788   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
789 
790   MVT WordTy = tyVector(VecTy, MVT::i32);
791   SDValue WordVec = DAG.getBitcast(WordTy, VecV);
792   unsigned WordIdx = (Idx*ElemWidth) / 32;
793 
794   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
795   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
796   if (ResTy.getSizeInBits() == 32)
797     return DAG.getBitcast(ResTy, W0);
798 
799   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
800   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
801   SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
802   return DAG.getBitcast(ResTy, WW);
803 }
804 
805 SDValue
806 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
807       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
808   MVT VecTy = ty(VecV);
809   unsigned HwLen = Subtarget.getVectorLength();
810   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
811   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
812   // IdxV is required to be a constant.
813   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
814 
815   unsigned ResLen = ResTy.getVectorNumElements();
816   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
817   unsigned Offset = Idx * BitBytes;
818   SDValue Undef = DAG.getUNDEF(ByteTy);
819   SmallVector<int,128> Mask;
820 
821   if (Subtarget.isHVXVectorType(ResTy, true)) {
822     // Converting between two vector predicates. Since the result is shorter
823     // than the source, it will correspond to a vector predicate with the
824     // relevant bits replicated. The replication count is the ratio of the
825     // source and target vector lengths.
826     unsigned Rep = VecTy.getVectorNumElements() / ResLen;
827     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
828     for (unsigned i = 0; i != HwLen/Rep; ++i) {
829       for (unsigned j = 0; j != Rep; ++j)
830         Mask.push_back(i + Offset);
831     }
832     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
833     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
834   }
835 
836   // Converting between a vector predicate and a scalar predicate. In the
837   // vector predicate, a group of BitBytes bits will correspond to a single
838   // i1 element of the source vector type. Those bits will all have the same
839   // value. The same will be true for ByteVec, where each byte corresponds
840   // to a bit in the vector predicate.
841   // The algorithm is to traverse the ByteVec, going over the i1 values from
842   // the source vector, and generate the corresponding representation in an
843   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
844   // elements so that the interesting 8 bytes will be in the low end of the
845   // vector.
846   unsigned Rep = 8 / ResLen;
847   // Make sure the output fill the entire vector register, so repeat the
848   // 8-byte groups as many times as necessary.
849   for (unsigned r = 0; r != HwLen/ResLen; ++r) {
850     // This will generate the indexes of the 8 interesting bytes.
851     for (unsigned i = 0; i != ResLen; ++i) {
852       for (unsigned j = 0; j != Rep; ++j)
853         Mask.push_back(Offset + i*BitBytes);
854     }
855   }
856 
857   SDValue Zero = getZero(dl, MVT::i32, DAG);
858   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
859   // Combine the two low words from ShuffV into a v8i8, and byte-compare
860   // them against 0.
861   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
862   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
863                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
864   SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
865   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
866                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
867 }
868 
869 SDValue
870 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
871       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
872   MVT VecTy = ty(VecV);
873   MVT SubTy = ty(SubV);
874   unsigned HwLen = Subtarget.getVectorLength();
875   MVT ElemTy = VecTy.getVectorElementType();
876   unsigned ElemWidth = ElemTy.getSizeInBits();
877 
878   bool IsPair = isHvxPairTy(VecTy);
879   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
880   // The two single vectors that VecV consists of, if it's a pair.
881   SDValue V0, V1;
882   SDValue SingleV = VecV;
883   SDValue PickHi;
884 
885   if (IsPair) {
886     V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
887     V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
888 
889     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
890                                     dl, MVT::i32);
891     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
892     if (isHvxSingleTy(SubTy)) {
893       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
894         unsigned Idx = CN->getZExtValue();
895         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
896         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
897         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
898       }
899       // If IdxV is not a constant, generate the two variants: with the
900       // SubV as the high and as the low subregister, and select the right
901       // pair based on the IdxV.
902       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
903       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
904       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
905     }
906     // The subvector being inserted must be entirely contained in one of
907     // the vectors V0 or V1. Set SingleV to the correct one, and update
908     // IdxV to be the index relative to the beginning of that vector.
909     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
910     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
911     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
912   }
913 
914   // The only meaningful subvectors of a single HVX vector are those that
915   // fit in a scalar register.
916   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
917   // Convert IdxV to be index in bytes.
918   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
919   if (!IdxN || !IdxN->isNullValue()) {
920     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
921                        DAG.getConstant(ElemWidth/8, dl, MVT::i32));
922     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
923   }
924   // When inserting a single word, the rotation back to the original position
925   // would be by HwLen-Idx, but if two words are inserted, it will need to be
926   // by (HwLen-4)-Idx.
927   unsigned RolBase = HwLen;
928   if (VecTy.getSizeInBits() == 32) {
929     SDValue V = DAG.getBitcast(MVT::i32, SubV);
930     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
931   } else {
932     SDValue V = DAG.getBitcast(MVT::i64, SubV);
933     SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
934     SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
935     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
936     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
937                           DAG.getConstant(4, dl, MVT::i32));
938     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
939     RolBase = HwLen-4;
940   }
941   // If the vector wasn't ror'ed, don't ror it back.
942   if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
943     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
944                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
945     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
946   }
947 
948   if (IsPair) {
949     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
950     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
951     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
952   }
953   return SingleV;
954 }
955 
956 SDValue
957 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
958       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
959   MVT VecTy = ty(VecV);
960   MVT SubTy = ty(SubV);
961   assert(Subtarget.isHVXVectorType(VecTy, true));
962   // VecV is an HVX vector predicate. SubV may be either an HVX vector
963   // predicate as well, or it can be a scalar predicate.
964 
965   unsigned VecLen = VecTy.getVectorNumElements();
966   unsigned HwLen = Subtarget.getVectorLength();
967   assert(HwLen % VecLen == 0 && "Unexpected vector type");
968 
969   unsigned Scale = VecLen / SubTy.getVectorNumElements();
970   unsigned BitBytes = HwLen / VecLen;
971   unsigned BlockLen = HwLen / Scale;
972 
973   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
974   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
975   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
976   SDValue ByteIdx;
977 
978   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
979   if (!IdxN || !IdxN->isNullValue()) {
980     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
981                           DAG.getConstant(BitBytes, dl, MVT::i32));
982     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
983   }
984 
985   // ByteVec is the target vector VecV rotated in such a way that the
986   // subvector should be inserted at index 0. Generate a predicate mask
987   // and use vmux to do the insertion.
988   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
989   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
990                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
991   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
992   // Rotate ByteVec back, and convert to a vector predicate.
993   if (!IdxN || !IdxN->isNullValue()) {
994     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
995     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
996     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
997   }
998   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
999 }
1000 
1001 SDValue
1002 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1003       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1004   // Sign- and any-extending of a vector predicate to a vector register is
1005   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1006   // a vector of 1s (where the 1s are of type matching the vector type).
1007   assert(Subtarget.isHVXVectorType(ResTy));
1008   if (!ZeroExt)
1009     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1010 
1011   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1012   SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
1013                              DAG.getConstant(1, dl, MVT::i32));
1014   SDValue False = getZero(dl, ResTy, DAG);
1015   return DAG.getSelect(dl, ResTy, VecV, True, False);
1016 }
1017 
1018 SDValue
1019 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1020       const {
1021   const SDLoc &dl(Op);
1022   MVT VecTy = ty(Op);
1023 
1024   unsigned Size = Op.getNumOperands();
1025   SmallVector<SDValue,128> Ops;
1026   for (unsigned i = 0; i != Size; ++i)
1027     Ops.push_back(Op.getOperand(i));
1028 
1029   if (VecTy.getVectorElementType() == MVT::i1)
1030     return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1031 
1032   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1033     ArrayRef<SDValue> A(Ops);
1034     MVT SingleTy = typeSplit(VecTy).first;
1035     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1036     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1037     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1038   }
1039 
1040   return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1041 }
1042 
1043 SDValue
1044 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1045       const {
1046   // Vector concatenation of two integer (non-bool) vectors does not need
1047   // special lowering. Custom-lower concats of bool vectors and expand
1048   // concats of more than 2 vectors.
1049   MVT VecTy = ty(Op);
1050   const SDLoc &dl(Op);
1051   unsigned NumOp = Op.getNumOperands();
1052   if (VecTy.getVectorElementType() != MVT::i1) {
1053     if (NumOp == 2)
1054       return Op;
1055     // Expand the other cases into a build-vector.
1056     SmallVector<SDValue,8> Elems;
1057     for (SDValue V : Op.getNode()->ops())
1058       DAG.ExtractVectorElements(V, Elems);
1059     // A vector of i16 will be broken up into a build_vector of i16's.
1060     // This is a problem, since at the time of operation legalization,
1061     // all operations are expected to be type-legalized, and i16 is not
1062     // a legal type. If any of the extracted elements is not of a valid
1063     // type, sign-extend it to a valid one.
1064     for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1065       SDValue V = Elems[i];
1066       MVT Ty = ty(V);
1067       if (!isTypeLegal(Ty)) {
1068         EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1069         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1070           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1071                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1072                                              V.getOperand(0), V.getOperand(1)),
1073                                  DAG.getValueType(Ty));
1074           continue;
1075         }
1076         // A few less complicated cases.
1077         if (V.getOpcode() == ISD::Constant)
1078           Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1079         else if (V.isUndef())
1080           Elems[i] = DAG.getUNDEF(NTy);
1081         else
1082           llvm_unreachable("Unexpected vector element");
1083       }
1084     }
1085     return DAG.getBuildVector(VecTy, dl, Elems);
1086   }
1087 
1088   assert(VecTy.getVectorElementType() == MVT::i1);
1089   unsigned HwLen = Subtarget.getVectorLength();
1090   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1091 
1092   SDValue Op0 = Op.getOperand(0);
1093 
1094   // If the operands are HVX types (i.e. not scalar predicates), then
1095   // defer the concatenation, and create QCAT instead.
1096   if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1097     if (NumOp == 2)
1098       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1099 
1100     ArrayRef<SDUse> U(Op.getNode()->ops());
1101     SmallVector<SDValue,4> SV(U.begin(), U.end());
1102     ArrayRef<SDValue> Ops(SV);
1103 
1104     MVT HalfTy = typeSplit(VecTy).first;
1105     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1106                              Ops.take_front(NumOp/2));
1107     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1108                              Ops.take_back(NumOp/2));
1109     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1110   }
1111 
1112   // Count how many bytes (in a vector register) each bit in VecTy
1113   // corresponds to.
1114   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1115 
1116   SmallVector<SDValue,8> Prefixes;
1117   for (SDValue V : Op.getNode()->op_values()) {
1118     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1119     Prefixes.push_back(P);
1120   }
1121 
1122   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1123   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1124   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1125   SDValue Res = getZero(dl, ByteTy, DAG);
1126   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1127     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1128     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1129   }
1130   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1131 }
1132 
1133 SDValue
1134 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1135       const {
1136   // Change the type of the extracted element to i32.
1137   SDValue VecV = Op.getOperand(0);
1138   MVT ElemTy = ty(VecV).getVectorElementType();
1139   const SDLoc &dl(Op);
1140   SDValue IdxV = Op.getOperand(1);
1141   if (ElemTy == MVT::i1)
1142     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1143 
1144   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1145 }
1146 
1147 SDValue
1148 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1149       const {
1150   const SDLoc &dl(Op);
1151   SDValue VecV = Op.getOperand(0);
1152   SDValue ValV = Op.getOperand(1);
1153   SDValue IdxV = Op.getOperand(2);
1154   MVT ElemTy = ty(VecV).getVectorElementType();
1155   if (ElemTy == MVT::i1)
1156     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1157 
1158   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1159 }
1160 
1161 SDValue
1162 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1163       const {
1164   SDValue SrcV = Op.getOperand(0);
1165   MVT SrcTy = ty(SrcV);
1166   MVT DstTy = ty(Op);
1167   SDValue IdxV = Op.getOperand(1);
1168   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1169   assert(Idx % DstTy.getVectorNumElements() == 0);
1170   (void)Idx;
1171   const SDLoc &dl(Op);
1172 
1173   MVT ElemTy = SrcTy.getVectorElementType();
1174   if (ElemTy == MVT::i1)
1175     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1176 
1177   return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1178 }
1179 
1180 SDValue
1181 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1182       const {
1183   // Idx does not need to be a constant.
1184   SDValue VecV = Op.getOperand(0);
1185   SDValue ValV = Op.getOperand(1);
1186   SDValue IdxV = Op.getOperand(2);
1187 
1188   const SDLoc &dl(Op);
1189   MVT VecTy = ty(VecV);
1190   MVT ElemTy = VecTy.getVectorElementType();
1191   if (ElemTy == MVT::i1)
1192     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1193 
1194   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1195 }
1196 
1197 SDValue
1198 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1199   // Lower any-extends of boolean vectors to sign-extends, since they
1200   // translate directly to Q2V. Zero-extending could also be done equally
1201   // fast, but Q2V is used/recognized in more places.
1202   // For all other vectors, use zero-extend.
1203   MVT ResTy = ty(Op);
1204   SDValue InpV = Op.getOperand(0);
1205   MVT ElemTy = ty(InpV).getVectorElementType();
1206   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1207     return LowerHvxSignExt(Op, DAG);
1208   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1209 }
1210 
1211 SDValue
1212 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1213   MVT ResTy = ty(Op);
1214   SDValue InpV = Op.getOperand(0);
1215   MVT ElemTy = ty(InpV).getVectorElementType();
1216   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1217     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1218   return Op;
1219 }
1220 
1221 SDValue
1222 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1223   MVT ResTy = ty(Op);
1224   SDValue InpV = Op.getOperand(0);
1225   MVT ElemTy = ty(InpV).getVectorElementType();
1226   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1227     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1228   return Op;
1229 }
1230 
1231 SDValue
1232 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1233   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1234   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1235   const SDLoc &dl(Op);
1236   MVT ResTy = ty(Op);
1237   SDValue InpV = Op.getOperand(0);
1238   assert(ResTy == ty(InpV));
1239 
1240   // Calculate the vectors of 1 and bitwidth(x).
1241   MVT ElemTy = ty(InpV).getVectorElementType();
1242   unsigned ElemWidth = ElemTy.getSizeInBits();
1243   // Using uint64_t because a shift by 32 can happen.
1244   uint64_t Splat1 = 0, SplatW = 0;
1245   assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
1246   for (unsigned i = 0; i != 32/ElemWidth; ++i) {
1247     Splat1 = (Splat1 << ElemWidth) | 1;
1248     SplatW = (SplatW << ElemWidth) | ElemWidth;
1249   }
1250   SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1251                              DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
1252   SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1253                              DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
1254   SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1255                               DAG.getConstant(-1, dl, MVT::i32));
1256   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1257   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1258   // it separately in custom combine or selection).
1259   SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1260                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1261                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1262   return DAG.getNode(ISD::SUB, dl, ResTy,
1263                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1264 }
1265 
1266 SDValue
1267 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
1268   MVT ResTy = ty(Op);
1269   assert(ResTy.isVector() && isHvxSingleTy(ResTy));
1270   const SDLoc &dl(Op);
1271   SmallVector<int,256> ShuffMask;
1272 
1273   MVT ElemTy = ResTy.getVectorElementType();
1274   unsigned VecLen = ResTy.getVectorNumElements();
1275   SDValue Vs = Op.getOperand(0);
1276   SDValue Vt = Op.getOperand(1);
1277 
1278   switch (ElemTy.SimpleTy) {
1279     case MVT::i8: {
1280       // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1281       // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1282       // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1283       MVT ExtTy = typeExtElem(ResTy, 2);
1284       unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
1285                                           : Hexagon::V6_vmpyhv;
1286       SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1287 
1288       // Discard high halves of the resulting values, collect the low halves.
1289       for (unsigned I = 0; I < VecLen; I += 2) {
1290         ShuffMask.push_back(I);         // Pick even element.
1291         ShuffMask.push_back(I+VecLen);  // Pick odd element.
1292       }
1293       VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1294       SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1295       return DAG.getBitcast(ResTy, BS);
1296     }
1297     case MVT::i16:
1298       // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
1299       // (There is also V6_vmpyhv, which behaves in an analogous way to
1300       // V6_vmpybv.)
1301       return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
1302     case MVT::i32: {
1303       // Use the following sequence for signed word multiply:
1304       // T0 = V6_vmpyiowh Vs, Vt
1305       // T1 = V6_vaslw T0, 16
1306       // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
1307       SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1308       SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
1309       SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
1310       SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1311                             {T1, Vs, Vt}, DAG);
1312       return T2;
1313     }
1314     default:
1315       break;
1316   }
1317   return SDValue();
1318 }
1319 
1320 SDValue
1321 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1322   MVT ResTy = ty(Op);
1323   assert(ResTy.isVector());
1324   const SDLoc &dl(Op);
1325   SmallVector<int,256> ShuffMask;
1326 
1327   MVT ElemTy = ResTy.getVectorElementType();
1328   unsigned VecLen = ResTy.getVectorNumElements();
1329   SDValue Vs = Op.getOperand(0);
1330   SDValue Vt = Op.getOperand(1);
1331   bool IsSigned = Op.getOpcode() == ISD::MULHS;
1332 
1333   if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1334     // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1335     // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1336     // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1337     // For i16, use V6_vmpyhv, which behaves in an analogous way to
1338     // V6_vmpybv: results Lo and Hi are products of even/odd elements
1339     // respectively.
1340     MVT ExtTy = typeExtElem(ResTy, 2);
1341     unsigned MpyOpc = ElemTy == MVT::i8
1342         ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1343         : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1344     SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1345 
1346     // Discard low halves of the resulting values, collect the high halves.
1347     for (unsigned I = 0; I < VecLen; I += 2) {
1348       ShuffMask.push_back(I+1);         // Pick even element.
1349       ShuffMask.push_back(I+VecLen+1);  // Pick odd element.
1350     }
1351     VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1352     SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1353     return DAG.getBitcast(ResTy, BS);
1354   }
1355 
1356   assert(ElemTy == MVT::i32);
1357   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1358 
1359   if (IsSigned) {
1360     // mulhs(Vs,Vt) =
1361     //   = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1362     //   = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1363     //      + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1364     //   = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1365     //      + Lo(Vs) *us Vt] >> 32
1366     // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1367     // anything, so it cannot produce any carry over to higher bits),
1368     // so everything in [] can be shifted by 16 without loss of precision.
1369     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1370     //   = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1371     // Denote Hi(Vs) = Vs':
1372     //   = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1373     //   = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1374     SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1375     // Get Vs':
1376     SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1377     SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1378                           {T0, S0, Vt}, DAG);
1379     // Shift by 16:
1380     SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1381     // Get Vs'*Hi(Vt):
1382     SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1383     // Add:
1384     SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1385     return T3;
1386   }
1387 
1388   // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1389 
1390   auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1391     return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1392   };
1393   auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1394     return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1395   };
1396 
1397   MVT PairTy = typeJoin({ResTy, ResTy});
1398   SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1399                        {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1400   // Multiply-unsigned halfwords:
1401   //   LoVec = Vs.uh[2i] * Vt.uh[2i],
1402   //   HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1403   SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1404   // The low halves in the LoVec of the pair can be discarded. They are
1405   // not added to anything (in the full-precision product), so they cannot
1406   // produce a carry into the higher bits.
1407   SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1408   // Swap low and high halves in Vt, and do the halfword multiplication
1409   // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1410   SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1411   SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1412   // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1413   // These products are words, but cannot be added directly because the
1414   // sums could overflow. Add these products, by halfwords, where each sum
1415   // of a pair of halfwords gives a word.
1416   SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1417                         {LoVec(T2), HiVec(T2)}, DAG);
1418   // Add the high halfwords from the products of the low halfwords.
1419   SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1420   SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1421   SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1422   SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1423   return T7;
1424 }
1425 
1426 SDValue
1427 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1428   // Sign- and zero-extends are legal.
1429   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1430   return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1431                      Op.getOperand(0));
1432 }
1433 
1434 SDValue
1435 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1436   if (SDValue S = getVectorShiftByInt(Op, DAG))
1437     return S;
1438   return Op;
1439 }
1440 
1441 SDValue
1442 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1443   assert(!Op.isMachineOpcode());
1444   SmallVector<SDValue,2> OpsL, OpsH;
1445   const SDLoc &dl(Op);
1446 
1447   auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1448     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1449     SDValue TV = DAG.getValueType(Ty);
1450     return std::make_pair(TV, TV);
1451   };
1452 
1453   for (SDValue A : Op.getNode()->ops()) {
1454     VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1455                     ? opSplit(A, dl, DAG)
1456                     : std::make_pair(A, A);
1457     // Special case for type operand.
1458     if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1459       if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1460         P = SplitVTNode(N);
1461     }
1462     OpsL.push_back(P.first);
1463     OpsH.push_back(P.second);
1464   }
1465 
1466   MVT ResTy = ty(Op);
1467   MVT HalfTy = typeSplit(ResTy).first;
1468   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1469   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1470   SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1471   return S;
1472 }
1473 
1474 SDValue
1475 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1476   LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
1477   assert(BN->isUnindexed());
1478   MVT MemTy = BN->getMemoryVT().getSimpleVT();
1479   if (!isHvxPairTy(MemTy))
1480     return Op;
1481 
1482   const SDLoc &dl(Op);
1483   unsigned HwLen = Subtarget.getVectorLength();
1484   MVT SingleTy = typeSplit(MemTy).first;
1485   SDValue Chain = BN->getChain();
1486   SDValue Base0 = BN->getBasePtr();
1487   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
1488 
1489   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1490   if (MachineMemOperand *MMO = BN->getMemOperand()) {
1491     MachineFunction &MF = DAG.getMachineFunction();
1492     MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1493     MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1494   }
1495 
1496   unsigned MemOpc = BN->getOpcode();
1497   SDValue NewOp;
1498 
1499   if (MemOpc == ISD::LOAD) {
1500     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1501     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1502     NewOp = DAG.getMergeValues(
1503               { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1504                 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1505                             Load0.getValue(1), Load1.getValue(1)) }, dl);
1506   } else {
1507     assert(MemOpc == ISD::STORE);
1508     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1509     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1510     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1511     NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1512   }
1513 
1514   return NewOp;
1515 }
1516 
1517 SDValue
1518 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
1519   unsigned Opc = Op.getOpcode();
1520   bool IsPairOp = isHvxPairTy(ty(Op)) ||
1521                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
1522                     return isHvxPairTy(ty(V));
1523                   });
1524 
1525   if (IsPairOp) {
1526     switch (Opc) {
1527       default:
1528         break;
1529       case ISD::LOAD:
1530       case ISD::STORE:
1531         return SplitHvxMemOp(Op, DAG);
1532       case ISD::CTPOP:
1533       case ISD::CTLZ:
1534       case ISD::CTTZ:
1535       case ISD::MUL:
1536       case ISD::MULHS:
1537       case ISD::MULHU:
1538       case ISD::AND:
1539       case ISD::OR:
1540       case ISD::XOR:
1541       case ISD::SRA:
1542       case ISD::SHL:
1543       case ISD::SRL:
1544       case ISD::SETCC:
1545       case ISD::VSELECT:
1546       case ISD::SIGN_EXTEND:
1547       case ISD::ZERO_EXTEND:
1548       case ISD::SIGN_EXTEND_INREG:
1549         return SplitHvxPairOp(Op, DAG);
1550     }
1551   }
1552 
1553   switch (Opc) {
1554     default:
1555       break;
1556     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
1557     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
1558     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
1559     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
1560     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
1561     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
1562 
1563     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
1564     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
1565     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
1566     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
1567     case ISD::SRA:
1568     case ISD::SHL:
1569     case ISD::SRL:                     return LowerHvxShift(Op, DAG);
1570     case ISD::MUL:                     return LowerHvxMul(Op, DAG);
1571     case ISD::MULHS:
1572     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
1573     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
1574     case ISD::SETCC:
1575     case ISD::INTRINSIC_VOID:          return Op;
1576     // Unaligned loads will be handled by the default lowering.
1577     case ISD::LOAD:                    return SDValue();
1578   }
1579 #ifndef NDEBUG
1580   Op.dumpr(&DAG);
1581 #endif
1582   llvm_unreachable("Unhandled HVX operation");
1583 }
1584 
1585 SDValue
1586 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1587       const {
1588   const SDLoc &dl(N);
1589   SDValue Op(N, 0);
1590 
1591   unsigned Opc = Op.getOpcode();
1592   if (Opc == ISD::VSELECT) {
1593     // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
1594     SDValue Cond = Op.getOperand(0);
1595     if (Cond->getOpcode() == ISD::XOR) {
1596       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
1597       if (C1->getOpcode() == HexagonISD::QTRUE) {
1598         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
1599                                        Op.getOperand(2), Op.getOperand(1));
1600         return VSel;
1601       }
1602     }
1603   }
1604   return SDValue();
1605 }
1606 
1607 bool
1608 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
1609   // If the type of the result, or any operand type are HVX vector types,
1610   // this is an HVX operation.
1611   return Subtarget.isHVXVectorType(ty(Op), true) ||
1612          llvm::any_of(Op.getNode()->ops(),
1613                       [this] (SDValue V) {
1614                         return Subtarget.isHVXVectorType(ty(V), true);
1615                       });
1616 }
1617