1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the Hexagon target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Hexagon.h" 14 #include "HexagonISelDAGToDAG.h" 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonTargetMachine.h" 18 #include "llvm/CodeGen/FunctionLoweringInfo.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Debug.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "hexagon-isel" 27 28 static 29 cl::opt<bool> 30 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), 31 cl::desc("Rebalance address calculation trees to improve " 32 "instruction selection")); 33 34 // Rebalance only if this allows e.g. combining a GA with an offset or 35 // factoring out a shift. 36 static 37 cl::opt<bool> 38 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), 39 cl::desc("Rebalance address tree only if this allows optimizations")); 40 41 static 42 cl::opt<bool> 43 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, 44 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); 45 46 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, 47 cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); 48 49 //===----------------------------------------------------------------------===// 50 // Instruction Selector Implementation 51 //===----------------------------------------------------------------------===// 52 53 #define GET_DAGISEL_BODY HexagonDAGToDAGISel 54 #include "HexagonGenDAGISel.inc" 55 56 /// createHexagonISelDag - This pass converts a legalized DAG into a 57 /// Hexagon-specific DAG, ready for instruction scheduling. 58 /// 59 namespace llvm { 60 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, 61 CodeGenOpt::Level OptLevel) { 62 return new HexagonDAGToDAGISel(TM, OptLevel); 63 } 64 } 65 66 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { 67 SDValue Chain = LD->getChain(); 68 SDValue Base = LD->getBasePtr(); 69 SDValue Offset = LD->getOffset(); 70 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 71 EVT LoadedVT = LD->getMemoryVT(); 72 unsigned Opcode = 0; 73 74 // Check for zero extended loads. Treat any-extend loads as zero extended 75 // loads. 76 ISD::LoadExtType ExtType = LD->getExtensionType(); 77 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); 78 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); 79 80 assert(LoadedVT.isSimple()); 81 switch (LoadedVT.getSimpleVT().SimpleTy) { 82 case MVT::i8: 83 if (IsZeroExt) 84 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; 85 else 86 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; 87 break; 88 case MVT::i16: 89 if (IsZeroExt) 90 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; 91 else 92 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; 93 break; 94 case MVT::i32: 95 case MVT::f32: 96 case MVT::v2i16: 97 case MVT::v4i8: 98 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; 99 break; 100 case MVT::i64: 101 case MVT::f64: 102 case MVT::v2i32: 103 case MVT::v4i16: 104 case MVT::v8i8: 105 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; 106 break; 107 case MVT::v64i8: 108 case MVT::v32i16: 109 case MVT::v16i32: 110 case MVT::v8i64: 111 case MVT::v128i8: 112 case MVT::v64i16: 113 case MVT::v32i32: 114 case MVT::v16i64: 115 if (isAlignedMemNode(LD)) { 116 if (LD->isNonTemporal()) 117 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; 118 else 119 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; 120 } else { 121 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; 122 } 123 break; 124 default: 125 llvm_unreachable("Unexpected memory type in indexed load"); 126 } 127 128 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 129 MachineMemOperand *MemOp = LD->getMemOperand(); 130 131 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) 132 -> MachineSDNode* { 133 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { 134 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 135 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, 136 Zero, SDValue(N, 0)); 137 } 138 if (ExtType == ISD::SEXTLOAD) 139 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, 140 SDValue(N, 0)); 141 return N; 142 }; 143 144 // Loaded value Next address Chain 145 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; 146 SDValue To[3]; 147 148 EVT ValueVT = LD->getValueType(0); 149 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { 150 // A load extending to i64 will actually produce i32, which will then 151 // need to be extended to i64. 152 assert(LoadedVT.getSizeInBits() <= 32); 153 ValueVT = MVT::i32; 154 } 155 156 if (IsValidInc) { 157 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, 158 MVT::i32, MVT::Other, Base, 159 IncV, Chain); 160 CurDAG->setNodeMemRefs(L, {MemOp}); 161 To[1] = SDValue(L, 1); // Next address. 162 To[2] = SDValue(L, 2); // Chain. 163 // Handle special case for extension to i64. 164 if (LD->getValueType(0) == MVT::i64) 165 L = getExt64(L, dl); 166 To[0] = SDValue(L, 0); // Loaded (extended) value. 167 } else { 168 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 169 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, 170 Base, Zero, Chain); 171 CurDAG->setNodeMemRefs(L, {MemOp}); 172 To[2] = SDValue(L, 1); // Chain. 173 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 174 Base, IncV); 175 To[1] = SDValue(A, 0); // Next address. 176 // Handle special case for extension to i64. 177 if (LD->getValueType(0) == MVT::i64) 178 L = getExt64(L, dl); 179 To[0] = SDValue(L, 0); // Loaded (extended) value. 180 } 181 ReplaceUses(From, To, 3); 182 CurDAG->RemoveDeadNode(LD); 183 } 184 185 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { 186 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 187 return nullptr; 188 189 SDLoc dl(IntN); 190 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 191 192 static std::map<unsigned,unsigned> LoadPciMap = { 193 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, 194 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, 195 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, 196 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, 197 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, 198 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, 199 }; 200 auto FLC = LoadPciMap.find(IntNo); 201 if (FLC != LoadPciMap.end()) { 202 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; 203 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 204 // Operands: { Base, Increment, Modifier, Chain } 205 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); 206 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); 207 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, 208 { IntN->getOperand(2), I, IntN->getOperand(4), 209 IntN->getOperand(0) }); 210 return Res; 211 } 212 213 return nullptr; 214 } 215 216 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, 217 SDNode *IntN) { 218 // The "LoadN" is just a machine load instruction. The intrinsic also 219 // involves storing it. Generate an appropriate store to the location 220 // given in the intrinsic's operand(3). 221 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; 222 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & 223 HexagonII::MemAccesSizeMask; 224 unsigned Size = 1U << (SizeBits-1); 225 226 SDLoc dl(IntN); 227 MachinePointerInfo PI; 228 SDValue TS; 229 SDValue Loc = IntN->getOperand(3); 230 231 if (Size >= 4) 232 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, 233 Size); 234 else 235 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, 236 PI, MVT::getIntegerVT(Size * 8), Size); 237 238 SDNode *StoreN; 239 { 240 HandleSDNode Handle(TS); 241 SelectStore(TS.getNode()); 242 StoreN = Handle.getValue().getNode(); 243 } 244 245 // Load's results are { Loaded value, Updated pointer, Chain } 246 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); 247 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); 248 return StoreN; 249 } 250 251 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { 252 // The intrinsics for load circ/brev perform two operations: 253 // 1. Load a value V from the specified location, using the addressing 254 // mode corresponding to the intrinsic. 255 // 2. Store V into a specified location. This location is typically a 256 // local, temporary object. 257 // In many cases, the program using these intrinsics will immediately 258 // load V again from the local object. In those cases, when certain 259 // conditions are met, the last load can be removed. 260 // This function identifies and optimizes this pattern. If the pattern 261 // cannot be optimized, it returns nullptr, which will cause the load 262 // to be selected separately from the intrinsic (which will be handled 263 // in SelectIntrinsicWChain). 264 265 SDValue Ch = N->getOperand(0); 266 SDValue Loc = N->getOperand(1); 267 268 // Assume that the load and the intrinsic are connected directly with a 269 // chain: 270 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C 271 // t2: i32,ch = load t1:1, Loc, ... 272 SDNode *C = Ch.getNode(); 273 274 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) 275 return false; 276 277 // The second load can only be eliminated if its extension type matches 278 // that of the load instruction corresponding to the intrinsic. The user 279 // can provide an address of an unsigned variable to store the result of 280 // a sign-extending intrinsic into (or the other way around). 281 ISD::LoadExtType IntExt; 282 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) { 283 case Intrinsic::hexagon_circ_ldub: 284 case Intrinsic::hexagon_circ_lduh: 285 IntExt = ISD::ZEXTLOAD; 286 break; 287 case Intrinsic::hexagon_circ_ldw: 288 case Intrinsic::hexagon_circ_ldd: 289 IntExt = ISD::NON_EXTLOAD; 290 break; 291 default: 292 IntExt = ISD::SEXTLOAD; 293 break; 294 } 295 if (N->getExtensionType() != IntExt) 296 return false; 297 298 // Make sure the target location for the loaded value in the load intrinsic 299 // is the location from which LD (or N) is loading. 300 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) 301 return false; 302 303 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { 304 SDNode *S = StoreInstrForLoadIntrinsic(L, C); 305 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; 306 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; 307 ReplaceUses(F, T, array_lengthof(T)); 308 // This transformation will leave the intrinsic dead. If it remains in 309 // the DAG, the selection code will see it again, but without the load, 310 // and it will generate a store that is normally required for it. 311 CurDAG->RemoveDeadNode(C); 312 return true; 313 } 314 return false; 315 } 316 317 // Convert the bit-reverse load intrinsic to appropriate target instruction. 318 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { 319 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 320 return false; 321 322 const SDLoc &dl(IntN); 323 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 324 325 static const std::map<unsigned, unsigned> LoadBrevMap = { 326 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, 327 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, 328 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, 329 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, 330 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, 331 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } 332 }; 333 auto FLI = LoadBrevMap.find(IntNo); 334 if (FLI != LoadBrevMap.end()) { 335 EVT ValTy = 336 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; 337 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 338 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, 339 // modifier}. 340 // Operands of target instruction: { Base, Modifier, Chain }. 341 MachineSDNode *Res = CurDAG->getMachineNode( 342 FLI->second, dl, RTys, 343 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); 344 345 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); 346 CurDAG->setNodeMemRefs(Res, {MemOp}); 347 348 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 349 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 350 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 351 CurDAG->RemoveDeadNode(IntN); 352 return true; 353 } 354 return false; 355 } 356 357 /// Generate a machine instruction node for the new circlar buffer intrinsics. 358 /// The new versions use a CSx register instead of the K field. 359 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { 360 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) 361 return false; 362 363 SDLoc DL(IntN); 364 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); 365 SmallVector<SDValue, 7> Ops; 366 367 static std::map<unsigned,unsigned> LoadNPcMap = { 368 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, 369 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, 370 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, 371 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, 372 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, 373 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, 374 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, 375 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, 376 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, 377 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, 378 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, 379 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } 380 }; 381 auto FLI = LoadNPcMap.find (IntNo); 382 if (FLI != LoadNPcMap.end()) { 383 EVT ValTy = MVT::i32; 384 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || 385 IntNo == Intrinsic::hexagon_L2_loadrd_pcr) 386 ValTy = MVT::i64; 387 EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; 388 // Handle load.*_pci case which has 6 operands. 389 if (IntN->getNumOperands() == 6) { 390 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 391 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 392 // Operands: { Base, Increment, Modifier, Start, Chain }. 393 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 394 IntN->getOperand(0) }; 395 } else 396 // Handle load.*_pcr case which has 5 operands. 397 // Operands: { Base, Modifier, Start, Chain }. 398 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 399 IntN->getOperand(0) }; 400 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); 401 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 402 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 403 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); 404 CurDAG->RemoveDeadNode(IntN); 405 return true; 406 } 407 408 static std::map<unsigned,unsigned> StoreNPcMap = { 409 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, 410 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, 411 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, 412 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, 413 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, 414 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, 415 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, 416 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, 417 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, 418 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } 419 }; 420 auto FSI = StoreNPcMap.find (IntNo); 421 if (FSI != StoreNPcMap.end()) { 422 EVT RTys[] = { MVT::i32, MVT::Other }; 423 // Handle store.*_pci case which has 7 operands. 424 if (IntN->getNumOperands() == 7) { 425 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); 426 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); 427 // Operands: { Base, Increment, Modifier, Value, Start, Chain }. 428 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), 429 IntN->getOperand(6), IntN->getOperand(0) }; 430 } else 431 // Handle store.*_pcr case which has 6 operands. 432 // Operands: { Base, Modifier, Value, Start, Chain }. 433 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), 434 IntN->getOperand(5), IntN->getOperand(0) }; 435 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); 436 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); 437 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); 438 CurDAG->RemoveDeadNode(IntN); 439 return true; 440 } 441 442 return false; 443 } 444 445 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { 446 SDLoc dl(N); 447 LoadSDNode *LD = cast<LoadSDNode>(N); 448 449 // Handle indexed loads. 450 ISD::MemIndexedMode AM = LD->getAddressingMode(); 451 if (AM != ISD::UNINDEXED) { 452 SelectIndexedLoad(LD, dl); 453 return; 454 } 455 456 // Handle patterns using circ/brev load intrinsics. 457 if (tryLoadOfLoadIntrinsic(LD)) 458 return; 459 460 SelectCode(LD); 461 } 462 463 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { 464 SDValue Chain = ST->getChain(); 465 SDValue Base = ST->getBasePtr(); 466 SDValue Offset = ST->getOffset(); 467 SDValue Value = ST->getValue(); 468 // Get the constant value. 469 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 470 EVT StoredVT = ST->getMemoryVT(); 471 EVT ValueVT = Value.getValueType(); 472 473 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); 474 unsigned Opcode = 0; 475 476 assert(StoredVT.isSimple()); 477 switch (StoredVT.getSimpleVT().SimpleTy) { 478 case MVT::i8: 479 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; 480 break; 481 case MVT::i16: 482 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; 483 break; 484 case MVT::i32: 485 case MVT::f32: 486 case MVT::v2i16: 487 case MVT::v4i8: 488 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; 489 break; 490 case MVT::i64: 491 case MVT::f64: 492 case MVT::v2i32: 493 case MVT::v4i16: 494 case MVT::v8i8: 495 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; 496 break; 497 case MVT::v64i8: 498 case MVT::v32i16: 499 case MVT::v16i32: 500 case MVT::v8i64: 501 case MVT::v128i8: 502 case MVT::v64i16: 503 case MVT::v32i32: 504 case MVT::v16i64: 505 if (isAlignedMemNode(ST)) { 506 if (ST->isNonTemporal()) 507 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; 508 else 509 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; 510 } else { 511 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; 512 } 513 break; 514 default: 515 llvm_unreachable("Unexpected memory type in indexed store"); 516 } 517 518 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { 519 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); 520 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, 521 dl, MVT::i32, Value); 522 } 523 524 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); 525 MachineMemOperand *MemOp = ST->getMemOperand(); 526 527 // Next address Chain 528 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; 529 SDValue To[2]; 530 531 if (IsValidInc) { 532 // Build post increment store. 533 SDValue Ops[] = { Base, IncV, Value, Chain }; 534 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, 535 Ops); 536 CurDAG->setNodeMemRefs(S, {MemOp}); 537 To[0] = SDValue(S, 0); 538 To[1] = SDValue(S, 1); 539 } else { 540 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 541 SDValue Ops[] = { Base, Zero, Value, Chain }; 542 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); 543 CurDAG->setNodeMemRefs(S, {MemOp}); 544 To[1] = SDValue(S, 0); 545 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, 546 Base, IncV); 547 To[0] = SDValue(A, 0); 548 } 549 550 ReplaceUses(From, To, 2); 551 CurDAG->RemoveDeadNode(ST); 552 } 553 554 void HexagonDAGToDAGISel::SelectStore(SDNode *N) { 555 SDLoc dl(N); 556 StoreSDNode *ST = cast<StoreSDNode>(N); 557 558 // Handle indexed stores. 559 ISD::MemIndexedMode AM = ST->getAddressingMode(); 560 if (AM != ISD::UNINDEXED) { 561 SelectIndexedStore(ST, dl); 562 return; 563 } 564 565 SelectCode(ST); 566 } 567 568 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { 569 SDLoc dl(N); 570 SDValue Shl_0 = N->getOperand(0); 571 SDValue Shl_1 = N->getOperand(1); 572 573 auto Default = [this,N] () -> void { SelectCode(N); }; 574 575 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) 576 return Default(); 577 578 // RHS is const. 579 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); 580 581 if (Shl_0.getOpcode() == ISD::MUL) { 582 SDValue Mul_0 = Shl_0.getOperand(0); // Val 583 SDValue Mul_1 = Shl_0.getOperand(1); // Const 584 // RHS of mul is const. 585 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { 586 int32_t ValConst = C->getSExtValue() << ShlConst; 587 if (isInt<9>(ValConst)) { 588 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); 589 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 590 MVT::i32, Mul_0, Val); 591 ReplaceNode(N, Result); 592 return; 593 } 594 } 595 return Default(); 596 } 597 598 if (Shl_0.getOpcode() == ISD::SUB) { 599 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 600 SDValue Sub_1 = Shl_0.getOperand(1); // Val 601 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { 602 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) 603 return Default(); 604 SDValue Shl2_0 = Sub_1.getOperand(0); // Val 605 SDValue Shl2_1 = Sub_1.getOperand(1); // Const 606 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { 607 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); 608 if (isInt<9>(-ValConst)) { 609 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); 610 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, 611 MVT::i32, Shl2_0, Val); 612 ReplaceNode(N, Result); 613 return; 614 } 615 } 616 } 617 } 618 619 return Default(); 620 } 621 622 // 623 // Handling intrinsics for circular load and bitreverse load. 624 // 625 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { 626 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { 627 StoreInstrForLoadIntrinsic(L, N); 628 CurDAG->RemoveDeadNode(N); 629 return; 630 } 631 632 // Handle bit-reverse load intrinsics. 633 if (SelectBrevLdIntrinsic(N)) 634 return; 635 636 if (SelectNewCircIntrinsic(N)) 637 return; 638 639 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 640 if (IntNo == Intrinsic::hexagon_V6_vgathermw || 641 IntNo == Intrinsic::hexagon_V6_vgathermw_128B || 642 IntNo == Intrinsic::hexagon_V6_vgathermh || 643 IntNo == Intrinsic::hexagon_V6_vgathermh_128B || 644 IntNo == Intrinsic::hexagon_V6_vgathermhw || 645 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { 646 SelectV65Gather(N); 647 return; 648 } 649 if (IntNo == Intrinsic::hexagon_V6_vgathermwq || 650 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || 651 IntNo == Intrinsic::hexagon_V6_vgathermhq || 652 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || 653 IntNo == Intrinsic::hexagon_V6_vgathermhwq || 654 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { 655 SelectV65GatherPred(N); 656 return; 657 } 658 659 SelectCode(N); 660 } 661 662 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { 663 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 664 unsigned Bits; 665 switch (IID) { 666 case Intrinsic::hexagon_S2_vsplatrb: 667 Bits = 8; 668 break; 669 case Intrinsic::hexagon_S2_vsplatrh: 670 Bits = 16; 671 break; 672 case Intrinsic::hexagon_V6_vaddcarry: 673 case Intrinsic::hexagon_V6_vaddcarry_128B: 674 case Intrinsic::hexagon_V6_vsubcarry: 675 case Intrinsic::hexagon_V6_vsubcarry_128B: 676 SelectHVXDualOutput(N); 677 return; 678 default: 679 SelectCode(N); 680 return; 681 } 682 683 SDValue V = N->getOperand(1); 684 SDValue U; 685 if (keepsLowBits(V, Bits, U)) { 686 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 687 N->getOperand(0), U); 688 ReplaceNode(N, R.getNode()); 689 SelectCode(R.getNode()); 690 return; 691 } 692 SelectCode(N); 693 } 694 695 // 696 // Map floating point constant values. 697 // 698 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { 699 SDLoc dl(N); 700 auto *CN = cast<ConstantFPSDNode>(N); 701 APInt A = CN->getValueAPF().bitcastToAPInt(); 702 if (N->getValueType(0) == MVT::f32) { 703 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); 704 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); 705 return; 706 } 707 if (N->getValueType(0) == MVT::f64) { 708 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); 709 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); 710 return; 711 } 712 713 SelectCode(N); 714 } 715 716 // 717 // Map boolean values. 718 // 719 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { 720 if (N->getValueType(0) == MVT::i1) { 721 assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1)); 722 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) 723 ? Hexagon::PS_true 724 : Hexagon::PS_false; 725 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); 726 return; 727 } 728 729 SelectCode(N); 730 } 731 732 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { 733 MachineFrameInfo &MFI = MF->getFrameInfo(); 734 const HexagonFrameLowering *HFI = HST->getFrameLowering(); 735 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 736 unsigned StkA = HFI->getStackAlignment(); 737 unsigned MaxA = MFI.getMaxAlignment(); 738 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); 739 SDLoc DL(N); 740 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 741 SDNode *R = nullptr; 742 743 // Use PS_fi when: 744 // - the object is fixed, or 745 // - there are no objects with higher-than-default alignment, or 746 // - there are no dynamically allocated objects. 747 // Otherwise, use PS_fia. 748 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { 749 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); 750 } else { 751 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); 752 unsigned AR = HMFI.getStackAlignBaseVReg(); 753 SDValue CH = CurDAG->getEntryNode(); 754 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; 755 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); 756 } 757 758 ReplaceNode(N, R); 759 } 760 761 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { 762 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c 763 : Hexagon::A4_subp_c; 764 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(), 765 { N->getOperand(0), N->getOperand(1), 766 N->getOperand(2) }); 767 ReplaceNode(N, C); 768 } 769 770 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { 771 MVT ResTy = N->getValueType(0).getSimpleVT(); 772 if (HST->isHVXVectorType(ResTy, true)) 773 return SelectHvxVAlign(N); 774 775 const SDLoc &dl(N); 776 unsigned VecLen = ResTy.getSizeInBits(); 777 if (VecLen == 32) { 778 SDValue Ops[] = { 779 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 780 N->getOperand(0), 781 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 782 N->getOperand(1), 783 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 784 }; 785 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 786 MVT::i64, Ops); 787 788 // Shift right by "(Addr & 0x3) * 8" bytes. 789 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); 790 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); 791 SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, 792 M0, N->getOperand(2), M1); 793 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, 794 SDValue(R, 0), SDValue(C, 0)); 795 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, 796 SDValue(S, 0)); 797 ReplaceNode(N, E.getNode()); 798 } else { 799 assert(VecLen == 64); 800 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, 801 N->getOperand(2)); 802 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, 803 N->getOperand(0), N->getOperand(1), 804 SDValue(Pu,0)); 805 ReplaceNode(N, VA); 806 } 807 } 808 809 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { 810 const SDLoc &dl(N); 811 SDValue A = N->getOperand(1); 812 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); 813 assert(isPowerOf2_32(-Mask)); 814 815 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); 816 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, 817 N->getOperand(0), M); 818 ReplaceNode(N, AA); 819 } 820 821 // Handle these nodes here to avoid having to write patterns for all 822 // combinations of input/output types. In all cases, the resulting 823 // instruction is the same. 824 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { 825 SDValue Op = N->getOperand(0); 826 MVT OpTy = Op.getValueType().getSimpleVT(); 827 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), 828 CurDAG->getVTList(OpTy), {Op}); 829 ReplaceNode(T, Op.getNode()); 830 } 831 832 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { 833 MVT ResTy = N->getValueType(0).getSimpleVT(); 834 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, 835 N->getOperand(0)); 836 ReplaceNode(N, T); 837 } 838 839 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { 840 const SDLoc &dl(N); 841 MVT ResTy = N->getValueType(0).getSimpleVT(); 842 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); 843 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, 844 N->getOperand(0), Zero); 845 ReplaceNode(N, T); 846 } 847 848 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { 849 const SDLoc &dl(N); 850 MVT ResTy = N->getValueType(0).getSimpleVT(); 851 // The argument to V2Q should be a single vector. 852 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy; 853 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); 854 855 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 856 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 857 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, 858 N->getOperand(0), SDValue(R,0)); 859 ReplaceNode(N, T); 860 } 861 862 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { 863 const SDLoc &dl(N); 864 MVT ResTy = N->getValueType(0).getSimpleVT(); 865 // The result of V2Q should be a single vector. 866 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); 867 868 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); 869 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); 870 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, 871 N->getOperand(0), SDValue(R,0)); 872 ReplaceNode(N, T); 873 } 874 875 void HexagonDAGToDAGISel::Select(SDNode *N) { 876 if (N->isMachineOpcode()) 877 return N->setNodeId(-1); // Already selected. 878 879 switch (N->getOpcode()) { 880 case ISD::Constant: return SelectConstant(N); 881 case ISD::ConstantFP: return SelectConstantFP(N); 882 case ISD::FrameIndex: return SelectFrameIndex(N); 883 case ISD::SHL: return SelectSHL(N); 884 case ISD::LOAD: return SelectLoad(N); 885 case ISD::STORE: return SelectStore(N); 886 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); 887 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); 888 889 case HexagonISD::ADDC: 890 case HexagonISD::SUBC: return SelectAddSubCarry(N); 891 case HexagonISD::VALIGN: return SelectVAlign(N); 892 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); 893 case HexagonISD::TYPECAST: return SelectTypecast(N); 894 case HexagonISD::P2D: return SelectP2D(N); 895 case HexagonISD::D2P: return SelectD2P(N); 896 case HexagonISD::Q2V: return SelectQ2V(N); 897 case HexagonISD::V2Q: return SelectV2Q(N); 898 } 899 900 if (HST->useHVXOps()) { 901 switch (N->getOpcode()) { 902 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); 903 case HexagonISD::VROR: return SelectHvxRor(N); 904 } 905 } 906 907 SelectCode(N); 908 } 909 910 bool HexagonDAGToDAGISel:: 911 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 912 std::vector<SDValue> &OutOps) { 913 SDValue Inp = Op, Res; 914 915 switch (ConstraintID) { 916 default: 917 return true; 918 case InlineAsm::Constraint_i: 919 case InlineAsm::Constraint_o: // Offsetable. 920 case InlineAsm::Constraint_v: // Not offsetable. 921 case InlineAsm::Constraint_m: // Memory. 922 if (SelectAddrFI(Inp, Res)) 923 OutOps.push_back(Res); 924 else 925 OutOps.push_back(Inp); 926 break; 927 } 928 929 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); 930 return false; 931 } 932 933 934 static bool isMemOPCandidate(SDNode *I, SDNode *U) { 935 // I is an operand of U. Check if U is an arithmetic (binary) operation 936 // usable in a memop, where the other operand is a loaded value, and the 937 // result of U is stored in the same location. 938 939 if (!U->hasOneUse()) 940 return false; 941 unsigned Opc = U->getOpcode(); 942 switch (Opc) { 943 case ISD::ADD: 944 case ISD::SUB: 945 case ISD::AND: 946 case ISD::OR: 947 break; 948 default: 949 return false; 950 } 951 952 SDValue S0 = U->getOperand(0); 953 SDValue S1 = U->getOperand(1); 954 SDValue SY = (S0.getNode() == I) ? S1 : S0; 955 956 SDNode *UUse = *U->use_begin(); 957 if (UUse->getNumValues() != 1) 958 return false; 959 960 // Check if one of the inputs to U is a load instruction and the output 961 // is used by a store instruction. If so and they also have the same 962 // base pointer, then don't preoprocess this node sequence as it 963 // can be matched to a memop. 964 SDNode *SYNode = SY.getNode(); 965 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { 966 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); 967 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); 968 if (LDBasePtr == STBasePtr) 969 return true; 970 } 971 return false; 972 } 973 974 975 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 976 // (or (select c 0 y) z) -> (select c z (or y z)) 977 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { 978 SelectionDAG &DAG = *CurDAG; 979 980 for (auto I : Nodes) { 981 if (I->getOpcode() != ISD::OR) 982 continue; 983 984 auto IsZero = [] (const SDValue &V) -> bool { 985 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode())) 986 return SC->isNullValue(); 987 return false; 988 }; 989 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool { 990 if (Op.getOpcode() != ISD::SELECT) 991 return false; 992 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2)); 993 }; 994 995 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); 996 EVT VT = I->getValueType(0); 997 bool SelN0 = IsSelect0(N0); 998 SDValue SOp = SelN0 ? N0 : N1; 999 SDValue VOp = SelN0 ? N1 : N0; 1000 1001 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { 1002 SDValue SC = SOp.getOperand(0); 1003 SDValue SX = SOp.getOperand(1); 1004 SDValue SY = SOp.getOperand(2); 1005 SDLoc DLS = SOp; 1006 if (IsZero(SY)) { 1007 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); 1008 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); 1009 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1010 } else if (IsZero(SX)) { 1011 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); 1012 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); 1013 DAG.ReplaceAllUsesWith(I, NewSel.getNode()); 1014 } 1015 } 1016 } 1017 } 1018 1019 // Transform: (store ch val (add x (add (shl y c) e))) 1020 // to: (store ch val (add x (shl (add y d) c))), 1021 // where e = (shl d c) for some integer d. 1022 // The purpose of this is to enable generation of loads/stores with 1023 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1024 // value c must be 0, 1 or 2. 1025 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { 1026 SelectionDAG &DAG = *CurDAG; 1027 1028 for (auto I : Nodes) { 1029 if (I->getOpcode() != ISD::STORE) 1030 continue; 1031 1032 // I matched: (store ch val Off) 1033 SDValue Off = I->getOperand(2); 1034 // Off needs to match: (add x (add (shl y c) (shl d c)))) 1035 if (Off.getOpcode() != ISD::ADD) 1036 continue; 1037 // Off matched: (add x T0) 1038 SDValue T0 = Off.getOperand(1); 1039 // T0 needs to match: (add T1 T2): 1040 if (T0.getOpcode() != ISD::ADD) 1041 continue; 1042 // T0 matched: (add T1 T2) 1043 SDValue T1 = T0.getOperand(0); 1044 SDValue T2 = T0.getOperand(1); 1045 // T1 needs to match: (shl y c) 1046 if (T1.getOpcode() != ISD::SHL) 1047 continue; 1048 SDValue C = T1.getOperand(1); 1049 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); 1050 if (CN == nullptr) 1051 continue; 1052 unsigned CV = CN->getZExtValue(); 1053 if (CV > 2) 1054 continue; 1055 // T2 needs to match e, where e = (shl d c) for some d. 1056 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); 1057 if (EN == nullptr) 1058 continue; 1059 unsigned EV = EN->getZExtValue(); 1060 if (EV % (1 << CV) != 0) 1061 continue; 1062 unsigned DV = EV / (1 << CV); 1063 1064 // Replace T0 with: (shl (add y d) c) 1065 SDLoc DL = SDLoc(I); 1066 EVT VT = T0.getValueType(); 1067 SDValue D = DAG.getConstant(DV, DL, VT); 1068 // NewAdd = (add y d) 1069 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); 1070 // NewShl = (shl NewAdd c) 1071 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); 1072 ReplaceNode(T0.getNode(), NewShl.getNode()); 1073 } 1074 } 1075 1076 // Transform: (load ch (add x (and (srl y c) Mask))) 1077 // to: (load ch (add x (shl (srl y d) d-c))) 1078 // where 1079 // Mask = 00..0 111..1 0.0 1080 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1081 // | +-------- 1s 1082 // +-------------- at most c 0s 1083 // Motivating example: 1084 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1085 // to (add x (and (srl y 3) 1FFFFFFC)) 1086 // which results in a constant-extended and(##...,lsr). This transformation 1087 // undoes this simplification for cases where the shl can be folded into 1088 // an addressing mode. 1089 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { 1090 SelectionDAG &DAG = *CurDAG; 1091 1092 for (SDNode *N : Nodes) { 1093 unsigned Opc = N->getOpcode(); 1094 if (Opc != ISD::LOAD && Opc != ISD::STORE) 1095 continue; 1096 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); 1097 // Addr must match: (add x T0) 1098 if (Addr.getOpcode() != ISD::ADD) 1099 continue; 1100 SDValue T0 = Addr.getOperand(1); 1101 // T0 must match: (and T1 Mask) 1102 if (T0.getOpcode() != ISD::AND) 1103 continue; 1104 1105 // We have an AND. 1106 // 1107 // Check the first operand. It must be: (srl y c). 1108 SDValue S = T0.getOperand(0); 1109 if (S.getOpcode() != ISD::SRL) 1110 continue; 1111 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); 1112 if (SN == nullptr) 1113 continue; 1114 if (SN->getAPIntValue().getBitWidth() != 32) 1115 continue; 1116 uint32_t CV = SN->getZExtValue(); 1117 1118 // Check the second operand: the supposed mask. 1119 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); 1120 if (MN == nullptr) 1121 continue; 1122 if (MN->getAPIntValue().getBitWidth() != 32) 1123 continue; 1124 uint32_t Mask = MN->getZExtValue(); 1125 // Examine the mask. 1126 uint32_t TZ = countTrailingZeros(Mask); 1127 uint32_t M1 = countTrailingOnes(Mask >> TZ); 1128 uint32_t LZ = countLeadingZeros(Mask); 1129 // Trailing zeros + middle ones + leading zeros must equal the width. 1130 if (TZ + M1 + LZ != 32) 1131 continue; 1132 // The number of trailing zeros will be encoded in the addressing mode. 1133 if (TZ > 2) 1134 continue; 1135 // The number of leading zeros must be at most c. 1136 if (LZ > CV) 1137 continue; 1138 1139 // All looks good. 1140 SDValue Y = S.getOperand(0); 1141 EVT VT = Addr.getValueType(); 1142 SDLoc dl(S); 1143 // TZ = D-C, so D = TZ+C. 1144 SDValue D = DAG.getConstant(TZ+CV, dl, VT); 1145 SDValue DC = DAG.getConstant(TZ, dl, VT); 1146 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); 1147 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); 1148 ReplaceNode(T0.getNode(), NewShl.getNode()); 1149 } 1150 } 1151 1152 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1153 // (op ... 1 ...)) 1154 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { 1155 SelectionDAG &DAG = *CurDAG; 1156 1157 for (SDNode *N : Nodes) { 1158 unsigned Opc = N->getOpcode(); 1159 if (Opc != ISD::ZERO_EXTEND) 1160 continue; 1161 SDValue OpI1 = N->getOperand(0); 1162 EVT OpVT = OpI1.getValueType(); 1163 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) 1164 continue; 1165 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1166 SDNode *U = *I; 1167 if (U->getNumValues() != 1) 1168 continue; 1169 EVT UVT = U->getValueType(0); 1170 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) 1171 continue; 1172 if (isMemOPCandidate(N, U)) 1173 continue; 1174 1175 // Potentially simplifiable operation. 1176 unsigned I1N = I.getOperandNo(); 1177 SmallVector<SDValue,2> Ops(U->getNumOperands()); 1178 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) 1179 Ops[i] = U->getOperand(i); 1180 EVT BVT = Ops[I1N].getValueType(); 1181 1182 SDLoc dl(U); 1183 SDValue C0 = DAG.getConstant(0, dl, BVT); 1184 SDValue C1 = DAG.getConstant(1, dl, BVT); 1185 SDValue If0, If1; 1186 1187 if (isa<MachineSDNode>(U)) { 1188 unsigned UseOpc = U->getMachineOpcode(); 1189 Ops[I1N] = C0; 1190 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1191 Ops[I1N] = C1; 1192 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); 1193 } else { 1194 unsigned UseOpc = U->getOpcode(); 1195 Ops[I1N] = C0; 1196 If0 = DAG.getNode(UseOpc, dl, UVT, Ops); 1197 Ops[I1N] = C1; 1198 If1 = DAG.getNode(UseOpc, dl, UVT, Ops); 1199 } 1200 SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0); 1201 DAG.ReplaceAllUsesWith(U, Sel.getNode()); 1202 } 1203 } 1204 } 1205 1206 void HexagonDAGToDAGISel::PreprocessISelDAG() { 1207 // Repack all nodes before calling each preprocessing function, 1208 // because each of them can modify the set of nodes. 1209 auto getNodes = [this] () -> std::vector<SDNode*> { 1210 std::vector<SDNode*> T; 1211 T.reserve(CurDAG->allnodes_size()); 1212 for (SDNode &N : CurDAG->allnodes()) 1213 T.push_back(&N); 1214 return T; 1215 }; 1216 1217 // Transform: (or (select c x 0) z) -> (select c (or x z) z) 1218 // (or (select c 0 y) z) -> (select c z (or y z)) 1219 ppSimplifyOrSelect0(getNodes()); 1220 1221 // Transform: (store ch val (add x (add (shl y c) e))) 1222 // to: (store ch val (add x (shl (add y d) c))), 1223 // where e = (shl d c) for some integer d. 1224 // The purpose of this is to enable generation of loads/stores with 1225 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift 1226 // value c must be 0, 1 or 2. 1227 ppAddrReorderAddShl(getNodes()); 1228 1229 // Transform: (load ch (add x (and (srl y c) Mask))) 1230 // to: (load ch (add x (shl (srl y d) d-c))) 1231 // where 1232 // Mask = 00..0 111..1 0.0 1233 // | | +-- d-c 0s, and d-c is 0, 1 or 2. 1234 // | +-------- 1s 1235 // +-------------- at most c 0s 1236 // Motivating example: 1237 // DAG combiner optimizes (add x (shl (srl y 5) 2)) 1238 // to (add x (and (srl y 3) 1FFFFFFC)) 1239 // which results in a constant-extended and(##...,lsr). This transformation 1240 // undoes this simplification for cases where the shl can be folded into 1241 // an addressing mode. 1242 ppAddrRewriteAndSrl(getNodes()); 1243 1244 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) 1245 // (op ... 1 ...)) 1246 ppHoistZextI1(getNodes()); 1247 1248 DEBUG_WITH_TYPE("isel", { 1249 dbgs() << "Preprocessed (Hexagon) selection DAG:"; 1250 CurDAG->dump(); 1251 }); 1252 1253 if (EnableAddressRebalancing) { 1254 rebalanceAddressTrees(); 1255 1256 DEBUG_WITH_TYPE("isel", { 1257 dbgs() << "Address tree balanced selection DAG:"; 1258 CurDAG->dump(); 1259 }); 1260 } 1261 } 1262 1263 void HexagonDAGToDAGISel::EmitFunctionEntryCode() { 1264 auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget()); 1265 auto &HFI = *HST.getFrameLowering(); 1266 if (!HFI.needsAligna(*MF)) 1267 return; 1268 1269 MachineFrameInfo &MFI = MF->getFrameInfo(); 1270 MachineBasicBlock *EntryBB = &MF->front(); 1271 unsigned AR = FuncInfo->CreateReg(MVT::i32); 1272 unsigned MaxA = MFI.getMaxAlignment(); 1273 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR) 1274 .addImm(MaxA); 1275 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR); 1276 } 1277 1278 // Match a frame index that can be used in an addressing mode. 1279 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { 1280 if (N.getOpcode() != ISD::FrameIndex) 1281 return false; 1282 auto &HFI = *HST->getFrameLowering(); 1283 MachineFrameInfo &MFI = MF->getFrameInfo(); 1284 int FX = cast<FrameIndexSDNode>(N)->getIndex(); 1285 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) 1286 return false; 1287 R = CurDAG->getTargetFrameIndex(FX, MVT::i32); 1288 return true; 1289 } 1290 1291 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { 1292 return SelectGlobalAddress(N, R, false, 0); 1293 } 1294 1295 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { 1296 return SelectGlobalAddress(N, R, true, 0); 1297 } 1298 1299 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { 1300 return SelectAnyImmediate(N, R, 0); 1301 } 1302 1303 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { 1304 return SelectAnyImmediate(N, R, 0); 1305 } 1306 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { 1307 return SelectAnyImmediate(N, R, 1); 1308 } 1309 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { 1310 return SelectAnyImmediate(N, R, 2); 1311 } 1312 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { 1313 return SelectAnyImmediate(N, R, 3); 1314 } 1315 1316 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { 1317 EVT T = N.getValueType(); 1318 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) 1319 return false; 1320 R = N; 1321 return true; 1322 } 1323 1324 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, 1325 uint32_t LogAlign) { 1326 auto IsAligned = [LogAlign] (uint64_t V) -> bool { 1327 return alignTo(V, (uint64_t)1 << LogAlign) == V; 1328 }; 1329 1330 switch (N.getOpcode()) { 1331 case ISD::Constant: { 1332 if (N.getValueType() != MVT::i32) 1333 return false; 1334 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); 1335 if (!IsAligned(V)) 1336 return false; 1337 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); 1338 return true; 1339 } 1340 case HexagonISD::JT: 1341 case HexagonISD::CP: 1342 // These are assumed to always be aligned at least 8-byte boundary. 1343 if (LogAlign > 3) 1344 return false; 1345 R = N.getOperand(0); 1346 return true; 1347 case ISD::ExternalSymbol: 1348 // Symbols may be aligned at any boundary. 1349 if (LogAlign > 0) 1350 return false; 1351 R = N; 1352 return true; 1353 case ISD::BlockAddress: 1354 // Block address is always aligned at least 4-byte boundary. 1355 if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset())) 1356 return false; 1357 R = N; 1358 return true; 1359 } 1360 1361 if (SelectGlobalAddress(N, R, false, LogAlign) || 1362 SelectGlobalAddress(N, R, true, LogAlign)) 1363 return true; 1364 1365 return false; 1366 } 1367 1368 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, 1369 bool UseGP, uint32_t LogAlign) { 1370 auto IsAligned = [LogAlign] (uint64_t V) -> bool { 1371 return alignTo(V, (uint64_t)1 << LogAlign) == V; 1372 }; 1373 1374 switch (N.getOpcode()) { 1375 case ISD::ADD: { 1376 SDValue N0 = N.getOperand(0); 1377 SDValue N1 = N.getOperand(1); 1378 unsigned GAOpc = N0.getOpcode(); 1379 if (UseGP && GAOpc != HexagonISD::CONST32_GP) 1380 return false; 1381 if (!UseGP && GAOpc != HexagonISD::CONST32) 1382 return false; 1383 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { 1384 SDValue Addr = N0.getOperand(0); 1385 // For the purpose of alignment, sextvalue and zextvalue are the same. 1386 if (!IsAligned(Const->getZExtValue())) 1387 return false; 1388 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { 1389 if (GA->getOpcode() == ISD::TargetGlobalAddress) { 1390 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); 1391 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), 1392 N.getValueType(), NewOff); 1393 return true; 1394 } 1395 } 1396 } 1397 break; 1398 } 1399 case HexagonISD::CP: 1400 case HexagonISD::JT: 1401 case HexagonISD::CONST32: 1402 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we 1403 // want in the instruction. 1404 if (!UseGP) 1405 R = N.getOperand(0); 1406 return !UseGP; 1407 case HexagonISD::CONST32_GP: 1408 if (UseGP) 1409 R = N.getOperand(0); 1410 return UseGP; 1411 default: 1412 return false; 1413 } 1414 1415 return false; 1416 } 1417 1418 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { 1419 // This (complex pattern) function is meant to detect a sign-extension 1420 // i32->i64 on a per-operand basis. This would allow writing single 1421 // patterns that would cover a number of combinations of different ways 1422 // a sign-extensions could be written. For example: 1423 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) 1424 // could match either one of these: 1425 // (mul (sext x) (sext_inreg y)) 1426 // (mul (sext-load *p) (sext_inreg y)) 1427 // (mul (sext_inreg x) (sext y)) 1428 // etc. 1429 // 1430 // The returned value will have type i64 and its low word will 1431 // contain the value being extended. The high bits are not specified. 1432 // The returned type is i64 because the original type of N was i64, 1433 // but the users of this function should only use the low-word of the 1434 // result, e.g. 1435 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) 1436 1437 if (N.getValueType() != MVT::i64) 1438 return false; 1439 unsigned Opc = N.getOpcode(); 1440 switch (Opc) { 1441 case ISD::SIGN_EXTEND: 1442 case ISD::SIGN_EXTEND_INREG: { 1443 // sext_inreg has the source type as a separate operand. 1444 EVT T = Opc == ISD::SIGN_EXTEND 1445 ? N.getOperand(0).getValueType() 1446 : cast<VTSDNode>(N.getOperand(1))->getVT(); 1447 unsigned SW = T.getSizeInBits(); 1448 if (SW == 32) 1449 R = N.getOperand(0); 1450 else if (SW < 32) 1451 R = N; 1452 else 1453 return false; 1454 break; 1455 } 1456 case ISD::LOAD: { 1457 LoadSDNode *L = cast<LoadSDNode>(N); 1458 if (L->getExtensionType() != ISD::SEXTLOAD) 1459 return false; 1460 // All extending loads extend to i32, so even if the value in 1461 // memory is shorter than 32 bits, it will be i32 after the load. 1462 if (L->getMemoryVT().getSizeInBits() > 32) 1463 return false; 1464 R = N; 1465 break; 1466 } 1467 case ISD::SRA: { 1468 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1469 if (!S || S->getZExtValue() != 32) 1470 return false; 1471 R = N; 1472 break; 1473 } 1474 default: 1475 return false; 1476 } 1477 EVT RT = R.getValueType(); 1478 if (RT == MVT::i64) 1479 return true; 1480 assert(RT == MVT::i32); 1481 // This is only to produce a value of type i64. Do not rely on the 1482 // high bits produced by this. 1483 const SDLoc &dl(N); 1484 SDValue Ops[] = { 1485 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), 1486 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), 1487 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) 1488 }; 1489 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, 1490 MVT::i64, Ops); 1491 R = SDValue(T, 0); 1492 return true; 1493 } 1494 1495 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, 1496 SDValue &Src) { 1497 unsigned Opc = Val.getOpcode(); 1498 switch (Opc) { 1499 case ISD::SIGN_EXTEND: 1500 case ISD::ZERO_EXTEND: 1501 case ISD::ANY_EXTEND: { 1502 const SDValue &Op0 = Val.getOperand(0); 1503 EVT T = Op0.getValueType(); 1504 if (T.isInteger() && T.getSizeInBits() == NumBits) { 1505 Src = Op0; 1506 return true; 1507 } 1508 break; 1509 } 1510 case ISD::SIGN_EXTEND_INREG: 1511 case ISD::AssertSext: 1512 case ISD::AssertZext: 1513 if (Val.getOperand(0).getValueType().isInteger()) { 1514 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); 1515 if (T->getVT().getSizeInBits() == NumBits) { 1516 Src = Val.getOperand(0); 1517 return true; 1518 } 1519 } 1520 break; 1521 case ISD::AND: { 1522 // Check if this is an AND with NumBits of lower bits set to 1. 1523 uint64_t Mask = (1 << NumBits) - 1; 1524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1525 if (C->getZExtValue() == Mask) { 1526 Src = Val.getOperand(1); 1527 return true; 1528 } 1529 } 1530 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1531 if (C->getZExtValue() == Mask) { 1532 Src = Val.getOperand(0); 1533 return true; 1534 } 1535 } 1536 break; 1537 } 1538 case ISD::OR: 1539 case ISD::XOR: { 1540 // OR/XOR with the lower NumBits bits set to 0. 1541 uint64_t Mask = (1 << NumBits) - 1; 1542 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { 1543 if ((C->getZExtValue() & Mask) == 0) { 1544 Src = Val.getOperand(1); 1545 return true; 1546 } 1547 } 1548 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { 1549 if ((C->getZExtValue() & Mask) == 0) { 1550 Src = Val.getOperand(0); 1551 return true; 1552 } 1553 } 1554 break; 1555 } 1556 default: 1557 break; 1558 } 1559 return false; 1560 } 1561 1562 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { 1563 return N->getAlignment() >= N->getMemoryVT().getStoreSize(); 1564 } 1565 1566 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { 1567 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); 1568 switch (N->getMemoryVT().getStoreSize()) { 1569 case 1: 1570 return StackSize <= 56; // 1*2^6 - 8 1571 case 2: 1572 return StackSize <= 120; // 2*2^6 - 8 1573 case 4: 1574 return StackSize <= 248; // 4*2^6 - 8 1575 default: 1576 return false; 1577 } 1578 } 1579 1580 // Return true when the given node fits in a positive half word. 1581 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { 1582 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { 1583 int64_t V = CN->getSExtValue(); 1584 return V > 0 && isInt<16>(V); 1585 } 1586 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { 1587 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); 1588 return VN->getVT().getSizeInBits() <= 16; 1589 } 1590 return false; 1591 } 1592 1593 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { 1594 return !CheckSingleUse || N->hasOneUse(); 1595 } 1596 1597 //////////////////////////////////////////////////////////////////////////////// 1598 // Rebalancing of address calculation trees 1599 1600 static bool isOpcodeHandled(const SDNode *N) { 1601 switch (N->getOpcode()) { 1602 case ISD::ADD: 1603 case ISD::MUL: 1604 return true; 1605 case ISD::SHL: 1606 // We only handle constant shifts because these can be easily flattened 1607 // into multiplications by 2^Op1. 1608 return isa<ConstantSDNode>(N->getOperand(1).getNode()); 1609 default: 1610 return false; 1611 } 1612 } 1613 1614 /// Return the weight of an SDNode 1615 int HexagonDAGToDAGISel::getWeight(SDNode *N) { 1616 if (!isOpcodeHandled(N)) 1617 return 1; 1618 assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); 1619 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); 1620 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); 1621 return RootWeights[N]; 1622 } 1623 1624 int HexagonDAGToDAGISel::getHeight(SDNode *N) { 1625 if (!isOpcodeHandled(N)) 1626 return 0; 1627 assert(RootWeights.count(N) && RootWeights[N] >= 0 && 1628 "Cannot query height of unvisited/RAUW'd node!"); 1629 return RootHeights[N]; 1630 } 1631 1632 namespace { 1633 struct WeightedLeaf { 1634 SDValue Value; 1635 int Weight; 1636 int InsertionOrder; 1637 1638 WeightedLeaf() : Value(SDValue()) { } 1639 1640 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : 1641 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { 1642 assert(Weight >= 0 && "Weight must be >= 0"); 1643 } 1644 1645 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { 1646 assert(A.Value.getNode() && B.Value.getNode()); 1647 return A.Weight == B.Weight ? 1648 (A.InsertionOrder > B.InsertionOrder) : 1649 (A.Weight > B.Weight); 1650 } 1651 }; 1652 1653 /// A specialized priority queue for WeigthedLeaves. It automatically folds 1654 /// constants and allows removal of non-top elements while maintaining the 1655 /// priority order. 1656 class LeafPrioQueue { 1657 SmallVector<WeightedLeaf, 8> Q; 1658 bool HaveConst; 1659 WeightedLeaf ConstElt; 1660 unsigned Opcode; 1661 1662 public: 1663 bool empty() { 1664 return (!HaveConst && Q.empty()); 1665 } 1666 1667 size_t size() { 1668 return Q.size() + HaveConst; 1669 } 1670 1671 bool hasConst() { 1672 return HaveConst; 1673 } 1674 1675 const WeightedLeaf &top() { 1676 if (HaveConst) 1677 return ConstElt; 1678 return Q.front(); 1679 } 1680 1681 WeightedLeaf pop() { 1682 if (HaveConst) { 1683 HaveConst = false; 1684 return ConstElt; 1685 } 1686 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1687 return Q.pop_back_val(); 1688 } 1689 1690 void push(WeightedLeaf L, bool SeparateConst=true) { 1691 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { 1692 if (Opcode == ISD::MUL && 1693 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) 1694 return; 1695 if (Opcode == ISD::ADD && 1696 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) 1697 return; 1698 1699 HaveConst = true; 1700 ConstElt = L; 1701 } else { 1702 Q.push_back(L); 1703 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1704 } 1705 } 1706 1707 /// Push L to the bottom of the queue regardless of its weight. If L is 1708 /// constant, it will not be folded with other constants in the queue. 1709 void pushToBottom(WeightedLeaf L) { 1710 L.Weight = 1000; 1711 push(L, false); 1712 } 1713 1714 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of 1715 /// lowest weight and remove it from the queue. 1716 WeightedLeaf findSHL(uint64_t MaxAmount); 1717 1718 WeightedLeaf findMULbyConst(); 1719 1720 LeafPrioQueue(unsigned Opcode) : 1721 HaveConst(false), Opcode(Opcode) { } 1722 }; 1723 } // end anonymous namespace 1724 1725 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { 1726 int ResultPos; 1727 WeightedLeaf Result; 1728 1729 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1730 const WeightedLeaf &L = Q[Pos]; 1731 const SDValue &Val = L.Value; 1732 if (Val.getOpcode() != ISD::SHL || 1733 !isa<ConstantSDNode>(Val.getOperand(1)) || 1734 Val.getConstantOperandVal(1) > MaxAmount) 1735 continue; 1736 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1737 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1738 { 1739 Result = L; 1740 ResultPos = Pos; 1741 } 1742 } 1743 1744 if (Result.Value.getNode()) { 1745 Q.erase(&Q[ResultPos]); 1746 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1747 } 1748 1749 return Result; 1750 } 1751 1752 WeightedLeaf LeafPrioQueue::findMULbyConst() { 1753 int ResultPos; 1754 WeightedLeaf Result; 1755 1756 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { 1757 const WeightedLeaf &L = Q[Pos]; 1758 const SDValue &Val = L.Value; 1759 if (Val.getOpcode() != ISD::MUL || 1760 !isa<ConstantSDNode>(Val.getOperand(1)) || 1761 Val.getConstantOperandVal(1) > 127) 1762 continue; 1763 if (!Result.Value.getNode() || Result.Weight > L.Weight || 1764 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) 1765 { 1766 Result = L; 1767 ResultPos = Pos; 1768 } 1769 } 1770 1771 if (Result.Value.getNode()) { 1772 Q.erase(&Q[ResultPos]); 1773 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); 1774 } 1775 1776 return Result; 1777 } 1778 1779 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { 1780 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); 1781 return CurDAG->getConstant(MulFactor, SDLoc(N), 1782 N->getOperand(1).getValueType()); 1783 } 1784 1785 /// @returns the value x for which 2^x is a factor of Val 1786 static unsigned getPowerOf2Factor(SDValue Val) { 1787 if (Val.getOpcode() == ISD::MUL) { 1788 unsigned MaxFactor = 0; 1789 for (int i = 0; i < 2; ++i) { 1790 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); 1791 if (!C) 1792 continue; 1793 const APInt &CInt = C->getAPIntValue(); 1794 if (CInt.getBoolValue()) 1795 MaxFactor = CInt.countTrailingZeros(); 1796 } 1797 return MaxFactor; 1798 } 1799 if (Val.getOpcode() == ISD::SHL) { 1800 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) 1801 return 0; 1802 return (unsigned) Val.getConstantOperandVal(1); 1803 } 1804 1805 return 0; 1806 } 1807 1808 /// @returns true if V>>Amount will eliminate V's operation on its child 1809 static bool willShiftRightEliminate(SDValue V, unsigned Amount) { 1810 if (V.getOpcode() == ISD::MUL) { 1811 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1812 for (int i = 0; i < 2; ++i) 1813 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1814 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { 1815 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; 1816 return (NewConst == 1); 1817 } 1818 } else if (V.getOpcode() == ISD::SHL) { 1819 return (Amount == V.getConstantOperandVal(1)); 1820 } 1821 1822 return false; 1823 } 1824 1825 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { 1826 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; 1827 if (V.getOpcode() == ISD::MUL) { 1828 for (int i=0; i < 2; ++i) { 1829 if (isa<ConstantSDNode>(Ops[i].getNode()) && 1830 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { 1831 uint64_t NewConst = V.getConstantOperandVal(i) >> Power; 1832 if (NewConst == 1) 1833 return Ops[!i]; 1834 Ops[i] = CurDAG->getConstant(NewConst, 1835 SDLoc(V), V.getValueType()); 1836 break; 1837 } 1838 } 1839 } else if (V.getOpcode() == ISD::SHL) { 1840 uint64_t ShiftAmount = V.getConstantOperandVal(1); 1841 if (ShiftAmount == Power) 1842 return Ops[0]; 1843 Ops[1] = CurDAG->getConstant(ShiftAmount - Power, 1844 SDLoc(V), V.getValueType()); 1845 } 1846 1847 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); 1848 } 1849 1850 static bool isTargetConstant(const SDValue &V) { 1851 return V.getOpcode() == HexagonISD::CONST32 || 1852 V.getOpcode() == HexagonISD::CONST32_GP; 1853 } 1854 1855 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { 1856 if (GAUsesInFunction.count(V)) 1857 return GAUsesInFunction[V]; 1858 1859 unsigned Result = 0; 1860 const Function &CurF = CurDAG->getMachineFunction().getFunction(); 1861 for (const User *U : V->users()) { 1862 if (isa<Instruction>(U) && 1863 cast<Instruction>(U)->getParent()->getParent() == &CurF) 1864 ++Result; 1865 } 1866 1867 GAUsesInFunction[V] = Result; 1868 1869 return Result; 1870 } 1871 1872 /// Note - After calling this, N may be dead. It may have been replaced by a 1873 /// new node, so always use the returned value in place of N. 1874 /// 1875 /// @returns The SDValue taking the place of N (which could be N if it is 1876 /// unchanged) 1877 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { 1878 assert(RootWeights.count(N) && "Cannot balance non-root node."); 1879 assert(RootWeights[N] != -2 && "This node was RAUW'd!"); 1880 assert(!TopLevel || N->getOpcode() == ISD::ADD); 1881 1882 // Return early if this node was already visited 1883 if (RootWeights[N] != -1) 1884 return SDValue(N, 0); 1885 1886 assert(isOpcodeHandled(N)); 1887 1888 SDValue Op0 = N->getOperand(0); 1889 SDValue Op1 = N->getOperand(1); 1890 1891 // Return early if the operands will remain unchanged or are all roots 1892 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && 1893 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { 1894 SDNode *Op0N = Op0.getNode(); 1895 int Weight; 1896 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { 1897 Weight = getWeight(balanceSubTree(Op0N).getNode()); 1898 // Weight = calculateWeight(Op0N); 1899 } else 1900 Weight = getWeight(Op0N); 1901 1902 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd 1903 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { 1904 Weight += getWeight(balanceSubTree(Op1N).getNode()); 1905 // Weight += calculateWeight(Op1N); 1906 } else 1907 Weight += getWeight(Op1N); 1908 1909 RootWeights[N] = Weight; 1910 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), 1911 getHeight(N->getOperand(1).getNode())) + 1; 1912 1913 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight 1914 << " Height=" << RootHeights[N] << "): "); 1915 LLVM_DEBUG(N->dump(CurDAG)); 1916 1917 return SDValue(N, 0); 1918 } 1919 1920 LLVM_DEBUG(dbgs() << "** Balancing root node: "); 1921 LLVM_DEBUG(N->dump(CurDAG)); 1922 1923 unsigned NOpcode = N->getOpcode(); 1924 1925 LeafPrioQueue Leaves(NOpcode); 1926 SmallVector<SDValue, 4> Worklist; 1927 Worklist.push_back(SDValue(N, 0)); 1928 1929 // SHL nodes will be converted to MUL nodes 1930 if (NOpcode == ISD::SHL) 1931 NOpcode = ISD::MUL; 1932 1933 bool CanFactorize = false; 1934 WeightedLeaf Mul1, Mul2; 1935 unsigned MaxPowerOf2 = 0; 1936 WeightedLeaf GA; 1937 1938 // Do not try to factor out a shift if there is already a shift at the tip of 1939 // the tree. 1940 bool HaveTopLevelShift = false; 1941 if (TopLevel && 1942 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && 1943 Op0.getConstantOperandVal(1) < 4) || 1944 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && 1945 Op1.getConstantOperandVal(1) < 4))) 1946 HaveTopLevelShift = true; 1947 1948 // Flatten the subtree into an ordered list of leaves; at the same time 1949 // determine whether the tree is already balanced. 1950 int InsertionOrder = 0; 1951 SmallDenseMap<SDValue, int> NodeHeights; 1952 bool Imbalanced = false; 1953 int CurrentWeight = 0; 1954 while (!Worklist.empty()) { 1955 SDValue Child = Worklist.pop_back_val(); 1956 1957 if (Child.getNode() != N && RootWeights.count(Child.getNode())) { 1958 // CASE 1: Child is a root note 1959 1960 int Weight = RootWeights[Child.getNode()]; 1961 if (Weight == -1) { 1962 Child = balanceSubTree(Child.getNode()); 1963 // calculateWeight(Child.getNode()); 1964 Weight = getWeight(Child.getNode()); 1965 } else if (Weight == -2) { 1966 // Whoops, this node was RAUWd by one of the balanceSubTree calls we 1967 // made. Our worklist isn't up to date anymore. 1968 // Restart the whole process. 1969 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 1970 return balanceSubTree(N, TopLevel); 1971 } 1972 1973 NodeHeights[Child] = 1; 1974 CurrentWeight += Weight; 1975 1976 unsigned PowerOf2; 1977 if (TopLevel && !CanFactorize && !HaveTopLevelShift && 1978 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && 1979 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { 1980 // Try to identify two factorizable MUL/SHL children greedily. Leave 1981 // them out of the priority queue for now so we can deal with them 1982 // after. 1983 if (!Mul1.Value.getNode()) { 1984 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); 1985 MaxPowerOf2 = PowerOf2; 1986 } else { 1987 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); 1988 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); 1989 1990 // Our addressing modes can only shift by a maximum of 3 1991 if (MaxPowerOf2 > 3) 1992 MaxPowerOf2 = 3; 1993 1994 CanFactorize = true; 1995 } 1996 } else 1997 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 1998 } else if (!isOpcodeHandled(Child.getNode())) { 1999 // CASE 2: Child is an unhandled kind of node (e.g. constant) 2000 int Weight = getWeight(Child.getNode()); 2001 2002 NodeHeights[Child] = getHeight(Child.getNode()); 2003 CurrentWeight += Weight; 2004 2005 if (isTargetConstant(Child) && !GA.Value.getNode()) 2006 GA = WeightedLeaf(Child, Weight, InsertionOrder++); 2007 else 2008 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); 2009 } else { 2010 // CASE 3: Child is a subtree of same opcode 2011 // Visit children first, then flatten. 2012 unsigned ChildOpcode = Child.getOpcode(); 2013 assert(ChildOpcode == NOpcode || 2014 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); 2015 2016 // Convert SHL to MUL 2017 SDValue Op1; 2018 if (ChildOpcode == ISD::SHL) 2019 Op1 = getMultiplierForSHL(Child.getNode()); 2020 else 2021 Op1 = Child->getOperand(1); 2022 2023 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { 2024 assert(!NodeHeights.count(Child) && "Parent visited before children?"); 2025 // Visit children first, then re-visit this node 2026 Worklist.push_back(Child); 2027 Worklist.push_back(Op1); 2028 Worklist.push_back(Child->getOperand(0)); 2029 } else { 2030 // Back at this node after visiting the children 2031 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) 2032 Imbalanced = true; 2033 2034 NodeHeights[Child] = std::max(NodeHeights[Op1], 2035 NodeHeights[Child->getOperand(0)]) + 1; 2036 } 2037 } 2038 } 2039 2040 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] 2041 << " weight=" << CurrentWeight 2042 << " imbalanced=" << Imbalanced << "\n"); 2043 2044 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) 2045 // This factors out a shift in order to match memw(a<<Y+b). 2046 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || 2047 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { 2048 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); 2049 int Weight = Mul1.Weight + Mul2.Weight; 2050 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; 2051 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); 2052 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); 2053 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), 2054 Mul1Factored, Mul2Factored); 2055 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), 2056 Mul1.Value.getValueType()); 2057 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), 2058 Sum, Const); 2059 NodeHeights[New] = Height; 2060 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); 2061 } else if (Mul1.Value.getNode()) { 2062 // We failed to factorize two MULs, so now the Muls are left outside the 2063 // queue... add them back. 2064 Leaves.push(Mul1); 2065 if (Mul2.Value.getNode()) 2066 Leaves.push(Mul2); 2067 CanFactorize = false; 2068 } 2069 2070 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere 2071 // and the root node itself is not used more than twice. This reduces the 2072 // amount of additional constant extenders introduced by this optimization. 2073 bool CombinedGA = false; 2074 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && 2075 GA.Value.hasOneUse() && N->use_size() < 3) { 2076 GlobalAddressSDNode *GANode = 2077 cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); 2078 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); 2079 2080 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && 2081 getTargetLowering()->isOffsetFoldingLegal(GANode)) { 2082 LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" 2083 << Offset->getSExtValue() << "): "); 2084 LLVM_DEBUG(GANode->dump(CurDAG)); 2085 2086 SDValue NewTGA = 2087 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), 2088 GANode->getValueType(0), 2089 GANode->getOffset() + (uint64_t)Offset->getSExtValue()); 2090 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), 2091 GA.Value.getValueType(), NewTGA); 2092 GA.Weight += Leaves.top().Weight; 2093 2094 NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); 2095 CombinedGA = true; 2096 2097 Leaves.pop(); // Remove the offset constant from the queue 2098 } 2099 } 2100 2101 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || 2102 (RebalanceOnlyImbalancedTrees && !Imbalanced)) { 2103 RootWeights[N] = CurrentWeight; 2104 RootHeights[N] = NodeHeights[SDValue(N, 0)]; 2105 2106 return SDValue(N, 0); 2107 } 2108 2109 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) 2110 if (NOpcode == ISD::ADD && GA.Value.getNode()) { 2111 WeightedLeaf SHL = Leaves.findSHL(31); 2112 if (SHL.Value.getNode()) { 2113 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; 2114 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), 2115 GA.Value.getValueType(), 2116 GA.Value, SHL.Value); 2117 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here 2118 NodeHeights[GA.Value] = Height; 2119 } 2120 } 2121 2122 if (GA.Value.getNode()) 2123 Leaves.push(GA); 2124 2125 // If this is the top level and we haven't factored out a shift, we should try 2126 // to move a constant to the bottom to match addressing modes like memw(rX+C) 2127 if (TopLevel && !CanFactorize && Leaves.hasConst()) { 2128 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree."); 2129 Leaves.pushToBottom(Leaves.pop()); 2130 } 2131 2132 const DataLayout &DL = CurDAG->getDataLayout(); 2133 const TargetLowering &TLI = *getTargetLowering(); 2134 2135 // Rebuild the tree using Huffman's algorithm 2136 while (Leaves.size() > 1) { 2137 WeightedLeaf L0 = Leaves.pop(); 2138 2139 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), 2140 // otherwise just get the next leaf 2141 WeightedLeaf L1 = Leaves.findMULbyConst(); 2142 if (!L1.Value.getNode()) 2143 L1 = Leaves.pop(); 2144 2145 assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); 2146 2147 SDValue V0 = L0.Value; 2148 int V0Weight = L0.Weight; 2149 SDValue V1 = L1.Value; 2150 int V1Weight = L1.Weight; 2151 2152 // Make sure that none of these nodes have been RAUW'd 2153 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || 2154 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { 2155 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); 2156 return balanceSubTree(N, TopLevel); 2157 } 2158 2159 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); 2160 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); 2161 EVT VT = N->getValueType(0); 2162 SDValue NewNode; 2163 2164 if (V0C && !V1C) { 2165 std::swap(V0, V1); 2166 std::swap(V0C, V1C); 2167 } 2168 2169 // Calculate height of this node 2170 assert(NodeHeights.count(V0) && NodeHeights.count(V1) && 2171 "Children must have been visited before re-combining them!"); 2172 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; 2173 2174 // Rebuild this node (and restore SHL from MUL if needed) 2175 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) 2176 NewNode = CurDAG->getNode( 2177 ISD::SHL, SDLoc(V0), VT, V0, 2178 CurDAG->getConstant( 2179 V1C->getAPIntValue().logBase2(), SDLoc(N), 2180 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2181 else 2182 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); 2183 2184 NodeHeights[NewNode] = Height; 2185 2186 int Weight = V0Weight + V1Weight; 2187 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); 2188 2189 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight 2190 << ",Height=" << Height << "):\n"); 2191 LLVM_DEBUG(NewNode.dump()); 2192 } 2193 2194 assert(Leaves.size() == 1); 2195 SDValue NewRoot = Leaves.top().Value; 2196 2197 assert(NodeHeights.count(NewRoot)); 2198 int Height = NodeHeights[NewRoot]; 2199 2200 // Restore SHL if we earlier converted it to a MUL 2201 if (NewRoot.getOpcode() == ISD::MUL) { 2202 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); 2203 if (V1C && V1C->getAPIntValue().isPowerOf2()) { 2204 EVT VT = NewRoot.getValueType(); 2205 SDValue V0 = NewRoot.getOperand(0); 2206 NewRoot = CurDAG->getNode( 2207 ISD::SHL, SDLoc(NewRoot), VT, V0, 2208 CurDAG->getConstant( 2209 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), 2210 TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); 2211 } 2212 } 2213 2214 if (N != NewRoot.getNode()) { 2215 LLVM_DEBUG(dbgs() << "--> Root is now: "); 2216 LLVM_DEBUG(NewRoot.dump()); 2217 2218 // Replace all uses of old root by new root 2219 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); 2220 // Mark that we have RAUW'd N 2221 RootWeights[N] = -2; 2222 } else { 2223 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n"); 2224 } 2225 2226 RootWeights[NewRoot.getNode()] = Leaves.top().Weight; 2227 RootHeights[NewRoot.getNode()] = Height; 2228 2229 return NewRoot; 2230 } 2231 2232 void HexagonDAGToDAGISel::rebalanceAddressTrees() { 2233 for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) { 2234 SDNode *N = &*I++; 2235 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) 2236 continue; 2237 2238 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); 2239 if (BasePtr.getOpcode() != ISD::ADD) 2240 continue; 2241 2242 // We've already processed this node 2243 if (RootWeights.count(BasePtr.getNode())) 2244 continue; 2245 2246 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: "); 2247 LLVM_DEBUG(N->dump(CurDAG)); 2248 2249 // FindRoots 2250 SmallVector<SDNode *, 4> Worklist; 2251 2252 Worklist.push_back(BasePtr.getOperand(0).getNode()); 2253 Worklist.push_back(BasePtr.getOperand(1).getNode()); 2254 2255 while (!Worklist.empty()) { 2256 SDNode *N = Worklist.pop_back_val(); 2257 unsigned Opcode = N->getOpcode(); 2258 2259 if (!isOpcodeHandled(N)) 2260 continue; 2261 2262 Worklist.push_back(N->getOperand(0).getNode()); 2263 Worklist.push_back(N->getOperand(1).getNode()); 2264 2265 // Not a root if it has only one use and same opcode as its parent 2266 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) 2267 continue; 2268 2269 // This root node has already been processed 2270 if (RootWeights.count(N)) 2271 continue; 2272 2273 RootWeights[N] = -1; 2274 } 2275 2276 // Balance node itself 2277 RootWeights[BasePtr.getNode()] = -1; 2278 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); 2279 2280 if (N->getOpcode() == ISD::LOAD) 2281 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 2282 NewBasePtr, N->getOperand(2)); 2283 else 2284 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), 2285 NewBasePtr, N->getOperand(3)); 2286 2287 LLVM_DEBUG(dbgs() << "--> Final node: "); 2288 LLVM_DEBUG(N->dump(CurDAG)); 2289 } 2290 2291 CurDAG->RemoveDeadNodes(); 2292 GAUsesInFunction.clear(); 2293 RootHeights.clear(); 2294 RootWeights.clear(); 2295 } 2296