1 //===- HexagonConstExtenders.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonInstrInfo.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/CodeGen/MachineDominators.h" 14 #include "llvm/CodeGen/MachineFunctionPass.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/Support/CommandLine.h" 18 #include "llvm/Support/raw_ostream.h" 19 #include "llvm/Pass.h" 20 #include <map> 21 #include <set> 22 #include <utility> 23 #include <vector> 24 25 #define DEBUG_TYPE "hexagon-cext-opt" 26 27 using namespace llvm; 28 29 static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", 30 cl::init(3), cl::Hidden, cl::ZeroOrMore, 31 cl::desc("Minimum number of extenders to trigger replacement")); 32 33 static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), 34 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); 35 36 namespace llvm { 37 void initializeHexagonConstExtendersPass(PassRegistry&); 38 FunctionPass *createHexagonConstExtenders(); 39 } 40 41 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { 42 assert(isPowerOf2_32(A)); 43 int32_t U = (V & -A) + O; 44 return U >= V ? U : U+A; 45 } 46 47 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { 48 assert(isPowerOf2_32(A)); 49 int32_t U = (V & -A) + O; 50 return U <= V ? U : U-A; 51 } 52 53 namespace { 54 struct OffsetRange { 55 // The range of values between Min and Max that are of form Align*N+Offset, 56 // for some integer N. Min and Max are required to be of that form as well, 57 // except in the case of an empty range. 58 int32_t Min = INT_MIN, Max = INT_MAX; 59 uint8_t Align = 1; 60 uint8_t Offset = 0; 61 62 OffsetRange() = default; 63 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) 64 : Min(L), Max(H), Align(A), Offset(O) {} 65 OffsetRange &intersect(OffsetRange A) { 66 if (Align < A.Align) 67 std::swap(*this, A); 68 69 // Align >= A.Align. 70 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { 71 Min = adjustUp(std::max(Min, A.Min), Align, Offset); 72 Max = adjustDown(std::min(Max, A.Max), Align, Offset); 73 } else { 74 // Make an empty range. 75 Min = 0; 76 Max = -1; 77 } 78 // Canonicalize empty ranges. 79 if (Min > Max) 80 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); 81 return *this; 82 } 83 OffsetRange &shift(int32_t S) { 84 Min += S; 85 Max += S; 86 Offset = (Offset+S) % Align; 87 return *this; 88 } 89 OffsetRange &extendBy(int32_t D) { 90 // If D < 0, extend Min, otherwise extend Max. 91 assert(D % Align == 0); 92 if (D < 0) 93 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; 94 else 95 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; 96 return *this; 97 } 98 bool empty() const { 99 return Min > Max; 100 } 101 bool contains(int32_t V) const { 102 return Min <= V && V <= Max && (V-Offset) % Align == 0; 103 } 104 bool operator==(const OffsetRange &R) const { 105 return Min == R.Min && Max == R.Max && Align == R.Align; 106 } 107 bool operator!=(const OffsetRange &R) const { 108 return !operator==(R); 109 } 110 bool operator<(const OffsetRange &R) const { 111 if (Min != R.Min) 112 return Min < R.Min; 113 if (Max != R.Max) 114 return Max < R.Max; 115 return Align < R.Align; 116 } 117 static OffsetRange zero() { return {0, 0, 1}; } 118 }; 119 120 struct RangeTree { 121 struct Node { 122 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} 123 unsigned Height = 1; 124 unsigned Count = 1; 125 int32_t MaxEnd; 126 const OffsetRange &Range; 127 Node *Left = nullptr, *Right = nullptr; 128 }; 129 130 Node *Root = nullptr; 131 132 void add(const OffsetRange &R) { 133 Root = add(Root, R); 134 } 135 void erase(const Node *N) { 136 Root = remove(Root, N); 137 delete N; 138 } 139 void order(SmallVectorImpl<Node*> &Seq) const { 140 order(Root, Seq); 141 } 142 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { 143 SmallVector<Node*,8> Nodes; 144 nodesWith(Root, P, CheckAlign, Nodes); 145 return Nodes; 146 } 147 void dump() const; 148 ~RangeTree() { 149 SmallVector<Node*,8> Nodes; 150 order(Nodes); 151 for (Node *N : Nodes) 152 delete N; 153 } 154 155 private: 156 void dump(const Node *N) const; 157 void order(Node *N, SmallVectorImpl<Node*> &Seq) const; 158 void nodesWith(Node *N, int32_t P, bool CheckA, 159 SmallVectorImpl<Node*> &Seq) const; 160 161 Node *add(Node *N, const OffsetRange &R); 162 Node *remove(Node *N, const Node *D); 163 Node *rotateLeft(Node *Lower, Node *Higher); 164 Node *rotateRight(Node *Lower, Node *Higher); 165 unsigned height(Node *N) { 166 return N != nullptr ? N->Height : 0; 167 } 168 Node *update(Node *N) { 169 assert(N != nullptr); 170 N->Height = 1 + std::max(height(N->Left), height(N->Right)); 171 if (N->Left) 172 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); 173 if (N->Right) 174 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); 175 return N; 176 } 177 Node *rebalance(Node *N) { 178 assert(N != nullptr); 179 int32_t Balance = height(N->Right) - height(N->Left); 180 if (Balance < -1) 181 return rotateRight(N->Left, N); 182 if (Balance > 1) 183 return rotateLeft(N->Right, N); 184 return N; 185 } 186 }; 187 188 struct Loc { 189 MachineBasicBlock *Block = nullptr; 190 MachineBasicBlock::iterator At; 191 192 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) 193 : Block(B), At(It) { 194 if (B->end() == It) { 195 Pos = -1; 196 } else { 197 assert(It->getParent() == B); 198 Pos = std::distance(B->begin(), It); 199 } 200 } 201 bool operator<(Loc A) const { 202 if (Block != A.Block) 203 return Block->getNumber() < A.Block->getNumber(); 204 if (A.Pos == -1) 205 return Pos != A.Pos; 206 return Pos != -1 && Pos < A.Pos; 207 } 208 private: 209 int Pos = 0; 210 }; 211 212 struct HexagonConstExtenders : public MachineFunctionPass { 213 static char ID; 214 HexagonConstExtenders() : MachineFunctionPass(ID) {} 215 216 void getAnalysisUsage(AnalysisUsage &AU) const override { 217 AU.addRequired<MachineDominatorTree>(); 218 AU.addPreserved<MachineDominatorTree>(); 219 MachineFunctionPass::getAnalysisUsage(AU); 220 } 221 222 StringRef getPassName() const override { 223 return "Hexagon constant-extender optimization"; 224 } 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 private: 228 struct Register { 229 Register() = default; 230 Register(unsigned R, unsigned S) : Reg(R), Sub(S) {} 231 Register(const MachineOperand &Op) 232 : Reg(Op.getReg()), Sub(Op.getSubReg()) {} 233 Register &operator=(const MachineOperand &Op) { 234 if (Op.isReg()) { 235 Reg = Op.getReg(); 236 Sub = Op.getSubReg(); 237 } else if (Op.isFI()) { 238 Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex()); 239 } 240 return *this; 241 } 242 bool isVReg() const { 243 return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) && 244 TargetRegisterInfo::isVirtualRegister(Reg); 245 } 246 bool isSlot() const { 247 return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg); 248 } 249 operator MachineOperand() const { 250 if (isVReg()) 251 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, 252 /*Kill*/false, /*Dead*/false, /*Undef*/false, 253 /*EarlyClobber*/false, Sub); 254 if (TargetRegisterInfo::isStackSlot(Reg)) { 255 int FI = TargetRegisterInfo::stackSlot2Index(Reg); 256 return MachineOperand::CreateFI(FI); 257 } 258 llvm_unreachable("Cannot create MachineOperand"); 259 } 260 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } 261 bool operator!=(Register R) const { return !operator==(R); } 262 bool operator<(Register R) const { 263 // For std::map. 264 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); 265 } 266 unsigned Reg = 0, Sub = 0; 267 }; 268 269 struct ExtExpr { 270 // A subexpression in which the extender is used. In general, this 271 // represents an expression where adding D to the extender will be 272 // equivalent to adding D to the expression as a whole. In other 273 // words, expr(add(##V,D) = add(expr(##V),D). 274 275 // The original motivation for this are the io/ur addressing modes, 276 // where the offset is extended. Consider the io example: 277 // In memw(Rs+##V), the ##V could be replaced by a register Rt to 278 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the 279 // register Rt must have exactly the value of ##V. If there was 280 // another instruction memw(Rs+##V+4), it would need a different Rt. 281 // Now, if Rt was initialized as "##V+Rs<<0", both of these 282 // instructions could use the same Rt, just with different offsets. 283 // Here it's clear that "initializer+4" should be the same as if 284 // the offset 4 was added to the ##V in the initializer. 285 286 // The only kinds of expressions that support the requirement of 287 // commuting with addition are addition and subtraction from ##V. 288 // Include shifting the Rs to account for the ur addressing mode: 289 // ##Val + Rs << S 290 // ##Val - Rs 291 Register Rs; 292 unsigned S = 0; 293 bool Neg = false; 294 295 ExtExpr() = default; 296 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} 297 // Expression is trivial if it does not modify the extender. 298 bool trivial() const { 299 return Rs.Reg == 0; 300 } 301 bool operator==(const ExtExpr &Ex) const { 302 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; 303 } 304 bool operator!=(const ExtExpr &Ex) const { 305 return !operator==(Ex); 306 } 307 bool operator<(const ExtExpr &Ex) const { 308 if (Rs != Ex.Rs) 309 return Rs < Ex.Rs; 310 if (S != Ex.S) 311 return S < Ex.S; 312 return !Neg && Ex.Neg; 313 } 314 }; 315 316 struct ExtDesc { 317 MachineInstr *UseMI = nullptr; 318 unsigned OpNum = -1u; 319 // The subexpression in which the extender is used (e.g. address 320 // computation). 321 ExtExpr Expr; 322 // Optional register that is assigned the value of Expr. 323 Register Rd; 324 // Def means that the output of the instruction may differ from the 325 // original by a constant c, and that the difference can be corrected 326 // by adding/subtracting c in all users of the defined register. 327 bool IsDef = false; 328 329 MachineOperand &getOp() { 330 return UseMI->getOperand(OpNum); 331 } 332 const MachineOperand &getOp() const { 333 return UseMI->getOperand(OpNum); 334 } 335 }; 336 337 struct ExtRoot { 338 union { 339 const ConstantFP *CFP; // MO_FPImmediate 340 const char *SymbolName; // MO_ExternalSymbol 341 const GlobalValue *GV; // MO_GlobalAddress 342 const BlockAddress *BA; // MO_BlockAddress 343 int64_t ImmVal; // MO_Immediate, MO_TargetIndex, 344 // and MO_ConstantPoolIndex 345 } V; 346 unsigned Kind; // Same as in MachineOperand. 347 unsigned char TF; // TargetFlags. 348 349 ExtRoot(const MachineOperand &Op); 350 bool operator==(const ExtRoot &ER) const { 351 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; 352 } 353 bool operator!=(const ExtRoot &ER) const { 354 return !operator==(ER); 355 } 356 bool operator<(const ExtRoot &ER) const; 357 }; 358 359 struct ExtValue : public ExtRoot { 360 int32_t Offset; 361 362 ExtValue(const MachineOperand &Op); 363 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} 364 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} 365 bool operator<(const ExtValue &EV) const; 366 bool operator==(const ExtValue &EV) const { 367 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; 368 } 369 bool operator!=(const ExtValue &EV) const { 370 return !operator==(EV); 371 } 372 explicit operator MachineOperand() const; 373 }; 374 375 using IndexList = SetVector<unsigned>; 376 using ExtenderInit = std::pair<ExtValue, ExtExpr>; 377 using AssignmentMap = std::map<ExtenderInit, IndexList>; 378 using LocDefList = std::vector<std::pair<Loc, IndexList>>; 379 380 const HexagonInstrInfo *HII = nullptr; 381 const HexagonRegisterInfo *HRI = nullptr; 382 MachineDominatorTree *MDT = nullptr; 383 MachineRegisterInfo *MRI = nullptr; 384 std::vector<ExtDesc> Extenders; 385 std::vector<unsigned> NewRegs; 386 387 bool isStoreImmediate(unsigned Opc) const; 388 bool isRegOffOpcode(unsigned ExtOpc) const ; 389 unsigned getRegOffOpcode(unsigned ExtOpc) const; 390 unsigned getDirectRegReplacement(unsigned ExtOpc) const; 391 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; 392 OffsetRange getOffsetRange(const ExtDesc &ED) const; 393 OffsetRange getOffsetRange(Register Rd) const; 394 395 void recordExtender(MachineInstr &MI, unsigned OpNum); 396 void collectInstr(MachineInstr &MI); 397 void collect(MachineFunction &MF); 398 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 399 AssignmentMap &IMap); 400 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 401 LocDefList &Defs); 402 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); 403 bool replaceInstrExact(const ExtDesc &ED, Register ExtR); 404 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 405 Register ExtR, int32_t &Diff); 406 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); 407 bool replaceExtenders(const AssignmentMap &IMap); 408 409 unsigned getOperandIndex(const MachineInstr &MI, 410 const MachineOperand &Op) const; 411 const MachineOperand &getPredicateOp(const MachineInstr &MI) const; 412 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; 413 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; 414 415 friend struct PrintRegister; 416 friend struct PrintExpr; 417 friend struct PrintInit; 418 friend struct PrintIMap; 419 friend raw_ostream &operator<< (raw_ostream &OS, 420 const struct PrintRegister &P); 421 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); 422 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); 423 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); 424 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); 425 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); 426 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); 427 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); 428 }; 429 430 using HCE = HexagonConstExtenders; 431 432 LLVM_ATTRIBUTE_UNUSED 433 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { 434 if (OR.Min > OR.Max) 435 OS << '!'; 436 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) 437 << '+' << unsigned(OR.Offset); 438 return OS; 439 } 440 441 struct PrintRegister { 442 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) 443 : Rs(R), HRI(I) {} 444 HCE::Register Rs; 445 const HexagonRegisterInfo &HRI; 446 }; 447 448 LLVM_ATTRIBUTE_UNUSED 449 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { 450 if (P.Rs.Reg != 0) 451 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); 452 else 453 OS << "noreg"; 454 return OS; 455 } 456 457 struct PrintExpr { 458 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) 459 : Ex(E), HRI(I) {} 460 const HCE::ExtExpr &Ex; 461 const HexagonRegisterInfo &HRI; 462 }; 463 464 LLVM_ATTRIBUTE_UNUSED 465 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { 466 OS << "## " << (P.Ex.Neg ? "- " : "+ "); 467 if (P.Ex.Rs.Reg != 0) 468 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); 469 else 470 OS << "__"; 471 OS << " << " << P.Ex.S; 472 return OS; 473 } 474 475 struct PrintInit { 476 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) 477 : ExtI(EI), HRI(I) {} 478 const HCE::ExtenderInit &ExtI; 479 const HexagonRegisterInfo &HRI; 480 }; 481 482 LLVM_ATTRIBUTE_UNUSED 483 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { 484 OS << '[' << P.ExtI.first << ", " 485 << PrintExpr(P.ExtI.second, P.HRI) << ']'; 486 return OS; 487 } 488 489 LLVM_ATTRIBUTE_UNUSED 490 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { 491 assert(ED.OpNum != -1u); 492 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); 493 const MachineFunction &MF = *MBB.getParent(); 494 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 495 OS << "bb#" << MBB.getNumber() << ": "; 496 if (ED.Rd.Reg != 0) 497 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); 498 else 499 OS << "__"; 500 OS << " = " << PrintExpr(ED.Expr, HRI); 501 if (ED.IsDef) 502 OS << ", def"; 503 return OS; 504 } 505 506 LLVM_ATTRIBUTE_UNUSED 507 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { 508 switch (ER.Kind) { 509 case MachineOperand::MO_Immediate: 510 OS << "imm:" << ER.V.ImmVal; 511 break; 512 case MachineOperand::MO_FPImmediate: 513 OS << "fpi:" << *ER.V.CFP; 514 break; 515 case MachineOperand::MO_ExternalSymbol: 516 OS << "sym:" << *ER.V.SymbolName; 517 break; 518 case MachineOperand::MO_GlobalAddress: 519 OS << "gad:" << ER.V.GV->getName(); 520 break; 521 case MachineOperand::MO_BlockAddress: 522 OS << "blk:" << *ER.V.BA; 523 break; 524 case MachineOperand::MO_TargetIndex: 525 OS << "tgi:" << ER.V.ImmVal; 526 break; 527 case MachineOperand::MO_ConstantPoolIndex: 528 OS << "cpi:" << ER.V.ImmVal; 529 break; 530 case MachineOperand::MO_JumpTableIndex: 531 OS << "jti:" << ER.V.ImmVal; 532 break; 533 default: 534 OS << "???:" << ER.V.ImmVal; 535 break; 536 } 537 return OS; 538 } 539 540 LLVM_ATTRIBUTE_UNUSED 541 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { 542 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; 543 return OS; 544 } 545 546 struct PrintIMap { 547 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) 548 : IMap(M), HRI(I) {} 549 const HCE::AssignmentMap &IMap; 550 const HexagonRegisterInfo &HRI; 551 }; 552 553 LLVM_ATTRIBUTE_UNUSED 554 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { 555 OS << "{\n"; 556 for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) { 557 OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; 558 for (unsigned I : Q.second) 559 OS << ' ' << I; 560 OS << " }\n"; 561 } 562 OS << "}\n"; 563 return OS; 564 } 565 } 566 567 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", 568 "Hexagon constant-extender optimization", false, false) 569 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 570 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", 571 "Hexagon constant-extender optimization", false, false) 572 573 static unsigned ReplaceCounter = 0; 574 575 char HCE::ID = 0; 576 577 #ifndef NDEBUG 578 LLVM_DUMP_METHOD void RangeTree::dump() const { 579 dbgs() << "Root: " << Root << '\n'; 580 if (Root) 581 dump(Root); 582 } 583 584 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { 585 dbgs() << "Node: " << N << '\n'; 586 dbgs() << " Height: " << N->Height << '\n'; 587 dbgs() << " Count: " << N->Count << '\n'; 588 dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; 589 dbgs() << " Range: " << N->Range << '\n'; 590 dbgs() << " Left: " << N->Left << '\n'; 591 dbgs() << " Right: " << N->Right << "\n\n"; 592 593 if (N->Left) 594 dump(N->Left); 595 if (N->Right) 596 dump(N->Right); 597 } 598 #endif 599 600 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { 601 if (N == nullptr) 602 return; 603 order(N->Left, Seq); 604 Seq.push_back(N); 605 order(N->Right, Seq); 606 } 607 608 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, 609 SmallVectorImpl<Node*> &Seq) const { 610 if (N == nullptr || N->MaxEnd < P) 611 return; 612 nodesWith(N->Left, P, CheckA, Seq); 613 if (N->Range.Min <= P) { 614 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) 615 Seq.push_back(N); 616 nodesWith(N->Right, P, CheckA, Seq); 617 } 618 } 619 620 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { 621 if (N == nullptr) 622 return new Node(R); 623 624 if (N->Range == R) { 625 N->Count++; 626 return N; 627 } 628 629 if (R < N->Range) 630 N->Left = add(N->Left, R); 631 else 632 N->Right = add(N->Right, R); 633 return rebalance(update(N)); 634 } 635 636 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { 637 assert(N != nullptr); 638 639 if (N != D) { 640 assert(N->Range != D->Range && "N and D should not be equal"); 641 if (D->Range < N->Range) 642 N->Left = remove(N->Left, D); 643 else 644 N->Right = remove(N->Right, D); 645 return rebalance(update(N)); 646 } 647 648 // We got to the node we need to remove. If any of its children are 649 // missing, simply replace it with the other child. 650 if (N->Left == nullptr || N->Right == nullptr) 651 return (N->Left == nullptr) ? N->Right : N->Left; 652 653 // Find the rightmost child of N->Left, remove it and plug it in place 654 // of N. 655 Node *M = N->Left; 656 while (M->Right) 657 M = M->Right; 658 M->Left = remove(N->Left, M); 659 M->Right = N->Right; 660 return rebalance(update(M)); 661 } 662 663 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { 664 assert(Higher->Right == Lower); 665 // The Lower node is on the right from Higher. Make sure that Lower's 666 // balance is greater to the right. Otherwise the rotation will create 667 // an unbalanced tree again. 668 if (height(Lower->Left) > height(Lower->Right)) 669 Lower = rotateRight(Lower->Left, Lower); 670 assert(height(Lower->Left) <= height(Lower->Right)); 671 Higher->Right = Lower->Left; 672 update(Higher); 673 Lower->Left = Higher; 674 update(Lower); 675 return Lower; 676 } 677 678 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { 679 assert(Higher->Left == Lower); 680 // The Lower node is on the left from Higher. Make sure that Lower's 681 // balance is greater to the left. Otherwise the rotation will create 682 // an unbalanced tree again. 683 if (height(Lower->Left) < height(Lower->Right)) 684 Lower = rotateLeft(Lower->Right, Lower); 685 assert(height(Lower->Left) >= height(Lower->Right)); 686 Higher->Left = Lower->Right; 687 update(Higher); 688 Lower->Right = Higher; 689 update(Lower); 690 return Lower; 691 } 692 693 694 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { 695 // Always store ImmVal, since it's the field used for comparisons. 696 V.ImmVal = 0; 697 if (Op.isImm()) 698 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). 699 else if (Op.isFPImm()) 700 V.CFP = Op.getFPImm(); 701 else if (Op.isSymbol()) 702 V.SymbolName = Op.getSymbolName(); 703 else if (Op.isGlobal()) 704 V.GV = Op.getGlobal(); 705 else if (Op.isBlockAddress()) 706 V.BA = Op.getBlockAddress(); 707 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) 708 V.ImmVal = Op.getIndex(); 709 else 710 llvm_unreachable("Unexpected operand type"); 711 712 Kind = Op.getType(); 713 TF = Op.getTargetFlags(); 714 } 715 716 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { 717 if (Kind != ER.Kind) 718 return Kind < ER.Kind; 719 switch (Kind) { 720 case MachineOperand::MO_Immediate: 721 case MachineOperand::MO_TargetIndex: 722 case MachineOperand::MO_ConstantPoolIndex: 723 case MachineOperand::MO_JumpTableIndex: 724 return V.ImmVal < ER.V.ImmVal; 725 case MachineOperand::MO_FPImmediate: { 726 const APFloat &ThisF = V.CFP->getValueAPF(); 727 const APFloat &OtherF = ER.V.CFP->getValueAPF(); 728 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); 729 } 730 case MachineOperand::MO_ExternalSymbol: 731 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); 732 case MachineOperand::MO_GlobalAddress: 733 // Do not use GUIDs, since they depend on the source path. Moving the 734 // source file to a different directory could cause different GUID 735 // values for a pair of given symbols. These symbols could then compare 736 // "less" in one directory, but "greater" in another. 737 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); 738 return V.GV->getName() < ER.V.GV->getName(); 739 case MachineOperand::MO_BlockAddress: { 740 const BasicBlock *ThisB = V.BA->getBasicBlock(); 741 const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); 742 assert(ThisB->getParent() == OtherB->getParent()); 743 const Function &F = *ThisB->getParent(); 744 return std::distance(F.begin(), ThisB->getIterator()) < 745 std::distance(F.begin(), OtherB->getIterator()); 746 } 747 } 748 return V.ImmVal < ER.V.ImmVal; 749 } 750 751 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { 752 if (Op.isImm()) 753 Offset = Op.getImm(); 754 else if (Op.isFPImm() || Op.isJTI()) 755 Offset = 0; 756 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || 757 Op.isCPI() || Op.isTargetIndex()) 758 Offset = Op.getOffset(); 759 else 760 llvm_unreachable("Unexpected operand type"); 761 } 762 763 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { 764 const ExtRoot &ER = *this; 765 if (!(ER == ExtRoot(EV))) 766 return ER < EV; 767 return Offset < EV.Offset; 768 } 769 770 HCE::ExtValue::operator MachineOperand() const { 771 switch (Kind) { 772 case MachineOperand::MO_Immediate: 773 return MachineOperand::CreateImm(V.ImmVal + Offset); 774 case MachineOperand::MO_FPImmediate: 775 assert(Offset == 0); 776 return MachineOperand::CreateFPImm(V.CFP); 777 case MachineOperand::MO_ExternalSymbol: 778 assert(Offset == 0); 779 return MachineOperand::CreateES(V.SymbolName, TF); 780 case MachineOperand::MO_GlobalAddress: 781 return MachineOperand::CreateGA(V.GV, Offset, TF); 782 case MachineOperand::MO_BlockAddress: 783 return MachineOperand::CreateBA(V.BA, Offset, TF); 784 case MachineOperand::MO_TargetIndex: 785 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); 786 case MachineOperand::MO_ConstantPoolIndex: 787 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); 788 case MachineOperand::MO_JumpTableIndex: 789 assert(Offset == 0); 790 return MachineOperand::CreateJTI(V.ImmVal, TF); 791 default: 792 llvm_unreachable("Unhandled kind"); 793 } 794 } 795 796 bool HCE::isStoreImmediate(unsigned Opc) const { 797 switch (Opc) { 798 case Hexagon::S4_storeirbt_io: 799 case Hexagon::S4_storeirbf_io: 800 case Hexagon::S4_storeirht_io: 801 case Hexagon::S4_storeirhf_io: 802 case Hexagon::S4_storeirit_io: 803 case Hexagon::S4_storeirif_io: 804 case Hexagon::S4_storeirb_io: 805 case Hexagon::S4_storeirh_io: 806 case Hexagon::S4_storeiri_io: 807 return true; 808 default: 809 break; 810 } 811 return false; 812 } 813 814 bool HCE::isRegOffOpcode(unsigned Opc) const { 815 switch (Opc) { 816 case Hexagon::L2_loadrub_io: 817 case Hexagon::L2_loadrb_io: 818 case Hexagon::L2_loadruh_io: 819 case Hexagon::L2_loadrh_io: 820 case Hexagon::L2_loadri_io: 821 case Hexagon::L2_loadrd_io: 822 case Hexagon::L2_loadbzw2_io: 823 case Hexagon::L2_loadbzw4_io: 824 case Hexagon::L2_loadbsw2_io: 825 case Hexagon::L2_loadbsw4_io: 826 case Hexagon::L2_loadalignh_io: 827 case Hexagon::L2_loadalignb_io: 828 case Hexagon::L2_ploadrubt_io: 829 case Hexagon::L2_ploadrubf_io: 830 case Hexagon::L2_ploadrbt_io: 831 case Hexagon::L2_ploadrbf_io: 832 case Hexagon::L2_ploadruht_io: 833 case Hexagon::L2_ploadruhf_io: 834 case Hexagon::L2_ploadrht_io: 835 case Hexagon::L2_ploadrhf_io: 836 case Hexagon::L2_ploadrit_io: 837 case Hexagon::L2_ploadrif_io: 838 case Hexagon::L2_ploadrdt_io: 839 case Hexagon::L2_ploadrdf_io: 840 case Hexagon::S2_storerb_io: 841 case Hexagon::S2_storerh_io: 842 case Hexagon::S2_storerf_io: 843 case Hexagon::S2_storeri_io: 844 case Hexagon::S2_storerd_io: 845 case Hexagon::S2_pstorerbt_io: 846 case Hexagon::S2_pstorerbf_io: 847 case Hexagon::S2_pstorerht_io: 848 case Hexagon::S2_pstorerhf_io: 849 case Hexagon::S2_pstorerft_io: 850 case Hexagon::S2_pstorerff_io: 851 case Hexagon::S2_pstorerit_io: 852 case Hexagon::S2_pstorerif_io: 853 case Hexagon::S2_pstorerdt_io: 854 case Hexagon::S2_pstorerdf_io: 855 case Hexagon::A2_addi: 856 return true; 857 default: 858 break; 859 } 860 return false; 861 } 862 863 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { 864 // If there exists an instruction that takes a register and offset, 865 // that corresponds to the ExtOpc, return it, otherwise return 0. 866 using namespace Hexagon; 867 switch (ExtOpc) { 868 case A2_tfrsi: return A2_addi; 869 default: 870 break; 871 } 872 const MCInstrDesc &D = HII->get(ExtOpc); 873 if (D.mayLoad() || D.mayStore()) { 874 uint64_t F = D.TSFlags; 875 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; 876 switch (AM) { 877 case HexagonII::Absolute: 878 case HexagonII::AbsoluteSet: 879 case HexagonII::BaseLongOffset: 880 switch (ExtOpc) { 881 case PS_loadrubabs: 882 case L4_loadrub_ap: 883 case L4_loadrub_ur: return L2_loadrub_io; 884 case PS_loadrbabs: 885 case L4_loadrb_ap: 886 case L4_loadrb_ur: return L2_loadrb_io; 887 case PS_loadruhabs: 888 case L4_loadruh_ap: 889 case L4_loadruh_ur: return L2_loadruh_io; 890 case PS_loadrhabs: 891 case L4_loadrh_ap: 892 case L4_loadrh_ur: return L2_loadrh_io; 893 case PS_loadriabs: 894 case L4_loadri_ap: 895 case L4_loadri_ur: return L2_loadri_io; 896 case PS_loadrdabs: 897 case L4_loadrd_ap: 898 case L4_loadrd_ur: return L2_loadrd_io; 899 case L4_loadbzw2_ap: 900 case L4_loadbzw2_ur: return L2_loadbzw2_io; 901 case L4_loadbzw4_ap: 902 case L4_loadbzw4_ur: return L2_loadbzw4_io; 903 case L4_loadbsw2_ap: 904 case L4_loadbsw2_ur: return L2_loadbsw2_io; 905 case L4_loadbsw4_ap: 906 case L4_loadbsw4_ur: return L2_loadbsw4_io; 907 case L4_loadalignh_ap: 908 case L4_loadalignh_ur: return L2_loadalignh_io; 909 case L4_loadalignb_ap: 910 case L4_loadalignb_ur: return L2_loadalignb_io; 911 case L4_ploadrubt_abs: return L2_ploadrubt_io; 912 case L4_ploadrubf_abs: return L2_ploadrubf_io; 913 case L4_ploadrbt_abs: return L2_ploadrbt_io; 914 case L4_ploadrbf_abs: return L2_ploadrbf_io; 915 case L4_ploadruht_abs: return L2_ploadruht_io; 916 case L4_ploadruhf_abs: return L2_ploadruhf_io; 917 case L4_ploadrht_abs: return L2_ploadrht_io; 918 case L4_ploadrhf_abs: return L2_ploadrhf_io; 919 case L4_ploadrit_abs: return L2_ploadrit_io; 920 case L4_ploadrif_abs: return L2_ploadrif_io; 921 case L4_ploadrdt_abs: return L2_ploadrdt_io; 922 case L4_ploadrdf_abs: return L2_ploadrdf_io; 923 case PS_storerbabs: 924 case S4_storerb_ap: 925 case S4_storerb_ur: return S2_storerb_io; 926 case PS_storerhabs: 927 case S4_storerh_ap: 928 case S4_storerh_ur: return S2_storerh_io; 929 case PS_storerfabs: 930 case S4_storerf_ap: 931 case S4_storerf_ur: return S2_storerf_io; 932 case PS_storeriabs: 933 case S4_storeri_ap: 934 case S4_storeri_ur: return S2_storeri_io; 935 case PS_storerdabs: 936 case S4_storerd_ap: 937 case S4_storerd_ur: return S2_storerd_io; 938 case S4_pstorerbt_abs: return S2_pstorerbt_io; 939 case S4_pstorerbf_abs: return S2_pstorerbf_io; 940 case S4_pstorerht_abs: return S2_pstorerht_io; 941 case S4_pstorerhf_abs: return S2_pstorerhf_io; 942 case S4_pstorerft_abs: return S2_pstorerft_io; 943 case S4_pstorerff_abs: return S2_pstorerff_io; 944 case S4_pstorerit_abs: return S2_pstorerit_io; 945 case S4_pstorerif_abs: return S2_pstorerif_io; 946 case S4_pstorerdt_abs: return S2_pstorerdt_io; 947 case S4_pstorerdf_abs: return S2_pstorerdf_io; 948 default: 949 break; 950 } 951 break; 952 case HexagonII::BaseImmOffset: 953 if (!isStoreImmediate(ExtOpc)) 954 return ExtOpc; 955 break; 956 default: 957 break; 958 } 959 } 960 return 0; 961 } 962 963 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { 964 switch (ExtOpc) { 965 case Hexagon::A2_addi: return Hexagon::A2_add; 966 case Hexagon::A2_andir: return Hexagon::A2_and; 967 case Hexagon::A2_combineii: return Hexagon::A4_combineri; 968 case Hexagon::A2_orir: return Hexagon::A2_or; 969 case Hexagon::A2_paddif: return Hexagon::A2_paddf; 970 case Hexagon::A2_paddit: return Hexagon::A2_paddt; 971 case Hexagon::A2_subri: return Hexagon::A2_sub; 972 case Hexagon::A2_tfrsi: return TargetOpcode::COPY; 973 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; 974 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; 975 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; 976 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; 977 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; 978 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; 979 case Hexagon::A4_combineii: return Hexagon::A4_combineir; 980 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; 981 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; 982 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; 983 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; 984 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; 985 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; 986 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; 987 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; 988 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; 989 case Hexagon::C2_muxii: return Hexagon::C2_muxir; 990 case Hexagon::C2_muxir: return Hexagon::C2_mux; 991 case Hexagon::C2_muxri: return Hexagon::C2_mux; 992 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; 993 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; 994 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; 995 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T 996 /* No M2_macsin */ 997 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T 998 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; 999 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; 1000 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; 1001 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T 1002 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; 1003 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T 1004 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T 1005 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T 1006 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T 1007 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T 1008 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T 1009 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T 1010 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T 1011 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T 1012 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T 1013 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T 1014 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T 1015 1016 // Store-immediates: 1017 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; 1018 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; 1019 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; 1020 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; 1021 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; 1022 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; 1023 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; 1024 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; 1025 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; 1026 1027 default: 1028 break; 1029 } 1030 return 0; 1031 } 1032 1033 // Return the allowable deviation from the current value of Rb (i.e. the 1034 // range of values that can be added to the current value) which the 1035 // instruction MI can accommodate. 1036 // The instruction MI is a user of register Rb, which is defined via an 1037 // extender. It may be possible for MI to be tweaked to work for a register 1038 // defined with a slightly different value. For example 1039 // ... = L2_loadrub_io Rb, 1 1040 // can be modifed to be 1041 // ... = L2_loadrub_io Rb', 0 1042 // if Rb' = Rb+1. 1043 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range 1044 // for L2_loadrub with offset 0. That means that Rb could be replaced with 1045 // Rc, where Rc-Rb belongs to [Min+1, Max+1]. 1046 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { 1047 unsigned Opc = MI.getOpcode(); 1048 // Instructions that are constant-extended may be replaced with something 1049 // else that no longer offers the same range as the original. 1050 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) 1051 return OffsetRange::zero(); 1052 1053 if (Opc == Hexagon::A2_addi) { 1054 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); 1055 if (Rb != Register(Op1) || !Op2.isImm()) 1056 return OffsetRange::zero(); 1057 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; 1058 return R.shift(Op2.getImm()); 1059 } 1060 1061 // HII::getBaseAndOffsetPosition returns the increment position as "offset". 1062 if (HII->isPostIncrement(MI)) 1063 return OffsetRange::zero(); 1064 1065 const MCInstrDesc &D = HII->get(Opc); 1066 assert(D.mayLoad() || D.mayStore()); 1067 1068 unsigned BaseP, OffP; 1069 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || 1070 Rb != Register(MI.getOperand(BaseP)) || 1071 !MI.getOperand(OffP).isImm()) 1072 return OffsetRange::zero(); 1073 1074 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1075 HexagonII::MemAccesSizeMask; 1076 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1077 unsigned L = Log2_32(A); 1078 unsigned S = 10+L; // sint11_L 1079 int32_t Min = -alignDown((1<<S)-1, A); 1080 1081 // The range will be shifted by Off. To prefer non-negative offsets, 1082 // adjust Max accordingly. 1083 int32_t Off = MI.getOperand(OffP).getImm(); 1084 int32_t Max = Off >= 0 ? 0 : -Off; 1085 1086 OffsetRange R = { Min, Max, A }; 1087 return R.shift(Off); 1088 } 1089 1090 // Return the allowable deviation from the current value of the extender ED, 1091 // for which the instruction corresponding to ED can be modified without 1092 // using an extender. 1093 // The instruction uses the extender directly. It will be replaced with 1094 // another instruction, say MJ, where the extender will be replaced with a 1095 // register. MJ can allow some variability with respect to the value of 1096 // that register, as is the case with indexed memory instructions. 1097 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { 1098 // The only way that there can be a non-zero range available is if 1099 // the instruction using ED will be converted to an indexed memory 1100 // instruction. 1101 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); 1102 switch (IdxOpc) { 1103 case 0: 1104 return OffsetRange::zero(); 1105 case Hexagon::A2_addi: // s16 1106 return { -32767, 32767, 1 }; 1107 case Hexagon::A2_subri: // s10 1108 return { -511, 511, 1 }; 1109 } 1110 1111 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) 1112 return OffsetRange::zero(); 1113 const MCInstrDesc &D = HII->get(IdxOpc); 1114 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & 1115 HexagonII::MemAccesSizeMask; 1116 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); 1117 unsigned L = Log2_32(A); 1118 unsigned S = 10+L; // sint11_L 1119 int32_t Min = -alignDown((1<<S)-1, A); 1120 int32_t Max = 0; // Force non-negative offsets. 1121 return { Min, Max, A }; 1122 } 1123 1124 // Get the allowable deviation from the current value of Rd by checking 1125 // all uses of Rd. 1126 OffsetRange HCE::getOffsetRange(Register Rd) const { 1127 OffsetRange Range; 1128 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { 1129 // Make sure that the register being used by this operand is identical 1130 // to the register that was defined: using a different subregister 1131 // precludes any non-trivial range. 1132 if (Rd != Register(Op)) 1133 return OffsetRange::zero(); 1134 Range.intersect(getOffsetRange(Rd, *Op.getParent())); 1135 } 1136 return Range; 1137 } 1138 1139 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { 1140 unsigned Opc = MI.getOpcode(); 1141 ExtDesc ED; 1142 ED.OpNum = OpNum; 1143 1144 bool IsLoad = MI.mayLoad(); 1145 bool IsStore = MI.mayStore(); 1146 1147 // Fixed stack slots have negative indexes, and they cannot be used 1148 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat 1149 // unfortunate, but should not be a frequent thing. 1150 for (MachineOperand &Op : MI.operands()) 1151 if (Op.isFI() && Op.getIndex() < 0) 1152 return; 1153 1154 if (IsLoad || IsStore) { 1155 unsigned AM = HII->getAddrMode(MI); 1156 switch (AM) { 1157 // (Re: ##Off + Rb<<S) = Rd: ##Val 1158 case HexagonII::Absolute: // (__: ## + __<<_) 1159 break; 1160 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) 1161 ED.Rd = MI.getOperand(OpNum-1); 1162 ED.IsDef = true; 1163 break; 1164 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) 1165 // Store-immediates are treated as non-memory operations, since 1166 // it's the value being stored that is extended (as opposed to 1167 // a part of the address). 1168 if (!isStoreImmediate(Opc)) 1169 ED.Expr.Rs = MI.getOperand(OpNum-1); 1170 break; 1171 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) 1172 ED.Expr.Rs = MI.getOperand(OpNum-2); 1173 ED.Expr.S = MI.getOperand(OpNum-1).getImm(); 1174 break; 1175 default: 1176 llvm_unreachable("Unhandled memory instruction"); 1177 } 1178 } else { 1179 switch (Opc) { 1180 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) 1181 ED.Rd = MI.getOperand(0); 1182 ED.IsDef = true; 1183 break; 1184 case Hexagon::A2_combineii: // (Rd: ## + __<<_) 1185 case Hexagon::A4_combineir: 1186 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; 1187 ED.IsDef = true; 1188 break; 1189 case Hexagon::A4_combineri: // (Rd: ## + __<<_) 1190 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; 1191 ED.IsDef = true; 1192 break; 1193 case Hexagon::A2_addi: // (Rd: ## + Rs<<0) 1194 ED.Rd = MI.getOperand(0); 1195 ED.Expr.Rs = MI.getOperand(OpNum-1); 1196 break; 1197 case Hexagon::M2_accii: // (__: ## + Rs<<0) 1198 case Hexagon::M2_naccii: 1199 case Hexagon::S4_addaddi: 1200 ED.Expr.Rs = MI.getOperand(OpNum-1); 1201 break; 1202 case Hexagon::A2_subri: // (Rd: ## - Rs<<0) 1203 ED.Rd = MI.getOperand(0); 1204 ED.Expr.Rs = MI.getOperand(OpNum+1); 1205 ED.Expr.Neg = true; 1206 break; 1207 case Hexagon::S4_subaddi: // (__: ## - Rs<<0) 1208 ED.Expr.Rs = MI.getOperand(OpNum+1); 1209 ED.Expr.Neg = true; 1210 break; 1211 default: // (__: ## + __<<_) 1212 break; 1213 } 1214 } 1215 1216 ED.UseMI = &MI; 1217 1218 // Ignore unnamed globals. 1219 ExtRoot ER(ED.getOp()); 1220 if (ER.Kind == MachineOperand::MO_GlobalAddress) 1221 if (ER.V.GV->getName().empty()) 1222 return; 1223 Extenders.push_back(ED); 1224 } 1225 1226 void HCE::collectInstr(MachineInstr &MI) { 1227 if (!HII->isConstExtended(MI)) 1228 return; 1229 1230 // Skip some non-convertible instructions. 1231 unsigned Opc = MI.getOpcode(); 1232 switch (Opc) { 1233 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). 1234 case Hexagon::C4_addipc: 1235 case Hexagon::S4_or_andi: 1236 case Hexagon::S4_or_andix: 1237 case Hexagon::S4_or_ori: 1238 return; 1239 } 1240 recordExtender(MI, HII->getCExtOpNum(MI)); 1241 } 1242 1243 void HCE::collect(MachineFunction &MF) { 1244 Extenders.clear(); 1245 for (MachineBasicBlock &MBB : MF) { 1246 // Skip unreachable blocks. 1247 if (MBB.getNumber() == -1) 1248 continue; 1249 for (MachineInstr &MI : MBB) 1250 collectInstr(MI); 1251 } 1252 } 1253 1254 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, 1255 AssignmentMap &IMap) { 1256 // Sanity check: make sure that all extenders in the range [Begin..End) 1257 // share the same root ER. 1258 for (unsigned I = Begin; I != End; ++I) 1259 assert(ER == ExtRoot(Extenders[I].getOp())); 1260 1261 // Construct the list of ranges, such that for each P in Ranges[I], 1262 // a register Reg = ER+P can be used in place of Extender[I]. If the 1263 // instruction allows, uses in the form of Reg+Off are considered 1264 // (here, Off = required_value - P). 1265 std::vector<OffsetRange> Ranges(End-Begin); 1266 1267 // For each extender that is a def, visit all uses of the defined register, 1268 // and produce an offset range that works for all uses. The def doesn't 1269 // have to be checked, because it can become dead if all uses can be updated 1270 // to use a different reg/offset. 1271 for (unsigned I = Begin; I != End; ++I) { 1272 const ExtDesc &ED = Extenders[I]; 1273 if (!ED.IsDef) 1274 continue; 1275 ExtValue EV(ED); 1276 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); 1277 assert(ED.Rd.Reg != 0); 1278 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); 1279 // A2_tfrsi is a special case: it will be replaced with A2_addi, which 1280 // has a 16-bit signed offset. This means that A2_tfrsi not only has a 1281 // range coming from its uses, but also from the fact that its replacement 1282 // has a range as well. 1283 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { 1284 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded 1285 Ranges[I-Begin].extendBy(-D).extendBy(D); 1286 } 1287 } 1288 1289 // Visit all non-def extenders. For each one, determine the offset range 1290 // available for it. 1291 for (unsigned I = Begin; I != End; ++I) { 1292 const ExtDesc &ED = Extenders[I]; 1293 if (ED.IsDef) 1294 continue; 1295 ExtValue EV(ED); 1296 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); 1297 OffsetRange Dev = getOffsetRange(ED); 1298 Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); 1299 } 1300 1301 // Here for each I there is a corresponding Range[I]. Construct the 1302 // inverse map, that to each range will assign the set of indexes in 1303 // [Begin..End) that this range corresponds to. 1304 std::map<OffsetRange, IndexList> RangeMap; 1305 for (unsigned I = Begin; I != End; ++I) 1306 RangeMap[Ranges[I-Begin]].insert(I); 1307 1308 LLVM_DEBUG({ 1309 dbgs() << "Ranges\n"; 1310 for (unsigned I = Begin; I != End; ++I) 1311 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; 1312 dbgs() << "RangeMap\n"; 1313 for (auto &P : RangeMap) { 1314 dbgs() << " " << P.first << " ->"; 1315 for (unsigned I : P.second) 1316 dbgs() << ' ' << I; 1317 dbgs() << '\n'; 1318 } 1319 }); 1320 1321 // Select the definition points, and generate the assignment between 1322 // these points and the uses. 1323 1324 // For each candidate offset, keep a pair CandData consisting of 1325 // the total number of ranges containing that candidate, and the 1326 // vector of corresponding RangeTree nodes. 1327 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; 1328 std::map<int32_t, CandData> CandMap; 1329 1330 RangeTree Tree; 1331 for (const OffsetRange &R : Ranges) 1332 Tree.add(R); 1333 SmallVector<RangeTree::Node*,8> Nodes; 1334 Tree.order(Nodes); 1335 1336 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, 1337 uint8_t Align, uint8_t Offset) { 1338 for (RangeTree::Node *N : Nodes) { 1339 if (N->Range.Align <= Align || N->Range.Offset < Offset) 1340 continue; 1341 if ((N->Range.Offset - Offset) % Align != 0) 1342 continue; 1343 Align = N->Range.Align; 1344 Offset = N->Range.Offset; 1345 } 1346 return std::make_pair(Align, Offset); 1347 }; 1348 1349 // Construct the set of all potential definition points from the endpoints 1350 // of the ranges. If a given endpoint also belongs to a different range, 1351 // but with a higher alignment, also consider the more-highly-aligned 1352 // value of this endpoint. 1353 std::set<int32_t> CandSet; 1354 for (RangeTree::Node *N : Nodes) { 1355 const OffsetRange &R = N->Range; 1356 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); 1357 CandSet.insert(R.Min); 1358 if (R.Align < P0.first) 1359 CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); 1360 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); 1361 CandSet.insert(R.Max); 1362 if (R.Align < P1.first) 1363 CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); 1364 } 1365 1366 // Build the assignment map: candidate C -> { list of extender indexes }. 1367 // This has to be done iteratively: 1368 // - pick the candidate that covers the maximum number of extenders, 1369 // - add the candidate to the map, 1370 // - remove the extenders from the pool. 1371 while (true) { 1372 using CMap = std::map<int32_t,unsigned>; 1373 CMap Counts; 1374 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { 1375 auto &&V = Tree.nodesWith(*It); 1376 unsigned N = std::accumulate(V.begin(), V.end(), 0u, 1377 [](unsigned Acc, const RangeTree::Node *N) { 1378 return Acc + N->Count; 1379 }); 1380 if (N != 0) 1381 Counts.insert({*It, N}); 1382 It = (N != 0) ? std::next(It) : CandSet.erase(It); 1383 } 1384 if (Counts.empty()) 1385 break; 1386 1387 // Find the best candidate with respect to the number of extenders covered. 1388 auto BestIt = std::max_element(Counts.begin(), Counts.end(), 1389 [](const CMap::value_type &A, const CMap::value_type &B) { 1390 return A.second < B.second || 1391 (A.second == B.second && A < B); 1392 }); 1393 int32_t Best = BestIt->first; 1394 ExtValue BestV(ER, Best); 1395 for (RangeTree::Node *N : Tree.nodesWith(Best)) { 1396 for (unsigned I : RangeMap[N->Range]) 1397 IMap[{BestV,Extenders[I].Expr}].insert(I); 1398 Tree.erase(N); 1399 } 1400 } 1401 1402 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); 1403 1404 // There is some ambiguity in what initializer should be used, if the 1405 // descriptor's subexpression is non-trivial: it can be the entire 1406 // subexpression (which is what has been done so far), or it can be 1407 // the extender's value itself, if all corresponding extenders have the 1408 // exact value of the initializer (i.e. require offset of 0). 1409 1410 // To reduce the number of initializers, merge such special cases. 1411 for (std::pair<const ExtenderInit,IndexList> &P : IMap) { 1412 // Skip trivial initializers. 1413 if (P.first.second.trivial()) 1414 continue; 1415 // If the corresponding trivial initializer does not exist, skip this 1416 // entry. 1417 const ExtValue &EV = P.first.first; 1418 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); 1419 if (F == IMap.end()) 1420 continue; 1421 1422 // Finally, check if all extenders have the same value as the initializer. 1423 // Make sure that extenders that are a part of a stack address are not 1424 // merged with those that aren't. Stack addresses need an offset field 1425 // (to be used by frame index elimination), while non-stack expressions 1426 // can be replaced with forms (such as rr) that do not have such a field. 1427 // Example: 1428 // 1429 // Collected 3 extenders 1430 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def 1431 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 1432 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 1433 // Ranges 1434 // 0. [-756,267]a1+0 1435 // 1. [-756,267]a1+0 1436 // 2. [201,65735]a1+0 1437 // RangeMap 1438 // [-756,267]a1+0 -> 0 1 1439 // [201,65735]a1+0 -> 2 1440 // IMap (before fixup) = { 1441 // [imm:0 off:267, ## + __ << 0] -> { 2 } 1442 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } 1443 // } 1444 // IMap (after fixup) = { 1445 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } 1446 // [imm:0 off:267, ## + SS#1 << 0] -> { } 1447 // } 1448 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] 1449 // %12:intregs = A2_tfrsi 267 1450 // 1451 // The result was 1452 // %12:intregs = A2_tfrsi 267 1453 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 1454 // Which became 1455 // r0 = #267 1456 // if (p0.new) memb(r0+r29<<#4) = r2 1457 1458 bool IsStack = any_of(F->second, [this](unsigned I) { 1459 return Extenders[I].Expr.Rs.isSlot(); 1460 }); 1461 auto SameValue = [&EV,this,IsStack](unsigned I) { 1462 const ExtDesc &ED = Extenders[I]; 1463 return ED.Expr.Rs.isSlot() == IsStack && 1464 ExtValue(ED).Offset == EV.Offset; 1465 }; 1466 if (all_of(P.second, SameValue)) { 1467 F->second.insert(P.second.begin(), P.second.end()); 1468 P.second.clear(); 1469 } 1470 } 1471 1472 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); 1473 } 1474 1475 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, 1476 LocDefList &Defs) { 1477 if (Refs.empty()) 1478 return; 1479 1480 // The placement calculation is somewhat simple right now: it finds a 1481 // single location for the def that dominates all refs. Since this may 1482 // place the def far from the uses, producing several locations for 1483 // defs that collectively dominate all refs could be better. 1484 // For now only do the single one. 1485 DenseSet<MachineBasicBlock*> Blocks; 1486 DenseSet<MachineInstr*> RefMIs; 1487 const ExtDesc &ED0 = Extenders[Refs[0]]; 1488 MachineBasicBlock *DomB = ED0.UseMI->getParent(); 1489 RefMIs.insert(ED0.UseMI); 1490 Blocks.insert(DomB); 1491 for (unsigned i = 1, e = Refs.size(); i != e; ++i) { 1492 const ExtDesc &ED = Extenders[Refs[i]]; 1493 MachineBasicBlock *MBB = ED.UseMI->getParent(); 1494 RefMIs.insert(ED.UseMI); 1495 DomB = MDT->findNearestCommonDominator(DomB, MBB); 1496 Blocks.insert(MBB); 1497 } 1498 1499 #ifndef NDEBUG 1500 // The block DomB should be dominated by the def of each register used 1501 // in the initializer. 1502 Register Rs = ExtI.second.Rs; // Only one reg allowed now. 1503 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; 1504 1505 // This should be guaranteed given that the entire expression is used 1506 // at each instruction in Refs. Add an assertion just in case. 1507 assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); 1508 #endif 1509 1510 MachineBasicBlock::iterator It; 1511 if (Blocks.count(DomB)) { 1512 // Try to find the latest possible location for the def. 1513 MachineBasicBlock::iterator End = DomB->end(); 1514 for (It = DomB->begin(); It != End; ++It) 1515 if (RefMIs.count(&*It)) 1516 break; 1517 assert(It != End && "Should have found a ref in DomB"); 1518 } else { 1519 // DomB does not contain any refs. 1520 It = DomB->getFirstTerminator(); 1521 } 1522 Loc DefLoc(DomB, It); 1523 Defs.emplace_back(DefLoc, Refs); 1524 } 1525 1526 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { 1527 unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1528 MachineBasicBlock &MBB = *DefL.Block; 1529 MachineBasicBlock::iterator At = DefL.At; 1530 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); 1531 const ExtValue &EV = ExtI.first; 1532 MachineOperand ExtOp(EV); 1533 1534 const ExtExpr &Ex = ExtI.second; 1535 const MachineInstr *InitI = nullptr; 1536 1537 if (Ex.Rs.isSlot()) { 1538 assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); 1539 assert(!Ex.Neg && "Cannot subtract a stack slot"); 1540 // DefR = PS_fi Rb,##EV 1541 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) 1542 .add(MachineOperand(Ex.Rs)) 1543 .add(ExtOp); 1544 } else { 1545 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); 1546 if (Ex.trivial()) { 1547 // DefR = ##EV 1548 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) 1549 .add(ExtOp); 1550 } else if (Ex.S == 0) { 1551 if (Ex.Neg) { 1552 // DefR = sub(##EV,Rb) 1553 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) 1554 .add(ExtOp) 1555 .add(MachineOperand(Ex.Rs)); 1556 } else { 1557 // DefR = add(Rb,##EV) 1558 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) 1559 .add(MachineOperand(Ex.Rs)) 1560 .add(ExtOp); 1561 } 1562 } else { 1563 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri 1564 : Hexagon::S4_addi_asl_ri; 1565 // DefR = add(##EV,asl(Rb,S)) 1566 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) 1567 .add(ExtOp) 1568 .add(MachineOperand(Ex.Rs)) 1569 .addImm(Ex.S); 1570 } 1571 } 1572 1573 assert(InitI); 1574 (void)InitI; 1575 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() 1576 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " 1577 << *InitI); 1578 return { DefR, 0 }; 1579 } 1580 1581 // Replace the extender at index Idx with the register ExtR. 1582 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { 1583 MachineInstr &MI = *ED.UseMI; 1584 MachineBasicBlock &MBB = *MI.getParent(); 1585 MachineBasicBlock::iterator At = MI.getIterator(); 1586 DebugLoc dl = MI.getDebugLoc(); 1587 unsigned ExtOpc = MI.getOpcode(); 1588 1589 // With a few exceptions, direct replacement amounts to creating an 1590 // instruction with a corresponding register opcode, with all operands 1591 // the same, except for the register used in place of the extender. 1592 unsigned RegOpc = getDirectRegReplacement(ExtOpc); 1593 1594 if (RegOpc == TargetOpcode::REG_SEQUENCE) { 1595 if (ExtOpc == Hexagon::A4_combineri) 1596 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1597 .add(MI.getOperand(0)) 1598 .add(MI.getOperand(1)) 1599 .addImm(Hexagon::isub_hi) 1600 .add(MachineOperand(ExtR)) 1601 .addImm(Hexagon::isub_lo); 1602 else if (ExtOpc == Hexagon::A4_combineir) 1603 BuildMI(MBB, At, dl, HII->get(RegOpc)) 1604 .add(MI.getOperand(0)) 1605 .add(MachineOperand(ExtR)) 1606 .addImm(Hexagon::isub_hi) 1607 .add(MI.getOperand(2)) 1608 .addImm(Hexagon::isub_lo); 1609 else 1610 llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); 1611 MBB.erase(MI); 1612 return true; 1613 } 1614 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { 1615 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt 1616 : Hexagon::C2_cmpltu; 1617 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1618 .add(MI.getOperand(0)) 1619 .add(MachineOperand(ExtR)) 1620 .add(MI.getOperand(1)); 1621 MBB.erase(MI); 1622 return true; 1623 } 1624 1625 if (RegOpc != 0) { 1626 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1627 unsigned RegN = ED.OpNum; 1628 // Copy all operands except the one that has the extender. 1629 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1630 if (i != RegN) 1631 MIB.add(MI.getOperand(i)); 1632 else 1633 MIB.add(MachineOperand(ExtR)); 1634 } 1635 MIB.cloneMemRefs(MI); 1636 MBB.erase(MI); 1637 return true; 1638 } 1639 1640 if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) { 1641 // For memory instructions, there is an asymmetry in the addressing 1642 // modes. Addressing modes allowing extenders can be replaced with 1643 // addressing modes that use registers, but the order of operands 1644 // (or even their number) may be different. 1645 // Replacements: 1646 // BaseImmOffset (io) -> BaseRegOffset (rr) 1647 // BaseLongOffset (ur) -> BaseRegOffset (rr) 1648 unsigned RegOpc, Shift; 1649 unsigned AM = HII->getAddrMode(MI); 1650 if (AM == HexagonII::BaseImmOffset) { 1651 RegOpc = HII->changeAddrMode_io_rr(ExtOpc); 1652 Shift = 0; 1653 } else if (AM == HexagonII::BaseLongOffset) { 1654 // Loads: Rd = L4_loadri_ur Rs, S, ## 1655 // Stores: S4_storeri_ur Rs, S, ##, Rt 1656 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); 1657 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); 1658 } else { 1659 llvm_unreachable("Unexpected addressing mode"); 1660 } 1661 #ifndef NDEBUG 1662 if (RegOpc == -1u) { 1663 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; 1664 llvm_unreachable("No corresponding rr instruction"); 1665 } 1666 #endif 1667 1668 unsigned BaseP, OffP; 1669 HII->getBaseAndOffsetPosition(MI, BaseP, OffP); 1670 1671 // Build an rr instruction: (RegOff + RegBase<<0) 1672 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); 1673 // First, add the def for loads. 1674 if (MI.mayLoad()) 1675 MIB.add(getLoadResultOp(MI)); 1676 // Handle possible predication. 1677 if (HII->isPredicated(MI)) 1678 MIB.add(getPredicateOp(MI)); 1679 // Build the address. 1680 MIB.add(MachineOperand(ExtR)); // RegOff 1681 MIB.add(MI.getOperand(BaseP)); // RegBase 1682 MIB.addImm(Shift); // << Shift 1683 // Add the stored value for stores. 1684 if (MI.mayStore()) 1685 MIB.add(getStoredValueOp(MI)); 1686 MIB.cloneMemRefs(MI); 1687 MBB.erase(MI); 1688 return true; 1689 } 1690 1691 #ifndef NDEBUG 1692 dbgs() << '\n' << MI; 1693 #endif 1694 llvm_unreachable("Unhandled exact replacement"); 1695 return false; 1696 } 1697 1698 // Replace the extender ED with a form corresponding to the initializer ExtI. 1699 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, 1700 Register ExtR, int32_t &Diff) { 1701 MachineInstr &MI = *ED.UseMI; 1702 MachineBasicBlock &MBB = *MI.getParent(); 1703 MachineBasicBlock::iterator At = MI.getIterator(); 1704 DebugLoc dl = MI.getDebugLoc(); 1705 unsigned ExtOpc = MI.getOpcode(); 1706 1707 if (ExtOpc == Hexagon::A2_tfrsi) { 1708 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces 1709 // another range. One range is the one that's common to all tfrsi's uses, 1710 // this one is the range of immediates in A2_addi. When calculating ranges, 1711 // the addi's 16-bit argument was included, so now we need to make it such 1712 // that the produced value is in the range for the uses alone. 1713 // Most of the time, simply adding Diff will make the addi produce exact 1714 // result, but if Diff is outside of the 16-bit range, some adjustment 1715 // will be needed. 1716 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1717 assert(IdxOpc == Hexagon::A2_addi); 1718 1719 // Clamp Diff to the 16 bit range. 1720 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); 1721 if (Diff > 32767) { 1722 // Split Diff into two values: one that is close to min/max int16, 1723 // and the other being the rest, and such that both have the same 1724 // "alignment" as Diff. 1725 uint32_t UD = Diff; 1726 OffsetRange R = getOffsetRange(MI.getOperand(0)); 1727 uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD)); 1728 D &= ~(A-1); 1729 } 1730 BuildMI(MBB, At, dl, HII->get(IdxOpc)) 1731 .add(MI.getOperand(0)) 1732 .add(MachineOperand(ExtR)) 1733 .addImm(D); 1734 Diff -= D; 1735 #ifndef NDEBUG 1736 // Make sure the output is within allowable range for uses. 1737 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, 1738 // not DefV - Ext, as the getOffsetRange would calculate. 1739 OffsetRange Uses = getOffsetRange(MI.getOperand(0)); 1740 if (!Uses.contains(-Diff)) 1741 dbgs() << "Diff: " << -Diff << " out of range " << Uses 1742 << " for " << MI; 1743 assert(Uses.contains(-Diff)); 1744 #endif 1745 MBB.erase(MI); 1746 return true; 1747 } 1748 1749 const ExtValue &EV = ExtI.first; (void)EV; 1750 const ExtExpr &Ex = ExtI.second; (void)Ex; 1751 1752 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { 1753 // If addi/subri are replaced with the exactly matching initializer, 1754 // they amount to COPY. 1755 // Check that the initializer is an exact match (for simplicity). 1756 #ifndef NDEBUG 1757 bool IsAddi = ExtOpc == Hexagon::A2_addi; 1758 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); 1759 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); 1760 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && 1761 "Initializer mismatch"); 1762 #endif 1763 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) 1764 .add(MI.getOperand(0)) 1765 .add(MachineOperand(ExtR)); 1766 Diff = 0; 1767 MBB.erase(MI); 1768 return true; 1769 } 1770 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || 1771 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { 1772 // M2_accii: add(Rt,add(Rs,V)) (tied) 1773 // M2_naccii: sub(Rt,add(Rs,V)) 1774 // S4_addaddi: add(Rt,add(Rs,V)) 1775 // S4_subaddi: add(Rt,sub(V,Rs)) 1776 // Check that Rs and V match the initializer expression. The Rs+V is the 1777 // combination that is considered "subexpression" for V, although Rx+V 1778 // would also be valid. 1779 #ifndef NDEBUG 1780 bool IsSub = ExtOpc == Hexagon::S4_subaddi; 1781 Register Rs = MI.getOperand(IsSub ? 3 : 2); 1782 ExtValue V = MI.getOperand(IsSub ? 2 : 3); 1783 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); 1784 #endif 1785 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub 1786 : Hexagon::A2_add; 1787 BuildMI(MBB, At, dl, HII->get(NewOpc)) 1788 .add(MI.getOperand(0)) 1789 .add(MI.getOperand(1)) 1790 .add(MachineOperand(ExtR)); 1791 MBB.erase(MI); 1792 return true; 1793 } 1794 1795 if (MI.mayLoad() || MI.mayStore()) { 1796 unsigned IdxOpc = getRegOffOpcode(ExtOpc); 1797 assert(IdxOpc && "Expecting indexed opcode"); 1798 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); 1799 // Construct the new indexed instruction. 1800 // First, add the def for loads. 1801 if (MI.mayLoad()) 1802 MIB.add(getLoadResultOp(MI)); 1803 // Handle possible predication. 1804 if (HII->isPredicated(MI)) 1805 MIB.add(getPredicateOp(MI)); 1806 // Build the address. 1807 MIB.add(MachineOperand(ExtR)); 1808 MIB.addImm(Diff); 1809 // Add the stored value for stores. 1810 if (MI.mayStore()) 1811 MIB.add(getStoredValueOp(MI)); 1812 MIB.cloneMemRefs(MI); 1813 MBB.erase(MI); 1814 return true; 1815 } 1816 1817 #ifndef NDEBUG 1818 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; 1819 #endif 1820 llvm_unreachable("Unhandled expr replacement"); 1821 return false; 1822 } 1823 1824 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { 1825 if (ReplaceLimit.getNumOccurrences()) { 1826 if (ReplaceLimit <= ReplaceCounter) 1827 return false; 1828 ++ReplaceCounter; 1829 } 1830 const ExtDesc &ED = Extenders[Idx]; 1831 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); 1832 const ExtValue &DefV = ExtI.first; 1833 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); 1834 const ExtExpr &DefEx = ExtI.second; 1835 1836 ExtValue EV(ED); 1837 int32_t Diff = EV.Offset - DefV.Offset; 1838 const MachineInstr &MI = *ED.UseMI; 1839 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" 1840 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); 1841 1842 // These two addressing modes must be converted into indexed forms 1843 // regardless of what the initializer looks like. 1844 bool IsAbs = false, IsAbsSet = false; 1845 if (MI.mayLoad() || MI.mayStore()) { 1846 unsigned AM = HII->getAddrMode(MI); 1847 IsAbs = AM == HexagonII::Absolute; 1848 IsAbsSet = AM == HexagonII::AbsoluteSet; 1849 } 1850 1851 // If it's a def, remember all operands that need to be updated. 1852 // If ED is a def, and Diff is not 0, then all uses of the register Rd 1853 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset 1854 // must follow the Rd in the operand list. 1855 std::vector<std::pair<MachineInstr*,unsigned>> RegOps; 1856 if (ED.IsDef && Diff != 0) { 1857 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { 1858 MachineInstr &UI = *Op.getParent(); 1859 RegOps.push_back({&UI, getOperandIndex(UI, Op)}); 1860 } 1861 } 1862 1863 // Replace the instruction. 1864 bool Replaced = false; 1865 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) 1866 Replaced = replaceInstrExact(ED, ExtR); 1867 else 1868 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); 1869 1870 if (Diff != 0 && Replaced && ED.IsDef) { 1871 // Update offsets of the def's uses. 1872 for (std::pair<MachineInstr*,unsigned> P : RegOps) { 1873 unsigned J = P.second; 1874 assert(P.first->getNumOperands() > J+1 && 1875 P.first->getOperand(J+1).isImm()); 1876 MachineOperand &ImmOp = P.first->getOperand(J+1); 1877 ImmOp.setImm(ImmOp.getImm() + Diff); 1878 } 1879 // If it was an absolute-set instruction, the "set" part has been removed. 1880 // ExtR will now be the register with the extended value, and since all 1881 // users of Rd have been updated, all that needs to be done is to replace 1882 // Rd with ExtR. 1883 if (IsAbsSet) { 1884 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); 1885 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); 1886 } 1887 } 1888 1889 return Replaced; 1890 } 1891 1892 bool HCE::replaceExtenders(const AssignmentMap &IMap) { 1893 LocDefList Defs; 1894 bool Changed = false; 1895 1896 for (const std::pair<ExtenderInit,IndexList> &P : IMap) { 1897 const IndexList &Idxs = P.second; 1898 if (Idxs.size() < CountThreshold) 1899 continue; 1900 1901 Defs.clear(); 1902 calculatePlacement(P.first, Idxs, Defs); 1903 for (const std::pair<Loc,IndexList> &Q : Defs) { 1904 Register DefR = insertInitializer(Q.first, P.first); 1905 NewRegs.push_back(DefR.Reg); 1906 for (unsigned I : Q.second) 1907 Changed |= replaceInstr(I, DefR, P.first); 1908 } 1909 } 1910 return Changed; 1911 } 1912 1913 unsigned HCE::getOperandIndex(const MachineInstr &MI, 1914 const MachineOperand &Op) const { 1915 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) 1916 if (&MI.getOperand(i) == &Op) 1917 return i; 1918 llvm_unreachable("Not an operand of MI"); 1919 } 1920 1921 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { 1922 assert(HII->isPredicated(MI)); 1923 for (const MachineOperand &Op : MI.operands()) { 1924 if (!Op.isReg() || !Op.isUse() || 1925 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) 1926 continue; 1927 assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); 1928 return Op; 1929 } 1930 llvm_unreachable("Predicate operand not found"); 1931 } 1932 1933 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { 1934 assert(MI.mayLoad()); 1935 return MI.getOperand(0); 1936 } 1937 1938 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { 1939 assert(MI.mayStore()); 1940 return MI.getOperand(MI.getNumExplicitOperands()-1); 1941 } 1942 1943 bool HCE::runOnMachineFunction(MachineFunction &MF) { 1944 if (skipFunction(MF.getFunction())) 1945 return false; 1946 if (MF.getFunction().hasPersonalityFn()) { 1947 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() 1948 << " due to exception handling\n"); 1949 return false; 1950 } 1951 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); 1952 1953 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 1954 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); 1955 MDT = &getAnalysis<MachineDominatorTree>(); 1956 MRI = &MF.getRegInfo(); 1957 AssignmentMap IMap; 1958 1959 collect(MF); 1960 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) { 1961 ExtValue VA(A), VB(B); 1962 if (VA != VB) 1963 return VA < VB; 1964 const MachineInstr *MA = A.UseMI; 1965 const MachineInstr *MB = B.UseMI; 1966 if (MA == MB) { 1967 // If it's the same instruction, compare operand numbers. 1968 return A.OpNum < B.OpNum; 1969 } 1970 1971 const MachineBasicBlock *BA = MA->getParent(); 1972 const MachineBasicBlock *BB = MB->getParent(); 1973 assert(BA->getNumber() != -1 && BB->getNumber() != -1); 1974 if (BA != BB) 1975 return BA->getNumber() < BB->getNumber(); 1976 return MDT->dominates(MA, MB); 1977 }); 1978 1979 bool Changed = false; 1980 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); 1981 for (unsigned I = 0, E = Extenders.size(); I != E; ) { 1982 unsigned B = I; 1983 const ExtRoot &T = Extenders[B].getOp(); 1984 while (I != E && ExtRoot(Extenders[I].getOp()) == T) 1985 ++I; 1986 1987 IMap.clear(); 1988 assignInits(T, B, I, IMap); 1989 Changed |= replaceExtenders(IMap); 1990 } 1991 1992 LLVM_DEBUG({ 1993 if (Changed) 1994 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); 1995 else 1996 dbgs() << "No changes\n"; 1997 }); 1998 return Changed; 1999 } 2000 2001 FunctionPass *llvm::createHexagonConstExtenders() { 2002 return new HexagonConstExtenders(); 2003 } 2004