xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <limits>
43 #include <utility>
44 #include <vector>
45 
46 #define DEBUG_TYPE "hexbit"
47 
48 using namespace llvm;
49 
50 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
51   cl::init(true), cl::desc("Preserve subregisters in tied operands"));
52 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
53   cl::init(true), cl::desc("Generate extract instructions"));
54 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
55   cl::init(true), cl::desc("Generate bitsplit instructions"));
56 
57 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
58   cl::init(std::numeric_limits<unsigned>::max()));
59 static unsigned CountExtract = 0;
60 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
61   cl::init(std::numeric_limits<unsigned>::max()));
62 static unsigned CountBitSplit = 0;
63 
64 namespace llvm {
65 
66   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
67   FunctionPass *createHexagonBitSimplify();
68 
69 } // end namespace llvm
70 
71 namespace {
72 
73   // Set of virtual registers, based on BitVector.
74   struct RegisterSet : private BitVector {
75     RegisterSet() = default;
76     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
77     RegisterSet(const RegisterSet &RS) = default;
78 
79     using BitVector::clear;
80     using BitVector::count;
81 
82     unsigned find_first() const {
83       int First = BitVector::find_first();
84       if (First < 0)
85         return 0;
86       return x2v(First);
87     }
88 
89     unsigned find_next(unsigned Prev) const {
90       int Next = BitVector::find_next(v2x(Prev));
91       if (Next < 0)
92         return 0;
93       return x2v(Next);
94     }
95 
96     RegisterSet &insert(unsigned R) {
97       unsigned Idx = v2x(R);
98       ensure(Idx);
99       return static_cast<RegisterSet&>(BitVector::set(Idx));
100     }
101     RegisterSet &remove(unsigned R) {
102       unsigned Idx = v2x(R);
103       if (Idx >= size())
104         return *this;
105       return static_cast<RegisterSet&>(BitVector::reset(Idx));
106     }
107 
108     RegisterSet &insert(const RegisterSet &Rs) {
109       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
110     }
111     RegisterSet &remove(const RegisterSet &Rs) {
112       return static_cast<RegisterSet&>(BitVector::reset(Rs));
113     }
114 
115     reference operator[](unsigned R) {
116       unsigned Idx = v2x(R);
117       ensure(Idx);
118       return BitVector::operator[](Idx);
119     }
120     bool operator[](unsigned R) const {
121       unsigned Idx = v2x(R);
122       assert(Idx < size());
123       return BitVector::operator[](Idx);
124     }
125     bool has(unsigned R) const {
126       unsigned Idx = v2x(R);
127       if (Idx >= size())
128         return false;
129       return BitVector::test(Idx);
130     }
131 
132     bool empty() const {
133       return !BitVector::any();
134     }
135     bool includes(const RegisterSet &Rs) const {
136       // A.BitVector::test(B)  <=>  A-B != {}
137       return !Rs.BitVector::test(*this);
138     }
139     bool intersects(const RegisterSet &Rs) const {
140       return BitVector::anyCommon(Rs);
141     }
142 
143   private:
144     void ensure(unsigned Idx) {
145       if (size() <= Idx)
146         resize(std::max(Idx+1, 32U));
147     }
148 
149     static inline unsigned v2x(unsigned v) {
150       return Register::virtReg2Index(v);
151     }
152 
153     static inline unsigned x2v(unsigned x) {
154       return Register::index2VirtReg(x);
155     }
156   };
157 
158   struct PrintRegSet {
159     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
160       : RS(S), TRI(RI) {}
161 
162     friend raw_ostream &operator<< (raw_ostream &OS,
163           const PrintRegSet &P);
164 
165   private:
166     const RegisterSet &RS;
167     const TargetRegisterInfo *TRI;
168   };
169 
170   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
171     LLVM_ATTRIBUTE_UNUSED;
172   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
173     OS << '{';
174     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
175       OS << ' ' << printReg(R, P.TRI);
176     OS << " }";
177     return OS;
178   }
179 
180   class Transformation;
181 
182   class HexagonBitSimplify : public MachineFunctionPass {
183   public:
184     static char ID;
185 
186     HexagonBitSimplify() : MachineFunctionPass(ID) {}
187 
188     StringRef getPassName() const override {
189       return "Hexagon bit simplification";
190     }
191 
192     void getAnalysisUsage(AnalysisUsage &AU) const override {
193       AU.addRequired<MachineDominatorTree>();
194       AU.addPreserved<MachineDominatorTree>();
195       MachineFunctionPass::getAnalysisUsage(AU);
196     }
197 
198     bool runOnMachineFunction(MachineFunction &MF) override;
199 
200     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
201     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
202     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
203         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
204     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
205         uint16_t W);
206     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
207         uint16_t W, uint64_t &U);
208     static bool replaceReg(unsigned OldR, unsigned NewR,
209         MachineRegisterInfo &MRI);
210     static bool getSubregMask(const BitTracker::RegisterRef &RR,
211         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
212     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
213         unsigned NewSR, MachineRegisterInfo &MRI);
214     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
215         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
216     static bool parseRegSequence(const MachineInstr &I,
217         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
218         const MachineRegisterInfo &MRI);
219 
220     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
221         uint16_t Begin);
222     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
223         uint16_t Begin, const HexagonInstrInfo &HII);
224 
225     static const TargetRegisterClass *getFinalVRegClass(
226         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
227     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
228         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
229 
230   private:
231     MachineDominatorTree *MDT = nullptr;
232 
233     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
234     static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
235         unsigned NewSub = Hexagon::NoSubRegister);
236   };
237 
238   using HBS = HexagonBitSimplify;
239 
240   // The purpose of this class is to provide a common facility to traverse
241   // the function top-down or bottom-up via the dominator tree, and keep
242   // track of the available registers.
243   class Transformation {
244   public:
245     bool TopDown;
246 
247     Transformation(bool TD) : TopDown(TD) {}
248     virtual ~Transformation() = default;
249 
250     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
251   };
252 
253 } // end anonymous namespace
254 
255 char HexagonBitSimplify::ID = 0;
256 
257 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
258       "Hexagon bit simplification", false, false)
259 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
260 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
261       "Hexagon bit simplification", false, false)
262 
263 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
264       RegisterSet &AVs) {
265   bool Changed = false;
266 
267   if (T.TopDown)
268     Changed = T.processBlock(B, AVs);
269 
270   RegisterSet Defs;
271   for (auto &I : B)
272     getInstrDefs(I, Defs);
273   RegisterSet NewAVs = AVs;
274   NewAVs.insert(Defs);
275 
276   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
277     Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
278 
279   if (!T.TopDown)
280     Changed |= T.processBlock(B, AVs);
281 
282   return Changed;
283 }
284 
285 //
286 // Utility functions:
287 //
288 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
289       RegisterSet &Defs) {
290   for (auto &Op : MI.operands()) {
291     if (!Op.isReg() || !Op.isDef())
292       continue;
293     Register R = Op.getReg();
294     if (!Register::isVirtualRegister(R))
295       continue;
296     Defs.insert(R);
297   }
298 }
299 
300 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
301       RegisterSet &Uses) {
302   for (auto &Op : MI.operands()) {
303     if (!Op.isReg() || !Op.isUse())
304       continue;
305     Register R = Op.getReg();
306     if (!Register::isVirtualRegister(R))
307       continue;
308     Uses.insert(R);
309   }
310 }
311 
312 // Check if all the bits in range [B, E) in both cells are equal.
313 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
314       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
315       uint16_t W) {
316   for (uint16_t i = 0; i < W; ++i) {
317     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
318     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
319       return false;
320     // Same for RC2[i].
321     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
322       return false;
323     if (RC1[B1+i] != RC2[B2+i])
324       return false;
325   }
326   return true;
327 }
328 
329 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
330       uint16_t B, uint16_t W) {
331   assert(B < RC.width() && B+W <= RC.width());
332   for (uint16_t i = B; i < B+W; ++i)
333     if (!RC[i].is(0))
334       return false;
335   return true;
336 }
337 
338 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
339         uint16_t B, uint16_t W, uint64_t &U) {
340   assert(B < RC.width() && B+W <= RC.width());
341   int64_t T = 0;
342   for (uint16_t i = B+W; i > B; --i) {
343     const BitTracker::BitValue &BV = RC[i-1];
344     T <<= 1;
345     if (BV.is(1))
346       T |= 1;
347     else if (!BV.is(0))
348       return false;
349   }
350   U = T;
351   return true;
352 }
353 
354 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
355       MachineRegisterInfo &MRI) {
356   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
357     return false;
358   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
359   decltype(End) NextI;
360   for (auto I = Begin; I != End; I = NextI) {
361     NextI = std::next(I);
362     I->setReg(NewR);
363   }
364   return Begin != End;
365 }
366 
367 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
368       unsigned NewSR, MachineRegisterInfo &MRI) {
369   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
370     return false;
371   if (hasTiedUse(OldR, MRI, NewSR))
372     return false;
373   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
374   decltype(End) NextI;
375   for (auto I = Begin; I != End; I = NextI) {
376     NextI = std::next(I);
377     I->setReg(NewR);
378     I->setSubReg(NewSR);
379   }
380   return Begin != End;
381 }
382 
383 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
384       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
385   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
386     return false;
387   if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
388     return false;
389   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
390   decltype(End) NextI;
391   for (auto I = Begin; I != End; I = NextI) {
392     NextI = std::next(I);
393     if (I->getSubReg() != OldSR)
394       continue;
395     I->setReg(NewR);
396     I->setSubReg(NewSR);
397   }
398   return Begin != End;
399 }
400 
401 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
402 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
403 // if this succeeded, otherwise return false.
404 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
405       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
406   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
407   if (RR.Sub == 0) {
408     Begin = 0;
409     Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
410     return true;
411   }
412 
413   Begin = 0;
414 
415   switch (RC->getID()) {
416     case Hexagon::DoubleRegsRegClassID:
417     case Hexagon::HvxWRRegClassID:
418       Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
419       if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
420         Begin = Width;
421       break;
422     default:
423       return false;
424   }
425   return true;
426 }
427 
428 
429 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
430 // subregister.
431 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
432       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
433       const MachineRegisterInfo &MRI) {
434   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
435   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
436   auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
437   auto &HRI = static_cast<const HexagonRegisterInfo&>(
438                   *MRI.getTargetRegisterInfo());
439   unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
440   unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
441   assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
442   if (Sub1 == SubLo && Sub2 == SubHi) {
443     SL = I.getOperand(1);
444     SH = I.getOperand(3);
445     return true;
446   }
447   if (Sub1 == SubHi && Sub2 == SubLo) {
448     SH = I.getOperand(1);
449     SL = I.getOperand(3);
450     return true;
451   }
452   return false;
453 }
454 
455 // All stores (except 64-bit stores) take a 32-bit register as the source
456 // of the value to be stored. If the instruction stores into a location
457 // that is shorter than 32 bits, some bits of the source register are not
458 // used. For each store instruction, calculate the set of used bits in
459 // the source register, and set appropriate bits in Bits. Return true if
460 // the bits are calculated, false otherwise.
461 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
462       uint16_t Begin) {
463   using namespace Hexagon;
464 
465   switch (Opc) {
466     // Store byte
467     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
468     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
469     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
470     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
471     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
472     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
473     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
474     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
475     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
476     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
477     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
478     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
479     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
480     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
481     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
482     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
483     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
484     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
485     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
486     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
487     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
488     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
489     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
490     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
491     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
492     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
493     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
494     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
495     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
496     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
497     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
498     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
499     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
500     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
501     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
502     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
503     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
504     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
505     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
506     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
507     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
508     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
509     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
510     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
511     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
512     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
513     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
514     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
515     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
516     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
517     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
518     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
519       Bits.set(Begin, Begin+8);
520       return true;
521 
522     // Store low half
523     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
524     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
525     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
526     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
527     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
528     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
529     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
530     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
531     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
532     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
533     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
534     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
535     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
536     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
537     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
538     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
539     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
540     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
541     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
542     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
543     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
544     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
545     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
546     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
547     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
548     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
549     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
550     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
551     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
552     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
553     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
554     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
555     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
556     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
557     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
558     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
559     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
560     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
561     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
562     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
563     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
564     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
565     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
566     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
567     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
568     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
569     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
570     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
571     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
572     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
573     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
574     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
575       Bits.set(Begin, Begin+16);
576       return true;
577 
578     // Store high half
579     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
580     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
581     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
582     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
583     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
584     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
585     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
586     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
587     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
588     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
589     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
590     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
591     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
592     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
593     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
594     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
595     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
596     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
597     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
598     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
599     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
600     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
601     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
602     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
603     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
604     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
605       Bits.set(Begin+16, Begin+32);
606       return true;
607   }
608 
609   return false;
610 }
611 
612 // For an instruction with opcode Opc, calculate the set of bits that it
613 // uses in a register in operand OpN. This only calculates the set of used
614 // bits for cases where it does not depend on any operands (as is the case
615 // in shifts, for example). For concrete instructions from a program, the
616 // operand may be a subregister of a larger register, while Bits would
617 // correspond to the larger register in its entirety. Because of that,
618 // the parameter Begin can be used to indicate which bit of Bits should be
619 // considered the LSB of the operand.
620 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
621       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
622   using namespace Hexagon;
623 
624   const MCInstrDesc &D = HII.get(Opc);
625   if (D.mayStore()) {
626     if (OpN == D.getNumOperands()-1)
627       return getUsedBitsInStore(Opc, Bits, Begin);
628     return false;
629   }
630 
631   switch (Opc) {
632     // One register source. Used bits: R1[0-7].
633     case A2_sxtb:
634     case A2_zxtb:
635     case A4_cmpbeqi:
636     case A4_cmpbgti:
637     case A4_cmpbgtui:
638       if (OpN == 1) {
639         Bits.set(Begin, Begin+8);
640         return true;
641       }
642       break;
643 
644     // One register source. Used bits: R1[0-15].
645     case A2_aslh:
646     case A2_sxth:
647     case A2_zxth:
648     case A4_cmpheqi:
649     case A4_cmphgti:
650     case A4_cmphgtui:
651       if (OpN == 1) {
652         Bits.set(Begin, Begin+16);
653         return true;
654       }
655       break;
656 
657     // One register source. Used bits: R1[16-31].
658     case A2_asrh:
659       if (OpN == 1) {
660         Bits.set(Begin+16, Begin+32);
661         return true;
662       }
663       break;
664 
665     // Two register sources. Used bits: R1[0-7], R2[0-7].
666     case A4_cmpbeq:
667     case A4_cmpbgt:
668     case A4_cmpbgtu:
669       if (OpN == 1) {
670         Bits.set(Begin, Begin+8);
671         return true;
672       }
673       break;
674 
675     // Two register sources. Used bits: R1[0-15], R2[0-15].
676     case A4_cmpheq:
677     case A4_cmphgt:
678     case A4_cmphgtu:
679     case A2_addh_h16_ll:
680     case A2_addh_h16_sat_ll:
681     case A2_addh_l16_ll:
682     case A2_addh_l16_sat_ll:
683     case A2_combine_ll:
684     case A2_subh_h16_ll:
685     case A2_subh_h16_sat_ll:
686     case A2_subh_l16_ll:
687     case A2_subh_l16_sat_ll:
688     case M2_mpy_acc_ll_s0:
689     case M2_mpy_acc_ll_s1:
690     case M2_mpy_acc_sat_ll_s0:
691     case M2_mpy_acc_sat_ll_s1:
692     case M2_mpy_ll_s0:
693     case M2_mpy_ll_s1:
694     case M2_mpy_nac_ll_s0:
695     case M2_mpy_nac_ll_s1:
696     case M2_mpy_nac_sat_ll_s0:
697     case M2_mpy_nac_sat_ll_s1:
698     case M2_mpy_rnd_ll_s0:
699     case M2_mpy_rnd_ll_s1:
700     case M2_mpy_sat_ll_s0:
701     case M2_mpy_sat_ll_s1:
702     case M2_mpy_sat_rnd_ll_s0:
703     case M2_mpy_sat_rnd_ll_s1:
704     case M2_mpyd_acc_ll_s0:
705     case M2_mpyd_acc_ll_s1:
706     case M2_mpyd_ll_s0:
707     case M2_mpyd_ll_s1:
708     case M2_mpyd_nac_ll_s0:
709     case M2_mpyd_nac_ll_s1:
710     case M2_mpyd_rnd_ll_s0:
711     case M2_mpyd_rnd_ll_s1:
712     case M2_mpyu_acc_ll_s0:
713     case M2_mpyu_acc_ll_s1:
714     case M2_mpyu_ll_s0:
715     case M2_mpyu_ll_s1:
716     case M2_mpyu_nac_ll_s0:
717     case M2_mpyu_nac_ll_s1:
718     case M2_mpyud_acc_ll_s0:
719     case M2_mpyud_acc_ll_s1:
720     case M2_mpyud_ll_s0:
721     case M2_mpyud_ll_s1:
722     case M2_mpyud_nac_ll_s0:
723     case M2_mpyud_nac_ll_s1:
724       if (OpN == 1 || OpN == 2) {
725         Bits.set(Begin, Begin+16);
726         return true;
727       }
728       break;
729 
730     // Two register sources. Used bits: R1[0-15], R2[16-31].
731     case A2_addh_h16_lh:
732     case A2_addh_h16_sat_lh:
733     case A2_combine_lh:
734     case A2_subh_h16_lh:
735     case A2_subh_h16_sat_lh:
736     case M2_mpy_acc_lh_s0:
737     case M2_mpy_acc_lh_s1:
738     case M2_mpy_acc_sat_lh_s0:
739     case M2_mpy_acc_sat_lh_s1:
740     case M2_mpy_lh_s0:
741     case M2_mpy_lh_s1:
742     case M2_mpy_nac_lh_s0:
743     case M2_mpy_nac_lh_s1:
744     case M2_mpy_nac_sat_lh_s0:
745     case M2_mpy_nac_sat_lh_s1:
746     case M2_mpy_rnd_lh_s0:
747     case M2_mpy_rnd_lh_s1:
748     case M2_mpy_sat_lh_s0:
749     case M2_mpy_sat_lh_s1:
750     case M2_mpy_sat_rnd_lh_s0:
751     case M2_mpy_sat_rnd_lh_s1:
752     case M2_mpyd_acc_lh_s0:
753     case M2_mpyd_acc_lh_s1:
754     case M2_mpyd_lh_s0:
755     case M2_mpyd_lh_s1:
756     case M2_mpyd_nac_lh_s0:
757     case M2_mpyd_nac_lh_s1:
758     case M2_mpyd_rnd_lh_s0:
759     case M2_mpyd_rnd_lh_s1:
760     case M2_mpyu_acc_lh_s0:
761     case M2_mpyu_acc_lh_s1:
762     case M2_mpyu_lh_s0:
763     case M2_mpyu_lh_s1:
764     case M2_mpyu_nac_lh_s0:
765     case M2_mpyu_nac_lh_s1:
766     case M2_mpyud_acc_lh_s0:
767     case M2_mpyud_acc_lh_s1:
768     case M2_mpyud_lh_s0:
769     case M2_mpyud_lh_s1:
770     case M2_mpyud_nac_lh_s0:
771     case M2_mpyud_nac_lh_s1:
772     // These four are actually LH.
773     case A2_addh_l16_hl:
774     case A2_addh_l16_sat_hl:
775     case A2_subh_l16_hl:
776     case A2_subh_l16_sat_hl:
777       if (OpN == 1) {
778         Bits.set(Begin, Begin+16);
779         return true;
780       }
781       if (OpN == 2) {
782         Bits.set(Begin+16, Begin+32);
783         return true;
784       }
785       break;
786 
787     // Two register sources, used bits: R1[16-31], R2[0-15].
788     case A2_addh_h16_hl:
789     case A2_addh_h16_sat_hl:
790     case A2_combine_hl:
791     case A2_subh_h16_hl:
792     case A2_subh_h16_sat_hl:
793     case M2_mpy_acc_hl_s0:
794     case M2_mpy_acc_hl_s1:
795     case M2_mpy_acc_sat_hl_s0:
796     case M2_mpy_acc_sat_hl_s1:
797     case M2_mpy_hl_s0:
798     case M2_mpy_hl_s1:
799     case M2_mpy_nac_hl_s0:
800     case M2_mpy_nac_hl_s1:
801     case M2_mpy_nac_sat_hl_s0:
802     case M2_mpy_nac_sat_hl_s1:
803     case M2_mpy_rnd_hl_s0:
804     case M2_mpy_rnd_hl_s1:
805     case M2_mpy_sat_hl_s0:
806     case M2_mpy_sat_hl_s1:
807     case M2_mpy_sat_rnd_hl_s0:
808     case M2_mpy_sat_rnd_hl_s1:
809     case M2_mpyd_acc_hl_s0:
810     case M2_mpyd_acc_hl_s1:
811     case M2_mpyd_hl_s0:
812     case M2_mpyd_hl_s1:
813     case M2_mpyd_nac_hl_s0:
814     case M2_mpyd_nac_hl_s1:
815     case M2_mpyd_rnd_hl_s0:
816     case M2_mpyd_rnd_hl_s1:
817     case M2_mpyu_acc_hl_s0:
818     case M2_mpyu_acc_hl_s1:
819     case M2_mpyu_hl_s0:
820     case M2_mpyu_hl_s1:
821     case M2_mpyu_nac_hl_s0:
822     case M2_mpyu_nac_hl_s1:
823     case M2_mpyud_acc_hl_s0:
824     case M2_mpyud_acc_hl_s1:
825     case M2_mpyud_hl_s0:
826     case M2_mpyud_hl_s1:
827     case M2_mpyud_nac_hl_s0:
828     case M2_mpyud_nac_hl_s1:
829       if (OpN == 1) {
830         Bits.set(Begin+16, Begin+32);
831         return true;
832       }
833       if (OpN == 2) {
834         Bits.set(Begin, Begin+16);
835         return true;
836       }
837       break;
838 
839     // Two register sources, used bits: R1[16-31], R2[16-31].
840     case A2_addh_h16_hh:
841     case A2_addh_h16_sat_hh:
842     case A2_combine_hh:
843     case A2_subh_h16_hh:
844     case A2_subh_h16_sat_hh:
845     case M2_mpy_acc_hh_s0:
846     case M2_mpy_acc_hh_s1:
847     case M2_mpy_acc_sat_hh_s0:
848     case M2_mpy_acc_sat_hh_s1:
849     case M2_mpy_hh_s0:
850     case M2_mpy_hh_s1:
851     case M2_mpy_nac_hh_s0:
852     case M2_mpy_nac_hh_s1:
853     case M2_mpy_nac_sat_hh_s0:
854     case M2_mpy_nac_sat_hh_s1:
855     case M2_mpy_rnd_hh_s0:
856     case M2_mpy_rnd_hh_s1:
857     case M2_mpy_sat_hh_s0:
858     case M2_mpy_sat_hh_s1:
859     case M2_mpy_sat_rnd_hh_s0:
860     case M2_mpy_sat_rnd_hh_s1:
861     case M2_mpyd_acc_hh_s0:
862     case M2_mpyd_acc_hh_s1:
863     case M2_mpyd_hh_s0:
864     case M2_mpyd_hh_s1:
865     case M2_mpyd_nac_hh_s0:
866     case M2_mpyd_nac_hh_s1:
867     case M2_mpyd_rnd_hh_s0:
868     case M2_mpyd_rnd_hh_s1:
869     case M2_mpyu_acc_hh_s0:
870     case M2_mpyu_acc_hh_s1:
871     case M2_mpyu_hh_s0:
872     case M2_mpyu_hh_s1:
873     case M2_mpyu_nac_hh_s0:
874     case M2_mpyu_nac_hh_s1:
875     case M2_mpyud_acc_hh_s0:
876     case M2_mpyud_acc_hh_s1:
877     case M2_mpyud_hh_s0:
878     case M2_mpyud_hh_s1:
879     case M2_mpyud_nac_hh_s0:
880     case M2_mpyud_nac_hh_s1:
881       if (OpN == 1 || OpN == 2) {
882         Bits.set(Begin+16, Begin+32);
883         return true;
884       }
885       break;
886   }
887 
888   return false;
889 }
890 
891 // Calculate the register class that matches Reg:Sub. For example, if
892 // %1 is a double register, then %1:isub_hi would match the "int"
893 // register class.
894 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
895       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
896   if (!Register::isVirtualRegister(RR.Reg))
897     return nullptr;
898   auto *RC = MRI.getRegClass(RR.Reg);
899   if (RR.Sub == 0)
900     return RC;
901   auto &HRI = static_cast<const HexagonRegisterInfo&>(
902                   *MRI.getTargetRegisterInfo());
903 
904   auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
905     (void)HRI;
906     assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
907            Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
908   };
909 
910   switch (RC->getID()) {
911     case Hexagon::DoubleRegsRegClassID:
912       VerifySR(RC, RR.Sub);
913       return &Hexagon::IntRegsRegClass;
914     case Hexagon::HvxWRRegClassID:
915       VerifySR(RC, RR.Sub);
916       return &Hexagon::HvxVRRegClass;
917   }
918   return nullptr;
919 }
920 
921 // Check if RD could be replaced with RS at any possible use of RD.
922 // For example a predicate register cannot be replaced with a integer
923 // register, but a 64-bit register with a subregister can be replaced
924 // with a 32-bit register.
925 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
926       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
927   if (!Register::isVirtualRegister(RD.Reg) ||
928       !Register::isVirtualRegister(RS.Reg))
929     return false;
930   // Return false if one (or both) classes are nullptr.
931   auto *DRC = getFinalVRegClass(RD, MRI);
932   if (!DRC)
933     return false;
934 
935   return DRC == getFinalVRegClass(RS, MRI);
936 }
937 
938 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
939       unsigned NewSub) {
940   if (!PreserveTiedOps)
941     return false;
942   return llvm::any_of(MRI.use_operands(Reg),
943                       [NewSub] (const MachineOperand &Op) -> bool {
944                         return Op.getSubReg() != NewSub && Op.isTied();
945                       });
946 }
947 
948 namespace {
949 
950   class DeadCodeElimination {
951   public:
952     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
953       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
954         MDT(mdt), MRI(mf.getRegInfo()) {}
955 
956     bool run() {
957       return runOnNode(MDT.getRootNode());
958     }
959 
960   private:
961     bool isDead(unsigned R) const;
962     bool runOnNode(MachineDomTreeNode *N);
963 
964     MachineFunction &MF;
965     const HexagonInstrInfo &HII;
966     MachineDominatorTree &MDT;
967     MachineRegisterInfo &MRI;
968   };
969 
970 } // end anonymous namespace
971 
972 bool DeadCodeElimination::isDead(unsigned R) const {
973   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
974     MachineInstr *UseI = I->getParent();
975     if (UseI->isDebugValue())
976       continue;
977     if (UseI->isPHI()) {
978       assert(!UseI->getOperand(0).getSubReg());
979       Register DR = UseI->getOperand(0).getReg();
980       if (DR == R)
981         continue;
982     }
983     return false;
984   }
985   return true;
986 }
987 
988 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
989   bool Changed = false;
990 
991   for (auto *DTN : children<MachineDomTreeNode*>(N))
992     Changed |= runOnNode(DTN);
993 
994   MachineBasicBlock *B = N->getBlock();
995   std::vector<MachineInstr*> Instrs;
996   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
997     Instrs.push_back(&*I);
998 
999   for (auto MI : Instrs) {
1000     unsigned Opc = MI->getOpcode();
1001     // Do not touch lifetime markers. This is why the target-independent DCE
1002     // cannot be used.
1003     if (Opc == TargetOpcode::LIFETIME_START ||
1004         Opc == TargetOpcode::LIFETIME_END)
1005       continue;
1006     bool Store = false;
1007     if (MI->isInlineAsm())
1008       continue;
1009     // Delete PHIs if possible.
1010     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1011       continue;
1012 
1013     bool AllDead = true;
1014     SmallVector<unsigned,2> Regs;
1015     for (auto &Op : MI->operands()) {
1016       if (!Op.isReg() || !Op.isDef())
1017         continue;
1018       Register R = Op.getReg();
1019       if (!Register::isVirtualRegister(R) || !isDead(R)) {
1020         AllDead = false;
1021         break;
1022       }
1023       Regs.push_back(R);
1024     }
1025     if (!AllDead)
1026       continue;
1027 
1028     B->erase(MI);
1029     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1030       MRI.markUsesInDebugValueAsUndef(Regs[i]);
1031     Changed = true;
1032   }
1033 
1034   return Changed;
1035 }
1036 
1037 namespace {
1038 
1039 // Eliminate redundant instructions
1040 //
1041 // This transformation will identify instructions where the output register
1042 // is the same as one of its input registers. This only works on instructions
1043 // that define a single register (unlike post-increment loads, for example).
1044 // The equality check is actually more detailed: the code calculates which
1045 // bits of the output are used, and only compares these bits with the input
1046 // registers.
1047 // If the output matches an input, the instruction is replaced with COPY.
1048 // The copies will be removed by another transformation.
1049   class RedundantInstrElimination : public Transformation {
1050   public:
1051     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1052           const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1053         : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1054 
1055     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1056 
1057   private:
1058     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1059           unsigned &LostB, unsigned &LostE);
1060     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1061           unsigned &LostB, unsigned &LostE);
1062     bool computeUsedBits(unsigned Reg, BitVector &Bits);
1063     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1064           uint16_t Begin);
1065     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1066 
1067     const HexagonInstrInfo &HII;
1068     const HexagonRegisterInfo &HRI;
1069     MachineRegisterInfo &MRI;
1070     BitTracker &BT;
1071   };
1072 
1073 } // end anonymous namespace
1074 
1075 // Check if the instruction is a lossy shift left, where the input being
1076 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1077 // of bit indices that are lost.
1078 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1079       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1080   using namespace Hexagon;
1081 
1082   unsigned Opc = MI.getOpcode();
1083   unsigned ImN, RegN, Width;
1084   switch (Opc) {
1085     case S2_asl_i_p:
1086       ImN = 2;
1087       RegN = 1;
1088       Width = 64;
1089       break;
1090     case S2_asl_i_p_acc:
1091     case S2_asl_i_p_and:
1092     case S2_asl_i_p_nac:
1093     case S2_asl_i_p_or:
1094     case S2_asl_i_p_xacc:
1095       ImN = 3;
1096       RegN = 2;
1097       Width = 64;
1098       break;
1099     case S2_asl_i_r:
1100       ImN = 2;
1101       RegN = 1;
1102       Width = 32;
1103       break;
1104     case S2_addasl_rrri:
1105     case S4_andi_asl_ri:
1106     case S4_ori_asl_ri:
1107     case S4_addi_asl_ri:
1108     case S4_subi_asl_ri:
1109     case S2_asl_i_r_acc:
1110     case S2_asl_i_r_and:
1111     case S2_asl_i_r_nac:
1112     case S2_asl_i_r_or:
1113     case S2_asl_i_r_sat:
1114     case S2_asl_i_r_xacc:
1115       ImN = 3;
1116       RegN = 2;
1117       Width = 32;
1118       break;
1119     default:
1120       return false;
1121   }
1122 
1123   if (RegN != OpN)
1124     return false;
1125 
1126   assert(MI.getOperand(ImN).isImm());
1127   unsigned S = MI.getOperand(ImN).getImm();
1128   if (S == 0)
1129     return false;
1130   LostB = Width-S;
1131   LostE = Width;
1132   return true;
1133 }
1134 
1135 // Check if the instruction is a lossy shift right, where the input being
1136 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1137 // of bit indices that are lost.
1138 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1139       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1140   using namespace Hexagon;
1141 
1142   unsigned Opc = MI.getOpcode();
1143   unsigned ImN, RegN;
1144   switch (Opc) {
1145     case S2_asr_i_p:
1146     case S2_lsr_i_p:
1147       ImN = 2;
1148       RegN = 1;
1149       break;
1150     case S2_asr_i_p_acc:
1151     case S2_asr_i_p_and:
1152     case S2_asr_i_p_nac:
1153     case S2_asr_i_p_or:
1154     case S2_lsr_i_p_acc:
1155     case S2_lsr_i_p_and:
1156     case S2_lsr_i_p_nac:
1157     case S2_lsr_i_p_or:
1158     case S2_lsr_i_p_xacc:
1159       ImN = 3;
1160       RegN = 2;
1161       break;
1162     case S2_asr_i_r:
1163     case S2_lsr_i_r:
1164       ImN = 2;
1165       RegN = 1;
1166       break;
1167     case S4_andi_lsr_ri:
1168     case S4_ori_lsr_ri:
1169     case S4_addi_lsr_ri:
1170     case S4_subi_lsr_ri:
1171     case S2_asr_i_r_acc:
1172     case S2_asr_i_r_and:
1173     case S2_asr_i_r_nac:
1174     case S2_asr_i_r_or:
1175     case S2_lsr_i_r_acc:
1176     case S2_lsr_i_r_and:
1177     case S2_lsr_i_r_nac:
1178     case S2_lsr_i_r_or:
1179     case S2_lsr_i_r_xacc:
1180       ImN = 3;
1181       RegN = 2;
1182       break;
1183 
1184     default:
1185       return false;
1186   }
1187 
1188   if (RegN != OpN)
1189     return false;
1190 
1191   assert(MI.getOperand(ImN).isImm());
1192   unsigned S = MI.getOperand(ImN).getImm();
1193   LostB = 0;
1194   LostE = S;
1195   return true;
1196 }
1197 
1198 // Calculate the bit vector that corresponds to the used bits of register Reg.
1199 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1200 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1201 // wise, it returns true and sets the corresponding bits in Bits.
1202 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1203   BitVector Used(Bits.size());
1204   RegisterSet Visited;
1205   std::vector<unsigned> Pending;
1206   Pending.push_back(Reg);
1207 
1208   for (unsigned i = 0; i < Pending.size(); ++i) {
1209     unsigned R = Pending[i];
1210     if (Visited.has(R))
1211       continue;
1212     Visited.insert(R);
1213     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1214       BitTracker::RegisterRef UR = *I;
1215       unsigned B, W;
1216       if (!HBS::getSubregMask(UR, B, W, MRI))
1217         return false;
1218       MachineInstr &UseI = *I->getParent();
1219       if (UseI.isPHI() || UseI.isCopy()) {
1220         Register DefR = UseI.getOperand(0).getReg();
1221         if (!Register::isVirtualRegister(DefR))
1222           return false;
1223         Pending.push_back(DefR);
1224       } else {
1225         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1226           return false;
1227       }
1228     }
1229   }
1230   Bits |= Used;
1231   return true;
1232 }
1233 
1234 // Calculate the bits used by instruction MI in a register in operand OpN.
1235 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1236 // used bits in Bits. This function does not reset any bits in Bits, so
1237 // subsequent calls over different instructions will result in the union
1238 // of the used bits in all these instructions.
1239 // The register in question may be used with a sub-register, whereas Bits
1240 // holds the bits for the entire register. To keep track of that, the
1241 // argument Begin indicates where in Bits is the lowest-significant bit
1242 // of the register used in operand OpN. For example, in instruction:
1243 //   %1 = S2_lsr_i_r %2:isub_hi, 10
1244 // the operand 1 is a 32-bit register, which happens to be a subregister
1245 // of the 64-bit register %2, and that subregister starts at position 32.
1246 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1247 // of %2:isub_hi.
1248 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1249       unsigned OpN, BitVector &Bits, uint16_t Begin) {
1250   unsigned Opc = MI.getOpcode();
1251   BitVector T(Bits.size());
1252   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1253   // Even if we don't have bits yet, we could still provide some information
1254   // if the instruction is a lossy shift: the lost bits will be marked as
1255   // not used.
1256   unsigned LB, LE;
1257   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1258     assert(MI.getOperand(OpN).isReg());
1259     BitTracker::RegisterRef RR = MI.getOperand(OpN);
1260     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1261     uint16_t Width = HRI.getRegSizeInBits(*RC);
1262 
1263     if (!GotBits)
1264       T.set(Begin, Begin+Width);
1265     assert(LB <= LE && LB < Width && LE <= Width);
1266     T.reset(Begin+LB, Begin+LE);
1267     GotBits = true;
1268   }
1269   if (GotBits)
1270     Bits |= T;
1271   return GotBits;
1272 }
1273 
1274 // Calculates the used bits in RD ("defined register"), and checks if these
1275 // bits in RS ("used register") and RD are identical.
1276 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1277       BitTracker::RegisterRef RS) {
1278   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1279   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1280 
1281   unsigned DB, DW;
1282   if (!HBS::getSubregMask(RD, DB, DW, MRI))
1283     return false;
1284   unsigned SB, SW;
1285   if (!HBS::getSubregMask(RS, SB, SW, MRI))
1286     return false;
1287   if (SW != DW)
1288     return false;
1289 
1290   BitVector Used(DC.width());
1291   if (!computeUsedBits(RD.Reg, Used))
1292     return false;
1293 
1294   for (unsigned i = 0; i != DW; ++i)
1295     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1296       return false;
1297   return true;
1298 }
1299 
1300 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1301       const RegisterSet&) {
1302   if (!BT.reached(&B))
1303     return false;
1304   bool Changed = false;
1305 
1306   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1307     NextI = std::next(I);
1308     MachineInstr *MI = &*I;
1309 
1310     if (MI->getOpcode() == TargetOpcode::COPY)
1311       continue;
1312     if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1313       continue;
1314     unsigned NumD = MI->getDesc().getNumDefs();
1315     if (NumD != 1)
1316       continue;
1317 
1318     BitTracker::RegisterRef RD = MI->getOperand(0);
1319     if (!BT.has(RD.Reg))
1320       continue;
1321     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1322     auto At = MachineBasicBlock::iterator(MI);
1323 
1324     // Find a source operand that is equal to the result.
1325     for (auto &Op : MI->uses()) {
1326       if (!Op.isReg())
1327         continue;
1328       BitTracker::RegisterRef RS = Op;
1329       if (!BT.has(RS.Reg))
1330         continue;
1331       if (!HBS::isTransparentCopy(RD, RS, MRI))
1332         continue;
1333 
1334       unsigned BN, BW;
1335       if (!HBS::getSubregMask(RS, BN, BW, MRI))
1336         continue;
1337 
1338       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1339       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1340         continue;
1341 
1342       // If found, replace the instruction with a COPY.
1343       const DebugLoc &DL = MI->getDebugLoc();
1344       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1345       Register NewR = MRI.createVirtualRegister(FRC);
1346       MachineInstr *CopyI =
1347           BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1348             .addReg(RS.Reg, 0, RS.Sub);
1349       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1350       // This pass can create copies between registers that don't have the
1351       // exact same values. Updating the tracker has to involve updating
1352       // all dependent cells. Example:
1353       //   %1  = inst %2     ; %1 != %2, but used bits are equal
1354       //
1355       //   %3  = copy %2     ; <- inserted
1356       //   ... = %3          ; <- replaced from %2
1357       // Indirectly, we can create a "copy" between %1 and %2 even
1358       // though their exact values do not match.
1359       BT.visit(*CopyI);
1360       Changed = true;
1361       break;
1362     }
1363   }
1364 
1365   return Changed;
1366 }
1367 
1368 namespace {
1369 
1370 // Recognize instructions that produce constant values known at compile-time.
1371 // Replace them with register definitions that load these constants directly.
1372   class ConstGeneration : public Transformation {
1373   public:
1374     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1375         MachineRegisterInfo &mri)
1376       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1377 
1378     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1379     static bool isTfrConst(const MachineInstr &MI);
1380 
1381   private:
1382     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1383         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1384 
1385     const HexagonInstrInfo &HII;
1386     MachineRegisterInfo &MRI;
1387     BitTracker &BT;
1388   };
1389 
1390 } // end anonymous namespace
1391 
1392 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1393   unsigned Opc = MI.getOpcode();
1394   switch (Opc) {
1395     case Hexagon::A2_combineii:
1396     case Hexagon::A4_combineii:
1397     case Hexagon::A2_tfrsi:
1398     case Hexagon::A2_tfrpi:
1399     case Hexagon::PS_true:
1400     case Hexagon::PS_false:
1401     case Hexagon::CONST32:
1402     case Hexagon::CONST64:
1403       return true;
1404   }
1405   return false;
1406 }
1407 
1408 // Generate a transfer-immediate instruction that is appropriate for the
1409 // register class and the actual value being transferred.
1410 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1411       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1412   Register Reg = MRI.createVirtualRegister(RC);
1413   if (RC == &Hexagon::IntRegsRegClass) {
1414     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1415         .addImm(int32_t(C));
1416     return Reg;
1417   }
1418 
1419   if (RC == &Hexagon::DoubleRegsRegClass) {
1420     if (isInt<8>(C)) {
1421       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1422           .addImm(C);
1423       return Reg;
1424     }
1425 
1426     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1427     if (isInt<8>(Lo) || isInt<8>(Hi)) {
1428       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1429                                   : Hexagon::A4_combineii;
1430       BuildMI(B, At, DL, HII.get(Opc), Reg)
1431           .addImm(int32_t(Hi))
1432           .addImm(int32_t(Lo));
1433       return Reg;
1434     }
1435 
1436     BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1437         .addImm(C);
1438     return Reg;
1439   }
1440 
1441   if (RC == &Hexagon::PredRegsRegClass) {
1442     unsigned Opc;
1443     if (C == 0)
1444       Opc = Hexagon::PS_false;
1445     else if ((C & 0xFF) == 0xFF)
1446       Opc = Hexagon::PS_true;
1447     else
1448       return 0;
1449     BuildMI(B, At, DL, HII.get(Opc), Reg);
1450     return Reg;
1451   }
1452 
1453   return 0;
1454 }
1455 
1456 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1457   if (!BT.reached(&B))
1458     return false;
1459   bool Changed = false;
1460   RegisterSet Defs;
1461 
1462   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1463     if (isTfrConst(*I))
1464       continue;
1465     Defs.clear();
1466     HBS::getInstrDefs(*I, Defs);
1467     if (Defs.count() != 1)
1468       continue;
1469     unsigned DR = Defs.find_first();
1470     if (!Register::isVirtualRegister(DR))
1471       continue;
1472     uint64_t U;
1473     const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1474     if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1475       int64_t C = U;
1476       DebugLoc DL = I->getDebugLoc();
1477       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1478       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1479       if (ImmReg) {
1480         HBS::replaceReg(DR, ImmReg, MRI);
1481         BT.put(ImmReg, DRC);
1482         Changed = true;
1483       }
1484     }
1485   }
1486   return Changed;
1487 }
1488 
1489 namespace {
1490 
1491 // Identify pairs of available registers which hold identical values.
1492 // In such cases, only one of them needs to be calculated, the other one
1493 // will be defined as a copy of the first.
1494   class CopyGeneration : public Transformation {
1495   public:
1496     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1497         const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1498       : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1499 
1500     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1501 
1502   private:
1503     bool findMatch(const BitTracker::RegisterRef &Inp,
1504         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1505 
1506     const HexagonInstrInfo &HII;
1507     const HexagonRegisterInfo &HRI;
1508     MachineRegisterInfo &MRI;
1509     BitTracker &BT;
1510     RegisterSet Forbidden;
1511   };
1512 
1513 // Eliminate register copies RD = RS, by replacing the uses of RD with
1514 // with uses of RS.
1515   class CopyPropagation : public Transformation {
1516   public:
1517     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1518         : Transformation(false), HRI(hri), MRI(mri) {}
1519 
1520     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1521 
1522     static bool isCopyReg(unsigned Opc, bool NoConv);
1523 
1524   private:
1525     bool propagateRegCopy(MachineInstr &MI);
1526 
1527     const HexagonRegisterInfo &HRI;
1528     MachineRegisterInfo &MRI;
1529   };
1530 
1531 } // end anonymous namespace
1532 
1533 /// Check if there is a register in AVs that is identical to Inp. If so,
1534 /// set Out to the found register. The output may be a pair Reg:Sub.
1535 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1536       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1537   if (!BT.has(Inp.Reg))
1538     return false;
1539   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1540   auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1541   unsigned B, W;
1542   if (!HBS::getSubregMask(Inp, B, W, MRI))
1543     return false;
1544 
1545   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1546     if (!BT.has(R) || Forbidden[R])
1547       continue;
1548     const BitTracker::RegisterCell &RC = BT.lookup(R);
1549     unsigned RW = RC.width();
1550     if (W == RW) {
1551       if (FRC != MRI.getRegClass(R))
1552         continue;
1553       if (!HBS::isTransparentCopy(R, Inp, MRI))
1554         continue;
1555       if (!HBS::isEqual(InpRC, B, RC, 0, W))
1556         continue;
1557       Out.Reg = R;
1558       Out.Sub = 0;
1559       return true;
1560     }
1561     // Check if there is a super-register, whose part (with a subregister)
1562     // is equal to the input.
1563     // Only do double registers for now.
1564     if (W*2 != RW)
1565       continue;
1566     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1567       continue;
1568 
1569     if (HBS::isEqual(InpRC, B, RC, 0, W))
1570       Out.Sub = Hexagon::isub_lo;
1571     else if (HBS::isEqual(InpRC, B, RC, W, W))
1572       Out.Sub = Hexagon::isub_hi;
1573     else
1574       continue;
1575     Out.Reg = R;
1576     if (HBS::isTransparentCopy(Out, Inp, MRI))
1577       return true;
1578   }
1579   return false;
1580 }
1581 
1582 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1583       const RegisterSet &AVs) {
1584   if (!BT.reached(&B))
1585     return false;
1586   RegisterSet AVB(AVs);
1587   bool Changed = false;
1588   RegisterSet Defs;
1589 
1590   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1591        ++I, AVB.insert(Defs)) {
1592     NextI = std::next(I);
1593     Defs.clear();
1594     HBS::getInstrDefs(*I, Defs);
1595 
1596     unsigned Opc = I->getOpcode();
1597     if (CopyPropagation::isCopyReg(Opc, false) ||
1598         ConstGeneration::isTfrConst(*I))
1599       continue;
1600 
1601     DebugLoc DL = I->getDebugLoc();
1602     auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1603 
1604     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1605       BitTracker::RegisterRef MR;
1606       auto *FRC = HBS::getFinalVRegClass(R, MRI);
1607 
1608       if (findMatch(R, MR, AVB)) {
1609         Register NewR = MRI.createVirtualRegister(FRC);
1610         BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1611           .addReg(MR.Reg, 0, MR.Sub);
1612         BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1613         HBS::replaceReg(R, NewR, MRI);
1614         Forbidden.insert(R);
1615         continue;
1616       }
1617 
1618       if (FRC == &Hexagon::DoubleRegsRegClass ||
1619           FRC == &Hexagon::HvxWRRegClass) {
1620         // Try to generate REG_SEQUENCE.
1621         unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1622         unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1623         BitTracker::RegisterRef TL = { R, SubLo };
1624         BitTracker::RegisterRef TH = { R, SubHi };
1625         BitTracker::RegisterRef ML, MH;
1626         if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1627           auto *FRC = HBS::getFinalVRegClass(R, MRI);
1628           Register NewR = MRI.createVirtualRegister(FRC);
1629           BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1630             .addReg(ML.Reg, 0, ML.Sub)
1631             .addImm(SubLo)
1632             .addReg(MH.Reg, 0, MH.Sub)
1633             .addImm(SubHi);
1634           BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1635           HBS::replaceReg(R, NewR, MRI);
1636           Forbidden.insert(R);
1637         }
1638       }
1639     }
1640   }
1641 
1642   return Changed;
1643 }
1644 
1645 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1646   switch (Opc) {
1647     case TargetOpcode::COPY:
1648     case TargetOpcode::REG_SEQUENCE:
1649     case Hexagon::A4_combineir:
1650     case Hexagon::A4_combineri:
1651       return true;
1652     case Hexagon::A2_tfr:
1653     case Hexagon::A2_tfrp:
1654     case Hexagon::A2_combinew:
1655     case Hexagon::V6_vcombine:
1656       return NoConv;
1657     default:
1658       break;
1659   }
1660   return false;
1661 }
1662 
1663 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1664   bool Changed = false;
1665   unsigned Opc = MI.getOpcode();
1666   BitTracker::RegisterRef RD = MI.getOperand(0);
1667   assert(MI.getOperand(0).getSubReg() == 0);
1668 
1669   switch (Opc) {
1670     case TargetOpcode::COPY:
1671     case Hexagon::A2_tfr:
1672     case Hexagon::A2_tfrp: {
1673       BitTracker::RegisterRef RS = MI.getOperand(1);
1674       if (!HBS::isTransparentCopy(RD, RS, MRI))
1675         break;
1676       if (RS.Sub != 0)
1677         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1678       else
1679         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1680       break;
1681     }
1682     case TargetOpcode::REG_SEQUENCE: {
1683       BitTracker::RegisterRef SL, SH;
1684       if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1685         const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1686         unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1687         unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1688         Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1689         Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1690       }
1691       break;
1692     }
1693     case Hexagon::A2_combinew:
1694     case Hexagon::V6_vcombine: {
1695       const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1696       unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1697       unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1698       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1699       Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1700       Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1701       break;
1702     }
1703     case Hexagon::A4_combineir:
1704     case Hexagon::A4_combineri: {
1705       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1706       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1707                                                     : Hexagon::isub_hi;
1708       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1709       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1710       break;
1711     }
1712   }
1713   return Changed;
1714 }
1715 
1716 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1717   std::vector<MachineInstr*> Instrs;
1718   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1719     Instrs.push_back(&*I);
1720 
1721   bool Changed = false;
1722   for (auto I : Instrs) {
1723     unsigned Opc = I->getOpcode();
1724     if (!CopyPropagation::isCopyReg(Opc, true))
1725       continue;
1726     Changed |= propagateRegCopy(*I);
1727   }
1728 
1729   return Changed;
1730 }
1731 
1732 namespace {
1733 
1734 // Recognize patterns that can be simplified and replace them with the
1735 // simpler forms.
1736 // This is by no means complete
1737   class BitSimplification : public Transformation {
1738   public:
1739     BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1740         const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1741         MachineRegisterInfo &mri, MachineFunction &mf)
1742       : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1743         MF(mf), BT(bt) {}
1744 
1745     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1746 
1747   private:
1748     struct RegHalf : public BitTracker::RegisterRef {
1749       bool Low;  // Low/High halfword.
1750     };
1751 
1752     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1753           unsigned B, RegHalf &RH);
1754     bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1755 
1756     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1757           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1758     unsigned getCombineOpcode(bool HLow, bool LLow);
1759 
1760     bool genStoreUpperHalf(MachineInstr *MI);
1761     bool genStoreImmediate(MachineInstr *MI);
1762     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1763           const BitTracker::RegisterCell &RC);
1764     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1765           const BitTracker::RegisterCell &RC);
1766     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1767           const BitTracker::RegisterCell &RC);
1768     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1769           const BitTracker::RegisterCell &RC);
1770     bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1771           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1772     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1773           const BitTracker::RegisterCell &RC);
1774     bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1775           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1776     bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1777 
1778     // Cache of created instructions to avoid creating duplicates.
1779     // XXX Currently only used by genBitSplit.
1780     std::vector<MachineInstr*> NewMIs;
1781 
1782     const MachineDominatorTree &MDT;
1783     const HexagonInstrInfo &HII;
1784     const HexagonRegisterInfo &HRI;
1785     MachineRegisterInfo &MRI;
1786     MachineFunction &MF;
1787     BitTracker &BT;
1788   };
1789 
1790 } // end anonymous namespace
1791 
1792 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1793 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1794 // set the information about the found register in RH.
1795 bool BitSimplification::matchHalf(unsigned SelfR,
1796       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1797   // XXX This could be searching in the set of available registers, in case
1798   // the match is not exact.
1799 
1800   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1801   // register and all the bits B..B+15 match between RC and the register.
1802   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1803   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1804   bool Low = false;
1805   unsigned I = B;
1806   while (I < B+16 && RC[I].num())
1807     I++;
1808   if (I == B+16)
1809     return false;
1810 
1811   unsigned Reg = RC[I].RefI.Reg;
1812   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1813   if (P < I-B)
1814     return false;
1815   unsigned Pos = P - (I-B);
1816 
1817   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1818     return false;
1819   if (!Register::isVirtualRegister(Reg))
1820     return false;
1821   if (!BT.has(Reg))
1822     return false;
1823 
1824   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1825   if (Pos+16 > SC.width())
1826     return false;
1827 
1828   for (unsigned i = 0; i < 16; ++i) {
1829     const BitTracker::BitValue &RV = RC[i+B];
1830     if (RV.Type == BitTracker::BitValue::Ref) {
1831       if (RV.RefI.Reg != Reg)
1832         return false;
1833       if (RV.RefI.Pos != i+Pos)
1834         return false;
1835       continue;
1836     }
1837     if (RC[i+B] != SC[i+Pos])
1838       return false;
1839   }
1840 
1841   unsigned Sub = 0;
1842   switch (Pos) {
1843     case 0:
1844       Sub = Hexagon::isub_lo;
1845       Low = true;
1846       break;
1847     case 16:
1848       Sub = Hexagon::isub_lo;
1849       Low = false;
1850       break;
1851     case 32:
1852       Sub = Hexagon::isub_hi;
1853       Low = true;
1854       break;
1855     case 48:
1856       Sub = Hexagon::isub_hi;
1857       Low = false;
1858       break;
1859     default:
1860       return false;
1861   }
1862 
1863   RH.Reg = Reg;
1864   RH.Sub = Sub;
1865   RH.Low = Low;
1866   // If the subregister is not valid with the register, set it to 0.
1867   if (!HBS::getFinalVRegClass(RH, MRI))
1868     RH.Sub = 0;
1869 
1870   return true;
1871 }
1872 
1873 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1874       unsigned OpNum) {
1875   auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1876   auto *RRC = HBS::getFinalVRegClass(R, MRI);
1877   return OpRC->hasSubClassEq(RRC);
1878 }
1879 
1880 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1881 // set the inputs Rs and Rt.
1882 bool BitSimplification::matchPackhl(unsigned SelfR,
1883       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1884       BitTracker::RegisterRef &Rt) {
1885   RegHalf L1, H1, L2, H2;
1886 
1887   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1888     return false;
1889   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1890     return false;
1891 
1892   // Rs = H1.L1, Rt = H2.L2
1893   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1894     return false;
1895   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1896     return false;
1897 
1898   Rs = H1;
1899   Rt = H2;
1900   return true;
1901 }
1902 
1903 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1904   return HLow ? LLow ? Hexagon::A2_combine_ll
1905                      : Hexagon::A2_combine_lh
1906               : LLow ? Hexagon::A2_combine_hl
1907                      : Hexagon::A2_combine_hh;
1908 }
1909 
1910 // If MI stores the upper halfword of a register (potentially obtained via
1911 // shifts or extracts), replace it with a storerf instruction. This could
1912 // cause the "extraction" code to become dead.
1913 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1914   unsigned Opc = MI->getOpcode();
1915   if (Opc != Hexagon::S2_storerh_io)
1916     return false;
1917 
1918   MachineOperand &ValOp = MI->getOperand(2);
1919   BitTracker::RegisterRef RS = ValOp;
1920   if (!BT.has(RS.Reg))
1921     return false;
1922   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1923   RegHalf H;
1924   if (!matchHalf(0, RC, 0, H))
1925     return false;
1926   if (H.Low)
1927     return false;
1928   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1929   ValOp.setReg(H.Reg);
1930   ValOp.setSubReg(H.Sub);
1931   return true;
1932 }
1933 
1934 // If MI stores a value known at compile-time, and the value is within a range
1935 // that avoids using constant-extenders, replace it with a store-immediate.
1936 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1937   unsigned Opc = MI->getOpcode();
1938   unsigned Align = 0;
1939   switch (Opc) {
1940     case Hexagon::S2_storeri_io:
1941       Align++;
1942       LLVM_FALLTHROUGH;
1943     case Hexagon::S2_storerh_io:
1944       Align++;
1945       LLVM_FALLTHROUGH;
1946     case Hexagon::S2_storerb_io:
1947       break;
1948     default:
1949       return false;
1950   }
1951 
1952   // Avoid stores to frame-indices (due to an unknown offset).
1953   if (!MI->getOperand(0).isReg())
1954     return false;
1955   MachineOperand &OffOp = MI->getOperand(1);
1956   if (!OffOp.isImm())
1957     return false;
1958 
1959   int64_t Off = OffOp.getImm();
1960   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1961   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1962     return false;
1963   // Source register:
1964   BitTracker::RegisterRef RS = MI->getOperand(2);
1965   if (!BT.has(RS.Reg))
1966     return false;
1967   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1968   uint64_t U;
1969   if (!HBS::getConst(RC, 0, RC.width(), U))
1970     return false;
1971 
1972   // Only consider 8-bit values to avoid constant-extenders.
1973   int V;
1974   switch (Opc) {
1975     case Hexagon::S2_storerb_io:
1976       V = int8_t(U);
1977       break;
1978     case Hexagon::S2_storerh_io:
1979       V = int16_t(U);
1980       break;
1981     case Hexagon::S2_storeri_io:
1982       V = int32_t(U);
1983       break;
1984     default:
1985       // Opc is already checked above to be one of the three store instructions.
1986       // This silences a -Wuninitialized false positive on GCC 5.4.
1987       llvm_unreachable("Unexpected store opcode");
1988   }
1989   if (!isInt<8>(V))
1990     return false;
1991 
1992   MI->RemoveOperand(2);
1993   switch (Opc) {
1994     case Hexagon::S2_storerb_io:
1995       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1996       break;
1997     case Hexagon::S2_storerh_io:
1998       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1999       break;
2000     case Hexagon::S2_storeri_io:
2001       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2002       break;
2003   }
2004   MI->addOperand(MachineOperand::CreateImm(V));
2005   return true;
2006 }
2007 
2008 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2009 // last instruction in a sequence that results in something equivalent to
2010 // the pack-halfwords. The intent is to cause the entire sequence to become
2011 // dead.
2012 bool BitSimplification::genPackhl(MachineInstr *MI,
2013       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2014   unsigned Opc = MI->getOpcode();
2015   if (Opc == Hexagon::S2_packhl)
2016     return false;
2017   BitTracker::RegisterRef Rs, Rt;
2018   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2019     return false;
2020   if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2021       !validateReg(Rt, Hexagon::S2_packhl, 2))
2022     return false;
2023 
2024   MachineBasicBlock &B = *MI->getParent();
2025   Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2026   DebugLoc DL = MI->getDebugLoc();
2027   auto At = MI->isPHI() ? B.getFirstNonPHI()
2028                         : MachineBasicBlock::iterator(MI);
2029   BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2030       .addReg(Rs.Reg, 0, Rs.Sub)
2031       .addReg(Rt.Reg, 0, Rt.Sub);
2032   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2033   BT.put(BitTracker::RegisterRef(NewR), RC);
2034   return true;
2035 }
2036 
2037 // If MI produces halfword of the input in the low half of the output,
2038 // replace it with zero-extend or extractu.
2039 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2040       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2041   RegHalf L;
2042   // Check for halfword in low 16 bits, zeros elsewhere.
2043   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2044     return false;
2045 
2046   unsigned Opc = MI->getOpcode();
2047   MachineBasicBlock &B = *MI->getParent();
2048   DebugLoc DL = MI->getDebugLoc();
2049 
2050   // Prefer zxth, since zxth can go in any slot, while extractu only in
2051   // slots 2 and 3.
2052   unsigned NewR = 0;
2053   auto At = MI->isPHI() ? B.getFirstNonPHI()
2054                         : MachineBasicBlock::iterator(MI);
2055   if (L.Low && Opc != Hexagon::A2_zxth) {
2056     if (validateReg(L, Hexagon::A2_zxth, 1)) {
2057       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2058       BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2059           .addReg(L.Reg, 0, L.Sub);
2060     }
2061   } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2062     if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2063       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2064       BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2065           .addReg(L.Reg, 0, L.Sub)
2066           .addImm(16);
2067     }
2068   }
2069   if (NewR == 0)
2070     return false;
2071   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2072   BT.put(BitTracker::RegisterRef(NewR), RC);
2073   return true;
2074 }
2075 
2076 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2077 // combine.
2078 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2079       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2080   RegHalf L, H;
2081   // Check for combine h/l
2082   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2083     return false;
2084   // Do nothing if this is just a reg copy.
2085   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2086     return false;
2087 
2088   unsigned Opc = MI->getOpcode();
2089   unsigned COpc = getCombineOpcode(H.Low, L.Low);
2090   if (COpc == Opc)
2091     return false;
2092   if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2093     return false;
2094 
2095   MachineBasicBlock &B = *MI->getParent();
2096   DebugLoc DL = MI->getDebugLoc();
2097   Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2098   auto At = MI->isPHI() ? B.getFirstNonPHI()
2099                         : MachineBasicBlock::iterator(MI);
2100   BuildMI(B, At, DL, HII.get(COpc), NewR)
2101       .addReg(H.Reg, 0, H.Sub)
2102       .addReg(L.Reg, 0, L.Sub);
2103   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2104   BT.put(BitTracker::RegisterRef(NewR), RC);
2105   return true;
2106 }
2107 
2108 // If MI resets high bits of a register and keeps the lower ones, replace it
2109 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2110 bool BitSimplification::genExtractLow(MachineInstr *MI,
2111       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2112   unsigned Opc = MI->getOpcode();
2113   switch (Opc) {
2114     case Hexagon::A2_zxtb:
2115     case Hexagon::A2_zxth:
2116     case Hexagon::S2_extractu:
2117       return false;
2118   }
2119   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2120     int32_t Imm = MI->getOperand(2).getImm();
2121     if (isInt<10>(Imm))
2122       return false;
2123   }
2124 
2125   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2126     return false;
2127   unsigned W = RC.width();
2128   while (W > 0 && RC[W-1].is(0))
2129     W--;
2130   if (W == 0 || W == RC.width())
2131     return false;
2132   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2133                   : (W == 16) ? Hexagon::A2_zxth
2134                   : (W < 10)  ? Hexagon::A2_andir
2135                   : Hexagon::S2_extractu;
2136   MachineBasicBlock &B = *MI->getParent();
2137   DebugLoc DL = MI->getDebugLoc();
2138 
2139   for (auto &Op : MI->uses()) {
2140     if (!Op.isReg())
2141       continue;
2142     BitTracker::RegisterRef RS = Op;
2143     if (!BT.has(RS.Reg))
2144       continue;
2145     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2146     unsigned BN, BW;
2147     if (!HBS::getSubregMask(RS, BN, BW, MRI))
2148       continue;
2149     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2150       continue;
2151     if (!validateReg(RS, NewOpc, 1))
2152       continue;
2153 
2154     Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2155     auto At = MI->isPHI() ? B.getFirstNonPHI()
2156                           : MachineBasicBlock::iterator(MI);
2157     auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2158                   .addReg(RS.Reg, 0, RS.Sub);
2159     if (NewOpc == Hexagon::A2_andir)
2160       MIB.addImm((1 << W) - 1);
2161     else if (NewOpc == Hexagon::S2_extractu)
2162       MIB.addImm(W).addImm(0);
2163     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2164     BT.put(BitTracker::RegisterRef(NewR), RC);
2165     return true;
2166   }
2167   return false;
2168 }
2169 
2170 bool BitSimplification::genBitSplit(MachineInstr *MI,
2171       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2172       const RegisterSet &AVs) {
2173   if (!GenBitSplit)
2174     return false;
2175   if (MaxBitSplit.getNumOccurrences()) {
2176     if (CountBitSplit >= MaxBitSplit)
2177       return false;
2178   }
2179 
2180   unsigned Opc = MI->getOpcode();
2181   switch (Opc) {
2182     case Hexagon::A4_bitsplit:
2183     case Hexagon::A4_bitspliti:
2184       return false;
2185   }
2186 
2187   unsigned W = RC.width();
2188   if (W != 32)
2189     return false;
2190 
2191   auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2192     unsigned Z = C.width();
2193     while (Z > 0 && C[Z-1].is(0))
2194       --Z;
2195     return C.width() - Z;
2196   };
2197 
2198   // Count the number of leading zeros in the target RC.
2199   unsigned Z = ctlz(RC);
2200   if (Z == 0 || Z == W)
2201     return false;
2202 
2203   // A simplistic analysis: assume the source register (the one being split)
2204   // is fully unknown, and that all its bits are self-references.
2205   const BitTracker::BitValue &B0 = RC[0];
2206   if (B0.Type != BitTracker::BitValue::Ref)
2207     return false;
2208 
2209   unsigned SrcR = B0.RefI.Reg;
2210   unsigned SrcSR = 0;
2211   unsigned Pos = B0.RefI.Pos;
2212 
2213   // All the non-zero bits should be consecutive bits from the same register.
2214   for (unsigned i = 1; i < W-Z; ++i) {
2215     const BitTracker::BitValue &V = RC[i];
2216     if (V.Type != BitTracker::BitValue::Ref)
2217       return false;
2218     if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2219       return false;
2220   }
2221 
2222   // Now, find the other bitfield among AVs.
2223   for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2224     // The number of leading zeros here should be the number of trailing
2225     // non-zeros in RC.
2226     unsigned SRC = MRI.getRegClass(S)->getID();
2227     if (SRC != Hexagon::IntRegsRegClassID &&
2228         SRC != Hexagon::DoubleRegsRegClassID)
2229       continue;
2230     if (!BT.has(S))
2231       continue;
2232     const BitTracker::RegisterCell &SC = BT.lookup(S);
2233     if (SC.width() != W || ctlz(SC) != W-Z)
2234       continue;
2235     // The Z lower bits should now match SrcR.
2236     const BitTracker::BitValue &S0 = SC[0];
2237     if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2238       continue;
2239     unsigned P = S0.RefI.Pos;
2240 
2241     if (Pos <= P && (Pos + W-Z) != P)
2242       continue;
2243     if (P < Pos && (P + Z) != Pos)
2244       continue;
2245     // The starting bitfield position must be at a subregister boundary.
2246     if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2247       continue;
2248 
2249     unsigned I;
2250     for (I = 1; I < Z; ++I) {
2251       const BitTracker::BitValue &V = SC[I];
2252       if (V.Type != BitTracker::BitValue::Ref)
2253         break;
2254       if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2255         break;
2256     }
2257     if (I != Z)
2258       continue;
2259 
2260     // Generate bitsplit where S is defined.
2261     if (MaxBitSplit.getNumOccurrences())
2262       CountBitSplit++;
2263     MachineInstr *DefS = MRI.getVRegDef(S);
2264     assert(DefS != nullptr);
2265     DebugLoc DL = DefS->getDebugLoc();
2266     MachineBasicBlock &B = *DefS->getParent();
2267     auto At = DefS->isPHI() ? B.getFirstNonPHI()
2268                             : MachineBasicBlock::iterator(DefS);
2269     if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2270       SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2271     if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2272       continue;
2273     unsigned ImmOp = Pos <= P ? W-Z : Z;
2274 
2275     // Find an existing bitsplit instruction if one already exists.
2276     unsigned NewR = 0;
2277     for (MachineInstr *In : NewMIs) {
2278       if (In->getOpcode() != Hexagon::A4_bitspliti)
2279         continue;
2280       MachineOperand &Op1 = In->getOperand(1);
2281       if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2282         continue;
2283       if (In->getOperand(2).getImm() != ImmOp)
2284         continue;
2285       // Check if the target register is available here.
2286       MachineOperand &Op0 = In->getOperand(0);
2287       MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2288       assert(DefI != nullptr);
2289       if (!MDT.dominates(DefI, &*At))
2290         continue;
2291 
2292       // Found one that can be reused.
2293       assert(Op0.getSubReg() == 0);
2294       NewR = Op0.getReg();
2295       break;
2296     }
2297     if (!NewR) {
2298       NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2299       auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2300                       .addReg(SrcR, 0, SrcSR)
2301                       .addImm(ImmOp);
2302       NewMIs.push_back(NewBS);
2303     }
2304     if (Pos <= P) {
2305       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2306       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2307     } else {
2308       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2309       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2310     }
2311     return true;
2312   }
2313 
2314   return false;
2315 }
2316 
2317 // Check for tstbit simplification opportunity, where the bit being checked
2318 // can be tracked back to another register. For example:
2319 //   %2 = S2_lsr_i_r  %1, 5
2320 //   %3 = S2_tstbit_i %2, 0
2321 // =>
2322 //   %3 = S2_tstbit_i %1, 5
2323 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2324       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2325   unsigned Opc = MI->getOpcode();
2326   if (Opc != Hexagon::S2_tstbit_i)
2327     return false;
2328 
2329   unsigned BN = MI->getOperand(2).getImm();
2330   BitTracker::RegisterRef RS = MI->getOperand(1);
2331   unsigned F, W;
2332   DebugLoc DL = MI->getDebugLoc();
2333   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2334     return false;
2335   MachineBasicBlock &B = *MI->getParent();
2336   auto At = MI->isPHI() ? B.getFirstNonPHI()
2337                         : MachineBasicBlock::iterator(MI);
2338 
2339   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2340   const BitTracker::BitValue &V = SC[F+BN];
2341   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2342     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2343     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2344     // a double register, need to use a subregister and adjust bit
2345     // number.
2346     unsigned P = std::numeric_limits<unsigned>::max();
2347     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2348     if (TC == &Hexagon::DoubleRegsRegClass) {
2349       P = V.RefI.Pos;
2350       RR.Sub = Hexagon::isub_lo;
2351       if (P >= 32) {
2352         P -= 32;
2353         RR.Sub = Hexagon::isub_hi;
2354       }
2355     } else if (TC == &Hexagon::IntRegsRegClass) {
2356       P = V.RefI.Pos;
2357     }
2358     if (P != std::numeric_limits<unsigned>::max()) {
2359       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2360       BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2361           .addReg(RR.Reg, 0, RR.Sub)
2362           .addImm(P);
2363       HBS::replaceReg(RD.Reg, NewR, MRI);
2364       BT.put(NewR, RC);
2365       return true;
2366     }
2367   } else if (V.is(0) || V.is(1)) {
2368     Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2369     unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2370     BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2371     HBS::replaceReg(RD.Reg, NewR, MRI);
2372     return true;
2373   }
2374 
2375   return false;
2376 }
2377 
2378 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2379 // some register from the AVs set. Create a new corresponding instruction
2380 // at the location of MI. The intent is to recognize situations where
2381 // a sequence of instructions performs an operation that is equivalent to
2382 // an extract operation, such as a shift left followed by a shift right.
2383 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2384       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2385       const RegisterSet &AVs) {
2386   if (!GenExtract)
2387     return false;
2388   if (MaxExtract.getNumOccurrences()) {
2389     if (CountExtract >= MaxExtract)
2390       return false;
2391     CountExtract++;
2392   }
2393 
2394   unsigned W = RC.width();
2395   unsigned RW = W;
2396   unsigned Len;
2397   bool Signed;
2398 
2399   // The code is mostly class-independent, except for the part that generates
2400   // the extract instruction, and establishes the source register (in case it
2401   // needs to use a subregister).
2402   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2403   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2404     return false;
2405   assert(RD.Sub == 0);
2406 
2407   // Observation:
2408   // If the cell has a form of 00..0xx..x with k zeros and n remaining
2409   // bits, this could be an extractu of the n bits, but it could also be
2410   // an extractu of a longer field which happens to have 0s in the top
2411   // bit positions.
2412   // The same logic applies to sign-extended fields.
2413   //
2414   // Do not check for the extended extracts, since it would expand the
2415   // search space quite a bit. The search may be expensive as it is.
2416 
2417   const BitTracker::BitValue &TopV = RC[W-1];
2418 
2419   // Eliminate candidates that have self-referential bits, since they
2420   // cannot be extracts from other registers. Also, skip registers that
2421   // have compile-time constant values.
2422   bool IsConst = true;
2423   for (unsigned I = 0; I != W; ++I) {
2424     const BitTracker::BitValue &V = RC[I];
2425     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2426       return false;
2427     IsConst = IsConst && (V.is(0) || V.is(1));
2428   }
2429   if (IsConst)
2430     return false;
2431 
2432   if (TopV.is(0) || TopV.is(1)) {
2433     bool S = TopV.is(1);
2434     for (--W; W > 0 && RC[W-1].is(S); --W)
2435       ;
2436     Len = W;
2437     Signed = S;
2438     // The sign bit must be a part of the field being extended.
2439     if (Signed)
2440       ++Len;
2441   } else {
2442     // This could still be a sign-extended extract.
2443     assert(TopV.Type == BitTracker::BitValue::Ref);
2444     if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2445       return false;
2446     for (--W; W > 0 && RC[W-1] == TopV; --W)
2447       ;
2448     // The top bits of RC are copies of TopV. One occurrence of TopV will
2449     // be a part of the field.
2450     Len = W + 1;
2451     Signed = true;
2452   }
2453 
2454   // This would be just a copy. It should be handled elsewhere.
2455   if (Len == RW)
2456     return false;
2457 
2458   LLVM_DEBUG({
2459     dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2460            << ", MI: " << *MI;
2461     dbgs() << "Cell: " << RC << '\n';
2462     dbgs() << "Expected bitfield size: " << Len << " bits, "
2463            << (Signed ? "sign" : "zero") << "-extended\n";
2464   });
2465 
2466   bool Changed = false;
2467 
2468   for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2469     if (!BT.has(R))
2470       continue;
2471     const BitTracker::RegisterCell &SC = BT.lookup(R);
2472     unsigned SW = SC.width();
2473 
2474     // The source can be longer than the destination, as long as its size is
2475     // a multiple of the size of the destination. Also, we would need to be
2476     // able to refer to the subregister in the source that would be of the
2477     // same size as the destination, but only check the sizes here.
2478     if (SW < RW || (SW % RW) != 0)
2479       continue;
2480 
2481     // The field can start at any offset in SC as long as it contains Len
2482     // bits and does not cross subregister boundary (if the source register
2483     // is longer than the destination).
2484     unsigned Off = 0;
2485     while (Off <= SW-Len) {
2486       unsigned OE = (Off+Len)/RW;
2487       if (OE != Off/RW) {
2488         // The assumption here is that if the source (R) is longer than the
2489         // destination, then the destination is a sequence of words of
2490         // size RW, and each such word in R can be accessed via a subregister.
2491         //
2492         // If the beginning and the end of the field cross the subregister
2493         // boundary, advance to the next subregister.
2494         Off = OE*RW;
2495         continue;
2496       }
2497       if (HBS::isEqual(RC, 0, SC, Off, Len))
2498         break;
2499       ++Off;
2500     }
2501 
2502     if (Off > SW-Len)
2503       continue;
2504 
2505     // Found match.
2506     unsigned ExtOpc = 0;
2507     if (Off == 0) {
2508       if (Len == 8)
2509         ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2510       else if (Len == 16)
2511         ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2512       else if (Len < 10 && !Signed)
2513         ExtOpc = Hexagon::A2_andir;
2514     }
2515     if (ExtOpc == 0) {
2516       ExtOpc =
2517           Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2518                  : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2519     }
2520     unsigned SR = 0;
2521     // This only recognizes isub_lo and isub_hi.
2522     if (RW != SW && RW*2 != SW)
2523       continue;
2524     if (RW != SW)
2525       SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2526     Off = Off % RW;
2527 
2528     if (!validateReg({R,SR}, ExtOpc, 1))
2529       continue;
2530 
2531     // Don't generate the same instruction as the one being optimized.
2532     if (MI->getOpcode() == ExtOpc) {
2533       // All possible ExtOpc's have the source in operand(1).
2534       const MachineOperand &SrcOp = MI->getOperand(1);
2535       if (SrcOp.getReg() == R)
2536         continue;
2537     }
2538 
2539     DebugLoc DL = MI->getDebugLoc();
2540     MachineBasicBlock &B = *MI->getParent();
2541     Register NewR = MRI.createVirtualRegister(FRC);
2542     auto At = MI->isPHI() ? B.getFirstNonPHI()
2543                           : MachineBasicBlock::iterator(MI);
2544     auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2545                   .addReg(R, 0, SR);
2546     switch (ExtOpc) {
2547       case Hexagon::A2_sxtb:
2548       case Hexagon::A2_zxtb:
2549       case Hexagon::A2_sxth:
2550       case Hexagon::A2_zxth:
2551         break;
2552       case Hexagon::A2_andir:
2553         MIB.addImm((1u << Len) - 1);
2554         break;
2555       case Hexagon::S4_extract:
2556       case Hexagon::S2_extractu:
2557       case Hexagon::S4_extractp:
2558       case Hexagon::S2_extractup:
2559         MIB.addImm(Len)
2560            .addImm(Off);
2561         break;
2562       default:
2563         llvm_unreachable("Unexpected opcode");
2564     }
2565 
2566     HBS::replaceReg(RD.Reg, NewR, MRI);
2567     BT.put(BitTracker::RegisterRef(NewR), RC);
2568     Changed = true;
2569     break;
2570   }
2571 
2572   return Changed;
2573 }
2574 
2575 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2576       BitTracker::RegisterRef RD) {
2577   unsigned Opc = MI->getOpcode();
2578   if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2579     return false;
2580   MachineOperand &CmpOp = MI->getOperand(2);
2581   if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2582     return false;
2583 
2584   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2585   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2586     return false;
2587   assert(RD.Sub == 0);
2588 
2589   MachineBasicBlock &B = *MI->getParent();
2590   const DebugLoc &DL = MI->getDebugLoc();
2591   auto At = MI->isPHI() ? B.getFirstNonPHI()
2592                         : MachineBasicBlock::iterator(MI);
2593   bool KnownZ = true;
2594   bool KnownNZ = false;
2595 
2596   BitTracker::RegisterRef SR = MI->getOperand(1);
2597   if (!BT.has(SR.Reg))
2598     return false;
2599   const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2600   unsigned F, W;
2601   if (!HBS::getSubregMask(SR, F, W, MRI))
2602     return false;
2603 
2604   for (uint16_t I = F; I != F+W; ++I) {
2605     const BitTracker::BitValue &V = SC[I];
2606     if (!V.is(0))
2607       KnownZ = false;
2608     if (V.is(1))
2609       KnownNZ = true;
2610   }
2611 
2612   auto ReplaceWithConst = [&](int C) {
2613     Register NewR = MRI.createVirtualRegister(FRC);
2614     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2615       .addImm(C);
2616     HBS::replaceReg(RD.Reg, NewR, MRI);
2617     BitTracker::RegisterCell NewRC(W);
2618     for (uint16_t I = 0; I != W; ++I) {
2619       NewRC[I] = BitTracker::BitValue(C & 1);
2620       C = unsigned(C) >> 1;
2621     }
2622     BT.put(BitTracker::RegisterRef(NewR), NewRC);
2623     return true;
2624   };
2625 
2626   auto IsNonZero = [] (const MachineOperand &Op) {
2627     if (Op.isGlobal() || Op.isBlockAddress())
2628       return true;
2629     if (Op.isImm())
2630       return Op.getImm() != 0;
2631     if (Op.isCImm())
2632       return !Op.getCImm()->isZero();
2633     if (Op.isFPImm())
2634       return !Op.getFPImm()->isZero();
2635     return false;
2636   };
2637 
2638   auto IsZero = [] (const MachineOperand &Op) {
2639     if (Op.isGlobal() || Op.isBlockAddress())
2640       return false;
2641     if (Op.isImm())
2642       return Op.getImm() == 0;
2643     if (Op.isCImm())
2644       return Op.getCImm()->isZero();
2645     if (Op.isFPImm())
2646       return Op.getFPImm()->isZero();
2647     return false;
2648   };
2649 
2650   // If the source register is known to be 0 or non-0, the comparison can
2651   // be folded to a load of a constant.
2652   if (KnownZ || KnownNZ) {
2653     assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2654     return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2655   }
2656 
2657   // Special case: if the compare comes from a C2_muxii, then we know the
2658   // two possible constants that can be the source value.
2659   MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2660   if (!InpDef)
2661     return false;
2662   if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2663     MachineOperand &Src1 = InpDef->getOperand(2);
2664     MachineOperand &Src2 = InpDef->getOperand(3);
2665     // Check if both are non-zero.
2666     bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2667     if (KnownNZ1 && KnownNZ2)
2668       return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2669     // Check if both are zero.
2670     bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2671     if (KnownZ1 && KnownZ2)
2672       return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2673 
2674     // If for both operands we know that they are either 0 or non-0,
2675     // replace the comparison with a C2_muxii, using the same predicate
2676     // register, but with operands substituted with 0/1 accordingly.
2677     if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2678       Register NewR = MRI.createVirtualRegister(FRC);
2679       BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2680         .addReg(InpDef->getOperand(1).getReg())
2681         .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2682         .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2683       HBS::replaceReg(RD.Reg, NewR, MRI);
2684       // Create a new cell with only the least significant bit unknown.
2685       BitTracker::RegisterCell NewRC(W);
2686       NewRC[0] = BitTracker::BitValue::self();
2687       NewRC.fill(1, W, BitTracker::BitValue::Zero);
2688       BT.put(BitTracker::RegisterRef(NewR), NewRC);
2689       return true;
2690     }
2691   }
2692 
2693   return false;
2694 }
2695 
2696 bool BitSimplification::processBlock(MachineBasicBlock &B,
2697       const RegisterSet &AVs) {
2698   if (!BT.reached(&B))
2699     return false;
2700   bool Changed = false;
2701   RegisterSet AVB = AVs;
2702   RegisterSet Defs;
2703 
2704   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2705     MachineInstr *MI = &*I;
2706     Defs.clear();
2707     HBS::getInstrDefs(*MI, Defs);
2708 
2709     unsigned Opc = MI->getOpcode();
2710     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2711       continue;
2712 
2713     if (MI->mayStore()) {
2714       bool T = genStoreUpperHalf(MI);
2715       T = T || genStoreImmediate(MI);
2716       Changed |= T;
2717       continue;
2718     }
2719 
2720     if (Defs.count() != 1)
2721       continue;
2722     const MachineOperand &Op0 = MI->getOperand(0);
2723     if (!Op0.isReg() || !Op0.isDef())
2724       continue;
2725     BitTracker::RegisterRef RD = Op0;
2726     if (!BT.has(RD.Reg))
2727       continue;
2728     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2729     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2730 
2731     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2732       bool T = genPackhl(MI, RD, RC);
2733       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2734       Changed |= T;
2735       continue;
2736     }
2737 
2738     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2739       bool T = genBitSplit(MI, RD, RC, AVB);
2740       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2741       T = T || genExtractHalf(MI, RD, RC);
2742       T = T || genCombineHalf(MI, RD, RC);
2743       T = T || genExtractLow(MI, RD, RC);
2744       T = T || simplifyRCmp0(MI, RD);
2745       Changed |= T;
2746       continue;
2747     }
2748 
2749     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2750       bool T = simplifyTstbit(MI, RD, RC);
2751       Changed |= T;
2752       continue;
2753     }
2754   }
2755   return Changed;
2756 }
2757 
2758 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2759   if (skipFunction(MF.getFunction()))
2760     return false;
2761 
2762   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2763   auto &HRI = *HST.getRegisterInfo();
2764   auto &HII = *HST.getInstrInfo();
2765 
2766   MDT = &getAnalysis<MachineDominatorTree>();
2767   MachineRegisterInfo &MRI = MF.getRegInfo();
2768   bool Changed;
2769 
2770   Changed = DeadCodeElimination(MF, *MDT).run();
2771 
2772   const HexagonEvaluator HE(HRI, MRI, HII, MF);
2773   BitTracker BT(HE, MF);
2774   LLVM_DEBUG(BT.trace(true));
2775   BT.run();
2776 
2777   MachineBasicBlock &Entry = MF.front();
2778 
2779   RegisterSet AIG;  // Available registers for IG.
2780   ConstGeneration ImmG(BT, HII, MRI);
2781   Changed |= visitBlock(Entry, ImmG, AIG);
2782 
2783   RegisterSet ARE;  // Available registers for RIE.
2784   RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2785   bool Ried = visitBlock(Entry, RIE, ARE);
2786   if (Ried) {
2787     Changed = true;
2788     BT.run();
2789   }
2790 
2791   RegisterSet ACG;  // Available registers for CG.
2792   CopyGeneration CopyG(BT, HII, HRI, MRI);
2793   Changed |= visitBlock(Entry, CopyG, ACG);
2794 
2795   RegisterSet ACP;  // Available registers for CP.
2796   CopyPropagation CopyP(HRI, MRI);
2797   Changed |= visitBlock(Entry, CopyP, ACP);
2798 
2799   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2800 
2801   BT.run();
2802   RegisterSet ABS;  // Available registers for BS.
2803   BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2804   Changed |= visitBlock(Entry, BitS, ABS);
2805 
2806   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2807 
2808   if (Changed) {
2809     for (auto &B : MF)
2810       for (auto &I : B)
2811         I.clearKillInfo();
2812     DeadCodeElimination(MF, *MDT).run();
2813   }
2814   return Changed;
2815 }
2816 
2817 // Recognize loops where the code at the end of the loop matches the code
2818 // before the entry of the loop, and the matching code is such that is can
2819 // be simplified. This pass relies on the bit simplification above and only
2820 // prepares code in a way that can be handled by the bit simplifcation.
2821 //
2822 // This is the motivating testcase (and explanation):
2823 //
2824 // {
2825 //   loop0(.LBB0_2, r1)      // %for.body.preheader
2826 //   r5:4 = memd(r0++#8)
2827 // }
2828 // {
2829 //   r3 = lsr(r4, #16)
2830 //   r7:6 = combine(r5, r5)
2831 // }
2832 // {
2833 //   r3 = insert(r5, #16, #16)
2834 //   r7:6 = vlsrw(r7:6, #16)
2835 // }
2836 // .LBB0_2:
2837 // {
2838 //   memh(r2+#4) = r5
2839 //   memh(r2+#6) = r6            # R6 is really R5.H
2840 // }
2841 // {
2842 //   r2 = add(r2, #8)
2843 //   memh(r2+#0) = r4
2844 //   memh(r2+#2) = r3            # R3 is really R4.H
2845 // }
2846 // {
2847 //   r5:4 = memd(r0++#8)
2848 // }
2849 // {                             # "Shuffling" code that sets up R3 and R6
2850 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2851 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2852 // }                             # the stores if the code was at the beginning
2853 // {                             # of the loop iteration. Since the same code
2854 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2855 //   r7:6 = vlsrw(r7:6, #16)     # there.
2856 // }:endloop0
2857 //
2858 //
2859 // The outcome:
2860 //
2861 // {
2862 //   loop0(.LBB0_2, r1)
2863 //   r5:4 = memd(r0++#8)
2864 // }
2865 // .LBB0_2:
2866 // {
2867 //   memh(r2+#4) = r5
2868 //   memh(r2+#6) = r5.h
2869 // }
2870 // {
2871 //   r2 = add(r2, #8)
2872 //   memh(r2+#0) = r4
2873 //   memh(r2+#2) = r4.h
2874 // }
2875 // {
2876 //   r5:4 = memd(r0++#8)
2877 // }:endloop0
2878 
2879 namespace llvm {
2880 
2881   FunctionPass *createHexagonLoopRescheduling();
2882   void initializeHexagonLoopReschedulingPass(PassRegistry&);
2883 
2884 } // end namespace llvm
2885 
2886 namespace {
2887 
2888   class HexagonLoopRescheduling : public MachineFunctionPass {
2889   public:
2890     static char ID;
2891 
2892     HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2893       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2894     }
2895 
2896     bool runOnMachineFunction(MachineFunction &MF) override;
2897 
2898   private:
2899     const HexagonInstrInfo *HII = nullptr;
2900     const HexagonRegisterInfo *HRI = nullptr;
2901     MachineRegisterInfo *MRI = nullptr;
2902     BitTracker *BTP = nullptr;
2903 
2904     struct LoopCand {
2905       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2906             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2907 
2908       MachineBasicBlock *LB, *PB, *EB;
2909     };
2910     using InstrList = std::vector<MachineInstr *>;
2911     struct InstrGroup {
2912       BitTracker::RegisterRef Inp, Out;
2913       InstrList Ins;
2914     };
2915     struct PhiInfo {
2916       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2917 
2918       unsigned DefR;
2919       BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2920       MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2921     };
2922 
2923     static unsigned getDefReg(const MachineInstr *MI);
2924     bool isConst(unsigned Reg) const;
2925     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2926     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2927     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2928     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2929         unsigned &InpR2) const;
2930     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2931         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2932     bool processLoop(LoopCand &C);
2933   };
2934 
2935 } // end anonymous namespace
2936 
2937 char HexagonLoopRescheduling::ID = 0;
2938 
2939 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2940   "Hexagon Loop Rescheduling", false, false)
2941 
2942 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2943       MachineBasicBlock &B) {
2944   DefR = HexagonLoopRescheduling::getDefReg(&P);
2945   LB = &B;
2946   PB = nullptr;
2947   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2948     const MachineOperand &OpB = P.getOperand(i+1);
2949     if (OpB.getMBB() == &B) {
2950       LR = P.getOperand(i);
2951       continue;
2952     }
2953     PB = OpB.getMBB();
2954     PR = P.getOperand(i);
2955   }
2956 }
2957 
2958 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2959   RegisterSet Defs;
2960   HBS::getInstrDefs(*MI, Defs);
2961   if (Defs.count() != 1)
2962     return 0;
2963   return Defs.find_first();
2964 }
2965 
2966 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2967   if (!BTP->has(Reg))
2968     return false;
2969   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2970   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2971     const BitTracker::BitValue &V = RC[i];
2972     if (!V.is(0) && !V.is(1))
2973       return false;
2974   }
2975   return true;
2976 }
2977 
2978 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2979       unsigned DefR) const {
2980   unsigned Opc = MI->getOpcode();
2981   switch (Opc) {
2982     case TargetOpcode::COPY:
2983     case Hexagon::S2_lsr_i_r:
2984     case Hexagon::S2_asr_i_r:
2985     case Hexagon::S2_asl_i_r:
2986     case Hexagon::S2_lsr_i_p:
2987     case Hexagon::S2_asr_i_p:
2988     case Hexagon::S2_asl_i_p:
2989     case Hexagon::S2_insert:
2990     case Hexagon::A2_or:
2991     case Hexagon::A2_orp:
2992     case Hexagon::A2_and:
2993     case Hexagon::A2_andp:
2994     case Hexagon::A2_combinew:
2995     case Hexagon::A4_combineri:
2996     case Hexagon::A4_combineir:
2997     case Hexagon::A2_combineii:
2998     case Hexagon::A4_combineii:
2999     case Hexagon::A2_combine_ll:
3000     case Hexagon::A2_combine_lh:
3001     case Hexagon::A2_combine_hl:
3002     case Hexagon::A2_combine_hh:
3003       return true;
3004   }
3005   return false;
3006 }
3007 
3008 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3009       unsigned InpR) const {
3010   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3011     const MachineOperand &Op = MI->getOperand(i);
3012     if (!Op.isReg())
3013       continue;
3014     if (Op.getReg() == InpR)
3015       return i == n-1;
3016   }
3017   return false;
3018 }
3019 
3020 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3021   if (!BTP->has(OutR) || !BTP->has(InpR))
3022     return false;
3023   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3024   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3025     const BitTracker::BitValue &V = OutC[i];
3026     if (V.Type != BitTracker::BitValue::Ref)
3027       continue;
3028     if (V.RefI.Reg != InpR)
3029       return false;
3030   }
3031   return true;
3032 }
3033 
3034 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3035       unsigned OutR2, unsigned &InpR2) const {
3036   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3037     return false;
3038   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3039   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3040   unsigned W = OutC1.width();
3041   unsigned MatchR = 0;
3042   if (W != OutC2.width())
3043     return false;
3044   for (unsigned i = 0; i < W; ++i) {
3045     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3046     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3047       return false;
3048     if (V1.Type != BitTracker::BitValue::Ref)
3049       continue;
3050     if (V1.RefI.Pos != V2.RefI.Pos)
3051       return false;
3052     if (V1.RefI.Reg != InpR1)
3053       return false;
3054     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3055       return false;
3056     if (!MatchR)
3057       MatchR = V2.RefI.Reg;
3058     else if (V2.RefI.Reg != MatchR)
3059       return false;
3060   }
3061   InpR2 = MatchR;
3062   return true;
3063 }
3064 
3065 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3066       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3067       unsigned NewPredR) {
3068   DenseMap<unsigned,unsigned> RegMap;
3069 
3070   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3071   Register PhiR = MRI->createVirtualRegister(PhiRC);
3072   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3073     .addReg(NewPredR)
3074     .addMBB(&PB)
3075     .addReg(G.Inp.Reg)
3076     .addMBB(&LB);
3077   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3078 
3079   for (unsigned i = G.Ins.size(); i > 0; --i) {
3080     const MachineInstr *SI = G.Ins[i-1];
3081     unsigned DR = getDefReg(SI);
3082     const TargetRegisterClass *RC = MRI->getRegClass(DR);
3083     Register NewDR = MRI->createVirtualRegister(RC);
3084     DebugLoc DL = SI->getDebugLoc();
3085 
3086     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3087     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3088       const MachineOperand &Op = SI->getOperand(j);
3089       if (!Op.isReg()) {
3090         MIB.add(Op);
3091         continue;
3092       }
3093       if (!Op.isUse())
3094         continue;
3095       unsigned UseR = RegMap[Op.getReg()];
3096       MIB.addReg(UseR, 0, Op.getSubReg());
3097     }
3098     RegMap.insert(std::make_pair(DR, NewDR));
3099   }
3100 
3101   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3102 }
3103 
3104 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3105   LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3106                     << "\n");
3107   std::vector<PhiInfo> Phis;
3108   for (auto &I : *C.LB) {
3109     if (!I.isPHI())
3110       break;
3111     unsigned PR = getDefReg(&I);
3112     if (isConst(PR))
3113       continue;
3114     bool BadUse = false, GoodUse = false;
3115     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3116       MachineInstr *UseI = UI->getParent();
3117       if (UseI->getParent() != C.LB) {
3118         BadUse = true;
3119         break;
3120       }
3121       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3122         GoodUse = true;
3123     }
3124     if (BadUse || !GoodUse)
3125       continue;
3126 
3127     Phis.push_back(PhiInfo(I, *C.LB));
3128   }
3129 
3130   LLVM_DEBUG({
3131     dbgs() << "Phis: {";
3132     for (auto &I : Phis) {
3133       dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3134              << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3135              << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3136              << I.LB->getNumber() << ')';
3137     }
3138     dbgs() << " }\n";
3139   });
3140 
3141   if (Phis.empty())
3142     return false;
3143 
3144   bool Changed = false;
3145   InstrList ShufIns;
3146 
3147   // Go backwards in the block: for each bit shuffling instruction, check
3148   // if that instruction could potentially be moved to the front of the loop:
3149   // the output of the loop cannot be used in a non-shuffling instruction
3150   // in this loop.
3151   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3152     if (I->isTerminator())
3153       continue;
3154     if (I->isPHI())
3155       break;
3156 
3157     RegisterSet Defs;
3158     HBS::getInstrDefs(*I, Defs);
3159     if (Defs.count() != 1)
3160       continue;
3161     unsigned DefR = Defs.find_first();
3162     if (!Register::isVirtualRegister(DefR))
3163       continue;
3164     if (!isBitShuffle(&*I, DefR))
3165       continue;
3166 
3167     bool BadUse = false;
3168     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3169       MachineInstr *UseI = UI->getParent();
3170       if (UseI->getParent() == C.LB) {
3171         if (UseI->isPHI()) {
3172           // If the use is in a phi node in this loop, then it should be
3173           // the value corresponding to the back edge.
3174           unsigned Idx = UI.getOperandNo();
3175           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3176             BadUse = true;
3177         } else {
3178           auto F = find(ShufIns, UseI);
3179           if (F == ShufIns.end())
3180             BadUse = true;
3181         }
3182       } else {
3183         // There is a use outside of the loop, but there is no epilog block
3184         // suitable for a copy-out.
3185         if (C.EB == nullptr)
3186           BadUse = true;
3187       }
3188       if (BadUse)
3189         break;
3190     }
3191 
3192     if (BadUse)
3193       continue;
3194     ShufIns.push_back(&*I);
3195   }
3196 
3197   // Partition the list of shuffling instructions into instruction groups,
3198   // where each group has to be moved as a whole (i.e. a group is a chain of
3199   // dependent instructions). A group produces a single live output register,
3200   // which is meant to be the input of the loop phi node (although this is
3201   // not checked here yet). It also uses a single register as its input,
3202   // which is some value produced in the loop body. After moving the group
3203   // to the beginning of the loop, that input register would need to be
3204   // the loop-carried register (through a phi node) instead of the (currently
3205   // loop-carried) output register.
3206   using InstrGroupList = std::vector<InstrGroup>;
3207   InstrGroupList Groups;
3208 
3209   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3210     MachineInstr *SI = ShufIns[i];
3211     if (SI == nullptr)
3212       continue;
3213 
3214     InstrGroup G;
3215     G.Ins.push_back(SI);
3216     G.Out.Reg = getDefReg(SI);
3217     RegisterSet Inputs;
3218     HBS::getInstrUses(*SI, Inputs);
3219 
3220     for (unsigned j = i+1; j < n; ++j) {
3221       MachineInstr *MI = ShufIns[j];
3222       if (MI == nullptr)
3223         continue;
3224       RegisterSet Defs;
3225       HBS::getInstrDefs(*MI, Defs);
3226       // If this instruction does not define any pending inputs, skip it.
3227       if (!Defs.intersects(Inputs))
3228         continue;
3229       // Otherwise, add it to the current group and remove the inputs that
3230       // are defined by MI.
3231       G.Ins.push_back(MI);
3232       Inputs.remove(Defs);
3233       // Then add all registers used by MI.
3234       HBS::getInstrUses(*MI, Inputs);
3235       ShufIns[j] = nullptr;
3236     }
3237 
3238     // Only add a group if it requires at most one register.
3239     if (Inputs.count() > 1)
3240       continue;
3241     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3242       return G.Out.Reg == P.LR.Reg;
3243     };
3244     if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3245       continue;
3246 
3247     G.Inp.Reg = Inputs.find_first();
3248     Groups.push_back(G);
3249   }
3250 
3251   LLVM_DEBUG({
3252     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3253       InstrGroup &G = Groups[i];
3254       dbgs() << "Group[" << i << "] inp: "
3255              << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3256              << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3257       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3258         dbgs() << "  " << *G.Ins[j];
3259     }
3260   });
3261 
3262   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3263     InstrGroup &G = Groups[i];
3264     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3265       continue;
3266     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3267       return G.Out.Reg == P.LR.Reg;
3268     };
3269     auto F = llvm::find_if(Phis, LoopInpEq);
3270     if (F == Phis.end())
3271       continue;
3272     unsigned PrehR = 0;
3273     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3274       const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3275       unsigned Opc = DefPrehR->getOpcode();
3276       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3277         continue;
3278       if (!DefPrehR->getOperand(1).isImm())
3279         continue;
3280       if (DefPrehR->getOperand(1).getImm() != 0)
3281         continue;
3282       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3283       if (RC != MRI->getRegClass(F->PR.Reg)) {
3284         PrehR = MRI->createVirtualRegister(RC);
3285         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3286                                                           : Hexagon::A2_tfrpi;
3287         auto T = C.PB->getFirstTerminator();
3288         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3289         BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3290           .addImm(0);
3291       } else {
3292         PrehR = F->PR.Reg;
3293       }
3294     }
3295     // isSameShuffle could match with PrehR being of a wider class than
3296     // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3297     // it would match for the input being a 32-bit register, and PrehR
3298     // being a 64-bit register (where the low 32 bits match). This could
3299     // be handled, but for now skip these cases.
3300     if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3301       continue;
3302     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3303     Changed = true;
3304   }
3305 
3306   return Changed;
3307 }
3308 
3309 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3310   if (skipFunction(MF.getFunction()))
3311     return false;
3312 
3313   auto &HST = MF.getSubtarget<HexagonSubtarget>();
3314   HII = HST.getInstrInfo();
3315   HRI = HST.getRegisterInfo();
3316   MRI = &MF.getRegInfo();
3317   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3318   BitTracker BT(HE, MF);
3319   LLVM_DEBUG(BT.trace(true));
3320   BT.run();
3321   BTP = &BT;
3322 
3323   std::vector<LoopCand> Cand;
3324 
3325   for (auto &B : MF) {
3326     if (B.pred_size() != 2 || B.succ_size() != 2)
3327       continue;
3328     MachineBasicBlock *PB = nullptr;
3329     bool IsLoop = false;
3330     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3331       if (*PI != &B)
3332         PB = *PI;
3333       else
3334         IsLoop = true;
3335     }
3336     if (!IsLoop)
3337       continue;
3338 
3339     MachineBasicBlock *EB = nullptr;
3340     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3341       if (*SI == &B)
3342         continue;
3343       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3344       // edge from B to EP is non-critical.
3345       if ((*SI)->pred_size() == 1)
3346         EB = *SI;
3347       break;
3348     }
3349 
3350     Cand.push_back(LoopCand(&B, PB, EB));
3351   }
3352 
3353   bool Changed = false;
3354   for (auto &C : Cand)
3355     Changed |= processLoop(C);
3356 
3357   return Changed;
3358 }
3359 
3360 //===----------------------------------------------------------------------===//
3361 //                         Public Constructor Functions
3362 //===----------------------------------------------------------------------===//
3363 
3364 FunctionPass *llvm::createHexagonLoopRescheduling() {
3365   return new HexagonLoopRescheduling();
3366 }
3367 
3368 FunctionPass *llvm::createHexagonBitSimplify() {
3369   return new HexagonBitSimplify();
3370 }
3371