xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that AVR uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AVRISelLowering.h"
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/Support/ErrorHandling.h"
26 
27 #include "AVR.h"
28 #include "AVRMachineFunctionInfo.h"
29 #include "AVRSubtarget.h"
30 #include "AVRTargetMachine.h"
31 #include "MCTargetDesc/AVRMCTargetDesc.h"
32 
33 namespace llvm {
34 
35 AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
36                                      const AVRSubtarget &STI)
37     : TargetLowering(TM), Subtarget(STI) {
38   // Set up the register classes.
39   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
40   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
41 
42   // Compute derived properties from the register classes.
43   computeRegisterProperties(Subtarget.getRegisterInfo());
44 
45   setBooleanContents(ZeroOrOneBooleanContent);
46   setBooleanVectorContents(ZeroOrOneBooleanContent);
47   setSchedulingPreference(Sched::RegPressure);
48   setStackPointerRegisterToSaveRestore(AVR::SP);
49   setSupportsUnalignedAtomics(true);
50 
51   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
52   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
53 
54   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
55   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
56   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
57   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
58 
59   for (MVT VT : MVT::integer_valuetypes()) {
60     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
61       setLoadExtAction(N, VT, MVT::i1, Promote);
62       setLoadExtAction(N, VT, MVT::i8, Expand);
63     }
64   }
65 
66   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
67 
68   for (MVT VT : MVT::integer_valuetypes()) {
69     setOperationAction(ISD::ADDC, VT, Legal);
70     setOperationAction(ISD::SUBC, VT, Legal);
71     setOperationAction(ISD::ADDE, VT, Legal);
72     setOperationAction(ISD::SUBE, VT, Legal);
73   }
74 
75   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
76   // revert into a sub since we don't have an add with immediate instruction.
77   setOperationAction(ISD::ADD, MVT::i32, Custom);
78   setOperationAction(ISD::ADD, MVT::i64, Custom);
79 
80   // our shift instructions are only able to shift 1 bit at a time, so handle
81   // this in a custom way.
82   setOperationAction(ISD::SRA, MVT::i8, Custom);
83   setOperationAction(ISD::SHL, MVT::i8, Custom);
84   setOperationAction(ISD::SRL, MVT::i8, Custom);
85   setOperationAction(ISD::SRA, MVT::i16, Custom);
86   setOperationAction(ISD::SHL, MVT::i16, Custom);
87   setOperationAction(ISD::SRL, MVT::i16, Custom);
88   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
89   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
90   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
91 
92   setOperationAction(ISD::ROTL, MVT::i8, Custom);
93   setOperationAction(ISD::ROTL, MVT::i16, Expand);
94   setOperationAction(ISD::ROTR, MVT::i8, Custom);
95   setOperationAction(ISD::ROTR, MVT::i16, Expand);
96 
97   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
98   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
99   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
100   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
101   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102 
103   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
104   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
105   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
106   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
107   setOperationAction(ISD::SETCC, MVT::i8, Custom);
108   setOperationAction(ISD::SETCC, MVT::i16, Custom);
109   setOperationAction(ISD::SETCC, MVT::i32, Custom);
110   setOperationAction(ISD::SETCC, MVT::i64, Custom);
111   setOperationAction(ISD::SELECT, MVT::i8, Expand);
112   setOperationAction(ISD::SELECT, MVT::i16, Expand);
113 
114   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
115 
116   // Add support for postincrement and predecrement load/stores.
117   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
118   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
119   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
120   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
121   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
122   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
123   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
124   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
125 
126   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
127 
128   setOperationAction(ISD::VASTART, MVT::Other, Custom);
129   setOperationAction(ISD::VAEND, MVT::Other, Expand);
130   setOperationAction(ISD::VAARG, MVT::Other, Expand);
131   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
132 
133   // Atomic operations which must be lowered to rtlib calls
134   for (MVT VT : MVT::integer_valuetypes()) {
135     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
136     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
137     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
138     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
139     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
140     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
141     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
142   }
143 
144   // Division/remainder
145   setOperationAction(ISD::UDIV, MVT::i8, Expand);
146   setOperationAction(ISD::UDIV, MVT::i16, Expand);
147   setOperationAction(ISD::UREM, MVT::i8, Expand);
148   setOperationAction(ISD::UREM, MVT::i16, Expand);
149   setOperationAction(ISD::SDIV, MVT::i8, Expand);
150   setOperationAction(ISD::SDIV, MVT::i16, Expand);
151   setOperationAction(ISD::SREM, MVT::i8, Expand);
152   setOperationAction(ISD::SREM, MVT::i16, Expand);
153 
154   // Make division and modulus custom
155   setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
156   setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
157   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
158   setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
159   setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
160   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
161 
162   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
163   setOperationAction(ISD::MUL, MVT::i8, Expand);
164   setOperationAction(ISD::MUL, MVT::i16, Expand);
165 
166   // Expand 16 bit multiplications.
167   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
168   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
169 
170   // Expand multiplications to libcalls when there is
171   // no hardware MUL.
172   if (!Subtarget.supportsMultiplication()) {
173     setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
174     setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
175   }
176 
177   for (MVT VT : MVT::integer_valuetypes()) {
178     setOperationAction(ISD::MULHS, VT, Expand);
179     setOperationAction(ISD::MULHU, VT, Expand);
180   }
181 
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setOperationAction(ISD::CTPOP, VT, Expand);
184     setOperationAction(ISD::CTLZ, VT, Expand);
185     setOperationAction(ISD::CTTZ, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190     // TODO: The generated code is pretty poor. Investigate using the
191     // same "shift and subtract with carry" trick that we do for
192     // extending 8-bit to 16-bit. This may require infrastructure
193     // improvements in how we treat 16-bit "registers" to be feasible.
194   }
195 
196   // Division rtlib functions (not supported), use divmod functions instead
197   setLibcallName(RTLIB::SDIV_I8, nullptr);
198   setLibcallName(RTLIB::SDIV_I16, nullptr);
199   setLibcallName(RTLIB::SDIV_I32, nullptr);
200   setLibcallName(RTLIB::UDIV_I8, nullptr);
201   setLibcallName(RTLIB::UDIV_I16, nullptr);
202   setLibcallName(RTLIB::UDIV_I32, nullptr);
203 
204   // Modulus rtlib functions (not supported), use divmod functions instead
205   setLibcallName(RTLIB::SREM_I8, nullptr);
206   setLibcallName(RTLIB::SREM_I16, nullptr);
207   setLibcallName(RTLIB::SREM_I32, nullptr);
208   setLibcallName(RTLIB::UREM_I8, nullptr);
209   setLibcallName(RTLIB::UREM_I16, nullptr);
210   setLibcallName(RTLIB::UREM_I32, nullptr);
211 
212   // Division and modulus rtlib functions
213   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
214   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
215   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
216   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
217   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
218   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
219 
220   // Several of the runtime library functions use a special calling conv
221   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
222   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
223   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
224   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
225 
226   // Trigonometric rtlib functions
227   setLibcallName(RTLIB::SIN_F32, "sin");
228   setLibcallName(RTLIB::COS_F32, "cos");
229 
230   setMinFunctionAlignment(Align(2));
231   setMinimumJumpTableEntries(UINT_MAX);
232 }
233 
234 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
235 #define NODE(name)                                                             \
236   case AVRISD::name:                                                           \
237     return #name
238 
239   switch (Opcode) {
240   default:
241     return nullptr;
242     NODE(RET_FLAG);
243     NODE(RETI_FLAG);
244     NODE(CALL);
245     NODE(WRAPPER);
246     NODE(LSL);
247     NODE(LSR);
248     NODE(ROL);
249     NODE(ROR);
250     NODE(ASR);
251     NODE(LSLLOOP);
252     NODE(LSRLOOP);
253     NODE(ROLLOOP);
254     NODE(RORLOOP);
255     NODE(ASRLOOP);
256     NODE(BRCOND);
257     NODE(CMP);
258     NODE(CMPC);
259     NODE(TST);
260     NODE(SELECT_CC);
261 #undef NODE
262   }
263 }
264 
265 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
266                                           EVT VT) const {
267   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
268   return MVT::i8;
269 }
270 
271 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
272   //: TODO: this function has to be completely rewritten to produce optimal
273   // code, for now it's producing very long but correct code.
274   unsigned Opc8;
275   const SDNode *N = Op.getNode();
276   EVT VT = Op.getValueType();
277   SDLoc dl(N);
278   assert(isPowerOf2_32(VT.getSizeInBits()) &&
279          "Expected power-of-2 shift amount");
280 
281   // Expand non-constant shifts to loops.
282   if (!isa<ConstantSDNode>(N->getOperand(1))) {
283     switch (Op.getOpcode()) {
284     default:
285       llvm_unreachable("Invalid shift opcode!");
286     case ISD::SHL:
287       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
288                          N->getOperand(1));
289     case ISD::SRL:
290       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
291                          N->getOperand(1));
292     case ISD::ROTL: {
293       SDValue Amt = N->getOperand(1);
294       EVT AmtVT = Amt.getValueType();
295       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
296                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
297       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
298     }
299     case ISD::ROTR: {
300       SDValue Amt = N->getOperand(1);
301       EVT AmtVT = Amt.getValueType();
302       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
303                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
304       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
305     }
306     case ISD::SRA:
307       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
308                          N->getOperand(1));
309     }
310   }
311 
312   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
313   SDValue Victim = N->getOperand(0);
314 
315   switch (Op.getOpcode()) {
316   case ISD::SRA:
317     Opc8 = AVRISD::ASR;
318     break;
319   case ISD::ROTL:
320     Opc8 = AVRISD::ROL;
321     ShiftAmount = ShiftAmount % VT.getSizeInBits();
322     break;
323   case ISD::ROTR:
324     Opc8 = AVRISD::ROR;
325     ShiftAmount = ShiftAmount % VT.getSizeInBits();
326     break;
327   case ISD::SRL:
328     Opc8 = AVRISD::LSR;
329     break;
330   case ISD::SHL:
331     Opc8 = AVRISD::LSL;
332     break;
333   default:
334     llvm_unreachable("Invalid shift opcode");
335   }
336 
337   // Optimize int8/int16 shifts.
338   if (VT.getSizeInBits() == 8) {
339     if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) {
340       // Optimize LSL when 4 <= ShiftAmount <= 6.
341       Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
342       Victim =
343           DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT));
344       ShiftAmount -= 4;
345     } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount &&
346                ShiftAmount < 7) {
347       // Optimize LSR when 4 <= ShiftAmount <= 6.
348       Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
349       Victim =
350           DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT));
351       ShiftAmount -= 4;
352     } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) {
353       // Optimize LSL when ShiftAmount == 7.
354       Victim = DAG.getNode(AVRISD::LSLBN, dl, VT, Victim,
355                            DAG.getConstant(7, dl, VT));
356       ShiftAmount = 0;
357     } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) {
358       // Optimize LSR when ShiftAmount == 7.
359       Victim = DAG.getNode(AVRISD::LSRBN, dl, VT, Victim,
360                            DAG.getConstant(7, dl, VT));
361       ShiftAmount = 0;
362     } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) {
363       // Optimize ASR when ShiftAmount == 7.
364       Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim,
365                            DAG.getConstant(7, dl, VT));
366       ShiftAmount = 0;
367     }
368   } else if (VT.getSizeInBits() == 16) {
369     if (4 <= ShiftAmount && ShiftAmount < 8)
370       switch (Op.getOpcode()) {
371       case ISD::SHL:
372         Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
373                              DAG.getConstant(4, dl, VT));
374         ShiftAmount -= 4;
375         break;
376       case ISD::SRL:
377         Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
378                              DAG.getConstant(4, dl, VT));
379         ShiftAmount -= 4;
380         break;
381       default:
382         break;
383       }
384     else if (8 <= ShiftAmount && ShiftAmount < 12)
385       switch (Op.getOpcode()) {
386       case ISD::SHL:
387         Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
388                              DAG.getConstant(8, dl, VT));
389         ShiftAmount -= 8;
390         break;
391       case ISD::SRL:
392         Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
393                              DAG.getConstant(8, dl, VT));
394         ShiftAmount -= 8;
395         break;
396       case ISD::SRA:
397         Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
398                              DAG.getConstant(8, dl, VT));
399         ShiftAmount -= 8;
400         break;
401       default:
402         break;
403       }
404     else if (12 <= ShiftAmount)
405       switch (Op.getOpcode()) {
406       case ISD::SHL:
407         Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
408                              DAG.getConstant(12, dl, VT));
409         ShiftAmount -= 12;
410         break;
411       case ISD::SRL:
412         Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
413                              DAG.getConstant(12, dl, VT));
414         ShiftAmount -= 12;
415         break;
416       default:
417         break;
418       }
419   }
420 
421   while (ShiftAmount--) {
422     Victim = DAG.getNode(Opc8, dl, VT, Victim);
423   }
424 
425   return Victim;
426 }
427 
428 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
429   unsigned Opcode = Op->getOpcode();
430   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
431          "Invalid opcode for Div/Rem lowering");
432   bool IsSigned = (Opcode == ISD::SDIVREM);
433   EVT VT = Op->getValueType(0);
434   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
435 
436   RTLIB::Libcall LC;
437   switch (VT.getSimpleVT().SimpleTy) {
438   default:
439     llvm_unreachable("Unexpected request for libcall!");
440   case MVT::i8:
441     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
442     break;
443   case MVT::i16:
444     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
445     break;
446   case MVT::i32:
447     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
448     break;
449   }
450 
451   SDValue InChain = DAG.getEntryNode();
452 
453   TargetLowering::ArgListTy Args;
454   TargetLowering::ArgListEntry Entry;
455   for (SDValue const &Value : Op->op_values()) {
456     Entry.Node = Value;
457     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
458     Entry.IsSExt = IsSigned;
459     Entry.IsZExt = !IsSigned;
460     Args.push_back(Entry);
461   }
462 
463   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
464                                          getPointerTy(DAG.getDataLayout()));
465 
466   Type *RetTy = (Type *)StructType::get(Ty, Ty);
467 
468   SDLoc dl(Op);
469   TargetLowering::CallLoweringInfo CLI(DAG);
470   CLI.setDebugLoc(dl)
471       .setChain(InChain)
472       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
473       .setInRegister()
474       .setSExtResult(IsSigned)
475       .setZExtResult(!IsSigned);
476 
477   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
478   return CallInfo.first;
479 }
480 
481 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
482                                               SelectionDAG &DAG) const {
483   auto DL = DAG.getDataLayout();
484 
485   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
486   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
487 
488   // Create the TargetGlobalAddress node, folding in the constant offset.
489   SDValue Result =
490       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
491   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
492 }
493 
494 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
495                                              SelectionDAG &DAG) const {
496   auto DL = DAG.getDataLayout();
497   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
498 
499   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
500 
501   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
502 }
503 
504 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
505 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
506   switch (CC) {
507   default:
508     llvm_unreachable("Unknown condition code!");
509   case ISD::SETEQ:
510     return AVRCC::COND_EQ;
511   case ISD::SETNE:
512     return AVRCC::COND_NE;
513   case ISD::SETGE:
514     return AVRCC::COND_GE;
515   case ISD::SETLT:
516     return AVRCC::COND_LT;
517   case ISD::SETUGE:
518     return AVRCC::COND_SH;
519   case ISD::SETULT:
520     return AVRCC::COND_LO;
521   }
522 }
523 
524 /// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands.
525 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS,
526                                      SelectionDAG &DAG, SDLoc DL) const {
527   assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) &&
528          "LHS and RHS have different types");
529   assert(((LHS.getSimpleValueType() == MVT::i16) ||
530           (LHS.getSimpleValueType() == MVT::i8)) &&
531          "invalid comparison type");
532 
533   SDValue Cmp;
534 
535   if (LHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(RHS)) {
536     // Generate a CPI/CPC pair if RHS is a 16-bit constant.
537     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
538                                 DAG.getIntPtrConstant(0, DL));
539     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
540                                 DAG.getIntPtrConstant(1, DL));
541     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
542                                 DAG.getIntPtrConstant(0, DL));
543     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
544                                 DAG.getIntPtrConstant(1, DL));
545     Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
546     Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
547   } else {
548     // Generate ordinary 16-bit comparison.
549     Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
550   }
551 
552   return Cmp;
553 }
554 
555 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
556 /// the given operands.
557 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
558                                      SDValue &AVRcc, SelectionDAG &DAG,
559                                      SDLoc DL) const {
560   SDValue Cmp;
561   EVT VT = LHS.getValueType();
562   bool UseTest = false;
563 
564   switch (CC) {
565   default:
566     break;
567   case ISD::SETLE: {
568     // Swap operands and reverse the branching condition.
569     std::swap(LHS, RHS);
570     CC = ISD::SETGE;
571     break;
572   }
573   case ISD::SETGT: {
574     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
575       switch (C->getSExtValue()) {
576       case -1: {
577         // When doing lhs > -1 use a tst instruction on the top part of lhs
578         // and use brpl instead of using a chain of cp/cpc.
579         UseTest = true;
580         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
581         break;
582       }
583       case 0: {
584         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
585         // __zero_reg__ in lhs.
586         RHS = LHS;
587         LHS = DAG.getConstant(0, DL, VT);
588         CC = ISD::SETLT;
589         break;
590       }
591       default: {
592         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
593         // us to  fold the constant into the cmp instruction.
594         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
595         CC = ISD::SETGE;
596         break;
597       }
598       }
599       break;
600     }
601     // Swap operands and reverse the branching condition.
602     std::swap(LHS, RHS);
603     CC = ISD::SETLT;
604     break;
605   }
606   case ISD::SETLT: {
607     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
608       switch (C->getSExtValue()) {
609       case 1: {
610         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
611         // __zero_reg__ in lhs.
612         RHS = LHS;
613         LHS = DAG.getConstant(0, DL, VT);
614         CC = ISD::SETGE;
615         break;
616       }
617       case 0: {
618         // When doing lhs < 0 use a tst instruction on the top part of lhs
619         // and use brmi instead of using a chain of cp/cpc.
620         UseTest = true;
621         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
622         break;
623       }
624       }
625     }
626     break;
627   }
628   case ISD::SETULE: {
629     // Swap operands and reverse the branching condition.
630     std::swap(LHS, RHS);
631     CC = ISD::SETUGE;
632     break;
633   }
634   case ISD::SETUGT: {
635     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
636     // fold the constant into the cmp instruction.
637     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
638       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
639       CC = ISD::SETUGE;
640       break;
641     }
642     // Swap operands and reverse the branching condition.
643     std::swap(LHS, RHS);
644     CC = ISD::SETULT;
645     break;
646   }
647   }
648 
649   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
650   // using the default and/or/xor expansion code which is much longer.
651   if (VT == MVT::i32) {
652     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
653                                 DAG.getIntPtrConstant(0, DL));
654     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
655                                 DAG.getIntPtrConstant(1, DL));
656     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
657                                 DAG.getIntPtrConstant(0, DL));
658     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
659                                 DAG.getIntPtrConstant(1, DL));
660 
661     if (UseTest) {
662       // When using tst we only care about the highest part.
663       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
664                                 DAG.getIntPtrConstant(1, DL));
665       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
666     } else {
667       Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL);
668       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
669     }
670   } else if (VT == MVT::i64) {
671     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
672                                 DAG.getIntPtrConstant(0, DL));
673     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
674                                 DAG.getIntPtrConstant(1, DL));
675 
676     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
677                                DAG.getIntPtrConstant(0, DL));
678     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
679                                DAG.getIntPtrConstant(1, DL));
680     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
681                                DAG.getIntPtrConstant(0, DL));
682     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
683                                DAG.getIntPtrConstant(1, DL));
684 
685     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
686                                 DAG.getIntPtrConstant(0, DL));
687     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
688                                 DAG.getIntPtrConstant(1, DL));
689 
690     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
691                                DAG.getIntPtrConstant(0, DL));
692     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
693                                DAG.getIntPtrConstant(1, DL));
694     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
695                                DAG.getIntPtrConstant(0, DL));
696     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
697                                DAG.getIntPtrConstant(1, DL));
698 
699     if (UseTest) {
700       // When using tst we only care about the highest part.
701       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
702                                 DAG.getIntPtrConstant(1, DL));
703       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
704     } else {
705       Cmp = getAVRCmp(LHS0, RHS0, DAG, DL);
706       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
707       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
708       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
709     }
710   } else if (VT == MVT::i8 || VT == MVT::i16) {
711     if (UseTest) {
712       // When using tst we only care about the highest part.
713       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
714                         (VT == MVT::i8)
715                             ? LHS
716                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
717                                           LHS, DAG.getIntPtrConstant(1, DL)));
718     } else {
719       Cmp = getAVRCmp(LHS, RHS, DAG, DL);
720     }
721   } else {
722     llvm_unreachable("Invalid comparison size");
723   }
724 
725   // When using a test instruction AVRcc is already set.
726   if (!UseTest) {
727     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
728   }
729 
730   return Cmp;
731 }
732 
733 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
734   SDValue Chain = Op.getOperand(0);
735   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
736   SDValue LHS = Op.getOperand(2);
737   SDValue RHS = Op.getOperand(3);
738   SDValue Dest = Op.getOperand(4);
739   SDLoc dl(Op);
740 
741   SDValue TargetCC;
742   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
743 
744   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
745                      Cmp);
746 }
747 
748 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
749   SDValue LHS = Op.getOperand(0);
750   SDValue RHS = Op.getOperand(1);
751   SDValue TrueV = Op.getOperand(2);
752   SDValue FalseV = Op.getOperand(3);
753   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
754   SDLoc dl(Op);
755 
756   SDValue TargetCC;
757   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
758 
759   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
760   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
761 
762   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
763 }
764 
765 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
766   SDValue LHS = Op.getOperand(0);
767   SDValue RHS = Op.getOperand(1);
768   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
769   SDLoc DL(Op);
770 
771   SDValue TargetCC;
772   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
773 
774   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
775   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
776   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
777   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
778 
779   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
780 }
781 
782 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
783   const MachineFunction &MF = DAG.getMachineFunction();
784   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
785   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
786   auto DL = DAG.getDataLayout();
787   SDLoc dl(Op);
788 
789   // Vastart just stores the address of the VarArgsFrameIndex slot into the
790   // memory location argument.
791   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
792 
793   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
794                       MachinePointerInfo(SV));
795 }
796 
797 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
798   switch (Op.getOpcode()) {
799   default:
800     llvm_unreachable("Don't know how to custom lower this!");
801   case ISD::SHL:
802   case ISD::SRA:
803   case ISD::SRL:
804   case ISD::ROTL:
805   case ISD::ROTR:
806     return LowerShifts(Op, DAG);
807   case ISD::GlobalAddress:
808     return LowerGlobalAddress(Op, DAG);
809   case ISD::BlockAddress:
810     return LowerBlockAddress(Op, DAG);
811   case ISD::BR_CC:
812     return LowerBR_CC(Op, DAG);
813   case ISD::SELECT_CC:
814     return LowerSELECT_CC(Op, DAG);
815   case ISD::SETCC:
816     return LowerSETCC(Op, DAG);
817   case ISD::VASTART:
818     return LowerVASTART(Op, DAG);
819   case ISD::SDIVREM:
820   case ISD::UDIVREM:
821     return LowerDivRem(Op, DAG);
822   }
823 
824   return SDValue();
825 }
826 
827 /// Replace a node with an illegal result type
828 /// with a new node built out of custom code.
829 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
830                                            SmallVectorImpl<SDValue> &Results,
831                                            SelectionDAG &DAG) const {
832   SDLoc DL(N);
833 
834   switch (N->getOpcode()) {
835   case ISD::ADD: {
836     // Convert add (x, imm) into sub (x, -imm).
837     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
838       SDValue Sub = DAG.getNode(
839           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
840           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
841       Results.push_back(Sub);
842     }
843     break;
844   }
845   default: {
846     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
847 
848     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
849       Results.push_back(Res.getValue(I));
850 
851     break;
852   }
853   }
854 }
855 
856 /// Return true if the addressing mode represented
857 /// by AM is legal for this target, for a load/store of the specified type.
858 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
859                                               const AddrMode &AM, Type *Ty,
860                                               unsigned AS,
861                                               Instruction *I) const {
862   int64_t Offs = AM.BaseOffs;
863 
864   // Allow absolute addresses.
865   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
866     return true;
867   }
868 
869   // Flash memory instructions only allow zero offsets.
870   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
871     return false;
872   }
873 
874   // Allow reg+<6bit> offset.
875   if (Offs < 0)
876     Offs = -Offs;
877   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
878     return true;
879   }
880 
881   return false;
882 }
883 
884 /// Returns true by value, base pointer and
885 /// offset pointer and addressing mode by reference if the node's address
886 /// can be legally represented as pre-indexed load / store address.
887 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
888                                                   SDValue &Offset,
889                                                   ISD::MemIndexedMode &AM,
890                                                   SelectionDAG &DAG) const {
891   EVT VT;
892   const SDNode *Op;
893   SDLoc DL(N);
894 
895   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
896     VT = LD->getMemoryVT();
897     Op = LD->getBasePtr().getNode();
898     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
899       return false;
900     if (AVR::isProgramMemoryAccess(LD)) {
901       return false;
902     }
903   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
904     VT = ST->getMemoryVT();
905     Op = ST->getBasePtr().getNode();
906     if (AVR::isProgramMemoryAccess(ST)) {
907       return false;
908     }
909   } else {
910     return false;
911   }
912 
913   if (VT != MVT::i8 && VT != MVT::i16) {
914     return false;
915   }
916 
917   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
918     return false;
919   }
920 
921   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
922     int RHSC = RHS->getSExtValue();
923     if (Op->getOpcode() == ISD::SUB)
924       RHSC = -RHSC;
925 
926     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
927       return false;
928     }
929 
930     Base = Op->getOperand(0);
931     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
932     AM = ISD::PRE_DEC;
933 
934     return true;
935   }
936 
937   return false;
938 }
939 
940 /// Returns true by value, base pointer and
941 /// offset pointer and addressing mode by reference if this node can be
942 /// combined with a load / store to form a post-indexed load / store.
943 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
944                                                    SDValue &Base,
945                                                    SDValue &Offset,
946                                                    ISD::MemIndexedMode &AM,
947                                                    SelectionDAG &DAG) const {
948   EVT VT;
949   SDLoc DL(N);
950 
951   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
952     VT = LD->getMemoryVT();
953     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
954       return false;
955   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
956     VT = ST->getMemoryVT();
957     if (AVR::isProgramMemoryAccess(ST)) {
958       return false;
959     }
960   } else {
961     return false;
962   }
963 
964   if (VT != MVT::i8 && VT != MVT::i16) {
965     return false;
966   }
967 
968   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
969     return false;
970   }
971 
972   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
973     int RHSC = RHS->getSExtValue();
974     if (Op->getOpcode() == ISD::SUB)
975       RHSC = -RHSC;
976     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
977       return false;
978     }
979 
980     Base = Op->getOperand(0);
981     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
982     AM = ISD::POST_INC;
983 
984     return true;
985   }
986 
987   return false;
988 }
989 
990 bool AVRTargetLowering::isOffsetFoldingLegal(
991     const GlobalAddressSDNode *GA) const {
992   return true;
993 }
994 
995 //===----------------------------------------------------------------------===//
996 //             Formal Arguments Calling Convention Implementation
997 //===----------------------------------------------------------------------===//
998 
999 #include "AVRGenCallingConv.inc"
1000 
1001 /// Registers for calling conventions, ordered in reverse as required by ABI.
1002 /// Both arrays must be of the same length.
1003 static const MCPhysReg RegList8[] = {
1004     AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
1005     AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
1006     AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9,  AVR::R8};
1007 static const MCPhysReg RegList16[] = {
1008     AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21,
1009     AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16,
1010     AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11,
1011     AVR::R11R10, AVR::R10R9,  AVR::R9R8};
1012 
1013 static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
1014               "8-bit and 16-bit register arrays must be of equal length");
1015 
1016 /// Analyze incoming and outgoing function arguments. We need custom C++ code
1017 /// to handle special constraints in the ABI.
1018 /// In addition, all pieces of a certain argument have to be passed either
1019 /// using registers or the stack but never mixing both.
1020 template <typename ArgT>
1021 static void
1022 analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
1023                  const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
1024                  SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
1025   unsigned NumArgs = Args.size();
1026   // This is the index of the last used register, in RegList*.
1027   // -1 means R26 (R26 is never actually used in CC).
1028   int RegLastIdx = -1;
1029   // Once a value is passed to the stack it will always be used
1030   bool UseStack = false;
1031   for (unsigned i = 0; i != NumArgs;) {
1032     MVT VT = Args[i].VT;
1033     // We have to count the number of bytes for each function argument, that is
1034     // those Args with the same OrigArgIndex. This is important in case the
1035     // function takes an aggregate type.
1036     // Current argument will be between [i..j).
1037     unsigned ArgIndex = Args[i].OrigArgIndex;
1038     unsigned TotalBytes = VT.getStoreSize();
1039     unsigned j = i + 1;
1040     for (; j != NumArgs; ++j) {
1041       if (Args[j].OrigArgIndex != ArgIndex)
1042         break;
1043       TotalBytes += Args[j].VT.getStoreSize();
1044     }
1045     // Round up to even number of bytes.
1046     TotalBytes = alignTo(TotalBytes, 2);
1047     // Skip zero sized arguments
1048     if (TotalBytes == 0)
1049       continue;
1050     // The index of the first register to be used
1051     unsigned RegIdx = RegLastIdx + TotalBytes;
1052     RegLastIdx = RegIdx;
1053     // If there are not enough registers, use the stack
1054     if (RegIdx >= array_lengthof(RegList8)) {
1055       UseStack = true;
1056     }
1057     for (; i != j; ++i) {
1058       MVT VT = Args[i].VT;
1059 
1060       if (UseStack) {
1061         auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
1062         unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
1063                                                TD->getABITypeAlign(evt));
1064         CCInfo.addLoc(
1065             CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
1066       } else {
1067         unsigned Reg;
1068         if (VT == MVT::i8) {
1069           Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1070         } else if (VT == MVT::i16) {
1071           Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1072         } else {
1073           llvm_unreachable(
1074               "calling convention can only manage i8 and i16 types");
1075         }
1076         assert(Reg && "register not available in calling convention");
1077         CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1078         // Registers inside a particular argument are sorted in increasing order
1079         // (remember the array is reversed).
1080         RegIdx -= VT.getStoreSize();
1081       }
1082     }
1083   }
1084 }
1085 
1086 /// Count the total number of bytes needed to pass or return these arguments.
1087 template <typename ArgT>
1088 static unsigned
1089 getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
1090   unsigned TotalBytes = 0;
1091 
1092   for (const ArgT &Arg : Args) {
1093     TotalBytes += Arg.VT.getStoreSize();
1094   }
1095   return TotalBytes;
1096 }
1097 
1098 /// Analyze incoming and outgoing value of returning from a function.
1099 /// The algorithm is similar to analyzeArguments, but there can only be
1100 /// one value, possibly an aggregate, and it is limited to 8 bytes.
1101 template <typename ArgT>
1102 static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
1103                                 CCState &CCInfo) {
1104   unsigned NumArgs = Args.size();
1105   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
1106   // CanLowerReturn() guarantees this assertion.
1107   assert(TotalBytes <= 8 &&
1108          "return values greater than 8 bytes cannot be lowered");
1109 
1110   // GCC-ABI says that the size is rounded up to the next even number,
1111   // but actually once it is more than 4 it will always round up to 8.
1112   if (TotalBytes > 4) {
1113     TotalBytes = 8;
1114   } else {
1115     TotalBytes = alignTo(TotalBytes, 2);
1116   }
1117 
1118   // The index of the first register to use.
1119   int RegIdx = TotalBytes - 1;
1120   for (unsigned i = 0; i != NumArgs; ++i) {
1121     MVT VT = Args[i].VT;
1122     unsigned Reg;
1123     if (VT == MVT::i8) {
1124       Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1125     } else if (VT == MVT::i16) {
1126       Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1127     } else {
1128       llvm_unreachable("calling convention can only manage i8 and i16 types");
1129     }
1130     assert(Reg && "register not available in calling convention");
1131     CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1132     // Registers sort in increasing order
1133     RegIdx -= VT.getStoreSize();
1134   }
1135 }
1136 
1137 SDValue AVRTargetLowering::LowerFormalArguments(
1138     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1139     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1140     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1141   MachineFunction &MF = DAG.getMachineFunction();
1142   MachineFrameInfo &MFI = MF.getFrameInfo();
1143   auto DL = DAG.getDataLayout();
1144 
1145   // Assign locations to all of the incoming arguments.
1146   SmallVector<CCValAssign, 16> ArgLocs;
1147   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1148                  *DAG.getContext());
1149 
1150   // Variadic functions do not need all the analysis below.
1151   if (isVarArg) {
1152     CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
1153   } else {
1154     analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
1155   }
1156 
1157   SDValue ArgValue;
1158   for (CCValAssign &VA : ArgLocs) {
1159 
1160     // Arguments stored on registers.
1161     if (VA.isRegLoc()) {
1162       EVT RegVT = VA.getLocVT();
1163       const TargetRegisterClass *RC;
1164       if (RegVT == MVT::i8) {
1165         RC = &AVR::GPR8RegClass;
1166       } else if (RegVT == MVT::i16) {
1167         RC = &AVR::DREGSRegClass;
1168       } else {
1169         llvm_unreachable("Unknown argument type!");
1170       }
1171 
1172       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1173       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1174 
1175       // :NOTE: Clang should not promote any i8 into i16 but for safety the
1176       // following code will handle zexts or sexts generated by other
1177       // front ends. Otherwise:
1178       // If this is an 8 bit value, it is really passed promoted
1179       // to 16 bits. Insert an assert[sz]ext to capture this, then
1180       // truncate to the right size.
1181       switch (VA.getLocInfo()) {
1182       default:
1183         llvm_unreachable("Unknown loc info!");
1184       case CCValAssign::Full:
1185         break;
1186       case CCValAssign::BCvt:
1187         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1188         break;
1189       case CCValAssign::SExt:
1190         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1191                                DAG.getValueType(VA.getValVT()));
1192         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1193         break;
1194       case CCValAssign::ZExt:
1195         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1196                                DAG.getValueType(VA.getValVT()));
1197         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1198         break;
1199       }
1200 
1201       InVals.push_back(ArgValue);
1202     } else {
1203       // Only arguments passed on the stack should make it here.
1204       assert(VA.isMemLoc());
1205 
1206       EVT LocVT = VA.getLocVT();
1207 
1208       // Create the frame index object for this incoming parameter.
1209       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1210                                      VA.getLocMemOffset(), true);
1211 
1212       // Create the SelectionDAG nodes corresponding to a load
1213       // from this parameter.
1214       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1215       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1216                                    MachinePointerInfo::getFixedStack(MF, FI)));
1217     }
1218   }
1219 
1220   // If the function takes variable number of arguments, make a frame index for
1221   // the start of the first vararg value... for expansion of llvm.va_start.
1222   if (isVarArg) {
1223     unsigned StackSize = CCInfo.getNextStackOffset();
1224     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1225 
1226     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1227   }
1228 
1229   return Chain;
1230 }
1231 
1232 //===----------------------------------------------------------------------===//
1233 //                  Call Calling Convention Implementation
1234 //===----------------------------------------------------------------------===//
1235 
1236 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1237                                      SmallVectorImpl<SDValue> &InVals) const {
1238   SelectionDAG &DAG = CLI.DAG;
1239   SDLoc &DL = CLI.DL;
1240   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1241   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1242   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1243   SDValue Chain = CLI.Chain;
1244   SDValue Callee = CLI.Callee;
1245   bool &isTailCall = CLI.IsTailCall;
1246   CallingConv::ID CallConv = CLI.CallConv;
1247   bool isVarArg = CLI.IsVarArg;
1248 
1249   MachineFunction &MF = DAG.getMachineFunction();
1250 
1251   // AVR does not yet support tail call optimization.
1252   isTailCall = false;
1253 
1254   // Analyze operands of the call, assigning locations to each operand.
1255   SmallVector<CCValAssign, 16> ArgLocs;
1256   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1257                  *DAG.getContext());
1258 
1259   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1260   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1261   // node so that legalize doesn't hack it.
1262   const Function *F = nullptr;
1263   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1264     const GlobalValue *GV = G->getGlobal();
1265 
1266     F = cast<Function>(GV);
1267     Callee =
1268         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1269   } else if (const ExternalSymbolSDNode *ES =
1270                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
1271     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1272                                          getPointerTy(DAG.getDataLayout()));
1273   }
1274 
1275   // Variadic functions do not need all the analysis below.
1276   if (isVarArg) {
1277     CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
1278   } else {
1279     analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
1280   }
1281 
1282   // Get a count of how many bytes are to be pushed on the stack.
1283   unsigned NumBytes = CCInfo.getNextStackOffset();
1284 
1285   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1286 
1287   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1288 
1289   // First, walk the register assignments, inserting copies.
1290   unsigned AI, AE;
1291   bool HasStackArgs = false;
1292   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1293     CCValAssign &VA = ArgLocs[AI];
1294     EVT RegVT = VA.getLocVT();
1295     SDValue Arg = OutVals[AI];
1296 
1297     // Promote the value if needed. With Clang this should not happen.
1298     switch (VA.getLocInfo()) {
1299     default:
1300       llvm_unreachable("Unknown loc info!");
1301     case CCValAssign::Full:
1302       break;
1303     case CCValAssign::SExt:
1304       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1305       break;
1306     case CCValAssign::ZExt:
1307       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1308       break;
1309     case CCValAssign::AExt:
1310       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1311       break;
1312     case CCValAssign::BCvt:
1313       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1314       break;
1315     }
1316 
1317     // Stop when we encounter a stack argument, we need to process them
1318     // in reverse order in the loop below.
1319     if (VA.isMemLoc()) {
1320       HasStackArgs = true;
1321       break;
1322     }
1323 
1324     // Arguments that can be passed on registers must be kept in the RegsToPass
1325     // vector.
1326     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1327   }
1328 
1329   // Second, stack arguments have to walked.
1330   // Previously this code created chained stores but those chained stores appear
1331   // to be unchained in the legalization phase. Therefore, do not attempt to
1332   // chain them here. In fact, chaining them here somehow causes the first and
1333   // second store to be reversed which is the exact opposite of the intended
1334   // effect.
1335   if (HasStackArgs) {
1336     SmallVector<SDValue, 8> MemOpChains;
1337     for (; AI != AE; AI++) {
1338       CCValAssign &VA = ArgLocs[AI];
1339       SDValue Arg = OutVals[AI];
1340 
1341       assert(VA.isMemLoc());
1342 
1343       // SP points to one stack slot further so add one to adjust it.
1344       SDValue PtrOff = DAG.getNode(
1345           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1346           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1347           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1348 
1349       MemOpChains.push_back(
1350           DAG.getStore(Chain, DL, Arg, PtrOff,
1351                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset())));
1352     }
1353 
1354     if (!MemOpChains.empty())
1355       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1356   }
1357 
1358   // Build a sequence of copy-to-reg nodes chained together with token chain and
1359   // flag operands which copy the outgoing args into registers.  The InFlag in
1360   // necessary since all emited instructions must be stuck together.
1361   SDValue InFlag;
1362   for (auto Reg : RegsToPass) {
1363     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1364     InFlag = Chain.getValue(1);
1365   }
1366 
1367   // Returns a chain & a flag for retval copy to use.
1368   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1369   SmallVector<SDValue, 8> Ops;
1370   Ops.push_back(Chain);
1371   Ops.push_back(Callee);
1372 
1373   // Add argument registers to the end of the list so that they are known live
1374   // into the call.
1375   for (auto Reg : RegsToPass) {
1376     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1377   }
1378 
1379   // Add a register mask operand representing the call-preserved registers.
1380   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1381   const uint32_t *Mask =
1382       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1383   assert(Mask && "Missing call preserved mask for calling convention");
1384   Ops.push_back(DAG.getRegisterMask(Mask));
1385 
1386   if (InFlag.getNode()) {
1387     Ops.push_back(InFlag);
1388   }
1389 
1390   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1391   InFlag = Chain.getValue(1);
1392 
1393   // Create the CALLSEQ_END node.
1394   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1395                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1396 
1397   if (!Ins.empty()) {
1398     InFlag = Chain.getValue(1);
1399   }
1400 
1401   // Handle result values, copying them out of physregs into vregs that we
1402   // return.
1403   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1404                          InVals);
1405 }
1406 
1407 /// Lower the result values of a call into the
1408 /// appropriate copies out of appropriate physical registers.
1409 ///
1410 SDValue AVRTargetLowering::LowerCallResult(
1411     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1412     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1413     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1414 
1415   // Assign locations to each value returned by this call.
1416   SmallVector<CCValAssign, 16> RVLocs;
1417   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1418                  *DAG.getContext());
1419 
1420   // Handle runtime calling convs.
1421   if (CallConv == CallingConv::AVR_BUILTIN) {
1422     CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
1423   } else {
1424     analyzeReturnValues(Ins, CCInfo);
1425   }
1426 
1427   // Copy all of the result registers out of their specified physreg.
1428   for (CCValAssign const &RVLoc : RVLocs) {
1429     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1430                                InFlag)
1431                 .getValue(1);
1432     InFlag = Chain.getValue(2);
1433     InVals.push_back(Chain.getValue(0));
1434   }
1435 
1436   return Chain;
1437 }
1438 
1439 //===----------------------------------------------------------------------===//
1440 //               Return Value Calling Convention Implementation
1441 //===----------------------------------------------------------------------===//
1442 
1443 bool AVRTargetLowering::CanLowerReturn(
1444     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
1445     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1446   if (CallConv == CallingConv::AVR_BUILTIN) {
1447     SmallVector<CCValAssign, 16> RVLocs;
1448     CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1449     return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
1450   }
1451 
1452   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
1453   return TotalBytes <= 8;
1454 }
1455 
1456 SDValue
1457 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1458                                bool isVarArg,
1459                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1460                                const SmallVectorImpl<SDValue> &OutVals,
1461                                const SDLoc &dl, SelectionDAG &DAG) const {
1462   // CCValAssign - represent the assignment of the return value to locations.
1463   SmallVector<CCValAssign, 16> RVLocs;
1464 
1465   // CCState - Info about the registers and stack slot.
1466   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1467                  *DAG.getContext());
1468 
1469   MachineFunction &MF = DAG.getMachineFunction();
1470 
1471   // Analyze return values.
1472   if (CallConv == CallingConv::AVR_BUILTIN) {
1473     CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
1474   } else {
1475     analyzeReturnValues(Outs, CCInfo);
1476   }
1477 
1478   SDValue Flag;
1479   SmallVector<SDValue, 4> RetOps(1, Chain);
1480   // Copy the result values into the output registers.
1481   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1482     CCValAssign &VA = RVLocs[i];
1483     assert(VA.isRegLoc() && "Can only return in registers!");
1484 
1485     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1486 
1487     // Guarantee that all emitted copies are stuck together with flags.
1488     Flag = Chain.getValue(1);
1489     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1490   }
1491 
1492   // Don't emit the ret/reti instruction when the naked attribute is present in
1493   // the function being compiled.
1494   if (MF.getFunction().getAttributes().hasFnAttr(Attribute::Naked)) {
1495     return Chain;
1496   }
1497 
1498   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1499 
1500   unsigned RetOpc =
1501       AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_FLAG : AVRISD::RET_FLAG;
1502 
1503   RetOps[0] = Chain; // Update chain.
1504 
1505   if (Flag.getNode()) {
1506     RetOps.push_back(Flag);
1507   }
1508 
1509   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1510 }
1511 
1512 //===----------------------------------------------------------------------===//
1513 //  Custom Inserters
1514 //===----------------------------------------------------------------------===//
1515 
1516 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1517                                                   MachineBasicBlock *BB) const {
1518   unsigned Opc;
1519   const TargetRegisterClass *RC;
1520   bool HasRepeatedOperand = false;
1521   MachineFunction *F = BB->getParent();
1522   MachineRegisterInfo &RI = F->getRegInfo();
1523   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1524   DebugLoc dl = MI.getDebugLoc();
1525 
1526   switch (MI.getOpcode()) {
1527   default:
1528     llvm_unreachable("Invalid shift opcode!");
1529   case AVR::Lsl8:
1530     Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1531     RC = &AVR::GPR8RegClass;
1532     HasRepeatedOperand = true;
1533     break;
1534   case AVR::Lsl16:
1535     Opc = AVR::LSLWRd;
1536     RC = &AVR::DREGSRegClass;
1537     break;
1538   case AVR::Asr8:
1539     Opc = AVR::ASRRd;
1540     RC = &AVR::GPR8RegClass;
1541     break;
1542   case AVR::Asr16:
1543     Opc = AVR::ASRWRd;
1544     RC = &AVR::DREGSRegClass;
1545     break;
1546   case AVR::Lsr8:
1547     Opc = AVR::LSRRd;
1548     RC = &AVR::GPR8RegClass;
1549     break;
1550   case AVR::Lsr16:
1551     Opc = AVR::LSRWRd;
1552     RC = &AVR::DREGSRegClass;
1553     break;
1554   case AVR::Rol8:
1555     Opc = AVR::ROLBRd;
1556     RC = &AVR::GPR8RegClass;
1557     break;
1558   case AVR::Rol16:
1559     Opc = AVR::ROLWRd;
1560     RC = &AVR::DREGSRegClass;
1561     break;
1562   case AVR::Ror8:
1563     Opc = AVR::RORBRd;
1564     RC = &AVR::GPR8RegClass;
1565     break;
1566   case AVR::Ror16:
1567     Opc = AVR::RORWRd;
1568     RC = &AVR::DREGSRegClass;
1569     break;
1570   }
1571 
1572   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1573 
1574   MachineFunction::iterator I;
1575   for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I)
1576     ;
1577   if (I != F->end())
1578     ++I;
1579 
1580   // Create loop block.
1581   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1582   MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB);
1583   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1584 
1585   F->insert(I, LoopBB);
1586   F->insert(I, CheckBB);
1587   F->insert(I, RemBB);
1588 
1589   // Update machine-CFG edges by transferring all successors of the current
1590   // block to the block containing instructions after shift.
1591   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1592                 BB->end());
1593   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1594 
1595   // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB.
1596   BB->addSuccessor(CheckBB);
1597   LoopBB->addSuccessor(CheckBB);
1598   CheckBB->addSuccessor(LoopBB);
1599   CheckBB->addSuccessor(RemBB);
1600 
1601   Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass);
1602   Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass);
1603   Register ShiftReg = RI.createVirtualRegister(RC);
1604   Register ShiftReg2 = RI.createVirtualRegister(RC);
1605   Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1606   Register SrcReg = MI.getOperand(1).getReg();
1607   Register DstReg = MI.getOperand(0).getReg();
1608 
1609   // BB:
1610   // rjmp CheckBB
1611   BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB);
1612 
1613   // LoopBB:
1614   // ShiftReg2 = shift ShiftReg
1615   auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1616   if (HasRepeatedOperand)
1617     ShiftMI.addReg(ShiftReg);
1618 
1619   // CheckBB:
1620   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1621   // ShiftAmt = phi [%N,      BB], [%ShiftAmt2, LoopBB]
1622   // DestReg  = phi [%SrcReg, BB], [%ShiftReg,  LoopBB]
1623   // ShiftAmt2 = ShiftAmt - 1;
1624   // if (ShiftAmt2 >= 0) goto LoopBB;
1625   BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg)
1626       .addReg(SrcReg)
1627       .addMBB(BB)
1628       .addReg(ShiftReg2)
1629       .addMBB(LoopBB);
1630   BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1631       .addReg(ShiftAmtSrcReg)
1632       .addMBB(BB)
1633       .addReg(ShiftAmtReg2)
1634       .addMBB(LoopBB);
1635   BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg)
1636       .addReg(SrcReg)
1637       .addMBB(BB)
1638       .addReg(ShiftReg2)
1639       .addMBB(LoopBB);
1640 
1641   BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2).addReg(ShiftAmtReg);
1642   BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB);
1643 
1644   MI.eraseFromParent(); // The pseudo instruction is gone now.
1645   return RemBB;
1646 }
1647 
1648 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1649   if (I->getOpcode() == AVR::COPY) {
1650     Register SrcReg = I->getOperand(1).getReg();
1651     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1652   }
1653 
1654   return false;
1655 }
1656 
1657 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
1658 // after the result has been evacuated. This is probably not the best way to do
1659 // it, but it works for now.
1660 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1661                                                 MachineBasicBlock *BB) const {
1662   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1663   MachineBasicBlock::iterator I(MI);
1664   ++I; // in any case insert *after* the mul instruction
1665   if (isCopyMulResult(I))
1666     ++I;
1667   if (isCopyMulResult(I))
1668     ++I;
1669   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1670       .addReg(AVR::R1)
1671       .addReg(AVR::R1);
1672   return BB;
1673 }
1674 
1675 MachineBasicBlock *
1676 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1677                                                MachineBasicBlock *MBB) const {
1678   int Opc = MI.getOpcode();
1679 
1680   // Pseudo shift instructions with a non constant shift amount are expanded
1681   // into a loop.
1682   switch (Opc) {
1683   case AVR::Lsl8:
1684   case AVR::Lsl16:
1685   case AVR::Lsr8:
1686   case AVR::Lsr16:
1687   case AVR::Rol8:
1688   case AVR::Rol16:
1689   case AVR::Ror8:
1690   case AVR::Ror16:
1691   case AVR::Asr8:
1692   case AVR::Asr16:
1693     return insertShift(MI, MBB);
1694   case AVR::MULRdRr:
1695   case AVR::MULSRdRr:
1696     return insertMul(MI, MBB);
1697   }
1698 
1699   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1700          "Unexpected instr type to insert");
1701 
1702   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1703                                 ->getParent()
1704                                 ->getSubtarget()
1705                                 .getInstrInfo();
1706   DebugLoc dl = MI.getDebugLoc();
1707 
1708   // To "insert" a SELECT instruction, we insert the diamond
1709   // control-flow pattern. The incoming instruction knows the
1710   // destination vreg to set, the condition code register to branch
1711   // on, the true/false values to select between, and a branch opcode
1712   // to use.
1713 
1714   MachineFunction *MF = MBB->getParent();
1715   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1716   MachineBasicBlock *FallThrough = MBB->getFallThrough();
1717 
1718   // If the current basic block falls through to another basic block,
1719   // we must insert an unconditional branch to the fallthrough destination
1720   // if we are to insert basic blocks at the prior fallthrough point.
1721   if (FallThrough != nullptr) {
1722     BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1723   }
1724 
1725   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1726   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1727 
1728   MachineFunction::iterator I;
1729   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I)
1730     ;
1731   if (I != MF->end())
1732     ++I;
1733   MF->insert(I, trueMBB);
1734   MF->insert(I, falseMBB);
1735 
1736   // Transfer remaining instructions and all successors of the current
1737   // block to the block which will contain the Phi node for the
1738   // select.
1739   trueMBB->splice(trueMBB->begin(), MBB,
1740                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1741   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1742 
1743   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1744   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1745   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1746   MBB->addSuccessor(falseMBB);
1747   MBB->addSuccessor(trueMBB);
1748 
1749   // Unconditionally flow back to the true block
1750   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1751   falseMBB->addSuccessor(trueMBB);
1752 
1753   // Set up the Phi node to determine where we came from
1754   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI),
1755           MI.getOperand(0).getReg())
1756       .addReg(MI.getOperand(1).getReg())
1757       .addMBB(MBB)
1758       .addReg(MI.getOperand(2).getReg())
1759       .addMBB(falseMBB);
1760 
1761   MI.eraseFromParent(); // The pseudo instruction is gone now.
1762   return trueMBB;
1763 }
1764 
1765 //===----------------------------------------------------------------------===//
1766 //  Inline Asm Support
1767 //===----------------------------------------------------------------------===//
1768 
1769 AVRTargetLowering::ConstraintType
1770 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1771   if (Constraint.size() == 1) {
1772     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1773     switch (Constraint[0]) {
1774     default:
1775       break;
1776     case 'a': // Simple upper registers
1777     case 'b': // Base pointer registers pairs
1778     case 'd': // Upper register
1779     case 'l': // Lower registers
1780     case 'e': // Pointer register pairs
1781     case 'q': // Stack pointer register
1782     case 'r': // Any register
1783     case 'w': // Special upper register pairs
1784       return C_RegisterClass;
1785     case 't': // Temporary register
1786     case 'x':
1787     case 'X': // Pointer register pair X
1788     case 'y':
1789     case 'Y': // Pointer register pair Y
1790     case 'z':
1791     case 'Z': // Pointer register pair Z
1792       return C_Register;
1793     case 'Q': // A memory address based on Y or Z pointer with displacement.
1794       return C_Memory;
1795     case 'G': // Floating point constant
1796     case 'I': // 6-bit positive integer constant
1797     case 'J': // 6-bit negative integer constant
1798     case 'K': // Integer constant (Range: 2)
1799     case 'L': // Integer constant (Range: 0)
1800     case 'M': // 8-bit integer constant
1801     case 'N': // Integer constant (Range: -1)
1802     case 'O': // Integer constant (Range: 8, 16, 24)
1803     case 'P': // Integer constant (Range: 1)
1804     case 'R': // Integer constant (Range: -6 to 5)x
1805       return C_Immediate;
1806     }
1807   }
1808 
1809   return TargetLowering::getConstraintType(Constraint);
1810 }
1811 
1812 unsigned
1813 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1814   // Not sure if this is actually the right thing to do, but we got to do
1815   // *something* [agnat]
1816   switch (ConstraintCode[0]) {
1817   case 'Q':
1818     return InlineAsm::Constraint_Q;
1819   }
1820   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1821 }
1822 
1823 AVRTargetLowering::ConstraintWeight
1824 AVRTargetLowering::getSingleConstraintMatchWeight(
1825     AsmOperandInfo &info, const char *constraint) const {
1826   ConstraintWeight weight = CW_Invalid;
1827   Value *CallOperandVal = info.CallOperandVal;
1828 
1829   // If we don't have a value, we can't do a match,
1830   // but allow it at the lowest weight.
1831   // (this behaviour has been copied from the ARM backend)
1832   if (!CallOperandVal) {
1833     return CW_Default;
1834   }
1835 
1836   // Look at the constraint type.
1837   switch (*constraint) {
1838   default:
1839     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1840     break;
1841   case 'd':
1842   case 'r':
1843   case 'l':
1844     weight = CW_Register;
1845     break;
1846   case 'a':
1847   case 'b':
1848   case 'e':
1849   case 'q':
1850   case 't':
1851   case 'w':
1852   case 'x':
1853   case 'X':
1854   case 'y':
1855   case 'Y':
1856   case 'z':
1857   case 'Z':
1858     weight = CW_SpecificReg;
1859     break;
1860   case 'G':
1861     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1862       if (C->isZero()) {
1863         weight = CW_Constant;
1864       }
1865     }
1866     break;
1867   case 'I':
1868     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1869       if (isUInt<6>(C->getZExtValue())) {
1870         weight = CW_Constant;
1871       }
1872     }
1873     break;
1874   case 'J':
1875     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1876       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1877         weight = CW_Constant;
1878       }
1879     }
1880     break;
1881   case 'K':
1882     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1883       if (C->getZExtValue() == 2) {
1884         weight = CW_Constant;
1885       }
1886     }
1887     break;
1888   case 'L':
1889     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1890       if (C->getZExtValue() == 0) {
1891         weight = CW_Constant;
1892       }
1893     }
1894     break;
1895   case 'M':
1896     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1897       if (isUInt<8>(C->getZExtValue())) {
1898         weight = CW_Constant;
1899       }
1900     }
1901     break;
1902   case 'N':
1903     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1904       if (C->getSExtValue() == -1) {
1905         weight = CW_Constant;
1906       }
1907     }
1908     break;
1909   case 'O':
1910     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1911       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1912           (C->getZExtValue() == 24)) {
1913         weight = CW_Constant;
1914       }
1915     }
1916     break;
1917   case 'P':
1918     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1919       if (C->getZExtValue() == 1) {
1920         weight = CW_Constant;
1921       }
1922     }
1923     break;
1924   case 'R':
1925     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1926       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1927         weight = CW_Constant;
1928       }
1929     }
1930     break;
1931   case 'Q':
1932     weight = CW_Memory;
1933     break;
1934   }
1935 
1936   return weight;
1937 }
1938 
1939 std::pair<unsigned, const TargetRegisterClass *>
1940 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1941                                                 StringRef Constraint,
1942                                                 MVT VT) const {
1943   if (Constraint.size() == 1) {
1944     switch (Constraint[0]) {
1945     case 'a': // Simple upper registers r16..r23.
1946       if (VT == MVT::i8)
1947         return std::make_pair(0U, &AVR::LD8loRegClass);
1948       else if (VT == MVT::i16)
1949         return std::make_pair(0U, &AVR::DREGSLD8loRegClass);
1950       break;
1951     case 'b': // Base pointer registers: y, z.
1952       if (VT == MVT::i8 || VT == MVT::i16)
1953         return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1954       break;
1955     case 'd': // Upper registers r16..r31.
1956       if (VT == MVT::i8)
1957         return std::make_pair(0U, &AVR::LD8RegClass);
1958       else if (VT == MVT::i16)
1959         return std::make_pair(0U, &AVR::DLDREGSRegClass);
1960       break;
1961     case 'l': // Lower registers r0..r15.
1962       if (VT == MVT::i8)
1963         return std::make_pair(0U, &AVR::GPR8loRegClass);
1964       else if (VT == MVT::i16)
1965         return std::make_pair(0U, &AVR::DREGSloRegClass);
1966       break;
1967     case 'e': // Pointer register pairs: x, y, z.
1968       if (VT == MVT::i8 || VT == MVT::i16)
1969         return std::make_pair(0U, &AVR::PTRREGSRegClass);
1970       break;
1971     case 'q': // Stack pointer register: SPH:SPL.
1972       return std::make_pair(0U, &AVR::GPRSPRegClass);
1973     case 'r': // Any register: r0..r31.
1974       if (VT == MVT::i8)
1975         return std::make_pair(0U, &AVR::GPR8RegClass);
1976       else if (VT == MVT::i16)
1977         return std::make_pair(0U, &AVR::DREGSRegClass);
1978       break;
1979     case 't': // Temporary register: r0.
1980       if (VT == MVT::i8)
1981         return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1982       break;
1983     case 'w': // Special upper register pairs: r24, r26, r28, r30.
1984       if (VT == MVT::i8 || VT == MVT::i16)
1985         return std::make_pair(0U, &AVR::IWREGSRegClass);
1986       break;
1987     case 'x': // Pointer register pair X: r27:r26.
1988     case 'X':
1989       if (VT == MVT::i8 || VT == MVT::i16)
1990         return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1991       break;
1992     case 'y': // Pointer register pair Y: r29:r28.
1993     case 'Y':
1994       if (VT == MVT::i8 || VT == MVT::i16)
1995         return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1996       break;
1997     case 'z': // Pointer register pair Z: r31:r30.
1998     case 'Z':
1999       if (VT == MVT::i8 || VT == MVT::i16)
2000         return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
2001       break;
2002     default:
2003       break;
2004     }
2005   }
2006 
2007   return TargetLowering::getRegForInlineAsmConstraint(
2008       Subtarget.getRegisterInfo(), Constraint, VT);
2009 }
2010 
2011 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2012                                                      std::string &Constraint,
2013                                                      std::vector<SDValue> &Ops,
2014                                                      SelectionDAG &DAG) const {
2015   SDValue Result(0, 0);
2016   SDLoc DL(Op);
2017   EVT Ty = Op.getValueType();
2018 
2019   // Currently only support length 1 constraints.
2020   if (Constraint.length() != 1) {
2021     return;
2022   }
2023 
2024   char ConstraintLetter = Constraint[0];
2025   switch (ConstraintLetter) {
2026   default:
2027     break;
2028   // Deal with integers first:
2029   case 'I':
2030   case 'J':
2031   case 'K':
2032   case 'L':
2033   case 'M':
2034   case 'N':
2035   case 'O':
2036   case 'P':
2037   case 'R': {
2038     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2039     if (!C) {
2040       return;
2041     }
2042 
2043     int64_t CVal64 = C->getSExtValue();
2044     uint64_t CUVal64 = C->getZExtValue();
2045     switch (ConstraintLetter) {
2046     case 'I': // 0..63
2047       if (!isUInt<6>(CUVal64))
2048         return;
2049       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2050       break;
2051     case 'J': // -63..0
2052       if (CVal64 < -63 || CVal64 > 0)
2053         return;
2054       Result = DAG.getTargetConstant(CVal64, DL, Ty);
2055       break;
2056     case 'K': // 2
2057       if (CUVal64 != 2)
2058         return;
2059       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2060       break;
2061     case 'L': // 0
2062       if (CUVal64 != 0)
2063         return;
2064       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2065       break;
2066     case 'M': // 0..255
2067       if (!isUInt<8>(CUVal64))
2068         return;
2069       // i8 type may be printed as a negative number,
2070       // e.g. 254 would be printed as -2,
2071       // so we force it to i16 at least.
2072       if (Ty.getSimpleVT() == MVT::i8) {
2073         Ty = MVT::i16;
2074       }
2075       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2076       break;
2077     case 'N': // -1
2078       if (CVal64 != -1)
2079         return;
2080       Result = DAG.getTargetConstant(CVal64, DL, Ty);
2081       break;
2082     case 'O': // 8, 16, 24
2083       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
2084         return;
2085       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2086       break;
2087     case 'P': // 1
2088       if (CUVal64 != 1)
2089         return;
2090       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2091       break;
2092     case 'R': // -6..5
2093       if (CVal64 < -6 || CVal64 > 5)
2094         return;
2095       Result = DAG.getTargetConstant(CVal64, DL, Ty);
2096       break;
2097     }
2098 
2099     break;
2100   }
2101   case 'G':
2102     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
2103     if (!FC || !FC->isZero())
2104       return;
2105     // Soften float to i8 0
2106     Result = DAG.getTargetConstant(0, DL, MVT::i8);
2107     break;
2108   }
2109 
2110   if (Result.getNode()) {
2111     Ops.push_back(Result);
2112     return;
2113   }
2114 
2115   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2116 }
2117 
2118 Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2119                                               const MachineFunction &MF) const {
2120   Register Reg;
2121 
2122   if (VT == LLT::scalar(8)) {
2123     Reg = StringSwitch<unsigned>(RegName)
2124               .Case("r0", AVR::R0)
2125               .Case("r1", AVR::R1)
2126               .Default(0);
2127   } else {
2128     Reg = StringSwitch<unsigned>(RegName)
2129               .Case("r0", AVR::R1R0)
2130               .Case("sp", AVR::SP)
2131               .Default(0);
2132   }
2133 
2134   if (Reg)
2135     return Reg;
2136 
2137   report_fatal_error(
2138       Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2139 }
2140 
2141 } // end of namespace llvm
2142