xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/ARM/MVETailPredication.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MVETailPredication.cpp - MVE Tail Predication ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions can be
12 /// combined to provide implicit vector predication within a low-overhead loop.
13 /// The HardwareLoops pass inserts intrinsics identifying loops that the
14 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
15 /// responsible for generating a vectorized loop in which the lanes are
16 /// predicated upon the iteration counter. This pass looks at these predicated
17 /// vector loops, that are targets for low-overhead loops, and prepares it for
18 /// code generation. Once the vectorizer has produced a masked loop, there's a
19 /// couple of final forms:
20 /// - A tail-predicated loop, with implicit predication.
21 /// - A loop containing multiple VCPT instructions, predicating multiple VPT
22 ///   blocks of instructions operating on different vector types.
23 
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "ARM.h"
37 #include "ARMSubtarget.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "mve-tail-predication"
42 #define DESC "Transform predicated vector loops to use MVE tail predication"
43 
44 static cl::opt<bool>
45 DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
46                        cl::init(true),
47                        cl::desc("Disable MVE Tail Predication"));
48 namespace {
49 
50 class MVETailPredication : public LoopPass {
51   SmallVector<IntrinsicInst*, 4> MaskedInsts;
52   Loop *L = nullptr;
53   ScalarEvolution *SE = nullptr;
54   TargetTransformInfo *TTI = nullptr;
55 
56 public:
57   static char ID;
58 
59   MVETailPredication() : LoopPass(ID) { }
60 
61   void getAnalysisUsage(AnalysisUsage &AU) const override {
62     AU.addRequired<ScalarEvolutionWrapperPass>();
63     AU.addRequired<LoopInfoWrapperPass>();
64     AU.addRequired<TargetPassConfig>();
65     AU.addRequired<TargetTransformInfoWrapperPass>();
66     AU.addPreserved<LoopInfoWrapperPass>();
67     AU.setPreservesCFG();
68   }
69 
70   bool runOnLoop(Loop *L, LPPassManager&) override;
71 
72 private:
73 
74   /// Perform the relevant checks on the loop and convert if possible.
75   bool TryConvert(Value *TripCount);
76 
77   /// Return whether this is a vectorized loop, that contains masked
78   /// load/stores.
79   bool IsPredicatedVectorLoop();
80 
81   /// Compute a value for the total number of elements that the predicated
82   /// loop will process.
83   Value *ComputeElements(Value *TripCount, VectorType *VecTy);
84 
85   /// Is the icmp that generates an i1 vector, based upon a loop counter
86   /// and a limit that is defined outside the loop.
87   bool isTailPredicate(Instruction *Predicate, Value *NumElements);
88 };
89 
90 } // end namespace
91 
92 static bool IsDecrement(Instruction &I) {
93   auto *Call = dyn_cast<IntrinsicInst>(&I);
94   if (!Call)
95     return false;
96 
97   Intrinsic::ID ID = Call->getIntrinsicID();
98   return ID == Intrinsic::loop_decrement_reg;
99 }
100 
101 static bool IsMasked(Instruction *I) {
102   auto *Call = dyn_cast<IntrinsicInst>(I);
103   if (!Call)
104     return false;
105 
106   Intrinsic::ID ID = Call->getIntrinsicID();
107   // TODO: Support gather/scatter expand/compress operations.
108   return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
109 }
110 
111 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
112   if (skipLoop(L) || DisableTailPredication)
113     return false;
114 
115   Function &F = *L->getHeader()->getParent();
116   auto &TPC = getAnalysis<TargetPassConfig>();
117   auto &TM = TPC.getTM<TargetMachine>();
118   auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
119   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
120   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
121   this->L = L;
122 
123   // The MVE and LOB extensions are combined to enable tail-predication, but
124   // there's nothing preventing us from generating VCTP instructions for v8.1m.
125   if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
126     LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n");
127     return false;
128   }
129 
130   BasicBlock *Preheader = L->getLoopPreheader();
131   if (!Preheader)
132     return false;
133 
134   auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
135     for (auto &I : *BB) {
136       auto *Call = dyn_cast<IntrinsicInst>(&I);
137       if (!Call)
138         continue;
139 
140       Intrinsic::ID ID = Call->getIntrinsicID();
141       if (ID == Intrinsic::set_loop_iterations ||
142           ID == Intrinsic::test_set_loop_iterations)
143         return cast<IntrinsicInst>(&I);
144     }
145     return nullptr;
146   };
147 
148   // Look for the hardware loop intrinsic that sets the iteration count.
149   IntrinsicInst *Setup = FindLoopIterations(Preheader);
150 
151   // The test.set iteration could live in the pre- preheader.
152   if (!Setup) {
153     if (!Preheader->getSinglePredecessor())
154       return false;
155     Setup = FindLoopIterations(Preheader->getSinglePredecessor());
156     if (!Setup)
157       return false;
158   }
159 
160   // Search for the hardware loop intrinic that decrements the loop counter.
161   IntrinsicInst *Decrement = nullptr;
162   for (auto *BB : L->getBlocks()) {
163     for (auto &I : *BB) {
164       if (IsDecrement(I)) {
165         Decrement = cast<IntrinsicInst>(&I);
166         break;
167       }
168     }
169   }
170 
171   if (!Decrement)
172     return false;
173 
174   LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L
175              << *Setup << "\n"
176              << *Decrement << "\n");
177   bool Changed = TryConvert(Setup->getArgOperand(0));
178   return Changed;
179 }
180 
181 bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
182   // Look for the following:
183 
184   // %trip.count.minus.1 = add i32 %N, -1
185   // %broadcast.splatinsert10 = insertelement <4 x i32> undef,
186   //                                          i32 %trip.count.minus.1, i32 0
187   // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
188   //                                    <4 x i32> undef,
189   //                                    <4 x i32> zeroinitializer
190   // ...
191   // ...
192   // %index = phi i32
193   // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
194   // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
195   //                                  <4 x i32> undef,
196   //                                  <4 x i32> zeroinitializer
197   // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
198   // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
199 
200   // And return whether V == %pred.
201 
202   using namespace PatternMatch;
203 
204   CmpInst::Predicate Pred;
205   Instruction *Shuffle = nullptr;
206   Instruction *Induction = nullptr;
207 
208   // The vector icmp
209   if (!match(I, m_ICmp(Pred, m_Instruction(Induction),
210                        m_Instruction(Shuffle))) ||
211       Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle))
212     return false;
213 
214   // First find the stuff outside the loop which is setting up the limit
215   // vector....
216   // The invariant shuffle that broadcast the limit into a vector.
217   Instruction *Insert = nullptr;
218   if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
219                                       m_Zero())))
220     return false;
221 
222   // Insert the limit into a vector.
223   Instruction *BECount = nullptr;
224   if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount),
225                                      m_Zero())))
226     return false;
227 
228   // The limit calculation, backedge count.
229   Value *TripCount = nullptr;
230   if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
231     return false;
232 
233   if (TripCount != NumElements)
234     return false;
235 
236   // Now back to searching inside the loop body...
237   // Find the add with takes the index iv and adds a constant vector to it.
238   Instruction *BroadcastSplat = nullptr;
239   Constant *Const = nullptr;
240   if (!match(Induction, m_Add(m_Instruction(BroadcastSplat),
241                               m_Constant(Const))))
242    return false;
243 
244   // Check that we're adding <0, 1, 2, 3...
245   if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
246     for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
247       if (CDS->getElementAsInteger(i) != i)
248         return false;
249     }
250   } else
251     return false;
252 
253   // The shuffle which broadcasts the index iv into a vector.
254   if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
255                                              m_Zero())))
256     return false;
257 
258   // The insert element which initialises a vector with the index iv.
259   Instruction *IV = nullptr;
260   if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
261     return false;
262 
263   // The index iv.
264   auto *Phi = dyn_cast<PHINode>(IV);
265   if (!Phi)
266     return false;
267 
268   // TODO: Don't think we need to check the entry value.
269   Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
270   if (!match(OnEntry, m_Zero()))
271     return false;
272 
273   Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
274   unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements();
275 
276   Instruction *LHS = nullptr;
277   if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
278     return false;
279 
280   return LHS == Phi;
281 }
282 
283 static VectorType* getVectorType(IntrinsicInst *I) {
284   unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
285   auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
286   return cast<VectorType>(PtrTy->getElementType());
287 }
288 
289 bool MVETailPredication::IsPredicatedVectorLoop() {
290   // Check that the loop contains at least one masked load/store intrinsic.
291   // We only support 'normal' vector instructions - other than masked
292   // load/stores.
293   for (auto *BB : L->getBlocks()) {
294     for (auto &I : *BB) {
295       if (IsMasked(&I)) {
296         VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
297         unsigned Lanes = VecTy->getNumElements();
298         unsigned ElementWidth = VecTy->getScalarSizeInBits();
299         // MVE vectors are 128-bit, but don't support 128 x i1.
300         // TODO: Can we support vectors larger than 128-bits?
301         unsigned MaxWidth = TTI->getRegisterBitWidth(true);
302         if (Lanes * ElementWidth != MaxWidth || Lanes == MaxWidth)
303           return false;
304         MaskedInsts.push_back(cast<IntrinsicInst>(&I));
305       } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
306         for (auto &U : Int->args()) {
307           if (isa<VectorType>(U->getType()))
308             return false;
309         }
310       }
311     }
312   }
313 
314   return !MaskedInsts.empty();
315 }
316 
317 Value* MVETailPredication::ComputeElements(Value *TripCount,
318                                            VectorType *VecTy) {
319   const SCEV *TripCountSE = SE->getSCEV(TripCount);
320   ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()),
321                                      VecTy->getNumElements());
322 
323   if (VF->equalsInt(1))
324     return nullptr;
325 
326   // TODO: Support constant trip counts.
327   auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* {
328     if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
329       if (Const->getAPInt() != -VF->getValue())
330         return nullptr;
331     } else
332       return nullptr;
333     return dyn_cast<SCEVMulExpr>(S->getOperand(1));
334   };
335 
336   auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* {
337     if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
338       if (Const->getValue() != VF)
339         return nullptr;
340     } else
341       return nullptr;
342     return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
343   };
344 
345   auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* {
346     if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
347       if (Const->getValue() != VF)
348         return nullptr;
349     } else
350       return nullptr;
351 
352     if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
353       if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
354         if (Const->getAPInt() != (VF->getValue() - 1))
355           return nullptr;
356       } else
357         return nullptr;
358 
359       return RoundUp->getOperand(1);
360     }
361     return nullptr;
362   };
363 
364   // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
365   // determine the numbers of elements instead? Looks like this is what is used
366   // for delinearization, but I'm not sure if it can be applied to the
367   // vectorized form - at least not without a bit more work than I feel
368   // comfortable with.
369 
370   // Search for Elems in the following SCEV:
371   // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
372   const SCEV *Elems = nullptr;
373   if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
374     if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
375       if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
376         if (auto *Mul = VisitAdd(Add))
377           if (auto *Div = VisitMul(Mul))
378             if (auto *Res = VisitDiv(Div))
379               Elems = Res;
380 
381   if (!Elems)
382     return nullptr;
383 
384   Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
385   if (!isSafeToExpandAt(Elems, InsertPt, *SE))
386     return nullptr;
387 
388   auto DL = L->getHeader()->getModule()->getDataLayout();
389   SCEVExpander Expander(*SE, DL, "elements");
390   return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
391 }
392 
393 // Look through the exit block to see whether there's a duplicate predicate
394 // instruction. This can happen when we need to perform a select on values
395 // from the last and previous iteration. Instead of doing a straight
396 // replacement of that predicate with the vctp, clone the vctp and place it
397 // in the block. This means that the VPR doesn't have to be live into the
398 // exit block which should make it easier to convert this loop into a proper
399 // tail predicated loop.
400 static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
401                     SetVector<Instruction*> &MaybeDead, Loop *L) {
402   if (BasicBlock *Exit = L->getUniqueExitBlock()) {
403     for (auto &Pair : NewPredicates) {
404       Instruction *OldPred = Pair.first;
405       Instruction *NewPred = Pair.second;
406 
407       for (auto &I : *Exit) {
408         if (I.isSameOperationAs(OldPred)) {
409           Instruction *PredClone = NewPred->clone();
410           PredClone->insertBefore(&I);
411           I.replaceAllUsesWith(PredClone);
412           MaybeDead.insert(&I);
413           break;
414         }
415       }
416     }
417   }
418 
419   // Drop references and add operands to check for dead.
420   SmallPtrSet<Instruction*, 4> Dead;
421   while (!MaybeDead.empty()) {
422     auto *I = MaybeDead.front();
423     MaybeDead.remove(I);
424     if (I->hasNUsesOrMore(1))
425       continue;
426 
427     for (auto &U : I->operands()) {
428       if (auto *OpI = dyn_cast<Instruction>(U))
429         MaybeDead.insert(OpI);
430     }
431     I->dropAllReferences();
432     Dead.insert(I);
433   }
434 
435   for (auto *I : Dead)
436     I->eraseFromParent();
437 
438   for (auto I : L->blocks())
439     DeleteDeadPHIs(I);
440 }
441 
442 bool MVETailPredication::TryConvert(Value *TripCount) {
443   if (!IsPredicatedVectorLoop())
444     return false;
445 
446   LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n");
447 
448   // Walk through the masked intrinsics and try to find whether the predicate
449   // operand is generated from an induction variable.
450   Module *M = L->getHeader()->getModule();
451   Type *Ty = IntegerType::get(M->getContext(), 32);
452   SetVector<Instruction*> Predicates;
453   DenseMap<Instruction*, Instruction*> NewPredicates;
454 
455   for (auto *I : MaskedInsts) {
456     Intrinsic::ID ID = I->getIntrinsicID();
457     unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
458     auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
459     if (!Predicate || Predicates.count(Predicate))
460       continue;
461 
462     VectorType *VecTy = getVectorType(I);
463     Value *NumElements = ComputeElements(TripCount, VecTy);
464     if (!NumElements)
465       continue;
466 
467     if (!isTailPredicate(Predicate, NumElements)) {
468       LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate <<  "\n");
469       continue;
470     }
471 
472     LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n");
473     Predicates.insert(Predicate);
474 
475     // Insert a phi to count the number of elements processed by the loop.
476     IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
477     PHINode *Processed = Builder.CreatePHI(Ty, 2);
478     Processed->addIncoming(NumElements, L->getLoopPreheader());
479 
480     // Insert the intrinsic to represent the effect of tail predication.
481     Builder.SetInsertPoint(cast<Instruction>(Predicate));
482     ConstantInt *Factor =
483       ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements());
484     Intrinsic::ID VCTPID;
485     switch (VecTy->getNumElements()) {
486     default:
487       llvm_unreachable("unexpected number of lanes");
488     case 2:  VCTPID = Intrinsic::arm_vctp64; break;
489     case 4:  VCTPID = Intrinsic::arm_vctp32; break;
490     case 8:  VCTPID = Intrinsic::arm_vctp16; break;
491     case 16: VCTPID = Intrinsic::arm_vctp8; break;
492     }
493     Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
494     Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
495     Predicate->replaceAllUsesWith(TailPredicate);
496     NewPredicates[Predicate] = cast<Instruction>(TailPredicate);
497 
498     // Add the incoming value to the new phi.
499     // TODO: This add likely already exists in the loop.
500     Value *Remaining = Builder.CreateSub(Processed, Factor);
501     Processed->addIncoming(Remaining, L->getLoopLatch());
502     LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: "
503                << *Processed << "\n"
504                << "TP: Inserted VCTP: " << *TailPredicate << "\n");
505   }
506 
507   // Now clean up.
508   Cleanup(NewPredicates, Predicates, L);
509   return true;
510 }
511 
512 Pass *llvm::createMVETailPredicationPass() {
513   return new MVETailPredication();
514 }
515 
516 char MVETailPredication::ID = 0;
517 
518 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
519 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
520