1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMRegisterInfo.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/MC/MCAsmBackend.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCAssembler.h" 27 #include "llvm/MC/MCCodeEmitter.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCELFStreamer.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCFixup.h" 32 #include "llvm/MC/MCFragment.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCObjectWriter.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/MC/MCSection.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSubtargetInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/SectionKind.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/ARMEHABI.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(unsigned FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 public: 105 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 106 MCInstPrinter &InstPrinter, bool VerboseAsm); 107 }; 108 109 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 110 formatted_raw_ostream &OS, 111 MCInstPrinter &InstPrinter, 112 bool VerboseAsm) 113 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 114 IsVerboseAsm(VerboseAsm) {} 115 116 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 117 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 118 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 119 120 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 121 OS << "\t.personality " << Personality->getName() << '\n'; 122 } 123 124 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 125 OS << "\t.personalityindex " << Index << '\n'; 126 } 127 128 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 129 130 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 131 int64_t Offset) { 132 OS << "\t.setfp\t"; 133 InstPrinter.printRegName(OS, FpReg); 134 OS << ", "; 135 InstPrinter.printRegName(OS, SpReg); 136 if (Offset) 137 OS << ", #" << Offset; 138 OS << '\n'; 139 } 140 141 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 142 assert((Reg != ARM::SP && Reg != ARM::PC) && 143 "the operand of .movsp cannot be either sp or pc"); 144 145 OS << "\t.movsp\t"; 146 InstPrinter.printRegName(OS, Reg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 153 OS << "\t.pad\t#" << Offset << '\n'; 154 } 155 156 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 157 bool isVector) { 158 assert(RegList.size() && "RegList should not be empty"); 159 if (isVector) 160 OS << "\t.vsave\t{"; 161 else 162 OS << "\t.save\t{"; 163 164 InstPrinter.printRegName(OS, RegList[0]); 165 166 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 167 OS << ", "; 168 InstPrinter.printRegName(OS, RegList[i]); 169 } 170 171 OS << "}\n"; 172 } 173 174 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 175 176 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 177 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 178 if (IsVerboseAsm) { 179 StringRef Name = ELFAttrs::attrTypeAsString( 180 Attribute, ARMBuildAttrs::getARMAttributeTags()); 181 if (!Name.empty()) 182 OS << "\t@ " << Name; 183 } 184 OS << "\n"; 185 } 186 187 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 188 StringRef String) { 189 switch (Attribute) { 190 case ARMBuildAttrs::CPU_name: 191 OS << "\t.cpu\t" << String.lower(); 192 break; 193 default: 194 OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\""; 195 if (IsVerboseAsm) { 196 StringRef Name = ELFAttrs::attrTypeAsString( 197 Attribute, ARMBuildAttrs::getARMAttributeTags()); 198 if (!Name.empty()) 199 OS << "\t@ " << Name; 200 } 201 break; 202 } 203 OS << "\n"; 204 } 205 206 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 207 unsigned IntValue, 208 StringRef StringValue) { 209 switch (Attribute) { 210 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 211 case ARMBuildAttrs::compatibility: 212 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 213 if (!StringValue.empty()) 214 OS << ", \"" << StringValue << "\""; 215 if (IsVerboseAsm) 216 OS << "\t@ " 217 << ELFAttrs::attrTypeAsString(Attribute, 218 ARMBuildAttrs::getARMAttributeTags()); 219 break; 220 } 221 OS << "\n"; 222 } 223 224 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 225 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 226 } 227 228 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 229 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 230 } 231 232 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 233 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 234 } 235 236 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { 237 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 238 } 239 240 void ARMTargetAsmStreamer::finishAttributeSection() {} 241 242 void 243 ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { 244 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 245 } 246 247 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 248 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 249 250 OS << "\t.thumb_set\t"; 251 Symbol->print(OS, MAI); 252 OS << ", "; 253 Value->print(OS, MAI); 254 OS << '\n'; 255 } 256 257 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 258 OS << "\t.inst"; 259 if (Suffix) 260 OS << "." << Suffix; 261 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 262 } 263 264 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 265 const SmallVectorImpl<uint8_t> &Opcodes) { 266 OS << "\t.unwind_raw " << Offset; 267 for (SmallVectorImpl<uint8_t>::const_iterator OCI = Opcodes.begin(), 268 OCE = Opcodes.end(); 269 OCI != OCE; ++OCI) 270 OS << ", 0x" << Twine::utohexstr(*OCI); 271 OS << '\n'; 272 } 273 274 class ARMTargetELFStreamer : public ARMTargetStreamer { 275 private: 276 StringRef CurrentVendor; 277 unsigned FPU = ARM::FK_INVALID; 278 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 279 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 280 281 MCSection *AttributeSection = nullptr; 282 283 void emitArchDefaultAttributes(); 284 void emitFPUDefaultAttributes(); 285 286 ARMELFStreamer &getStreamer(); 287 288 void emitFnStart() override; 289 void emitFnEnd() override; 290 void emitCantUnwind() override; 291 void emitPersonality(const MCSymbol *Personality) override; 292 void emitPersonalityIndex(unsigned Index) override; 293 void emitHandlerData() override; 294 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 295 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 296 void emitPad(int64_t Offset) override; 297 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 298 bool isVector) override; 299 void emitUnwindRaw(int64_t Offset, 300 const SmallVectorImpl<uint8_t> &Opcodes) override; 301 302 void switchVendor(StringRef Vendor) override; 303 void emitAttribute(unsigned Attribute, unsigned Value) override; 304 void emitTextAttribute(unsigned Attribute, StringRef String) override; 305 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 306 StringRef StringValue) override; 307 void emitArch(ARM::ArchKind Arch) override; 308 void emitObjectArch(ARM::ArchKind Arch) override; 309 void emitFPU(unsigned FPU) override; 310 void emitInst(uint32_t Inst, char Suffix = '\0') override; 311 void finishAttributeSection() override; 312 void emitLabel(MCSymbol *Symbol) override; 313 314 void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 315 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 316 317 // Reset state between object emissions 318 void reset() override; 319 320 public: 321 ARMTargetELFStreamer(MCStreamer &S) 322 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 323 }; 324 325 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 326 /// the appropriate points in the object files. These symbols are defined in the 327 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 328 /// 329 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 330 /// region of ARM code, Thumb code or data in a section. In practice, this 331 /// emission does not rely on explicit assembler directives but on inherent 332 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 333 /// r0, r0, r0" an instruction). 334 /// 335 /// As a result this system is orthogonal to the DataRegion infrastructure used 336 /// by MachO. Beware! 337 class ARMELFStreamer : public MCELFStreamer { 338 public: 339 friend class ARMTargetELFStreamer; 340 341 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 342 std::unique_ptr<MCObjectWriter> OW, 343 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 344 bool IsAndroid) 345 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 346 std::move(Emitter)), 347 IsThumb(IsThumb), IsAndroid(IsAndroid) { 348 EHReset(); 349 } 350 351 ~ARMELFStreamer() override = default; 352 353 void finishImpl() override; 354 355 // ARM exception handling directives 356 void emitFnStart(); 357 void emitFnEnd(); 358 void emitCantUnwind(); 359 void emitPersonality(const MCSymbol *Per); 360 void emitPersonalityIndex(unsigned index); 361 void emitHandlerData(); 362 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 363 void emitMovSP(unsigned Reg, int64_t Offset = 0); 364 void emitPad(int64_t Offset); 365 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 366 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 367 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 368 SMLoc Loc) override { 369 emitDataMappingSymbol(); 370 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 371 } 372 373 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 374 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 375 MCELFStreamer::changeSection(Section, Subsection); 376 auto LastMappingSymbol = LastMappingSymbols.find(Section); 377 if (LastMappingSymbol != LastMappingSymbols.end()) { 378 LastEMSInfo = std::move(LastMappingSymbol->second); 379 return; 380 } 381 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 382 } 383 384 /// This function is the one used to emit instruction data into the ELF 385 /// streamer. We override it to add the appropriate mapping symbol if 386 /// necessary. 387 void emitInstruction(const MCInst &Inst, 388 const MCSubtargetInfo &STI) override { 389 if (IsThumb) 390 EmitThumbMappingSymbol(); 391 else 392 EmitARMMappingSymbol(); 393 394 MCELFStreamer::emitInstruction(Inst, STI); 395 } 396 397 void emitInst(uint32_t Inst, char Suffix) { 398 unsigned Size; 399 char Buffer[4]; 400 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 401 402 switch (Suffix) { 403 case '\0': 404 Size = 4; 405 406 assert(!IsThumb); 407 EmitARMMappingSymbol(); 408 for (unsigned II = 0, IE = Size; II != IE; II++) { 409 const unsigned I = LittleEndian ? (Size - II - 1) : II; 410 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 411 } 412 413 break; 414 case 'n': 415 case 'w': 416 Size = (Suffix == 'n' ? 2 : 4); 417 418 assert(IsThumb); 419 EmitThumbMappingSymbol(); 420 // Thumb wide instructions are emitted as a pair of 16-bit words of the 421 // appropriate endianness. 422 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 423 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 424 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 425 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 426 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 427 } 428 429 break; 430 default: 431 llvm_unreachable("Invalid Suffix"); 432 } 433 434 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 435 } 436 437 /// This is one of the functions used to emit data into an ELF section, so the 438 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 439 /// necessary. 440 void emitBytes(StringRef Data) override { 441 emitDataMappingSymbol(); 442 MCELFStreamer::emitBytes(Data); 443 } 444 445 void FlushPendingMappingSymbol() { 446 if (!LastEMSInfo->hasInfo()) 447 return; 448 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 449 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 450 EMS->resetInfo(); 451 } 452 453 /// This is one of the functions used to emit data into an ELF section, so the 454 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 455 /// necessary. 456 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 457 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 458 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 459 getContext().reportError(Loc, "relocated expression must be 32-bit"); 460 return; 461 } 462 getOrCreateDataFragment(); 463 } 464 465 emitDataMappingSymbol(); 466 MCELFStreamer::emitValueImpl(Value, Size, Loc); 467 } 468 469 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 470 MCELFStreamer::emitAssemblerFlag(Flag); 471 472 switch (Flag) { 473 case MCAF_SyntaxUnified: 474 return; // no-op here. 475 case MCAF_Code16: 476 IsThumb = true; 477 return; // Change to Thumb mode 478 case MCAF_Code32: 479 IsThumb = false; 480 return; // Change to ARM mode 481 case MCAF_Code64: 482 return; 483 case MCAF_SubsectionsViaSymbols: 484 return; 485 } 486 } 487 488 /// If a label is defined before the .type directive sets the label's type 489 /// then the label can't be recorded as thumb function when the label is 490 /// defined. We override emitSymbolAttribute() which is called as part of the 491 /// parsing of .type so that if the symbol has already been defined we can 492 /// record the label as Thumb. FIXME: there is a corner case where the state 493 /// is changed in between the label definition and the .type directive, this 494 /// is not expected to occur in practice and handling it would require the 495 /// backend to track IsThumb for every label. 496 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 497 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 498 499 if (!IsThumb) 500 return Val; 501 502 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 503 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 504 Symbol->isDefined()) 505 getAssembler().setIsThumbFunc(Symbol); 506 507 return Val; 508 }; 509 510 private: 511 enum ElfMappingSymbol { 512 EMS_None, 513 EMS_ARM, 514 EMS_Thumb, 515 EMS_Data 516 }; 517 518 struct ElfMappingSymbolInfo { 519 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 520 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 521 void resetInfo() { 522 F = nullptr; 523 Offset = 0; 524 } 525 bool hasInfo() { return F != nullptr; } 526 SMLoc Loc; 527 MCFragment *F; 528 uint64_t Offset; 529 ElfMappingSymbol State; 530 }; 531 532 void emitDataMappingSymbol() { 533 if (LastEMSInfo->State == EMS_Data) 534 return; 535 else if (LastEMSInfo->State == EMS_None) { 536 // This is a tentative symbol, it won't really be emitted until it's 537 // actually needed. 538 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 539 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 540 if (!DF) 541 return; 542 EMS->Loc = SMLoc(); 543 EMS->F = getCurrentFragment(); 544 EMS->Offset = DF->getContents().size(); 545 LastEMSInfo->State = EMS_Data; 546 return; 547 } 548 EmitMappingSymbol("$d"); 549 LastEMSInfo->State = EMS_Data; 550 } 551 552 void EmitThumbMappingSymbol() { 553 if (LastEMSInfo->State == EMS_Thumb) 554 return; 555 FlushPendingMappingSymbol(); 556 EmitMappingSymbol("$t"); 557 LastEMSInfo->State = EMS_Thumb; 558 } 559 560 void EmitARMMappingSymbol() { 561 if (LastEMSInfo->State == EMS_ARM) 562 return; 563 FlushPendingMappingSymbol(); 564 EmitMappingSymbol("$a"); 565 LastEMSInfo->State = EMS_ARM; 566 } 567 568 void EmitMappingSymbol(StringRef Name) { 569 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 570 Name + "." + Twine(MappingSymbolCounter++))); 571 emitLabel(Symbol); 572 573 Symbol->setType(ELF::STT_NOTYPE); 574 Symbol->setBinding(ELF::STB_LOCAL); 575 } 576 577 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 578 uint64_t Offset) { 579 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 580 Name + "." + Twine(MappingSymbolCounter++))); 581 emitLabelAtPos(Symbol, Loc, F, Offset); 582 Symbol->setType(ELF::STT_NOTYPE); 583 Symbol->setBinding(ELF::STB_LOCAL); 584 } 585 586 void emitThumbFunc(MCSymbol *Func) override { 587 getAssembler().setIsThumbFunc(Func); 588 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 589 } 590 591 // Helper functions for ARM exception handling directives 592 void EHReset(); 593 594 // Reset state between object emissions 595 void reset() override; 596 597 void EmitPersonalityFixup(StringRef Name); 598 void FlushPendingOffset(); 599 void FlushUnwindOpcodes(bool NoHandlerData); 600 601 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 602 SectionKind Kind, const MCSymbol &Fn); 603 void SwitchToExTabSection(const MCSymbol &FnStart); 604 void SwitchToExIdxSection(const MCSymbol &FnStart); 605 606 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 607 608 bool IsThumb; 609 bool IsAndroid; 610 int64_t MappingSymbolCounter = 0; 611 612 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 613 LastMappingSymbols; 614 615 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 616 617 // ARM Exception Handling Frame Information 618 MCSymbol *ExTab; 619 MCSymbol *FnStart; 620 const MCSymbol *Personality; 621 unsigned PersonalityIndex; 622 unsigned FPReg; // Frame pointer register 623 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 624 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 625 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 626 bool UsedFP; 627 bool CantUnwind; 628 SmallVector<uint8_t, 64> Opcodes; 629 UnwindOpcodeAssembler UnwindOpAsm; 630 }; 631 632 } // end anonymous namespace 633 634 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 635 return static_cast<ARMELFStreamer &>(Streamer); 636 } 637 638 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 639 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 640 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 641 642 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 643 getStreamer().emitPersonality(Personality); 644 } 645 646 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 647 getStreamer().emitPersonalityIndex(Index); 648 } 649 650 void ARMTargetELFStreamer::emitHandlerData() { 651 getStreamer().emitHandlerData(); 652 } 653 654 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 655 int64_t Offset) { 656 getStreamer().emitSetFP(FpReg, SpReg, Offset); 657 } 658 659 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 660 getStreamer().emitMovSP(Reg, Offset); 661 } 662 663 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 664 getStreamer().emitPad(Offset); 665 } 666 667 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 668 bool isVector) { 669 getStreamer().emitRegSave(RegList, isVector); 670 } 671 672 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 673 const SmallVectorImpl<uint8_t> &Opcodes) { 674 getStreamer().emitUnwindRaw(Offset, Opcodes); 675 } 676 677 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 678 assert(!Vendor.empty() && "Vendor cannot be empty."); 679 680 if (CurrentVendor == Vendor) 681 return; 682 683 if (!CurrentVendor.empty()) 684 finishAttributeSection(); 685 686 assert(getStreamer().Contents.empty() && 687 ".ARM.attributes should be flushed before changing vendor"); 688 CurrentVendor = Vendor; 689 690 } 691 692 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 693 getStreamer().setAttributeItem(Attribute, Value, 694 /* OverwriteExisting= */ true); 695 } 696 697 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 698 StringRef Value) { 699 getStreamer().setAttributeItem(Attribute, Value, 700 /* OverwriteExisting= */ true); 701 } 702 703 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 704 unsigned IntValue, 705 StringRef StringValue) { 706 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 707 /* OverwriteExisting= */ true); 708 } 709 710 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 711 Arch = Value; 712 } 713 714 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 715 EmittedArch = Value; 716 } 717 718 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 719 using namespace ARMBuildAttrs; 720 ARMELFStreamer &S = getStreamer(); 721 722 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 723 724 if (EmittedArch == ARM::ArchKind::INVALID) 725 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 726 else 727 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 728 729 switch (Arch) { 730 case ARM::ArchKind::ARMV2: 731 case ARM::ArchKind::ARMV2A: 732 case ARM::ArchKind::ARMV3: 733 case ARM::ArchKind::ARMV3M: 734 case ARM::ArchKind::ARMV4: 735 S.setAttributeItem(ARM_ISA_use, Allowed, false); 736 break; 737 738 case ARM::ArchKind::ARMV4T: 739 case ARM::ArchKind::ARMV5T: 740 case ARM::ArchKind::XSCALE: 741 case ARM::ArchKind::ARMV5TE: 742 case ARM::ArchKind::ARMV6: 743 S.setAttributeItem(ARM_ISA_use, Allowed, false); 744 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 745 break; 746 747 case ARM::ArchKind::ARMV6T2: 748 S.setAttributeItem(ARM_ISA_use, Allowed, false); 749 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 750 break; 751 752 case ARM::ArchKind::ARMV6K: 753 case ARM::ArchKind::ARMV6KZ: 754 S.setAttributeItem(ARM_ISA_use, Allowed, false); 755 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 756 S.setAttributeItem(Virtualization_use, AllowTZ, false); 757 break; 758 759 case ARM::ArchKind::ARMV6M: 760 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 761 break; 762 763 case ARM::ArchKind::ARMV7A: 764 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 765 S.setAttributeItem(ARM_ISA_use, Allowed, false); 766 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 767 break; 768 769 case ARM::ArchKind::ARMV7R: 770 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 771 S.setAttributeItem(ARM_ISA_use, Allowed, false); 772 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 773 break; 774 775 case ARM::ArchKind::ARMV7EM: 776 case ARM::ArchKind::ARMV7M: 777 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 778 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 779 break; 780 781 case ARM::ArchKind::ARMV8A: 782 case ARM::ArchKind::ARMV8_1A: 783 case ARM::ArchKind::ARMV8_2A: 784 case ARM::ArchKind::ARMV8_3A: 785 case ARM::ArchKind::ARMV8_4A: 786 case ARM::ArchKind::ARMV8_5A: 787 case ARM::ArchKind::ARMV8_6A: 788 case ARM::ArchKind::ARMV9A: 789 case ARM::ArchKind::ARMV9_1A: 790 case ARM::ArchKind::ARMV9_2A: 791 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 792 S.setAttributeItem(ARM_ISA_use, Allowed, false); 793 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 794 S.setAttributeItem(MPextension_use, Allowed, false); 795 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 796 break; 797 798 case ARM::ArchKind::ARMV8MBaseline: 799 case ARM::ArchKind::ARMV8MMainline: 800 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 801 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 802 break; 803 804 case ARM::ArchKind::IWMMXT: 805 S.setAttributeItem(ARM_ISA_use, Allowed, false); 806 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 807 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 808 break; 809 810 case ARM::ArchKind::IWMMXT2: 811 S.setAttributeItem(ARM_ISA_use, Allowed, false); 812 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 813 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 814 break; 815 816 default: 817 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 818 break; 819 } 820 } 821 822 void ARMTargetELFStreamer::emitFPU(unsigned Value) { 823 FPU = Value; 824 } 825 826 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 827 ARMELFStreamer &S = getStreamer(); 828 829 switch (FPU) { 830 case ARM::FK_VFP: 831 case ARM::FK_VFPV2: 832 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 833 /* OverwriteExisting= */ false); 834 break; 835 836 case ARM::FK_VFPV3: 837 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 838 /* OverwriteExisting= */ false); 839 break; 840 841 case ARM::FK_VFPV3_FP16: 842 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 843 /* OverwriteExisting= */ false); 844 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 845 /* OverwriteExisting= */ false); 846 break; 847 848 case ARM::FK_VFPV3_D16: 849 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 850 /* OverwriteExisting= */ false); 851 break; 852 853 case ARM::FK_VFPV3_D16_FP16: 854 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 855 /* OverwriteExisting= */ false); 856 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 857 /* OverwriteExisting= */ false); 858 break; 859 860 case ARM::FK_VFPV3XD: 861 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 862 /* OverwriteExisting= */ false); 863 break; 864 case ARM::FK_VFPV3XD_FP16: 865 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 866 /* OverwriteExisting= */ false); 867 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 868 /* OverwriteExisting= */ false); 869 break; 870 871 case ARM::FK_VFPV4: 872 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 873 /* OverwriteExisting= */ false); 874 break; 875 876 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 877 // as _D16 here. 878 case ARM::FK_FPV4_SP_D16: 879 case ARM::FK_VFPV4_D16: 880 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 881 /* OverwriteExisting= */ false); 882 break; 883 884 case ARM::FK_FP_ARMV8: 885 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 886 /* OverwriteExisting= */ false); 887 break; 888 889 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 890 // uses the FP_ARMV8_D16 build attribute. 891 case ARM::FK_FPV5_SP_D16: 892 case ARM::FK_FPV5_D16: 893 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 894 /* OverwriteExisting= */ false); 895 break; 896 897 case ARM::FK_NEON: 898 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 899 /* OverwriteExisting= */ false); 900 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 901 ARMBuildAttrs::AllowNeon, 902 /* OverwriteExisting= */ false); 903 break; 904 905 case ARM::FK_NEON_FP16: 906 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 907 /* OverwriteExisting= */ false); 908 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 909 ARMBuildAttrs::AllowNeon, 910 /* OverwriteExisting= */ false); 911 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 912 /* OverwriteExisting= */ false); 913 break; 914 915 case ARM::FK_NEON_VFPV4: 916 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 917 /* OverwriteExisting= */ false); 918 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 919 ARMBuildAttrs::AllowNeon2, 920 /* OverwriteExisting= */ false); 921 break; 922 923 case ARM::FK_NEON_FP_ARMV8: 924 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 925 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 926 /* OverwriteExisting= */ false); 927 // 'Advanced_SIMD_arch' must be emitted not here, but within 928 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 929 break; 930 931 case ARM::FK_SOFTVFP: 932 case ARM::FK_NONE: 933 break; 934 935 default: 936 report_fatal_error("Unknown FPU: " + Twine(FPU)); 937 break; 938 } 939 } 940 941 void ARMTargetELFStreamer::finishAttributeSection() { 942 ARMELFStreamer &S = getStreamer(); 943 944 if (FPU != ARM::FK_INVALID) 945 emitFPUDefaultAttributes(); 946 947 if (Arch != ARM::ArchKind::INVALID) 948 emitArchDefaultAttributes(); 949 950 if (S.Contents.empty()) 951 return; 952 953 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 954 const MCELFStreamer::AttributeItem &RHS) -> bool { 955 // The conformance tag must be emitted first when serialised into an 956 // object file. Specifically, the addenda to the ARM ABI states that 957 // (2.3.7.4): 958 // 959 // "To simplify recognition by consumers in the common case of claiming 960 // conformity for the whole file, this tag should be emitted first in a 961 // file-scope sub-subsection of the first public subsection of the 962 // attributes section." 963 // 964 // So it is special-cased in this comparison predicate when the 965 // attributes are sorted in finishAttributeSection(). 966 return (RHS.Tag != ARMBuildAttrs::conformance) && 967 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 968 }; 969 llvm::sort(S.Contents, LessTag); 970 971 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 972 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 973 974 FPU = ARM::FK_INVALID; 975 } 976 977 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 978 ARMELFStreamer &Streamer = getStreamer(); 979 if (!Streamer.IsThumb) 980 return; 981 982 Streamer.getAssembler().registerSymbol(*Symbol); 983 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 984 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 985 Streamer.emitThumbFunc(Symbol); 986 } 987 988 void 989 ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { 990 getStreamer().EmitFixup(S, FK_Data_4); 991 } 992 993 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 994 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 995 const MCSymbol &Sym = SRE->getSymbol(); 996 if (!Sym.isDefined()) { 997 getStreamer().emitAssignment(Symbol, Value); 998 return; 999 } 1000 } 1001 1002 getStreamer().emitThumbFunc(Symbol); 1003 getStreamer().emitAssignment(Symbol, Value); 1004 } 1005 1006 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1007 getStreamer().emitInst(Inst, Suffix); 1008 } 1009 1010 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1011 1012 void ARMELFStreamer::finishImpl() { 1013 MCTargetStreamer &TS = *getTargetStreamer(); 1014 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1015 ATS.finishAttributeSection(); 1016 1017 MCELFStreamer::finishImpl(); 1018 } 1019 1020 void ARMELFStreamer::reset() { 1021 MCTargetStreamer &TS = *getTargetStreamer(); 1022 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1023 ATS.reset(); 1024 MappingSymbolCounter = 0; 1025 MCELFStreamer::reset(); 1026 LastMappingSymbols.clear(); 1027 LastEMSInfo.reset(); 1028 // MCELFStreamer clear's the assembler's e_flags. However, for 1029 // arm we manually set the ABI version on streamer creation, so 1030 // do the same here 1031 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1032 } 1033 1034 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1035 unsigned Type, 1036 unsigned Flags, 1037 SectionKind Kind, 1038 const MCSymbol &Fn) { 1039 const MCSectionELF &FnSection = 1040 static_cast<const MCSectionELF &>(Fn.getSection()); 1041 1042 // Create the name for new section 1043 StringRef FnSecName(FnSection.getName()); 1044 SmallString<128> EHSecName(Prefix); 1045 if (FnSecName != ".text") { 1046 EHSecName += FnSecName; 1047 } 1048 1049 // Get .ARM.extab or .ARM.exidx section 1050 const MCSymbolELF *Group = FnSection.getGroup(); 1051 if (Group) 1052 Flags |= ELF::SHF_GROUP; 1053 MCSectionELF *EHSection = getContext().getELFSection( 1054 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1055 FnSection.getUniqueID(), 1056 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1057 1058 assert(EHSection && "Failed to get the required EH section"); 1059 1060 // Switch to .ARM.extab or .ARM.exidx section 1061 SwitchSection(EHSection); 1062 emitValueToAlignment(4, 0, 1, 0); 1063 } 1064 1065 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1066 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1067 SectionKind::getData(), FnStart); 1068 } 1069 1070 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1071 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1072 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1073 SectionKind::getData(), FnStart); 1074 } 1075 1076 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1077 MCDataFragment *Frag = getOrCreateDataFragment(); 1078 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1079 Kind)); 1080 } 1081 1082 void ARMELFStreamer::EHReset() { 1083 ExTab = nullptr; 1084 FnStart = nullptr; 1085 Personality = nullptr; 1086 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1087 FPReg = ARM::SP; 1088 FPOffset = 0; 1089 SPOffset = 0; 1090 PendingOffset = 0; 1091 UsedFP = false; 1092 CantUnwind = false; 1093 1094 Opcodes.clear(); 1095 UnwindOpAsm.Reset(); 1096 } 1097 1098 void ARMELFStreamer::emitFnStart() { 1099 assert(FnStart == nullptr); 1100 FnStart = getContext().createTempSymbol(); 1101 emitLabel(FnStart); 1102 } 1103 1104 void ARMELFStreamer::emitFnEnd() { 1105 assert(FnStart && ".fnstart must precedes .fnend"); 1106 1107 // Emit unwind opcodes if there is no .handlerdata directive 1108 if (!ExTab && !CantUnwind) 1109 FlushUnwindOpcodes(true); 1110 1111 // Emit the exception index table entry 1112 SwitchToExIdxSection(*FnStart); 1113 1114 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1115 // personality routine to protect it from an arbitrary platform's static 1116 // linker garbage collection. We disable this for Android where the unwinder 1117 // is either dynamically linked or directly references the personality 1118 // routine. 1119 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1120 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1121 1122 const MCSymbolRefExpr *FnStartRef = 1123 MCSymbolRefExpr::create(FnStart, 1124 MCSymbolRefExpr::VK_ARM_PREL31, 1125 getContext()); 1126 1127 emitValue(FnStartRef, 4); 1128 1129 if (CantUnwind) { 1130 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1131 } else if (ExTab) { 1132 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1133 const MCSymbolRefExpr *ExTabEntryRef = 1134 MCSymbolRefExpr::create(ExTab, 1135 MCSymbolRefExpr::VK_ARM_PREL31, 1136 getContext()); 1137 emitValue(ExTabEntryRef, 4); 1138 } else { 1139 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1140 // the second word of exception index table entry. The size of the unwind 1141 // opcodes should always be 4 bytes. 1142 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1143 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1144 assert(Opcodes.size() == 4u && 1145 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1146 uint64_t Intval = Opcodes[0] | 1147 Opcodes[1] << 8 | 1148 Opcodes[2] << 16 | 1149 Opcodes[3] << 24; 1150 emitIntValue(Intval, Opcodes.size()); 1151 } 1152 1153 // Switch to the section containing FnStart 1154 SwitchSection(&FnStart->getSection()); 1155 1156 // Clean exception handling frame information 1157 EHReset(); 1158 } 1159 1160 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1161 1162 // Add the R_ARM_NONE fixup at the same position 1163 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1164 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1165 1166 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1167 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1168 1169 visitUsedExpr(*PersonalityRef); 1170 MCDataFragment *DF = getOrCreateDataFragment(); 1171 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1172 PersonalityRef, 1173 MCFixup::getKindForSize(4, false))); 1174 } 1175 1176 void ARMELFStreamer::FlushPendingOffset() { 1177 if (PendingOffset != 0) { 1178 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1179 PendingOffset = 0; 1180 } 1181 } 1182 1183 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1184 // Emit the unwind opcode to restore $sp. 1185 if (UsedFP) { 1186 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1187 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1188 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1189 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1190 } else { 1191 FlushPendingOffset(); 1192 } 1193 1194 // Finalize the unwind opcode sequence 1195 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1196 1197 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1198 // section. Thus, we don't have to create an entry in the .ARM.extab 1199 // section. 1200 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1201 return; 1202 1203 // Switch to .ARM.extab section. 1204 SwitchToExTabSection(*FnStart); 1205 1206 // Create .ARM.extab label for offset in .ARM.exidx 1207 assert(!ExTab); 1208 ExTab = getContext().createTempSymbol(); 1209 emitLabel(ExTab); 1210 1211 // Emit personality 1212 if (Personality) { 1213 const MCSymbolRefExpr *PersonalityRef = 1214 MCSymbolRefExpr::create(Personality, 1215 MCSymbolRefExpr::VK_ARM_PREL31, 1216 getContext()); 1217 1218 emitValue(PersonalityRef, 4); 1219 } 1220 1221 // Emit unwind opcodes 1222 assert((Opcodes.size() % 4) == 0 && 1223 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1224 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1225 uint64_t Intval = Opcodes[I] | 1226 Opcodes[I + 1] << 8 | 1227 Opcodes[I + 2] << 16 | 1228 Opcodes[I + 3] << 24; 1229 emitInt32(Intval); 1230 } 1231 1232 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1233 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1234 // after the unwind opcodes. The handler data consists of several 32-bit 1235 // words, and should be terminated by zero. 1236 // 1237 // In case that the .handlerdata directive is not specified by the 1238 // programmer, we should emit zero to terminate the handler data. 1239 if (NoHandlerData && !Personality) 1240 emitInt32(0); 1241 } 1242 1243 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1244 1245 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1246 Personality = Per; 1247 UnwindOpAsm.setPersonality(Per); 1248 } 1249 1250 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1251 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1252 PersonalityIndex = Index; 1253 } 1254 1255 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1256 int64_t Offset) { 1257 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1258 "the operand of .setfp directive should be either $sp or $fp"); 1259 1260 UsedFP = true; 1261 FPReg = NewFPReg; 1262 1263 if (NewSPReg == ARM::SP) 1264 FPOffset = SPOffset + Offset; 1265 else 1266 FPOffset += Offset; 1267 } 1268 1269 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1270 assert((Reg != ARM::SP && Reg != ARM::PC) && 1271 "the operand of .movsp cannot be either sp or pc"); 1272 assert(FPReg == ARM::SP && "current FP must be SP"); 1273 1274 FlushPendingOffset(); 1275 1276 FPReg = Reg; 1277 FPOffset = SPOffset + Offset; 1278 1279 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1280 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1281 } 1282 1283 void ARMELFStreamer::emitPad(int64_t Offset) { 1284 // Track the change of the $sp offset 1285 SPOffset -= Offset; 1286 1287 // To squash multiple .pad directives, we should delay the unwind opcode 1288 // until the .save, .vsave, .handlerdata, or .fnend directives. 1289 PendingOffset -= Offset; 1290 } 1291 1292 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1293 bool IsVector) { 1294 // Collect the registers in the register list 1295 unsigned Count = 0; 1296 uint32_t Mask = 0; 1297 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1298 for (size_t i = 0; i < RegList.size(); ++i) { 1299 unsigned Reg = MRI->getEncodingValue(RegList[i]); 1300 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1301 unsigned Bit = (1u << Reg); 1302 if ((Mask & Bit) == 0) { 1303 Mask |= Bit; 1304 ++Count; 1305 } 1306 } 1307 1308 // Track the change the $sp offset: For the .save directive, the 1309 // corresponding push instruction will decrease the $sp by (4 * Count). 1310 // For the .vsave directive, the corresponding vpush instruction will 1311 // decrease $sp by (8 * Count). 1312 SPOffset -= Count * (IsVector ? 8 : 4); 1313 1314 // Emit the opcode 1315 FlushPendingOffset(); 1316 if (IsVector) 1317 UnwindOpAsm.EmitVFPRegSave(Mask); 1318 else 1319 UnwindOpAsm.EmitRegSave(Mask); 1320 } 1321 1322 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1323 const SmallVectorImpl<uint8_t> &Opcodes) { 1324 FlushPendingOffset(); 1325 SPOffset = SPOffset - Offset; 1326 UnwindOpAsm.EmitRaw(Opcodes); 1327 } 1328 1329 namespace llvm { 1330 1331 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1332 formatted_raw_ostream &OS, 1333 MCInstPrinter *InstPrint, 1334 bool isVerboseAsm) { 1335 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1336 } 1337 1338 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1339 return new ARMTargetStreamer(S); 1340 } 1341 1342 MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S, 1343 const MCSubtargetInfo &STI) { 1344 const Triple &TT = STI.getTargetTriple(); 1345 if (TT.isOSBinFormatELF()) 1346 return new ARMTargetELFStreamer(S); 1347 return new ARMTargetStreamer(S); 1348 } 1349 1350 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1351 std::unique_ptr<MCAsmBackend> TAB, 1352 std::unique_ptr<MCObjectWriter> OW, 1353 std::unique_ptr<MCCodeEmitter> Emitter, 1354 bool RelaxAll, bool IsThumb, 1355 bool IsAndroid) { 1356 ARMELFStreamer *S = 1357 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1358 std::move(Emitter), IsThumb, IsAndroid); 1359 // FIXME: This should eventually end up somewhere else where more 1360 // intelligent flag decisions can be made. For now we are just maintaining 1361 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1362 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1363 1364 if (RelaxAll) 1365 S->getAssembler().setRelaxAll(true); 1366 return S; 1367 } 1368 1369 } // end namespace llvm 1370