1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMMCTargetDesc.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/MC/MCAsmBackend.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAssembler.h" 28 #include "llvm/MC/MCCodeEmitter.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCELFStreamer.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCFixup.h" 33 #include "llvm/MC/MCFragment.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/MC/MCInstPrinter.h" 36 #include "llvm/MC/MCObjectWriter.h" 37 #include "llvm/MC/MCRegisterInfo.h" 38 #include "llvm/MC/MCSection.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSubtargetInfo.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/MCSymbolELF.h" 44 #include "llvm/MC/SectionKind.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <climits> 54 #include <cstddef> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 82 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 83 void emitPad(int64_t Offset) override; 84 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 85 bool isVector) override; 86 void emitUnwindRaw(int64_t Offset, 87 const SmallVectorImpl<uint8_t> &Opcodes) override; 88 89 void switchVendor(StringRef Vendor) override; 90 void emitAttribute(unsigned Attribute, unsigned Value) override; 91 void emitTextAttribute(unsigned Attribute, StringRef String) override; 92 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 93 StringRef StringValue) override; 94 void emitArch(ARM::ArchKind Arch) override; 95 void emitArchExtension(uint64_t ArchExt) override; 96 void emitObjectArch(ARM::ArchKind Arch) override; 97 void emitFPU(ARM::FPUKind FPU) override; 98 void emitInst(uint32_t Inst, char Suffix = '\0') override; 99 void finishAttributeSection() override; 100 101 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 102 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 103 104 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 105 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 106 void emitARMWinCFISaveSP(unsigned Reg) override; 107 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 108 void emitARMWinCFISaveLR(unsigned Offset) override; 109 void emitARMWinCFIPrologEnd(bool Fragment) override; 110 void emitARMWinCFINop(bool Wide) override; 111 void emitARMWinCFIEpilogStart(unsigned Condition) override; 112 void emitARMWinCFIEpilogEnd() override; 113 void emitARMWinCFICustom(unsigned Opcode) override; 114 115 public: 116 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 117 MCInstPrinter &InstPrinter, bool VerboseAsm); 118 }; 119 120 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 121 formatted_raw_ostream &OS, 122 MCInstPrinter &InstPrinter, 123 bool VerboseAsm) 124 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 125 IsVerboseAsm(VerboseAsm) {} 126 127 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 128 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 129 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 130 131 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 132 OS << "\t.personality " << Personality->getName() << '\n'; 133 } 134 135 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 136 OS << "\t.personalityindex " << Index << '\n'; 137 } 138 139 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 140 141 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 142 int64_t Offset) { 143 OS << "\t.setfp\t"; 144 InstPrinter.printRegName(OS, FpReg); 145 OS << ", "; 146 InstPrinter.printRegName(OS, SpReg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 153 assert((Reg != ARM::SP && Reg != ARM::PC) && 154 "the operand of .movsp cannot be either sp or pc"); 155 156 OS << "\t.movsp\t"; 157 InstPrinter.printRegName(OS, Reg); 158 if (Offset) 159 OS << ", #" << Offset; 160 OS << '\n'; 161 } 162 163 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 164 OS << "\t.pad\t#" << Offset << '\n'; 165 } 166 167 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 168 bool isVector) { 169 assert(RegList.size() && "RegList should not be empty"); 170 if (isVector) 171 OS << "\t.vsave\t{"; 172 else 173 OS << "\t.save\t{"; 174 175 InstPrinter.printRegName(OS, RegList[0]); 176 177 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 178 OS << ", "; 179 InstPrinter.printRegName(OS, RegList[i]); 180 } 181 182 OS << "}\n"; 183 } 184 185 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 186 187 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 188 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 189 if (IsVerboseAsm) { 190 StringRef Name = ELFAttrs::attrTypeAsString( 191 Attribute, ARMBuildAttrs::getARMAttributeTags()); 192 if (!Name.empty()) 193 OS << "\t@ " << Name; 194 } 195 OS << "\n"; 196 } 197 198 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 199 StringRef String) { 200 switch (Attribute) { 201 case ARMBuildAttrs::CPU_name: 202 OS << "\t.cpu\t" << String.lower(); 203 break; 204 default: 205 OS << "\t.eabi_attribute\t" << Attribute << ", \""; 206 if (Attribute == ARMBuildAttrs::also_compatible_with) 207 OS.write_escaped(String); 208 else 209 OS << String; 210 OS << "\""; 211 if (IsVerboseAsm) { 212 StringRef Name = ELFAttrs::attrTypeAsString( 213 Attribute, ARMBuildAttrs::getARMAttributeTags()); 214 if (!Name.empty()) 215 OS << "\t@ " << Name; 216 } 217 break; 218 } 219 OS << "\n"; 220 } 221 222 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 223 unsigned IntValue, 224 StringRef StringValue) { 225 switch (Attribute) { 226 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 227 case ARMBuildAttrs::compatibility: 228 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 229 if (!StringValue.empty()) 230 OS << ", \"" << StringValue << "\""; 231 if (IsVerboseAsm) 232 OS << "\t@ " 233 << ELFAttrs::attrTypeAsString(Attribute, 234 ARMBuildAttrs::getARMAttributeTags()); 235 break; 236 } 237 OS << "\n"; 238 } 239 240 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 241 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 242 } 243 244 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 245 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 246 } 247 248 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 249 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 250 } 251 252 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) { 253 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 254 } 255 256 void ARMTargetAsmStreamer::finishAttributeSection() {} 257 258 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 259 const MCSymbolRefExpr *S) { 260 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 261 } 262 263 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 264 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 265 266 OS << "\t.thumb_set\t"; 267 Symbol->print(OS, MAI); 268 OS << ", "; 269 Value->print(OS, MAI); 270 OS << '\n'; 271 } 272 273 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 274 OS << "\t.inst"; 275 if (Suffix) 276 OS << "." << Suffix; 277 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 278 } 279 280 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 281 const SmallVectorImpl<uint8_t> &Opcodes) { 282 OS << "\t.unwind_raw " << Offset; 283 for (uint8_t Opcode : Opcodes) 284 OS << ", 0x" << Twine::utohexstr(Opcode); 285 OS << '\n'; 286 } 287 288 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 289 if (Wide) 290 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 291 else 292 OS << "\t.seh_stackalloc\t" << Size << "\n"; 293 } 294 295 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 296 int Last) { 297 if (First != Last) 298 OS << LS << "r" << First << "-r" << Last; 299 else 300 OS << LS << "r" << First; 301 } 302 303 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 304 if (Wide) 305 OS << "\t.seh_save_regs_w\t"; 306 else 307 OS << "\t.seh_save_regs\t"; 308 ListSeparator LS; 309 int First = -1; 310 OS << "{"; 311 for (int I = 0; I <= 12; I++) { 312 if (Mask & (1 << I)) { 313 if (First < 0) 314 First = I; 315 } else { 316 if (First >= 0) { 317 printRegs(OS, LS, First, I - 1); 318 First = -1; 319 } 320 } 321 } 322 if (First >= 0) 323 printRegs(OS, LS, First, 12); 324 if (Mask & (1 << 14)) 325 OS << LS << "lr"; 326 OS << "}\n"; 327 } 328 329 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 330 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 331 } 332 333 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 334 unsigned Last) { 335 if (First != Last) 336 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 337 else 338 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 339 } 340 341 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 342 OS << "\t.seh_save_lr\t" << Offset << "\n"; 343 } 344 345 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 346 if (Fragment) 347 OS << "\t.seh_endprologue_fragment\n"; 348 else 349 OS << "\t.seh_endprologue\n"; 350 } 351 352 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 353 if (Wide) 354 OS << "\t.seh_nop_w\n"; 355 else 356 OS << "\t.seh_nop\n"; 357 } 358 359 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 360 if (Condition == ARMCC::AL) 361 OS << "\t.seh_startepilogue\n"; 362 else 363 OS << "\t.seh_startepilogue_cond\t" 364 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 365 } 366 367 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 368 OS << "\t.seh_endepilogue\n"; 369 } 370 371 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 372 int I; 373 for (I = 3; I > 0; I--) 374 if (Opcode & (0xffu << (8 * I))) 375 break; 376 ListSeparator LS; 377 OS << "\t.seh_custom\t"; 378 for (; I >= 0; I--) 379 OS << LS << ((Opcode >> (8 * I)) & 0xff); 380 OS << "\n"; 381 } 382 383 class ARMTargetELFStreamer : public ARMTargetStreamer { 384 private: 385 StringRef CurrentVendor; 386 ARM::FPUKind FPU = ARM::FK_INVALID; 387 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 388 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 389 390 MCSection *AttributeSection = nullptr; 391 392 void emitArchDefaultAttributes(); 393 void emitFPUDefaultAttributes(); 394 395 ARMELFStreamer &getStreamer(); 396 397 void emitFnStart() override; 398 void emitFnEnd() override; 399 void emitCantUnwind() override; 400 void emitPersonality(const MCSymbol *Personality) override; 401 void emitPersonalityIndex(unsigned Index) override; 402 void emitHandlerData() override; 403 void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; 404 void emitMovSP(unsigned Reg, int64_t Offset = 0) override; 405 void emitPad(int64_t Offset) override; 406 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, 407 bool isVector) override; 408 void emitUnwindRaw(int64_t Offset, 409 const SmallVectorImpl<uint8_t> &Opcodes) override; 410 411 void switchVendor(StringRef Vendor) override; 412 void emitAttribute(unsigned Attribute, unsigned Value) override; 413 void emitTextAttribute(unsigned Attribute, StringRef String) override; 414 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 415 StringRef StringValue) override; 416 void emitArch(ARM::ArchKind Arch) override; 417 void emitObjectArch(ARM::ArchKind Arch) override; 418 void emitFPU(ARM::FPUKind FPU) override; 419 void emitInst(uint32_t Inst, char Suffix = '\0') override; 420 void finishAttributeSection() override; 421 void emitLabel(MCSymbol *Symbol) override; 422 423 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 424 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 425 426 // Reset state between object emissions 427 void reset() override; 428 429 public: 430 ARMTargetELFStreamer(MCStreamer &S) 431 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 432 }; 433 434 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 435 /// the appropriate points in the object files. These symbols are defined in the 436 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 437 /// 438 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 439 /// region of ARM code, Thumb code or data in a section. In practice, this 440 /// emission does not rely on explicit assembler directives but on inherent 441 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 442 /// r0, r0, r0" an instruction). 443 /// 444 /// As a result this system is orthogonal to the DataRegion infrastructure used 445 /// by MachO. Beware! 446 class ARMELFStreamer : public MCELFStreamer { 447 public: 448 friend class ARMTargetELFStreamer; 449 450 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 451 std::unique_ptr<MCObjectWriter> OW, 452 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 453 bool IsAndroid) 454 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 455 std::move(Emitter)), 456 IsThumb(IsThumb), IsAndroid(IsAndroid) { 457 EHReset(); 458 } 459 460 ~ARMELFStreamer() override = default; 461 462 void finishImpl() override; 463 464 // ARM exception handling directives 465 void emitFnStart(); 466 void emitFnEnd(); 467 void emitCantUnwind(); 468 void emitPersonality(const MCSymbol *Per); 469 void emitPersonalityIndex(unsigned index); 470 void emitHandlerData(); 471 void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); 472 void emitMovSP(unsigned Reg, int64_t Offset = 0); 473 void emitPad(int64_t Offset); 474 void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector); 475 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 476 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 477 SMLoc Loc) override { 478 emitDataMappingSymbol(); 479 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 480 } 481 482 void changeSection(MCSection *Section, const MCExpr *Subsection) override { 483 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 484 MCELFStreamer::changeSection(Section, Subsection); 485 auto LastMappingSymbol = LastMappingSymbols.find(Section); 486 if (LastMappingSymbol != LastMappingSymbols.end()) { 487 LastEMSInfo = std::move(LastMappingSymbol->second); 488 return; 489 } 490 LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); 491 } 492 493 /// This function is the one used to emit instruction data into the ELF 494 /// streamer. We override it to add the appropriate mapping symbol if 495 /// necessary. 496 void emitInstruction(const MCInst &Inst, 497 const MCSubtargetInfo &STI) override { 498 if (IsThumb) 499 EmitThumbMappingSymbol(); 500 else 501 EmitARMMappingSymbol(); 502 503 MCELFStreamer::emitInstruction(Inst, STI); 504 } 505 506 void emitInst(uint32_t Inst, char Suffix) { 507 unsigned Size; 508 char Buffer[4]; 509 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 510 511 switch (Suffix) { 512 case '\0': 513 Size = 4; 514 515 assert(!IsThumb); 516 EmitARMMappingSymbol(); 517 for (unsigned II = 0, IE = Size; II != IE; II++) { 518 const unsigned I = LittleEndian ? (Size - II - 1) : II; 519 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 520 } 521 522 break; 523 case 'n': 524 case 'w': 525 Size = (Suffix == 'n' ? 2 : 4); 526 527 assert(IsThumb); 528 EmitThumbMappingSymbol(); 529 // Thumb wide instructions are emitted as a pair of 16-bit words of the 530 // appropriate endianness. 531 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 532 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 533 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 534 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 535 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 536 } 537 538 break; 539 default: 540 llvm_unreachable("Invalid Suffix"); 541 } 542 543 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 544 } 545 546 /// This is one of the functions used to emit data into an ELF section, so the 547 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 548 /// necessary. 549 void emitBytes(StringRef Data) override { 550 emitDataMappingSymbol(); 551 MCELFStreamer::emitBytes(Data); 552 } 553 554 void FlushPendingMappingSymbol() { 555 if (!LastEMSInfo->hasInfo()) 556 return; 557 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 558 EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); 559 EMS->resetInfo(); 560 } 561 562 /// This is one of the functions used to emit data into an ELF section, so the 563 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 564 /// necessary. 565 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 566 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 567 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 568 getContext().reportError(Loc, "relocated expression must be 32-bit"); 569 return; 570 } 571 getOrCreateDataFragment(); 572 } 573 574 emitDataMappingSymbol(); 575 MCELFStreamer::emitValueImpl(Value, Size, Loc); 576 } 577 578 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 579 MCELFStreamer::emitAssemblerFlag(Flag); 580 581 switch (Flag) { 582 case MCAF_SyntaxUnified: 583 return; // no-op here. 584 case MCAF_Code16: 585 IsThumb = true; 586 return; // Change to Thumb mode 587 case MCAF_Code32: 588 IsThumb = false; 589 return; // Change to ARM mode 590 case MCAF_Code64: 591 return; 592 case MCAF_SubsectionsViaSymbols: 593 return; 594 } 595 } 596 597 /// If a label is defined before the .type directive sets the label's type 598 /// then the label can't be recorded as thumb function when the label is 599 /// defined. We override emitSymbolAttribute() which is called as part of the 600 /// parsing of .type so that if the symbol has already been defined we can 601 /// record the label as Thumb. FIXME: there is a corner case where the state 602 /// is changed in between the label definition and the .type directive, this 603 /// is not expected to occur in practice and handling it would require the 604 /// backend to track IsThumb for every label. 605 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 606 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 607 608 if (!IsThumb) 609 return Val; 610 611 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 612 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 613 Symbol->isDefined()) 614 getAssembler().setIsThumbFunc(Symbol); 615 616 return Val; 617 }; 618 619 private: 620 enum ElfMappingSymbol { 621 EMS_None, 622 EMS_ARM, 623 EMS_Thumb, 624 EMS_Data 625 }; 626 627 struct ElfMappingSymbolInfo { 628 explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) 629 : Loc(Loc), F(F), Offset(O), State(EMS_None) {} 630 void resetInfo() { 631 F = nullptr; 632 Offset = 0; 633 } 634 bool hasInfo() { return F != nullptr; } 635 SMLoc Loc; 636 MCFragment *F; 637 uint64_t Offset; 638 ElfMappingSymbol State; 639 }; 640 641 void emitDataMappingSymbol() { 642 if (LastEMSInfo->State == EMS_Data) 643 return; 644 else if (LastEMSInfo->State == EMS_None) { 645 // This is a tentative symbol, it won't really be emitted until it's 646 // actually needed. 647 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 648 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 649 if (!DF) 650 return; 651 EMS->Loc = SMLoc(); 652 EMS->F = getCurrentFragment(); 653 EMS->Offset = DF->getContents().size(); 654 LastEMSInfo->State = EMS_Data; 655 return; 656 } 657 EmitMappingSymbol("$d"); 658 LastEMSInfo->State = EMS_Data; 659 } 660 661 void EmitThumbMappingSymbol() { 662 if (LastEMSInfo->State == EMS_Thumb) 663 return; 664 FlushPendingMappingSymbol(); 665 EmitMappingSymbol("$t"); 666 LastEMSInfo->State = EMS_Thumb; 667 } 668 669 void EmitARMMappingSymbol() { 670 if (LastEMSInfo->State == EMS_ARM) 671 return; 672 FlushPendingMappingSymbol(); 673 EmitMappingSymbol("$a"); 674 LastEMSInfo->State = EMS_ARM; 675 } 676 677 void EmitMappingSymbol(StringRef Name) { 678 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 679 Name + "." + Twine(MappingSymbolCounter++))); 680 emitLabel(Symbol); 681 682 Symbol->setType(ELF::STT_NOTYPE); 683 Symbol->setBinding(ELF::STB_LOCAL); 684 } 685 686 void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, 687 uint64_t Offset) { 688 auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol( 689 Name + "." + Twine(MappingSymbolCounter++))); 690 emitLabelAtPos(Symbol, Loc, F, Offset); 691 Symbol->setType(ELF::STT_NOTYPE); 692 Symbol->setBinding(ELF::STB_LOCAL); 693 } 694 695 void emitThumbFunc(MCSymbol *Func) override { 696 getAssembler().setIsThumbFunc(Func); 697 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 698 } 699 700 // Helper functions for ARM exception handling directives 701 void EHReset(); 702 703 // Reset state between object emissions 704 void reset() override; 705 706 void EmitPersonalityFixup(StringRef Name); 707 void FlushPendingOffset(); 708 void FlushUnwindOpcodes(bool NoHandlerData); 709 710 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 711 SectionKind Kind, const MCSymbol &Fn); 712 void SwitchToExTabSection(const MCSymbol &FnStart); 713 void SwitchToExIdxSection(const MCSymbol &FnStart); 714 715 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 716 717 bool IsThumb; 718 bool IsAndroid; 719 int64_t MappingSymbolCounter = 0; 720 721 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 722 LastMappingSymbols; 723 724 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 725 726 // ARM Exception Handling Frame Information 727 MCSymbol *ExTab; 728 MCSymbol *FnStart; 729 const MCSymbol *Personality; 730 unsigned PersonalityIndex; 731 unsigned FPReg; // Frame pointer register 732 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 733 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 734 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 735 bool UsedFP; 736 bool CantUnwind; 737 SmallVector<uint8_t, 64> Opcodes; 738 UnwindOpcodeAssembler UnwindOpAsm; 739 }; 740 741 } // end anonymous namespace 742 743 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 744 return static_cast<ARMELFStreamer &>(Streamer); 745 } 746 747 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 748 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 749 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 750 751 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 752 getStreamer().emitPersonality(Personality); 753 } 754 755 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 756 getStreamer().emitPersonalityIndex(Index); 757 } 758 759 void ARMTargetELFStreamer::emitHandlerData() { 760 getStreamer().emitHandlerData(); 761 } 762 763 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, 764 int64_t Offset) { 765 getStreamer().emitSetFP(FpReg, SpReg, Offset); 766 } 767 768 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 769 getStreamer().emitMovSP(Reg, Offset); 770 } 771 772 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 773 getStreamer().emitPad(Offset); 774 } 775 776 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 777 bool isVector) { 778 getStreamer().emitRegSave(RegList, isVector); 779 } 780 781 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 782 const SmallVectorImpl<uint8_t> &Opcodes) { 783 getStreamer().emitUnwindRaw(Offset, Opcodes); 784 } 785 786 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 787 assert(!Vendor.empty() && "Vendor cannot be empty."); 788 789 if (CurrentVendor == Vendor) 790 return; 791 792 if (!CurrentVendor.empty()) 793 finishAttributeSection(); 794 795 assert(getStreamer().Contents.empty() && 796 ".ARM.attributes should be flushed before changing vendor"); 797 CurrentVendor = Vendor; 798 799 } 800 801 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 802 getStreamer().setAttributeItem(Attribute, Value, 803 /* OverwriteExisting= */ true); 804 } 805 806 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 807 StringRef Value) { 808 getStreamer().setAttributeItem(Attribute, Value, 809 /* OverwriteExisting= */ true); 810 } 811 812 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 813 unsigned IntValue, 814 StringRef StringValue) { 815 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 816 /* OverwriteExisting= */ true); 817 } 818 819 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 820 Arch = Value; 821 } 822 823 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 824 EmittedArch = Value; 825 } 826 827 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 828 using namespace ARMBuildAttrs; 829 ARMELFStreamer &S = getStreamer(); 830 831 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 832 833 if (EmittedArch == ARM::ArchKind::INVALID) 834 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 835 else 836 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 837 838 switch (Arch) { 839 case ARM::ArchKind::ARMV4: 840 S.setAttributeItem(ARM_ISA_use, Allowed, false); 841 break; 842 843 case ARM::ArchKind::ARMV4T: 844 case ARM::ArchKind::ARMV5T: 845 case ARM::ArchKind::XSCALE: 846 case ARM::ArchKind::ARMV5TE: 847 case ARM::ArchKind::ARMV6: 848 S.setAttributeItem(ARM_ISA_use, Allowed, false); 849 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 850 break; 851 852 case ARM::ArchKind::ARMV6T2: 853 S.setAttributeItem(ARM_ISA_use, Allowed, false); 854 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 855 break; 856 857 case ARM::ArchKind::ARMV6K: 858 case ARM::ArchKind::ARMV6KZ: 859 S.setAttributeItem(ARM_ISA_use, Allowed, false); 860 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 861 S.setAttributeItem(Virtualization_use, AllowTZ, false); 862 break; 863 864 case ARM::ArchKind::ARMV6M: 865 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 866 break; 867 868 case ARM::ArchKind::ARMV7A: 869 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 870 S.setAttributeItem(ARM_ISA_use, Allowed, false); 871 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 872 break; 873 874 case ARM::ArchKind::ARMV7R: 875 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 876 S.setAttributeItem(ARM_ISA_use, Allowed, false); 877 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 878 break; 879 880 case ARM::ArchKind::ARMV7EM: 881 case ARM::ArchKind::ARMV7M: 882 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 883 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 884 break; 885 886 case ARM::ArchKind::ARMV8A: 887 case ARM::ArchKind::ARMV8_1A: 888 case ARM::ArchKind::ARMV8_2A: 889 case ARM::ArchKind::ARMV8_3A: 890 case ARM::ArchKind::ARMV8_4A: 891 case ARM::ArchKind::ARMV8_5A: 892 case ARM::ArchKind::ARMV8_6A: 893 case ARM::ArchKind::ARMV8_7A: 894 case ARM::ArchKind::ARMV8_8A: 895 case ARM::ArchKind::ARMV8_9A: 896 case ARM::ArchKind::ARMV9A: 897 case ARM::ArchKind::ARMV9_1A: 898 case ARM::ArchKind::ARMV9_2A: 899 case ARM::ArchKind::ARMV9_3A: 900 case ARM::ArchKind::ARMV9_4A: 901 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 902 S.setAttributeItem(ARM_ISA_use, Allowed, false); 903 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 904 S.setAttributeItem(MPextension_use, Allowed, false); 905 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 906 break; 907 908 case ARM::ArchKind::ARMV8MBaseline: 909 case ARM::ArchKind::ARMV8MMainline: 910 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 911 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 912 break; 913 914 case ARM::ArchKind::IWMMXT: 915 S.setAttributeItem(ARM_ISA_use, Allowed, false); 916 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 917 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 918 break; 919 920 case ARM::ArchKind::IWMMXT2: 921 S.setAttributeItem(ARM_ISA_use, Allowed, false); 922 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 923 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 924 break; 925 926 default: 927 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 928 break; 929 } 930 } 931 932 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; } 933 934 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 935 ARMELFStreamer &S = getStreamer(); 936 937 switch (FPU) { 938 case ARM::FK_VFP: 939 case ARM::FK_VFPV2: 940 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 941 /* OverwriteExisting= */ false); 942 break; 943 944 case ARM::FK_VFPV3: 945 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 946 /* OverwriteExisting= */ false); 947 break; 948 949 case ARM::FK_VFPV3_FP16: 950 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 951 /* OverwriteExisting= */ false); 952 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 953 /* OverwriteExisting= */ false); 954 break; 955 956 case ARM::FK_VFPV3_D16: 957 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 958 /* OverwriteExisting= */ false); 959 break; 960 961 case ARM::FK_VFPV3_D16_FP16: 962 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 963 /* OverwriteExisting= */ false); 964 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 965 /* OverwriteExisting= */ false); 966 break; 967 968 case ARM::FK_VFPV3XD: 969 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 970 /* OverwriteExisting= */ false); 971 break; 972 case ARM::FK_VFPV3XD_FP16: 973 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 974 /* OverwriteExisting= */ false); 975 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 976 /* OverwriteExisting= */ false); 977 break; 978 979 case ARM::FK_VFPV4: 980 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 981 /* OverwriteExisting= */ false); 982 break; 983 984 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 985 // as _D16 here. 986 case ARM::FK_FPV4_SP_D16: 987 case ARM::FK_VFPV4_D16: 988 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 989 /* OverwriteExisting= */ false); 990 break; 991 992 case ARM::FK_FP_ARMV8: 993 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 994 /* OverwriteExisting= */ false); 995 break; 996 997 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 998 // uses the FP_ARMV8_D16 build attribute. 999 case ARM::FK_FPV5_SP_D16: 1000 case ARM::FK_FPV5_D16: 1001 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 1002 /* OverwriteExisting= */ false); 1003 break; 1004 1005 case ARM::FK_NEON: 1006 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1007 /* OverwriteExisting= */ false); 1008 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1009 ARMBuildAttrs::AllowNeon, 1010 /* OverwriteExisting= */ false); 1011 break; 1012 1013 case ARM::FK_NEON_FP16: 1014 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1015 /* OverwriteExisting= */ false); 1016 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1017 ARMBuildAttrs::AllowNeon, 1018 /* OverwriteExisting= */ false); 1019 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1020 /* OverwriteExisting= */ false); 1021 break; 1022 1023 case ARM::FK_NEON_VFPV4: 1024 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1025 /* OverwriteExisting= */ false); 1026 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1027 ARMBuildAttrs::AllowNeon2, 1028 /* OverwriteExisting= */ false); 1029 break; 1030 1031 case ARM::FK_NEON_FP_ARMV8: 1032 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1033 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1034 /* OverwriteExisting= */ false); 1035 // 'Advanced_SIMD_arch' must be emitted not here, but within 1036 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1037 break; 1038 1039 case ARM::FK_SOFTVFP: 1040 case ARM::FK_NONE: 1041 break; 1042 1043 default: 1044 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1045 break; 1046 } 1047 } 1048 1049 void ARMTargetELFStreamer::finishAttributeSection() { 1050 ARMELFStreamer &S = getStreamer(); 1051 1052 if (FPU != ARM::FK_INVALID) 1053 emitFPUDefaultAttributes(); 1054 1055 if (Arch != ARM::ArchKind::INVALID) 1056 emitArchDefaultAttributes(); 1057 1058 if (S.Contents.empty()) 1059 return; 1060 1061 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1062 const MCELFStreamer::AttributeItem &RHS) -> bool { 1063 // The conformance tag must be emitted first when serialised into an 1064 // object file. Specifically, the addenda to the ARM ABI states that 1065 // (2.3.7.4): 1066 // 1067 // "To simplify recognition by consumers in the common case of claiming 1068 // conformity for the whole file, this tag should be emitted first in a 1069 // file-scope sub-subsection of the first public subsection of the 1070 // attributes section." 1071 // 1072 // So it is special-cased in this comparison predicate when the 1073 // attributes are sorted in finishAttributeSection(). 1074 return (RHS.Tag != ARMBuildAttrs::conformance) && 1075 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1076 }; 1077 llvm::sort(S.Contents, LessTag); 1078 1079 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1080 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1081 1082 FPU = ARM::FK_INVALID; 1083 } 1084 1085 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1086 ARMELFStreamer &Streamer = getStreamer(); 1087 if (!Streamer.IsThumb) 1088 return; 1089 1090 Streamer.getAssembler().registerSymbol(*Symbol); 1091 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1092 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1093 Streamer.emitThumbFunc(Symbol); 1094 } 1095 1096 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1097 const MCSymbolRefExpr *S) { 1098 getStreamer().EmitFixup(S, FK_Data_4); 1099 } 1100 1101 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1102 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1103 const MCSymbol &Sym = SRE->getSymbol(); 1104 if (!Sym.isDefined()) { 1105 getStreamer().emitAssignment(Symbol, Value); 1106 return; 1107 } 1108 } 1109 1110 getStreamer().emitThumbFunc(Symbol); 1111 getStreamer().emitAssignment(Symbol, Value); 1112 } 1113 1114 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1115 getStreamer().emitInst(Inst, Suffix); 1116 } 1117 1118 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1119 1120 void ARMELFStreamer::finishImpl() { 1121 MCTargetStreamer &TS = *getTargetStreamer(); 1122 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1123 ATS.finishAttributeSection(); 1124 1125 MCELFStreamer::finishImpl(); 1126 } 1127 1128 void ARMELFStreamer::reset() { 1129 MCTargetStreamer &TS = *getTargetStreamer(); 1130 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1131 ATS.reset(); 1132 MappingSymbolCounter = 0; 1133 MCELFStreamer::reset(); 1134 LastMappingSymbols.clear(); 1135 LastEMSInfo.reset(); 1136 // MCELFStreamer clear's the assembler's e_flags. However, for 1137 // arm we manually set the ABI version on streamer creation, so 1138 // do the same here 1139 getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1140 } 1141 1142 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1143 unsigned Type, 1144 unsigned Flags, 1145 SectionKind Kind, 1146 const MCSymbol &Fn) { 1147 const MCSectionELF &FnSection = 1148 static_cast<const MCSectionELF &>(Fn.getSection()); 1149 1150 // Create the name for new section 1151 StringRef FnSecName(FnSection.getName()); 1152 SmallString<128> EHSecName(Prefix); 1153 if (FnSecName != ".text") { 1154 EHSecName += FnSecName; 1155 } 1156 1157 // Get .ARM.extab or .ARM.exidx section 1158 const MCSymbolELF *Group = FnSection.getGroup(); 1159 if (Group) 1160 Flags |= ELF::SHF_GROUP; 1161 MCSectionELF *EHSection = getContext().getELFSection( 1162 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1163 FnSection.getUniqueID(), 1164 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1165 1166 assert(EHSection && "Failed to get the required EH section"); 1167 1168 // Switch to .ARM.extab or .ARM.exidx section 1169 switchSection(EHSection); 1170 emitValueToAlignment(Align(4), 0, 1, 0); 1171 } 1172 1173 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1174 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1175 SectionKind::getData(), FnStart); 1176 } 1177 1178 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1179 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1180 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1181 SectionKind::getData(), FnStart); 1182 } 1183 1184 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1185 MCDataFragment *Frag = getOrCreateDataFragment(); 1186 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1187 Kind)); 1188 } 1189 1190 void ARMELFStreamer::EHReset() { 1191 ExTab = nullptr; 1192 FnStart = nullptr; 1193 Personality = nullptr; 1194 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1195 FPReg = ARM::SP; 1196 FPOffset = 0; 1197 SPOffset = 0; 1198 PendingOffset = 0; 1199 UsedFP = false; 1200 CantUnwind = false; 1201 1202 Opcodes.clear(); 1203 UnwindOpAsm.Reset(); 1204 } 1205 1206 void ARMELFStreamer::emitFnStart() { 1207 assert(FnStart == nullptr); 1208 FnStart = getContext().createTempSymbol(); 1209 emitLabel(FnStart); 1210 } 1211 1212 void ARMELFStreamer::emitFnEnd() { 1213 assert(FnStart && ".fnstart must precedes .fnend"); 1214 1215 // Emit unwind opcodes if there is no .handlerdata directive 1216 if (!ExTab && !CantUnwind) 1217 FlushUnwindOpcodes(true); 1218 1219 // Emit the exception index table entry 1220 SwitchToExIdxSection(*FnStart); 1221 1222 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1223 // personality routine to protect it from an arbitrary platform's static 1224 // linker garbage collection. We disable this for Android where the unwinder 1225 // is either dynamically linked or directly references the personality 1226 // routine. 1227 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1228 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1229 1230 const MCSymbolRefExpr *FnStartRef = 1231 MCSymbolRefExpr::create(FnStart, 1232 MCSymbolRefExpr::VK_ARM_PREL31, 1233 getContext()); 1234 1235 emitValue(FnStartRef, 4); 1236 1237 if (CantUnwind) { 1238 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1239 } else if (ExTab) { 1240 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1241 const MCSymbolRefExpr *ExTabEntryRef = 1242 MCSymbolRefExpr::create(ExTab, 1243 MCSymbolRefExpr::VK_ARM_PREL31, 1244 getContext()); 1245 emitValue(ExTabEntryRef, 4); 1246 } else { 1247 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1248 // the second word of exception index table entry. The size of the unwind 1249 // opcodes should always be 4 bytes. 1250 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1251 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1252 assert(Opcodes.size() == 4u && 1253 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1254 uint64_t Intval = Opcodes[0] | 1255 Opcodes[1] << 8 | 1256 Opcodes[2] << 16 | 1257 Opcodes[3] << 24; 1258 emitIntValue(Intval, Opcodes.size()); 1259 } 1260 1261 // Switch to the section containing FnStart 1262 switchSection(&FnStart->getSection()); 1263 1264 // Clean exception handling frame information 1265 EHReset(); 1266 } 1267 1268 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1269 1270 // Add the R_ARM_NONE fixup at the same position 1271 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1272 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1273 1274 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1275 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1276 1277 visitUsedExpr(*PersonalityRef); 1278 MCDataFragment *DF = getOrCreateDataFragment(); 1279 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1280 PersonalityRef, 1281 MCFixup::getKindForSize(4, false))); 1282 } 1283 1284 void ARMELFStreamer::FlushPendingOffset() { 1285 if (PendingOffset != 0) { 1286 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1287 PendingOffset = 0; 1288 } 1289 } 1290 1291 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1292 // Emit the unwind opcode to restore $sp. 1293 if (UsedFP) { 1294 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1295 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1296 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1297 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1298 } else { 1299 FlushPendingOffset(); 1300 } 1301 1302 // Finalize the unwind opcode sequence 1303 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1304 1305 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1306 // section. Thus, we don't have to create an entry in the .ARM.extab 1307 // section. 1308 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1309 return; 1310 1311 // Switch to .ARM.extab section. 1312 SwitchToExTabSection(*FnStart); 1313 1314 // Create .ARM.extab label for offset in .ARM.exidx 1315 assert(!ExTab); 1316 ExTab = getContext().createTempSymbol(); 1317 emitLabel(ExTab); 1318 1319 // Emit personality 1320 if (Personality) { 1321 const MCSymbolRefExpr *PersonalityRef = 1322 MCSymbolRefExpr::create(Personality, 1323 MCSymbolRefExpr::VK_ARM_PREL31, 1324 getContext()); 1325 1326 emitValue(PersonalityRef, 4); 1327 } 1328 1329 // Emit unwind opcodes 1330 assert((Opcodes.size() % 4) == 0 && 1331 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1332 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1333 uint64_t Intval = Opcodes[I] | 1334 Opcodes[I + 1] << 8 | 1335 Opcodes[I + 2] << 16 | 1336 Opcodes[I + 3] << 24; 1337 emitInt32(Intval); 1338 } 1339 1340 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1341 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1342 // after the unwind opcodes. The handler data consists of several 32-bit 1343 // words, and should be terminated by zero. 1344 // 1345 // In case that the .handlerdata directive is not specified by the 1346 // programmer, we should emit zero to terminate the handler data. 1347 if (NoHandlerData && !Personality) 1348 emitInt32(0); 1349 } 1350 1351 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1352 1353 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1354 Personality = Per; 1355 UnwindOpAsm.setPersonality(Per); 1356 } 1357 1358 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1359 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1360 PersonalityIndex = Index; 1361 } 1362 1363 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, 1364 int64_t Offset) { 1365 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1366 "the operand of .setfp directive should be either $sp or $fp"); 1367 1368 UsedFP = true; 1369 FPReg = NewFPReg; 1370 1371 if (NewSPReg == ARM::SP) 1372 FPOffset = SPOffset + Offset; 1373 else 1374 FPOffset += Offset; 1375 } 1376 1377 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { 1378 assert((Reg != ARM::SP && Reg != ARM::PC) && 1379 "the operand of .movsp cannot be either sp or pc"); 1380 assert(FPReg == ARM::SP && "current FP must be SP"); 1381 1382 FlushPendingOffset(); 1383 1384 FPReg = Reg; 1385 FPOffset = SPOffset + Offset; 1386 1387 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1388 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1389 } 1390 1391 void ARMELFStreamer::emitPad(int64_t Offset) { 1392 // Track the change of the $sp offset 1393 SPOffset -= Offset; 1394 1395 // To squash multiple .pad directives, we should delay the unwind opcode 1396 // until the .save, .vsave, .handlerdata, or .fnend directives. 1397 PendingOffset -= Offset; 1398 } 1399 1400 static std::pair<unsigned, unsigned> 1401 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1402 const SmallVectorImpl<unsigned> &RegList, bool IsVector, 1403 uint32_t &Mask_) { 1404 uint32_t Mask = 0; 1405 unsigned Count = 0; 1406 while (Idx > 0) { 1407 unsigned Reg = RegList[Idx - 1]; 1408 if (Reg == ARM::RA_AUTH_CODE) 1409 break; 1410 Reg = MRI.getEncodingValue(Reg); 1411 assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); 1412 unsigned Bit = (1u << Reg); 1413 if ((Mask & Bit) == 0) { 1414 Mask |= Bit; 1415 ++Count; 1416 } 1417 --Idx; 1418 } 1419 1420 Mask_ = Mask; 1421 return {Idx, Count}; 1422 } 1423 1424 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList, 1425 bool IsVector) { 1426 uint32_t Mask; 1427 unsigned Idx, Count; 1428 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1429 1430 // Collect the registers in the register list. Issue unwinding instructions in 1431 // three parts: ordinary hardware registers, return address authentication 1432 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1433 // architectural register (usually r12), but we treat it as a special case in 1434 // order to distinguish between that register containing RA PAC or a general 1435 // value. 1436 Idx = RegList.size(); 1437 while (Idx > 0) { 1438 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1439 if (Count) { 1440 // Track the change the $sp offset: For the .save directive, the 1441 // corresponding push instruction will decrease the $sp by (4 * Count). 1442 // For the .vsave directive, the corresponding vpush instruction will 1443 // decrease $sp by (8 * Count). 1444 SPOffset -= Count * (IsVector ? 8 : 4); 1445 1446 // Emit the opcode 1447 FlushPendingOffset(); 1448 if (IsVector) 1449 UnwindOpAsm.EmitVFPRegSave(Mask); 1450 else 1451 UnwindOpAsm.EmitRegSave(Mask); 1452 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1453 --Idx; 1454 SPOffset -= 4; 1455 FlushPendingOffset(); 1456 UnwindOpAsm.EmitRegSave(0); 1457 } 1458 } 1459 } 1460 1461 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1462 const SmallVectorImpl<uint8_t> &Opcodes) { 1463 FlushPendingOffset(); 1464 SPOffset = SPOffset - Offset; 1465 UnwindOpAsm.EmitRaw(Opcodes); 1466 } 1467 1468 namespace llvm { 1469 1470 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1471 formatted_raw_ostream &OS, 1472 MCInstPrinter *InstPrint, 1473 bool isVerboseAsm) { 1474 return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); 1475 } 1476 1477 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1478 return new ARMTargetStreamer(S); 1479 } 1480 1481 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1482 return new ARMTargetELFStreamer(S); 1483 } 1484 1485 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1486 std::unique_ptr<MCAsmBackend> TAB, 1487 std::unique_ptr<MCObjectWriter> OW, 1488 std::unique_ptr<MCCodeEmitter> Emitter, 1489 bool RelaxAll, bool IsThumb, 1490 bool IsAndroid) { 1491 ARMELFStreamer *S = 1492 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1493 std::move(Emitter), IsThumb, IsAndroid); 1494 // FIXME: This should eventually end up somewhere else where more 1495 // intelligent flag decisions can be made. For now we are just maintaining 1496 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1497 S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1498 1499 if (RelaxAll) 1500 S->getAssembler().setRelaxAll(true); 1501 return S; 1502 } 1503 1504 } // end namespace llvm 1505