1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMBaseInstrInfo.h" 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMInstPrinter.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "TargetInfo/ARMTargetInfo.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSet.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/MC/TargetRegistry.h" 48 #include "llvm/Support/ARMBuildAttributes.h" 49 #include "llvm/Support/ARMEHABI.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/TargetParser.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 // Various sets of ARM instruction mnemonics which are used by the asm parser 184 class ARMMnemonicSets { 185 StringSet<> CDE; 186 StringSet<> CDEWithVPTSuffix; 187 public: 188 ARMMnemonicSets(const MCSubtargetInfo &STI); 189 190 /// Returns true iff a given mnemonic is a CDE instruction 191 bool isCDEInstr(StringRef Mnemonic) { 192 // Quick check before searching the set 193 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 194 return false; 195 return CDE.count(Mnemonic); 196 } 197 198 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 199 /// (possibly with a predication suffix "e" or "t") 200 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 201 if (!Mnemonic.startswith("vcx")) 202 return false; 203 return CDEWithVPTSuffix.count(Mnemonic); 204 } 205 206 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 207 /// (possibly with a condition suffix) 208 bool isITPredicableCDEInstr(StringRef Mnemonic) { 209 if (!Mnemonic.startswith("cx")) 210 return false; 211 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 212 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 213 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 214 } 215 216 /// Return true iff a given mnemonic is an integer CDE instruction with 217 /// dual-register destination 218 bool isCDEDualRegInstr(StringRef Mnemonic) { 219 if (!Mnemonic.startswith("cx")) 220 return false; 221 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 222 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 223 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 224 } 225 }; 226 227 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 228 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 229 "cx2", "cx2a", "cx2d", "cx2da", 230 "cx3", "cx3a", "cx3d", "cx3da", }) 231 CDE.insert(Mnemonic); 232 for (StringRef Mnemonic : 233 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 234 CDE.insert(Mnemonic); 235 CDEWithVPTSuffix.insert(Mnemonic); 236 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 238 } 239 } 240 241 class ARMAsmParser : public MCTargetAsmParser { 242 const MCRegisterInfo *MRI; 243 UnwindContext UC; 244 ARMMnemonicSets MS; 245 246 ARMTargetStreamer &getTargetStreamer() { 247 assert(getParser().getStreamer().getTargetStreamer() && 248 "do not have a target streamer"); 249 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 250 return static_cast<ARMTargetStreamer &>(TS); 251 } 252 253 // Map of register aliases registers via the .req directive. 254 StringMap<unsigned> RegisterReqs; 255 256 bool NextSymbolIsThumb; 257 258 bool useImplicitITThumb() const { 259 return ImplicitItMode == ImplicitItModeTy::Always || 260 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 261 } 262 263 bool useImplicitITARM() const { 264 return ImplicitItMode == ImplicitItModeTy::Always || 265 ImplicitItMode == ImplicitItModeTy::ARMOnly; 266 } 267 268 struct { 269 ARMCC::CondCodes Cond; // Condition for IT block. 270 unsigned Mask:4; // Condition mask for instructions. 271 // Starting at first 1 (from lsb). 272 // '1' condition as indicated in IT. 273 // '0' inverse of condition (else). 274 // Count of instructions in IT block is 275 // 4 - trailingzeroes(mask) 276 // Note that this does not have the same encoding 277 // as in the IT instruction, which also depends 278 // on the low bit of the condition code. 279 280 unsigned CurPosition; // Current position in parsing of IT 281 // block. In range [0,4], with 0 being the IT 282 // instruction itself. Initialized according to 283 // count of instructions in block. ~0U if no 284 // active IT block. 285 286 bool IsExplicit; // true - The IT instruction was present in the 287 // input, we should not modify it. 288 // false - The IT instruction was added 289 // implicitly, we can extend it if that 290 // would be legal. 291 } ITState; 292 293 SmallVector<MCInst, 4> PendingConditionalInsts; 294 295 void flushPendingInstructions(MCStreamer &Out) override { 296 if (!inImplicitITBlock()) { 297 assert(PendingConditionalInsts.size() == 0); 298 return; 299 } 300 301 // Emit the IT instruction 302 MCInst ITInst; 303 ITInst.setOpcode(ARM::t2IT); 304 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 305 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 306 Out.emitInstruction(ITInst, getSTI()); 307 308 // Emit the conditonal instructions 309 assert(PendingConditionalInsts.size() <= 4); 310 for (const MCInst &Inst : PendingConditionalInsts) { 311 Out.emitInstruction(Inst, getSTI()); 312 } 313 PendingConditionalInsts.clear(); 314 315 // Clear the IT state 316 ITState.Mask = 0; 317 ITState.CurPosition = ~0U; 318 } 319 320 bool inITBlock() { return ITState.CurPosition != ~0U; } 321 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 322 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 323 324 bool lastInITBlock() { 325 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 326 } 327 328 void forwardITPosition() { 329 if (!inITBlock()) return; 330 // Move to the next instruction in the IT block, if there is one. If not, 331 // mark the block as done, except for implicit IT blocks, which we leave 332 // open until we find an instruction that can't be added to it. 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 335 ITState.CurPosition = ~0U; // Done with the IT block after this. 336 } 337 338 // Rewind the state of the current IT block, removing the last slot from it. 339 void rewindImplicitITPosition() { 340 assert(inImplicitITBlock()); 341 assert(ITState.CurPosition > 1); 342 ITState.CurPosition--; 343 unsigned TZ = countTrailingZeros(ITState.Mask); 344 unsigned NewMask = 0; 345 NewMask |= ITState.Mask & (0xC << TZ); 346 NewMask |= 0x2 << TZ; 347 ITState.Mask = NewMask; 348 } 349 350 // Rewind the state of the current IT block, removing the last slot from it. 351 // If we were at the first slot, this closes the IT block. 352 void discardImplicitITBlock() { 353 assert(inImplicitITBlock()); 354 assert(ITState.CurPosition == 1); 355 ITState.CurPosition = ~0U; 356 } 357 358 // Return the low-subreg of a given Q register. 359 unsigned getDRegFromQReg(unsigned QReg) const { 360 return MRI->getSubReg(QReg, ARM::dsub_0); 361 } 362 363 // Get the condition code corresponding to the current IT block slot. 364 ARMCC::CondCodes currentITCond() { 365 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 366 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 367 } 368 369 // Invert the condition of the current IT block slot without changing any 370 // other slots in the same block. 371 void invertCurrentITCondition() { 372 if (ITState.CurPosition == 1) { 373 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 374 } else { 375 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 376 } 377 } 378 379 // Returns true if the current IT block is full (all 4 slots used). 380 bool isITBlockFull() { 381 return inITBlock() && (ITState.Mask & 1); 382 } 383 384 // Extend the current implicit IT block to have one more slot with the given 385 // condition code. 386 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 387 assert(inImplicitITBlock()); 388 assert(!isITBlockFull()); 389 assert(Cond == ITState.Cond || 390 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 391 unsigned TZ = countTrailingZeros(ITState.Mask); 392 unsigned NewMask = 0; 393 // Keep any existing condition bits. 394 NewMask |= ITState.Mask & (0xE << TZ); 395 // Insert the new condition bit. 396 NewMask |= (Cond != ITState.Cond) << TZ; 397 // Move the trailing 1 down one bit. 398 NewMask |= 1 << (TZ - 1); 399 ITState.Mask = NewMask; 400 } 401 402 // Create a new implicit IT block with a dummy condition code. 403 void startImplicitITBlock() { 404 assert(!inITBlock()); 405 ITState.Cond = ARMCC::AL; 406 ITState.Mask = 8; 407 ITState.CurPosition = 1; 408 ITState.IsExplicit = false; 409 } 410 411 // Create a new explicit IT block with the given condition and mask. 412 // The mask should be in the format used in ARMOperand and 413 // MCOperand, with a 1 implying 'e', regardless of the low bit of 414 // the condition. 415 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 416 assert(!inITBlock()); 417 ITState.Cond = Cond; 418 ITState.Mask = Mask; 419 ITState.CurPosition = 0; 420 ITState.IsExplicit = true; 421 } 422 423 struct { 424 unsigned Mask : 4; 425 unsigned CurPosition; 426 } VPTState; 427 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 428 void forwardVPTPosition() { 429 if (!inVPTBlock()) return; 430 unsigned TZ = countTrailingZeros(VPTState.Mask); 431 if (++VPTState.CurPosition == 5 - TZ) 432 VPTState.CurPosition = ~0U; 433 } 434 435 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 436 return getParser().Note(L, Msg, Range); 437 } 438 439 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 440 return getParser().Warning(L, Msg, Range); 441 } 442 443 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 444 return getParser().Error(L, Msg, Range); 445 } 446 447 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 448 unsigned ListNo, bool IsARPop = false); 449 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 450 unsigned ListNo); 451 452 int tryParseRegister(); 453 bool tryParseRegisterWithWriteBack(OperandVector &); 454 int tryParseShiftRegister(OperandVector &); 455 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 456 bool parseMemory(OperandVector &); 457 bool parseOperand(OperandVector &, StringRef Mnemonic); 458 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 459 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 460 unsigned &ShiftAmount); 461 bool parseLiteralValues(unsigned Size, SMLoc L); 462 bool parseDirectiveThumb(SMLoc L); 463 bool parseDirectiveARM(SMLoc L); 464 bool parseDirectiveThumbFunc(SMLoc L); 465 bool parseDirectiveCode(SMLoc L); 466 bool parseDirectiveSyntax(SMLoc L); 467 bool parseDirectiveReq(StringRef Name, SMLoc L); 468 bool parseDirectiveUnreq(SMLoc L); 469 bool parseDirectiveArch(SMLoc L); 470 bool parseDirectiveEabiAttr(SMLoc L); 471 bool parseDirectiveCPU(SMLoc L); 472 bool parseDirectiveFPU(SMLoc L); 473 bool parseDirectiveFnStart(SMLoc L); 474 bool parseDirectiveFnEnd(SMLoc L); 475 bool parseDirectiveCantUnwind(SMLoc L); 476 bool parseDirectivePersonality(SMLoc L); 477 bool parseDirectiveHandlerData(SMLoc L); 478 bool parseDirectiveSetFP(SMLoc L); 479 bool parseDirectivePad(SMLoc L); 480 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 481 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 482 bool parseDirectiveLtorg(SMLoc L); 483 bool parseDirectiveEven(SMLoc L); 484 bool parseDirectivePersonalityIndex(SMLoc L); 485 bool parseDirectiveUnwindRaw(SMLoc L); 486 bool parseDirectiveTLSDescSeq(SMLoc L); 487 bool parseDirectiveMovSP(SMLoc L); 488 bool parseDirectiveObjectArch(SMLoc L); 489 bool parseDirectiveArchExtension(SMLoc L); 490 bool parseDirectiveAlign(SMLoc L); 491 bool parseDirectiveThumbSet(SMLoc L); 492 493 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 494 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 495 unsigned &PredicationCode, 496 unsigned &VPTPredicationCode, bool &CarrySetting, 497 unsigned &ProcessorIMod, StringRef &ITMask); 498 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 499 StringRef FullInst, bool &CanAcceptCarrySet, 500 bool &CanAcceptPredicationCode, 501 bool &CanAcceptVPTPredicationCode); 502 bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); 503 504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 505 OperandVector &Operands); 506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 507 508 bool isThumb() const { 509 // FIXME: Can tablegen auto-generate this? 510 return getSTI().getFeatureBits()[ARM::ModeThumb]; 511 } 512 513 bool isThumbOne() const { 514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 515 } 516 517 bool isThumbTwo() const { 518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 519 } 520 521 bool hasThumb() const { 522 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 523 } 524 525 bool hasThumb2() const { 526 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 527 } 528 529 bool hasV6Ops() const { 530 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 531 } 532 533 bool hasV6T2Ops() const { 534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 535 } 536 537 bool hasV6MOps() const { 538 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 539 } 540 541 bool hasV7Ops() const { 542 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 543 } 544 545 bool hasV8Ops() const { 546 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 547 } 548 549 bool hasV8MBaseline() const { 550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 551 } 552 553 bool hasV8MMainline() const { 554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 555 } 556 bool hasV8_1MMainline() const { 557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 558 } 559 bool hasMVE() const { 560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 561 } 562 bool hasMVEFloat() const { 563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 564 } 565 bool hasCDE() const { 566 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 567 } 568 bool has8MSecExt() const { 569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 570 } 571 572 bool hasARM() const { 573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 574 } 575 576 bool hasDSP() const { 577 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 578 } 579 580 bool hasD32() const { 581 return getSTI().getFeatureBits()[ARM::FeatureD32]; 582 } 583 584 bool hasV8_1aOps() const { 585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 586 } 587 588 bool hasRAS() const { 589 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 590 } 591 592 void SwitchMode() { 593 MCSubtargetInfo &STI = copySTI(); 594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 595 setAvailableFeatures(FB); 596 } 597 598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 599 600 bool isMClass() const { 601 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 602 } 603 604 /// @name Auto-generated Match Functions 605 /// { 606 607 #define GET_ASSEMBLER_HEADER 608 #include "ARMGenAsmMatcher.inc" 609 610 /// } 611 612 OperandMatchResultTy parseITCondCode(OperandVector &); 613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 621 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 623 int High); 624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 625 return parsePKHImm(O, "lsl", 0, 31); 626 } 627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 628 return parsePKHImm(O, "asr", 1, 32); 629 } 630 OperandMatchResultTy parseSetEndImm(OperandVector &); 631 OperandMatchResultTy parseShifterImm(OperandVector &); 632 OperandMatchResultTy parseRotImm(OperandVector &); 633 OperandMatchResultTy parseModImm(OperandVector &); 634 OperandMatchResultTy parseBitfield(OperandVector &); 635 OperandMatchResultTy parsePostIdxReg(OperandVector &); 636 OperandMatchResultTy parseAM3Offset(OperandVector &); 637 OperandMatchResultTy parseFPImm(OperandVector &); 638 OperandMatchResultTy parseVectorList(OperandVector &); 639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 640 SMLoc &EndLoc); 641 642 // Asm Match Converter Methods 643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 644 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 646 647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 652 bool isITBlockTerminator(MCInst &Inst) const; 653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 655 bool Load, bool ARMMode, bool Writeback); 656 657 public: 658 enum ARMMatchResultTy { 659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 660 Match_RequiresNotITBlock, 661 Match_RequiresV6, 662 Match_RequiresThumb2, 663 Match_RequiresV8, 664 Match_RequiresFlagSetting, 665 #define GET_OPERAND_DIAGNOSTIC_TYPES 666 #include "ARMGenAsmMatcher.inc" 667 668 }; 669 670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 671 const MCInstrInfo &MII, const MCTargetOptions &Options) 672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 673 MCAsmParserExtension::Initialize(Parser); 674 675 // Cache the MCRegisterInfo. 676 MRI = getContext().getRegisterInfo(); 677 678 // Initialize the set of available features. 679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 680 681 // Add build attributes based on the selected target. 682 if (AddBuildAttributes) 683 getTargetStreamer().emitTargetAttributes(STI); 684 685 // Not in an ITBlock to start with. 686 ITState.CurPosition = ~0U; 687 688 VPTState.CurPosition = ~0U; 689 690 NextSymbolIsThumb = false; 691 } 692 693 // Implementation of the MCTargetAsmParser interface: 694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 696 SMLoc &EndLoc) override; 697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 698 SMLoc NameLoc, OperandVector &Operands) override; 699 bool ParseDirective(AsmToken DirectiveID) override; 700 701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 702 unsigned Kind) override; 703 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 704 705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 706 OperandVector &Operands, MCStreamer &Out, 707 uint64_t &ErrorInfo, 708 bool MatchingInlineAsm) override; 709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 710 SmallVectorImpl<NearMissInfo> &NearMisses, 711 bool MatchingInlineAsm, bool &EmitInITBlock, 712 MCStreamer &Out); 713 714 struct NearMissMessage { 715 SMLoc Loc; 716 SmallString<128> Message; 717 }; 718 719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 720 721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 722 SmallVectorImpl<NearMissMessage> &NearMissesOut, 723 SMLoc IDLoc, OperandVector &Operands); 724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 725 OperandVector &Operands); 726 727 void doBeforeLabelEmit(MCSymbol *Symbol) override; 728 729 void onLabelParsed(MCSymbol *Symbol) override; 730 }; 731 732 /// ARMOperand - Instances of this class represent a parsed ARM machine 733 /// operand. 734 class ARMOperand : public MCParsedAsmOperand { 735 enum KindTy { 736 k_CondCode, 737 k_VPTPred, 738 k_CCOut, 739 k_ITCondMask, 740 k_CoprocNum, 741 k_CoprocReg, 742 k_CoprocOption, 743 k_Immediate, 744 k_MemBarrierOpt, 745 k_InstSyncBarrierOpt, 746 k_TraceSyncBarrierOpt, 747 k_Memory, 748 k_PostIndexRegister, 749 k_MSRMask, 750 k_BankedReg, 751 k_ProcIFlags, 752 k_VectorIndex, 753 k_Register, 754 k_RegisterList, 755 k_RegisterListWithAPSR, 756 k_DPRRegisterList, 757 k_SPRRegisterList, 758 k_FPSRegisterListWithVPR, 759 k_FPDRegisterListWithVPR, 760 k_VectorList, 761 k_VectorListAllLanes, 762 k_VectorListIndexed, 763 k_ShiftedRegister, 764 k_ShiftedImmediate, 765 k_ShifterImmediate, 766 k_RotateImmediate, 767 k_ModifiedImmediate, 768 k_ConstantPoolImmediate, 769 k_BitfieldDescriptor, 770 k_Token, 771 } Kind; 772 773 SMLoc StartLoc, EndLoc, AlignmentLoc; 774 SmallVector<unsigned, 8> Registers; 775 776 struct CCOp { 777 ARMCC::CondCodes Val; 778 }; 779 780 struct VCCOp { 781 ARMVCC::VPTCodes Val; 782 }; 783 784 struct CopOp { 785 unsigned Val; 786 }; 787 788 struct CoprocOptionOp { 789 unsigned Val; 790 }; 791 792 struct ITMaskOp { 793 unsigned Mask:4; 794 }; 795 796 struct MBOptOp { 797 ARM_MB::MemBOpt Val; 798 }; 799 800 struct ISBOptOp { 801 ARM_ISB::InstSyncBOpt Val; 802 }; 803 804 struct TSBOptOp { 805 ARM_TSB::TraceSyncBOpt Val; 806 }; 807 808 struct IFlagsOp { 809 ARM_PROC::IFlags Val; 810 }; 811 812 struct MMaskOp { 813 unsigned Val; 814 }; 815 816 struct BankedRegOp { 817 unsigned Val; 818 }; 819 820 struct TokOp { 821 const char *Data; 822 unsigned Length; 823 }; 824 825 struct RegOp { 826 unsigned RegNum; 827 }; 828 829 // A vector register list is a sequential list of 1 to 4 registers. 830 struct VectorListOp { 831 unsigned RegNum; 832 unsigned Count; 833 unsigned LaneIndex; 834 bool isDoubleSpaced; 835 }; 836 837 struct VectorIndexOp { 838 unsigned Val; 839 }; 840 841 struct ImmOp { 842 const MCExpr *Val; 843 }; 844 845 /// Combined record for all forms of ARM address expressions. 846 struct MemoryOp { 847 unsigned BaseRegNum; 848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 849 // was specified. 850 const MCExpr *OffsetImm; // Offset immediate value 851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 853 unsigned ShiftImm; // shift for OffsetReg. 854 unsigned Alignment; // 0 = no alignment specified 855 // n = alignment in bytes (2, 4, 8, 16, or 32) 856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 857 }; 858 859 struct PostIdxRegOp { 860 unsigned RegNum; 861 bool isAdd; 862 ARM_AM::ShiftOpc ShiftTy; 863 unsigned ShiftImm; 864 }; 865 866 struct ShifterImmOp { 867 bool isASR; 868 unsigned Imm; 869 }; 870 871 struct RegShiftedRegOp { 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned SrcReg; 874 unsigned ShiftReg; 875 unsigned ShiftImm; 876 }; 877 878 struct RegShiftedImmOp { 879 ARM_AM::ShiftOpc ShiftTy; 880 unsigned SrcReg; 881 unsigned ShiftImm; 882 }; 883 884 struct RotImmOp { 885 unsigned Imm; 886 }; 887 888 struct ModImmOp { 889 unsigned Bits; 890 unsigned Rot; 891 }; 892 893 struct BitfieldOp { 894 unsigned LSB; 895 unsigned Width; 896 }; 897 898 union { 899 struct CCOp CC; 900 struct VCCOp VCC; 901 struct CopOp Cop; 902 struct CoprocOptionOp CoprocOption; 903 struct MBOptOp MBOpt; 904 struct ISBOptOp ISBOpt; 905 struct TSBOptOp TSBOpt; 906 struct ITMaskOp ITMask; 907 struct IFlagsOp IFlags; 908 struct MMaskOp MMask; 909 struct BankedRegOp BankedReg; 910 struct TokOp Tok; 911 struct RegOp Reg; 912 struct VectorListOp VectorList; 913 struct VectorIndexOp VectorIndex; 914 struct ImmOp Imm; 915 struct MemoryOp Memory; 916 struct PostIdxRegOp PostIdxReg; 917 struct ShifterImmOp ShifterImm; 918 struct RegShiftedRegOp RegShiftedReg; 919 struct RegShiftedImmOp RegShiftedImm; 920 struct RotImmOp RotImm; 921 struct ModImmOp ModImm; 922 struct BitfieldOp Bitfield; 923 }; 924 925 public: 926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 927 928 /// getStartLoc - Get the location of the first token of this operand. 929 SMLoc getStartLoc() const override { return StartLoc; } 930 931 /// getEndLoc - Get the location of the last token of this operand. 932 SMLoc getEndLoc() const override { return EndLoc; } 933 934 /// getLocRange - Get the range between the first and last token of this 935 /// operand. 936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 937 938 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 939 SMLoc getAlignmentLoc() const { 940 assert(Kind == k_Memory && "Invalid access!"); 941 return AlignmentLoc; 942 } 943 944 ARMCC::CondCodes getCondCode() const { 945 assert(Kind == k_CondCode && "Invalid access!"); 946 return CC.Val; 947 } 948 949 ARMVCC::VPTCodes getVPTPred() const { 950 assert(isVPTPred() && "Invalid access!"); 951 return VCC.Val; 952 } 953 954 unsigned getCoproc() const { 955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 956 return Cop.Val; 957 } 958 959 StringRef getToken() const { 960 assert(Kind == k_Token && "Invalid access!"); 961 return StringRef(Tok.Data, Tok.Length); 962 } 963 964 unsigned getReg() const override { 965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 966 return Reg.RegNum; 967 } 968 969 const SmallVectorImpl<unsigned> &getRegList() const { 970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 972 Kind == k_FPSRegisterListWithVPR || 973 Kind == k_FPDRegisterListWithVPR) && 974 "Invalid access!"); 975 return Registers; 976 } 977 978 const MCExpr *getImm() const { 979 assert(isImm() && "Invalid access!"); 980 return Imm.Val; 981 } 982 983 const MCExpr *getConstantPoolImm() const { 984 assert(isConstantPoolImm() && "Invalid access!"); 985 return Imm.Val; 986 } 987 988 unsigned getVectorIndex() const { 989 assert(Kind == k_VectorIndex && "Invalid access!"); 990 return VectorIndex.Val; 991 } 992 993 ARM_MB::MemBOpt getMemBarrierOpt() const { 994 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 995 return MBOpt.Val; 996 } 997 998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1000 return ISBOpt.Val; 1001 } 1002 1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1005 return TSBOpt.Val; 1006 } 1007 1008 ARM_PROC::IFlags getProcIFlags() const { 1009 assert(Kind == k_ProcIFlags && "Invalid access!"); 1010 return IFlags.Val; 1011 } 1012 1013 unsigned getMSRMask() const { 1014 assert(Kind == k_MSRMask && "Invalid access!"); 1015 return MMask.Val; 1016 } 1017 1018 unsigned getBankedReg() const { 1019 assert(Kind == k_BankedReg && "Invalid access!"); 1020 return BankedReg.Val; 1021 } 1022 1023 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1024 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1025 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1026 bool isCondCode() const { return Kind == k_CondCode; } 1027 bool isVPTPred() const { return Kind == k_VPTPred; } 1028 bool isCCOut() const { return Kind == k_CCOut; } 1029 bool isITMask() const { return Kind == k_ITCondMask; } 1030 bool isITCondCode() const { return Kind == k_CondCode; } 1031 bool isImm() const override { 1032 return Kind == k_Immediate; 1033 } 1034 1035 bool isARMBranchTarget() const { 1036 if (!isImm()) return false; 1037 1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1039 return CE->getValue() % 4 == 0; 1040 return true; 1041 } 1042 1043 1044 bool isThumbBranchTarget() const { 1045 if (!isImm()) return false; 1046 1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1048 return CE->getValue() % 2 == 0; 1049 return true; 1050 } 1051 1052 // checks whether this operand is an unsigned offset which fits is a field 1053 // of specified width and scaled by a specific number of bits 1054 template<unsigned width, unsigned scale> 1055 bool isUnsignedOffset() const { 1056 if (!isImm()) return false; 1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1059 int64_t Val = CE->getValue(); 1060 int64_t Align = 1LL << scale; 1061 int64_t Max = Align * ((1LL << width) - 1); 1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1063 } 1064 return false; 1065 } 1066 1067 // checks whether this operand is an signed offset which fits is a field 1068 // of specified width and scaled by a specific number of bits 1069 template<unsigned width, unsigned scale> 1070 bool isSignedOffset() const { 1071 if (!isImm()) return false; 1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1074 int64_t Val = CE->getValue(); 1075 int64_t Align = 1LL << scale; 1076 int64_t Max = Align * ((1LL << (width-1)) - 1); 1077 int64_t Min = -Align * (1LL << (width-1)); 1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1079 } 1080 return false; 1081 } 1082 1083 // checks whether this operand is an offset suitable for the LE / 1084 // LETP instructions in Arm v8.1M 1085 bool isLEOffset() const { 1086 if (!isImm()) return false; 1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1089 int64_t Val = CE->getValue(); 1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1091 } 1092 return false; 1093 } 1094 1095 // checks whether this operand is a memory operand computed as an offset 1096 // applied to PC. the offset may have 8 bits of magnitude and is represented 1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1098 // relocable expression... 1099 bool isThumbMemPC() const { 1100 int64_t Val = 0; 1101 if (isImm()) { 1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1104 if (!CE) return false; 1105 Val = CE->getValue(); 1106 } 1107 else if (isGPRMem()) { 1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1109 if(Memory.BaseRegNum != ARM::PC) return false; 1110 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 1111 Val = CE->getValue(); 1112 else 1113 return false; 1114 } 1115 else return false; 1116 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1117 } 1118 1119 bool isFPImm() const { 1120 if (!isImm()) return false; 1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1122 if (!CE) return false; 1123 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1124 return Val != -1; 1125 } 1126 1127 template<int64_t N, int64_t M> 1128 bool isImmediate() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 if (!CE) return false; 1132 int64_t Value = CE->getValue(); 1133 return Value >= N && Value <= M; 1134 } 1135 1136 template<int64_t N, int64_t M> 1137 bool isImmediateS4() const { 1138 if (!isImm()) return false; 1139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1140 if (!CE) return false; 1141 int64_t Value = CE->getValue(); 1142 return ((Value & 3) == 0) && Value >= N && Value <= M; 1143 } 1144 template<int64_t N, int64_t M> 1145 bool isImmediateS2() const { 1146 if (!isImm()) return false; 1147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1148 if (!CE) return false; 1149 int64_t Value = CE->getValue(); 1150 return ((Value & 1) == 0) && Value >= N && Value <= M; 1151 } 1152 bool isFBits16() const { 1153 return isImmediate<0, 17>(); 1154 } 1155 bool isFBits32() const { 1156 return isImmediate<1, 33>(); 1157 } 1158 bool isImm8s4() const { 1159 return isImmediateS4<-1020, 1020>(); 1160 } 1161 bool isImm7s4() const { 1162 return isImmediateS4<-508, 508>(); 1163 } 1164 bool isImm7Shift0() const { 1165 return isImmediate<-127, 127>(); 1166 } 1167 bool isImm7Shift1() const { 1168 return isImmediateS2<-255, 255>(); 1169 } 1170 bool isImm7Shift2() const { 1171 return isImmediateS4<-511, 511>(); 1172 } 1173 bool isImm7() const { 1174 return isImmediate<-127, 127>(); 1175 } 1176 bool isImm0_1020s4() const { 1177 return isImmediateS4<0, 1020>(); 1178 } 1179 bool isImm0_508s4() const { 1180 return isImmediateS4<0, 508>(); 1181 } 1182 bool isImm0_508s4Neg() const { 1183 if (!isImm()) return false; 1184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1185 if (!CE) return false; 1186 int64_t Value = -CE->getValue(); 1187 // explicitly exclude zero. we want that to use the normal 0_508 version. 1188 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1189 } 1190 1191 bool isImm0_4095Neg() const { 1192 if (!isImm()) return false; 1193 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1194 if (!CE) return false; 1195 // isImm0_4095Neg is used with 32-bit immediates only. 1196 // 32-bit immediates are zero extended to 64-bit when parsed, 1197 // thus simple -CE->getValue() results in a big negative number, 1198 // not a small positive number as intended 1199 if ((CE->getValue() >> 32) > 0) return false; 1200 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1201 return Value > 0 && Value < 4096; 1202 } 1203 1204 bool isImm0_7() const { 1205 return isImmediate<0, 7>(); 1206 } 1207 1208 bool isImm1_16() const { 1209 return isImmediate<1, 16>(); 1210 } 1211 1212 bool isImm1_32() const { 1213 return isImmediate<1, 32>(); 1214 } 1215 1216 bool isImm8_255() const { 1217 return isImmediate<8, 255>(); 1218 } 1219 1220 bool isImm256_65535Expr() const { 1221 if (!isImm()) return false; 1222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1223 // If it's not a constant expression, it'll generate a fixup and be 1224 // handled later. 1225 if (!CE) return true; 1226 int64_t Value = CE->getValue(); 1227 return Value >= 256 && Value < 65536; 1228 } 1229 1230 bool isImm0_65535Expr() const { 1231 if (!isImm()) return false; 1232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1233 // If it's not a constant expression, it'll generate a fixup and be 1234 // handled later. 1235 if (!CE) return true; 1236 int64_t Value = CE->getValue(); 1237 return Value >= 0 && Value < 65536; 1238 } 1239 1240 bool isImm24bit() const { 1241 return isImmediate<0, 0xffffff + 1>(); 1242 } 1243 1244 bool isImmThumbSR() const { 1245 return isImmediate<1, 33>(); 1246 } 1247 1248 template<int shift> 1249 bool isExpImmValue(uint64_t Value) const { 1250 uint64_t mask = (1 << shift) - 1; 1251 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1252 return false; 1253 return true; 1254 } 1255 1256 template<int shift> 1257 bool isExpImm() const { 1258 if (!isImm()) return false; 1259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1260 if (!CE) return false; 1261 1262 return isExpImmValue<shift>(CE->getValue()); 1263 } 1264 1265 template<int shift, int size> 1266 bool isInvertedExpImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 1271 uint64_t OriginalValue = CE->getValue(); 1272 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1273 return isExpImmValue<shift>(InvertedValue); 1274 } 1275 1276 bool isPKHLSLImm() const { 1277 return isImmediate<0, 32>(); 1278 } 1279 1280 bool isPKHASRImm() const { 1281 return isImmediate<0, 33>(); 1282 } 1283 1284 bool isAdrLabel() const { 1285 // If we have an immediate that's not a constant, treat it as a label 1286 // reference needing a fixup. 1287 if (isImm() && !isa<MCConstantExpr>(getImm())) 1288 return true; 1289 1290 // If it is a constant, it must fit into a modified immediate encoding. 1291 if (!isImm()) return false; 1292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1293 if (!CE) return false; 1294 int64_t Value = CE->getValue(); 1295 return (ARM_AM::getSOImmVal(Value) != -1 || 1296 ARM_AM::getSOImmVal(-Value) != -1); 1297 } 1298 1299 bool isT2SOImm() const { 1300 // If we have an immediate that's not a constant, treat it as an expression 1301 // needing a fixup. 1302 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1303 // We want to avoid matching :upper16: and :lower16: as we want these 1304 // expressions to match in isImm0_65535Expr() 1305 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1306 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1307 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1308 } 1309 if (!isImm()) return false; 1310 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1311 if (!CE) return false; 1312 int64_t Value = CE->getValue(); 1313 return ARM_AM::getT2SOImmVal(Value) != -1; 1314 } 1315 1316 bool isT2SOImmNot() const { 1317 if (!isImm()) return false; 1318 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1319 if (!CE) return false; 1320 int64_t Value = CE->getValue(); 1321 return ARM_AM::getT2SOImmVal(Value) == -1 && 1322 ARM_AM::getT2SOImmVal(~Value) != -1; 1323 } 1324 1325 bool isT2SOImmNeg() const { 1326 if (!isImm()) return false; 1327 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1328 if (!CE) return false; 1329 int64_t Value = CE->getValue(); 1330 // Only use this when not representable as a plain so_imm. 1331 return ARM_AM::getT2SOImmVal(Value) == -1 && 1332 ARM_AM::getT2SOImmVal(-Value) != -1; 1333 } 1334 1335 bool isSetEndImm() const { 1336 if (!isImm()) return false; 1337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1338 if (!CE) return false; 1339 int64_t Value = CE->getValue(); 1340 return Value == 1 || Value == 0; 1341 } 1342 1343 bool isReg() const override { return Kind == k_Register; } 1344 bool isRegList() const { return Kind == k_RegisterList; } 1345 bool isRegListWithAPSR() const { 1346 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1347 } 1348 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1349 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1350 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1351 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1352 bool isToken() const override { return Kind == k_Token; } 1353 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1354 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1355 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1356 bool isMem() const override { 1357 return isGPRMem() || isMVEMem(); 1358 } 1359 bool isMVEMem() const { 1360 if (Kind != k_Memory) 1361 return false; 1362 if (Memory.BaseRegNum && 1363 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1365 return false; 1366 if (Memory.OffsetRegNum && 1367 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1368 Memory.OffsetRegNum)) 1369 return false; 1370 return true; 1371 } 1372 bool isGPRMem() const { 1373 if (Kind != k_Memory) 1374 return false; 1375 if (Memory.BaseRegNum && 1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1377 return false; 1378 if (Memory.OffsetRegNum && 1379 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1380 return false; 1381 return true; 1382 } 1383 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1384 bool isRegShiftedReg() const { 1385 return Kind == k_ShiftedRegister && 1386 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1387 RegShiftedReg.SrcReg) && 1388 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1389 RegShiftedReg.ShiftReg); 1390 } 1391 bool isRegShiftedImm() const { 1392 return Kind == k_ShiftedImmediate && 1393 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1394 RegShiftedImm.SrcReg); 1395 } 1396 bool isRotImm() const { return Kind == k_RotateImmediate; } 1397 1398 template<unsigned Min, unsigned Max> 1399 bool isPowerTwoInRange() const { 1400 if (!isImm()) return false; 1401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1402 if (!CE) return false; 1403 int64_t Value = CE->getValue(); 1404 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1405 Value >= Min && Value <= Max; 1406 } 1407 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1408 1409 bool isModImmNot() const { 1410 if (!isImm()) return false; 1411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1412 if (!CE) return false; 1413 int64_t Value = CE->getValue(); 1414 return ARM_AM::getSOImmVal(~Value) != -1; 1415 } 1416 1417 bool isModImmNeg() const { 1418 if (!isImm()) return false; 1419 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1420 if (!CE) return false; 1421 int64_t Value = CE->getValue(); 1422 return ARM_AM::getSOImmVal(Value) == -1 && 1423 ARM_AM::getSOImmVal(-Value) != -1; 1424 } 1425 1426 bool isThumbModImmNeg1_7() const { 1427 if (!isImm()) return false; 1428 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1429 if (!CE) return false; 1430 int32_t Value = -(int32_t)CE->getValue(); 1431 return 0 < Value && Value < 8; 1432 } 1433 1434 bool isThumbModImmNeg8_255() const { 1435 if (!isImm()) return false; 1436 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1437 if (!CE) return false; 1438 int32_t Value = -(int32_t)CE->getValue(); 1439 return 7 < Value && Value < 256; 1440 } 1441 1442 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1443 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1444 bool isPostIdxRegShifted() const { 1445 return Kind == k_PostIndexRegister && 1446 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1447 } 1448 bool isPostIdxReg() const { 1449 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1450 } 1451 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1452 if (!isGPRMem()) 1453 return false; 1454 // No offset of any kind. 1455 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1456 (alignOK || Memory.Alignment == Alignment); 1457 } 1458 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1459 if (!isGPRMem()) 1460 return false; 1461 1462 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1463 Memory.BaseRegNum)) 1464 return false; 1465 1466 // No offset of any kind. 1467 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1468 (alignOK || Memory.Alignment == Alignment); 1469 } 1470 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1471 if (!isGPRMem()) 1472 return false; 1473 1474 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1475 Memory.BaseRegNum)) 1476 return false; 1477 1478 // No offset of any kind. 1479 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1480 (alignOK || Memory.Alignment == Alignment); 1481 } 1482 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1483 if (!isGPRMem()) 1484 return false; 1485 1486 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1487 Memory.BaseRegNum)) 1488 return false; 1489 1490 // No offset of any kind. 1491 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1492 (alignOK || Memory.Alignment == Alignment); 1493 } 1494 bool isMemPCRelImm12() const { 1495 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1496 return false; 1497 // Base register must be PC. 1498 if (Memory.BaseRegNum != ARM::PC) 1499 return false; 1500 // Immediate offset in range [-4095, 4095]. 1501 if (!Memory.OffsetImm) return true; 1502 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1503 int64_t Val = CE->getValue(); 1504 return (Val > -4096 && Val < 4096) || 1505 (Val == std::numeric_limits<int32_t>::min()); 1506 } 1507 return false; 1508 } 1509 1510 bool isAlignedMemory() const { 1511 return isMemNoOffset(true); 1512 } 1513 1514 bool isAlignedMemoryNone() const { 1515 return isMemNoOffset(false, 0); 1516 } 1517 1518 bool isDupAlignedMemoryNone() const { 1519 return isMemNoOffset(false, 0); 1520 } 1521 1522 bool isAlignedMemory16() const { 1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1524 return true; 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isDupAlignedMemory16() const { 1529 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1530 return true; 1531 return isMemNoOffset(false, 0); 1532 } 1533 1534 bool isAlignedMemory32() const { 1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1536 return true; 1537 return isMemNoOffset(false, 0); 1538 } 1539 1540 bool isDupAlignedMemory32() const { 1541 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1542 return true; 1543 return isMemNoOffset(false, 0); 1544 } 1545 1546 bool isAlignedMemory64() const { 1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1548 return true; 1549 return isMemNoOffset(false, 0); 1550 } 1551 1552 bool isDupAlignedMemory64() const { 1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1554 return true; 1555 return isMemNoOffset(false, 0); 1556 } 1557 1558 bool isAlignedMemory64or128() const { 1559 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1560 return true; 1561 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1562 return true; 1563 return isMemNoOffset(false, 0); 1564 } 1565 1566 bool isDupAlignedMemory64or128() const { 1567 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1568 return true; 1569 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1570 return true; 1571 return isMemNoOffset(false, 0); 1572 } 1573 1574 bool isAlignedMemory64or128or256() const { 1575 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1576 return true; 1577 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1578 return true; 1579 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1580 return true; 1581 return isMemNoOffset(false, 0); 1582 } 1583 1584 bool isAddrMode2() const { 1585 if (!isGPRMem() || Memory.Alignment != 0) return false; 1586 // Check for register offset. 1587 if (Memory.OffsetRegNum) return true; 1588 // Immediate offset in range [-4095, 4095]. 1589 if (!Memory.OffsetImm) return true; 1590 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1591 int64_t Val = CE->getValue(); 1592 return Val > -4096 && Val < 4096; 1593 } 1594 return false; 1595 } 1596 1597 bool isAM2OffsetImm() const { 1598 if (!isImm()) return false; 1599 // Immediate offset in range [-4095, 4095]. 1600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1601 if (!CE) return false; 1602 int64_t Val = CE->getValue(); 1603 return (Val == std::numeric_limits<int32_t>::min()) || 1604 (Val > -4096 && Val < 4096); 1605 } 1606 1607 bool isAddrMode3() const { 1608 // If we have an immediate that's not a constant, treat it as a label 1609 // reference needing a fixup. If it is a constant, it's something else 1610 // and we reject it. 1611 if (isImm() && !isa<MCConstantExpr>(getImm())) 1612 return true; 1613 if (!isGPRMem() || Memory.Alignment != 0) return false; 1614 // No shifts are legal for AM3. 1615 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1616 // Check for register offset. 1617 if (Memory.OffsetRegNum) return true; 1618 // Immediate offset in range [-255, 255]. 1619 if (!Memory.OffsetImm) return true; 1620 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1621 int64_t Val = CE->getValue(); 1622 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and 1623 // we have to check for this too. 1624 return (Val > -256 && Val < 256) || 1625 Val == std::numeric_limits<int32_t>::min(); 1626 } 1627 return false; 1628 } 1629 1630 bool isAM3Offset() const { 1631 if (isPostIdxReg()) 1632 return true; 1633 if (!isImm()) 1634 return false; 1635 // Immediate offset in range [-255, 255]. 1636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1637 if (!CE) return false; 1638 int64_t Val = CE->getValue(); 1639 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1640 return (Val > -256 && Val < 256) || 1641 Val == std::numeric_limits<int32_t>::min(); 1642 } 1643 1644 bool isAddrMode5() const { 1645 // If we have an immediate that's not a constant, treat it as a label 1646 // reference needing a fixup. If it is a constant, it's something else 1647 // and we reject it. 1648 if (isImm() && !isa<MCConstantExpr>(getImm())) 1649 return true; 1650 if (!isGPRMem() || Memory.Alignment != 0) return false; 1651 // Check for register offset. 1652 if (Memory.OffsetRegNum) return false; 1653 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1654 if (!Memory.OffsetImm) return true; 1655 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1656 int64_t Val = CE->getValue(); 1657 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1658 Val == std::numeric_limits<int32_t>::min(); 1659 } 1660 return false; 1661 } 1662 1663 bool isAddrMode5FP16() const { 1664 // If we have an immediate that's not a constant, treat it as a label 1665 // reference needing a fixup. If it is a constant, it's something else 1666 // and we reject it. 1667 if (isImm() && !isa<MCConstantExpr>(getImm())) 1668 return true; 1669 if (!isGPRMem() || Memory.Alignment != 0) return false; 1670 // Check for register offset. 1671 if (Memory.OffsetRegNum) return false; 1672 // Immediate offset in range [-510, 510] and a multiple of 2. 1673 if (!Memory.OffsetImm) return true; 1674 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1675 int64_t Val = CE->getValue(); 1676 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1677 Val == std::numeric_limits<int32_t>::min(); 1678 } 1679 return false; 1680 } 1681 1682 bool isMemTBB() const { 1683 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1684 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1685 return false; 1686 return true; 1687 } 1688 1689 bool isMemTBH() const { 1690 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1691 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1692 Memory.Alignment != 0 ) 1693 return false; 1694 return true; 1695 } 1696 1697 bool isMemRegOffset() const { 1698 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1699 return false; 1700 return true; 1701 } 1702 1703 bool isT2MemRegOffset() const { 1704 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1705 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1706 return false; 1707 // Only lsl #{0, 1, 2, 3} allowed. 1708 if (Memory.ShiftType == ARM_AM::no_shift) 1709 return true; 1710 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1711 return false; 1712 return true; 1713 } 1714 1715 bool isMemThumbRR() const { 1716 // Thumb reg+reg addressing is simple. Just two registers, a base and 1717 // an offset. No shifts, negations or any other complicating factors. 1718 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1719 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1720 return false; 1721 return isARMLowRegister(Memory.BaseRegNum) && 1722 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1723 } 1724 1725 bool isMemThumbRIs4() const { 1726 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1727 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1728 return false; 1729 // Immediate offset, multiple of 4 in range [0, 124]. 1730 if (!Memory.OffsetImm) return true; 1731 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1732 int64_t Val = CE->getValue(); 1733 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1734 } 1735 return false; 1736 } 1737 1738 bool isMemThumbRIs2() const { 1739 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1740 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1741 return false; 1742 // Immediate offset, multiple of 4 in range [0, 62]. 1743 if (!Memory.OffsetImm) return true; 1744 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1745 int64_t Val = CE->getValue(); 1746 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1747 } 1748 return false; 1749 } 1750 1751 bool isMemThumbRIs1() const { 1752 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1753 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1754 return false; 1755 // Immediate offset in range [0, 31]. 1756 if (!Memory.OffsetImm) return true; 1757 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1758 int64_t Val = CE->getValue(); 1759 return Val >= 0 && Val <= 31; 1760 } 1761 return false; 1762 } 1763 1764 bool isMemThumbSPI() const { 1765 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1766 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1767 return false; 1768 // Immediate offset, multiple of 4 in range [0, 1020]. 1769 if (!Memory.OffsetImm) return true; 1770 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1771 int64_t Val = CE->getValue(); 1772 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1773 } 1774 return false; 1775 } 1776 1777 bool isMemImm8s4Offset() const { 1778 // If we have an immediate that's not a constant, treat it as a label 1779 // reference needing a fixup. If it is a constant, it's something else 1780 // and we reject it. 1781 if (isImm() && !isa<MCConstantExpr>(getImm())) 1782 return true; 1783 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1786 if (!Memory.OffsetImm) return true; 1787 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1788 int64_t Val = CE->getValue(); 1789 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1790 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1791 Val == std::numeric_limits<int32_t>::min(); 1792 } 1793 return false; 1794 } 1795 1796 bool isMemImm7s4Offset() const { 1797 // If we have an immediate that's not a constant, treat it as a label 1798 // reference needing a fixup. If it is a constant, it's something else 1799 // and we reject it. 1800 if (isImm() && !isa<MCConstantExpr>(getImm())) 1801 return true; 1802 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1803 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1804 Memory.BaseRegNum)) 1805 return false; 1806 // Immediate offset a multiple of 4 in range [-508, 508]. 1807 if (!Memory.OffsetImm) return true; 1808 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1809 int64_t Val = CE->getValue(); 1810 // Special case, #-0 is INT32_MIN. 1811 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1812 } 1813 return false; 1814 } 1815 1816 bool isMemImm0_1020s4Offset() const { 1817 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1818 return false; 1819 // Immediate offset a multiple of 4 in range [0, 1020]. 1820 if (!Memory.OffsetImm) return true; 1821 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1822 int64_t Val = CE->getValue(); 1823 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1824 } 1825 return false; 1826 } 1827 1828 bool isMemImm8Offset() const { 1829 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1830 return false; 1831 // Base reg of PC isn't allowed for these encodings. 1832 if (Memory.BaseRegNum == ARM::PC) return false; 1833 // Immediate offset in range [-255, 255]. 1834 if (!Memory.OffsetImm) return true; 1835 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1836 int64_t Val = CE->getValue(); 1837 return (Val == std::numeric_limits<int32_t>::min()) || 1838 (Val > -256 && Val < 256); 1839 } 1840 return false; 1841 } 1842 1843 template<unsigned Bits, unsigned RegClassID> 1844 bool isMemImm7ShiftedOffset() const { 1845 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1846 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1847 return false; 1848 1849 // Expect an immediate offset equal to an element of the range 1850 // [-127, 127], shifted left by Bits. 1851 1852 if (!Memory.OffsetImm) return true; 1853 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1854 int64_t Val = CE->getValue(); 1855 1856 // INT32_MIN is a special-case value (indicating the encoding with 1857 // zero offset and the subtract bit set) 1858 if (Val == INT32_MIN) 1859 return true; 1860 1861 unsigned Divisor = 1U << Bits; 1862 1863 // Check that the low bits are zero 1864 if (Val % Divisor != 0) 1865 return false; 1866 1867 // Check that the remaining offset is within range. 1868 Val /= Divisor; 1869 return (Val >= -127 && Val <= 127); 1870 } 1871 return false; 1872 } 1873 1874 template <int shift> bool isMemRegRQOffset() const { 1875 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1876 return false; 1877 1878 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1879 Memory.BaseRegNum)) 1880 return false; 1881 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1882 Memory.OffsetRegNum)) 1883 return false; 1884 1885 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1886 return false; 1887 1888 if (shift > 0 && 1889 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1890 return false; 1891 1892 return true; 1893 } 1894 1895 template <int shift> bool isMemRegQOffset() const { 1896 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1897 return false; 1898 1899 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1900 Memory.BaseRegNum)) 1901 return false; 1902 1903 if (!Memory.OffsetImm) 1904 return true; 1905 static_assert(shift < 56, 1906 "Such that we dont shift by a value higher than 62"); 1907 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1908 int64_t Val = CE->getValue(); 1909 1910 // The value must be a multiple of (1 << shift) 1911 if ((Val & ((1U << shift) - 1)) != 0) 1912 return false; 1913 1914 // And be in the right range, depending on the amount that it is shifted 1915 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1916 // separately. 1917 int64_t Range = (1U << (7 + shift)) - 1; 1918 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1919 } 1920 return false; 1921 } 1922 1923 bool isMemPosImm8Offset() const { 1924 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1925 return false; 1926 // Immediate offset in range [0, 255]. 1927 if (!Memory.OffsetImm) return true; 1928 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1929 int64_t Val = CE->getValue(); 1930 return Val >= 0 && Val < 256; 1931 } 1932 return false; 1933 } 1934 1935 bool isMemNegImm8Offset() const { 1936 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1937 return false; 1938 // Base reg of PC isn't allowed for these encodings. 1939 if (Memory.BaseRegNum == ARM::PC) return false; 1940 // Immediate offset in range [-255, -1]. 1941 if (!Memory.OffsetImm) return false; 1942 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1943 int64_t Val = CE->getValue(); 1944 return (Val == std::numeric_limits<int32_t>::min()) || 1945 (Val > -256 && Val < 0); 1946 } 1947 return false; 1948 } 1949 1950 bool isMemUImm12Offset() const { 1951 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1952 return false; 1953 // Immediate offset in range [0, 4095]. 1954 if (!Memory.OffsetImm) return true; 1955 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1956 int64_t Val = CE->getValue(); 1957 return (Val >= 0 && Val < 4096); 1958 } 1959 return false; 1960 } 1961 1962 bool isMemImm12Offset() const { 1963 // If we have an immediate that's not a constant, treat it as a label 1964 // reference needing a fixup. If it is a constant, it's something else 1965 // and we reject it. 1966 1967 if (isImm() && !isa<MCConstantExpr>(getImm())) 1968 return true; 1969 1970 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1971 return false; 1972 // Immediate offset in range [-4095, 4095]. 1973 if (!Memory.OffsetImm) return true; 1974 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 1975 int64_t Val = CE->getValue(); 1976 return (Val > -4096 && Val < 4096) || 1977 (Val == std::numeric_limits<int32_t>::min()); 1978 } 1979 // If we have an immediate that's not a constant, treat it as a 1980 // symbolic expression needing a fixup. 1981 return true; 1982 } 1983 1984 bool isConstPoolAsmImm() const { 1985 // Delay processing of Constant Pool Immediate, this will turn into 1986 // a constant. Match no other operand 1987 return (isConstantPoolImm()); 1988 } 1989 1990 bool isPostIdxImm8() const { 1991 if (!isImm()) return false; 1992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1993 if (!CE) return false; 1994 int64_t Val = CE->getValue(); 1995 return (Val > -256 && Val < 256) || 1996 (Val == std::numeric_limits<int32_t>::min()); 1997 } 1998 1999 bool isPostIdxImm8s4() const { 2000 if (!isImm()) return false; 2001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2002 if (!CE) return false; 2003 int64_t Val = CE->getValue(); 2004 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 2005 (Val == std::numeric_limits<int32_t>::min()); 2006 } 2007 2008 bool isMSRMask() const { return Kind == k_MSRMask; } 2009 bool isBankedReg() const { return Kind == k_BankedReg; } 2010 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 2011 2012 // NEON operands. 2013 bool isSingleSpacedVectorList() const { 2014 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 2015 } 2016 2017 bool isDoubleSpacedVectorList() const { 2018 return Kind == k_VectorList && VectorList.isDoubleSpaced; 2019 } 2020 2021 bool isVecListOneD() const { 2022 if (!isSingleSpacedVectorList()) return false; 2023 return VectorList.Count == 1; 2024 } 2025 2026 bool isVecListTwoMQ() const { 2027 return isSingleSpacedVectorList() && VectorList.Count == 2 && 2028 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2029 VectorList.RegNum); 2030 } 2031 2032 bool isVecListDPair() const { 2033 if (!isSingleSpacedVectorList()) return false; 2034 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2035 .contains(VectorList.RegNum)); 2036 } 2037 2038 bool isVecListThreeD() const { 2039 if (!isSingleSpacedVectorList()) return false; 2040 return VectorList.Count == 3; 2041 } 2042 2043 bool isVecListFourD() const { 2044 if (!isSingleSpacedVectorList()) return false; 2045 return VectorList.Count == 4; 2046 } 2047 2048 bool isVecListDPairSpaced() const { 2049 if (Kind != k_VectorList) return false; 2050 if (isSingleSpacedVectorList()) return false; 2051 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 2052 .contains(VectorList.RegNum)); 2053 } 2054 2055 bool isVecListThreeQ() const { 2056 if (!isDoubleSpacedVectorList()) return false; 2057 return VectorList.Count == 3; 2058 } 2059 2060 bool isVecListFourQ() const { 2061 if (!isDoubleSpacedVectorList()) return false; 2062 return VectorList.Count == 4; 2063 } 2064 2065 bool isVecListFourMQ() const { 2066 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2067 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2068 VectorList.RegNum); 2069 } 2070 2071 bool isSingleSpacedVectorAllLanes() const { 2072 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2073 } 2074 2075 bool isDoubleSpacedVectorAllLanes() const { 2076 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2077 } 2078 2079 bool isVecListOneDAllLanes() const { 2080 if (!isSingleSpacedVectorAllLanes()) return false; 2081 return VectorList.Count == 1; 2082 } 2083 2084 bool isVecListDPairAllLanes() const { 2085 if (!isSingleSpacedVectorAllLanes()) return false; 2086 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2087 .contains(VectorList.RegNum)); 2088 } 2089 2090 bool isVecListDPairSpacedAllLanes() const { 2091 if (!isDoubleSpacedVectorAllLanes()) return false; 2092 return VectorList.Count == 2; 2093 } 2094 2095 bool isVecListThreeDAllLanes() const { 2096 if (!isSingleSpacedVectorAllLanes()) return false; 2097 return VectorList.Count == 3; 2098 } 2099 2100 bool isVecListThreeQAllLanes() const { 2101 if (!isDoubleSpacedVectorAllLanes()) return false; 2102 return VectorList.Count == 3; 2103 } 2104 2105 bool isVecListFourDAllLanes() const { 2106 if (!isSingleSpacedVectorAllLanes()) return false; 2107 return VectorList.Count == 4; 2108 } 2109 2110 bool isVecListFourQAllLanes() const { 2111 if (!isDoubleSpacedVectorAllLanes()) return false; 2112 return VectorList.Count == 4; 2113 } 2114 2115 bool isSingleSpacedVectorIndexed() const { 2116 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2117 } 2118 2119 bool isDoubleSpacedVectorIndexed() const { 2120 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2121 } 2122 2123 bool isVecListOneDByteIndexed() const { 2124 if (!isSingleSpacedVectorIndexed()) return false; 2125 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2126 } 2127 2128 bool isVecListOneDHWordIndexed() const { 2129 if (!isSingleSpacedVectorIndexed()) return false; 2130 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2131 } 2132 2133 bool isVecListOneDWordIndexed() const { 2134 if (!isSingleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2136 } 2137 2138 bool isVecListTwoDByteIndexed() const { 2139 if (!isSingleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2141 } 2142 2143 bool isVecListTwoDHWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2146 } 2147 2148 bool isVecListTwoQWordIndexed() const { 2149 if (!isDoubleSpacedVectorIndexed()) return false; 2150 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2151 } 2152 2153 bool isVecListTwoQHWordIndexed() const { 2154 if (!isDoubleSpacedVectorIndexed()) return false; 2155 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2156 } 2157 2158 bool isVecListTwoDWordIndexed() const { 2159 if (!isSingleSpacedVectorIndexed()) return false; 2160 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2161 } 2162 2163 bool isVecListThreeDByteIndexed() const { 2164 if (!isSingleSpacedVectorIndexed()) return false; 2165 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2166 } 2167 2168 bool isVecListThreeDHWordIndexed() const { 2169 if (!isSingleSpacedVectorIndexed()) return false; 2170 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2171 } 2172 2173 bool isVecListThreeQWordIndexed() const { 2174 if (!isDoubleSpacedVectorIndexed()) return false; 2175 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2176 } 2177 2178 bool isVecListThreeQHWordIndexed() const { 2179 if (!isDoubleSpacedVectorIndexed()) return false; 2180 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2181 } 2182 2183 bool isVecListThreeDWordIndexed() const { 2184 if (!isSingleSpacedVectorIndexed()) return false; 2185 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2186 } 2187 2188 bool isVecListFourDByteIndexed() const { 2189 if (!isSingleSpacedVectorIndexed()) return false; 2190 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2191 } 2192 2193 bool isVecListFourDHWordIndexed() const { 2194 if (!isSingleSpacedVectorIndexed()) return false; 2195 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2196 } 2197 2198 bool isVecListFourQWordIndexed() const { 2199 if (!isDoubleSpacedVectorIndexed()) return false; 2200 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2201 } 2202 2203 bool isVecListFourQHWordIndexed() const { 2204 if (!isDoubleSpacedVectorIndexed()) return false; 2205 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2206 } 2207 2208 bool isVecListFourDWordIndexed() const { 2209 if (!isSingleSpacedVectorIndexed()) return false; 2210 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2211 } 2212 2213 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2214 2215 template <unsigned NumLanes> 2216 bool isVectorIndexInRange() const { 2217 if (Kind != k_VectorIndex) return false; 2218 return VectorIndex.Val < NumLanes; 2219 } 2220 2221 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2222 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2223 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2224 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2225 2226 template<int PermittedValue, int OtherPermittedValue> 2227 bool isMVEPairVectorIndex() const { 2228 if (Kind != k_VectorIndex) return false; 2229 return VectorIndex.Val == PermittedValue || 2230 VectorIndex.Val == OtherPermittedValue; 2231 } 2232 2233 bool isNEONi8splat() const { 2234 if (!isImm()) return false; 2235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2236 // Must be a constant. 2237 if (!CE) return false; 2238 int64_t Value = CE->getValue(); 2239 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2240 // value. 2241 return Value >= 0 && Value < 256; 2242 } 2243 2244 bool isNEONi16splat() const { 2245 if (isNEONByteReplicate(2)) 2246 return false; // Leave that for bytes replication and forbid by default. 2247 if (!isImm()) 2248 return false; 2249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2250 // Must be a constant. 2251 if (!CE) return false; 2252 unsigned Value = CE->getValue(); 2253 return ARM_AM::isNEONi16splat(Value); 2254 } 2255 2256 bool isNEONi16splatNot() const { 2257 if (!isImm()) 2258 return false; 2259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2260 // Must be a constant. 2261 if (!CE) return false; 2262 unsigned Value = CE->getValue(); 2263 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2264 } 2265 2266 bool isNEONi32splat() const { 2267 if (isNEONByteReplicate(4)) 2268 return false; // Leave that for bytes replication and forbid by default. 2269 if (!isImm()) 2270 return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 unsigned Value = CE->getValue(); 2275 return ARM_AM::isNEONi32splat(Value); 2276 } 2277 2278 bool isNEONi32splatNot() const { 2279 if (!isImm()) 2280 return false; 2281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2282 // Must be a constant. 2283 if (!CE) return false; 2284 unsigned Value = CE->getValue(); 2285 return ARM_AM::isNEONi32splat(~Value); 2286 } 2287 2288 static bool isValidNEONi32vmovImm(int64_t Value) { 2289 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2290 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2291 return ((Value & 0xffffffffffffff00) == 0) || 2292 ((Value & 0xffffffffffff00ff) == 0) || 2293 ((Value & 0xffffffffff00ffff) == 0) || 2294 ((Value & 0xffffffff00ffffff) == 0) || 2295 ((Value & 0xffffffffffff00ff) == 0xff) || 2296 ((Value & 0xffffffffff00ffff) == 0xffff); 2297 } 2298 2299 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2300 assert((Width == 8 || Width == 16 || Width == 32) && 2301 "Invalid element width"); 2302 assert(NumElems * Width <= 64 && "Invalid result width"); 2303 2304 if (!isImm()) 2305 return false; 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 // Must be a constant. 2308 if (!CE) 2309 return false; 2310 int64_t Value = CE->getValue(); 2311 if (!Value) 2312 return false; // Don't bother with zero. 2313 if (Inv) 2314 Value = ~Value; 2315 2316 uint64_t Mask = (1ull << Width) - 1; 2317 uint64_t Elem = Value & Mask; 2318 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2319 return false; 2320 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2321 return false; 2322 2323 for (unsigned i = 1; i < NumElems; ++i) { 2324 Value >>= Width; 2325 if ((Value & Mask) != Elem) 2326 return false; 2327 } 2328 return true; 2329 } 2330 2331 bool isNEONByteReplicate(unsigned NumBytes) const { 2332 return isNEONReplicate(8, NumBytes, false); 2333 } 2334 2335 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2336 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2337 "Invalid source width"); 2338 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2339 "Invalid destination width"); 2340 assert(FromW < ToW && "ToW is not less than FromW"); 2341 } 2342 2343 template<unsigned FromW, unsigned ToW> 2344 bool isNEONmovReplicate() const { 2345 checkNeonReplicateArgs(FromW, ToW); 2346 if (ToW == 64 && isNEONi64splat()) 2347 return false; 2348 return isNEONReplicate(FromW, ToW / FromW, false); 2349 } 2350 2351 template<unsigned FromW, unsigned ToW> 2352 bool isNEONinvReplicate() const { 2353 checkNeonReplicateArgs(FromW, ToW); 2354 return isNEONReplicate(FromW, ToW / FromW, true); 2355 } 2356 2357 bool isNEONi32vmov() const { 2358 if (isNEONByteReplicate(4)) 2359 return false; // Let it to be classified as byte-replicate case. 2360 if (!isImm()) 2361 return false; 2362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2363 // Must be a constant. 2364 if (!CE) 2365 return false; 2366 return isValidNEONi32vmovImm(CE->getValue()); 2367 } 2368 2369 bool isNEONi32vmovNeg() const { 2370 if (!isImm()) return false; 2371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2372 // Must be a constant. 2373 if (!CE) return false; 2374 return isValidNEONi32vmovImm(~CE->getValue()); 2375 } 2376 2377 bool isNEONi64splat() const { 2378 if (!isImm()) return false; 2379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2380 // Must be a constant. 2381 if (!CE) return false; 2382 uint64_t Value = CE->getValue(); 2383 // i64 value with each byte being either 0 or 0xff. 2384 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2385 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2386 return true; 2387 } 2388 2389 template<int64_t Angle, int64_t Remainder> 2390 bool isComplexRotation() const { 2391 if (!isImm()) return false; 2392 2393 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2394 if (!CE) return false; 2395 uint64_t Value = CE->getValue(); 2396 2397 return (Value % Angle == Remainder && Value <= 270); 2398 } 2399 2400 bool isMVELongShift() const { 2401 if (!isImm()) return false; 2402 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2403 // Must be a constant. 2404 if (!CE) return false; 2405 uint64_t Value = CE->getValue(); 2406 return Value >= 1 && Value <= 32; 2407 } 2408 2409 bool isMveSaturateOp() const { 2410 if (!isImm()) return false; 2411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2412 if (!CE) return false; 2413 uint64_t Value = CE->getValue(); 2414 return Value == 48 || Value == 64; 2415 } 2416 2417 bool isITCondCodeNoAL() const { 2418 if (!isITCondCode()) return false; 2419 ARMCC::CondCodes CC = getCondCode(); 2420 return CC != ARMCC::AL; 2421 } 2422 2423 bool isITCondCodeRestrictedI() const { 2424 if (!isITCondCode()) 2425 return false; 2426 ARMCC::CondCodes CC = getCondCode(); 2427 return CC == ARMCC::EQ || CC == ARMCC::NE; 2428 } 2429 2430 bool isITCondCodeRestrictedS() const { 2431 if (!isITCondCode()) 2432 return false; 2433 ARMCC::CondCodes CC = getCondCode(); 2434 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2435 CC == ARMCC::GE; 2436 } 2437 2438 bool isITCondCodeRestrictedU() const { 2439 if (!isITCondCode()) 2440 return false; 2441 ARMCC::CondCodes CC = getCondCode(); 2442 return CC == ARMCC::HS || CC == ARMCC::HI; 2443 } 2444 2445 bool isITCondCodeRestrictedFP() const { 2446 if (!isITCondCode()) 2447 return false; 2448 ARMCC::CondCodes CC = getCondCode(); 2449 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2450 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2451 } 2452 2453 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2454 // Add as immediates when possible. Null MCExpr = 0. 2455 if (!Expr) 2456 Inst.addOperand(MCOperand::createImm(0)); 2457 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2458 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2459 else 2460 Inst.addOperand(MCOperand::createExpr(Expr)); 2461 } 2462 2463 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 addExpr(Inst, getImm()); 2466 } 2467 2468 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2469 assert(N == 1 && "Invalid number of operands!"); 2470 addExpr(Inst, getImm()); 2471 } 2472 2473 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 2 && "Invalid number of operands!"); 2475 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2476 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2477 Inst.addOperand(MCOperand::createReg(RegNum)); 2478 } 2479 2480 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2481 assert(N == 3 && "Invalid number of operands!"); 2482 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2483 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2484 Inst.addOperand(MCOperand::createReg(RegNum)); 2485 Inst.addOperand(MCOperand::createReg(0)); 2486 } 2487 2488 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 4 && "Invalid number of operands!"); 2490 addVPTPredNOperands(Inst, N-1); 2491 unsigned RegNum; 2492 if (getVPTPred() == ARMVCC::None) { 2493 RegNum = 0; 2494 } else { 2495 unsigned NextOpIndex = Inst.getNumOperands(); 2496 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2497 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2498 assert(TiedOp >= 0 && 2499 "Inactive register in vpred_r is not tied to an output!"); 2500 RegNum = Inst.getOperand(TiedOp).getReg(); 2501 } 2502 Inst.addOperand(MCOperand::createReg(RegNum)); 2503 } 2504 2505 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2506 assert(N == 1 && "Invalid number of operands!"); 2507 Inst.addOperand(MCOperand::createImm(getCoproc())); 2508 } 2509 2510 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2511 assert(N == 1 && "Invalid number of operands!"); 2512 Inst.addOperand(MCOperand::createImm(getCoproc())); 2513 } 2514 2515 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2516 assert(N == 1 && "Invalid number of operands!"); 2517 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2518 } 2519 2520 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2521 assert(N == 1 && "Invalid number of operands!"); 2522 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2523 } 2524 2525 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2526 assert(N == 1 && "Invalid number of operands!"); 2527 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2528 } 2529 2530 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2531 assert(N == 1 && "Invalid number of operands!"); 2532 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2533 } 2534 2535 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2536 assert(N == 1 && "Invalid number of operands!"); 2537 Inst.addOperand(MCOperand::createReg(getReg())); 2538 } 2539 2540 void addRegOperands(MCInst &Inst, unsigned N) const { 2541 assert(N == 1 && "Invalid number of operands!"); 2542 Inst.addOperand(MCOperand::createReg(getReg())); 2543 } 2544 2545 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2546 assert(N == 3 && "Invalid number of operands!"); 2547 assert(isRegShiftedReg() && 2548 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2549 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2550 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2551 Inst.addOperand(MCOperand::createImm( 2552 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2553 } 2554 2555 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2556 assert(N == 2 && "Invalid number of operands!"); 2557 assert(isRegShiftedImm() && 2558 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2559 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2560 // Shift of #32 is encoded as 0 where permitted 2561 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2562 Inst.addOperand(MCOperand::createImm( 2563 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2564 } 2565 2566 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2567 assert(N == 1 && "Invalid number of operands!"); 2568 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2569 ShifterImm.Imm)); 2570 } 2571 2572 void addRegListOperands(MCInst &Inst, unsigned N) const { 2573 assert(N == 1 && "Invalid number of operands!"); 2574 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2575 for (SmallVectorImpl<unsigned>::const_iterator 2576 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2577 Inst.addOperand(MCOperand::createReg(*I)); 2578 } 2579 2580 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2581 assert(N == 1 && "Invalid number of operands!"); 2582 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2583 for (SmallVectorImpl<unsigned>::const_iterator 2584 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2585 Inst.addOperand(MCOperand::createReg(*I)); 2586 } 2587 2588 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2589 addRegListOperands(Inst, N); 2590 } 2591 2592 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2593 addRegListOperands(Inst, N); 2594 } 2595 2596 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2597 addRegListOperands(Inst, N); 2598 } 2599 2600 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2601 addRegListOperands(Inst, N); 2602 } 2603 2604 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2605 assert(N == 1 && "Invalid number of operands!"); 2606 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2607 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2608 } 2609 2610 void addModImmOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 1 && "Invalid number of operands!"); 2612 2613 // Support for fixups (MCFixup) 2614 if (isImm()) 2615 return addImmOperands(Inst, N); 2616 2617 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2618 } 2619 2620 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2621 assert(N == 1 && "Invalid number of operands!"); 2622 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2623 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2624 Inst.addOperand(MCOperand::createImm(Enc)); 2625 } 2626 2627 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2628 assert(N == 1 && "Invalid number of operands!"); 2629 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2630 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2631 Inst.addOperand(MCOperand::createImm(Enc)); 2632 } 2633 2634 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2635 assert(N == 1 && "Invalid number of operands!"); 2636 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2637 uint32_t Val = -CE->getValue(); 2638 Inst.addOperand(MCOperand::createImm(Val)); 2639 } 2640 2641 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2642 assert(N == 1 && "Invalid number of operands!"); 2643 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2644 uint32_t Val = -CE->getValue(); 2645 Inst.addOperand(MCOperand::createImm(Val)); 2646 } 2647 2648 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2649 assert(N == 1 && "Invalid number of operands!"); 2650 // Munge the lsb/width into a bitfield mask. 2651 unsigned lsb = Bitfield.LSB; 2652 unsigned width = Bitfield.Width; 2653 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2654 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2655 (32 - (lsb + width))); 2656 Inst.addOperand(MCOperand::createImm(Mask)); 2657 } 2658 2659 void addImmOperands(MCInst &Inst, unsigned N) const { 2660 assert(N == 1 && "Invalid number of operands!"); 2661 addExpr(Inst, getImm()); 2662 } 2663 2664 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2665 assert(N == 1 && "Invalid number of operands!"); 2666 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2667 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2668 } 2669 2670 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2671 assert(N == 1 && "Invalid number of operands!"); 2672 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2673 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2674 } 2675 2676 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2677 assert(N == 1 && "Invalid number of operands!"); 2678 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2679 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2680 Inst.addOperand(MCOperand::createImm(Val)); 2681 } 2682 2683 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2684 assert(N == 1 && "Invalid number of operands!"); 2685 // FIXME: We really want to scale the value here, but the LDRD/STRD 2686 // instruction don't encode operands that way yet. 2687 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2688 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2689 } 2690 2691 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2692 assert(N == 1 && "Invalid number of operands!"); 2693 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2694 // instruction don't encode operands that way yet. 2695 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2696 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2697 } 2698 2699 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2700 assert(N == 1 && "Invalid number of operands!"); 2701 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2702 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2703 } 2704 2705 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2706 assert(N == 1 && "Invalid number of operands!"); 2707 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2708 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2709 } 2710 2711 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2712 assert(N == 1 && "Invalid number of operands!"); 2713 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2714 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2715 } 2716 2717 void addImm7Operands(MCInst &Inst, unsigned N) const { 2718 assert(N == 1 && "Invalid number of operands!"); 2719 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2720 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2721 } 2722 2723 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2724 assert(N == 1 && "Invalid number of operands!"); 2725 // The immediate is scaled by four in the encoding and is stored 2726 // in the MCInst as such. Lop off the low two bits here. 2727 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2728 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2729 } 2730 2731 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2732 assert(N == 1 && "Invalid number of operands!"); 2733 // The immediate is scaled by four in the encoding and is stored 2734 // in the MCInst as such. Lop off the low two bits here. 2735 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2736 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2737 } 2738 2739 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2740 assert(N == 1 && "Invalid number of operands!"); 2741 // The immediate is scaled by four in the encoding and is stored 2742 // in the MCInst as such. Lop off the low two bits here. 2743 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2744 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2745 } 2746 2747 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2748 assert(N == 1 && "Invalid number of operands!"); 2749 // The constant encodes as the immediate-1, and we store in the instruction 2750 // the bits as encoded, so subtract off one here. 2751 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2752 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2753 } 2754 2755 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The constant encodes as the immediate-1, and we store in the instruction 2758 // the bits as encoded, so subtract off one here. 2759 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2760 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2761 } 2762 2763 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2764 assert(N == 1 && "Invalid number of operands!"); 2765 // The constant encodes as the immediate, except for 32, which encodes as 2766 // zero. 2767 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2768 unsigned Imm = CE->getValue(); 2769 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2770 } 2771 2772 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2773 assert(N == 1 && "Invalid number of operands!"); 2774 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2775 // the instruction as well. 2776 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2777 int Val = CE->getValue(); 2778 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2779 } 2780 2781 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 // The operand is actually a t2_so_imm, but we have its bitwise 2784 // negation in the assembly source, so twiddle it here. 2785 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2786 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2787 } 2788 2789 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2790 assert(N == 1 && "Invalid number of operands!"); 2791 // The operand is actually a t2_so_imm, but we have its 2792 // negation in the assembly source, so twiddle it here. 2793 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2794 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2795 } 2796 2797 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2798 assert(N == 1 && "Invalid number of operands!"); 2799 // The operand is actually an imm0_4095, but we have its 2800 // negation in the assembly source, so twiddle it here. 2801 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2802 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2803 } 2804 2805 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2806 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2807 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2808 return; 2809 } 2810 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2811 Inst.addOperand(MCOperand::createExpr(SR)); 2812 } 2813 2814 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2815 assert(N == 1 && "Invalid number of operands!"); 2816 if (isImm()) { 2817 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2818 if (CE) { 2819 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2820 return; 2821 } 2822 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2823 Inst.addOperand(MCOperand::createExpr(SR)); 2824 return; 2825 } 2826 2827 assert(isGPRMem() && "Unknown value type!"); 2828 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2829 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2830 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2831 else 2832 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2833 } 2834 2835 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2836 assert(N == 1 && "Invalid number of operands!"); 2837 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2838 } 2839 2840 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2841 assert(N == 1 && "Invalid number of operands!"); 2842 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2843 } 2844 2845 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2846 assert(N == 1 && "Invalid number of operands!"); 2847 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2848 } 2849 2850 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2851 assert(N == 1 && "Invalid number of operands!"); 2852 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2853 } 2854 2855 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2856 assert(N == 1 && "Invalid number of operands!"); 2857 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2858 } 2859 2860 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2861 assert(N == 1 && "Invalid number of operands!"); 2862 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2863 } 2864 2865 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2866 assert(N == 1 && "Invalid number of operands!"); 2867 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2868 } 2869 2870 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2871 assert(N == 1 && "Invalid number of operands!"); 2872 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 2873 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2874 else 2875 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2876 } 2877 2878 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2879 assert(N == 1 && "Invalid number of operands!"); 2880 assert(isImm() && "Not an immediate!"); 2881 2882 // If we have an immediate that's not a constant, treat it as a label 2883 // reference needing a fixup. 2884 if (!isa<MCConstantExpr>(getImm())) { 2885 Inst.addOperand(MCOperand::createExpr(getImm())); 2886 return; 2887 } 2888 2889 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2890 int Val = CE->getValue(); 2891 Inst.addOperand(MCOperand::createImm(Val)); 2892 } 2893 2894 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2895 assert(N == 2 && "Invalid number of operands!"); 2896 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2897 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2898 } 2899 2900 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2901 addAlignedMemoryOperands(Inst, N); 2902 } 2903 2904 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2905 addAlignedMemoryOperands(Inst, N); 2906 } 2907 2908 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2909 addAlignedMemoryOperands(Inst, N); 2910 } 2911 2912 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2913 addAlignedMemoryOperands(Inst, N); 2914 } 2915 2916 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2917 addAlignedMemoryOperands(Inst, N); 2918 } 2919 2920 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2921 addAlignedMemoryOperands(Inst, N); 2922 } 2923 2924 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2925 addAlignedMemoryOperands(Inst, N); 2926 } 2927 2928 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2929 addAlignedMemoryOperands(Inst, N); 2930 } 2931 2932 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2933 addAlignedMemoryOperands(Inst, N); 2934 } 2935 2936 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2937 addAlignedMemoryOperands(Inst, N); 2938 } 2939 2940 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2941 addAlignedMemoryOperands(Inst, N); 2942 } 2943 2944 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2945 assert(N == 3 && "Invalid number of operands!"); 2946 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2947 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2948 if (!Memory.OffsetRegNum) { 2949 if (!Memory.OffsetImm) 2950 Inst.addOperand(MCOperand::createImm(0)); 2951 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 2952 int32_t Val = CE->getValue(); 2953 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2954 // Special case for #-0 2955 if (Val == std::numeric_limits<int32_t>::min()) 2956 Val = 0; 2957 if (Val < 0) 2958 Val = -Val; 2959 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2960 Inst.addOperand(MCOperand::createImm(Val)); 2961 } else 2962 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 2963 } else { 2964 // For register offset, we encode the shift type and negation flag 2965 // here. 2966 int32_t Val = 2967 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2968 Memory.ShiftImm, Memory.ShiftType); 2969 Inst.addOperand(MCOperand::createImm(Val)); 2970 } 2971 } 2972 2973 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2974 assert(N == 2 && "Invalid number of operands!"); 2975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2976 assert(CE && "non-constant AM2OffsetImm operand!"); 2977 int32_t Val = CE->getValue(); 2978 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2979 // Special case for #-0 2980 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2981 if (Val < 0) Val = -Val; 2982 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2983 Inst.addOperand(MCOperand::createReg(0)); 2984 Inst.addOperand(MCOperand::createImm(Val)); 2985 } 2986 2987 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2988 assert(N == 3 && "Invalid number of operands!"); 2989 // If we have an immediate that's not a constant, treat it as a label 2990 // reference needing a fixup. If it is a constant, it's something else 2991 // and we reject it. 2992 if (isImm()) { 2993 Inst.addOperand(MCOperand::createExpr(getImm())); 2994 Inst.addOperand(MCOperand::createReg(0)); 2995 Inst.addOperand(MCOperand::createImm(0)); 2996 return; 2997 } 2998 2999 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3000 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3001 if (!Memory.OffsetRegNum) { 3002 if (!Memory.OffsetImm) 3003 Inst.addOperand(MCOperand::createImm(0)); 3004 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3005 int32_t Val = CE->getValue(); 3006 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3007 // Special case for #-0 3008 if (Val == std::numeric_limits<int32_t>::min()) 3009 Val = 0; 3010 if (Val < 0) 3011 Val = -Val; 3012 Val = ARM_AM::getAM3Opc(AddSub, Val); 3013 Inst.addOperand(MCOperand::createImm(Val)); 3014 } else 3015 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3016 } else { 3017 // For register offset, we encode the shift type and negation flag 3018 // here. 3019 int32_t Val = 3020 ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 3021 Inst.addOperand(MCOperand::createImm(Val)); 3022 } 3023 } 3024 3025 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 3026 assert(N == 2 && "Invalid number of operands!"); 3027 if (Kind == k_PostIndexRegister) { 3028 int32_t Val = 3029 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 3030 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3031 Inst.addOperand(MCOperand::createImm(Val)); 3032 return; 3033 } 3034 3035 // Constant offset. 3036 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 3037 int32_t Val = CE->getValue(); 3038 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3039 // Special case for #-0 3040 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 3041 if (Val < 0) Val = -Val; 3042 Val = ARM_AM::getAM3Opc(AddSub, Val); 3043 Inst.addOperand(MCOperand::createReg(0)); 3044 Inst.addOperand(MCOperand::createImm(Val)); 3045 } 3046 3047 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 3048 assert(N == 2 && "Invalid number of operands!"); 3049 // If we have an immediate that's not a constant, treat it as a label 3050 // reference needing a fixup. If it is a constant, it's something else 3051 // and we reject it. 3052 if (isImm()) { 3053 Inst.addOperand(MCOperand::createExpr(getImm())); 3054 Inst.addOperand(MCOperand::createImm(0)); 3055 return; 3056 } 3057 3058 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3059 if (!Memory.OffsetImm) 3060 Inst.addOperand(MCOperand::createImm(0)); 3061 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3062 // The lower two bits are always zero and as such are not encoded. 3063 int32_t Val = CE->getValue() / 4; 3064 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3065 // Special case for #-0 3066 if (Val == std::numeric_limits<int32_t>::min()) 3067 Val = 0; 3068 if (Val < 0) 3069 Val = -Val; 3070 Val = ARM_AM::getAM5Opc(AddSub, Val); 3071 Inst.addOperand(MCOperand::createImm(Val)); 3072 } else 3073 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3074 } 3075 3076 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 3077 assert(N == 2 && "Invalid number of operands!"); 3078 // If we have an immediate that's not a constant, treat it as a label 3079 // reference needing a fixup. If it is a constant, it's something else 3080 // and we reject it. 3081 if (isImm()) { 3082 Inst.addOperand(MCOperand::createExpr(getImm())); 3083 Inst.addOperand(MCOperand::createImm(0)); 3084 return; 3085 } 3086 3087 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3088 // The lower bit is always zero and as such is not encoded. 3089 if (!Memory.OffsetImm) 3090 Inst.addOperand(MCOperand::createImm(0)); 3091 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) { 3092 int32_t Val = CE->getValue() / 2; 3093 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 3094 // Special case for #-0 3095 if (Val == std::numeric_limits<int32_t>::min()) 3096 Val = 0; 3097 if (Val < 0) 3098 Val = -Val; 3099 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 3100 Inst.addOperand(MCOperand::createImm(Val)); 3101 } else 3102 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3103 } 3104 3105 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3106 assert(N == 2 && "Invalid number of operands!"); 3107 // If we have an immediate that's not a constant, treat it as a label 3108 // reference needing a fixup. If it is a constant, it's something else 3109 // and we reject it. 3110 if (isImm()) { 3111 Inst.addOperand(MCOperand::createExpr(getImm())); 3112 Inst.addOperand(MCOperand::createImm(0)); 3113 return; 3114 } 3115 3116 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3117 addExpr(Inst, Memory.OffsetImm); 3118 } 3119 3120 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3121 assert(N == 2 && "Invalid number of operands!"); 3122 // If we have an immediate that's not a constant, treat it as a label 3123 // reference needing a fixup. If it is a constant, it's something else 3124 // and we reject it. 3125 if (isImm()) { 3126 Inst.addOperand(MCOperand::createExpr(getImm())); 3127 Inst.addOperand(MCOperand::createImm(0)); 3128 return; 3129 } 3130 3131 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3132 addExpr(Inst, Memory.OffsetImm); 3133 } 3134 3135 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3136 assert(N == 2 && "Invalid number of operands!"); 3137 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3138 if (!Memory.OffsetImm) 3139 Inst.addOperand(MCOperand::createImm(0)); 3140 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3141 // The lower two bits are always zero and as such are not encoded. 3142 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3143 else 3144 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3145 } 3146 3147 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3148 assert(N == 2 && "Invalid number of operands!"); 3149 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3150 addExpr(Inst, Memory.OffsetImm); 3151 } 3152 3153 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3154 assert(N == 2 && "Invalid number of operands!"); 3155 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3156 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3157 } 3158 3159 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3160 assert(N == 2 && "Invalid number of operands!"); 3161 // If this is an immediate, it's a label reference. 3162 if (isImm()) { 3163 addExpr(Inst, getImm()); 3164 Inst.addOperand(MCOperand::createImm(0)); 3165 return; 3166 } 3167 3168 // Otherwise, it's a normal memory reg+offset. 3169 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3170 addExpr(Inst, Memory.OffsetImm); 3171 } 3172 3173 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3174 assert(N == 2 && "Invalid number of operands!"); 3175 // If this is an immediate, it's a label reference. 3176 if (isImm()) { 3177 addExpr(Inst, getImm()); 3178 Inst.addOperand(MCOperand::createImm(0)); 3179 return; 3180 } 3181 3182 // Otherwise, it's a normal memory reg+offset. 3183 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3184 addExpr(Inst, Memory.OffsetImm); 3185 } 3186 3187 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3188 assert(N == 1 && "Invalid number of operands!"); 3189 // This is container for the immediate that we will create the constant 3190 // pool from 3191 addExpr(Inst, getConstantPoolImm()); 3192 } 3193 3194 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3195 assert(N == 2 && "Invalid number of operands!"); 3196 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3197 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3198 } 3199 3200 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3201 assert(N == 2 && "Invalid number of operands!"); 3202 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3203 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3204 } 3205 3206 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3207 assert(N == 3 && "Invalid number of operands!"); 3208 unsigned Val = 3209 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3210 Memory.ShiftImm, Memory.ShiftType); 3211 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3212 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3213 Inst.addOperand(MCOperand::createImm(Val)); 3214 } 3215 3216 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3217 assert(N == 3 && "Invalid number of operands!"); 3218 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3219 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3220 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3221 } 3222 3223 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3224 assert(N == 2 && "Invalid number of operands!"); 3225 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3226 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3227 } 3228 3229 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3230 assert(N == 2 && "Invalid number of operands!"); 3231 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3232 if (!Memory.OffsetImm) 3233 Inst.addOperand(MCOperand::createImm(0)); 3234 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3235 // The lower two bits are always zero and as such are not encoded. 3236 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3237 else 3238 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3239 } 3240 3241 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3242 assert(N == 2 && "Invalid number of operands!"); 3243 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3244 if (!Memory.OffsetImm) 3245 Inst.addOperand(MCOperand::createImm(0)); 3246 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3247 Inst.addOperand(MCOperand::createImm(CE->getValue() / 2)); 3248 else 3249 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3250 } 3251 3252 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3253 assert(N == 2 && "Invalid number of operands!"); 3254 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3255 addExpr(Inst, Memory.OffsetImm); 3256 } 3257 3258 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3259 assert(N == 2 && "Invalid number of operands!"); 3260 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3261 if (!Memory.OffsetImm) 3262 Inst.addOperand(MCOperand::createImm(0)); 3263 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) 3264 // The lower two bits are always zero and as such are not encoded. 3265 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 3266 else 3267 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm)); 3268 } 3269 3270 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3271 assert(N == 1 && "Invalid number of operands!"); 3272 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3273 assert(CE && "non-constant post-idx-imm8 operand!"); 3274 int Imm = CE->getValue(); 3275 bool isAdd = Imm >= 0; 3276 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3277 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3278 Inst.addOperand(MCOperand::createImm(Imm)); 3279 } 3280 3281 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3282 assert(N == 1 && "Invalid number of operands!"); 3283 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3284 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3285 int Imm = CE->getValue(); 3286 bool isAdd = Imm >= 0; 3287 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3288 // Immediate is scaled by 4. 3289 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3290 Inst.addOperand(MCOperand::createImm(Imm)); 3291 } 3292 3293 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3294 assert(N == 2 && "Invalid number of operands!"); 3295 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3296 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3297 } 3298 3299 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3300 assert(N == 2 && "Invalid number of operands!"); 3301 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3302 // The sign, shift type, and shift amount are encoded in a single operand 3303 // using the AM2 encoding helpers. 3304 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3305 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3306 PostIdxReg.ShiftTy); 3307 Inst.addOperand(MCOperand::createImm(Imm)); 3308 } 3309 3310 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3311 assert(N == 1 && "Invalid number of operands!"); 3312 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3313 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3314 } 3315 3316 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3317 assert(N == 1 && "Invalid number of operands!"); 3318 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3319 } 3320 3321 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3322 assert(N == 1 && "Invalid number of operands!"); 3323 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3324 } 3325 3326 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3327 assert(N == 1 && "Invalid number of operands!"); 3328 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3329 } 3330 3331 void addVecListOperands(MCInst &Inst, unsigned N) const { 3332 assert(N == 1 && "Invalid number of operands!"); 3333 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3334 } 3335 3336 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3337 assert(N == 1 && "Invalid number of operands!"); 3338 3339 // When we come here, the VectorList field will identify a range 3340 // of q-registers by its base register and length, and it will 3341 // have already been error-checked to be the expected length of 3342 // range and contain only q-regs in the range q0-q7. So we can 3343 // count on the base register being in the range q0-q6 (for 2 3344 // regs) or q0-q4 (for 4) 3345 // 3346 // The MVE instructions taking a register range of this kind will 3347 // need an operand in the MQQPR or MQQQQPR class, representing the 3348 // entire range as a unit. So we must translate into that class, 3349 // by finding the index of the base register in the MQPR reg 3350 // class, and returning the super-register at the corresponding 3351 // index in the target class. 3352 3353 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3354 const MCRegisterClass *RC_out = 3355 (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] 3356 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; 3357 3358 unsigned I, E = RC_out->getNumRegs(); 3359 for (I = 0; I < E; I++) 3360 if (RC_in->getRegister(I) == VectorList.RegNum) 3361 break; 3362 assert(I < E && "Invalid vector list start register!"); 3363 3364 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3365 } 3366 3367 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3368 assert(N == 2 && "Invalid number of operands!"); 3369 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3370 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3371 } 3372 3373 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3374 assert(N == 1 && "Invalid number of operands!"); 3375 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3376 } 3377 3378 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3379 assert(N == 1 && "Invalid number of operands!"); 3380 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3381 } 3382 3383 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3384 assert(N == 1 && "Invalid number of operands!"); 3385 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3386 } 3387 3388 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3389 assert(N == 1 && "Invalid number of operands!"); 3390 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3391 } 3392 3393 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3394 assert(N == 1 && "Invalid number of operands!"); 3395 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3396 } 3397 3398 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3399 assert(N == 1 && "Invalid number of operands!"); 3400 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3401 } 3402 3403 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3404 assert(N == 1 && "Invalid number of operands!"); 3405 // The immediate encodes the type of constant as well as the value. 3406 // Mask in that this is an i8 splat. 3407 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3408 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3409 } 3410 3411 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3412 assert(N == 1 && "Invalid number of operands!"); 3413 // The immediate encodes the type of constant as well as the value. 3414 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3415 unsigned Value = CE->getValue(); 3416 Value = ARM_AM::encodeNEONi16splat(Value); 3417 Inst.addOperand(MCOperand::createImm(Value)); 3418 } 3419 3420 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3421 assert(N == 1 && "Invalid number of operands!"); 3422 // The immediate encodes the type of constant as well as the value. 3423 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3424 unsigned Value = CE->getValue(); 3425 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3426 Inst.addOperand(MCOperand::createImm(Value)); 3427 } 3428 3429 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3430 assert(N == 1 && "Invalid number of operands!"); 3431 // The immediate encodes the type of constant as well as the value. 3432 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3433 unsigned Value = CE->getValue(); 3434 Value = ARM_AM::encodeNEONi32splat(Value); 3435 Inst.addOperand(MCOperand::createImm(Value)); 3436 } 3437 3438 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3439 assert(N == 1 && "Invalid number of operands!"); 3440 // The immediate encodes the type of constant as well as the value. 3441 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3442 unsigned Value = CE->getValue(); 3443 Value = ARM_AM::encodeNEONi32splat(~Value); 3444 Inst.addOperand(MCOperand::createImm(Value)); 3445 } 3446 3447 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3448 // The immediate encodes the type of constant as well as the value. 3449 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3450 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3451 Inst.getOpcode() == ARM::VMOVv16i8) && 3452 "All instructions that wants to replicate non-zero byte " 3453 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3454 unsigned Value = CE->getValue(); 3455 if (Inv) 3456 Value = ~Value; 3457 unsigned B = Value & 0xff; 3458 B |= 0xe00; // cmode = 0b1110 3459 Inst.addOperand(MCOperand::createImm(B)); 3460 } 3461 3462 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3463 assert(N == 1 && "Invalid number of operands!"); 3464 addNEONi8ReplicateOperands(Inst, true); 3465 } 3466 3467 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3468 if (Value >= 256 && Value <= 0xffff) 3469 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3470 else if (Value > 0xffff && Value <= 0xffffff) 3471 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3472 else if (Value > 0xffffff) 3473 Value = (Value >> 24) | 0x600; 3474 return Value; 3475 } 3476 3477 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3478 assert(N == 1 && "Invalid number of operands!"); 3479 // The immediate encodes the type of constant as well as the value. 3480 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3481 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3482 Inst.addOperand(MCOperand::createImm(Value)); 3483 } 3484 3485 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3486 assert(N == 1 && "Invalid number of operands!"); 3487 addNEONi8ReplicateOperands(Inst, false); 3488 } 3489 3490 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3491 assert(N == 1 && "Invalid number of operands!"); 3492 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3493 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3494 Inst.getOpcode() == ARM::VMOVv8i16 || 3495 Inst.getOpcode() == ARM::VMVNv4i16 || 3496 Inst.getOpcode() == ARM::VMVNv8i16) && 3497 "All instructions that want to replicate non-zero half-word " 3498 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3499 uint64_t Value = CE->getValue(); 3500 unsigned Elem = Value & 0xffff; 3501 if (Elem >= 256) 3502 Elem = (Elem >> 8) | 0x200; 3503 Inst.addOperand(MCOperand::createImm(Elem)); 3504 } 3505 3506 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3507 assert(N == 1 && "Invalid number of operands!"); 3508 // The immediate encodes the type of constant as well as the value. 3509 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3510 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3511 Inst.addOperand(MCOperand::createImm(Value)); 3512 } 3513 3514 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3515 assert(N == 1 && "Invalid number of operands!"); 3516 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3517 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3518 Inst.getOpcode() == ARM::VMOVv4i32 || 3519 Inst.getOpcode() == ARM::VMVNv2i32 || 3520 Inst.getOpcode() == ARM::VMVNv4i32) && 3521 "All instructions that want to replicate non-zero word " 3522 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3523 uint64_t Value = CE->getValue(); 3524 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3525 Inst.addOperand(MCOperand::createImm(Elem)); 3526 } 3527 3528 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3529 assert(N == 1 && "Invalid number of operands!"); 3530 // The immediate encodes the type of constant as well as the value. 3531 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3532 uint64_t Value = CE->getValue(); 3533 unsigned Imm = 0; 3534 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3535 Imm |= (Value & 1) << i; 3536 } 3537 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3538 } 3539 3540 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3541 assert(N == 1 && "Invalid number of operands!"); 3542 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3543 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3544 } 3545 3546 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3547 assert(N == 1 && "Invalid number of operands!"); 3548 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3549 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3550 } 3551 3552 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3553 assert(N == 1 && "Invalid number of operands!"); 3554 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3555 unsigned Imm = CE->getValue(); 3556 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3557 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3558 } 3559 3560 void print(raw_ostream &OS) const override; 3561 3562 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3563 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3564 Op->ITMask.Mask = Mask; 3565 Op->StartLoc = S; 3566 Op->EndLoc = S; 3567 return Op; 3568 } 3569 3570 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3571 SMLoc S) { 3572 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3573 Op->CC.Val = CC; 3574 Op->StartLoc = S; 3575 Op->EndLoc = S; 3576 return Op; 3577 } 3578 3579 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3580 SMLoc S) { 3581 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3582 Op->VCC.Val = CC; 3583 Op->StartLoc = S; 3584 Op->EndLoc = S; 3585 return Op; 3586 } 3587 3588 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3589 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3590 Op->Cop.Val = CopVal; 3591 Op->StartLoc = S; 3592 Op->EndLoc = S; 3593 return Op; 3594 } 3595 3596 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3597 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3598 Op->Cop.Val = CopVal; 3599 Op->StartLoc = S; 3600 Op->EndLoc = S; 3601 return Op; 3602 } 3603 3604 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3605 SMLoc E) { 3606 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3607 Op->Cop.Val = Val; 3608 Op->StartLoc = S; 3609 Op->EndLoc = E; 3610 return Op; 3611 } 3612 3613 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3614 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3615 Op->Reg.RegNum = RegNum; 3616 Op->StartLoc = S; 3617 Op->EndLoc = S; 3618 return Op; 3619 } 3620 3621 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3622 auto Op = std::make_unique<ARMOperand>(k_Token); 3623 Op->Tok.Data = Str.data(); 3624 Op->Tok.Length = Str.size(); 3625 Op->StartLoc = S; 3626 Op->EndLoc = S; 3627 return Op; 3628 } 3629 3630 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3631 SMLoc E) { 3632 auto Op = std::make_unique<ARMOperand>(k_Register); 3633 Op->Reg.RegNum = RegNum; 3634 Op->StartLoc = S; 3635 Op->EndLoc = E; 3636 return Op; 3637 } 3638 3639 static std::unique_ptr<ARMOperand> 3640 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3641 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3642 SMLoc E) { 3643 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3644 Op->RegShiftedReg.ShiftTy = ShTy; 3645 Op->RegShiftedReg.SrcReg = SrcReg; 3646 Op->RegShiftedReg.ShiftReg = ShiftReg; 3647 Op->RegShiftedReg.ShiftImm = ShiftImm; 3648 Op->StartLoc = S; 3649 Op->EndLoc = E; 3650 return Op; 3651 } 3652 3653 static std::unique_ptr<ARMOperand> 3654 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3655 unsigned ShiftImm, SMLoc S, SMLoc E) { 3656 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3657 Op->RegShiftedImm.ShiftTy = ShTy; 3658 Op->RegShiftedImm.SrcReg = SrcReg; 3659 Op->RegShiftedImm.ShiftImm = ShiftImm; 3660 Op->StartLoc = S; 3661 Op->EndLoc = E; 3662 return Op; 3663 } 3664 3665 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3666 SMLoc S, SMLoc E) { 3667 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3668 Op->ShifterImm.isASR = isASR; 3669 Op->ShifterImm.Imm = Imm; 3670 Op->StartLoc = S; 3671 Op->EndLoc = E; 3672 return Op; 3673 } 3674 3675 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3676 SMLoc E) { 3677 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3678 Op->RotImm.Imm = Imm; 3679 Op->StartLoc = S; 3680 Op->EndLoc = E; 3681 return Op; 3682 } 3683 3684 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3685 SMLoc S, SMLoc E) { 3686 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3687 Op->ModImm.Bits = Bits; 3688 Op->ModImm.Rot = Rot; 3689 Op->StartLoc = S; 3690 Op->EndLoc = E; 3691 return Op; 3692 } 3693 3694 static std::unique_ptr<ARMOperand> 3695 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3696 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3697 Op->Imm.Val = Val; 3698 Op->StartLoc = S; 3699 Op->EndLoc = E; 3700 return Op; 3701 } 3702 3703 static std::unique_ptr<ARMOperand> 3704 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3705 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3706 Op->Bitfield.LSB = LSB; 3707 Op->Bitfield.Width = Width; 3708 Op->StartLoc = S; 3709 Op->EndLoc = E; 3710 return Op; 3711 } 3712 3713 static std::unique_ptr<ARMOperand> 3714 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3715 SMLoc StartLoc, SMLoc EndLoc) { 3716 assert(Regs.size() > 0 && "RegList contains no registers?"); 3717 KindTy Kind = k_RegisterList; 3718 3719 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3720 Regs.front().second)) { 3721 if (Regs.back().second == ARM::VPR) 3722 Kind = k_FPDRegisterListWithVPR; 3723 else 3724 Kind = k_DPRRegisterList; 3725 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3726 Regs.front().second)) { 3727 if (Regs.back().second == ARM::VPR) 3728 Kind = k_FPSRegisterListWithVPR; 3729 else 3730 Kind = k_SPRRegisterList; 3731 } 3732 3733 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3734 Kind = k_RegisterListWithAPSR; 3735 3736 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding"); 3737 3738 auto Op = std::make_unique<ARMOperand>(Kind); 3739 for (const auto &P : Regs) 3740 Op->Registers.push_back(P.second); 3741 3742 Op->StartLoc = StartLoc; 3743 Op->EndLoc = EndLoc; 3744 return Op; 3745 } 3746 3747 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3748 unsigned Count, 3749 bool isDoubleSpaced, 3750 SMLoc S, SMLoc E) { 3751 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3752 Op->VectorList.RegNum = RegNum; 3753 Op->VectorList.Count = Count; 3754 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3755 Op->StartLoc = S; 3756 Op->EndLoc = E; 3757 return Op; 3758 } 3759 3760 static std::unique_ptr<ARMOperand> 3761 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3762 SMLoc S, SMLoc E) { 3763 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3764 Op->VectorList.RegNum = RegNum; 3765 Op->VectorList.Count = Count; 3766 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3767 Op->StartLoc = S; 3768 Op->EndLoc = E; 3769 return Op; 3770 } 3771 3772 static std::unique_ptr<ARMOperand> 3773 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3774 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3775 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3776 Op->VectorList.RegNum = RegNum; 3777 Op->VectorList.Count = Count; 3778 Op->VectorList.LaneIndex = Index; 3779 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3780 Op->StartLoc = S; 3781 Op->EndLoc = E; 3782 return Op; 3783 } 3784 3785 static std::unique_ptr<ARMOperand> 3786 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3787 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3788 Op->VectorIndex.Val = Idx; 3789 Op->StartLoc = S; 3790 Op->EndLoc = E; 3791 return Op; 3792 } 3793 3794 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3795 SMLoc E) { 3796 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3797 Op->Imm.Val = Val; 3798 Op->StartLoc = S; 3799 Op->EndLoc = E; 3800 return Op; 3801 } 3802 3803 static std::unique_ptr<ARMOperand> 3804 CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, 3805 ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, 3806 bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3807 auto Op = std::make_unique<ARMOperand>(k_Memory); 3808 Op->Memory.BaseRegNum = BaseRegNum; 3809 Op->Memory.OffsetImm = OffsetImm; 3810 Op->Memory.OffsetRegNum = OffsetRegNum; 3811 Op->Memory.ShiftType = ShiftType; 3812 Op->Memory.ShiftImm = ShiftImm; 3813 Op->Memory.Alignment = Alignment; 3814 Op->Memory.isNegative = isNegative; 3815 Op->StartLoc = S; 3816 Op->EndLoc = E; 3817 Op->AlignmentLoc = AlignmentLoc; 3818 return Op; 3819 } 3820 3821 static std::unique_ptr<ARMOperand> 3822 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3823 unsigned ShiftImm, SMLoc S, SMLoc E) { 3824 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3825 Op->PostIdxReg.RegNum = RegNum; 3826 Op->PostIdxReg.isAdd = isAdd; 3827 Op->PostIdxReg.ShiftTy = ShiftTy; 3828 Op->PostIdxReg.ShiftImm = ShiftImm; 3829 Op->StartLoc = S; 3830 Op->EndLoc = E; 3831 return Op; 3832 } 3833 3834 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3835 SMLoc S) { 3836 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3837 Op->MBOpt.Val = Opt; 3838 Op->StartLoc = S; 3839 Op->EndLoc = S; 3840 return Op; 3841 } 3842 3843 static std::unique_ptr<ARMOperand> 3844 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3845 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3846 Op->ISBOpt.Val = Opt; 3847 Op->StartLoc = S; 3848 Op->EndLoc = S; 3849 return Op; 3850 } 3851 3852 static std::unique_ptr<ARMOperand> 3853 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3854 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3855 Op->TSBOpt.Val = Opt; 3856 Op->StartLoc = S; 3857 Op->EndLoc = S; 3858 return Op; 3859 } 3860 3861 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3862 SMLoc S) { 3863 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3864 Op->IFlags.Val = IFlags; 3865 Op->StartLoc = S; 3866 Op->EndLoc = S; 3867 return Op; 3868 } 3869 3870 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3871 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3872 Op->MMask.Val = MMask; 3873 Op->StartLoc = S; 3874 Op->EndLoc = S; 3875 return Op; 3876 } 3877 3878 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3879 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3880 Op->BankedReg.Val = Reg; 3881 Op->StartLoc = S; 3882 Op->EndLoc = S; 3883 return Op; 3884 } 3885 }; 3886 3887 } // end anonymous namespace. 3888 3889 void ARMOperand::print(raw_ostream &OS) const { 3890 auto RegName = [](unsigned Reg) { 3891 if (Reg) 3892 return ARMInstPrinter::getRegisterName(Reg); 3893 else 3894 return "noreg"; 3895 }; 3896 3897 switch (Kind) { 3898 case k_CondCode: 3899 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3900 break; 3901 case k_VPTPred: 3902 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3903 break; 3904 case k_CCOut: 3905 OS << "<ccout " << RegName(getReg()) << ">"; 3906 break; 3907 case k_ITCondMask: { 3908 static const char *const MaskStr[] = { 3909 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3910 "(tt)", "(ttet)", "(tte)", "(ttee)", 3911 "(t)", "(tett)", "(tet)", "(tete)", 3912 "(te)", "(teet)", "(tee)", "(teee)", 3913 }; 3914 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3915 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3916 break; 3917 } 3918 case k_CoprocNum: 3919 OS << "<coprocessor number: " << getCoproc() << ">"; 3920 break; 3921 case k_CoprocReg: 3922 OS << "<coprocessor register: " << getCoproc() << ">"; 3923 break; 3924 case k_CoprocOption: 3925 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3926 break; 3927 case k_MSRMask: 3928 OS << "<mask: " << getMSRMask() << ">"; 3929 break; 3930 case k_BankedReg: 3931 OS << "<banked reg: " << getBankedReg() << ">"; 3932 break; 3933 case k_Immediate: 3934 OS << *getImm(); 3935 break; 3936 case k_MemBarrierOpt: 3937 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3938 break; 3939 case k_InstSyncBarrierOpt: 3940 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3941 break; 3942 case k_TraceSyncBarrierOpt: 3943 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3944 break; 3945 case k_Memory: 3946 OS << "<memory"; 3947 if (Memory.BaseRegNum) 3948 OS << " base:" << RegName(Memory.BaseRegNum); 3949 if (Memory.OffsetImm) 3950 OS << " offset-imm:" << *Memory.OffsetImm; 3951 if (Memory.OffsetRegNum) 3952 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3953 << RegName(Memory.OffsetRegNum); 3954 if (Memory.ShiftType != ARM_AM::no_shift) { 3955 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3956 OS << " shift-imm:" << Memory.ShiftImm; 3957 } 3958 if (Memory.Alignment) 3959 OS << " alignment:" << Memory.Alignment; 3960 OS << ">"; 3961 break; 3962 case k_PostIndexRegister: 3963 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3964 << RegName(PostIdxReg.RegNum); 3965 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3966 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3967 << PostIdxReg.ShiftImm; 3968 OS << ">"; 3969 break; 3970 case k_ProcIFlags: { 3971 OS << "<ARM_PROC::"; 3972 unsigned IFlags = getProcIFlags(); 3973 for (int i=2; i >= 0; --i) 3974 if (IFlags & (1 << i)) 3975 OS << ARM_PROC::IFlagsToString(1 << i); 3976 OS << ">"; 3977 break; 3978 } 3979 case k_Register: 3980 OS << "<register " << RegName(getReg()) << ">"; 3981 break; 3982 case k_ShifterImmediate: 3983 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3984 << " #" << ShifterImm.Imm << ">"; 3985 break; 3986 case k_ShiftedRegister: 3987 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3988 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3989 << RegName(RegShiftedReg.ShiftReg) << ">"; 3990 break; 3991 case k_ShiftedImmediate: 3992 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3993 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3994 << RegShiftedImm.ShiftImm << ">"; 3995 break; 3996 case k_RotateImmediate: 3997 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3998 break; 3999 case k_ModifiedImmediate: 4000 OS << "<mod_imm #" << ModImm.Bits << ", #" 4001 << ModImm.Rot << ")>"; 4002 break; 4003 case k_ConstantPoolImmediate: 4004 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 4005 break; 4006 case k_BitfieldDescriptor: 4007 OS << "<bitfield " << "lsb: " << Bitfield.LSB 4008 << ", width: " << Bitfield.Width << ">"; 4009 break; 4010 case k_RegisterList: 4011 case k_RegisterListWithAPSR: 4012 case k_DPRRegisterList: 4013 case k_SPRRegisterList: 4014 case k_FPSRegisterListWithVPR: 4015 case k_FPDRegisterListWithVPR: { 4016 OS << "<register_list "; 4017 4018 const SmallVectorImpl<unsigned> &RegList = getRegList(); 4019 for (SmallVectorImpl<unsigned>::const_iterator 4020 I = RegList.begin(), E = RegList.end(); I != E; ) { 4021 OS << RegName(*I); 4022 if (++I < E) OS << ", "; 4023 } 4024 4025 OS << ">"; 4026 break; 4027 } 4028 case k_VectorList: 4029 OS << "<vector_list " << VectorList.Count << " * " 4030 << RegName(VectorList.RegNum) << ">"; 4031 break; 4032 case k_VectorListAllLanes: 4033 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 4034 << RegName(VectorList.RegNum) << ">"; 4035 break; 4036 case k_VectorListIndexed: 4037 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 4038 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 4039 break; 4040 case k_Token: 4041 OS << "'" << getToken() << "'"; 4042 break; 4043 case k_VectorIndex: 4044 OS << "<vectorindex " << getVectorIndex() << ">"; 4045 break; 4046 } 4047 } 4048 4049 /// @name Auto-generated Match Functions 4050 /// { 4051 4052 static unsigned MatchRegisterName(StringRef Name); 4053 4054 /// } 4055 4056 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 4057 SMLoc &StartLoc, SMLoc &EndLoc) { 4058 const AsmToken &Tok = getParser().getTok(); 4059 StartLoc = Tok.getLoc(); 4060 EndLoc = Tok.getEndLoc(); 4061 RegNo = tryParseRegister(); 4062 4063 return (RegNo == (unsigned)-1); 4064 } 4065 4066 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 4067 SMLoc &StartLoc, 4068 SMLoc &EndLoc) { 4069 if (ParseRegister(RegNo, StartLoc, EndLoc)) 4070 return MatchOperand_NoMatch; 4071 return MatchOperand_Success; 4072 } 4073 4074 /// Try to parse a register name. The token must be an Identifier when called, 4075 /// and if it is a register name the token is eaten and the register number is 4076 /// returned. Otherwise return -1. 4077 int ARMAsmParser::tryParseRegister() { 4078 MCAsmParser &Parser = getParser(); 4079 const AsmToken &Tok = Parser.getTok(); 4080 if (Tok.isNot(AsmToken::Identifier)) return -1; 4081 4082 std::string lowerCase = Tok.getString().lower(); 4083 unsigned RegNum = MatchRegisterName(lowerCase); 4084 if (!RegNum) { 4085 RegNum = StringSwitch<unsigned>(lowerCase) 4086 .Case("r13", ARM::SP) 4087 .Case("r14", ARM::LR) 4088 .Case("r15", ARM::PC) 4089 .Case("ip", ARM::R12) 4090 // Additional register name aliases for 'gas' compatibility. 4091 .Case("a1", ARM::R0) 4092 .Case("a2", ARM::R1) 4093 .Case("a3", ARM::R2) 4094 .Case("a4", ARM::R3) 4095 .Case("v1", ARM::R4) 4096 .Case("v2", ARM::R5) 4097 .Case("v3", ARM::R6) 4098 .Case("v4", ARM::R7) 4099 .Case("v5", ARM::R8) 4100 .Case("v6", ARM::R9) 4101 .Case("v7", ARM::R10) 4102 .Case("v8", ARM::R11) 4103 .Case("sb", ARM::R9) 4104 .Case("sl", ARM::R10) 4105 .Case("fp", ARM::R11) 4106 .Default(0); 4107 } 4108 if (!RegNum) { 4109 // Check for aliases registered via .req. Canonicalize to lower case. 4110 // That's more consistent since register names are case insensitive, and 4111 // it's how the original entry was passed in from MC/MCParser/AsmParser. 4112 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4113 // If no match, return failure. 4114 if (Entry == RegisterReqs.end()) 4115 return -1; 4116 Parser.Lex(); // Eat identifier token. 4117 return Entry->getValue(); 4118 } 4119 4120 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4121 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4122 return -1; 4123 4124 Parser.Lex(); // Eat identifier token. 4125 4126 return RegNum; 4127 } 4128 4129 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4130 // If a recoverable error occurs, return 1. If an irrecoverable error 4131 // occurs, return -1. An irrecoverable error is one where tokens have been 4132 // consumed in the process of trying to parse the shifter (i.e., when it is 4133 // indeed a shifter operand, but malformed). 4134 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4135 MCAsmParser &Parser = getParser(); 4136 SMLoc S = Parser.getTok().getLoc(); 4137 const AsmToken &Tok = Parser.getTok(); 4138 if (Tok.isNot(AsmToken::Identifier)) 4139 return -1; 4140 4141 std::string lowerCase = Tok.getString().lower(); 4142 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4143 .Case("asl", ARM_AM::lsl) 4144 .Case("lsl", ARM_AM::lsl) 4145 .Case("lsr", ARM_AM::lsr) 4146 .Case("asr", ARM_AM::asr) 4147 .Case("ror", ARM_AM::ror) 4148 .Case("rrx", ARM_AM::rrx) 4149 .Default(ARM_AM::no_shift); 4150 4151 if (ShiftTy == ARM_AM::no_shift) 4152 return 1; 4153 4154 Parser.Lex(); // Eat the operator. 4155 4156 // The source register for the shift has already been added to the 4157 // operand list, so we need to pop it off and combine it into the shifted 4158 // register operand instead. 4159 std::unique_ptr<ARMOperand> PrevOp( 4160 (ARMOperand *)Operands.pop_back_val().release()); 4161 if (!PrevOp->isReg()) 4162 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4163 int SrcReg = PrevOp->getReg(); 4164 4165 SMLoc EndLoc; 4166 int64_t Imm = 0; 4167 int ShiftReg = 0; 4168 if (ShiftTy == ARM_AM::rrx) { 4169 // RRX Doesn't have an explicit shift amount. The encoder expects 4170 // the shift register to be the same as the source register. Seems odd, 4171 // but OK. 4172 ShiftReg = SrcReg; 4173 } else { 4174 // Figure out if this is shifted by a constant or a register (for non-RRX). 4175 if (Parser.getTok().is(AsmToken::Hash) || 4176 Parser.getTok().is(AsmToken::Dollar)) { 4177 Parser.Lex(); // Eat hash. 4178 SMLoc ImmLoc = Parser.getTok().getLoc(); 4179 const MCExpr *ShiftExpr = nullptr; 4180 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4181 Error(ImmLoc, "invalid immediate shift value"); 4182 return -1; 4183 } 4184 // The expression must be evaluatable as an immediate. 4185 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4186 if (!CE) { 4187 Error(ImmLoc, "invalid immediate shift value"); 4188 return -1; 4189 } 4190 // Range check the immediate. 4191 // lsl, ror: 0 <= imm <= 31 4192 // lsr, asr: 0 <= imm <= 32 4193 Imm = CE->getValue(); 4194 if (Imm < 0 || 4195 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4196 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4197 Error(ImmLoc, "immediate shift value out of range"); 4198 return -1; 4199 } 4200 // shift by zero is a nop. Always send it through as lsl. 4201 // ('as' compatibility) 4202 if (Imm == 0) 4203 ShiftTy = ARM_AM::lsl; 4204 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4205 SMLoc L = Parser.getTok().getLoc(); 4206 EndLoc = Parser.getTok().getEndLoc(); 4207 ShiftReg = tryParseRegister(); 4208 if (ShiftReg == -1) { 4209 Error(L, "expected immediate or register in shift operand"); 4210 return -1; 4211 } 4212 } else { 4213 Error(Parser.getTok().getLoc(), 4214 "expected immediate or register in shift operand"); 4215 return -1; 4216 } 4217 } 4218 4219 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4220 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4221 ShiftReg, Imm, 4222 S, EndLoc)); 4223 else 4224 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4225 S, EndLoc)); 4226 4227 return 0; 4228 } 4229 4230 /// Try to parse a register name. The token must be an Identifier when called. 4231 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4232 /// if there is a "writeback". 'true' if it's not a register. 4233 /// 4234 /// TODO this is likely to change to allow different register types and or to 4235 /// parse for a specific register type. 4236 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4237 MCAsmParser &Parser = getParser(); 4238 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4239 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4240 int RegNo = tryParseRegister(); 4241 if (RegNo == -1) 4242 return true; 4243 4244 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4245 4246 const AsmToken &ExclaimTok = Parser.getTok(); 4247 if (ExclaimTok.is(AsmToken::Exclaim)) { 4248 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4249 ExclaimTok.getLoc())); 4250 Parser.Lex(); // Eat exclaim token 4251 return false; 4252 } 4253 4254 // Also check for an index operand. This is only legal for vector registers, 4255 // but that'll get caught OK in operand matching, so we don't need to 4256 // explicitly filter everything else out here. 4257 if (Parser.getTok().is(AsmToken::LBrac)) { 4258 SMLoc SIdx = Parser.getTok().getLoc(); 4259 Parser.Lex(); // Eat left bracket token. 4260 4261 const MCExpr *ImmVal; 4262 if (getParser().parseExpression(ImmVal)) 4263 return true; 4264 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4265 if (!MCE) 4266 return TokError("immediate value expected for vector index"); 4267 4268 if (Parser.getTok().isNot(AsmToken::RBrac)) 4269 return Error(Parser.getTok().getLoc(), "']' expected"); 4270 4271 SMLoc E = Parser.getTok().getEndLoc(); 4272 Parser.Lex(); // Eat right bracket token. 4273 4274 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4275 SIdx, E, 4276 getContext())); 4277 } 4278 4279 return false; 4280 } 4281 4282 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4283 /// instruction with a symbolic operand name. 4284 /// We accept "crN" syntax for GAS compatibility. 4285 /// <operand-name> ::= <prefix><number> 4286 /// If CoprocOp is 'c', then: 4287 /// <prefix> ::= c | cr 4288 /// If CoprocOp is 'p', then : 4289 /// <prefix> ::= p 4290 /// <number> ::= integer in range [0, 15] 4291 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4292 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4293 // but efficient. 4294 if (Name.size() < 2 || Name[0] != CoprocOp) 4295 return -1; 4296 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4297 4298 switch (Name.size()) { 4299 default: return -1; 4300 case 1: 4301 switch (Name[0]) { 4302 default: return -1; 4303 case '0': return 0; 4304 case '1': return 1; 4305 case '2': return 2; 4306 case '3': return 3; 4307 case '4': return 4; 4308 case '5': return 5; 4309 case '6': return 6; 4310 case '7': return 7; 4311 case '8': return 8; 4312 case '9': return 9; 4313 } 4314 case 2: 4315 if (Name[0] != '1') 4316 return -1; 4317 switch (Name[1]) { 4318 default: return -1; 4319 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4320 // However, old cores (v5/v6) did use them in that way. 4321 case '0': return 10; 4322 case '1': return 11; 4323 case '2': return 12; 4324 case '3': return 13; 4325 case '4': return 14; 4326 case '5': return 15; 4327 } 4328 } 4329 } 4330 4331 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4332 OperandMatchResultTy 4333 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4334 MCAsmParser &Parser = getParser(); 4335 SMLoc S = Parser.getTok().getLoc(); 4336 const AsmToken &Tok = Parser.getTok(); 4337 if (!Tok.is(AsmToken::Identifier)) 4338 return MatchOperand_NoMatch; 4339 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4340 if (CC == ~0U) 4341 return MatchOperand_NoMatch; 4342 Parser.Lex(); // Eat the token. 4343 4344 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4345 4346 return MatchOperand_Success; 4347 } 4348 4349 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4350 /// token must be an Identifier when called, and if it is a coprocessor 4351 /// number, the token is eaten and the operand is added to the operand list. 4352 OperandMatchResultTy 4353 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4354 MCAsmParser &Parser = getParser(); 4355 SMLoc S = Parser.getTok().getLoc(); 4356 const AsmToken &Tok = Parser.getTok(); 4357 if (Tok.isNot(AsmToken::Identifier)) 4358 return MatchOperand_NoMatch; 4359 4360 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4361 if (Num == -1) 4362 return MatchOperand_NoMatch; 4363 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4364 return MatchOperand_NoMatch; 4365 4366 Parser.Lex(); // Eat identifier token. 4367 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4368 return MatchOperand_Success; 4369 } 4370 4371 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4372 /// token must be an Identifier when called, and if it is a coprocessor 4373 /// number, the token is eaten and the operand is added to the operand list. 4374 OperandMatchResultTy 4375 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4376 MCAsmParser &Parser = getParser(); 4377 SMLoc S = Parser.getTok().getLoc(); 4378 const AsmToken &Tok = Parser.getTok(); 4379 if (Tok.isNot(AsmToken::Identifier)) 4380 return MatchOperand_NoMatch; 4381 4382 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4383 if (Reg == -1) 4384 return MatchOperand_NoMatch; 4385 4386 Parser.Lex(); // Eat identifier token. 4387 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4388 return MatchOperand_Success; 4389 } 4390 4391 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4392 /// coproc_option : '{' imm0_255 '}' 4393 OperandMatchResultTy 4394 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4395 MCAsmParser &Parser = getParser(); 4396 SMLoc S = Parser.getTok().getLoc(); 4397 4398 // If this isn't a '{', this isn't a coprocessor immediate operand. 4399 if (Parser.getTok().isNot(AsmToken::LCurly)) 4400 return MatchOperand_NoMatch; 4401 Parser.Lex(); // Eat the '{' 4402 4403 const MCExpr *Expr; 4404 SMLoc Loc = Parser.getTok().getLoc(); 4405 if (getParser().parseExpression(Expr)) { 4406 Error(Loc, "illegal expression"); 4407 return MatchOperand_ParseFail; 4408 } 4409 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4410 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4411 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4412 return MatchOperand_ParseFail; 4413 } 4414 int Val = CE->getValue(); 4415 4416 // Check for and consume the closing '}' 4417 if (Parser.getTok().isNot(AsmToken::RCurly)) 4418 return MatchOperand_ParseFail; 4419 SMLoc E = Parser.getTok().getEndLoc(); 4420 Parser.Lex(); // Eat the '}' 4421 4422 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4423 return MatchOperand_Success; 4424 } 4425 4426 // For register list parsing, we need to map from raw GPR register numbering 4427 // to the enumeration values. The enumeration values aren't sorted by 4428 // register number due to our using "sp", "lr" and "pc" as canonical names. 4429 static unsigned getNextRegister(unsigned Reg) { 4430 // If this is a GPR, we need to do it manually, otherwise we can rely 4431 // on the sort ordering of the enumeration since the other reg-classes 4432 // are sane. 4433 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4434 return Reg + 1; 4435 switch(Reg) { 4436 default: llvm_unreachable("Invalid GPR number!"); 4437 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4438 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4439 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4440 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4441 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4442 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4443 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4444 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4445 } 4446 } 4447 4448 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4449 // success, or false, if duplicate encoding found. 4450 static bool 4451 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4452 unsigned Enc, unsigned Reg) { 4453 Regs.emplace_back(Enc, Reg); 4454 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4455 if (J->first == Enc) { 4456 Regs.erase(J.base()); 4457 return false; 4458 } 4459 if (J->first < Enc) 4460 break; 4461 std::swap(*I, *J); 4462 } 4463 return true; 4464 } 4465 4466 /// Parse a register list. 4467 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4468 bool EnforceOrder) { 4469 MCAsmParser &Parser = getParser(); 4470 if (Parser.getTok().isNot(AsmToken::LCurly)) 4471 return TokError("Token is not a Left Curly Brace"); 4472 SMLoc S = Parser.getTok().getLoc(); 4473 Parser.Lex(); // Eat '{' token. 4474 SMLoc RegLoc = Parser.getTok().getLoc(); 4475 4476 // Check the first register in the list to see what register class 4477 // this is a list of. 4478 int Reg = tryParseRegister(); 4479 if (Reg == -1) 4480 return Error(RegLoc, "register expected"); 4481 4482 // The reglist instructions have at most 16 registers, so reserve 4483 // space for that many. 4484 int EReg = 0; 4485 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4486 4487 // Allow Q regs and just interpret them as the two D sub-registers. 4488 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4489 Reg = getDRegFromQReg(Reg); 4490 EReg = MRI->getEncodingValue(Reg); 4491 Registers.emplace_back(EReg, Reg); 4492 ++Reg; 4493 } 4494 const MCRegisterClass *RC; 4495 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4496 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4497 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4498 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4499 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4500 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4501 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4502 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4503 else 4504 return Error(RegLoc, "invalid register in register list"); 4505 4506 // Store the register. 4507 EReg = MRI->getEncodingValue(Reg); 4508 Registers.emplace_back(EReg, Reg); 4509 4510 // This starts immediately after the first register token in the list, 4511 // so we can see either a comma or a minus (range separator) as a legal 4512 // next token. 4513 while (Parser.getTok().is(AsmToken::Comma) || 4514 Parser.getTok().is(AsmToken::Minus)) { 4515 if (Parser.getTok().is(AsmToken::Minus)) { 4516 Parser.Lex(); // Eat the minus. 4517 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4518 int EndReg = tryParseRegister(); 4519 if (EndReg == -1) 4520 return Error(AfterMinusLoc, "register expected"); 4521 // Allow Q regs and just interpret them as the two D sub-registers. 4522 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4523 EndReg = getDRegFromQReg(EndReg) + 1; 4524 // If the register is the same as the start reg, there's nothing 4525 // more to do. 4526 if (Reg == EndReg) 4527 continue; 4528 // The register must be in the same register class as the first. 4529 if (!RC->contains(EndReg)) 4530 return Error(AfterMinusLoc, "invalid register in register list"); 4531 // Ranges must go from low to high. 4532 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4533 return Error(AfterMinusLoc, "bad range in register list"); 4534 4535 // Add all the registers in the range to the register list. 4536 while (Reg != EndReg) { 4537 Reg = getNextRegister(Reg); 4538 EReg = MRI->getEncodingValue(Reg); 4539 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4540 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4541 ARMInstPrinter::getRegisterName(Reg) + 4542 ") in register list"); 4543 } 4544 } 4545 continue; 4546 } 4547 Parser.Lex(); // Eat the comma. 4548 RegLoc = Parser.getTok().getLoc(); 4549 int OldReg = Reg; 4550 const AsmToken RegTok = Parser.getTok(); 4551 Reg = tryParseRegister(); 4552 if (Reg == -1) 4553 return Error(RegLoc, "register expected"); 4554 // Allow Q regs and just interpret them as the two D sub-registers. 4555 bool isQReg = false; 4556 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4557 Reg = getDRegFromQReg(Reg); 4558 isQReg = true; 4559 } 4560 if (!RC->contains(Reg) && 4561 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4562 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4563 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4564 // subset of GPRRegClassId except it contains APSR as well. 4565 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4566 } 4567 if (Reg == ARM::VPR && 4568 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4569 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4570 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4571 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4572 EReg = MRI->getEncodingValue(Reg); 4573 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4574 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4575 ") in register list"); 4576 } 4577 continue; 4578 } 4579 // The register must be in the same register class as the first. 4580 if (!RC->contains(Reg)) 4581 return Error(RegLoc, "invalid register in register list"); 4582 // In most cases, the list must be monotonically increasing. An 4583 // exception is CLRM, which is order-independent anyway, so 4584 // there's no potential for confusion if you write clrm {r2,r1} 4585 // instead of clrm {r1,r2}. 4586 if (EnforceOrder && 4587 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4588 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4589 Warning(RegLoc, "register list not in ascending order"); 4590 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4591 return Error(RegLoc, "register list not in ascending order"); 4592 } 4593 // VFP register lists must also be contiguous. 4594 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4595 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4596 Reg != OldReg + 1) 4597 return Error(RegLoc, "non-contiguous register range"); 4598 EReg = MRI->getEncodingValue(Reg); 4599 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4600 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4601 ") in register list"); 4602 } 4603 if (isQReg) { 4604 EReg = MRI->getEncodingValue(++Reg); 4605 Registers.emplace_back(EReg, Reg); 4606 } 4607 } 4608 4609 if (Parser.getTok().isNot(AsmToken::RCurly)) 4610 return Error(Parser.getTok().getLoc(), "'}' expected"); 4611 SMLoc E = Parser.getTok().getEndLoc(); 4612 Parser.Lex(); // Eat '}' token. 4613 4614 // Push the register list operand. 4615 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4616 4617 // The ARM system instruction variants for LDM/STM have a '^' token here. 4618 if (Parser.getTok().is(AsmToken::Caret)) { 4619 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4620 Parser.Lex(); // Eat '^' token. 4621 } 4622 4623 return false; 4624 } 4625 4626 // Helper function to parse the lane index for vector lists. 4627 OperandMatchResultTy ARMAsmParser:: 4628 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4629 MCAsmParser &Parser = getParser(); 4630 Index = 0; // Always return a defined index value. 4631 if (Parser.getTok().is(AsmToken::LBrac)) { 4632 Parser.Lex(); // Eat the '['. 4633 if (Parser.getTok().is(AsmToken::RBrac)) { 4634 // "Dn[]" is the 'all lanes' syntax. 4635 LaneKind = AllLanes; 4636 EndLoc = Parser.getTok().getEndLoc(); 4637 Parser.Lex(); // Eat the ']'. 4638 return MatchOperand_Success; 4639 } 4640 4641 // There's an optional '#' token here. Normally there wouldn't be, but 4642 // inline assemble puts one in, and it's friendly to accept that. 4643 if (Parser.getTok().is(AsmToken::Hash)) 4644 Parser.Lex(); // Eat '#' or '$'. 4645 4646 const MCExpr *LaneIndex; 4647 SMLoc Loc = Parser.getTok().getLoc(); 4648 if (getParser().parseExpression(LaneIndex)) { 4649 Error(Loc, "illegal expression"); 4650 return MatchOperand_ParseFail; 4651 } 4652 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4653 if (!CE) { 4654 Error(Loc, "lane index must be empty or an integer"); 4655 return MatchOperand_ParseFail; 4656 } 4657 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4658 Error(Parser.getTok().getLoc(), "']' expected"); 4659 return MatchOperand_ParseFail; 4660 } 4661 EndLoc = Parser.getTok().getEndLoc(); 4662 Parser.Lex(); // Eat the ']'. 4663 int64_t Val = CE->getValue(); 4664 4665 // FIXME: Make this range check context sensitive for .8, .16, .32. 4666 if (Val < 0 || Val > 7) { 4667 Error(Parser.getTok().getLoc(), "lane index out of range"); 4668 return MatchOperand_ParseFail; 4669 } 4670 Index = Val; 4671 LaneKind = IndexedLane; 4672 return MatchOperand_Success; 4673 } 4674 LaneKind = NoLanes; 4675 return MatchOperand_Success; 4676 } 4677 4678 // parse a vector register list 4679 OperandMatchResultTy 4680 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4681 MCAsmParser &Parser = getParser(); 4682 VectorLaneTy LaneKind; 4683 unsigned LaneIndex; 4684 SMLoc S = Parser.getTok().getLoc(); 4685 // As an extension (to match gas), support a plain D register or Q register 4686 // (without encosing curly braces) as a single or double entry list, 4687 // respectively. 4688 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4689 SMLoc E = Parser.getTok().getEndLoc(); 4690 int Reg = tryParseRegister(); 4691 if (Reg == -1) 4692 return MatchOperand_NoMatch; 4693 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4694 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4695 if (Res != MatchOperand_Success) 4696 return Res; 4697 switch (LaneKind) { 4698 case NoLanes: 4699 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4700 break; 4701 case AllLanes: 4702 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4703 S, E)); 4704 break; 4705 case IndexedLane: 4706 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4707 LaneIndex, 4708 false, S, E)); 4709 break; 4710 } 4711 return MatchOperand_Success; 4712 } 4713 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4714 Reg = getDRegFromQReg(Reg); 4715 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4716 if (Res != MatchOperand_Success) 4717 return Res; 4718 switch (LaneKind) { 4719 case NoLanes: 4720 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4721 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4722 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4723 break; 4724 case AllLanes: 4725 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4726 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4727 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4728 S, E)); 4729 break; 4730 case IndexedLane: 4731 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4732 LaneIndex, 4733 false, S, E)); 4734 break; 4735 } 4736 return MatchOperand_Success; 4737 } 4738 Error(S, "vector register expected"); 4739 return MatchOperand_ParseFail; 4740 } 4741 4742 if (Parser.getTok().isNot(AsmToken::LCurly)) 4743 return MatchOperand_NoMatch; 4744 4745 Parser.Lex(); // Eat '{' token. 4746 SMLoc RegLoc = Parser.getTok().getLoc(); 4747 4748 int Reg = tryParseRegister(); 4749 if (Reg == -1) { 4750 Error(RegLoc, "register expected"); 4751 return MatchOperand_ParseFail; 4752 } 4753 unsigned Count = 1; 4754 int Spacing = 0; 4755 unsigned FirstReg = Reg; 4756 4757 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4758 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4759 return MatchOperand_ParseFail; 4760 } 4761 // The list is of D registers, but we also allow Q regs and just interpret 4762 // them as the two D sub-registers. 4763 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4764 FirstReg = Reg = getDRegFromQReg(Reg); 4765 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4766 // it's ambiguous with four-register single spaced. 4767 ++Reg; 4768 ++Count; 4769 } 4770 4771 SMLoc E; 4772 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4773 return MatchOperand_ParseFail; 4774 4775 while (Parser.getTok().is(AsmToken::Comma) || 4776 Parser.getTok().is(AsmToken::Minus)) { 4777 if (Parser.getTok().is(AsmToken::Minus)) { 4778 if (!Spacing) 4779 Spacing = 1; // Register range implies a single spaced list. 4780 else if (Spacing == 2) { 4781 Error(Parser.getTok().getLoc(), 4782 "sequential registers in double spaced list"); 4783 return MatchOperand_ParseFail; 4784 } 4785 Parser.Lex(); // Eat the minus. 4786 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4787 int EndReg = tryParseRegister(); 4788 if (EndReg == -1) { 4789 Error(AfterMinusLoc, "register expected"); 4790 return MatchOperand_ParseFail; 4791 } 4792 // Allow Q regs and just interpret them as the two D sub-registers. 4793 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4794 EndReg = getDRegFromQReg(EndReg) + 1; 4795 // If the register is the same as the start reg, there's nothing 4796 // more to do. 4797 if (Reg == EndReg) 4798 continue; 4799 // The register must be in the same register class as the first. 4800 if ((hasMVE() && 4801 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4802 (!hasMVE() && 4803 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4804 Error(AfterMinusLoc, "invalid register in register list"); 4805 return MatchOperand_ParseFail; 4806 } 4807 // Ranges must go from low to high. 4808 if (Reg > EndReg) { 4809 Error(AfterMinusLoc, "bad range in register list"); 4810 return MatchOperand_ParseFail; 4811 } 4812 // Parse the lane specifier if present. 4813 VectorLaneTy NextLaneKind; 4814 unsigned NextLaneIndex; 4815 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4816 MatchOperand_Success) 4817 return MatchOperand_ParseFail; 4818 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4819 Error(AfterMinusLoc, "mismatched lane index in register list"); 4820 return MatchOperand_ParseFail; 4821 } 4822 4823 // Add all the registers in the range to the register list. 4824 Count += EndReg - Reg; 4825 Reg = EndReg; 4826 continue; 4827 } 4828 Parser.Lex(); // Eat the comma. 4829 RegLoc = Parser.getTok().getLoc(); 4830 int OldReg = Reg; 4831 Reg = tryParseRegister(); 4832 if (Reg == -1) { 4833 Error(RegLoc, "register expected"); 4834 return MatchOperand_ParseFail; 4835 } 4836 4837 if (hasMVE()) { 4838 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4839 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4840 return MatchOperand_ParseFail; 4841 } 4842 Spacing = 1; 4843 } 4844 // vector register lists must be contiguous. 4845 // It's OK to use the enumeration values directly here rather, as the 4846 // VFP register classes have the enum sorted properly. 4847 // 4848 // The list is of D registers, but we also allow Q regs and just interpret 4849 // them as the two D sub-registers. 4850 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4851 if (!Spacing) 4852 Spacing = 1; // Register range implies a single spaced list. 4853 else if (Spacing == 2) { 4854 Error(RegLoc, 4855 "invalid register in double-spaced list (must be 'D' register')"); 4856 return MatchOperand_ParseFail; 4857 } 4858 Reg = getDRegFromQReg(Reg); 4859 if (Reg != OldReg + 1) { 4860 Error(RegLoc, "non-contiguous register range"); 4861 return MatchOperand_ParseFail; 4862 } 4863 ++Reg; 4864 Count += 2; 4865 // Parse the lane specifier if present. 4866 VectorLaneTy NextLaneKind; 4867 unsigned NextLaneIndex; 4868 SMLoc LaneLoc = Parser.getTok().getLoc(); 4869 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4870 MatchOperand_Success) 4871 return MatchOperand_ParseFail; 4872 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4873 Error(LaneLoc, "mismatched lane index in register list"); 4874 return MatchOperand_ParseFail; 4875 } 4876 continue; 4877 } 4878 // Normal D register. 4879 // Figure out the register spacing (single or double) of the list if 4880 // we don't know it already. 4881 if (!Spacing) 4882 Spacing = 1 + (Reg == OldReg + 2); 4883 4884 // Just check that it's contiguous and keep going. 4885 if (Reg != OldReg + Spacing) { 4886 Error(RegLoc, "non-contiguous register range"); 4887 return MatchOperand_ParseFail; 4888 } 4889 ++Count; 4890 // Parse the lane specifier if present. 4891 VectorLaneTy NextLaneKind; 4892 unsigned NextLaneIndex; 4893 SMLoc EndLoc = Parser.getTok().getLoc(); 4894 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4895 return MatchOperand_ParseFail; 4896 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4897 Error(EndLoc, "mismatched lane index in register list"); 4898 return MatchOperand_ParseFail; 4899 } 4900 } 4901 4902 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4903 Error(Parser.getTok().getLoc(), "'}' expected"); 4904 return MatchOperand_ParseFail; 4905 } 4906 E = Parser.getTok().getEndLoc(); 4907 Parser.Lex(); // Eat '}' token. 4908 4909 switch (LaneKind) { 4910 case NoLanes: 4911 case AllLanes: { 4912 // Two-register operands have been converted to the 4913 // composite register classes. 4914 if (Count == 2 && !hasMVE()) { 4915 const MCRegisterClass *RC = (Spacing == 1) ? 4916 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4917 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4918 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4919 } 4920 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4921 ARMOperand::CreateVectorListAllLanes); 4922 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4923 break; 4924 } 4925 case IndexedLane: 4926 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4927 LaneIndex, 4928 (Spacing == 2), 4929 S, E)); 4930 break; 4931 } 4932 return MatchOperand_Success; 4933 } 4934 4935 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4936 OperandMatchResultTy 4937 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4938 MCAsmParser &Parser = getParser(); 4939 SMLoc S = Parser.getTok().getLoc(); 4940 const AsmToken &Tok = Parser.getTok(); 4941 unsigned Opt; 4942 4943 if (Tok.is(AsmToken::Identifier)) { 4944 StringRef OptStr = Tok.getString(); 4945 4946 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4947 .Case("sy", ARM_MB::SY) 4948 .Case("st", ARM_MB::ST) 4949 .Case("ld", ARM_MB::LD) 4950 .Case("sh", ARM_MB::ISH) 4951 .Case("ish", ARM_MB::ISH) 4952 .Case("shst", ARM_MB::ISHST) 4953 .Case("ishst", ARM_MB::ISHST) 4954 .Case("ishld", ARM_MB::ISHLD) 4955 .Case("nsh", ARM_MB::NSH) 4956 .Case("un", ARM_MB::NSH) 4957 .Case("nshst", ARM_MB::NSHST) 4958 .Case("nshld", ARM_MB::NSHLD) 4959 .Case("unst", ARM_MB::NSHST) 4960 .Case("osh", ARM_MB::OSH) 4961 .Case("oshst", ARM_MB::OSHST) 4962 .Case("oshld", ARM_MB::OSHLD) 4963 .Default(~0U); 4964 4965 // ishld, oshld, nshld and ld are only available from ARMv8. 4966 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4967 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4968 Opt = ~0U; 4969 4970 if (Opt == ~0U) 4971 return MatchOperand_NoMatch; 4972 4973 Parser.Lex(); // Eat identifier token. 4974 } else if (Tok.is(AsmToken::Hash) || 4975 Tok.is(AsmToken::Dollar) || 4976 Tok.is(AsmToken::Integer)) { 4977 if (Parser.getTok().isNot(AsmToken::Integer)) 4978 Parser.Lex(); // Eat '#' or '$'. 4979 SMLoc Loc = Parser.getTok().getLoc(); 4980 4981 const MCExpr *MemBarrierID; 4982 if (getParser().parseExpression(MemBarrierID)) { 4983 Error(Loc, "illegal expression"); 4984 return MatchOperand_ParseFail; 4985 } 4986 4987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4988 if (!CE) { 4989 Error(Loc, "constant expression expected"); 4990 return MatchOperand_ParseFail; 4991 } 4992 4993 int Val = CE->getValue(); 4994 if (Val & ~0xf) { 4995 Error(Loc, "immediate value out of range"); 4996 return MatchOperand_ParseFail; 4997 } 4998 4999 Opt = ARM_MB::RESERVED_0 + Val; 5000 } else 5001 return MatchOperand_ParseFail; 5002 5003 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 5004 return MatchOperand_Success; 5005 } 5006 5007 OperandMatchResultTy 5008 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 5009 MCAsmParser &Parser = getParser(); 5010 SMLoc S = Parser.getTok().getLoc(); 5011 const AsmToken &Tok = Parser.getTok(); 5012 5013 if (Tok.isNot(AsmToken::Identifier)) 5014 return MatchOperand_NoMatch; 5015 5016 if (!Tok.getString().equals_insensitive("csync")) 5017 return MatchOperand_NoMatch; 5018 5019 Parser.Lex(); // Eat identifier token. 5020 5021 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 5022 return MatchOperand_Success; 5023 } 5024 5025 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 5026 OperandMatchResultTy 5027 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 5028 MCAsmParser &Parser = getParser(); 5029 SMLoc S = Parser.getTok().getLoc(); 5030 const AsmToken &Tok = Parser.getTok(); 5031 unsigned Opt; 5032 5033 if (Tok.is(AsmToken::Identifier)) { 5034 StringRef OptStr = Tok.getString(); 5035 5036 if (OptStr.equals_insensitive("sy")) 5037 Opt = ARM_ISB::SY; 5038 else 5039 return MatchOperand_NoMatch; 5040 5041 Parser.Lex(); // Eat identifier token. 5042 } else if (Tok.is(AsmToken::Hash) || 5043 Tok.is(AsmToken::Dollar) || 5044 Tok.is(AsmToken::Integer)) { 5045 if (Parser.getTok().isNot(AsmToken::Integer)) 5046 Parser.Lex(); // Eat '#' or '$'. 5047 SMLoc Loc = Parser.getTok().getLoc(); 5048 5049 const MCExpr *ISBarrierID; 5050 if (getParser().parseExpression(ISBarrierID)) { 5051 Error(Loc, "illegal expression"); 5052 return MatchOperand_ParseFail; 5053 } 5054 5055 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 5056 if (!CE) { 5057 Error(Loc, "constant expression expected"); 5058 return MatchOperand_ParseFail; 5059 } 5060 5061 int Val = CE->getValue(); 5062 if (Val & ~0xf) { 5063 Error(Loc, "immediate value out of range"); 5064 return MatchOperand_ParseFail; 5065 } 5066 5067 Opt = ARM_ISB::RESERVED_0 + Val; 5068 } else 5069 return MatchOperand_ParseFail; 5070 5071 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 5072 (ARM_ISB::InstSyncBOpt)Opt, S)); 5073 return MatchOperand_Success; 5074 } 5075 5076 5077 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 5078 OperandMatchResultTy 5079 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 5080 MCAsmParser &Parser = getParser(); 5081 SMLoc S = Parser.getTok().getLoc(); 5082 const AsmToken &Tok = Parser.getTok(); 5083 if (!Tok.is(AsmToken::Identifier)) 5084 return MatchOperand_NoMatch; 5085 StringRef IFlagsStr = Tok.getString(); 5086 5087 // An iflags string of "none" is interpreted to mean that none of the AIF 5088 // bits are set. Not a terribly useful instruction, but a valid encoding. 5089 unsigned IFlags = 0; 5090 if (IFlagsStr != "none") { 5091 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 5092 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 5093 .Case("a", ARM_PROC::A) 5094 .Case("i", ARM_PROC::I) 5095 .Case("f", ARM_PROC::F) 5096 .Default(~0U); 5097 5098 // If some specific iflag is already set, it means that some letter is 5099 // present more than once, this is not acceptable. 5100 if (Flag == ~0U || (IFlags & Flag)) 5101 return MatchOperand_NoMatch; 5102 5103 IFlags |= Flag; 5104 } 5105 } 5106 5107 Parser.Lex(); // Eat identifier token. 5108 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 5109 return MatchOperand_Success; 5110 } 5111 5112 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5113 OperandMatchResultTy 5114 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5115 MCAsmParser &Parser = getParser(); 5116 SMLoc S = Parser.getTok().getLoc(); 5117 const AsmToken &Tok = Parser.getTok(); 5118 5119 if (Tok.is(AsmToken::Integer)) { 5120 int64_t Val = Tok.getIntVal(); 5121 if (Val > 255 || Val < 0) { 5122 return MatchOperand_NoMatch; 5123 } 5124 unsigned SYSmvalue = Val & 0xFF; 5125 Parser.Lex(); 5126 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5127 return MatchOperand_Success; 5128 } 5129 5130 if (!Tok.is(AsmToken::Identifier)) 5131 return MatchOperand_NoMatch; 5132 StringRef Mask = Tok.getString(); 5133 5134 if (isMClass()) { 5135 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5136 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5137 return MatchOperand_NoMatch; 5138 5139 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5140 5141 Parser.Lex(); // Eat identifier token. 5142 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5143 return MatchOperand_Success; 5144 } 5145 5146 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5147 size_t Start = 0, Next = Mask.find('_'); 5148 StringRef Flags = ""; 5149 std::string SpecReg = Mask.slice(Start, Next).lower(); 5150 if (Next != StringRef::npos) 5151 Flags = Mask.slice(Next+1, Mask.size()); 5152 5153 // FlagsVal contains the complete mask: 5154 // 3-0: Mask 5155 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5156 unsigned FlagsVal = 0; 5157 5158 if (SpecReg == "apsr") { 5159 FlagsVal = StringSwitch<unsigned>(Flags) 5160 .Case("nzcvq", 0x8) // same as CPSR_f 5161 .Case("g", 0x4) // same as CPSR_s 5162 .Case("nzcvqg", 0xc) // same as CPSR_fs 5163 .Default(~0U); 5164 5165 if (FlagsVal == ~0U) { 5166 if (!Flags.empty()) 5167 return MatchOperand_NoMatch; 5168 else 5169 FlagsVal = 8; // No flag 5170 } 5171 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5172 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5173 if (Flags == "all" || Flags == "") 5174 Flags = "fc"; 5175 for (int i = 0, e = Flags.size(); i != e; ++i) { 5176 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5177 .Case("c", 1) 5178 .Case("x", 2) 5179 .Case("s", 4) 5180 .Case("f", 8) 5181 .Default(~0U); 5182 5183 // If some specific flag is already set, it means that some letter is 5184 // present more than once, this is not acceptable. 5185 if (Flag == ~0U || (FlagsVal & Flag)) 5186 return MatchOperand_NoMatch; 5187 FlagsVal |= Flag; 5188 } 5189 } else // No match for special register. 5190 return MatchOperand_NoMatch; 5191 5192 // Special register without flags is NOT equivalent to "fc" flags. 5193 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5194 // two lines would enable gas compatibility at the expense of breaking 5195 // round-tripping. 5196 // 5197 // if (!FlagsVal) 5198 // FlagsVal = 0x9; 5199 5200 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5201 if (SpecReg == "spsr") 5202 FlagsVal |= 16; 5203 5204 Parser.Lex(); // Eat identifier token. 5205 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5206 return MatchOperand_Success; 5207 } 5208 5209 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5210 /// use in the MRS/MSR instructions added to support virtualization. 5211 OperandMatchResultTy 5212 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5213 MCAsmParser &Parser = getParser(); 5214 SMLoc S = Parser.getTok().getLoc(); 5215 const AsmToken &Tok = Parser.getTok(); 5216 if (!Tok.is(AsmToken::Identifier)) 5217 return MatchOperand_NoMatch; 5218 StringRef RegName = Tok.getString(); 5219 5220 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5221 if (!TheReg) 5222 return MatchOperand_NoMatch; 5223 unsigned Encoding = TheReg->Encoding; 5224 5225 Parser.Lex(); // Eat identifier token. 5226 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5227 return MatchOperand_Success; 5228 } 5229 5230 OperandMatchResultTy 5231 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5232 int High) { 5233 MCAsmParser &Parser = getParser(); 5234 const AsmToken &Tok = Parser.getTok(); 5235 if (Tok.isNot(AsmToken::Identifier)) { 5236 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5237 return MatchOperand_ParseFail; 5238 } 5239 StringRef ShiftName = Tok.getString(); 5240 std::string LowerOp = Op.lower(); 5241 std::string UpperOp = Op.upper(); 5242 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5243 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5244 return MatchOperand_ParseFail; 5245 } 5246 Parser.Lex(); // Eat shift type token. 5247 5248 // There must be a '#' and a shift amount. 5249 if (Parser.getTok().isNot(AsmToken::Hash) && 5250 Parser.getTok().isNot(AsmToken::Dollar)) { 5251 Error(Parser.getTok().getLoc(), "'#' expected"); 5252 return MatchOperand_ParseFail; 5253 } 5254 Parser.Lex(); // Eat hash token. 5255 5256 const MCExpr *ShiftAmount; 5257 SMLoc Loc = Parser.getTok().getLoc(); 5258 SMLoc EndLoc; 5259 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5260 Error(Loc, "illegal expression"); 5261 return MatchOperand_ParseFail; 5262 } 5263 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5264 if (!CE) { 5265 Error(Loc, "constant expression expected"); 5266 return MatchOperand_ParseFail; 5267 } 5268 int Val = CE->getValue(); 5269 if (Val < Low || Val > High) { 5270 Error(Loc, "immediate value out of range"); 5271 return MatchOperand_ParseFail; 5272 } 5273 5274 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5275 5276 return MatchOperand_Success; 5277 } 5278 5279 OperandMatchResultTy 5280 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5281 MCAsmParser &Parser = getParser(); 5282 const AsmToken &Tok = Parser.getTok(); 5283 SMLoc S = Tok.getLoc(); 5284 if (Tok.isNot(AsmToken::Identifier)) { 5285 Error(S, "'be' or 'le' operand expected"); 5286 return MatchOperand_ParseFail; 5287 } 5288 int Val = StringSwitch<int>(Tok.getString().lower()) 5289 .Case("be", 1) 5290 .Case("le", 0) 5291 .Default(-1); 5292 Parser.Lex(); // Eat the token. 5293 5294 if (Val == -1) { 5295 Error(S, "'be' or 'le' operand expected"); 5296 return MatchOperand_ParseFail; 5297 } 5298 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5299 getContext()), 5300 S, Tok.getEndLoc())); 5301 return MatchOperand_Success; 5302 } 5303 5304 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5305 /// instructions. Legal values are: 5306 /// lsl #n 'n' in [0,31] 5307 /// asr #n 'n' in [1,32] 5308 /// n == 32 encoded as n == 0. 5309 OperandMatchResultTy 5310 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5311 MCAsmParser &Parser = getParser(); 5312 const AsmToken &Tok = Parser.getTok(); 5313 SMLoc S = Tok.getLoc(); 5314 if (Tok.isNot(AsmToken::Identifier)) { 5315 Error(S, "shift operator 'asr' or 'lsl' expected"); 5316 return MatchOperand_ParseFail; 5317 } 5318 StringRef ShiftName = Tok.getString(); 5319 bool isASR; 5320 if (ShiftName == "lsl" || ShiftName == "LSL") 5321 isASR = false; 5322 else if (ShiftName == "asr" || ShiftName == "ASR") 5323 isASR = true; 5324 else { 5325 Error(S, "shift operator 'asr' or 'lsl' expected"); 5326 return MatchOperand_ParseFail; 5327 } 5328 Parser.Lex(); // Eat the operator. 5329 5330 // A '#' and a shift amount. 5331 if (Parser.getTok().isNot(AsmToken::Hash) && 5332 Parser.getTok().isNot(AsmToken::Dollar)) { 5333 Error(Parser.getTok().getLoc(), "'#' expected"); 5334 return MatchOperand_ParseFail; 5335 } 5336 Parser.Lex(); // Eat hash token. 5337 SMLoc ExLoc = Parser.getTok().getLoc(); 5338 5339 const MCExpr *ShiftAmount; 5340 SMLoc EndLoc; 5341 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5342 Error(ExLoc, "malformed shift expression"); 5343 return MatchOperand_ParseFail; 5344 } 5345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5346 if (!CE) { 5347 Error(ExLoc, "shift amount must be an immediate"); 5348 return MatchOperand_ParseFail; 5349 } 5350 5351 int64_t Val = CE->getValue(); 5352 if (isASR) { 5353 // Shift amount must be in [1,32] 5354 if (Val < 1 || Val > 32) { 5355 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5356 return MatchOperand_ParseFail; 5357 } 5358 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5359 if (isThumb() && Val == 32) { 5360 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5361 return MatchOperand_ParseFail; 5362 } 5363 if (Val == 32) Val = 0; 5364 } else { 5365 // Shift amount must be in [1,32] 5366 if (Val < 0 || Val > 31) { 5367 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5368 return MatchOperand_ParseFail; 5369 } 5370 } 5371 5372 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5373 5374 return MatchOperand_Success; 5375 } 5376 5377 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5378 /// of instructions. Legal values are: 5379 /// ror #n 'n' in {0, 8, 16, 24} 5380 OperandMatchResultTy 5381 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5382 MCAsmParser &Parser = getParser(); 5383 const AsmToken &Tok = Parser.getTok(); 5384 SMLoc S = Tok.getLoc(); 5385 if (Tok.isNot(AsmToken::Identifier)) 5386 return MatchOperand_NoMatch; 5387 StringRef ShiftName = Tok.getString(); 5388 if (ShiftName != "ror" && ShiftName != "ROR") 5389 return MatchOperand_NoMatch; 5390 Parser.Lex(); // Eat the operator. 5391 5392 // A '#' and a rotate amount. 5393 if (Parser.getTok().isNot(AsmToken::Hash) && 5394 Parser.getTok().isNot(AsmToken::Dollar)) { 5395 Error(Parser.getTok().getLoc(), "'#' expected"); 5396 return MatchOperand_ParseFail; 5397 } 5398 Parser.Lex(); // Eat hash token. 5399 SMLoc ExLoc = Parser.getTok().getLoc(); 5400 5401 const MCExpr *ShiftAmount; 5402 SMLoc EndLoc; 5403 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5404 Error(ExLoc, "malformed rotate expression"); 5405 return MatchOperand_ParseFail; 5406 } 5407 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5408 if (!CE) { 5409 Error(ExLoc, "rotate amount must be an immediate"); 5410 return MatchOperand_ParseFail; 5411 } 5412 5413 int64_t Val = CE->getValue(); 5414 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5415 // normally, zero is represented in asm by omitting the rotate operand 5416 // entirely. 5417 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5418 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5419 return MatchOperand_ParseFail; 5420 } 5421 5422 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5423 5424 return MatchOperand_Success; 5425 } 5426 5427 OperandMatchResultTy 5428 ARMAsmParser::parseModImm(OperandVector &Operands) { 5429 MCAsmParser &Parser = getParser(); 5430 MCAsmLexer &Lexer = getLexer(); 5431 int64_t Imm1, Imm2; 5432 5433 SMLoc S = Parser.getTok().getLoc(); 5434 5435 // 1) A mod_imm operand can appear in the place of a register name: 5436 // add r0, #mod_imm 5437 // add r0, r0, #mod_imm 5438 // to correctly handle the latter, we bail out as soon as we see an 5439 // identifier. 5440 // 5441 // 2) Similarly, we do not want to parse into complex operands: 5442 // mov r0, #mod_imm 5443 // mov r0, :lower16:(_foo) 5444 if (Parser.getTok().is(AsmToken::Identifier) || 5445 Parser.getTok().is(AsmToken::Colon)) 5446 return MatchOperand_NoMatch; 5447 5448 // Hash (dollar) is optional as per the ARMARM 5449 if (Parser.getTok().is(AsmToken::Hash) || 5450 Parser.getTok().is(AsmToken::Dollar)) { 5451 // Avoid parsing into complex operands (#:) 5452 if (Lexer.peekTok().is(AsmToken::Colon)) 5453 return MatchOperand_NoMatch; 5454 5455 // Eat the hash (dollar) 5456 Parser.Lex(); 5457 } 5458 5459 SMLoc Sx1, Ex1; 5460 Sx1 = Parser.getTok().getLoc(); 5461 const MCExpr *Imm1Exp; 5462 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5463 Error(Sx1, "malformed expression"); 5464 return MatchOperand_ParseFail; 5465 } 5466 5467 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5468 5469 if (CE) { 5470 // Immediate must fit within 32-bits 5471 Imm1 = CE->getValue(); 5472 int Enc = ARM_AM::getSOImmVal(Imm1); 5473 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5474 // We have a match! 5475 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5476 (Enc & 0xF00) >> 7, 5477 Sx1, Ex1)); 5478 return MatchOperand_Success; 5479 } 5480 5481 // We have parsed an immediate which is not for us, fallback to a plain 5482 // immediate. This can happen for instruction aliases. For an example, 5483 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5484 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5485 // instruction with a mod_imm operand. The alias is defined such that the 5486 // parser method is shared, that's why we have to do this here. 5487 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5488 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5489 return MatchOperand_Success; 5490 } 5491 } else { 5492 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5493 // MCFixup). Fallback to a plain immediate. 5494 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5495 return MatchOperand_Success; 5496 } 5497 5498 // From this point onward, we expect the input to be a (#bits, #rot) pair 5499 if (Parser.getTok().isNot(AsmToken::Comma)) { 5500 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5501 return MatchOperand_ParseFail; 5502 } 5503 5504 if (Imm1 & ~0xFF) { 5505 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5506 return MatchOperand_ParseFail; 5507 } 5508 5509 // Eat the comma 5510 Parser.Lex(); 5511 5512 // Repeat for #rot 5513 SMLoc Sx2, Ex2; 5514 Sx2 = Parser.getTok().getLoc(); 5515 5516 // Eat the optional hash (dollar) 5517 if (Parser.getTok().is(AsmToken::Hash) || 5518 Parser.getTok().is(AsmToken::Dollar)) 5519 Parser.Lex(); 5520 5521 const MCExpr *Imm2Exp; 5522 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5523 Error(Sx2, "malformed expression"); 5524 return MatchOperand_ParseFail; 5525 } 5526 5527 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5528 5529 if (CE) { 5530 Imm2 = CE->getValue(); 5531 if (!(Imm2 & ~0x1E)) { 5532 // We have a match! 5533 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5534 return MatchOperand_Success; 5535 } 5536 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5537 return MatchOperand_ParseFail; 5538 } else { 5539 Error(Sx2, "constant expression expected"); 5540 return MatchOperand_ParseFail; 5541 } 5542 } 5543 5544 OperandMatchResultTy 5545 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5546 MCAsmParser &Parser = getParser(); 5547 SMLoc S = Parser.getTok().getLoc(); 5548 // The bitfield descriptor is really two operands, the LSB and the width. 5549 if (Parser.getTok().isNot(AsmToken::Hash) && 5550 Parser.getTok().isNot(AsmToken::Dollar)) { 5551 Error(Parser.getTok().getLoc(), "'#' expected"); 5552 return MatchOperand_ParseFail; 5553 } 5554 Parser.Lex(); // Eat hash token. 5555 5556 const MCExpr *LSBExpr; 5557 SMLoc E = Parser.getTok().getLoc(); 5558 if (getParser().parseExpression(LSBExpr)) { 5559 Error(E, "malformed immediate expression"); 5560 return MatchOperand_ParseFail; 5561 } 5562 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5563 if (!CE) { 5564 Error(E, "'lsb' operand must be an immediate"); 5565 return MatchOperand_ParseFail; 5566 } 5567 5568 int64_t LSB = CE->getValue(); 5569 // The LSB must be in the range [0,31] 5570 if (LSB < 0 || LSB > 31) { 5571 Error(E, "'lsb' operand must be in the range [0,31]"); 5572 return MatchOperand_ParseFail; 5573 } 5574 E = Parser.getTok().getLoc(); 5575 5576 // Expect another immediate operand. 5577 if (Parser.getTok().isNot(AsmToken::Comma)) { 5578 Error(Parser.getTok().getLoc(), "too few operands"); 5579 return MatchOperand_ParseFail; 5580 } 5581 Parser.Lex(); // Eat hash token. 5582 if (Parser.getTok().isNot(AsmToken::Hash) && 5583 Parser.getTok().isNot(AsmToken::Dollar)) { 5584 Error(Parser.getTok().getLoc(), "'#' expected"); 5585 return MatchOperand_ParseFail; 5586 } 5587 Parser.Lex(); // Eat hash token. 5588 5589 const MCExpr *WidthExpr; 5590 SMLoc EndLoc; 5591 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5592 Error(E, "malformed immediate expression"); 5593 return MatchOperand_ParseFail; 5594 } 5595 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5596 if (!CE) { 5597 Error(E, "'width' operand must be an immediate"); 5598 return MatchOperand_ParseFail; 5599 } 5600 5601 int64_t Width = CE->getValue(); 5602 // The LSB must be in the range [1,32-lsb] 5603 if (Width < 1 || Width > 32 - LSB) { 5604 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5605 return MatchOperand_ParseFail; 5606 } 5607 5608 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5609 5610 return MatchOperand_Success; 5611 } 5612 5613 OperandMatchResultTy 5614 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5615 // Check for a post-index addressing register operand. Specifically: 5616 // postidx_reg := '+' register {, shift} 5617 // | '-' register {, shift} 5618 // | register {, shift} 5619 5620 // This method must return MatchOperand_NoMatch without consuming any tokens 5621 // in the case where there is no match, as other alternatives take other 5622 // parse methods. 5623 MCAsmParser &Parser = getParser(); 5624 AsmToken Tok = Parser.getTok(); 5625 SMLoc S = Tok.getLoc(); 5626 bool haveEaten = false; 5627 bool isAdd = true; 5628 if (Tok.is(AsmToken::Plus)) { 5629 Parser.Lex(); // Eat the '+' token. 5630 haveEaten = true; 5631 } else if (Tok.is(AsmToken::Minus)) { 5632 Parser.Lex(); // Eat the '-' token. 5633 isAdd = false; 5634 haveEaten = true; 5635 } 5636 5637 SMLoc E = Parser.getTok().getEndLoc(); 5638 int Reg = tryParseRegister(); 5639 if (Reg == -1) { 5640 if (!haveEaten) 5641 return MatchOperand_NoMatch; 5642 Error(Parser.getTok().getLoc(), "register expected"); 5643 return MatchOperand_ParseFail; 5644 } 5645 5646 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5647 unsigned ShiftImm = 0; 5648 if (Parser.getTok().is(AsmToken::Comma)) { 5649 Parser.Lex(); // Eat the ','. 5650 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5651 return MatchOperand_ParseFail; 5652 5653 // FIXME: Only approximates end...may include intervening whitespace. 5654 E = Parser.getTok().getLoc(); 5655 } 5656 5657 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5658 ShiftImm, S, E)); 5659 5660 return MatchOperand_Success; 5661 } 5662 5663 OperandMatchResultTy 5664 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5665 // Check for a post-index addressing register operand. Specifically: 5666 // am3offset := '+' register 5667 // | '-' register 5668 // | register 5669 // | # imm 5670 // | # + imm 5671 // | # - imm 5672 5673 // This method must return MatchOperand_NoMatch without consuming any tokens 5674 // in the case where there is no match, as other alternatives take other 5675 // parse methods. 5676 MCAsmParser &Parser = getParser(); 5677 AsmToken Tok = Parser.getTok(); 5678 SMLoc S = Tok.getLoc(); 5679 5680 // Do immediates first, as we always parse those if we have a '#'. 5681 if (Parser.getTok().is(AsmToken::Hash) || 5682 Parser.getTok().is(AsmToken::Dollar)) { 5683 Parser.Lex(); // Eat '#' or '$'. 5684 // Explicitly look for a '-', as we need to encode negative zero 5685 // differently. 5686 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5687 const MCExpr *Offset; 5688 SMLoc E; 5689 if (getParser().parseExpression(Offset, E)) 5690 return MatchOperand_ParseFail; 5691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5692 if (!CE) { 5693 Error(S, "constant expression expected"); 5694 return MatchOperand_ParseFail; 5695 } 5696 // Negative zero is encoded as the flag value 5697 // std::numeric_limits<int32_t>::min(). 5698 int32_t Val = CE->getValue(); 5699 if (isNegative && Val == 0) 5700 Val = std::numeric_limits<int32_t>::min(); 5701 5702 Operands.push_back( 5703 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5704 5705 return MatchOperand_Success; 5706 } 5707 5708 bool haveEaten = false; 5709 bool isAdd = true; 5710 if (Tok.is(AsmToken::Plus)) { 5711 Parser.Lex(); // Eat the '+' token. 5712 haveEaten = true; 5713 } else if (Tok.is(AsmToken::Minus)) { 5714 Parser.Lex(); // Eat the '-' token. 5715 isAdd = false; 5716 haveEaten = true; 5717 } 5718 5719 Tok = Parser.getTok(); 5720 int Reg = tryParseRegister(); 5721 if (Reg == -1) { 5722 if (!haveEaten) 5723 return MatchOperand_NoMatch; 5724 Error(Tok.getLoc(), "register expected"); 5725 return MatchOperand_ParseFail; 5726 } 5727 5728 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5729 0, S, Tok.getEndLoc())); 5730 5731 return MatchOperand_Success; 5732 } 5733 5734 /// Convert parsed operands to MCInst. Needed here because this instruction 5735 /// only has two register operands, but multiplication is commutative so 5736 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5737 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5738 const OperandVector &Operands) { 5739 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5740 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5741 // If we have a three-operand form, make sure to set Rn to be the operand 5742 // that isn't the same as Rd. 5743 unsigned RegOp = 4; 5744 if (Operands.size() == 6 && 5745 ((ARMOperand &)*Operands[4]).getReg() == 5746 ((ARMOperand &)*Operands[3]).getReg()) 5747 RegOp = 5; 5748 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5749 Inst.addOperand(Inst.getOperand(0)); 5750 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5751 } 5752 5753 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5754 const OperandVector &Operands) { 5755 int CondOp = -1, ImmOp = -1; 5756 switch(Inst.getOpcode()) { 5757 case ARM::tB: 5758 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5759 5760 case ARM::t2B: 5761 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5762 5763 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5764 } 5765 // first decide whether or not the branch should be conditional 5766 // by looking at it's location relative to an IT block 5767 if(inITBlock()) { 5768 // inside an IT block we cannot have any conditional branches. any 5769 // such instructions needs to be converted to unconditional form 5770 switch(Inst.getOpcode()) { 5771 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5772 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5773 } 5774 } else { 5775 // outside IT blocks we can only have unconditional branches with AL 5776 // condition code or conditional branches with non-AL condition code 5777 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5778 switch(Inst.getOpcode()) { 5779 case ARM::tB: 5780 case ARM::tBcc: 5781 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5782 break; 5783 case ARM::t2B: 5784 case ARM::t2Bcc: 5785 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5786 break; 5787 } 5788 } 5789 5790 // now decide on encoding size based on branch target range 5791 switch(Inst.getOpcode()) { 5792 // classify tB as either t2B or t1B based on range of immediate operand 5793 case ARM::tB: { 5794 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5795 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5796 Inst.setOpcode(ARM::t2B); 5797 break; 5798 } 5799 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5800 case ARM::tBcc: { 5801 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5802 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5803 Inst.setOpcode(ARM::t2Bcc); 5804 break; 5805 } 5806 } 5807 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5808 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5809 } 5810 5811 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5812 MCInst &Inst, const OperandVector &Operands) { 5813 5814 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5815 assert(Operands.size() == 8); 5816 5817 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5818 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5819 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5820 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5821 // skip second copy of Qd in Operands[6] 5822 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5823 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5824 } 5825 5826 /// Parse an ARM memory expression, return false if successful else return true 5827 /// or an error. The first token must be a '[' when called. 5828 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5829 MCAsmParser &Parser = getParser(); 5830 SMLoc S, E; 5831 if (Parser.getTok().isNot(AsmToken::LBrac)) 5832 return TokError("Token is not a Left Bracket"); 5833 S = Parser.getTok().getLoc(); 5834 Parser.Lex(); // Eat left bracket token. 5835 5836 const AsmToken &BaseRegTok = Parser.getTok(); 5837 int BaseRegNum = tryParseRegister(); 5838 if (BaseRegNum == -1) 5839 return Error(BaseRegTok.getLoc(), "register expected"); 5840 5841 // The next token must either be a comma, a colon or a closing bracket. 5842 const AsmToken &Tok = Parser.getTok(); 5843 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5844 !Tok.is(AsmToken::RBrac)) 5845 return Error(Tok.getLoc(), "malformed memory operand"); 5846 5847 if (Tok.is(AsmToken::RBrac)) { 5848 E = Tok.getEndLoc(); 5849 Parser.Lex(); // Eat right bracket token. 5850 5851 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5852 ARM_AM::no_shift, 0, 0, false, 5853 S, E)); 5854 5855 // If there's a pre-indexing writeback marker, '!', just add it as a token 5856 // operand. It's rather odd, but syntactically valid. 5857 if (Parser.getTok().is(AsmToken::Exclaim)) { 5858 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5859 Parser.Lex(); // Eat the '!'. 5860 } 5861 5862 return false; 5863 } 5864 5865 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5866 "Lost colon or comma in memory operand?!"); 5867 if (Tok.is(AsmToken::Comma)) { 5868 Parser.Lex(); // Eat the comma. 5869 } 5870 5871 // If we have a ':', it's an alignment specifier. 5872 if (Parser.getTok().is(AsmToken::Colon)) { 5873 Parser.Lex(); // Eat the ':'. 5874 E = Parser.getTok().getLoc(); 5875 SMLoc AlignmentLoc = Tok.getLoc(); 5876 5877 const MCExpr *Expr; 5878 if (getParser().parseExpression(Expr)) 5879 return true; 5880 5881 // The expression has to be a constant. Memory references with relocations 5882 // don't come through here, as they use the <label> forms of the relevant 5883 // instructions. 5884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5885 if (!CE) 5886 return Error (E, "constant expression expected"); 5887 5888 unsigned Align = 0; 5889 switch (CE->getValue()) { 5890 default: 5891 return Error(E, 5892 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5893 case 16: Align = 2; break; 5894 case 32: Align = 4; break; 5895 case 64: Align = 8; break; 5896 case 128: Align = 16; break; 5897 case 256: Align = 32; break; 5898 } 5899 5900 // Now we should have the closing ']' 5901 if (Parser.getTok().isNot(AsmToken::RBrac)) 5902 return Error(Parser.getTok().getLoc(), "']' expected"); 5903 E = Parser.getTok().getEndLoc(); 5904 Parser.Lex(); // Eat right bracket token. 5905 5906 // Don't worry about range checking the value here. That's handled by 5907 // the is*() predicates. 5908 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5909 ARM_AM::no_shift, 0, Align, 5910 false, S, E, AlignmentLoc)); 5911 5912 // If there's a pre-indexing writeback marker, '!', just add it as a token 5913 // operand. 5914 if (Parser.getTok().is(AsmToken::Exclaim)) { 5915 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5916 Parser.Lex(); // Eat the '!'. 5917 } 5918 5919 return false; 5920 } 5921 5922 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5923 // register offset. Be friendly and also accept a plain integer or expression 5924 // (without a leading hash) for gas compatibility. 5925 if (Parser.getTok().is(AsmToken::Hash) || 5926 Parser.getTok().is(AsmToken::Dollar) || 5927 Parser.getTok().is(AsmToken::LParen) || 5928 Parser.getTok().is(AsmToken::Integer)) { 5929 if (Parser.getTok().is(AsmToken::Hash) || 5930 Parser.getTok().is(AsmToken::Dollar)) 5931 Parser.Lex(); // Eat '#' or '$' 5932 E = Parser.getTok().getLoc(); 5933 5934 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5935 const MCExpr *Offset, *AdjustedOffset; 5936 if (getParser().parseExpression(Offset)) 5937 return true; 5938 5939 if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) { 5940 // If the constant was #-0, represent it as 5941 // std::numeric_limits<int32_t>::min(). 5942 int32_t Val = CE->getValue(); 5943 if (isNegative && Val == 0) 5944 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5945 getContext()); 5946 // Don't worry about range checking the value here. That's handled by 5947 // the is*() predicates. 5948 AdjustedOffset = CE; 5949 } else 5950 AdjustedOffset = Offset; 5951 Operands.push_back(ARMOperand::CreateMem( 5952 BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E)); 5953 5954 // Now we should have the closing ']' 5955 if (Parser.getTok().isNot(AsmToken::RBrac)) 5956 return Error(Parser.getTok().getLoc(), "']' expected"); 5957 E = Parser.getTok().getEndLoc(); 5958 Parser.Lex(); // Eat right bracket token. 5959 5960 // If there's a pre-indexing writeback marker, '!', just add it as a token 5961 // operand. 5962 if (Parser.getTok().is(AsmToken::Exclaim)) { 5963 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5964 Parser.Lex(); // Eat the '!'. 5965 } 5966 5967 return false; 5968 } 5969 5970 // The register offset is optionally preceded by a '+' or '-' 5971 bool isNegative = false; 5972 if (Parser.getTok().is(AsmToken::Minus)) { 5973 isNegative = true; 5974 Parser.Lex(); // Eat the '-'. 5975 } else if (Parser.getTok().is(AsmToken::Plus)) { 5976 // Nothing to do. 5977 Parser.Lex(); // Eat the '+'. 5978 } 5979 5980 E = Parser.getTok().getLoc(); 5981 int OffsetRegNum = tryParseRegister(); 5982 if (OffsetRegNum == -1) 5983 return Error(E, "register expected"); 5984 5985 // If there's a shift operator, handle it. 5986 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5987 unsigned ShiftImm = 0; 5988 if (Parser.getTok().is(AsmToken::Comma)) { 5989 Parser.Lex(); // Eat the ','. 5990 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5991 return true; 5992 } 5993 5994 // Now we should have the closing ']' 5995 if (Parser.getTok().isNot(AsmToken::RBrac)) 5996 return Error(Parser.getTok().getLoc(), "']' expected"); 5997 E = Parser.getTok().getEndLoc(); 5998 Parser.Lex(); // Eat right bracket token. 5999 6000 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 6001 ShiftType, ShiftImm, 0, isNegative, 6002 S, E)); 6003 6004 // If there's a pre-indexing writeback marker, '!', just add it as a token 6005 // operand. 6006 if (Parser.getTok().is(AsmToken::Exclaim)) { 6007 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 6008 Parser.Lex(); // Eat the '!'. 6009 } 6010 6011 return false; 6012 } 6013 6014 /// parseMemRegOffsetShift - one of these two: 6015 /// ( lsl | lsr | asr | ror ) , # shift_amount 6016 /// rrx 6017 /// return true if it parses a shift otherwise it returns false. 6018 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 6019 unsigned &Amount) { 6020 MCAsmParser &Parser = getParser(); 6021 SMLoc Loc = Parser.getTok().getLoc(); 6022 const AsmToken &Tok = Parser.getTok(); 6023 if (Tok.isNot(AsmToken::Identifier)) 6024 return Error(Loc, "illegal shift operator"); 6025 StringRef ShiftName = Tok.getString(); 6026 if (ShiftName == "lsl" || ShiftName == "LSL" || 6027 ShiftName == "asl" || ShiftName == "ASL") 6028 St = ARM_AM::lsl; 6029 else if (ShiftName == "lsr" || ShiftName == "LSR") 6030 St = ARM_AM::lsr; 6031 else if (ShiftName == "asr" || ShiftName == "ASR") 6032 St = ARM_AM::asr; 6033 else if (ShiftName == "ror" || ShiftName == "ROR") 6034 St = ARM_AM::ror; 6035 else if (ShiftName == "rrx" || ShiftName == "RRX") 6036 St = ARM_AM::rrx; 6037 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 6038 St = ARM_AM::uxtw; 6039 else 6040 return Error(Loc, "illegal shift operator"); 6041 Parser.Lex(); // Eat shift type token. 6042 6043 // rrx stands alone. 6044 Amount = 0; 6045 if (St != ARM_AM::rrx) { 6046 Loc = Parser.getTok().getLoc(); 6047 // A '#' and a shift amount. 6048 const AsmToken &HashTok = Parser.getTok(); 6049 if (HashTok.isNot(AsmToken::Hash) && 6050 HashTok.isNot(AsmToken::Dollar)) 6051 return Error(HashTok.getLoc(), "'#' expected"); 6052 Parser.Lex(); // Eat hash token. 6053 6054 const MCExpr *Expr; 6055 if (getParser().parseExpression(Expr)) 6056 return true; 6057 // Range check the immediate. 6058 // lsl, ror: 0 <= imm <= 31 6059 // lsr, asr: 0 <= imm <= 32 6060 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 6061 if (!CE) 6062 return Error(Loc, "shift amount must be an immediate"); 6063 int64_t Imm = CE->getValue(); 6064 if (Imm < 0 || 6065 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 6066 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 6067 return Error(Loc, "immediate shift value out of range"); 6068 // If <ShiftTy> #0, turn it into a no_shift. 6069 if (Imm == 0) 6070 St = ARM_AM::lsl; 6071 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 6072 if (Imm == 32) 6073 Imm = 0; 6074 Amount = Imm; 6075 } 6076 6077 return false; 6078 } 6079 6080 /// parseFPImm - A floating point immediate expression operand. 6081 OperandMatchResultTy 6082 ARMAsmParser::parseFPImm(OperandVector &Operands) { 6083 MCAsmParser &Parser = getParser(); 6084 // Anything that can accept a floating point constant as an operand 6085 // needs to go through here, as the regular parseExpression is 6086 // integer only. 6087 // 6088 // This routine still creates a generic Immediate operand, containing 6089 // a bitcast of the 64-bit floating point value. The various operands 6090 // that accept floats can check whether the value is valid for them 6091 // via the standard is*() predicates. 6092 6093 SMLoc S = Parser.getTok().getLoc(); 6094 6095 if (Parser.getTok().isNot(AsmToken::Hash) && 6096 Parser.getTok().isNot(AsmToken::Dollar)) 6097 return MatchOperand_NoMatch; 6098 6099 // Disambiguate the VMOV forms that can accept an FP immediate. 6100 // vmov.f32 <sreg>, #imm 6101 // vmov.f64 <dreg>, #imm 6102 // vmov.f32 <dreg>, #imm @ vector f32x2 6103 // vmov.f32 <qreg>, #imm @ vector f32x4 6104 // 6105 // There are also the NEON VMOV instructions which expect an 6106 // integer constant. Make sure we don't try to parse an FPImm 6107 // for these: 6108 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6109 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6110 bool isVmovf = TyOp.isToken() && 6111 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6112 TyOp.getToken() == ".f16"); 6113 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6114 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6115 Mnemonic.getToken() == "fconsts"); 6116 if (!(isVmovf || isFconst)) 6117 return MatchOperand_NoMatch; 6118 6119 Parser.Lex(); // Eat '#' or '$'. 6120 6121 // Handle negation, as that still comes through as a separate token. 6122 bool isNegative = false; 6123 if (Parser.getTok().is(AsmToken::Minus)) { 6124 isNegative = true; 6125 Parser.Lex(); 6126 } 6127 const AsmToken &Tok = Parser.getTok(); 6128 SMLoc Loc = Tok.getLoc(); 6129 if (Tok.is(AsmToken::Real) && isVmovf) { 6130 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6131 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6132 // If we had a '-' in front, toggle the sign bit. 6133 IntVal ^= (uint64_t)isNegative << 31; 6134 Parser.Lex(); // Eat the token. 6135 Operands.push_back(ARMOperand::CreateImm( 6136 MCConstantExpr::create(IntVal, getContext()), 6137 S, Parser.getTok().getLoc())); 6138 return MatchOperand_Success; 6139 } 6140 // Also handle plain integers. Instructions which allow floating point 6141 // immediates also allow a raw encoded 8-bit value. 6142 if (Tok.is(AsmToken::Integer) && isFconst) { 6143 int64_t Val = Tok.getIntVal(); 6144 Parser.Lex(); // Eat the token. 6145 if (Val > 255 || Val < 0) { 6146 Error(Loc, "encoded floating point value out of range"); 6147 return MatchOperand_ParseFail; 6148 } 6149 float RealVal = ARM_AM::getFPImmFloat(Val); 6150 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6151 6152 Operands.push_back(ARMOperand::CreateImm( 6153 MCConstantExpr::create(Val, getContext()), S, 6154 Parser.getTok().getLoc())); 6155 return MatchOperand_Success; 6156 } 6157 6158 Error(Loc, "invalid floating point immediate"); 6159 return MatchOperand_ParseFail; 6160 } 6161 6162 /// Parse a arm instruction operand. For now this parses the operand regardless 6163 /// of the mnemonic. 6164 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6165 MCAsmParser &Parser = getParser(); 6166 SMLoc S, E; 6167 6168 // Check if the current operand has a custom associated parser, if so, try to 6169 // custom parse the operand, or fallback to the general approach. 6170 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6171 if (ResTy == MatchOperand_Success) 6172 return false; 6173 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6174 // there was a match, but an error occurred, in which case, just return that 6175 // the operand parsing failed. 6176 if (ResTy == MatchOperand_ParseFail) 6177 return true; 6178 6179 switch (getLexer().getKind()) { 6180 default: 6181 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6182 return true; 6183 case AsmToken::Identifier: { 6184 // If we've seen a branch mnemonic, the next operand must be a label. This 6185 // is true even if the label is a register name. So "br r1" means branch to 6186 // label "r1". 6187 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6188 if (!ExpectLabel) { 6189 if (!tryParseRegisterWithWriteBack(Operands)) 6190 return false; 6191 int Res = tryParseShiftRegister(Operands); 6192 if (Res == 0) // success 6193 return false; 6194 else if (Res == -1) // irrecoverable error 6195 return true; 6196 // If this is VMRS, check for the apsr_nzcv operand. 6197 if (Mnemonic == "vmrs" && 6198 Parser.getTok().getString().equals_insensitive("apsr_nzcv")) { 6199 S = Parser.getTok().getLoc(); 6200 Parser.Lex(); 6201 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6202 return false; 6203 } 6204 } 6205 6206 // Fall though for the Identifier case that is not a register or a 6207 // special name. 6208 LLVM_FALLTHROUGH; 6209 } 6210 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6211 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6212 case AsmToken::String: // quoted label names. 6213 case AsmToken::Dot: { // . as a branch target 6214 // This was not a register so parse other operands that start with an 6215 // identifier (like labels) as expressions and create them as immediates. 6216 const MCExpr *IdVal; 6217 S = Parser.getTok().getLoc(); 6218 if (getParser().parseExpression(IdVal)) 6219 return true; 6220 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6221 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6222 return false; 6223 } 6224 case AsmToken::LBrac: 6225 return parseMemory(Operands); 6226 case AsmToken::LCurly: 6227 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6228 case AsmToken::Dollar: 6229 case AsmToken::Hash: { 6230 // #42 -> immediate 6231 // $ 42 -> immediate 6232 // $foo -> symbol name 6233 // $42 -> symbol name 6234 S = Parser.getTok().getLoc(); 6235 6236 // Favor the interpretation of $-prefixed operands as symbol names. 6237 // Cases where immediates are explicitly expected are handled by their 6238 // specific ParseMethod implementations. 6239 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6240 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6241 (AdjacentToken.is(AsmToken::Identifier) || 6242 AdjacentToken.is(AsmToken::Integer)); 6243 if (!ExpectIdentifier) { 6244 // Token is not part of identifier. Drop leading $ or # before parsing 6245 // expression. 6246 Parser.Lex(); 6247 } 6248 6249 if (Parser.getTok().isNot(AsmToken::Colon)) { 6250 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6251 const MCExpr *ImmVal; 6252 if (getParser().parseExpression(ImmVal)) 6253 return true; 6254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6255 if (CE) { 6256 int32_t Val = CE->getValue(); 6257 if (IsNegative && Val == 0) 6258 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6259 getContext()); 6260 } 6261 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6262 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6263 6264 // There can be a trailing '!' on operands that we want as a separate 6265 // '!' Token operand. Handle that here. For example, the compatibility 6266 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6267 if (Parser.getTok().is(AsmToken::Exclaim)) { 6268 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6269 Parser.getTok().getLoc())); 6270 Parser.Lex(); // Eat exclaim token 6271 } 6272 return false; 6273 } 6274 // w/ a ':' after the '#', it's just like a plain ':'. 6275 LLVM_FALLTHROUGH; 6276 } 6277 case AsmToken::Colon: { 6278 S = Parser.getTok().getLoc(); 6279 // ":lower16:" and ":upper16:" expression prefixes 6280 // FIXME: Check it's an expression prefix, 6281 // e.g. (FOO - :lower16:BAR) isn't legal. 6282 ARMMCExpr::VariantKind RefKind; 6283 if (parsePrefix(RefKind)) 6284 return true; 6285 6286 const MCExpr *SubExprVal; 6287 if (getParser().parseExpression(SubExprVal)) 6288 return true; 6289 6290 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6291 getContext()); 6292 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6293 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6294 return false; 6295 } 6296 case AsmToken::Equal: { 6297 S = Parser.getTok().getLoc(); 6298 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6299 return Error(S, "unexpected token in operand"); 6300 Parser.Lex(); // Eat '=' 6301 const MCExpr *SubExprVal; 6302 if (getParser().parseExpression(SubExprVal)) 6303 return true; 6304 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6305 6306 // execute-only: we assume that assembly programmers know what they are 6307 // doing and allow literal pool creation here 6308 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6309 return false; 6310 } 6311 } 6312 } 6313 6314 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6315 // :lower16: and :upper16:. 6316 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6317 MCAsmParser &Parser = getParser(); 6318 RefKind = ARMMCExpr::VK_ARM_None; 6319 6320 // consume an optional '#' (GNU compatibility) 6321 if (getLexer().is(AsmToken::Hash)) 6322 Parser.Lex(); 6323 6324 // :lower16: and :upper16: modifiers 6325 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6326 Parser.Lex(); // Eat ':' 6327 6328 if (getLexer().isNot(AsmToken::Identifier)) { 6329 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6330 return true; 6331 } 6332 6333 enum { 6334 COFF = (1 << MCContext::IsCOFF), 6335 ELF = (1 << MCContext::IsELF), 6336 MACHO = (1 << MCContext::IsMachO), 6337 WASM = (1 << MCContext::IsWasm), 6338 }; 6339 static const struct PrefixEntry { 6340 const char *Spelling; 6341 ARMMCExpr::VariantKind VariantKind; 6342 uint8_t SupportedFormats; 6343 } PrefixEntries[] = { 6344 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6345 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6346 }; 6347 6348 StringRef IDVal = Parser.getTok().getIdentifier(); 6349 6350 const auto &Prefix = 6351 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) { 6352 return PE.Spelling == IDVal; 6353 }); 6354 if (Prefix == std::end(PrefixEntries)) { 6355 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6356 return true; 6357 } 6358 6359 uint8_t CurrentFormat; 6360 switch (getContext().getObjectFileType()) { 6361 case MCContext::IsMachO: 6362 CurrentFormat = MACHO; 6363 break; 6364 case MCContext::IsELF: 6365 CurrentFormat = ELF; 6366 break; 6367 case MCContext::IsCOFF: 6368 CurrentFormat = COFF; 6369 break; 6370 case MCContext::IsWasm: 6371 CurrentFormat = WASM; 6372 break; 6373 case MCContext::IsGOFF: 6374 case MCContext::IsXCOFF: 6375 llvm_unreachable("unexpected object format"); 6376 break; 6377 } 6378 6379 if (~Prefix->SupportedFormats & CurrentFormat) { 6380 Error(Parser.getTok().getLoc(), 6381 "cannot represent relocation in the current file format"); 6382 return true; 6383 } 6384 6385 RefKind = Prefix->VariantKind; 6386 Parser.Lex(); 6387 6388 if (getLexer().isNot(AsmToken::Colon)) { 6389 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6390 return true; 6391 } 6392 Parser.Lex(); // Eat the last ':' 6393 6394 return false; 6395 } 6396 6397 /// Given a mnemonic, split out possible predication code and carry 6398 /// setting letters to form a canonical mnemonic and flags. 6399 // 6400 // FIXME: Would be nice to autogen this. 6401 // FIXME: This is a bit of a maze of special cases. 6402 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6403 StringRef ExtraToken, 6404 unsigned &PredicationCode, 6405 unsigned &VPTPredicationCode, 6406 bool &CarrySetting, 6407 unsigned &ProcessorIMod, 6408 StringRef &ITMask) { 6409 PredicationCode = ARMCC::AL; 6410 VPTPredicationCode = ARMVCC::None; 6411 CarrySetting = false; 6412 ProcessorIMod = 0; 6413 6414 // Ignore some mnemonics we know aren't predicated forms. 6415 // 6416 // FIXME: Would be nice to autogen this. 6417 if ((Mnemonic == "movs" && isThumb()) || 6418 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6419 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6420 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6421 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6422 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6423 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6424 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6425 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6426 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6427 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6428 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6429 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6430 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6431 Mnemonic == "bxns" || Mnemonic == "blxns" || 6432 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6433 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6434 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6435 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6436 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6437 Mnemonic == "csel" || Mnemonic == "csinc" || 6438 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6439 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6440 Mnemonic == "csetm") 6441 return Mnemonic; 6442 6443 // First, split out any predication code. Ignore mnemonics we know aren't 6444 // predicated but do have a carry-set and so weren't caught above. 6445 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6446 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6447 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6448 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6449 !(hasMVE() && 6450 (Mnemonic == "vmine" || 6451 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6452 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6453 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6454 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6455 Mnemonic == "vmule" || Mnemonic == "vmult" || 6456 Mnemonic == "vrintne" || 6457 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6458 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6459 Mnemonic.startswith("vq")))) { 6460 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6461 if (CC != ~0U) { 6462 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6463 PredicationCode = CC; 6464 } 6465 } 6466 6467 // Next, determine if we have a carry setting bit. We explicitly ignore all 6468 // the instructions we know end in 's'. 6469 if (Mnemonic.endswith("s") && 6470 !(Mnemonic == "cps" || Mnemonic == "mls" || 6471 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6472 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6473 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6474 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6475 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6476 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6477 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6478 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6479 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6480 Mnemonic == "vmlas" || 6481 (Mnemonic == "movs" && isThumb()))) { 6482 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6483 CarrySetting = true; 6484 } 6485 6486 // The "cps" instruction can have a interrupt mode operand which is glued into 6487 // the mnemonic. Check if this is the case, split it and parse the imod op 6488 if (Mnemonic.startswith("cps")) { 6489 // Split out any imod code. 6490 unsigned IMod = 6491 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6492 .Case("ie", ARM_PROC::IE) 6493 .Case("id", ARM_PROC::ID) 6494 .Default(~0U); 6495 if (IMod != ~0U) { 6496 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6497 ProcessorIMod = IMod; 6498 } 6499 } 6500 6501 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6502 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6503 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6504 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6505 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6506 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6507 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6508 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6509 if (CC != ~0U) { 6510 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6511 VPTPredicationCode = CC; 6512 } 6513 return Mnemonic; 6514 } 6515 6516 // The "it" instruction has the condition mask on the end of the mnemonic. 6517 if (Mnemonic.startswith("it")) { 6518 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6519 Mnemonic = Mnemonic.slice(0, 2); 6520 } 6521 6522 if (Mnemonic.startswith("vpst")) { 6523 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6524 Mnemonic = Mnemonic.slice(0, 4); 6525 } 6526 else if (Mnemonic.startswith("vpt")) { 6527 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6528 Mnemonic = Mnemonic.slice(0, 3); 6529 } 6530 6531 return Mnemonic; 6532 } 6533 6534 /// Given a canonical mnemonic, determine if the instruction ever allows 6535 /// inclusion of carry set or predication code operands. 6536 // 6537 // FIXME: It would be nice to autogen this. 6538 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6539 StringRef ExtraToken, 6540 StringRef FullInst, 6541 bool &CanAcceptCarrySet, 6542 bool &CanAcceptPredicationCode, 6543 bool &CanAcceptVPTPredicationCode) { 6544 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6545 6546 CanAcceptCarrySet = 6547 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6548 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6549 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6550 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6551 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6552 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6553 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6554 (!isThumb() && 6555 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6556 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6557 6558 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6559 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6560 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6561 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6562 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6563 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6564 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6565 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6566 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6567 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6568 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6569 Mnemonic == "vmovx" || Mnemonic == "vins" || 6570 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6571 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6572 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6573 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6574 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6575 Mnemonic == "sb" || Mnemonic == "ssbb" || 6576 Mnemonic == "pssbb" || Mnemonic == "vsmmla" || 6577 Mnemonic == "vummla" || Mnemonic == "vusmmla" || 6578 Mnemonic == "vusdot" || Mnemonic == "vsudot" || 6579 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6580 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6581 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6582 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6583 Mnemonic == "cset" || Mnemonic == "csetm" || 6584 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6585 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6586 !MS.isITPredicableCDEInstr(Mnemonic)) || 6587 (hasMVE() && 6588 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6589 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6590 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6591 Mnemonic.startswith("letp")))) { 6592 // These mnemonics are never predicable 6593 CanAcceptPredicationCode = false; 6594 } else if (!isThumb()) { 6595 // Some instructions are only predicable in Thumb mode 6596 CanAcceptPredicationCode = 6597 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6598 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6599 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6600 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6601 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6602 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6603 Mnemonic != "tsb" && 6604 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6605 } else if (isThumbOne()) { 6606 if (hasV6MOps()) 6607 CanAcceptPredicationCode = Mnemonic != "movs"; 6608 else 6609 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6610 } else 6611 CanAcceptPredicationCode = true; 6612 } 6613 6614 // Some Thumb instructions have two operand forms that are not 6615 // available as three operand, convert to two operand form if possible. 6616 // 6617 // FIXME: We would really like to be able to tablegen'erate this. 6618 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6619 bool CarrySetting, 6620 OperandVector &Operands) { 6621 if (Operands.size() != 6) 6622 return; 6623 6624 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6625 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6626 if (!Op3.isReg() || !Op4.isReg()) 6627 return; 6628 6629 auto Op3Reg = Op3.getReg(); 6630 auto Op4Reg = Op4.getReg(); 6631 6632 // For most Thumb2 cases we just generate the 3 operand form and reduce 6633 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6634 // won't accept SP or PC so we do the transformation here taking care 6635 // with immediate range in the 'add sp, sp #imm' case. 6636 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6637 if (isThumbTwo()) { 6638 if (Mnemonic != "add") 6639 return; 6640 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6641 (Op5.isReg() && Op5.getReg() == ARM::PC); 6642 if (!TryTransform) { 6643 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6644 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6645 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6646 Op5.isImm() && !Op5.isImm0_508s4()); 6647 } 6648 if (!TryTransform) 6649 return; 6650 } else if (!isThumbOne()) 6651 return; 6652 6653 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6654 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6655 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6656 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6657 return; 6658 6659 // If first 2 operands of a 3 operand instruction are the same 6660 // then transform to 2 operand version of the same instruction 6661 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6662 bool Transform = Op3Reg == Op4Reg; 6663 6664 // For communtative operations, we might be able to transform if we swap 6665 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6666 // as tADDrsp. 6667 const ARMOperand *LastOp = &Op5; 6668 bool Swap = false; 6669 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6670 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6671 Mnemonic == "and" || Mnemonic == "eor" || 6672 Mnemonic == "adc" || Mnemonic == "orr")) { 6673 Swap = true; 6674 LastOp = &Op4; 6675 Transform = true; 6676 } 6677 6678 // If both registers are the same then remove one of them from 6679 // the operand list, with certain exceptions. 6680 if (Transform) { 6681 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6682 // 2 operand forms don't exist. 6683 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6684 LastOp->isReg()) 6685 Transform = false; 6686 6687 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6688 // 3-bits because the ARMARM says not to. 6689 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6690 Transform = false; 6691 } 6692 6693 if (Transform) { 6694 if (Swap) 6695 std::swap(Op4, Op5); 6696 Operands.erase(Operands.begin() + 3); 6697 } 6698 } 6699 6700 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6701 OperandVector &Operands) { 6702 // FIXME: This is all horribly hacky. We really need a better way to deal 6703 // with optional operands like this in the matcher table. 6704 6705 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6706 // another does not. Specifically, the MOVW instruction does not. So we 6707 // special case it here and remove the defaulted (non-setting) cc_out 6708 // operand if that's the instruction we're trying to match. 6709 // 6710 // We do this as post-processing of the explicit operands rather than just 6711 // conditionally adding the cc_out in the first place because we need 6712 // to check the type of the parsed immediate operand. 6713 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6714 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6715 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6716 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6717 return true; 6718 6719 // Register-register 'add' for thumb does not have a cc_out operand 6720 // when there are only two register operands. 6721 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6722 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6723 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6724 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6725 return true; 6726 // Register-register 'add' for thumb does not have a cc_out operand 6727 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6728 // have to check the immediate range here since Thumb2 has a variant 6729 // that can handle a different range and has a cc_out operand. 6730 if (((isThumb() && Mnemonic == "add") || 6731 (isThumbTwo() && Mnemonic == "sub")) && 6732 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6733 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6734 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6735 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6736 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6737 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6738 return true; 6739 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6740 // imm0_4095 variant. That's the least-preferred variant when 6741 // selecting via the generic "add" mnemonic, so to know that we 6742 // should remove the cc_out operand, we have to explicitly check that 6743 // it's not one of the other variants. Ugh. 6744 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6745 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6746 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6747 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6748 // Nest conditions rather than one big 'if' statement for readability. 6749 // 6750 // If both registers are low, we're in an IT block, and the immediate is 6751 // in range, we should use encoding T1 instead, which has a cc_out. 6752 if (inITBlock() && 6753 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6754 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6755 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6756 return false; 6757 // Check against T3. If the second register is the PC, this is an 6758 // alternate form of ADR, which uses encoding T4, so check for that too. 6759 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6760 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6761 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6762 return false; 6763 6764 // Otherwise, we use encoding T4, which does not have a cc_out 6765 // operand. 6766 return true; 6767 } 6768 6769 // The thumb2 multiply instruction doesn't have a CCOut register, so 6770 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6771 // use the 16-bit encoding or not. 6772 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6773 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6774 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6775 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6776 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6777 // If the registers aren't low regs, the destination reg isn't the 6778 // same as one of the source regs, or the cc_out operand is zero 6779 // outside of an IT block, we have to use the 32-bit encoding, so 6780 // remove the cc_out operand. 6781 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6782 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6783 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6784 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6785 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6786 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6787 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6788 return true; 6789 6790 // Also check the 'mul' syntax variant that doesn't specify an explicit 6791 // destination register. 6792 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6793 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6794 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6795 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6796 // If the registers aren't low regs or the cc_out operand is zero 6797 // outside of an IT block, we have to use the 32-bit encoding, so 6798 // remove the cc_out operand. 6799 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6800 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6801 !inITBlock())) 6802 return true; 6803 6804 // Register-register 'add/sub' for thumb does not have a cc_out operand 6805 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6806 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6807 // right, this will result in better diagnostics (which operand is off) 6808 // anyway. 6809 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6810 (Operands.size() == 5 || Operands.size() == 6) && 6811 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6812 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6813 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6814 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6815 (Operands.size() == 6 && 6816 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6817 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6818 return (!(isThumbTwo() && 6819 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6820 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6821 } 6822 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6823 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6824 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6825 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6826 (Operands.size() == 5) && 6827 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6828 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6829 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6830 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6831 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6832 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6833 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6834 return false; // add.w / sub.w 6835 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6836 const int64_t Value = CE->getValue(); 6837 // Thumb1 imm8 sub / add 6838 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6839 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6840 return false; 6841 return true; // Thumb2 T4 addw / subw 6842 } 6843 } 6844 return false; 6845 } 6846 6847 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6848 OperandVector &Operands) { 6849 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6850 unsigned RegIdx = 3; 6851 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6852 Mnemonic == "vrintr") && 6853 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6854 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6855 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6856 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6857 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6858 RegIdx = 4; 6859 6860 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6861 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6862 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6863 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6864 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6865 return true; 6866 } 6867 return false; 6868 } 6869 6870 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6871 OperandVector &Operands) { 6872 if (!hasMVE() || Operands.size() < 3) 6873 return true; 6874 6875 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6876 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6877 return true; 6878 6879 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6880 return false; 6881 6882 if (Mnemonic.startswith("vmov") && 6883 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6884 Mnemonic.startswith("vmovx"))) { 6885 for (auto &Operand : Operands) { 6886 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6887 ((*Operand).isReg() && 6888 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6889 (*Operand).getReg()) || 6890 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6891 (*Operand).getReg())))) { 6892 return true; 6893 } 6894 } 6895 return false; 6896 } else { 6897 for (auto &Operand : Operands) { 6898 // We check the larger class QPR instead of just the legal class 6899 // MQPR, to more accurately report errors when using Q registers 6900 // outside of the allowed range. 6901 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6902 (Operand->isReg() && 6903 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6904 Operand->getReg())))) 6905 return false; 6906 } 6907 return true; 6908 } 6909 } 6910 6911 static bool isDataTypeToken(StringRef Tok) { 6912 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6913 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6914 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6915 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6916 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6917 Tok == ".f" || Tok == ".d"; 6918 } 6919 6920 // FIXME: This bit should probably be handled via an explicit match class 6921 // in the .td files that matches the suffix instead of having it be 6922 // a literal string token the way it is now. 6923 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6924 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6925 } 6926 6927 static void applyMnemonicAliases(StringRef &Mnemonic, 6928 const FeatureBitset &Features, 6929 unsigned VariantID); 6930 6931 // The GNU assembler has aliases of ldrd and strd with the second register 6932 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6933 // 6934 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6935 // the assembly parser could then generate confusing diagnostics refering to 6936 // it. If we do find anything that prevents us from doing the transformation we 6937 // bail out, and let the assembly parser report an error on the instruction as 6938 // it is written. 6939 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6940 OperandVector &Operands) { 6941 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6942 return; 6943 if (Operands.size() < 4) 6944 return; 6945 6946 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6947 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6948 6949 if (!Op2.isReg()) 6950 return; 6951 if (!Op3.isGPRMem()) 6952 return; 6953 6954 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6955 if (!GPR.contains(Op2.getReg())) 6956 return; 6957 6958 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6959 if (!isThumb() && (RtEncoding & 1)) { 6960 // In ARM mode, the registers must be from an aligned pair, this 6961 // restriction does not apply in Thumb mode. 6962 return; 6963 } 6964 if (Op2.getReg() == ARM::PC) 6965 return; 6966 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6967 if (!PairedReg || PairedReg == ARM::PC || 6968 (PairedReg == ARM::SP && !hasV8Ops())) 6969 return; 6970 6971 Operands.insert( 6972 Operands.begin() + 3, 6973 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6974 } 6975 6976 // Dual-register instruction have the following syntax: 6977 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6978 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6979 // operand. If the conversion fails an error is diagnosed, and the function 6980 // returns true. 6981 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6982 OperandVector &Operands) { 6983 assert(MS.isCDEDualRegInstr(Mnemonic)); 6984 bool isPredicable = 6985 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6986 size_t NumPredOps = isPredicable ? 1 : 0; 6987 6988 if (Operands.size() <= 3 + NumPredOps) 6989 return false; 6990 6991 StringRef Op2Diag( 6992 "operand must be an even-numbered register in the range [r0, r10]"); 6993 6994 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 6995 if (!Op2.isReg()) 6996 return Error(Op2.getStartLoc(), Op2Diag); 6997 6998 unsigned RNext; 6999 unsigned RPair; 7000 switch (Op2.getReg()) { 7001 default: 7002 return Error(Op2.getStartLoc(), Op2Diag); 7003 case ARM::R0: 7004 RNext = ARM::R1; 7005 RPair = ARM::R0_R1; 7006 break; 7007 case ARM::R2: 7008 RNext = ARM::R3; 7009 RPair = ARM::R2_R3; 7010 break; 7011 case ARM::R4: 7012 RNext = ARM::R5; 7013 RPair = ARM::R4_R5; 7014 break; 7015 case ARM::R6: 7016 RNext = ARM::R7; 7017 RPair = ARM::R6_R7; 7018 break; 7019 case ARM::R8: 7020 RNext = ARM::R9; 7021 RPair = ARM::R8_R9; 7022 break; 7023 case ARM::R10: 7024 RNext = ARM::R11; 7025 RPair = ARM::R10_R11; 7026 break; 7027 } 7028 7029 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 7030 if (!Op3.isReg() || Op3.getReg() != RNext) 7031 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 7032 7033 Operands.erase(Operands.begin() + 3 + NumPredOps); 7034 Operands[2 + NumPredOps] = 7035 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 7036 return false; 7037 } 7038 7039 /// Parse an arm instruction mnemonic followed by its operands. 7040 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 7041 SMLoc NameLoc, OperandVector &Operands) { 7042 MCAsmParser &Parser = getParser(); 7043 7044 // Apply mnemonic aliases before doing anything else, as the destination 7045 // mnemonic may include suffices and we want to handle them normally. 7046 // The generic tblgen'erated code does this later, at the start of 7047 // MatchInstructionImpl(), but that's too late for aliases that include 7048 // any sort of suffix. 7049 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 7050 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 7051 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 7052 7053 // First check for the ARM-specific .req directive. 7054 if (Parser.getTok().is(AsmToken::Identifier) && 7055 Parser.getTok().getIdentifier().lower() == ".req") { 7056 parseDirectiveReq(Name, NameLoc); 7057 // We always return 'error' for this, as we're done with this 7058 // statement and don't need to match the 'instruction." 7059 return true; 7060 } 7061 7062 // Create the leading tokens for the mnemonic, split by '.' characters. 7063 size_t Start = 0, Next = Name.find('.'); 7064 StringRef Mnemonic = Name.slice(Start, Next); 7065 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 7066 7067 // Split out the predication code and carry setting flag from the mnemonic. 7068 unsigned PredicationCode; 7069 unsigned VPTPredicationCode; 7070 unsigned ProcessorIMod; 7071 bool CarrySetting; 7072 StringRef ITMask; 7073 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 7074 CarrySetting, ProcessorIMod, ITMask); 7075 7076 // In Thumb1, only the branch (B) instruction can be predicated. 7077 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 7078 return Error(NameLoc, "conditional execution not supported in Thumb1"); 7079 } 7080 7081 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 7082 7083 // Handle the mask for IT and VPT instructions. In ARMOperand and 7084 // MCOperand, this is stored in a format independent of the 7085 // condition code: the lowest set bit indicates the end of the 7086 // encoding, and above that, a 1 bit indicates 'else', and an 0 7087 // indicates 'then'. E.g. 7088 // IT -> 1000 7089 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 7090 // ITxy -> xy10 (e.g. ITET -> 1010) 7091 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 7092 // Note: See the ARM::PredBlockMask enum in 7093 // /lib/Target/ARM/Utils/ARMBaseInfo.h 7094 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 7095 Mnemonic.startswith("vpst")) { 7096 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 7097 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 7098 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 7099 if (ITMask.size() > 3) { 7100 if (Mnemonic == "it") 7101 return Error(Loc, "too many conditions on IT instruction"); 7102 return Error(Loc, "too many conditions on VPT instruction"); 7103 } 7104 unsigned Mask = 8; 7105 for (unsigned i = ITMask.size(); i != 0; --i) { 7106 char pos = ITMask[i - 1]; 7107 if (pos != 't' && pos != 'e') { 7108 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 7109 } 7110 Mask >>= 1; 7111 if (ITMask[i - 1] == 'e') 7112 Mask |= 8; 7113 } 7114 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7115 } 7116 7117 // FIXME: This is all a pretty gross hack. We should automatically handle 7118 // optional operands like this via tblgen. 7119 7120 // Next, add the CCOut and ConditionCode operands, if needed. 7121 // 7122 // For mnemonics which can ever incorporate a carry setting bit or predication 7123 // code, our matching model involves us always generating CCOut and 7124 // ConditionCode operands to match the mnemonic "as written" and then we let 7125 // the matcher deal with finding the right instruction or generating an 7126 // appropriate error. 7127 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7128 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7129 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7130 7131 // If we had a carry-set on an instruction that can't do that, issue an 7132 // error. 7133 if (!CanAcceptCarrySet && CarrySetting) { 7134 return Error(NameLoc, "instruction '" + Mnemonic + 7135 "' can not set flags, but 's' suffix specified"); 7136 } 7137 // If we had a predication code on an instruction that can't do that, issue an 7138 // error. 7139 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7140 return Error(NameLoc, "instruction '" + Mnemonic + 7141 "' is not predicable, but condition code specified"); 7142 } 7143 7144 // If we had a VPT predication code on an instruction that can't do that, issue an 7145 // error. 7146 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7147 return Error(NameLoc, "instruction '" + Mnemonic + 7148 "' is not VPT predicable, but VPT code T/E is specified"); 7149 } 7150 7151 // Add the carry setting operand, if necessary. 7152 if (CanAcceptCarrySet) { 7153 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7154 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7155 Loc)); 7156 } 7157 7158 // Add the predication code operand, if necessary. 7159 if (CanAcceptPredicationCode) { 7160 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7161 CarrySetting); 7162 Operands.push_back(ARMOperand::CreateCondCode( 7163 ARMCC::CondCodes(PredicationCode), Loc)); 7164 } 7165 7166 // Add the VPT predication code operand, if necessary. 7167 // FIXME: We don't add them for the instructions filtered below as these can 7168 // have custom operands which need special parsing. This parsing requires 7169 // the operand to be in the same place in the OperandVector as their 7170 // definition in tblgen. Since these instructions may also have the 7171 // scalar predication operand we do not add the vector one and leave until 7172 // now to fix it up. 7173 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7174 !Mnemonic.startswith("vcmp") && 7175 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7176 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7177 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7178 CarrySetting); 7179 Operands.push_back(ARMOperand::CreateVPTPred( 7180 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7181 } 7182 7183 // Add the processor imod operand, if necessary. 7184 if (ProcessorIMod) { 7185 Operands.push_back(ARMOperand::CreateImm( 7186 MCConstantExpr::create(ProcessorIMod, getContext()), 7187 NameLoc, NameLoc)); 7188 } else if (Mnemonic == "cps" && isMClass()) { 7189 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7190 } 7191 7192 // Add the remaining tokens in the mnemonic. 7193 while (Next != StringRef::npos) { 7194 Start = Next; 7195 Next = Name.find('.', Start + 1); 7196 ExtraToken = Name.slice(Start, Next); 7197 7198 // Some NEON instructions have an optional datatype suffix that is 7199 // completely ignored. Check for that. 7200 if (isDataTypeToken(ExtraToken) && 7201 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7202 continue; 7203 7204 // For for ARM mode generate an error if the .n qualifier is used. 7205 if (ExtraToken == ".n" && !isThumb()) { 7206 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7207 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7208 "arm mode"); 7209 } 7210 7211 // The .n qualifier is always discarded as that is what the tables 7212 // and matcher expect. In ARM mode the .w qualifier has no effect, 7213 // so discard it to avoid errors that can be caused by the matcher. 7214 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7215 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7216 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7217 } 7218 } 7219 7220 // Read the remaining operands. 7221 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7222 // Read the first operand. 7223 if (parseOperand(Operands, Mnemonic)) { 7224 return true; 7225 } 7226 7227 while (parseOptionalToken(AsmToken::Comma)) { 7228 // Parse and remember the operand. 7229 if (parseOperand(Operands, Mnemonic)) { 7230 return true; 7231 } 7232 } 7233 } 7234 7235 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7236 return true; 7237 7238 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7239 7240 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7241 // Dual-register instructions use even-odd register pairs as their 7242 // destination operand, in assembly such pair is spelled as two 7243 // consecutive registers, without any special syntax. ConvertDualRegOperand 7244 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7245 // It returns true, if an error message has been emitted. If the function 7246 // returns false, the function either succeeded or an error (e.g. missing 7247 // operand) will be diagnosed elsewhere. 7248 if (MS.isCDEDualRegInstr(Mnemonic)) { 7249 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7250 if (GotError) 7251 return GotError; 7252 } 7253 } 7254 7255 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7256 // do and don't have a cc_out optional-def operand. With some spot-checks 7257 // of the operand list, we can figure out which variant we're trying to 7258 // parse and adjust accordingly before actually matching. We shouldn't ever 7259 // try to remove a cc_out operand that was explicitly set on the 7260 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7261 // table driven matcher doesn't fit well with the ARM instruction set. 7262 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7263 Operands.erase(Operands.begin() + 1); 7264 7265 // Some instructions have the same mnemonic, but don't always 7266 // have a predicate. Distinguish them here and delete the 7267 // appropriate predicate if needed. This could be either the scalar 7268 // predication code or the vector predication code. 7269 if (PredicationCode == ARMCC::AL && 7270 shouldOmitPredicateOperand(Mnemonic, Operands)) 7271 Operands.erase(Operands.begin() + 1); 7272 7273 7274 if (hasMVE()) { 7275 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7276 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7277 // Very nasty hack to deal with the vector predicated variant of vmovlt 7278 // the scalar predicated vmov with condition 'lt'. We can not tell them 7279 // apart until we have parsed their operands. 7280 Operands.erase(Operands.begin() + 1); 7281 Operands.erase(Operands.begin()); 7282 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7283 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7284 Mnemonic.size() - 1 + CarrySetting); 7285 Operands.insert(Operands.begin(), 7286 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7287 Operands.insert(Operands.begin(), 7288 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7289 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7290 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7291 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7292 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7293 // can only distinguish between the two after we have parsed their 7294 // operands. 7295 Operands.erase(Operands.begin() + 1); 7296 Operands.erase(Operands.begin()); 7297 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7298 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7299 Mnemonic.size() - 1 + CarrySetting); 7300 Operands.insert(Operands.begin(), 7301 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7302 Operands.insert(Operands.begin(), 7303 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7304 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7305 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7306 // Another hack, this time to distinguish between scalar predicated vmul 7307 // with 'lt' predication code and the vector instruction vmullt with 7308 // vector predication code "none" 7309 Operands.erase(Operands.begin() + 1); 7310 Operands.erase(Operands.begin()); 7311 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7312 Operands.insert(Operands.begin(), 7313 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7314 } 7315 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7316 // predication code, since these may contain operands that require 7317 // special parsing. So now we have to see if they require vector 7318 // predication and replace the scalar one with the vector predication 7319 // operand if that is the case. 7320 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7321 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7322 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7323 !Mnemonic.startswith("vcvtm"))) { 7324 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7325 // We could not split the vector predicate off vcvt because it might 7326 // have been the scalar vcvtt instruction. Now we know its a vector 7327 // instruction, we still need to check whether its the vector 7328 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7329 // distinguish the two based on the suffixes, if it is any of 7330 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7331 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7332 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7333 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7334 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7335 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7336 Operands.erase(Operands.begin()); 7337 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7338 VPTPredicationCode = ARMVCC::Then; 7339 7340 Mnemonic = Mnemonic.substr(0, 4); 7341 Operands.insert(Operands.begin(), 7342 ARMOperand::CreateToken(Mnemonic, MLoc)); 7343 } 7344 } 7345 Operands.erase(Operands.begin() + 1); 7346 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7347 Mnemonic.size() + CarrySetting); 7348 Operands.insert(Operands.begin() + 1, 7349 ARMOperand::CreateVPTPred( 7350 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7351 } 7352 } else if (CanAcceptVPTPredicationCode) { 7353 // For all other instructions, make sure only one of the two 7354 // predication operands is left behind, depending on whether we should 7355 // use the vector predication. 7356 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7357 if (CanAcceptPredicationCode) 7358 Operands.erase(Operands.begin() + 2); 7359 else 7360 Operands.erase(Operands.begin() + 1); 7361 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7362 Operands.erase(Operands.begin() + 1); 7363 } 7364 } 7365 } 7366 7367 if (VPTPredicationCode != ARMVCC::None) { 7368 bool usedVPTPredicationCode = false; 7369 for (unsigned I = 1; I < Operands.size(); ++I) 7370 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7371 usedVPTPredicationCode = true; 7372 if (!usedVPTPredicationCode) { 7373 // If we have a VPT predication code and we haven't just turned it 7374 // into an operand, then it was a mistake for splitMnemonic to 7375 // separate it from the rest of the mnemonic in the first place, 7376 // and this may lead to wrong disassembly (e.g. scalar floating 7377 // point VCMPE is actually a different instruction from VCMP, so 7378 // we mustn't treat them the same). In that situation, glue it 7379 // back on. 7380 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7381 Operands.erase(Operands.begin()); 7382 Operands.insert(Operands.begin(), 7383 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7384 } 7385 } 7386 7387 // ARM mode 'blx' need special handling, as the register operand version 7388 // is predicable, but the label operand version is not. So, we can't rely 7389 // on the Mnemonic based checking to correctly figure out when to put 7390 // a k_CondCode operand in the list. If we're trying to match the label 7391 // version, remove the k_CondCode operand here. 7392 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7393 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7394 Operands.erase(Operands.begin() + 1); 7395 7396 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7397 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7398 // a single GPRPair reg operand is used in the .td file to replace the two 7399 // GPRs. However, when parsing from asm, the two GRPs cannot be 7400 // automatically 7401 // expressed as a GPRPair, so we have to manually merge them. 7402 // FIXME: We would really like to be able to tablegen'erate this. 7403 if (!isThumb() && Operands.size() > 4 && 7404 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7405 Mnemonic == "stlexd")) { 7406 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7407 unsigned Idx = isLoad ? 2 : 3; 7408 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7409 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7410 7411 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7412 // Adjust only if Op1 and Op2 are GPRs. 7413 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7414 MRC.contains(Op2.getReg())) { 7415 unsigned Reg1 = Op1.getReg(); 7416 unsigned Reg2 = Op2.getReg(); 7417 unsigned Rt = MRI->getEncodingValue(Reg1); 7418 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7419 7420 // Rt2 must be Rt + 1 and Rt must be even. 7421 if (Rt + 1 != Rt2 || (Rt & 1)) { 7422 return Error(Op2.getStartLoc(), 7423 isLoad ? "destination operands must be sequential" 7424 : "source operands must be sequential"); 7425 } 7426 unsigned NewReg = MRI->getMatchingSuperReg( 7427 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7428 Operands[Idx] = 7429 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7430 Operands.erase(Operands.begin() + Idx + 1); 7431 } 7432 } 7433 7434 // GNU Assembler extension (compatibility). 7435 fixupGNULDRDAlias(Mnemonic, Operands); 7436 7437 // FIXME: As said above, this is all a pretty gross hack. This instruction 7438 // does not fit with other "subs" and tblgen. 7439 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7440 // so the Mnemonic is the original name "subs" and delete the predicate 7441 // operand so it will match the table entry. 7442 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7443 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7444 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7445 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7446 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7447 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7448 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7449 Operands.erase(Operands.begin() + 1); 7450 } 7451 return false; 7452 } 7453 7454 // Validate context-sensitive operand constraints. 7455 7456 // return 'true' if register list contains non-low GPR registers, 7457 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7458 // 'containsReg' to true. 7459 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7460 unsigned Reg, unsigned HiReg, 7461 bool &containsReg) { 7462 containsReg = false; 7463 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7464 unsigned OpReg = Inst.getOperand(i).getReg(); 7465 if (OpReg == Reg) 7466 containsReg = true; 7467 // Anything other than a low register isn't legal here. 7468 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7469 return true; 7470 } 7471 return false; 7472 } 7473 7474 // Check if the specified regisgter is in the register list of the inst, 7475 // starting at the indicated operand number. 7476 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7477 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7478 unsigned OpReg = Inst.getOperand(i).getReg(); 7479 if (OpReg == Reg) 7480 return true; 7481 } 7482 return false; 7483 } 7484 7485 // Return true if instruction has the interesting property of being 7486 // allowed in IT blocks, but not being predicable. 7487 static bool instIsBreakpoint(const MCInst &Inst) { 7488 return Inst.getOpcode() == ARM::tBKPT || 7489 Inst.getOpcode() == ARM::BKPT || 7490 Inst.getOpcode() == ARM::tHLT || 7491 Inst.getOpcode() == ARM::HLT; 7492 } 7493 7494 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7495 const OperandVector &Operands, 7496 unsigned ListNo, bool IsARPop) { 7497 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7498 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7499 7500 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7501 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7502 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7503 7504 if (!IsARPop && ListContainsSP) 7505 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7506 "SP may not be in the register list"); 7507 else if (ListContainsPC && ListContainsLR) 7508 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7509 "PC and LR may not be in the register list simultaneously"); 7510 return false; 7511 } 7512 7513 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7514 const OperandVector &Operands, 7515 unsigned ListNo) { 7516 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7517 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7518 7519 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7520 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7521 7522 if (ListContainsSP && ListContainsPC) 7523 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7524 "SP and PC may not be in the register list"); 7525 else if (ListContainsSP) 7526 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7527 "SP may not be in the register list"); 7528 else if (ListContainsPC) 7529 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7530 "PC may not be in the register list"); 7531 return false; 7532 } 7533 7534 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7535 const OperandVector &Operands, 7536 bool Load, bool ARMMode, bool Writeback) { 7537 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7538 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7539 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7540 7541 if (ARMMode) { 7542 // Rt can't be R14. 7543 if (Rt == 14) 7544 return Error(Operands[3]->getStartLoc(), 7545 "Rt can't be R14"); 7546 7547 // Rt must be even-numbered. 7548 if ((Rt & 1) == 1) 7549 return Error(Operands[3]->getStartLoc(), 7550 "Rt must be even-numbered"); 7551 7552 // Rt2 must be Rt + 1. 7553 if (Rt2 != Rt + 1) { 7554 if (Load) 7555 return Error(Operands[3]->getStartLoc(), 7556 "destination operands must be sequential"); 7557 else 7558 return Error(Operands[3]->getStartLoc(), 7559 "source operands must be sequential"); 7560 } 7561 7562 // FIXME: Diagnose m == 15 7563 // FIXME: Diagnose ldrd with m == t || m == t2. 7564 } 7565 7566 if (!ARMMode && Load) { 7567 if (Rt2 == Rt) 7568 return Error(Operands[3]->getStartLoc(), 7569 "destination operands can't be identical"); 7570 } 7571 7572 if (Writeback) { 7573 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7574 7575 if (Rn == Rt || Rn == Rt2) { 7576 if (Load) 7577 return Error(Operands[3]->getStartLoc(), 7578 "base register needs to be different from destination " 7579 "registers"); 7580 else 7581 return Error(Operands[3]->getStartLoc(), 7582 "source register and base register can't be identical"); 7583 } 7584 7585 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7586 // (Except the immediate form of ldrd?) 7587 } 7588 7589 return false; 7590 } 7591 7592 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7593 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7594 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7595 return i; 7596 } 7597 return -1; 7598 } 7599 7600 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7601 return findFirstVectorPredOperandIdx(MCID) != -1; 7602 } 7603 7604 // FIXME: We would really like to be able to tablegen'erate this. 7605 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7606 const OperandVector &Operands) { 7607 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7608 SMLoc Loc = Operands[0]->getStartLoc(); 7609 7610 // Check the IT block state first. 7611 // NOTE: BKPT and HLT instructions have the interesting property of being 7612 // allowed in IT blocks, but not being predicable. They just always execute. 7613 if (inITBlock() && !instIsBreakpoint(Inst)) { 7614 // The instruction must be predicable. 7615 if (!MCID.isPredicable()) 7616 return Error(Loc, "instructions in IT block must be predicable"); 7617 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7618 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7619 if (Cond != currentITCond()) { 7620 // Find the condition code Operand to get its SMLoc information. 7621 SMLoc CondLoc; 7622 for (unsigned I = 1; I < Operands.size(); ++I) 7623 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7624 CondLoc = Operands[I]->getStartLoc(); 7625 return Error(CondLoc, "incorrect condition in IT block; got '" + 7626 StringRef(ARMCondCodeToString(Cond)) + 7627 "', but expected '" + 7628 ARMCondCodeToString(currentITCond()) + "'"); 7629 } 7630 // Check for non-'al' condition codes outside of the IT block. 7631 } else if (isThumbTwo() && MCID.isPredicable() && 7632 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7633 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7634 Inst.getOpcode() != ARM::t2Bcc && 7635 Inst.getOpcode() != ARM::t2BFic) { 7636 return Error(Loc, "predicated instructions must be in IT block"); 7637 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7638 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7639 ARMCC::AL) { 7640 return Warning(Loc, "predicated instructions should be in IT block"); 7641 } else if (!MCID.isPredicable()) { 7642 // Check the instruction doesn't have a predicate operand anyway 7643 // that it's not allowed to use. Sometimes this happens in order 7644 // to keep instructions the same shape even though one cannot 7645 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7646 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7647 if (MCID.OpInfo[i].isPredicate()) { 7648 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7649 return Error(Loc, "instruction is not predicable"); 7650 break; 7651 } 7652 } 7653 } 7654 7655 // PC-setting instructions in an IT block, but not the last instruction of 7656 // the block, are UNPREDICTABLE. 7657 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7658 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7659 } 7660 7661 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7662 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7663 if (!isVectorPredicable(MCID)) 7664 return Error(Loc, "instruction in VPT block must be predicable"); 7665 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7666 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7667 if (Pred != VPTPred) { 7668 SMLoc PredLoc; 7669 for (unsigned I = 1; I < Operands.size(); ++I) 7670 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7671 PredLoc = Operands[I]->getStartLoc(); 7672 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7673 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7674 "', but expected '" + 7675 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7676 } 7677 } 7678 else if (isVectorPredicable(MCID) && 7679 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7680 ARMVCC::None) 7681 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7682 7683 const unsigned Opcode = Inst.getOpcode(); 7684 switch (Opcode) { 7685 case ARM::t2IT: { 7686 // Encoding is unpredictable if it ever results in a notional 'NV' 7687 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7688 // predicate with an "else" mask bit. 7689 unsigned Cond = Inst.getOperand(0).getImm(); 7690 unsigned Mask = Inst.getOperand(1).getImm(); 7691 7692 // Conditions only allowing a 't' are those with no set bit except 7693 // the lowest-order one that indicates the end of the sequence. In 7694 // other words, powers of 2. 7695 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7696 return Error(Loc, "unpredictable IT predicate sequence"); 7697 break; 7698 } 7699 case ARM::LDRD: 7700 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7701 /*Writeback*/false)) 7702 return true; 7703 break; 7704 case ARM::LDRD_PRE: 7705 case ARM::LDRD_POST: 7706 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7707 /*Writeback*/true)) 7708 return true; 7709 break; 7710 case ARM::t2LDRDi8: 7711 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7712 /*Writeback*/false)) 7713 return true; 7714 break; 7715 case ARM::t2LDRD_PRE: 7716 case ARM::t2LDRD_POST: 7717 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7718 /*Writeback*/true)) 7719 return true; 7720 break; 7721 case ARM::t2BXJ: { 7722 const unsigned RmReg = Inst.getOperand(0).getReg(); 7723 // Rm = SP is no longer unpredictable in v8-A 7724 if (RmReg == ARM::SP && !hasV8Ops()) 7725 return Error(Operands[2]->getStartLoc(), 7726 "r13 (SP) is an unpredictable operand to BXJ"); 7727 return false; 7728 } 7729 case ARM::STRD: 7730 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7731 /*Writeback*/false)) 7732 return true; 7733 break; 7734 case ARM::STRD_PRE: 7735 case ARM::STRD_POST: 7736 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7737 /*Writeback*/true)) 7738 return true; 7739 break; 7740 case ARM::t2STRD_PRE: 7741 case ARM::t2STRD_POST: 7742 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7743 /*Writeback*/true)) 7744 return true; 7745 break; 7746 case ARM::STR_PRE_IMM: 7747 case ARM::STR_PRE_REG: 7748 case ARM::t2STR_PRE: 7749 case ARM::STR_POST_IMM: 7750 case ARM::STR_POST_REG: 7751 case ARM::t2STR_POST: 7752 case ARM::STRH_PRE: 7753 case ARM::t2STRH_PRE: 7754 case ARM::STRH_POST: 7755 case ARM::t2STRH_POST: 7756 case ARM::STRB_PRE_IMM: 7757 case ARM::STRB_PRE_REG: 7758 case ARM::t2STRB_PRE: 7759 case ARM::STRB_POST_IMM: 7760 case ARM::STRB_POST_REG: 7761 case ARM::t2STRB_POST: { 7762 // Rt must be different from Rn. 7763 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7764 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7765 7766 if (Rt == Rn) 7767 return Error(Operands[3]->getStartLoc(), 7768 "source register and base register can't be identical"); 7769 return false; 7770 } 7771 case ARM::t2LDR_PRE_imm: 7772 case ARM::t2LDR_POST_imm: 7773 case ARM::t2STR_PRE_imm: 7774 case ARM::t2STR_POST_imm: { 7775 // Rt must be different from Rn. 7776 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7777 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7778 7779 if (Rt == Rn) 7780 return Error(Operands[3]->getStartLoc(), 7781 "destination register and base register can't be identical"); 7782 if (Inst.getOpcode() == ARM::t2LDR_POST_imm || 7783 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7784 int Imm = Inst.getOperand(2).getImm(); 7785 if (Imm > 255 || Imm < -255) 7786 return Error(Operands[5]->getStartLoc(), 7787 "operand must be in range [-255, 255]"); 7788 } 7789 if (Inst.getOpcode() == ARM::t2STR_PRE_imm || 7790 Inst.getOpcode() == ARM::t2STR_POST_imm) { 7791 if (Inst.getOperand(0).getReg() == ARM::PC) { 7792 return Error(Operands[3]->getStartLoc(), 7793 "operand must be a register in range [r0, r14]"); 7794 } 7795 } 7796 return false; 7797 } 7798 case ARM::LDR_PRE_IMM: 7799 case ARM::LDR_PRE_REG: 7800 case ARM::t2LDR_PRE: 7801 case ARM::LDR_POST_IMM: 7802 case ARM::LDR_POST_REG: 7803 case ARM::t2LDR_POST: 7804 case ARM::LDRH_PRE: 7805 case ARM::t2LDRH_PRE: 7806 case ARM::LDRH_POST: 7807 case ARM::t2LDRH_POST: 7808 case ARM::LDRSH_PRE: 7809 case ARM::t2LDRSH_PRE: 7810 case ARM::LDRSH_POST: 7811 case ARM::t2LDRSH_POST: 7812 case ARM::LDRB_PRE_IMM: 7813 case ARM::LDRB_PRE_REG: 7814 case ARM::t2LDRB_PRE: 7815 case ARM::LDRB_POST_IMM: 7816 case ARM::LDRB_POST_REG: 7817 case ARM::t2LDRB_POST: 7818 case ARM::LDRSB_PRE: 7819 case ARM::t2LDRSB_PRE: 7820 case ARM::LDRSB_POST: 7821 case ARM::t2LDRSB_POST: { 7822 // Rt must be different from Rn. 7823 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7824 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7825 7826 if (Rt == Rn) 7827 return Error(Operands[3]->getStartLoc(), 7828 "destination register and base register can't be identical"); 7829 return false; 7830 } 7831 7832 case ARM::MVE_VLDRBU8_rq: 7833 case ARM::MVE_VLDRBU16_rq: 7834 case ARM::MVE_VLDRBS16_rq: 7835 case ARM::MVE_VLDRBU32_rq: 7836 case ARM::MVE_VLDRBS32_rq: 7837 case ARM::MVE_VLDRHU16_rq: 7838 case ARM::MVE_VLDRHU16_rq_u: 7839 case ARM::MVE_VLDRHU32_rq: 7840 case ARM::MVE_VLDRHU32_rq_u: 7841 case ARM::MVE_VLDRHS32_rq: 7842 case ARM::MVE_VLDRHS32_rq_u: 7843 case ARM::MVE_VLDRWU32_rq: 7844 case ARM::MVE_VLDRWU32_rq_u: 7845 case ARM::MVE_VLDRDU64_rq: 7846 case ARM::MVE_VLDRDU64_rq_u: 7847 case ARM::MVE_VLDRWU32_qi: 7848 case ARM::MVE_VLDRWU32_qi_pre: 7849 case ARM::MVE_VLDRDU64_qi: 7850 case ARM::MVE_VLDRDU64_qi_pre: { 7851 // Qd must be different from Qm. 7852 unsigned QdIdx = 0, QmIdx = 2; 7853 bool QmIsPointer = false; 7854 switch (Opcode) { 7855 case ARM::MVE_VLDRWU32_qi: 7856 case ARM::MVE_VLDRDU64_qi: 7857 QmIdx = 1; 7858 QmIsPointer = true; 7859 break; 7860 case ARM::MVE_VLDRWU32_qi_pre: 7861 case ARM::MVE_VLDRDU64_qi_pre: 7862 QdIdx = 1; 7863 QmIsPointer = true; 7864 break; 7865 } 7866 7867 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7868 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7869 7870 if (Qd == Qm) { 7871 return Error(Operands[3]->getStartLoc(), 7872 Twine("destination vector register and vector ") + 7873 (QmIsPointer ? "pointer" : "offset") + 7874 " register can't be identical"); 7875 } 7876 return false; 7877 } 7878 7879 case ARM::SBFX: 7880 case ARM::t2SBFX: 7881 case ARM::UBFX: 7882 case ARM::t2UBFX: { 7883 // Width must be in range [1, 32-lsb]. 7884 unsigned LSB = Inst.getOperand(2).getImm(); 7885 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7886 if (Widthm1 >= 32 - LSB) 7887 return Error(Operands[5]->getStartLoc(), 7888 "bitfield width must be in range [1,32-lsb]"); 7889 return false; 7890 } 7891 // Notionally handles ARM::tLDMIA_UPD too. 7892 case ARM::tLDMIA: { 7893 // If we're parsing Thumb2, the .w variant is available and handles 7894 // most cases that are normally illegal for a Thumb1 LDM instruction. 7895 // We'll make the transformation in processInstruction() if necessary. 7896 // 7897 // Thumb LDM instructions are writeback iff the base register is not 7898 // in the register list. 7899 unsigned Rn = Inst.getOperand(0).getReg(); 7900 bool HasWritebackToken = 7901 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7902 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7903 bool ListContainsBase; 7904 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7905 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7906 "registers must be in range r0-r7"); 7907 // If we should have writeback, then there should be a '!' token. 7908 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7909 return Error(Operands[2]->getStartLoc(), 7910 "writeback operator '!' expected"); 7911 // If we should not have writeback, there must not be a '!'. This is 7912 // true even for the 32-bit wide encodings. 7913 if (ListContainsBase && HasWritebackToken) 7914 return Error(Operands[3]->getStartLoc(), 7915 "writeback operator '!' not allowed when base register " 7916 "in register list"); 7917 7918 if (validatetLDMRegList(Inst, Operands, 3)) 7919 return true; 7920 break; 7921 } 7922 case ARM::LDMIA_UPD: 7923 case ARM::LDMDB_UPD: 7924 case ARM::LDMIB_UPD: 7925 case ARM::LDMDA_UPD: 7926 // ARM variants loading and updating the same register are only officially 7927 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7928 if (!hasV7Ops()) 7929 break; 7930 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7931 return Error(Operands.back()->getStartLoc(), 7932 "writeback register not allowed in register list"); 7933 break; 7934 case ARM::t2LDMIA: 7935 case ARM::t2LDMDB: 7936 if (validatetLDMRegList(Inst, Operands, 3)) 7937 return true; 7938 break; 7939 case ARM::t2STMIA: 7940 case ARM::t2STMDB: 7941 if (validatetSTMRegList(Inst, Operands, 3)) 7942 return true; 7943 break; 7944 case ARM::t2LDMIA_UPD: 7945 case ARM::t2LDMDB_UPD: 7946 case ARM::t2STMIA_UPD: 7947 case ARM::t2STMDB_UPD: 7948 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7949 return Error(Operands.back()->getStartLoc(), 7950 "writeback register not allowed in register list"); 7951 7952 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7953 if (validatetLDMRegList(Inst, Operands, 3)) 7954 return true; 7955 } else { 7956 if (validatetSTMRegList(Inst, Operands, 3)) 7957 return true; 7958 } 7959 break; 7960 7961 case ARM::sysLDMIA_UPD: 7962 case ARM::sysLDMDA_UPD: 7963 case ARM::sysLDMDB_UPD: 7964 case ARM::sysLDMIB_UPD: 7965 if (!listContainsReg(Inst, 3, ARM::PC)) 7966 return Error(Operands[4]->getStartLoc(), 7967 "writeback register only allowed on system LDM " 7968 "if PC in register-list"); 7969 break; 7970 case ARM::sysSTMIA_UPD: 7971 case ARM::sysSTMDA_UPD: 7972 case ARM::sysSTMDB_UPD: 7973 case ARM::sysSTMIB_UPD: 7974 return Error(Operands[2]->getStartLoc(), 7975 "system STM cannot have writeback register"); 7976 case ARM::tMUL: 7977 // The second source operand must be the same register as the destination 7978 // operand. 7979 // 7980 // In this case, we must directly check the parsed operands because the 7981 // cvtThumbMultiply() function is written in such a way that it guarantees 7982 // this first statement is always true for the new Inst. Essentially, the 7983 // destination is unconditionally copied into the second source operand 7984 // without checking to see if it matches what we actually parsed. 7985 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7986 ((ARMOperand &)*Operands[5]).getReg()) && 7987 (((ARMOperand &)*Operands[3]).getReg() != 7988 ((ARMOperand &)*Operands[4]).getReg())) { 7989 return Error(Operands[3]->getStartLoc(), 7990 "destination register must match source register"); 7991 } 7992 break; 7993 7994 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7995 // so only issue a diagnostic for thumb1. The instructions will be 7996 // switched to the t2 encodings in processInstruction() if necessary. 7997 case ARM::tPOP: { 7998 bool ListContainsBase; 7999 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 8000 !isThumbTwo()) 8001 return Error(Operands[2]->getStartLoc(), 8002 "registers must be in range r0-r7 or pc"); 8003 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 8004 return true; 8005 break; 8006 } 8007 case ARM::tPUSH: { 8008 bool ListContainsBase; 8009 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 8010 !isThumbTwo()) 8011 return Error(Operands[2]->getStartLoc(), 8012 "registers must be in range r0-r7 or lr"); 8013 if (validatetSTMRegList(Inst, Operands, 2)) 8014 return true; 8015 break; 8016 } 8017 case ARM::tSTMIA_UPD: { 8018 bool ListContainsBase, InvalidLowList; 8019 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 8020 0, ListContainsBase); 8021 if (InvalidLowList && !isThumbTwo()) 8022 return Error(Operands[4]->getStartLoc(), 8023 "registers must be in range r0-r7"); 8024 8025 // This would be converted to a 32-bit stm, but that's not valid if the 8026 // writeback register is in the list. 8027 if (InvalidLowList && ListContainsBase) 8028 return Error(Operands[4]->getStartLoc(), 8029 "writeback operator '!' not allowed when base register " 8030 "in register list"); 8031 8032 if (validatetSTMRegList(Inst, Operands, 4)) 8033 return true; 8034 break; 8035 } 8036 case ARM::tADDrSP: 8037 // If the non-SP source operand and the destination operand are not the 8038 // same, we need thumb2 (for the wide encoding), or we have an error. 8039 if (!isThumbTwo() && 8040 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8041 return Error(Operands[4]->getStartLoc(), 8042 "source register must be the same as destination"); 8043 } 8044 break; 8045 8046 case ARM::t2ADDrr: 8047 case ARM::t2ADDrs: 8048 case ARM::t2SUBrr: 8049 case ARM::t2SUBrs: 8050 if (Inst.getOperand(0).getReg() == ARM::SP && 8051 Inst.getOperand(1).getReg() != ARM::SP) 8052 return Error(Operands[4]->getStartLoc(), 8053 "source register must be sp if destination is sp"); 8054 break; 8055 8056 // Final range checking for Thumb unconditional branch instructions. 8057 case ARM::tB: 8058 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 8059 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8060 break; 8061 case ARM::t2B: { 8062 int op = (Operands[2]->isImm()) ? 2 : 3; 8063 ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); 8064 // Delay the checks of symbolic expressions until they are resolved. 8065 if (!isa<MCBinaryExpr>(Operand.getImm()) && 8066 !Operand.isSignedOffset<24, 1>()) 8067 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 8068 break; 8069 } 8070 // Final range checking for Thumb conditional branch instructions. 8071 case ARM::tBcc: 8072 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 8073 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8074 break; 8075 case ARM::t2Bcc: { 8076 int Op = (Operands[2]->isImm()) ? 2 : 3; 8077 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 8078 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 8079 break; 8080 } 8081 case ARM::tCBZ: 8082 case ARM::tCBNZ: { 8083 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 8084 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 8085 break; 8086 } 8087 case ARM::MOVi16: 8088 case ARM::MOVTi16: 8089 case ARM::t2MOVi16: 8090 case ARM::t2MOVTi16: 8091 { 8092 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 8093 // especially when we turn it into a movw and the expression <symbol> does 8094 // not have a :lower16: or :upper16 as part of the expression. We don't 8095 // want the behavior of silently truncating, which can be unexpected and 8096 // lead to bugs that are difficult to find since this is an easy mistake 8097 // to make. 8098 int i = (Operands[3]->isImm()) ? 3 : 4; 8099 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 8100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 8101 if (CE) break; 8102 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 8103 if (!E) break; 8104 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 8105 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 8106 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 8107 return Error( 8108 Op.getStartLoc(), 8109 "immediate expression for mov requires :lower16: or :upper16"); 8110 break; 8111 } 8112 case ARM::HINT: 8113 case ARM::t2HINT: { 8114 unsigned Imm8 = Inst.getOperand(0).getImm(); 8115 unsigned Pred = Inst.getOperand(1).getImm(); 8116 // ESB is not predicable (pred must be AL). Without the RAS extension, this 8117 // behaves as any other unallocated hint. 8118 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 8119 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 8120 "predicable, but condition " 8121 "code specified"); 8122 if (Imm8 == 0x14 && Pred != ARMCC::AL) 8123 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 8124 "predicable, but condition " 8125 "code specified"); 8126 break; 8127 } 8128 case ARM::t2BFi: 8129 case ARM::t2BFr: 8130 case ARM::t2BFLi: 8131 case ARM::t2BFLr: { 8132 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 8133 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8134 return Error(Operands[2]->getStartLoc(), 8135 "branch location out of range or not a multiple of 2"); 8136 8137 if (Opcode == ARM::t2BFi) { 8138 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 8139 return Error(Operands[3]->getStartLoc(), 8140 "branch target out of range or not a multiple of 2"); 8141 } else if (Opcode == ARM::t2BFLi) { 8142 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8143 return Error(Operands[3]->getStartLoc(), 8144 "branch target out of range or not a multiple of 2"); 8145 } 8146 break; 8147 } 8148 case ARM::t2BFic: { 8149 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8150 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8151 return Error(Operands[1]->getStartLoc(), 8152 "branch location out of range or not a multiple of 2"); 8153 8154 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8155 return Error(Operands[2]->getStartLoc(), 8156 "branch target out of range or not a multiple of 2"); 8157 8158 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8159 "branch location and else branch target should either both be " 8160 "immediates or both labels"); 8161 8162 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8163 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8164 if (Diff != 4 && Diff != 2) 8165 return Error( 8166 Operands[3]->getStartLoc(), 8167 "else branch target must be 2 or 4 greater than the branch location"); 8168 } 8169 break; 8170 } 8171 case ARM::t2CLRM: { 8172 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8173 if (Inst.getOperand(i).isReg() && 8174 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8175 Inst.getOperand(i).getReg())) { 8176 return Error(Operands[2]->getStartLoc(), 8177 "invalid register in register list. Valid registers are " 8178 "r0-r12, lr/r14 and APSR."); 8179 } 8180 } 8181 break; 8182 } 8183 case ARM::DSB: 8184 case ARM::t2DSB: { 8185 8186 if (Inst.getNumOperands() < 2) 8187 break; 8188 8189 unsigned Option = Inst.getOperand(0).getImm(); 8190 unsigned Pred = Inst.getOperand(1).getImm(); 8191 8192 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8193 if (Option == 0 && Pred != ARMCC::AL) 8194 return Error(Operands[1]->getStartLoc(), 8195 "instruction 'ssbb' is not predicable, but condition code " 8196 "specified"); 8197 if (Option == 4 && Pred != ARMCC::AL) 8198 return Error(Operands[1]->getStartLoc(), 8199 "instruction 'pssbb' is not predicable, but condition code " 8200 "specified"); 8201 break; 8202 } 8203 case ARM::VMOVRRS: { 8204 // Source registers must be sequential. 8205 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8206 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8207 if (Sm1 != Sm + 1) 8208 return Error(Operands[5]->getStartLoc(), 8209 "source operands must be sequential"); 8210 break; 8211 } 8212 case ARM::VMOVSRR: { 8213 // Destination registers must be sequential. 8214 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8215 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8216 if (Sm1 != Sm + 1) 8217 return Error(Operands[3]->getStartLoc(), 8218 "destination operands must be sequential"); 8219 break; 8220 } 8221 case ARM::VLDMDIA: 8222 case ARM::VSTMDIA: { 8223 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8224 auto &RegList = Op.getRegList(); 8225 if (RegList.size() < 1 || RegList.size() > 16) 8226 return Error(Operands[3]->getStartLoc(), 8227 "list of registers must be at least 1 and at most 16"); 8228 break; 8229 } 8230 case ARM::MVE_VQDMULLs32bh: 8231 case ARM::MVE_VQDMULLs32th: 8232 case ARM::MVE_VCMULf32: 8233 case ARM::MVE_VMULLBs32: 8234 case ARM::MVE_VMULLTs32: 8235 case ARM::MVE_VMULLBu32: 8236 case ARM::MVE_VMULLTu32: { 8237 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8238 return Error (Operands[3]->getStartLoc(), 8239 "Qd register and Qn register can't be identical"); 8240 } 8241 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8242 return Error (Operands[3]->getStartLoc(), 8243 "Qd register and Qm register can't be identical"); 8244 } 8245 break; 8246 } 8247 case ARM::MVE_VMOV_rr_q: { 8248 if (Operands[4]->getReg() != Operands[6]->getReg()) 8249 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8250 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8251 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8252 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8253 break; 8254 } 8255 case ARM::MVE_VMOV_q_rr: { 8256 if (Operands[2]->getReg() != Operands[4]->getReg()) 8257 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8258 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8259 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8260 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8261 break; 8262 } 8263 case ARM::UMAAL: 8264 case ARM::UMLAL: 8265 case ARM::UMULL: 8266 case ARM::t2UMAAL: 8267 case ARM::t2UMLAL: 8268 case ARM::t2UMULL: 8269 case ARM::SMLAL: 8270 case ARM::SMLALBB: 8271 case ARM::SMLALBT: 8272 case ARM::SMLALD: 8273 case ARM::SMLALDX: 8274 case ARM::SMLALTB: 8275 case ARM::SMLALTT: 8276 case ARM::SMLSLD: 8277 case ARM::SMLSLDX: 8278 case ARM::SMULL: 8279 case ARM::t2SMLAL: 8280 case ARM::t2SMLALBB: 8281 case ARM::t2SMLALBT: 8282 case ARM::t2SMLALD: 8283 case ARM::t2SMLALDX: 8284 case ARM::t2SMLALTB: 8285 case ARM::t2SMLALTT: 8286 case ARM::t2SMLSLD: 8287 case ARM::t2SMLSLDX: 8288 case ARM::t2SMULL: { 8289 unsigned RdHi = Inst.getOperand(0).getReg(); 8290 unsigned RdLo = Inst.getOperand(1).getReg(); 8291 if(RdHi == RdLo) { 8292 return Error(Loc, 8293 "unpredictable instruction, RdHi and RdLo must be different"); 8294 } 8295 break; 8296 } 8297 8298 case ARM::CDE_CX1: 8299 case ARM::CDE_CX1A: 8300 case ARM::CDE_CX1D: 8301 case ARM::CDE_CX1DA: 8302 case ARM::CDE_CX2: 8303 case ARM::CDE_CX2A: 8304 case ARM::CDE_CX2D: 8305 case ARM::CDE_CX2DA: 8306 case ARM::CDE_CX3: 8307 case ARM::CDE_CX3A: 8308 case ARM::CDE_CX3D: 8309 case ARM::CDE_CX3DA: 8310 case ARM::CDE_VCX1_vec: 8311 case ARM::CDE_VCX1_fpsp: 8312 case ARM::CDE_VCX1_fpdp: 8313 case ARM::CDE_VCX1A_vec: 8314 case ARM::CDE_VCX1A_fpsp: 8315 case ARM::CDE_VCX1A_fpdp: 8316 case ARM::CDE_VCX2_vec: 8317 case ARM::CDE_VCX2_fpsp: 8318 case ARM::CDE_VCX2_fpdp: 8319 case ARM::CDE_VCX2A_vec: 8320 case ARM::CDE_VCX2A_fpsp: 8321 case ARM::CDE_VCX2A_fpdp: 8322 case ARM::CDE_VCX3_vec: 8323 case ARM::CDE_VCX3_fpsp: 8324 case ARM::CDE_VCX3_fpdp: 8325 case ARM::CDE_VCX3A_vec: 8326 case ARM::CDE_VCX3A_fpsp: 8327 case ARM::CDE_VCX3A_fpdp: { 8328 assert(Inst.getOperand(1).isImm() && 8329 "CDE operand 1 must be a coprocessor ID"); 8330 int64_t Coproc = Inst.getOperand(1).getImm(); 8331 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8332 return Error(Operands[1]->getStartLoc(), 8333 "coprocessor must be configured as CDE"); 8334 else if (Coproc >= 8) 8335 return Error(Operands[1]->getStartLoc(), 8336 "coprocessor must be in the range [p0, p7]"); 8337 break; 8338 } 8339 8340 case ARM::t2CDP: 8341 case ARM::t2CDP2: 8342 case ARM::t2LDC2L_OFFSET: 8343 case ARM::t2LDC2L_OPTION: 8344 case ARM::t2LDC2L_POST: 8345 case ARM::t2LDC2L_PRE: 8346 case ARM::t2LDC2_OFFSET: 8347 case ARM::t2LDC2_OPTION: 8348 case ARM::t2LDC2_POST: 8349 case ARM::t2LDC2_PRE: 8350 case ARM::t2LDCL_OFFSET: 8351 case ARM::t2LDCL_OPTION: 8352 case ARM::t2LDCL_POST: 8353 case ARM::t2LDCL_PRE: 8354 case ARM::t2LDC_OFFSET: 8355 case ARM::t2LDC_OPTION: 8356 case ARM::t2LDC_POST: 8357 case ARM::t2LDC_PRE: 8358 case ARM::t2MCR: 8359 case ARM::t2MCR2: 8360 case ARM::t2MCRR: 8361 case ARM::t2MCRR2: 8362 case ARM::t2MRC: 8363 case ARM::t2MRC2: 8364 case ARM::t2MRRC: 8365 case ARM::t2MRRC2: 8366 case ARM::t2STC2L_OFFSET: 8367 case ARM::t2STC2L_OPTION: 8368 case ARM::t2STC2L_POST: 8369 case ARM::t2STC2L_PRE: 8370 case ARM::t2STC2_OFFSET: 8371 case ARM::t2STC2_OPTION: 8372 case ARM::t2STC2_POST: 8373 case ARM::t2STC2_PRE: 8374 case ARM::t2STCL_OFFSET: 8375 case ARM::t2STCL_OPTION: 8376 case ARM::t2STCL_POST: 8377 case ARM::t2STCL_PRE: 8378 case ARM::t2STC_OFFSET: 8379 case ARM::t2STC_OPTION: 8380 case ARM::t2STC_POST: 8381 case ARM::t2STC_PRE: { 8382 unsigned Opcode = Inst.getOpcode(); 8383 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8384 // CopInd is the index of the coprocessor operand. 8385 size_t CopInd = 0; 8386 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8387 CopInd = 2; 8388 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8389 CopInd = 1; 8390 assert(Inst.getOperand(CopInd).isImm() && 8391 "Operand must be a coprocessor ID"); 8392 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8393 // Operands[2] is the coprocessor operand at syntactic level 8394 if (ARM::isCDECoproc(Coproc, *STI)) 8395 return Error(Operands[2]->getStartLoc(), 8396 "coprocessor must be configured as GCP"); 8397 break; 8398 } 8399 } 8400 8401 return false; 8402 } 8403 8404 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8405 switch(Opc) { 8406 default: llvm_unreachable("unexpected opcode!"); 8407 // VST1LN 8408 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8409 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8410 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8411 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8412 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8413 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8414 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8415 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8416 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8417 8418 // VST2LN 8419 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8420 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8421 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8422 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8423 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8424 8425 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8426 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8427 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8428 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8429 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8430 8431 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8432 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8433 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8434 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8435 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8436 8437 // VST3LN 8438 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8439 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8440 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8441 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8442 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8443 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8444 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8445 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8446 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8447 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8448 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8449 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8450 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8451 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8452 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8453 8454 // VST3 8455 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8456 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8457 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8458 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8459 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8460 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8461 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8462 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8463 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8464 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8465 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8466 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8467 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8468 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8469 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8470 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8471 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8472 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8473 8474 // VST4LN 8475 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8476 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8477 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8478 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8479 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8480 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8481 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8482 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8483 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8484 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8485 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8486 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8487 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8488 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8489 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8490 8491 // VST4 8492 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8493 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8494 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8495 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8496 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8497 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8498 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8499 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8500 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8501 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8502 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8503 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8504 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8505 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8506 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8507 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8508 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8509 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8510 } 8511 } 8512 8513 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8514 switch(Opc) { 8515 default: llvm_unreachable("unexpected opcode!"); 8516 // VLD1LN 8517 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8518 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8519 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8520 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8521 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8522 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8523 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8524 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8525 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8526 8527 // VLD2LN 8528 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8529 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8530 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8531 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8532 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8533 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8534 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8535 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8536 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8537 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8538 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8539 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8540 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8541 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8542 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8543 8544 // VLD3DUP 8545 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8546 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8547 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8548 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8549 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8550 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8551 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8552 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8553 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8554 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8555 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8556 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8557 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8558 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8559 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8560 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8561 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8562 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8563 8564 // VLD3LN 8565 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8566 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8567 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8568 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8569 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8570 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8571 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8572 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8573 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8574 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8575 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8576 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8577 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8578 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8579 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8580 8581 // VLD3 8582 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8583 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8584 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8585 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8586 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8587 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8588 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8589 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8590 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8591 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8592 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8593 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8594 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8595 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8596 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8597 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8598 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8599 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8600 8601 // VLD4LN 8602 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8603 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8604 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8605 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8606 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8607 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8608 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8609 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8610 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8611 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8612 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8613 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8614 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8615 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8616 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8617 8618 // VLD4DUP 8619 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8620 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8621 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8622 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8623 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8624 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8625 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8626 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8627 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8628 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8629 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8630 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8631 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8632 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8633 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8634 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8635 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8636 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8637 8638 // VLD4 8639 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8640 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8641 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8642 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8643 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8644 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8645 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8646 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8647 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8648 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8649 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8650 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8651 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8652 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8653 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8654 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8655 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8656 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8657 } 8658 } 8659 8660 bool ARMAsmParser::processInstruction(MCInst &Inst, 8661 const OperandVector &Operands, 8662 MCStreamer &Out) { 8663 // Check if we have the wide qualifier, because if it's present we 8664 // must avoid selecting a 16-bit thumb instruction. 8665 bool HasWideQualifier = false; 8666 for (auto &Op : Operands) { 8667 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8668 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8669 HasWideQualifier = true; 8670 break; 8671 } 8672 } 8673 8674 switch (Inst.getOpcode()) { 8675 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8676 case ARM::LDRT_POST: 8677 case ARM::LDRBT_POST: { 8678 const unsigned Opcode = 8679 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8680 : ARM::LDRBT_POST_IMM; 8681 MCInst TmpInst; 8682 TmpInst.setOpcode(Opcode); 8683 TmpInst.addOperand(Inst.getOperand(0)); 8684 TmpInst.addOperand(Inst.getOperand(1)); 8685 TmpInst.addOperand(Inst.getOperand(1)); 8686 TmpInst.addOperand(MCOperand::createReg(0)); 8687 TmpInst.addOperand(MCOperand::createImm(0)); 8688 TmpInst.addOperand(Inst.getOperand(2)); 8689 TmpInst.addOperand(Inst.getOperand(3)); 8690 Inst = TmpInst; 8691 return true; 8692 } 8693 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8694 case ARM::LDRSBTii: 8695 case ARM::LDRHTii: 8696 case ARM::LDRSHTii: { 8697 MCInst TmpInst; 8698 8699 if (Inst.getOpcode() == ARM::LDRSBTii) 8700 TmpInst.setOpcode(ARM::LDRSBTi); 8701 else if (Inst.getOpcode() == ARM::LDRHTii) 8702 TmpInst.setOpcode(ARM::LDRHTi); 8703 else if (Inst.getOpcode() == ARM::LDRSHTii) 8704 TmpInst.setOpcode(ARM::LDRSHTi); 8705 TmpInst.addOperand(Inst.getOperand(0)); 8706 TmpInst.addOperand(Inst.getOperand(1)); 8707 TmpInst.addOperand(Inst.getOperand(1)); 8708 TmpInst.addOperand(MCOperand::createImm(256)); 8709 TmpInst.addOperand(Inst.getOperand(2)); 8710 Inst = TmpInst; 8711 return true; 8712 } 8713 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8714 case ARM::STRT_POST: 8715 case ARM::STRBT_POST: { 8716 const unsigned Opcode = 8717 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8718 : ARM::STRBT_POST_IMM; 8719 MCInst TmpInst; 8720 TmpInst.setOpcode(Opcode); 8721 TmpInst.addOperand(Inst.getOperand(1)); 8722 TmpInst.addOperand(Inst.getOperand(0)); 8723 TmpInst.addOperand(Inst.getOperand(1)); 8724 TmpInst.addOperand(MCOperand::createReg(0)); 8725 TmpInst.addOperand(MCOperand::createImm(0)); 8726 TmpInst.addOperand(Inst.getOperand(2)); 8727 TmpInst.addOperand(Inst.getOperand(3)); 8728 Inst = TmpInst; 8729 return true; 8730 } 8731 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8732 case ARM::ADDri: { 8733 if (Inst.getOperand(1).getReg() != ARM::PC || 8734 Inst.getOperand(5).getReg() != 0 || 8735 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8736 return false; 8737 MCInst TmpInst; 8738 TmpInst.setOpcode(ARM::ADR); 8739 TmpInst.addOperand(Inst.getOperand(0)); 8740 if (Inst.getOperand(2).isImm()) { 8741 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8742 // before passing it to the ADR instruction. 8743 unsigned Enc = Inst.getOperand(2).getImm(); 8744 TmpInst.addOperand(MCOperand::createImm( 8745 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8746 } else { 8747 // Turn PC-relative expression into absolute expression. 8748 // Reading PC provides the start of the current instruction + 8 and 8749 // the transform to adr is biased by that. 8750 MCSymbol *Dot = getContext().createTempSymbol(); 8751 Out.emitLabel(Dot); 8752 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8753 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8754 MCSymbolRefExpr::VK_None, 8755 getContext()); 8756 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8757 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8758 getContext()); 8759 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8760 getContext()); 8761 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8762 } 8763 TmpInst.addOperand(Inst.getOperand(3)); 8764 TmpInst.addOperand(Inst.getOperand(4)); 8765 Inst = TmpInst; 8766 return true; 8767 } 8768 // Aliases for imm syntax of LDR instructions. 8769 case ARM::t2LDR_PRE_imm: 8770 case ARM::t2LDR_POST_imm: { 8771 MCInst TmpInst; 8772 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE 8773 : ARM::t2LDR_POST); 8774 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8775 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8776 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8777 TmpInst.addOperand(Inst.getOperand(2)); // imm 8778 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8779 Inst = TmpInst; 8780 return true; 8781 } 8782 // Aliases for imm syntax of STR instructions. 8783 case ARM::t2STR_PRE_imm: 8784 case ARM::t2STR_POST_imm: { 8785 MCInst TmpInst; 8786 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE 8787 : ARM::t2STR_POST); 8788 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb 8789 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8790 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8791 TmpInst.addOperand(Inst.getOperand(2)); // imm 8792 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8793 Inst = TmpInst; 8794 return true; 8795 } 8796 // Aliases for alternate PC+imm syntax of LDR instructions. 8797 case ARM::t2LDRpcrel: 8798 // Select the narrow version if the immediate will fit. 8799 if (Inst.getOperand(1).getImm() > 0 && 8800 Inst.getOperand(1).getImm() <= 0xff && 8801 !HasWideQualifier) 8802 Inst.setOpcode(ARM::tLDRpci); 8803 else 8804 Inst.setOpcode(ARM::t2LDRpci); 8805 return true; 8806 case ARM::t2LDRBpcrel: 8807 Inst.setOpcode(ARM::t2LDRBpci); 8808 return true; 8809 case ARM::t2LDRHpcrel: 8810 Inst.setOpcode(ARM::t2LDRHpci); 8811 return true; 8812 case ARM::t2LDRSBpcrel: 8813 Inst.setOpcode(ARM::t2LDRSBpci); 8814 return true; 8815 case ARM::t2LDRSHpcrel: 8816 Inst.setOpcode(ARM::t2LDRSHpci); 8817 return true; 8818 case ARM::LDRConstPool: 8819 case ARM::tLDRConstPool: 8820 case ARM::t2LDRConstPool: { 8821 // Pseudo instruction ldr rt, =immediate is converted to a 8822 // MOV rt, immediate if immediate is known and representable 8823 // otherwise we create a constant pool entry that we load from. 8824 MCInst TmpInst; 8825 if (Inst.getOpcode() == ARM::LDRConstPool) 8826 TmpInst.setOpcode(ARM::LDRi12); 8827 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8828 TmpInst.setOpcode(ARM::tLDRpci); 8829 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8830 TmpInst.setOpcode(ARM::t2LDRpci); 8831 const ARMOperand &PoolOperand = 8832 (HasWideQualifier ? 8833 static_cast<ARMOperand &>(*Operands[4]) : 8834 static_cast<ARMOperand &>(*Operands[3])); 8835 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8836 // If SubExprVal is a constant we may be able to use a MOV 8837 if (isa<MCConstantExpr>(SubExprVal) && 8838 Inst.getOperand(0).getReg() != ARM::PC && 8839 Inst.getOperand(0).getReg() != ARM::SP) { 8840 int64_t Value = 8841 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8842 bool UseMov = true; 8843 bool MovHasS = true; 8844 if (Inst.getOpcode() == ARM::LDRConstPool) { 8845 // ARM Constant 8846 if (ARM_AM::getSOImmVal(Value) != -1) { 8847 Value = ARM_AM::getSOImmVal(Value); 8848 TmpInst.setOpcode(ARM::MOVi); 8849 } 8850 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8851 Value = ARM_AM::getSOImmVal(~Value); 8852 TmpInst.setOpcode(ARM::MVNi); 8853 } 8854 else if (hasV6T2Ops() && 8855 Value >=0 && Value < 65536) { 8856 TmpInst.setOpcode(ARM::MOVi16); 8857 MovHasS = false; 8858 } 8859 else 8860 UseMov = false; 8861 } 8862 else { 8863 // Thumb/Thumb2 Constant 8864 if (hasThumb2() && 8865 ARM_AM::getT2SOImmVal(Value) != -1) 8866 TmpInst.setOpcode(ARM::t2MOVi); 8867 else if (hasThumb2() && 8868 ARM_AM::getT2SOImmVal(~Value) != -1) { 8869 TmpInst.setOpcode(ARM::t2MVNi); 8870 Value = ~Value; 8871 } 8872 else if (hasV8MBaseline() && 8873 Value >=0 && Value < 65536) { 8874 TmpInst.setOpcode(ARM::t2MOVi16); 8875 MovHasS = false; 8876 } 8877 else 8878 UseMov = false; 8879 } 8880 if (UseMov) { 8881 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8882 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8883 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8884 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8885 if (MovHasS) 8886 TmpInst.addOperand(MCOperand::createReg(0)); // S 8887 Inst = TmpInst; 8888 return true; 8889 } 8890 } 8891 // No opportunity to use MOV/MVN create constant pool 8892 const MCExpr *CPLoc = 8893 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8894 PoolOperand.getStartLoc()); 8895 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8896 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8897 if (TmpInst.getOpcode() == ARM::LDRi12) 8898 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8899 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8900 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8901 Inst = TmpInst; 8902 return true; 8903 } 8904 // Handle NEON VST complex aliases. 8905 case ARM::VST1LNdWB_register_Asm_8: 8906 case ARM::VST1LNdWB_register_Asm_16: 8907 case ARM::VST1LNdWB_register_Asm_32: { 8908 MCInst TmpInst; 8909 // Shuffle the operands around so the lane index operand is in the 8910 // right place. 8911 unsigned Spacing; 8912 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8913 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8914 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8915 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8916 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8917 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8918 TmpInst.addOperand(Inst.getOperand(1)); // lane 8919 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8920 TmpInst.addOperand(Inst.getOperand(6)); 8921 Inst = TmpInst; 8922 return true; 8923 } 8924 8925 case ARM::VST2LNdWB_register_Asm_8: 8926 case ARM::VST2LNdWB_register_Asm_16: 8927 case ARM::VST2LNdWB_register_Asm_32: 8928 case ARM::VST2LNqWB_register_Asm_16: 8929 case ARM::VST2LNqWB_register_Asm_32: { 8930 MCInst TmpInst; 8931 // Shuffle the operands around so the lane index operand is in the 8932 // right place. 8933 unsigned Spacing; 8934 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8935 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8936 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8937 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8938 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8939 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8940 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8941 Spacing)); 8942 TmpInst.addOperand(Inst.getOperand(1)); // lane 8943 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8944 TmpInst.addOperand(Inst.getOperand(6)); 8945 Inst = TmpInst; 8946 return true; 8947 } 8948 8949 case ARM::VST3LNdWB_register_Asm_8: 8950 case ARM::VST3LNdWB_register_Asm_16: 8951 case ARM::VST3LNdWB_register_Asm_32: 8952 case ARM::VST3LNqWB_register_Asm_16: 8953 case ARM::VST3LNqWB_register_Asm_32: { 8954 MCInst TmpInst; 8955 // Shuffle the operands around so the lane index operand is in the 8956 // right place. 8957 unsigned Spacing; 8958 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8959 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8960 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8961 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8962 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8963 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8965 Spacing)); 8966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8967 Spacing * 2)); 8968 TmpInst.addOperand(Inst.getOperand(1)); // lane 8969 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8970 TmpInst.addOperand(Inst.getOperand(6)); 8971 Inst = TmpInst; 8972 return true; 8973 } 8974 8975 case ARM::VST4LNdWB_register_Asm_8: 8976 case ARM::VST4LNdWB_register_Asm_16: 8977 case ARM::VST4LNdWB_register_Asm_32: 8978 case ARM::VST4LNqWB_register_Asm_16: 8979 case ARM::VST4LNqWB_register_Asm_32: { 8980 MCInst TmpInst; 8981 // Shuffle the operands around so the lane index operand is in the 8982 // right place. 8983 unsigned Spacing; 8984 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8985 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8986 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8987 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8988 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8989 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8991 Spacing)); 8992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8993 Spacing * 2)); 8994 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8995 Spacing * 3)); 8996 TmpInst.addOperand(Inst.getOperand(1)); // lane 8997 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8998 TmpInst.addOperand(Inst.getOperand(6)); 8999 Inst = TmpInst; 9000 return true; 9001 } 9002 9003 case ARM::VST1LNdWB_fixed_Asm_8: 9004 case ARM::VST1LNdWB_fixed_Asm_16: 9005 case ARM::VST1LNdWB_fixed_Asm_32: { 9006 MCInst TmpInst; 9007 // Shuffle the operands around so the lane index operand is in the 9008 // right place. 9009 unsigned Spacing; 9010 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9011 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9012 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9013 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9014 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9015 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9016 TmpInst.addOperand(Inst.getOperand(1)); // lane 9017 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9018 TmpInst.addOperand(Inst.getOperand(5)); 9019 Inst = TmpInst; 9020 return true; 9021 } 9022 9023 case ARM::VST2LNdWB_fixed_Asm_8: 9024 case ARM::VST2LNdWB_fixed_Asm_16: 9025 case ARM::VST2LNdWB_fixed_Asm_32: 9026 case ARM::VST2LNqWB_fixed_Asm_16: 9027 case ARM::VST2LNqWB_fixed_Asm_32: { 9028 MCInst TmpInst; 9029 // Shuffle the operands around so the lane index operand is in the 9030 // right place. 9031 unsigned Spacing; 9032 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9033 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9034 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9035 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9036 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9037 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9039 Spacing)); 9040 TmpInst.addOperand(Inst.getOperand(1)); // lane 9041 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9042 TmpInst.addOperand(Inst.getOperand(5)); 9043 Inst = TmpInst; 9044 return true; 9045 } 9046 9047 case ARM::VST3LNdWB_fixed_Asm_8: 9048 case ARM::VST3LNdWB_fixed_Asm_16: 9049 case ARM::VST3LNdWB_fixed_Asm_32: 9050 case ARM::VST3LNqWB_fixed_Asm_16: 9051 case ARM::VST3LNqWB_fixed_Asm_32: { 9052 MCInst TmpInst; 9053 // Shuffle the operands around so the lane index operand is in the 9054 // right place. 9055 unsigned Spacing; 9056 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9057 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9058 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9059 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9060 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9061 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9063 Spacing)); 9064 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9065 Spacing * 2)); 9066 TmpInst.addOperand(Inst.getOperand(1)); // lane 9067 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9068 TmpInst.addOperand(Inst.getOperand(5)); 9069 Inst = TmpInst; 9070 return true; 9071 } 9072 9073 case ARM::VST4LNdWB_fixed_Asm_8: 9074 case ARM::VST4LNdWB_fixed_Asm_16: 9075 case ARM::VST4LNdWB_fixed_Asm_32: 9076 case ARM::VST4LNqWB_fixed_Asm_16: 9077 case ARM::VST4LNqWB_fixed_Asm_32: { 9078 MCInst TmpInst; 9079 // Shuffle the operands around so the lane index operand is in the 9080 // right place. 9081 unsigned Spacing; 9082 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9083 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9084 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9085 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9086 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9087 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9088 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9089 Spacing)); 9090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9091 Spacing * 2)); 9092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9093 Spacing * 3)); 9094 TmpInst.addOperand(Inst.getOperand(1)); // lane 9095 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9096 TmpInst.addOperand(Inst.getOperand(5)); 9097 Inst = TmpInst; 9098 return true; 9099 } 9100 9101 case ARM::VST1LNdAsm_8: 9102 case ARM::VST1LNdAsm_16: 9103 case ARM::VST1LNdAsm_32: { 9104 MCInst TmpInst; 9105 // Shuffle the operands around so the lane index operand is in the 9106 // right place. 9107 unsigned Spacing; 9108 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9109 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9110 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9111 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9112 TmpInst.addOperand(Inst.getOperand(1)); // lane 9113 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9114 TmpInst.addOperand(Inst.getOperand(5)); 9115 Inst = TmpInst; 9116 return true; 9117 } 9118 9119 case ARM::VST2LNdAsm_8: 9120 case ARM::VST2LNdAsm_16: 9121 case ARM::VST2LNdAsm_32: 9122 case ARM::VST2LNqAsm_16: 9123 case ARM::VST2LNqAsm_32: { 9124 MCInst TmpInst; 9125 // Shuffle the operands around so the lane index operand is in the 9126 // right place. 9127 unsigned Spacing; 9128 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9129 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9130 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9131 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9132 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9133 Spacing)); 9134 TmpInst.addOperand(Inst.getOperand(1)); // lane 9135 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9136 TmpInst.addOperand(Inst.getOperand(5)); 9137 Inst = TmpInst; 9138 return true; 9139 } 9140 9141 case ARM::VST3LNdAsm_8: 9142 case ARM::VST3LNdAsm_16: 9143 case ARM::VST3LNdAsm_32: 9144 case ARM::VST3LNqAsm_16: 9145 case ARM::VST3LNqAsm_32: { 9146 MCInst TmpInst; 9147 // Shuffle the operands around so the lane index operand is in the 9148 // right place. 9149 unsigned Spacing; 9150 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9151 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9152 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9153 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9154 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9155 Spacing)); 9156 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9157 Spacing * 2)); 9158 TmpInst.addOperand(Inst.getOperand(1)); // lane 9159 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9160 TmpInst.addOperand(Inst.getOperand(5)); 9161 Inst = TmpInst; 9162 return true; 9163 } 9164 9165 case ARM::VST4LNdAsm_8: 9166 case ARM::VST4LNdAsm_16: 9167 case ARM::VST4LNdAsm_32: 9168 case ARM::VST4LNqAsm_16: 9169 case ARM::VST4LNqAsm_32: { 9170 MCInst TmpInst; 9171 // Shuffle the operands around so the lane index operand is in the 9172 // right place. 9173 unsigned Spacing; 9174 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9175 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9176 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9177 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9179 Spacing)); 9180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9181 Spacing * 2)); 9182 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9183 Spacing * 3)); 9184 TmpInst.addOperand(Inst.getOperand(1)); // lane 9185 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9186 TmpInst.addOperand(Inst.getOperand(5)); 9187 Inst = TmpInst; 9188 return true; 9189 } 9190 9191 // Handle NEON VLD complex aliases. 9192 case ARM::VLD1LNdWB_register_Asm_8: 9193 case ARM::VLD1LNdWB_register_Asm_16: 9194 case ARM::VLD1LNdWB_register_Asm_32: { 9195 MCInst TmpInst; 9196 // Shuffle the operands around so the lane index operand is in the 9197 // right place. 9198 unsigned Spacing; 9199 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9200 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9201 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9202 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9203 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9204 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9205 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9206 TmpInst.addOperand(Inst.getOperand(1)); // lane 9207 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9208 TmpInst.addOperand(Inst.getOperand(6)); 9209 Inst = TmpInst; 9210 return true; 9211 } 9212 9213 case ARM::VLD2LNdWB_register_Asm_8: 9214 case ARM::VLD2LNdWB_register_Asm_16: 9215 case ARM::VLD2LNdWB_register_Asm_32: 9216 case ARM::VLD2LNqWB_register_Asm_16: 9217 case ARM::VLD2LNqWB_register_Asm_32: { 9218 MCInst TmpInst; 9219 // Shuffle the operands around so the lane index operand is in the 9220 // right place. 9221 unsigned Spacing; 9222 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9223 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9224 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9225 Spacing)); 9226 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9227 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9228 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9229 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9230 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9232 Spacing)); 9233 TmpInst.addOperand(Inst.getOperand(1)); // lane 9234 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9235 TmpInst.addOperand(Inst.getOperand(6)); 9236 Inst = TmpInst; 9237 return true; 9238 } 9239 9240 case ARM::VLD3LNdWB_register_Asm_8: 9241 case ARM::VLD3LNdWB_register_Asm_16: 9242 case ARM::VLD3LNdWB_register_Asm_32: 9243 case ARM::VLD3LNqWB_register_Asm_16: 9244 case ARM::VLD3LNqWB_register_Asm_32: { 9245 MCInst TmpInst; 9246 // Shuffle the operands around so the lane index operand is in the 9247 // right place. 9248 unsigned Spacing; 9249 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9250 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9251 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9252 Spacing)); 9253 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9254 Spacing * 2)); 9255 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9256 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9257 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9258 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9259 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9260 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9261 Spacing)); 9262 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9263 Spacing * 2)); 9264 TmpInst.addOperand(Inst.getOperand(1)); // lane 9265 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9266 TmpInst.addOperand(Inst.getOperand(6)); 9267 Inst = TmpInst; 9268 return true; 9269 } 9270 9271 case ARM::VLD4LNdWB_register_Asm_8: 9272 case ARM::VLD4LNdWB_register_Asm_16: 9273 case ARM::VLD4LNdWB_register_Asm_32: 9274 case ARM::VLD4LNqWB_register_Asm_16: 9275 case ARM::VLD4LNqWB_register_Asm_32: { 9276 MCInst TmpInst; 9277 // Shuffle the operands around so the lane index operand is in the 9278 // right place. 9279 unsigned Spacing; 9280 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9281 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9283 Spacing)); 9284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9285 Spacing * 2)); 9286 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9287 Spacing * 3)); 9288 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9289 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9290 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9291 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9292 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9293 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9294 Spacing)); 9295 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9296 Spacing * 2)); 9297 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9298 Spacing * 3)); 9299 TmpInst.addOperand(Inst.getOperand(1)); // lane 9300 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9301 TmpInst.addOperand(Inst.getOperand(6)); 9302 Inst = TmpInst; 9303 return true; 9304 } 9305 9306 case ARM::VLD1LNdWB_fixed_Asm_8: 9307 case ARM::VLD1LNdWB_fixed_Asm_16: 9308 case ARM::VLD1LNdWB_fixed_Asm_32: { 9309 MCInst TmpInst; 9310 // Shuffle the operands around so the lane index operand is in the 9311 // right place. 9312 unsigned Spacing; 9313 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9314 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9315 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9316 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9317 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9318 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9319 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9320 TmpInst.addOperand(Inst.getOperand(1)); // lane 9321 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9322 TmpInst.addOperand(Inst.getOperand(5)); 9323 Inst = TmpInst; 9324 return true; 9325 } 9326 9327 case ARM::VLD2LNdWB_fixed_Asm_8: 9328 case ARM::VLD2LNdWB_fixed_Asm_16: 9329 case ARM::VLD2LNdWB_fixed_Asm_32: 9330 case ARM::VLD2LNqWB_fixed_Asm_16: 9331 case ARM::VLD2LNqWB_fixed_Asm_32: { 9332 MCInst TmpInst; 9333 // Shuffle the operands around so the lane index operand is in the 9334 // right place. 9335 unsigned Spacing; 9336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9339 Spacing)); 9340 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9341 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9342 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9343 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9344 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9345 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9346 Spacing)); 9347 TmpInst.addOperand(Inst.getOperand(1)); // lane 9348 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9349 TmpInst.addOperand(Inst.getOperand(5)); 9350 Inst = TmpInst; 9351 return true; 9352 } 9353 9354 case ARM::VLD3LNdWB_fixed_Asm_8: 9355 case ARM::VLD3LNdWB_fixed_Asm_16: 9356 case ARM::VLD3LNdWB_fixed_Asm_32: 9357 case ARM::VLD3LNqWB_fixed_Asm_16: 9358 case ARM::VLD3LNqWB_fixed_Asm_32: { 9359 MCInst TmpInst; 9360 // Shuffle the operands around so the lane index operand is in the 9361 // right place. 9362 unsigned Spacing; 9363 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9364 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9365 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9366 Spacing)); 9367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9368 Spacing * 2)); 9369 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9370 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9371 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9372 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9373 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9374 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9375 Spacing)); 9376 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9377 Spacing * 2)); 9378 TmpInst.addOperand(Inst.getOperand(1)); // lane 9379 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9380 TmpInst.addOperand(Inst.getOperand(5)); 9381 Inst = TmpInst; 9382 return true; 9383 } 9384 9385 case ARM::VLD4LNdWB_fixed_Asm_8: 9386 case ARM::VLD4LNdWB_fixed_Asm_16: 9387 case ARM::VLD4LNdWB_fixed_Asm_32: 9388 case ARM::VLD4LNqWB_fixed_Asm_16: 9389 case ARM::VLD4LNqWB_fixed_Asm_32: { 9390 MCInst TmpInst; 9391 // Shuffle the operands around so the lane index operand is in the 9392 // right place. 9393 unsigned Spacing; 9394 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9395 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9396 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9397 Spacing)); 9398 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9399 Spacing * 2)); 9400 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9401 Spacing * 3)); 9402 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9403 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9404 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9405 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9406 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9407 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9408 Spacing)); 9409 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9410 Spacing * 2)); 9411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9412 Spacing * 3)); 9413 TmpInst.addOperand(Inst.getOperand(1)); // lane 9414 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9415 TmpInst.addOperand(Inst.getOperand(5)); 9416 Inst = TmpInst; 9417 return true; 9418 } 9419 9420 case ARM::VLD1LNdAsm_8: 9421 case ARM::VLD1LNdAsm_16: 9422 case ARM::VLD1LNdAsm_32: { 9423 MCInst TmpInst; 9424 // Shuffle the operands around so the lane index operand is in the 9425 // right place. 9426 unsigned Spacing; 9427 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9428 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9429 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9430 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9431 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9432 TmpInst.addOperand(Inst.getOperand(1)); // lane 9433 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9434 TmpInst.addOperand(Inst.getOperand(5)); 9435 Inst = TmpInst; 9436 return true; 9437 } 9438 9439 case ARM::VLD2LNdAsm_8: 9440 case ARM::VLD2LNdAsm_16: 9441 case ARM::VLD2LNdAsm_32: 9442 case ARM::VLD2LNqAsm_16: 9443 case ARM::VLD2LNqAsm_32: { 9444 MCInst TmpInst; 9445 // Shuffle the operands around so the lane index operand is in the 9446 // right place. 9447 unsigned Spacing; 9448 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9449 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9450 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9451 Spacing)); 9452 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9453 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9454 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9456 Spacing)); 9457 TmpInst.addOperand(Inst.getOperand(1)); // lane 9458 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9459 TmpInst.addOperand(Inst.getOperand(5)); 9460 Inst = TmpInst; 9461 return true; 9462 } 9463 9464 case ARM::VLD3LNdAsm_8: 9465 case ARM::VLD3LNdAsm_16: 9466 case ARM::VLD3LNdAsm_32: 9467 case ARM::VLD3LNqAsm_16: 9468 case ARM::VLD3LNqAsm_32: { 9469 MCInst TmpInst; 9470 // Shuffle the operands around so the lane index operand is in the 9471 // right place. 9472 unsigned Spacing; 9473 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9474 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9475 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9476 Spacing)); 9477 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9478 Spacing * 2)); 9479 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9480 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9481 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9482 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9483 Spacing)); 9484 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9485 Spacing * 2)); 9486 TmpInst.addOperand(Inst.getOperand(1)); // lane 9487 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9488 TmpInst.addOperand(Inst.getOperand(5)); 9489 Inst = TmpInst; 9490 return true; 9491 } 9492 9493 case ARM::VLD4LNdAsm_8: 9494 case ARM::VLD4LNdAsm_16: 9495 case ARM::VLD4LNdAsm_32: 9496 case ARM::VLD4LNqAsm_16: 9497 case ARM::VLD4LNqAsm_32: { 9498 MCInst TmpInst; 9499 // Shuffle the operands around so the lane index operand is in the 9500 // right place. 9501 unsigned Spacing; 9502 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9503 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9504 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9505 Spacing)); 9506 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9507 Spacing * 2)); 9508 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9509 Spacing * 3)); 9510 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9511 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9512 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9514 Spacing)); 9515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9516 Spacing * 2)); 9517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9518 Spacing * 3)); 9519 TmpInst.addOperand(Inst.getOperand(1)); // lane 9520 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9521 TmpInst.addOperand(Inst.getOperand(5)); 9522 Inst = TmpInst; 9523 return true; 9524 } 9525 9526 // VLD3DUP single 3-element structure to all lanes instructions. 9527 case ARM::VLD3DUPdAsm_8: 9528 case ARM::VLD3DUPdAsm_16: 9529 case ARM::VLD3DUPdAsm_32: 9530 case ARM::VLD3DUPqAsm_8: 9531 case ARM::VLD3DUPqAsm_16: 9532 case ARM::VLD3DUPqAsm_32: { 9533 MCInst TmpInst; 9534 unsigned Spacing; 9535 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9538 Spacing)); 9539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9540 Spacing * 2)); 9541 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9542 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9543 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9544 TmpInst.addOperand(Inst.getOperand(4)); 9545 Inst = TmpInst; 9546 return true; 9547 } 9548 9549 case ARM::VLD3DUPdWB_fixed_Asm_8: 9550 case ARM::VLD3DUPdWB_fixed_Asm_16: 9551 case ARM::VLD3DUPdWB_fixed_Asm_32: 9552 case ARM::VLD3DUPqWB_fixed_Asm_8: 9553 case ARM::VLD3DUPqWB_fixed_Asm_16: 9554 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9555 MCInst TmpInst; 9556 unsigned Spacing; 9557 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9558 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9559 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9560 Spacing)); 9561 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9562 Spacing * 2)); 9563 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9564 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9565 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9566 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9567 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9568 TmpInst.addOperand(Inst.getOperand(4)); 9569 Inst = TmpInst; 9570 return true; 9571 } 9572 9573 case ARM::VLD3DUPdWB_register_Asm_8: 9574 case ARM::VLD3DUPdWB_register_Asm_16: 9575 case ARM::VLD3DUPdWB_register_Asm_32: 9576 case ARM::VLD3DUPqWB_register_Asm_8: 9577 case ARM::VLD3DUPqWB_register_Asm_16: 9578 case ARM::VLD3DUPqWB_register_Asm_32: { 9579 MCInst TmpInst; 9580 unsigned Spacing; 9581 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9582 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9583 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9584 Spacing)); 9585 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9586 Spacing * 2)); 9587 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9588 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9589 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9590 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9591 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9592 TmpInst.addOperand(Inst.getOperand(5)); 9593 Inst = TmpInst; 9594 return true; 9595 } 9596 9597 // VLD3 multiple 3-element structure instructions. 9598 case ARM::VLD3dAsm_8: 9599 case ARM::VLD3dAsm_16: 9600 case ARM::VLD3dAsm_32: 9601 case ARM::VLD3qAsm_8: 9602 case ARM::VLD3qAsm_16: 9603 case ARM::VLD3qAsm_32: { 9604 MCInst TmpInst; 9605 unsigned Spacing; 9606 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9607 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9608 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9609 Spacing)); 9610 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9611 Spacing * 2)); 9612 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9613 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9614 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9615 TmpInst.addOperand(Inst.getOperand(4)); 9616 Inst = TmpInst; 9617 return true; 9618 } 9619 9620 case ARM::VLD3dWB_fixed_Asm_8: 9621 case ARM::VLD3dWB_fixed_Asm_16: 9622 case ARM::VLD3dWB_fixed_Asm_32: 9623 case ARM::VLD3qWB_fixed_Asm_8: 9624 case ARM::VLD3qWB_fixed_Asm_16: 9625 case ARM::VLD3qWB_fixed_Asm_32: { 9626 MCInst TmpInst; 9627 unsigned Spacing; 9628 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9629 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9630 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9631 Spacing)); 9632 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9633 Spacing * 2)); 9634 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9635 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9636 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9637 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9638 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9639 TmpInst.addOperand(Inst.getOperand(4)); 9640 Inst = TmpInst; 9641 return true; 9642 } 9643 9644 case ARM::VLD3dWB_register_Asm_8: 9645 case ARM::VLD3dWB_register_Asm_16: 9646 case ARM::VLD3dWB_register_Asm_32: 9647 case ARM::VLD3qWB_register_Asm_8: 9648 case ARM::VLD3qWB_register_Asm_16: 9649 case ARM::VLD3qWB_register_Asm_32: { 9650 MCInst TmpInst; 9651 unsigned Spacing; 9652 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9653 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9654 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9655 Spacing)); 9656 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9657 Spacing * 2)); 9658 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9659 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9660 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9661 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9662 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9663 TmpInst.addOperand(Inst.getOperand(5)); 9664 Inst = TmpInst; 9665 return true; 9666 } 9667 9668 // VLD4DUP single 3-element structure to all lanes instructions. 9669 case ARM::VLD4DUPdAsm_8: 9670 case ARM::VLD4DUPdAsm_16: 9671 case ARM::VLD4DUPdAsm_32: 9672 case ARM::VLD4DUPqAsm_8: 9673 case ARM::VLD4DUPqAsm_16: 9674 case ARM::VLD4DUPqAsm_32: { 9675 MCInst TmpInst; 9676 unsigned Spacing; 9677 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9678 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9680 Spacing)); 9681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9682 Spacing * 2)); 9683 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9684 Spacing * 3)); 9685 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9686 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9687 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9688 TmpInst.addOperand(Inst.getOperand(4)); 9689 Inst = TmpInst; 9690 return true; 9691 } 9692 9693 case ARM::VLD4DUPdWB_fixed_Asm_8: 9694 case ARM::VLD4DUPdWB_fixed_Asm_16: 9695 case ARM::VLD4DUPdWB_fixed_Asm_32: 9696 case ARM::VLD4DUPqWB_fixed_Asm_8: 9697 case ARM::VLD4DUPqWB_fixed_Asm_16: 9698 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9699 MCInst TmpInst; 9700 unsigned Spacing; 9701 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9702 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9704 Spacing)); 9705 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9706 Spacing * 2)); 9707 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9708 Spacing * 3)); 9709 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9710 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9711 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9712 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9713 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9714 TmpInst.addOperand(Inst.getOperand(4)); 9715 Inst = TmpInst; 9716 return true; 9717 } 9718 9719 case ARM::VLD4DUPdWB_register_Asm_8: 9720 case ARM::VLD4DUPdWB_register_Asm_16: 9721 case ARM::VLD4DUPdWB_register_Asm_32: 9722 case ARM::VLD4DUPqWB_register_Asm_8: 9723 case ARM::VLD4DUPqWB_register_Asm_16: 9724 case ARM::VLD4DUPqWB_register_Asm_32: { 9725 MCInst TmpInst; 9726 unsigned Spacing; 9727 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9728 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9730 Spacing)); 9731 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9732 Spacing * 2)); 9733 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9734 Spacing * 3)); 9735 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9736 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9737 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9738 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9739 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9740 TmpInst.addOperand(Inst.getOperand(5)); 9741 Inst = TmpInst; 9742 return true; 9743 } 9744 9745 // VLD4 multiple 4-element structure instructions. 9746 case ARM::VLD4dAsm_8: 9747 case ARM::VLD4dAsm_16: 9748 case ARM::VLD4dAsm_32: 9749 case ARM::VLD4qAsm_8: 9750 case ARM::VLD4qAsm_16: 9751 case ARM::VLD4qAsm_32: { 9752 MCInst TmpInst; 9753 unsigned Spacing; 9754 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9755 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9757 Spacing)); 9758 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9759 Spacing * 2)); 9760 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9761 Spacing * 3)); 9762 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9763 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9764 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9765 TmpInst.addOperand(Inst.getOperand(4)); 9766 Inst = TmpInst; 9767 return true; 9768 } 9769 9770 case ARM::VLD4dWB_fixed_Asm_8: 9771 case ARM::VLD4dWB_fixed_Asm_16: 9772 case ARM::VLD4dWB_fixed_Asm_32: 9773 case ARM::VLD4qWB_fixed_Asm_8: 9774 case ARM::VLD4qWB_fixed_Asm_16: 9775 case ARM::VLD4qWB_fixed_Asm_32: { 9776 MCInst TmpInst; 9777 unsigned Spacing; 9778 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9779 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9781 Spacing)); 9782 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9783 Spacing * 2)); 9784 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9785 Spacing * 3)); 9786 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9787 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9788 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9789 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9790 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9791 TmpInst.addOperand(Inst.getOperand(4)); 9792 Inst = TmpInst; 9793 return true; 9794 } 9795 9796 case ARM::VLD4dWB_register_Asm_8: 9797 case ARM::VLD4dWB_register_Asm_16: 9798 case ARM::VLD4dWB_register_Asm_32: 9799 case ARM::VLD4qWB_register_Asm_8: 9800 case ARM::VLD4qWB_register_Asm_16: 9801 case ARM::VLD4qWB_register_Asm_32: { 9802 MCInst TmpInst; 9803 unsigned Spacing; 9804 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9805 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9807 Spacing)); 9808 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9809 Spacing * 2)); 9810 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9811 Spacing * 3)); 9812 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9813 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9814 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9815 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9816 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9817 TmpInst.addOperand(Inst.getOperand(5)); 9818 Inst = TmpInst; 9819 return true; 9820 } 9821 9822 // VST3 multiple 3-element structure instructions. 9823 case ARM::VST3dAsm_8: 9824 case ARM::VST3dAsm_16: 9825 case ARM::VST3dAsm_32: 9826 case ARM::VST3qAsm_8: 9827 case ARM::VST3qAsm_16: 9828 case ARM::VST3qAsm_32: { 9829 MCInst TmpInst; 9830 unsigned Spacing; 9831 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9832 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9833 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9834 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9835 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9836 Spacing)); 9837 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9838 Spacing * 2)); 9839 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9840 TmpInst.addOperand(Inst.getOperand(4)); 9841 Inst = TmpInst; 9842 return true; 9843 } 9844 9845 case ARM::VST3dWB_fixed_Asm_8: 9846 case ARM::VST3dWB_fixed_Asm_16: 9847 case ARM::VST3dWB_fixed_Asm_32: 9848 case ARM::VST3qWB_fixed_Asm_8: 9849 case ARM::VST3qWB_fixed_Asm_16: 9850 case ARM::VST3qWB_fixed_Asm_32: { 9851 MCInst TmpInst; 9852 unsigned Spacing; 9853 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9854 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9855 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9856 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9857 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9858 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9859 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9860 Spacing)); 9861 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9862 Spacing * 2)); 9863 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9864 TmpInst.addOperand(Inst.getOperand(4)); 9865 Inst = TmpInst; 9866 return true; 9867 } 9868 9869 case ARM::VST3dWB_register_Asm_8: 9870 case ARM::VST3dWB_register_Asm_16: 9871 case ARM::VST3dWB_register_Asm_32: 9872 case ARM::VST3qWB_register_Asm_8: 9873 case ARM::VST3qWB_register_Asm_16: 9874 case ARM::VST3qWB_register_Asm_32: { 9875 MCInst TmpInst; 9876 unsigned Spacing; 9877 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9878 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9879 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9880 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9881 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9882 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9883 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9884 Spacing)); 9885 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9886 Spacing * 2)); 9887 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9888 TmpInst.addOperand(Inst.getOperand(5)); 9889 Inst = TmpInst; 9890 return true; 9891 } 9892 9893 // VST4 multiple 3-element structure instructions. 9894 case ARM::VST4dAsm_8: 9895 case ARM::VST4dAsm_16: 9896 case ARM::VST4dAsm_32: 9897 case ARM::VST4qAsm_8: 9898 case ARM::VST4qAsm_16: 9899 case ARM::VST4qAsm_32: { 9900 MCInst TmpInst; 9901 unsigned Spacing; 9902 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9903 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9904 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9905 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9907 Spacing)); 9908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9909 Spacing * 2)); 9910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9911 Spacing * 3)); 9912 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9913 TmpInst.addOperand(Inst.getOperand(4)); 9914 Inst = TmpInst; 9915 return true; 9916 } 9917 9918 case ARM::VST4dWB_fixed_Asm_8: 9919 case ARM::VST4dWB_fixed_Asm_16: 9920 case ARM::VST4dWB_fixed_Asm_32: 9921 case ARM::VST4qWB_fixed_Asm_8: 9922 case ARM::VST4qWB_fixed_Asm_16: 9923 case ARM::VST4qWB_fixed_Asm_32: { 9924 MCInst TmpInst; 9925 unsigned Spacing; 9926 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9927 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9928 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9929 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9930 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9931 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9933 Spacing)); 9934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9935 Spacing * 2)); 9936 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9937 Spacing * 3)); 9938 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9939 TmpInst.addOperand(Inst.getOperand(4)); 9940 Inst = TmpInst; 9941 return true; 9942 } 9943 9944 case ARM::VST4dWB_register_Asm_8: 9945 case ARM::VST4dWB_register_Asm_16: 9946 case ARM::VST4dWB_register_Asm_32: 9947 case ARM::VST4qWB_register_Asm_8: 9948 case ARM::VST4qWB_register_Asm_16: 9949 case ARM::VST4qWB_register_Asm_32: { 9950 MCInst TmpInst; 9951 unsigned Spacing; 9952 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9953 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9954 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9955 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9956 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9957 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9959 Spacing)); 9960 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9961 Spacing * 2)); 9962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9963 Spacing * 3)); 9964 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9965 TmpInst.addOperand(Inst.getOperand(5)); 9966 Inst = TmpInst; 9967 return true; 9968 } 9969 9970 // Handle encoding choice for the shift-immediate instructions. 9971 case ARM::t2LSLri: 9972 case ARM::t2LSRri: 9973 case ARM::t2ASRri: 9974 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9975 isARMLowRegister(Inst.getOperand(1).getReg()) && 9976 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9977 !HasWideQualifier) { 9978 unsigned NewOpc; 9979 switch (Inst.getOpcode()) { 9980 default: llvm_unreachable("unexpected opcode"); 9981 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9982 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9983 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9984 } 9985 // The Thumb1 operands aren't in the same order. Awesome, eh? 9986 MCInst TmpInst; 9987 TmpInst.setOpcode(NewOpc); 9988 TmpInst.addOperand(Inst.getOperand(0)); 9989 TmpInst.addOperand(Inst.getOperand(5)); 9990 TmpInst.addOperand(Inst.getOperand(1)); 9991 TmpInst.addOperand(Inst.getOperand(2)); 9992 TmpInst.addOperand(Inst.getOperand(3)); 9993 TmpInst.addOperand(Inst.getOperand(4)); 9994 Inst = TmpInst; 9995 return true; 9996 } 9997 return false; 9998 9999 // Handle the Thumb2 mode MOV complex aliases. 10000 case ARM::t2MOVsr: 10001 case ARM::t2MOVSsr: { 10002 // Which instruction to expand to depends on the CCOut operand and 10003 // whether we're in an IT block if the register operands are low 10004 // registers. 10005 bool isNarrow = false; 10006 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10007 isARMLowRegister(Inst.getOperand(1).getReg()) && 10008 isARMLowRegister(Inst.getOperand(2).getReg()) && 10009 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10010 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 10011 !HasWideQualifier) 10012 isNarrow = true; 10013 MCInst TmpInst; 10014 unsigned newOpc; 10015 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 10016 default: llvm_unreachable("unexpected opcode!"); 10017 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 10018 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 10019 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 10020 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 10021 } 10022 TmpInst.setOpcode(newOpc); 10023 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10024 if (isNarrow) 10025 TmpInst.addOperand(MCOperand::createReg( 10026 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10027 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10028 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10029 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 10030 TmpInst.addOperand(Inst.getOperand(5)); 10031 if (!isNarrow) 10032 TmpInst.addOperand(MCOperand::createReg( 10033 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 10034 Inst = TmpInst; 10035 return true; 10036 } 10037 case ARM::t2MOVsi: 10038 case ARM::t2MOVSsi: { 10039 // Which instruction to expand to depends on the CCOut operand and 10040 // whether we're in an IT block if the register operands are low 10041 // registers. 10042 bool isNarrow = false; 10043 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10044 isARMLowRegister(Inst.getOperand(1).getReg()) && 10045 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 10046 !HasWideQualifier) 10047 isNarrow = true; 10048 MCInst TmpInst; 10049 unsigned newOpc; 10050 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10051 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 10052 bool isMov = false; 10053 // MOV rd, rm, LSL #0 is actually a MOV instruction 10054 if (Shift == ARM_AM::lsl && Amount == 0) { 10055 isMov = true; 10056 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 10057 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 10058 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 10059 // instead. 10060 if (inITBlock()) { 10061 isNarrow = false; 10062 } 10063 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 10064 } else { 10065 switch(Shift) { 10066 default: llvm_unreachable("unexpected opcode!"); 10067 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 10068 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 10069 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 10070 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 10071 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 10072 } 10073 } 10074 if (Amount == 32) Amount = 0; 10075 TmpInst.setOpcode(newOpc); 10076 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10077 if (isNarrow && !isMov) 10078 TmpInst.addOperand(MCOperand::createReg( 10079 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10080 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10081 if (newOpc != ARM::t2RRX && !isMov) 10082 TmpInst.addOperand(MCOperand::createImm(Amount)); 10083 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10084 TmpInst.addOperand(Inst.getOperand(4)); 10085 if (!isNarrow) 10086 TmpInst.addOperand(MCOperand::createReg( 10087 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 10088 Inst = TmpInst; 10089 return true; 10090 } 10091 // Handle the ARM mode MOV complex aliases. 10092 case ARM::ASRr: 10093 case ARM::LSRr: 10094 case ARM::LSLr: 10095 case ARM::RORr: { 10096 ARM_AM::ShiftOpc ShiftTy; 10097 switch(Inst.getOpcode()) { 10098 default: llvm_unreachable("unexpected opcode!"); 10099 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 10100 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 10101 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 10102 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 10103 } 10104 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 10105 MCInst TmpInst; 10106 TmpInst.setOpcode(ARM::MOVsr); 10107 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10108 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10109 TmpInst.addOperand(Inst.getOperand(2)); // Rm 10110 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10111 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10112 TmpInst.addOperand(Inst.getOperand(4)); 10113 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10114 Inst = TmpInst; 10115 return true; 10116 } 10117 case ARM::ASRi: 10118 case ARM::LSRi: 10119 case ARM::LSLi: 10120 case ARM::RORi: { 10121 ARM_AM::ShiftOpc ShiftTy; 10122 switch(Inst.getOpcode()) { 10123 default: llvm_unreachable("unexpected opcode!"); 10124 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 10125 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 10126 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 10127 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 10128 } 10129 // A shift by zero is a plain MOVr, not a MOVsi. 10130 unsigned Amt = Inst.getOperand(2).getImm(); 10131 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 10132 // A shift by 32 should be encoded as 0 when permitted 10133 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 10134 Amt = 0; 10135 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 10136 MCInst TmpInst; 10137 TmpInst.setOpcode(Opc); 10138 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10139 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10140 if (Opc == ARM::MOVsi) 10141 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10142 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 10143 TmpInst.addOperand(Inst.getOperand(4)); 10144 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 10145 Inst = TmpInst; 10146 return true; 10147 } 10148 case ARM::RRXi: { 10149 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 10150 MCInst TmpInst; 10151 TmpInst.setOpcode(ARM::MOVsi); 10152 TmpInst.addOperand(Inst.getOperand(0)); // Rd 10153 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10154 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 10155 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10156 TmpInst.addOperand(Inst.getOperand(3)); 10157 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 10158 Inst = TmpInst; 10159 return true; 10160 } 10161 case ARM::t2LDMIA_UPD: { 10162 // If this is a load of a single register, then we should use 10163 // a post-indexed LDR instruction instead, per the ARM ARM. 10164 if (Inst.getNumOperands() != 5) 10165 return false; 10166 MCInst TmpInst; 10167 TmpInst.setOpcode(ARM::t2LDR_POST); 10168 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10169 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10170 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10171 TmpInst.addOperand(MCOperand::createImm(4)); 10172 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10173 TmpInst.addOperand(Inst.getOperand(3)); 10174 Inst = TmpInst; 10175 return true; 10176 } 10177 case ARM::t2STMDB_UPD: { 10178 // If this is a store of a single register, then we should use 10179 // a pre-indexed STR instruction instead, per the ARM ARM. 10180 if (Inst.getNumOperands() != 5) 10181 return false; 10182 MCInst TmpInst; 10183 TmpInst.setOpcode(ARM::t2STR_PRE); 10184 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10185 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10186 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10187 TmpInst.addOperand(MCOperand::createImm(-4)); 10188 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10189 TmpInst.addOperand(Inst.getOperand(3)); 10190 Inst = TmpInst; 10191 return true; 10192 } 10193 case ARM::LDMIA_UPD: 10194 // If this is a load of a single register via a 'pop', then we should use 10195 // a post-indexed LDR instruction instead, per the ARM ARM. 10196 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10197 Inst.getNumOperands() == 5) { 10198 MCInst TmpInst; 10199 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10200 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10201 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10202 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10203 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10204 TmpInst.addOperand(MCOperand::createImm(4)); 10205 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10206 TmpInst.addOperand(Inst.getOperand(3)); 10207 Inst = TmpInst; 10208 return true; 10209 } 10210 break; 10211 case ARM::STMDB_UPD: 10212 // If this is a store of a single register via a 'push', then we should use 10213 // a pre-indexed STR instruction instead, per the ARM ARM. 10214 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10215 Inst.getNumOperands() == 5) { 10216 MCInst TmpInst; 10217 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10218 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10219 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10220 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10221 TmpInst.addOperand(MCOperand::createImm(-4)); 10222 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10223 TmpInst.addOperand(Inst.getOperand(3)); 10224 Inst = TmpInst; 10225 } 10226 break; 10227 case ARM::t2ADDri12: 10228 case ARM::t2SUBri12: 10229 case ARM::t2ADDspImm12: 10230 case ARM::t2SUBspImm12: { 10231 // If the immediate fits for encoding T3 and the generic 10232 // mnemonic was used, encoding T3 is preferred. 10233 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10234 if ((Token != "add" && Token != "sub") || 10235 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10236 break; 10237 switch (Inst.getOpcode()) { 10238 case ARM::t2ADDri12: 10239 Inst.setOpcode(ARM::t2ADDri); 10240 break; 10241 case ARM::t2SUBri12: 10242 Inst.setOpcode(ARM::t2SUBri); 10243 break; 10244 case ARM::t2ADDspImm12: 10245 Inst.setOpcode(ARM::t2ADDspImm); 10246 break; 10247 case ARM::t2SUBspImm12: 10248 Inst.setOpcode(ARM::t2SUBspImm); 10249 break; 10250 } 10251 10252 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10253 return true; 10254 } 10255 case ARM::tADDi8: 10256 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10257 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10258 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10259 // to encoding T1 if <Rd> is omitted." 10260 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10261 Inst.setOpcode(ARM::tADDi3); 10262 return true; 10263 } 10264 break; 10265 case ARM::tSUBi8: 10266 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10267 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10268 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10269 // to encoding T1 if <Rd> is omitted." 10270 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10271 Inst.setOpcode(ARM::tSUBi3); 10272 return true; 10273 } 10274 break; 10275 case ARM::t2ADDri: 10276 case ARM::t2SUBri: { 10277 // If the destination and first source operand are the same, and 10278 // the flags are compatible with the current IT status, use encoding T2 10279 // instead of T3. For compatibility with the system 'as'. Make sure the 10280 // wide encoding wasn't explicit. 10281 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10282 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10283 (Inst.getOperand(2).isImm() && 10284 (unsigned)Inst.getOperand(2).getImm() > 255) || 10285 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10286 HasWideQualifier) 10287 break; 10288 MCInst TmpInst; 10289 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10290 ARM::tADDi8 : ARM::tSUBi8); 10291 TmpInst.addOperand(Inst.getOperand(0)); 10292 TmpInst.addOperand(Inst.getOperand(5)); 10293 TmpInst.addOperand(Inst.getOperand(0)); 10294 TmpInst.addOperand(Inst.getOperand(2)); 10295 TmpInst.addOperand(Inst.getOperand(3)); 10296 TmpInst.addOperand(Inst.getOperand(4)); 10297 Inst = TmpInst; 10298 return true; 10299 } 10300 case ARM::t2ADDspImm: 10301 case ARM::t2SUBspImm: { 10302 // Prefer T1 encoding if possible 10303 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10304 break; 10305 unsigned V = Inst.getOperand(2).getImm(); 10306 if (V & 3 || V > ((1 << 7) - 1) << 2) 10307 break; 10308 MCInst TmpInst; 10309 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10310 : ARM::tSUBspi); 10311 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10312 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10313 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10314 TmpInst.addOperand(Inst.getOperand(3)); // pred 10315 TmpInst.addOperand(Inst.getOperand(4)); 10316 Inst = TmpInst; 10317 return true; 10318 } 10319 case ARM::t2ADDrr: { 10320 // If the destination and first source operand are the same, and 10321 // there's no setting of the flags, use encoding T2 instead of T3. 10322 // Note that this is only for ADD, not SUB. This mirrors the system 10323 // 'as' behaviour. Also take advantage of ADD being commutative. 10324 // Make sure the wide encoding wasn't explicit. 10325 bool Swap = false; 10326 auto DestReg = Inst.getOperand(0).getReg(); 10327 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10328 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10329 Transform = true; 10330 Swap = true; 10331 } 10332 if (!Transform || 10333 Inst.getOperand(5).getReg() != 0 || 10334 HasWideQualifier) 10335 break; 10336 MCInst TmpInst; 10337 TmpInst.setOpcode(ARM::tADDhirr); 10338 TmpInst.addOperand(Inst.getOperand(0)); 10339 TmpInst.addOperand(Inst.getOperand(0)); 10340 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10341 TmpInst.addOperand(Inst.getOperand(3)); 10342 TmpInst.addOperand(Inst.getOperand(4)); 10343 Inst = TmpInst; 10344 return true; 10345 } 10346 case ARM::tADDrSP: 10347 // If the non-SP source operand and the destination operand are not the 10348 // same, we need to use the 32-bit encoding if it's available. 10349 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10350 Inst.setOpcode(ARM::t2ADDrr); 10351 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10352 return true; 10353 } 10354 break; 10355 case ARM::tB: 10356 // A Thumb conditional branch outside of an IT block is a tBcc. 10357 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10358 Inst.setOpcode(ARM::tBcc); 10359 return true; 10360 } 10361 break; 10362 case ARM::t2B: 10363 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10364 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10365 Inst.setOpcode(ARM::t2Bcc); 10366 return true; 10367 } 10368 break; 10369 case ARM::t2Bcc: 10370 // If the conditional is AL or we're in an IT block, we really want t2B. 10371 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10372 Inst.setOpcode(ARM::t2B); 10373 return true; 10374 } 10375 break; 10376 case ARM::tBcc: 10377 // If the conditional is AL, we really want tB. 10378 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10379 Inst.setOpcode(ARM::tB); 10380 return true; 10381 } 10382 break; 10383 case ARM::tLDMIA: { 10384 // If the register list contains any high registers, or if the writeback 10385 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10386 // instead if we're in Thumb2. Otherwise, this should have generated 10387 // an error in validateInstruction(). 10388 unsigned Rn = Inst.getOperand(0).getReg(); 10389 bool hasWritebackToken = 10390 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10391 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10392 bool listContainsBase; 10393 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10394 (!listContainsBase && !hasWritebackToken) || 10395 (listContainsBase && hasWritebackToken)) { 10396 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10397 assert(isThumbTwo()); 10398 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10399 // If we're switching to the updating version, we need to insert 10400 // the writeback tied operand. 10401 if (hasWritebackToken) 10402 Inst.insert(Inst.begin(), 10403 MCOperand::createReg(Inst.getOperand(0).getReg())); 10404 return true; 10405 } 10406 break; 10407 } 10408 case ARM::tSTMIA_UPD: { 10409 // If the register list contains any high registers, we need to use 10410 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10411 // should have generated an error in validateInstruction(). 10412 unsigned Rn = Inst.getOperand(0).getReg(); 10413 bool listContainsBase; 10414 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10415 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10416 assert(isThumbTwo()); 10417 Inst.setOpcode(ARM::t2STMIA_UPD); 10418 return true; 10419 } 10420 break; 10421 } 10422 case ARM::tPOP: { 10423 bool listContainsBase; 10424 // If the register list contains any high registers, we need to use 10425 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10426 // should have generated an error in validateInstruction(). 10427 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10428 return false; 10429 assert(isThumbTwo()); 10430 Inst.setOpcode(ARM::t2LDMIA_UPD); 10431 // Add the base register and writeback operands. 10432 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10433 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10434 return true; 10435 } 10436 case ARM::tPUSH: { 10437 bool listContainsBase; 10438 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10439 return false; 10440 assert(isThumbTwo()); 10441 Inst.setOpcode(ARM::t2STMDB_UPD); 10442 // Add the base register and writeback operands. 10443 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10444 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10445 return true; 10446 } 10447 case ARM::t2MOVi: 10448 // If we can use the 16-bit encoding and the user didn't explicitly 10449 // request the 32-bit variant, transform it here. 10450 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10451 (Inst.getOperand(1).isImm() && 10452 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10453 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10454 !HasWideQualifier) { 10455 // The operands aren't in the same order for tMOVi8... 10456 MCInst TmpInst; 10457 TmpInst.setOpcode(ARM::tMOVi8); 10458 TmpInst.addOperand(Inst.getOperand(0)); 10459 TmpInst.addOperand(Inst.getOperand(4)); 10460 TmpInst.addOperand(Inst.getOperand(1)); 10461 TmpInst.addOperand(Inst.getOperand(2)); 10462 TmpInst.addOperand(Inst.getOperand(3)); 10463 Inst = TmpInst; 10464 return true; 10465 } 10466 break; 10467 10468 case ARM::t2MOVr: 10469 // If we can use the 16-bit encoding and the user didn't explicitly 10470 // request the 32-bit variant, transform it here. 10471 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10472 isARMLowRegister(Inst.getOperand(1).getReg()) && 10473 Inst.getOperand(2).getImm() == ARMCC::AL && 10474 Inst.getOperand(4).getReg() == ARM::CPSR && 10475 !HasWideQualifier) { 10476 // The operands aren't the same for tMOV[S]r... (no cc_out) 10477 MCInst TmpInst; 10478 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr; 10479 TmpInst.setOpcode(Op); 10480 TmpInst.addOperand(Inst.getOperand(0)); 10481 TmpInst.addOperand(Inst.getOperand(1)); 10482 if (Op == ARM::tMOVr) { 10483 TmpInst.addOperand(Inst.getOperand(2)); 10484 TmpInst.addOperand(Inst.getOperand(3)); 10485 } 10486 Inst = TmpInst; 10487 return true; 10488 } 10489 break; 10490 10491 case ARM::t2SXTH: 10492 case ARM::t2SXTB: 10493 case ARM::t2UXTH: 10494 case ARM::t2UXTB: 10495 // If we can use the 16-bit encoding and the user didn't explicitly 10496 // request the 32-bit variant, transform it here. 10497 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10498 isARMLowRegister(Inst.getOperand(1).getReg()) && 10499 Inst.getOperand(2).getImm() == 0 && 10500 !HasWideQualifier) { 10501 unsigned NewOpc; 10502 switch (Inst.getOpcode()) { 10503 default: llvm_unreachable("Illegal opcode!"); 10504 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10505 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10506 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10507 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10508 } 10509 // The operands aren't the same for thumb1 (no rotate operand). 10510 MCInst TmpInst; 10511 TmpInst.setOpcode(NewOpc); 10512 TmpInst.addOperand(Inst.getOperand(0)); 10513 TmpInst.addOperand(Inst.getOperand(1)); 10514 TmpInst.addOperand(Inst.getOperand(3)); 10515 TmpInst.addOperand(Inst.getOperand(4)); 10516 Inst = TmpInst; 10517 return true; 10518 } 10519 break; 10520 10521 case ARM::MOVsi: { 10522 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10523 // rrx shifts and asr/lsr of #32 is encoded as 0 10524 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10525 return false; 10526 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10527 // Shifting by zero is accepted as a vanilla 'MOVr' 10528 MCInst TmpInst; 10529 TmpInst.setOpcode(ARM::MOVr); 10530 TmpInst.addOperand(Inst.getOperand(0)); 10531 TmpInst.addOperand(Inst.getOperand(1)); 10532 TmpInst.addOperand(Inst.getOperand(3)); 10533 TmpInst.addOperand(Inst.getOperand(4)); 10534 TmpInst.addOperand(Inst.getOperand(5)); 10535 Inst = TmpInst; 10536 return true; 10537 } 10538 return false; 10539 } 10540 case ARM::ANDrsi: 10541 case ARM::ORRrsi: 10542 case ARM::EORrsi: 10543 case ARM::BICrsi: 10544 case ARM::SUBrsi: 10545 case ARM::ADDrsi: { 10546 unsigned newOpc; 10547 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10548 if (SOpc == ARM_AM::rrx) return false; 10549 switch (Inst.getOpcode()) { 10550 default: llvm_unreachable("unexpected opcode!"); 10551 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10552 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10553 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10554 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10555 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10556 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10557 } 10558 // If the shift is by zero, use the non-shifted instruction definition. 10559 // The exception is for right shifts, where 0 == 32 10560 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10561 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10562 MCInst TmpInst; 10563 TmpInst.setOpcode(newOpc); 10564 TmpInst.addOperand(Inst.getOperand(0)); 10565 TmpInst.addOperand(Inst.getOperand(1)); 10566 TmpInst.addOperand(Inst.getOperand(2)); 10567 TmpInst.addOperand(Inst.getOperand(4)); 10568 TmpInst.addOperand(Inst.getOperand(5)); 10569 TmpInst.addOperand(Inst.getOperand(6)); 10570 Inst = TmpInst; 10571 return true; 10572 } 10573 return false; 10574 } 10575 case ARM::ITasm: 10576 case ARM::t2IT: { 10577 // Set up the IT block state according to the IT instruction we just 10578 // matched. 10579 assert(!inITBlock() && "nested IT blocks?!"); 10580 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10581 Inst.getOperand(1).getImm()); 10582 break; 10583 } 10584 case ARM::t2LSLrr: 10585 case ARM::t2LSRrr: 10586 case ARM::t2ASRrr: 10587 case ARM::t2SBCrr: 10588 case ARM::t2RORrr: 10589 case ARM::t2BICrr: 10590 // Assemblers should use the narrow encodings of these instructions when permissible. 10591 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10592 isARMLowRegister(Inst.getOperand(2).getReg())) && 10593 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10594 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10595 !HasWideQualifier) { 10596 unsigned NewOpc; 10597 switch (Inst.getOpcode()) { 10598 default: llvm_unreachable("unexpected opcode"); 10599 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10600 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10601 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10602 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10603 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10604 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10605 } 10606 MCInst TmpInst; 10607 TmpInst.setOpcode(NewOpc); 10608 TmpInst.addOperand(Inst.getOperand(0)); 10609 TmpInst.addOperand(Inst.getOperand(5)); 10610 TmpInst.addOperand(Inst.getOperand(1)); 10611 TmpInst.addOperand(Inst.getOperand(2)); 10612 TmpInst.addOperand(Inst.getOperand(3)); 10613 TmpInst.addOperand(Inst.getOperand(4)); 10614 Inst = TmpInst; 10615 return true; 10616 } 10617 return false; 10618 10619 case ARM::t2ANDrr: 10620 case ARM::t2EORrr: 10621 case ARM::t2ADCrr: 10622 case ARM::t2ORRrr: 10623 // Assemblers should use the narrow encodings of these instructions when permissible. 10624 // These instructions are special in that they are commutable, so shorter encodings 10625 // are available more often. 10626 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10627 isARMLowRegister(Inst.getOperand(2).getReg())) && 10628 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10629 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10630 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10631 !HasWideQualifier) { 10632 unsigned NewOpc; 10633 switch (Inst.getOpcode()) { 10634 default: llvm_unreachable("unexpected opcode"); 10635 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10636 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10637 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10638 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10639 } 10640 MCInst TmpInst; 10641 TmpInst.setOpcode(NewOpc); 10642 TmpInst.addOperand(Inst.getOperand(0)); 10643 TmpInst.addOperand(Inst.getOperand(5)); 10644 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10645 TmpInst.addOperand(Inst.getOperand(1)); 10646 TmpInst.addOperand(Inst.getOperand(2)); 10647 } else { 10648 TmpInst.addOperand(Inst.getOperand(2)); 10649 TmpInst.addOperand(Inst.getOperand(1)); 10650 } 10651 TmpInst.addOperand(Inst.getOperand(3)); 10652 TmpInst.addOperand(Inst.getOperand(4)); 10653 Inst = TmpInst; 10654 return true; 10655 } 10656 return false; 10657 case ARM::MVE_VPST: 10658 case ARM::MVE_VPTv16i8: 10659 case ARM::MVE_VPTv8i16: 10660 case ARM::MVE_VPTv4i32: 10661 case ARM::MVE_VPTv16u8: 10662 case ARM::MVE_VPTv8u16: 10663 case ARM::MVE_VPTv4u32: 10664 case ARM::MVE_VPTv16s8: 10665 case ARM::MVE_VPTv8s16: 10666 case ARM::MVE_VPTv4s32: 10667 case ARM::MVE_VPTv4f32: 10668 case ARM::MVE_VPTv8f16: 10669 case ARM::MVE_VPTv16i8r: 10670 case ARM::MVE_VPTv8i16r: 10671 case ARM::MVE_VPTv4i32r: 10672 case ARM::MVE_VPTv16u8r: 10673 case ARM::MVE_VPTv8u16r: 10674 case ARM::MVE_VPTv4u32r: 10675 case ARM::MVE_VPTv16s8r: 10676 case ARM::MVE_VPTv8s16r: 10677 case ARM::MVE_VPTv4s32r: 10678 case ARM::MVE_VPTv4f32r: 10679 case ARM::MVE_VPTv8f16r: { 10680 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10681 MCOperand &MO = Inst.getOperand(0); 10682 VPTState.Mask = MO.getImm(); 10683 VPTState.CurPosition = 0; 10684 break; 10685 } 10686 } 10687 return false; 10688 } 10689 10690 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10691 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10692 // suffix depending on whether they're in an IT block or not. 10693 unsigned Opc = Inst.getOpcode(); 10694 const MCInstrDesc &MCID = MII.get(Opc); 10695 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10696 assert(MCID.hasOptionalDef() && 10697 "optionally flag setting instruction missing optional def operand"); 10698 assert(MCID.NumOperands == Inst.getNumOperands() && 10699 "operand count mismatch!"); 10700 // Find the optional-def operand (cc_out). 10701 unsigned OpNo; 10702 for (OpNo = 0; 10703 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10704 ++OpNo) 10705 ; 10706 // If we're parsing Thumb1, reject it completely. 10707 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10708 return Match_RequiresFlagSetting; 10709 // If we're parsing Thumb2, which form is legal depends on whether we're 10710 // in an IT block. 10711 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10712 !inITBlock()) 10713 return Match_RequiresITBlock; 10714 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10715 inITBlock()) 10716 return Match_RequiresNotITBlock; 10717 // LSL with zero immediate is not allowed in an IT block 10718 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10719 return Match_RequiresNotITBlock; 10720 } else if (isThumbOne()) { 10721 // Some high-register supporting Thumb1 encodings only allow both registers 10722 // to be from r0-r7 when in Thumb2. 10723 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10724 isARMLowRegister(Inst.getOperand(1).getReg()) && 10725 isARMLowRegister(Inst.getOperand(2).getReg())) 10726 return Match_RequiresThumb2; 10727 // Others only require ARMv6 or later. 10728 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10729 isARMLowRegister(Inst.getOperand(0).getReg()) && 10730 isARMLowRegister(Inst.getOperand(1).getReg())) 10731 return Match_RequiresV6; 10732 } 10733 10734 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10735 // than the loop below can handle, so it uses the GPRnopc register class and 10736 // we do SP handling here. 10737 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10738 { 10739 // SP as both source and destination is not allowed 10740 if (Inst.getOperand(0).getReg() == ARM::SP && 10741 Inst.getOperand(1).getReg() == ARM::SP) 10742 return Match_RequiresV8; 10743 // When flags-setting SP as either source or destination is not allowed 10744 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10745 (Inst.getOperand(0).getReg() == ARM::SP || 10746 Inst.getOperand(1).getReg() == ARM::SP)) 10747 return Match_RequiresV8; 10748 } 10749 10750 switch (Inst.getOpcode()) { 10751 case ARM::VMRS: 10752 case ARM::VMSR: 10753 case ARM::VMRS_FPCXTS: 10754 case ARM::VMRS_FPCXTNS: 10755 case ARM::VMSR_FPCXTS: 10756 case ARM::VMSR_FPCXTNS: 10757 case ARM::VMRS_FPSCR_NZCVQC: 10758 case ARM::VMSR_FPSCR_NZCVQC: 10759 case ARM::FMSTAT: 10760 case ARM::VMRS_VPR: 10761 case ARM::VMRS_P0: 10762 case ARM::VMSR_VPR: 10763 case ARM::VMSR_P0: 10764 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10765 // ARMv8-A. 10766 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10767 (isThumb() && !hasV8Ops())) 10768 return Match_InvalidOperand; 10769 break; 10770 case ARM::t2TBB: 10771 case ARM::t2TBH: 10772 // Rn = sp is only allowed with ARMv8-A 10773 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP)) 10774 return Match_RequiresV8; 10775 break; 10776 default: 10777 break; 10778 } 10779 10780 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10781 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10782 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10783 const auto &Op = Inst.getOperand(I); 10784 if (!Op.isReg()) { 10785 // This can happen in awkward cases with tied operands, e.g. a 10786 // writeback load/store with a complex addressing mode in 10787 // which there's an output operand corresponding to the 10788 // updated written-back base register: the Tablegen-generated 10789 // AsmMatcher will have written a placeholder operand to that 10790 // slot in the form of an immediate 0, because it can't 10791 // generate the register part of the complex addressing-mode 10792 // operand ahead of time. 10793 continue; 10794 } 10795 10796 unsigned Reg = Op.getReg(); 10797 if ((Reg == ARM::SP) && !hasV8Ops()) 10798 return Match_RequiresV8; 10799 else if (Reg == ARM::PC) 10800 return Match_InvalidOperand; 10801 } 10802 10803 return Match_Success; 10804 } 10805 10806 namespace llvm { 10807 10808 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10809 return true; // In an assembly source, no need to second-guess 10810 } 10811 10812 } // end namespace llvm 10813 10814 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10815 // the last instruction in the block. 10816 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10817 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10818 10819 // All branch & call instructions terminate IT blocks with the exception of 10820 // SVC. 10821 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10822 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10823 return true; 10824 10825 // Any arithmetic instruction which writes to the PC also terminates the IT 10826 // block. 10827 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10828 return true; 10829 10830 return false; 10831 } 10832 10833 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10834 SmallVectorImpl<NearMissInfo> &NearMisses, 10835 bool MatchingInlineAsm, 10836 bool &EmitInITBlock, 10837 MCStreamer &Out) { 10838 // If we can't use an implicit IT block here, just match as normal. 10839 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10840 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10841 10842 // Try to match the instruction in an extension of the current IT block (if 10843 // there is one). 10844 if (inImplicitITBlock()) { 10845 extendImplicitITBlock(ITState.Cond); 10846 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10847 Match_Success) { 10848 // The match succeded, but we still have to check that the instruction is 10849 // valid in this implicit IT block. 10850 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10851 if (MCID.isPredicable()) { 10852 ARMCC::CondCodes InstCond = 10853 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10854 .getImm(); 10855 ARMCC::CondCodes ITCond = currentITCond(); 10856 if (InstCond == ITCond) { 10857 EmitInITBlock = true; 10858 return Match_Success; 10859 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10860 invertCurrentITCondition(); 10861 EmitInITBlock = true; 10862 return Match_Success; 10863 } 10864 } 10865 } 10866 rewindImplicitITPosition(); 10867 } 10868 10869 // Finish the current IT block, and try to match outside any IT block. 10870 flushPendingInstructions(Out); 10871 unsigned PlainMatchResult = 10872 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10873 if (PlainMatchResult == Match_Success) { 10874 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10875 if (MCID.isPredicable()) { 10876 ARMCC::CondCodes InstCond = 10877 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10878 .getImm(); 10879 // Some forms of the branch instruction have their own condition code 10880 // fields, so can be conditionally executed without an IT block. 10881 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10882 EmitInITBlock = false; 10883 return Match_Success; 10884 } 10885 if (InstCond == ARMCC::AL) { 10886 EmitInITBlock = false; 10887 return Match_Success; 10888 } 10889 } else { 10890 EmitInITBlock = false; 10891 return Match_Success; 10892 } 10893 } 10894 10895 // Try to match in a new IT block. The matcher doesn't check the actual 10896 // condition, so we create an IT block with a dummy condition, and fix it up 10897 // once we know the actual condition. 10898 startImplicitITBlock(); 10899 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10900 Match_Success) { 10901 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10902 if (MCID.isPredicable()) { 10903 ITState.Cond = 10904 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10905 .getImm(); 10906 EmitInITBlock = true; 10907 return Match_Success; 10908 } 10909 } 10910 discardImplicitITBlock(); 10911 10912 // If none of these succeed, return the error we got when trying to match 10913 // outside any IT blocks. 10914 EmitInITBlock = false; 10915 return PlainMatchResult; 10916 } 10917 10918 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10919 unsigned VariantID = 0); 10920 10921 static const char *getSubtargetFeatureName(uint64_t Val); 10922 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10923 OperandVector &Operands, 10924 MCStreamer &Out, uint64_t &ErrorInfo, 10925 bool MatchingInlineAsm) { 10926 MCInst Inst; 10927 unsigned MatchResult; 10928 bool PendConditionalInstruction = false; 10929 10930 SmallVector<NearMissInfo, 4> NearMisses; 10931 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10932 PendConditionalInstruction, Out); 10933 10934 switch (MatchResult) { 10935 case Match_Success: 10936 LLVM_DEBUG(dbgs() << "Parsed as: "; 10937 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10938 dbgs() << "\n"); 10939 10940 // Context sensitive operand constraints aren't handled by the matcher, 10941 // so check them here. 10942 if (validateInstruction(Inst, Operands)) { 10943 // Still progress the IT block, otherwise one wrong condition causes 10944 // nasty cascading errors. 10945 forwardITPosition(); 10946 forwardVPTPosition(); 10947 return true; 10948 } 10949 10950 { // processInstruction() updates inITBlock state, we need to save it away 10951 bool wasInITBlock = inITBlock(); 10952 10953 // Some instructions need post-processing to, for example, tweak which 10954 // encoding is selected. Loop on it while changes happen so the 10955 // individual transformations can chain off each other. E.g., 10956 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10957 while (processInstruction(Inst, Operands, Out)) 10958 LLVM_DEBUG(dbgs() << "Changed to: "; 10959 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10960 dbgs() << "\n"); 10961 10962 // Only after the instruction is fully processed, we can validate it 10963 if (wasInITBlock && hasV8Ops() && isThumb() && 10964 !isV8EligibleForIT(&Inst) && !getTargetOptions().MCNoDeprecatedWarn) { 10965 Warning(IDLoc, "deprecated instruction in IT block"); 10966 } 10967 } 10968 10969 // Only move forward at the very end so that everything in validate 10970 // and process gets a consistent answer about whether we're in an IT 10971 // block. 10972 forwardITPosition(); 10973 forwardVPTPosition(); 10974 10975 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10976 // doesn't actually encode. 10977 if (Inst.getOpcode() == ARM::ITasm) 10978 return false; 10979 10980 Inst.setLoc(IDLoc); 10981 if (PendConditionalInstruction) { 10982 PendingConditionalInsts.push_back(Inst); 10983 if (isITBlockFull() || isITBlockTerminator(Inst)) 10984 flushPendingInstructions(Out); 10985 } else { 10986 Out.emitInstruction(Inst, getSTI()); 10987 } 10988 return false; 10989 case Match_NearMisses: 10990 ReportNearMisses(NearMisses, IDLoc, Operands); 10991 return true; 10992 case Match_MnemonicFail: { 10993 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10994 std::string Suggestion = ARMMnemonicSpellCheck( 10995 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10996 return Error(IDLoc, "invalid instruction" + Suggestion, 10997 ((ARMOperand &)*Operands[0]).getLocRange()); 10998 } 10999 } 11000 11001 llvm_unreachable("Implement any new match types added!"); 11002 } 11003 11004 /// parseDirective parses the arm specific directives 11005 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 11006 const MCContext::Environment Format = getContext().getObjectFileType(); 11007 bool IsMachO = Format == MCContext::IsMachO; 11008 bool IsCOFF = Format == MCContext::IsCOFF; 11009 11010 std::string IDVal = DirectiveID.getIdentifier().lower(); 11011 if (IDVal == ".word") 11012 parseLiteralValues(4, DirectiveID.getLoc()); 11013 else if (IDVal == ".short" || IDVal == ".hword") 11014 parseLiteralValues(2, DirectiveID.getLoc()); 11015 else if (IDVal == ".thumb") 11016 parseDirectiveThumb(DirectiveID.getLoc()); 11017 else if (IDVal == ".arm") 11018 parseDirectiveARM(DirectiveID.getLoc()); 11019 else if (IDVal == ".thumb_func") 11020 parseDirectiveThumbFunc(DirectiveID.getLoc()); 11021 else if (IDVal == ".code") 11022 parseDirectiveCode(DirectiveID.getLoc()); 11023 else if (IDVal == ".syntax") 11024 parseDirectiveSyntax(DirectiveID.getLoc()); 11025 else if (IDVal == ".unreq") 11026 parseDirectiveUnreq(DirectiveID.getLoc()); 11027 else if (IDVal == ".fnend") 11028 parseDirectiveFnEnd(DirectiveID.getLoc()); 11029 else if (IDVal == ".cantunwind") 11030 parseDirectiveCantUnwind(DirectiveID.getLoc()); 11031 else if (IDVal == ".personality") 11032 parseDirectivePersonality(DirectiveID.getLoc()); 11033 else if (IDVal == ".handlerdata") 11034 parseDirectiveHandlerData(DirectiveID.getLoc()); 11035 else if (IDVal == ".setfp") 11036 parseDirectiveSetFP(DirectiveID.getLoc()); 11037 else if (IDVal == ".pad") 11038 parseDirectivePad(DirectiveID.getLoc()); 11039 else if (IDVal == ".save") 11040 parseDirectiveRegSave(DirectiveID.getLoc(), false); 11041 else if (IDVal == ".vsave") 11042 parseDirectiveRegSave(DirectiveID.getLoc(), true); 11043 else if (IDVal == ".ltorg" || IDVal == ".pool") 11044 parseDirectiveLtorg(DirectiveID.getLoc()); 11045 else if (IDVal == ".even") 11046 parseDirectiveEven(DirectiveID.getLoc()); 11047 else if (IDVal == ".personalityindex") 11048 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 11049 else if (IDVal == ".unwind_raw") 11050 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 11051 else if (IDVal == ".movsp") 11052 parseDirectiveMovSP(DirectiveID.getLoc()); 11053 else if (IDVal == ".arch_extension") 11054 parseDirectiveArchExtension(DirectiveID.getLoc()); 11055 else if (IDVal == ".align") 11056 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 11057 else if (IDVal == ".thumb_set") 11058 parseDirectiveThumbSet(DirectiveID.getLoc()); 11059 else if (IDVal == ".inst") 11060 parseDirectiveInst(DirectiveID.getLoc()); 11061 else if (IDVal == ".inst.n") 11062 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 11063 else if (IDVal == ".inst.w") 11064 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 11065 else if (!IsMachO && !IsCOFF) { 11066 if (IDVal == ".arch") 11067 parseDirectiveArch(DirectiveID.getLoc()); 11068 else if (IDVal == ".cpu") 11069 parseDirectiveCPU(DirectiveID.getLoc()); 11070 else if (IDVal == ".eabi_attribute") 11071 parseDirectiveEabiAttr(DirectiveID.getLoc()); 11072 else if (IDVal == ".fpu") 11073 parseDirectiveFPU(DirectiveID.getLoc()); 11074 else if (IDVal == ".fnstart") 11075 parseDirectiveFnStart(DirectiveID.getLoc()); 11076 else if (IDVal == ".object_arch") 11077 parseDirectiveObjectArch(DirectiveID.getLoc()); 11078 else if (IDVal == ".tlsdescseq") 11079 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 11080 else 11081 return true; 11082 } else 11083 return true; 11084 return false; 11085 } 11086 11087 /// parseLiteralValues 11088 /// ::= .hword expression [, expression]* 11089 /// ::= .short expression [, expression]* 11090 /// ::= .word expression [, expression]* 11091 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 11092 auto parseOne = [&]() -> bool { 11093 const MCExpr *Value; 11094 if (getParser().parseExpression(Value)) 11095 return true; 11096 getParser().getStreamer().emitValue(Value, Size, L); 11097 return false; 11098 }; 11099 return (parseMany(parseOne)); 11100 } 11101 11102 /// parseDirectiveThumb 11103 /// ::= .thumb 11104 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 11105 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11106 check(!hasThumb(), L, "target does not support Thumb mode")) 11107 return true; 11108 11109 if (!isThumb()) 11110 SwitchMode(); 11111 11112 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11113 return false; 11114 } 11115 11116 /// parseDirectiveARM 11117 /// ::= .arm 11118 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 11119 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 11120 check(!hasARM(), L, "target does not support ARM mode")) 11121 return true; 11122 11123 if (isThumb()) 11124 SwitchMode(); 11125 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11126 return false; 11127 } 11128 11129 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 11130 // We need to flush the current implicit IT block on a label, because it is 11131 // not legal to branch into an IT block. 11132 flushPendingInstructions(getStreamer()); 11133 } 11134 11135 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 11136 if (NextSymbolIsThumb) { 11137 getParser().getStreamer().emitThumbFunc(Symbol); 11138 NextSymbolIsThumb = false; 11139 } 11140 } 11141 11142 /// parseDirectiveThumbFunc 11143 /// ::= .thumbfunc symbol_name 11144 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 11145 MCAsmParser &Parser = getParser(); 11146 const auto Format = getContext().getObjectFileType(); 11147 bool IsMachO = Format == MCContext::IsMachO; 11148 11149 // Darwin asm has (optionally) function name after .thumb_func direction 11150 // ELF doesn't 11151 11152 if (IsMachO) { 11153 if (Parser.getTok().is(AsmToken::Identifier) || 11154 Parser.getTok().is(AsmToken::String)) { 11155 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 11156 Parser.getTok().getIdentifier()); 11157 getParser().getStreamer().emitThumbFunc(Func); 11158 Parser.Lex(); 11159 if (parseToken(AsmToken::EndOfStatement, 11160 "unexpected token in '.thumb_func' directive")) 11161 return true; 11162 return false; 11163 } 11164 } 11165 11166 if (parseToken(AsmToken::EndOfStatement, 11167 "unexpected token in '.thumb_func' directive")) 11168 return true; 11169 11170 // .thumb_func implies .thumb 11171 if (!isThumb()) 11172 SwitchMode(); 11173 11174 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11175 11176 NextSymbolIsThumb = true; 11177 return false; 11178 } 11179 11180 /// parseDirectiveSyntax 11181 /// ::= .syntax unified | divided 11182 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11183 MCAsmParser &Parser = getParser(); 11184 const AsmToken &Tok = Parser.getTok(); 11185 if (Tok.isNot(AsmToken::Identifier)) { 11186 Error(L, "unexpected token in .syntax directive"); 11187 return false; 11188 } 11189 11190 StringRef Mode = Tok.getString(); 11191 Parser.Lex(); 11192 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11193 "'.syntax divided' arm assembly not supported") || 11194 check(Mode != "unified" && Mode != "UNIFIED", L, 11195 "unrecognized syntax mode in .syntax directive") || 11196 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11197 return true; 11198 11199 // TODO tell the MC streamer the mode 11200 // getParser().getStreamer().Emit???(); 11201 return false; 11202 } 11203 11204 /// parseDirectiveCode 11205 /// ::= .code 16 | 32 11206 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11207 MCAsmParser &Parser = getParser(); 11208 const AsmToken &Tok = Parser.getTok(); 11209 if (Tok.isNot(AsmToken::Integer)) 11210 return Error(L, "unexpected token in .code directive"); 11211 int64_t Val = Parser.getTok().getIntVal(); 11212 if (Val != 16 && Val != 32) { 11213 Error(L, "invalid operand to .code directive"); 11214 return false; 11215 } 11216 Parser.Lex(); 11217 11218 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11219 return true; 11220 11221 if (Val == 16) { 11222 if (!hasThumb()) 11223 return Error(L, "target does not support Thumb mode"); 11224 11225 if (!isThumb()) 11226 SwitchMode(); 11227 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11228 } else { 11229 if (!hasARM()) 11230 return Error(L, "target does not support ARM mode"); 11231 11232 if (isThumb()) 11233 SwitchMode(); 11234 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11235 } 11236 11237 return false; 11238 } 11239 11240 /// parseDirectiveReq 11241 /// ::= name .req registername 11242 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11243 MCAsmParser &Parser = getParser(); 11244 Parser.Lex(); // Eat the '.req' token. 11245 unsigned Reg; 11246 SMLoc SRegLoc, ERegLoc; 11247 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11248 "register name expected") || 11249 parseToken(AsmToken::EndOfStatement, 11250 "unexpected input in .req directive.")) 11251 return true; 11252 11253 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11254 return Error(SRegLoc, 11255 "redefinition of '" + Name + "' does not match original."); 11256 11257 return false; 11258 } 11259 11260 /// parseDirectiveUneq 11261 /// ::= .unreq registername 11262 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11263 MCAsmParser &Parser = getParser(); 11264 if (Parser.getTok().isNot(AsmToken::Identifier)) 11265 return Error(L, "unexpected input in .unreq directive."); 11266 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11267 Parser.Lex(); // Eat the identifier. 11268 if (parseToken(AsmToken::EndOfStatement, 11269 "unexpected input in '.unreq' directive")) 11270 return true; 11271 return false; 11272 } 11273 11274 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11275 // before, if supported by the new target, or emit mapping symbols for the mode 11276 // switch. 11277 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11278 if (WasThumb != isThumb()) { 11279 if (WasThumb && hasThumb()) { 11280 // Stay in Thumb mode 11281 SwitchMode(); 11282 } else if (!WasThumb && hasARM()) { 11283 // Stay in ARM mode 11284 SwitchMode(); 11285 } else { 11286 // Mode switch forced, because the new arch doesn't support the old mode. 11287 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11288 : MCAF_Code32); 11289 // Warn about the implcit mode switch. GAS does not switch modes here, 11290 // but instead stays in the old mode, reporting an error on any following 11291 // instructions as the mode does not exist on the target. 11292 Warning(Loc, Twine("new target does not support ") + 11293 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11294 (!WasThumb ? "thumb" : "arm") + " mode"); 11295 } 11296 } 11297 } 11298 11299 /// parseDirectiveArch 11300 /// ::= .arch token 11301 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11302 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11303 ARM::ArchKind ID = ARM::parseArch(Arch); 11304 11305 if (ID == ARM::ArchKind::INVALID) 11306 return Error(L, "Unknown arch name"); 11307 11308 bool WasThumb = isThumb(); 11309 Triple T; 11310 MCSubtargetInfo &STI = copySTI(); 11311 STI.setDefaultFeatures("", /*TuneCPU*/ "", 11312 ("+" + ARM::getArchName(ID)).str()); 11313 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11314 FixModeAfterArchChange(WasThumb, L); 11315 11316 getTargetStreamer().emitArch(ID); 11317 return false; 11318 } 11319 11320 /// parseDirectiveEabiAttr 11321 /// ::= .eabi_attribute int, int [, "str"] 11322 /// ::= .eabi_attribute Tag_name, int [, "str"] 11323 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11324 MCAsmParser &Parser = getParser(); 11325 int64_t Tag; 11326 SMLoc TagLoc; 11327 TagLoc = Parser.getTok().getLoc(); 11328 if (Parser.getTok().is(AsmToken::Identifier)) { 11329 StringRef Name = Parser.getTok().getIdentifier(); 11330 Optional<unsigned> Ret = ELFAttrs::attrTypeFromString( 11331 Name, ARMBuildAttrs::getARMAttributeTags()); 11332 if (!Ret.hasValue()) { 11333 Error(TagLoc, "attribute name not recognised: " + Name); 11334 return false; 11335 } 11336 Tag = Ret.getValue(); 11337 Parser.Lex(); 11338 } else { 11339 const MCExpr *AttrExpr; 11340 11341 TagLoc = Parser.getTok().getLoc(); 11342 if (Parser.parseExpression(AttrExpr)) 11343 return true; 11344 11345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11346 if (check(!CE, TagLoc, "expected numeric constant")) 11347 return true; 11348 11349 Tag = CE->getValue(); 11350 } 11351 11352 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11353 return true; 11354 11355 StringRef StringValue = ""; 11356 bool IsStringValue = false; 11357 11358 int64_t IntegerValue = 0; 11359 bool IsIntegerValue = false; 11360 11361 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11362 IsStringValue = true; 11363 else if (Tag == ARMBuildAttrs::compatibility) { 11364 IsStringValue = true; 11365 IsIntegerValue = true; 11366 } else if (Tag < 32 || Tag % 2 == 0) 11367 IsIntegerValue = true; 11368 else if (Tag % 2 == 1) 11369 IsStringValue = true; 11370 else 11371 llvm_unreachable("invalid tag type"); 11372 11373 if (IsIntegerValue) { 11374 const MCExpr *ValueExpr; 11375 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11376 if (Parser.parseExpression(ValueExpr)) 11377 return true; 11378 11379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11380 if (!CE) 11381 return Error(ValueExprLoc, "expected numeric constant"); 11382 IntegerValue = CE->getValue(); 11383 } 11384 11385 if (Tag == ARMBuildAttrs::compatibility) { 11386 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11387 return true; 11388 } 11389 11390 if (IsStringValue) { 11391 if (Parser.getTok().isNot(AsmToken::String)) 11392 return Error(Parser.getTok().getLoc(), "bad string constant"); 11393 11394 StringValue = Parser.getTok().getStringContents(); 11395 Parser.Lex(); 11396 } 11397 11398 if (Parser.parseToken(AsmToken::EndOfStatement, 11399 "unexpected token in '.eabi_attribute' directive")) 11400 return true; 11401 11402 if (IsIntegerValue && IsStringValue) { 11403 assert(Tag == ARMBuildAttrs::compatibility); 11404 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11405 } else if (IsIntegerValue) 11406 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11407 else if (IsStringValue) 11408 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11409 return false; 11410 } 11411 11412 /// parseDirectiveCPU 11413 /// ::= .cpu str 11414 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11415 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11416 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11417 11418 // FIXME: This is using table-gen data, but should be moved to 11419 // ARMTargetParser once that is table-gen'd. 11420 if (!getSTI().isCPUStringValid(CPU)) 11421 return Error(L, "Unknown CPU name"); 11422 11423 bool WasThumb = isThumb(); 11424 MCSubtargetInfo &STI = copySTI(); 11425 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 11426 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11427 FixModeAfterArchChange(WasThumb, L); 11428 11429 return false; 11430 } 11431 11432 /// parseDirectiveFPU 11433 /// ::= .fpu str 11434 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11435 SMLoc FPUNameLoc = getTok().getLoc(); 11436 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11437 11438 unsigned ID = ARM::parseFPU(FPU); 11439 std::vector<StringRef> Features; 11440 if (!ARM::getFPUFeatures(ID, Features)) 11441 return Error(FPUNameLoc, "Unknown FPU name"); 11442 11443 MCSubtargetInfo &STI = copySTI(); 11444 for (auto Feature : Features) 11445 STI.ApplyFeatureFlag(Feature); 11446 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11447 11448 getTargetStreamer().emitFPU(ID); 11449 return false; 11450 } 11451 11452 /// parseDirectiveFnStart 11453 /// ::= .fnstart 11454 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11455 if (parseToken(AsmToken::EndOfStatement, 11456 "unexpected token in '.fnstart' directive")) 11457 return true; 11458 11459 if (UC.hasFnStart()) { 11460 Error(L, ".fnstart starts before the end of previous one"); 11461 UC.emitFnStartLocNotes(); 11462 return true; 11463 } 11464 11465 // Reset the unwind directives parser state 11466 UC.reset(); 11467 11468 getTargetStreamer().emitFnStart(); 11469 11470 UC.recordFnStart(L); 11471 return false; 11472 } 11473 11474 /// parseDirectiveFnEnd 11475 /// ::= .fnend 11476 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11477 if (parseToken(AsmToken::EndOfStatement, 11478 "unexpected token in '.fnend' directive")) 11479 return true; 11480 // Check the ordering of unwind directives 11481 if (!UC.hasFnStart()) 11482 return Error(L, ".fnstart must precede .fnend directive"); 11483 11484 // Reset the unwind directives parser state 11485 getTargetStreamer().emitFnEnd(); 11486 11487 UC.reset(); 11488 return false; 11489 } 11490 11491 /// parseDirectiveCantUnwind 11492 /// ::= .cantunwind 11493 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11494 if (parseToken(AsmToken::EndOfStatement, 11495 "unexpected token in '.cantunwind' directive")) 11496 return true; 11497 11498 UC.recordCantUnwind(L); 11499 // Check the ordering of unwind directives 11500 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11501 return true; 11502 11503 if (UC.hasHandlerData()) { 11504 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11505 UC.emitHandlerDataLocNotes(); 11506 return true; 11507 } 11508 if (UC.hasPersonality()) { 11509 Error(L, ".cantunwind can't be used with .personality directive"); 11510 UC.emitPersonalityLocNotes(); 11511 return true; 11512 } 11513 11514 getTargetStreamer().emitCantUnwind(); 11515 return false; 11516 } 11517 11518 /// parseDirectivePersonality 11519 /// ::= .personality name 11520 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11521 MCAsmParser &Parser = getParser(); 11522 bool HasExistingPersonality = UC.hasPersonality(); 11523 11524 // Parse the name of the personality routine 11525 if (Parser.getTok().isNot(AsmToken::Identifier)) 11526 return Error(L, "unexpected input in .personality directive."); 11527 StringRef Name(Parser.getTok().getIdentifier()); 11528 Parser.Lex(); 11529 11530 if (parseToken(AsmToken::EndOfStatement, 11531 "unexpected token in '.personality' directive")) 11532 return true; 11533 11534 UC.recordPersonality(L); 11535 11536 // Check the ordering of unwind directives 11537 if (!UC.hasFnStart()) 11538 return Error(L, ".fnstart must precede .personality directive"); 11539 if (UC.cantUnwind()) { 11540 Error(L, ".personality can't be used with .cantunwind directive"); 11541 UC.emitCantUnwindLocNotes(); 11542 return true; 11543 } 11544 if (UC.hasHandlerData()) { 11545 Error(L, ".personality must precede .handlerdata directive"); 11546 UC.emitHandlerDataLocNotes(); 11547 return true; 11548 } 11549 if (HasExistingPersonality) { 11550 Error(L, "multiple personality directives"); 11551 UC.emitPersonalityLocNotes(); 11552 return true; 11553 } 11554 11555 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11556 getTargetStreamer().emitPersonality(PR); 11557 return false; 11558 } 11559 11560 /// parseDirectiveHandlerData 11561 /// ::= .handlerdata 11562 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11563 if (parseToken(AsmToken::EndOfStatement, 11564 "unexpected token in '.handlerdata' directive")) 11565 return true; 11566 11567 UC.recordHandlerData(L); 11568 // Check the ordering of unwind directives 11569 if (!UC.hasFnStart()) 11570 return Error(L, ".fnstart must precede .personality directive"); 11571 if (UC.cantUnwind()) { 11572 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11573 UC.emitCantUnwindLocNotes(); 11574 return true; 11575 } 11576 11577 getTargetStreamer().emitHandlerData(); 11578 return false; 11579 } 11580 11581 /// parseDirectiveSetFP 11582 /// ::= .setfp fpreg, spreg [, offset] 11583 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11584 MCAsmParser &Parser = getParser(); 11585 // Check the ordering of unwind directives 11586 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11587 check(UC.hasHandlerData(), L, 11588 ".setfp must precede .handlerdata directive")) 11589 return true; 11590 11591 // Parse fpreg 11592 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11593 int FPReg = tryParseRegister(); 11594 11595 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11596 Parser.parseToken(AsmToken::Comma, "comma expected")) 11597 return true; 11598 11599 // Parse spreg 11600 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11601 int SPReg = tryParseRegister(); 11602 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11603 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11604 "register should be either $sp or the latest fp register")) 11605 return true; 11606 11607 // Update the frame pointer register 11608 UC.saveFPReg(FPReg); 11609 11610 // Parse offset 11611 int64_t Offset = 0; 11612 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11613 if (Parser.getTok().isNot(AsmToken::Hash) && 11614 Parser.getTok().isNot(AsmToken::Dollar)) 11615 return Error(Parser.getTok().getLoc(), "'#' expected"); 11616 Parser.Lex(); // skip hash token. 11617 11618 const MCExpr *OffsetExpr; 11619 SMLoc ExLoc = Parser.getTok().getLoc(); 11620 SMLoc EndLoc; 11621 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11622 return Error(ExLoc, "malformed setfp offset"); 11623 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11624 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11625 return true; 11626 Offset = CE->getValue(); 11627 } 11628 11629 if (Parser.parseToken(AsmToken::EndOfStatement)) 11630 return true; 11631 11632 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11633 static_cast<unsigned>(SPReg), Offset); 11634 return false; 11635 } 11636 11637 /// parseDirective 11638 /// ::= .pad offset 11639 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11640 MCAsmParser &Parser = getParser(); 11641 // Check the ordering of unwind directives 11642 if (!UC.hasFnStart()) 11643 return Error(L, ".fnstart must precede .pad directive"); 11644 if (UC.hasHandlerData()) 11645 return Error(L, ".pad must precede .handlerdata directive"); 11646 11647 // Parse the offset 11648 if (Parser.getTok().isNot(AsmToken::Hash) && 11649 Parser.getTok().isNot(AsmToken::Dollar)) 11650 return Error(Parser.getTok().getLoc(), "'#' expected"); 11651 Parser.Lex(); // skip hash token. 11652 11653 const MCExpr *OffsetExpr; 11654 SMLoc ExLoc = Parser.getTok().getLoc(); 11655 SMLoc EndLoc; 11656 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11657 return Error(ExLoc, "malformed pad offset"); 11658 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11659 if (!CE) 11660 return Error(ExLoc, "pad offset must be an immediate"); 11661 11662 if (parseToken(AsmToken::EndOfStatement, 11663 "unexpected token in '.pad' directive")) 11664 return true; 11665 11666 getTargetStreamer().emitPad(CE->getValue()); 11667 return false; 11668 } 11669 11670 /// parseDirectiveRegSave 11671 /// ::= .save { registers } 11672 /// ::= .vsave { registers } 11673 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11674 // Check the ordering of unwind directives 11675 if (!UC.hasFnStart()) 11676 return Error(L, ".fnstart must precede .save or .vsave directives"); 11677 if (UC.hasHandlerData()) 11678 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11679 11680 // RAII object to make sure parsed operands are deleted. 11681 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11682 11683 // Parse the register list 11684 if (parseRegisterList(Operands) || 11685 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11686 return true; 11687 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11688 if (!IsVector && !Op.isRegList()) 11689 return Error(L, ".save expects GPR registers"); 11690 if (IsVector && !Op.isDPRRegList()) 11691 return Error(L, ".vsave expects DPR registers"); 11692 11693 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11694 return false; 11695 } 11696 11697 /// parseDirectiveInst 11698 /// ::= .inst opcode [, ...] 11699 /// ::= .inst.n opcode [, ...] 11700 /// ::= .inst.w opcode [, ...] 11701 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11702 int Width = 4; 11703 11704 if (isThumb()) { 11705 switch (Suffix) { 11706 case 'n': 11707 Width = 2; 11708 break; 11709 case 'w': 11710 break; 11711 default: 11712 Width = 0; 11713 break; 11714 } 11715 } else { 11716 if (Suffix) 11717 return Error(Loc, "width suffixes are invalid in ARM mode"); 11718 } 11719 11720 auto parseOne = [&]() -> bool { 11721 const MCExpr *Expr; 11722 if (getParser().parseExpression(Expr)) 11723 return true; 11724 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11725 if (!Value) { 11726 return Error(Loc, "expected constant expression"); 11727 } 11728 11729 char CurSuffix = Suffix; 11730 switch (Width) { 11731 case 2: 11732 if (Value->getValue() > 0xffff) 11733 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11734 break; 11735 case 4: 11736 if (Value->getValue() > 0xffffffff) 11737 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11738 " operand is too big"); 11739 break; 11740 case 0: 11741 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11742 if (Value->getValue() < 0xe800) 11743 CurSuffix = 'n'; 11744 else if (Value->getValue() >= 0xe8000000) 11745 CurSuffix = 'w'; 11746 else 11747 return Error(Loc, "cannot determine Thumb instruction size, " 11748 "use inst.n/inst.w instead"); 11749 break; 11750 default: 11751 llvm_unreachable("only supported widths are 2 and 4"); 11752 } 11753 11754 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11755 return false; 11756 }; 11757 11758 if (parseOptionalToken(AsmToken::EndOfStatement)) 11759 return Error(Loc, "expected expression following directive"); 11760 if (parseMany(parseOne)) 11761 return true; 11762 return false; 11763 } 11764 11765 /// parseDirectiveLtorg 11766 /// ::= .ltorg | .pool 11767 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11768 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11769 return true; 11770 getTargetStreamer().emitCurrentConstantPool(); 11771 return false; 11772 } 11773 11774 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11775 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11776 11777 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11778 return true; 11779 11780 if (!Section) { 11781 getStreamer().initSections(false, getSTI()); 11782 Section = getStreamer().getCurrentSectionOnly(); 11783 } 11784 11785 assert(Section && "must have section to emit alignment"); 11786 if (Section->UseCodeAlign()) 11787 getStreamer().emitCodeAlignment(2, &getSTI()); 11788 else 11789 getStreamer().emitValueToAlignment(2); 11790 11791 return false; 11792 } 11793 11794 /// parseDirectivePersonalityIndex 11795 /// ::= .personalityindex index 11796 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11797 MCAsmParser &Parser = getParser(); 11798 bool HasExistingPersonality = UC.hasPersonality(); 11799 11800 const MCExpr *IndexExpression; 11801 SMLoc IndexLoc = Parser.getTok().getLoc(); 11802 if (Parser.parseExpression(IndexExpression) || 11803 parseToken(AsmToken::EndOfStatement, 11804 "unexpected token in '.personalityindex' directive")) { 11805 return true; 11806 } 11807 11808 UC.recordPersonalityIndex(L); 11809 11810 if (!UC.hasFnStart()) { 11811 return Error(L, ".fnstart must precede .personalityindex directive"); 11812 } 11813 if (UC.cantUnwind()) { 11814 Error(L, ".personalityindex cannot be used with .cantunwind"); 11815 UC.emitCantUnwindLocNotes(); 11816 return true; 11817 } 11818 if (UC.hasHandlerData()) { 11819 Error(L, ".personalityindex must precede .handlerdata directive"); 11820 UC.emitHandlerDataLocNotes(); 11821 return true; 11822 } 11823 if (HasExistingPersonality) { 11824 Error(L, "multiple personality directives"); 11825 UC.emitPersonalityLocNotes(); 11826 return true; 11827 } 11828 11829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11830 if (!CE) 11831 return Error(IndexLoc, "index must be a constant number"); 11832 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11833 return Error(IndexLoc, 11834 "personality routine index should be in range [0-3]"); 11835 11836 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11837 return false; 11838 } 11839 11840 /// parseDirectiveUnwindRaw 11841 /// ::= .unwind_raw offset, opcode [, opcode...] 11842 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11843 MCAsmParser &Parser = getParser(); 11844 int64_t StackOffset; 11845 const MCExpr *OffsetExpr; 11846 SMLoc OffsetLoc = getLexer().getLoc(); 11847 11848 if (!UC.hasFnStart()) 11849 return Error(L, ".fnstart must precede .unwind_raw directives"); 11850 if (getParser().parseExpression(OffsetExpr)) 11851 return Error(OffsetLoc, "expected expression"); 11852 11853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11854 if (!CE) 11855 return Error(OffsetLoc, "offset must be a constant"); 11856 11857 StackOffset = CE->getValue(); 11858 11859 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11860 return true; 11861 11862 SmallVector<uint8_t, 16> Opcodes; 11863 11864 auto parseOne = [&]() -> bool { 11865 const MCExpr *OE = nullptr; 11866 SMLoc OpcodeLoc = getLexer().getLoc(); 11867 if (check(getLexer().is(AsmToken::EndOfStatement) || 11868 Parser.parseExpression(OE), 11869 OpcodeLoc, "expected opcode expression")) 11870 return true; 11871 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11872 if (!OC) 11873 return Error(OpcodeLoc, "opcode value must be a constant"); 11874 const int64_t Opcode = OC->getValue(); 11875 if (Opcode & ~0xff) 11876 return Error(OpcodeLoc, "invalid opcode"); 11877 Opcodes.push_back(uint8_t(Opcode)); 11878 return false; 11879 }; 11880 11881 // Must have at least 1 element 11882 SMLoc OpcodeLoc = getLexer().getLoc(); 11883 if (parseOptionalToken(AsmToken::EndOfStatement)) 11884 return Error(OpcodeLoc, "expected opcode expression"); 11885 if (parseMany(parseOne)) 11886 return true; 11887 11888 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11889 return false; 11890 } 11891 11892 /// parseDirectiveTLSDescSeq 11893 /// ::= .tlsdescseq tls-variable 11894 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11895 MCAsmParser &Parser = getParser(); 11896 11897 if (getLexer().isNot(AsmToken::Identifier)) 11898 return TokError("expected variable after '.tlsdescseq' directive"); 11899 11900 const MCSymbolRefExpr *SRE = 11901 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11902 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11903 Lex(); 11904 11905 if (parseToken(AsmToken::EndOfStatement, 11906 "unexpected token in '.tlsdescseq' directive")) 11907 return true; 11908 11909 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11910 return false; 11911 } 11912 11913 /// parseDirectiveMovSP 11914 /// ::= .movsp reg [, #offset] 11915 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11916 MCAsmParser &Parser = getParser(); 11917 if (!UC.hasFnStart()) 11918 return Error(L, ".fnstart must precede .movsp directives"); 11919 if (UC.getFPReg() != ARM::SP) 11920 return Error(L, "unexpected .movsp directive"); 11921 11922 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11923 int SPReg = tryParseRegister(); 11924 if (SPReg == -1) 11925 return Error(SPRegLoc, "register expected"); 11926 if (SPReg == ARM::SP || SPReg == ARM::PC) 11927 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11928 11929 int64_t Offset = 0; 11930 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11931 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11932 return true; 11933 11934 const MCExpr *OffsetExpr; 11935 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11936 11937 if (Parser.parseExpression(OffsetExpr)) 11938 return Error(OffsetLoc, "malformed offset expression"); 11939 11940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11941 if (!CE) 11942 return Error(OffsetLoc, "offset must be an immediate constant"); 11943 11944 Offset = CE->getValue(); 11945 } 11946 11947 if (parseToken(AsmToken::EndOfStatement, 11948 "unexpected token in '.movsp' directive")) 11949 return true; 11950 11951 getTargetStreamer().emitMovSP(SPReg, Offset); 11952 UC.saveFPReg(SPReg); 11953 11954 return false; 11955 } 11956 11957 /// parseDirectiveObjectArch 11958 /// ::= .object_arch name 11959 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11960 MCAsmParser &Parser = getParser(); 11961 if (getLexer().isNot(AsmToken::Identifier)) 11962 return Error(getLexer().getLoc(), "unexpected token"); 11963 11964 StringRef Arch = Parser.getTok().getString(); 11965 SMLoc ArchLoc = Parser.getTok().getLoc(); 11966 Lex(); 11967 11968 ARM::ArchKind ID = ARM::parseArch(Arch); 11969 11970 if (ID == ARM::ArchKind::INVALID) 11971 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11972 if (parseToken(AsmToken::EndOfStatement)) 11973 return true; 11974 11975 getTargetStreamer().emitObjectArch(ID); 11976 return false; 11977 } 11978 11979 /// parseDirectiveAlign 11980 /// ::= .align 11981 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11982 // NOTE: if this is not the end of the statement, fall back to the target 11983 // agnostic handling for this directive which will correctly handle this. 11984 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11985 // '.align' is target specifically handled to mean 2**2 byte alignment. 11986 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11987 assert(Section && "must have section to emit alignment"); 11988 if (Section->UseCodeAlign()) 11989 getStreamer().emitCodeAlignment(4, &getSTI(), 0); 11990 else 11991 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11992 return false; 11993 } 11994 return true; 11995 } 11996 11997 /// parseDirectiveThumbSet 11998 /// ::= .thumb_set name, value 11999 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 12000 MCAsmParser &Parser = getParser(); 12001 12002 StringRef Name; 12003 if (check(Parser.parseIdentifier(Name), 12004 "expected identifier after '.thumb_set'") || 12005 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 12006 return true; 12007 12008 MCSymbol *Sym; 12009 const MCExpr *Value; 12010 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 12011 Parser, Sym, Value)) 12012 return true; 12013 12014 getTargetStreamer().emitThumbSet(Sym, Value); 12015 return false; 12016 } 12017 12018 /// Force static initialization. 12019 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 12020 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 12021 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 12022 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 12023 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 12024 } 12025 12026 #define GET_REGISTER_MATCHER 12027 #define GET_SUBTARGET_FEATURE_NAME 12028 #define GET_MATCHER_IMPLEMENTATION 12029 #define GET_MNEMONIC_SPELL_CHECKER 12030 #include "ARMGenAsmMatcher.inc" 12031 12032 // Some diagnostics need to vary with subtarget features, so they are handled 12033 // here. For example, the DPR class has either 16 or 32 registers, depending 12034 // on the FPU available. 12035 const char * 12036 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 12037 switch (MatchError) { 12038 // rGPR contains sp starting with ARMv8. 12039 case Match_rGPR: 12040 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 12041 : "operand must be a register in range [r0, r12] or r14"; 12042 // DPR contains 16 registers for some FPUs, and 32 for others. 12043 case Match_DPR: 12044 return hasD32() ? "operand must be a register in range [d0, d31]" 12045 : "operand must be a register in range [d0, d15]"; 12046 case Match_DPR_RegList: 12047 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 12048 : "operand must be a list of registers in range [d0, d15]"; 12049 12050 // For all other diags, use the static string from tablegen. 12051 default: 12052 return getMatchKindDiag(MatchError); 12053 } 12054 } 12055 12056 // Process the list of near-misses, throwing away ones we don't want to report 12057 // to the user, and converting the rest to a source location and string that 12058 // should be reported. 12059 void 12060 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 12061 SmallVectorImpl<NearMissMessage> &NearMissesOut, 12062 SMLoc IDLoc, OperandVector &Operands) { 12063 // TODO: If operand didn't match, sub in a dummy one and run target 12064 // predicate, so that we can avoid reporting near-misses that are invalid? 12065 // TODO: Many operand types dont have SuperClasses set, so we report 12066 // redundant ones. 12067 // TODO: Some operands are superclasses of registers (e.g. 12068 // MCK_RegShiftedImm), we don't have any way to represent that currently. 12069 // TODO: This is not all ARM-specific, can some of it be factored out? 12070 12071 // Record some information about near-misses that we have already seen, so 12072 // that we can avoid reporting redundant ones. For example, if there are 12073 // variants of an instruction that take 8- and 16-bit immediates, we want 12074 // to only report the widest one. 12075 std::multimap<unsigned, unsigned> OperandMissesSeen; 12076 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 12077 bool ReportedTooFewOperands = false; 12078 12079 // Process the near-misses in reverse order, so that we see more general ones 12080 // first, and so can avoid emitting more specific ones. 12081 for (NearMissInfo &I : reverse(NearMissesIn)) { 12082 switch (I.getKind()) { 12083 case NearMissInfo::NearMissOperand: { 12084 SMLoc OperandLoc = 12085 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 12086 const char *OperandDiag = 12087 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 12088 12089 // If we have already emitted a message for a superclass, don't also report 12090 // the sub-class. We consider all operand classes that we don't have a 12091 // specialised diagnostic for to be equal for the propose of this check, 12092 // so that we don't report the generic error multiple times on the same 12093 // operand. 12094 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 12095 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 12096 if (std::any_of(PrevReports.first, PrevReports.second, 12097 [DupCheckMatchClass]( 12098 const std::pair<unsigned, unsigned> Pair) { 12099 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 12100 return Pair.second == DupCheckMatchClass; 12101 else 12102 return isSubclass((MatchClassKind)DupCheckMatchClass, 12103 (MatchClassKind)Pair.second); 12104 })) 12105 break; 12106 OperandMissesSeen.insert( 12107 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 12108 12109 NearMissMessage Message; 12110 Message.Loc = OperandLoc; 12111 if (OperandDiag) { 12112 Message.Message = OperandDiag; 12113 } else if (I.getOperandClass() == InvalidMatchClass) { 12114 Message.Message = "too many operands for instruction"; 12115 } else { 12116 Message.Message = "invalid operand for instruction"; 12117 LLVM_DEBUG( 12118 dbgs() << "Missing diagnostic string for operand class " 12119 << getMatchClassName((MatchClassKind)I.getOperandClass()) 12120 << I.getOperandClass() << ", error " << I.getOperandError() 12121 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 12122 } 12123 NearMissesOut.emplace_back(Message); 12124 break; 12125 } 12126 case NearMissInfo::NearMissFeature: { 12127 const FeatureBitset &MissingFeatures = I.getFeatures(); 12128 // Don't report the same set of features twice. 12129 if (FeatureMissesSeen.count(MissingFeatures)) 12130 break; 12131 FeatureMissesSeen.insert(MissingFeatures); 12132 12133 // Special case: don't report a feature set which includes arm-mode for 12134 // targets that don't have ARM mode. 12135 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 12136 break; 12137 // Don't report any near-misses that both require switching instruction 12138 // set, and adding other subtarget features. 12139 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 12140 MissingFeatures.count() > 1) 12141 break; 12142 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 12143 MissingFeatures.count() > 1) 12144 break; 12145 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 12146 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 12147 Feature_IsThumbBit})).any()) 12148 break; 12149 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 12150 break; 12151 12152 NearMissMessage Message; 12153 Message.Loc = IDLoc; 12154 raw_svector_ostream OS(Message.Message); 12155 12156 OS << "instruction requires:"; 12157 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 12158 if (MissingFeatures.test(i)) 12159 OS << ' ' << getSubtargetFeatureName(i); 12160 12161 NearMissesOut.emplace_back(Message); 12162 12163 break; 12164 } 12165 case NearMissInfo::NearMissPredicate: { 12166 NearMissMessage Message; 12167 Message.Loc = IDLoc; 12168 switch (I.getPredicateError()) { 12169 case Match_RequiresNotITBlock: 12170 Message.Message = "flag setting instruction only valid outside IT block"; 12171 break; 12172 case Match_RequiresITBlock: 12173 Message.Message = "instruction only valid inside IT block"; 12174 break; 12175 case Match_RequiresV6: 12176 Message.Message = "instruction variant requires ARMv6 or later"; 12177 break; 12178 case Match_RequiresThumb2: 12179 Message.Message = "instruction variant requires Thumb2"; 12180 break; 12181 case Match_RequiresV8: 12182 Message.Message = "instruction variant requires ARMv8 or later"; 12183 break; 12184 case Match_RequiresFlagSetting: 12185 Message.Message = "no flag-preserving variant of this instruction available"; 12186 break; 12187 case Match_InvalidOperand: 12188 Message.Message = "invalid operand for instruction"; 12189 break; 12190 default: 12191 llvm_unreachable("Unhandled target predicate error"); 12192 break; 12193 } 12194 NearMissesOut.emplace_back(Message); 12195 break; 12196 } 12197 case NearMissInfo::NearMissTooFewOperands: { 12198 if (!ReportedTooFewOperands) { 12199 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12200 NearMissesOut.emplace_back(NearMissMessage{ 12201 EndLoc, StringRef("too few operands for instruction")}); 12202 ReportedTooFewOperands = true; 12203 } 12204 break; 12205 } 12206 case NearMissInfo::NoNearMiss: 12207 // This should never leave the matcher. 12208 llvm_unreachable("not a near-miss"); 12209 break; 12210 } 12211 } 12212 } 12213 12214 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12215 SMLoc IDLoc, OperandVector &Operands) { 12216 SmallVector<NearMissMessage, 4> Messages; 12217 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12218 12219 if (Messages.size() == 0) { 12220 // No near-misses were found, so the best we can do is "invalid 12221 // instruction". 12222 Error(IDLoc, "invalid instruction"); 12223 } else if (Messages.size() == 1) { 12224 // One near miss was found, report it as the sole error. 12225 Error(Messages[0].Loc, Messages[0].Message); 12226 } else { 12227 // More than one near miss, so report a generic "invalid instruction" 12228 // error, followed by notes for each of the near-misses. 12229 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12230 for (auto &M : Messages) { 12231 Note(M.Loc, M.Message); 12232 } 12233 } 12234 } 12235 12236 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { 12237 // FIXME: This structure should be moved inside ARMTargetParser 12238 // when we start to table-generate them, and we can use the ARM 12239 // flags below, that were generated by table-gen. 12240 static const struct { 12241 const uint64_t Kind; 12242 const FeatureBitset ArchCheck; 12243 const FeatureBitset Features; 12244 } Extensions[] = { 12245 {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}}, 12246 {ARM::AEK_AES, 12247 {Feature_HasV8Bit}, 12248 {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12249 {ARM::AEK_SHA2, 12250 {Feature_HasV8Bit}, 12251 {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12252 {ARM::AEK_CRYPTO, 12253 {Feature_HasV8Bit}, 12254 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, 12255 {ARM::AEK_FP, 12256 {Feature_HasV8Bit}, 12257 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12258 {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12259 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12260 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, 12261 {ARM::AEK_MP, 12262 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12263 {ARM::FeatureMP}}, 12264 {ARM::AEK_SIMD, 12265 {Feature_HasV8Bit}, 12266 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, 12267 {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}}, 12268 // FIXME: Only available in A-class, isel not predicated 12269 {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}}, 12270 {ARM::AEK_FP16, 12271 {Feature_HasV8_2aBit}, 12272 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, 12273 {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}}, 12274 {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}}, 12275 // FIXME: Unsupported extensions. 12276 {ARM::AEK_OS, {}, {}}, 12277 {ARM::AEK_IWMMXT, {}, {}}, 12278 {ARM::AEK_IWMMXT2, {}, {}}, 12279 {ARM::AEK_MAVERICK, {}, {}}, 12280 {ARM::AEK_XSCALE, {}, {}}, 12281 }; 12282 bool EnableFeature = true; 12283 if (Name.startswith_insensitive("no")) { 12284 EnableFeature = false; 12285 Name = Name.substr(2); 12286 } 12287 uint64_t FeatureKind = ARM::parseArchExt(Name); 12288 if (FeatureKind == ARM::AEK_INVALID) 12289 return Error(ExtLoc, "unknown architectural extension: " + Name); 12290 12291 for (const auto &Extension : Extensions) { 12292 if (Extension.Kind != FeatureKind) 12293 continue; 12294 12295 if (Extension.Features.none()) 12296 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12297 12298 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12299 return Error(ExtLoc, "architectural extension '" + Name + 12300 "' is not " 12301 "allowed for the current base architecture"); 12302 12303 MCSubtargetInfo &STI = copySTI(); 12304 if (EnableFeature) { 12305 STI.SetFeatureBitsTransitively(Extension.Features); 12306 } else { 12307 STI.ClearFeatureBitsTransitively(Extension.Features); 12308 } 12309 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12310 setAvailableFeatures(Features); 12311 return true; 12312 } 12313 return false; 12314 } 12315 12316 /// parseDirectiveArchExtension 12317 /// ::= .arch_extension [no]feature 12318 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12319 12320 MCAsmParser &Parser = getParser(); 12321 12322 if (getLexer().isNot(AsmToken::Identifier)) 12323 return Error(getLexer().getLoc(), "expected architecture extension name"); 12324 12325 StringRef Name = Parser.getTok().getString(); 12326 SMLoc ExtLoc = Parser.getTok().getLoc(); 12327 Lex(); 12328 12329 if (parseToken(AsmToken::EndOfStatement, 12330 "unexpected token in '.arch_extension' directive")) 12331 return true; 12332 12333 if (Name == "nocrypto") { 12334 enableArchExtFeature("nosha2", ExtLoc); 12335 enableArchExtFeature("noaes", ExtLoc); 12336 } 12337 12338 if (enableArchExtFeature(Name, ExtLoc)) 12339 return false; 12340 12341 return Error(ExtLoc, "unknown architectural extension: " + Name); 12342 } 12343 12344 // Define this matcher function after the auto-generated include so we 12345 // have the match class enum definitions. 12346 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12347 unsigned Kind) { 12348 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12349 // If the kind is a token for a literal immediate, check if our asm 12350 // operand matches. This is for InstAliases which have a fixed-value 12351 // immediate in the syntax. 12352 switch (Kind) { 12353 default: break; 12354 case MCK__HASH_0: 12355 if (Op.isImm()) 12356 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12357 if (CE->getValue() == 0) 12358 return Match_Success; 12359 break; 12360 case MCK__HASH_8: 12361 if (Op.isImm()) 12362 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12363 if (CE->getValue() == 8) 12364 return Match_Success; 12365 break; 12366 case MCK__HASH_16: 12367 if (Op.isImm()) 12368 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12369 if (CE->getValue() == 16) 12370 return Match_Success; 12371 break; 12372 case MCK_ModImm: 12373 if (Op.isImm()) { 12374 const MCExpr *SOExpr = Op.getImm(); 12375 int64_t Value; 12376 if (!SOExpr->evaluateAsAbsolute(Value)) 12377 return Match_Success; 12378 assert((Value >= std::numeric_limits<int32_t>::min() && 12379 Value <= std::numeric_limits<uint32_t>::max()) && 12380 "expression value must be representable in 32 bits"); 12381 } 12382 break; 12383 case MCK_rGPR: 12384 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12385 return Match_Success; 12386 return Match_rGPR; 12387 case MCK_GPRPair: 12388 if (Op.isReg() && 12389 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12390 return Match_Success; 12391 break; 12392 } 12393 return Match_InvalidOperand; 12394 } 12395 12396 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12397 StringRef ExtraToken) { 12398 if (!hasMVE()) 12399 return false; 12400 12401 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12402 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12403 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12404 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12405 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12406 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12407 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12408 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12409 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12410 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12411 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12412 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12413 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12414 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12415 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12416 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12417 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12418 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12419 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12420 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12421 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12422 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12423 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12424 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12425 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12426 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12427 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12428 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12429 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12430 Mnemonic.startswith("vqabs") || 12431 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12432 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12433 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12434 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12435 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12436 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12437 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12438 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12439 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12440 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12441 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12442 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12443 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12444 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12445 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12446 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12447 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12448 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12449 Mnemonic.startswith("vldrb") || 12450 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12451 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12452 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12453 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12454 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12455 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12456 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12457 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12458 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12459 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12460 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12461 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12462 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12463 Mnemonic.startswith("vcvt") || 12464 MS.isVPTPredicableCDEInstr(Mnemonic) || 12465 (Mnemonic.startswith("vmov") && 12466 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12467 ExtraToken == ".16" || ExtraToken == ".8")); 12468 } 12469