1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "MVETailPredUtils.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/LivePhysRegs.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "arm-cp-islands" 62 63 #define ARM_CP_ISLANDS_OPT_NAME \ 64 "ARM constant island placement and branch shortening pass" 65 STATISTIC(NumCPEs, "Number of constpool entries"); 66 STATISTIC(NumSplit, "Number of uncond branches inserted"); 67 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 68 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 69 STATISTIC(NumTBs, "Number of table branches generated"); 70 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 71 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 72 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 73 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 74 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 75 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 76 77 static cl::opt<bool> 78 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 79 cl::desc("Adjust basic block layout to better use TB[BH]")); 80 81 static cl::opt<unsigned> 82 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 83 cl::desc("The max number of iteration for converge")); 84 85 static cl::opt<bool> SynthesizeThumb1TBB( 86 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 87 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 88 "equivalent to the TBB/TBH instructions")); 89 90 namespace { 91 92 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 93 /// requires constant pool entries to be scattered among the instructions 94 /// inside a function. To do this, it completely ignores the normal LLVM 95 /// constant pool; instead, it places constants wherever it feels like with 96 /// special instructions. 97 /// 98 /// The terminology used in this pass includes: 99 /// Islands - Clumps of constants placed in the function. 100 /// Water - Potential places where an island could be formed. 101 /// CPE - A constant pool entry that has been placed somewhere, which 102 /// tracks a list of users. 103 class ARMConstantIslands : public MachineFunctionPass { 104 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 105 106 /// WaterList - A sorted list of basic blocks where islands could be placed 107 /// (i.e. blocks that don't fall through to the following block, due 108 /// to a return, unreachable, or unconditional branch). 109 std::vector<MachineBasicBlock*> WaterList; 110 111 /// NewWaterList - The subset of WaterList that was created since the 112 /// previous iteration by inserting unconditional branches. 113 SmallSet<MachineBasicBlock*, 4> NewWaterList; 114 115 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 116 117 /// CPUser - One user of a constant pool, keeping the machine instruction 118 /// pointer, the constant pool being referenced, and the max displacement 119 /// allowed from the instruction to the CP. The HighWaterMark records the 120 /// highest basic block where a new CPEntry can be placed. To ensure this 121 /// pass terminates, the CP entries are initially placed at the end of the 122 /// function and then move monotonically to lower addresses. The 123 /// exception to this rule is when the current CP entry for a particular 124 /// CPUser is out of range, but there is another CP entry for the same 125 /// constant value in range. We want to use the existing in-range CP 126 /// entry, but if it later moves out of range, the search for new water 127 /// should resume where it left off. The HighWaterMark is used to record 128 /// that point. 129 struct CPUser { 130 MachineInstr *MI; 131 MachineInstr *CPEMI; 132 MachineBasicBlock *HighWaterMark; 133 unsigned MaxDisp; 134 bool NegOk; 135 bool IsSoImm; 136 bool KnownAlignment = false; 137 138 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 139 bool neg, bool soimm) 140 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 141 HighWaterMark = CPEMI->getParent(); 142 } 143 144 /// getMaxDisp - Returns the maximum displacement supported by MI. 145 /// Correct for unknown alignment. 146 /// Conservatively subtract 2 bytes to handle weird alignment effects. 147 unsigned getMaxDisp() const { 148 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 149 } 150 }; 151 152 /// CPUsers - Keep track of all of the machine instructions that use various 153 /// constant pools and their max displacement. 154 std::vector<CPUser> CPUsers; 155 156 /// CPEntry - One per constant pool entry, keeping the machine instruction 157 /// pointer, the constpool index, and the number of CPUser's which 158 /// reference this entry. 159 struct CPEntry { 160 MachineInstr *CPEMI; 161 unsigned CPI; 162 unsigned RefCount; 163 164 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 165 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 166 }; 167 168 /// CPEntries - Keep track of all of the constant pool entry machine 169 /// instructions. For each original constpool index (i.e. those that existed 170 /// upon entry to this pass), it keeps a vector of entries. Original 171 /// elements are cloned as we go along; the clones are put in the vector of 172 /// the original element, but have distinct CPIs. 173 /// 174 /// The first half of CPEntries contains generic constants, the second half 175 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 176 /// which vector it will be in here. 177 std::vector<std::vector<CPEntry>> CPEntries; 178 179 /// Maps a JT index to the offset in CPEntries containing copies of that 180 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 181 DenseMap<int, int> JumpTableEntryIndices; 182 183 /// Maps a JT index to the LEA that actually uses the index to calculate its 184 /// base address. 185 DenseMap<int, int> JumpTableUserIndices; 186 187 /// ImmBranch - One per immediate branch, keeping the machine instruction 188 /// pointer, conditional or unconditional, the max displacement, 189 /// and (if isCond is true) the corresponding unconditional branch 190 /// opcode. 191 struct ImmBranch { 192 MachineInstr *MI; 193 unsigned MaxDisp : 31; 194 bool isCond : 1; 195 unsigned UncondBr; 196 197 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 198 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 199 }; 200 201 /// ImmBranches - Keep track of all the immediate branch instructions. 202 std::vector<ImmBranch> ImmBranches; 203 204 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 205 SmallVector<MachineInstr*, 4> PushPopMIs; 206 207 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 208 SmallVector<MachineInstr*, 4> T2JumpTables; 209 210 MachineFunction *MF; 211 MachineConstantPool *MCP; 212 const ARMBaseInstrInfo *TII; 213 const ARMSubtarget *STI; 214 ARMFunctionInfo *AFI; 215 MachineDominatorTree *DT = nullptr; 216 bool isThumb; 217 bool isThumb1; 218 bool isThumb2; 219 bool isPositionIndependentOrROPI; 220 221 public: 222 static char ID; 223 224 ARMConstantIslands() : MachineFunctionPass(ID) {} 225 226 bool runOnMachineFunction(MachineFunction &MF) override; 227 228 void getAnalysisUsage(AnalysisUsage &AU) const override { 229 AU.addRequired<MachineDominatorTree>(); 230 MachineFunctionPass::getAnalysisUsage(AU); 231 } 232 233 MachineFunctionProperties getRequiredProperties() const override { 234 return MachineFunctionProperties().set( 235 MachineFunctionProperties::Property::NoVRegs); 236 } 237 238 StringRef getPassName() const override { 239 return ARM_CP_ISLANDS_OPT_NAME; 240 } 241 242 private: 243 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 244 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 245 bool BBHasFallthrough(MachineBasicBlock *MBB); 246 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 247 Align getCPEAlign(const MachineInstr *CPEMI); 248 void scanFunctionJumpTables(); 249 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 250 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 251 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 252 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 253 unsigned getCombinedIndex(const MachineInstr *CPEMI); 254 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 255 bool findAvailableWater(CPUser&U, unsigned UserOffset, 256 water_iterator &WaterIter, bool CloserWater); 257 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 258 MachineBasicBlock *&NewMBB); 259 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 260 void removeDeadCPEMI(MachineInstr *CPEMI); 261 bool removeUnusedCPEntries(); 262 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 263 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 264 bool DoDump = false); 265 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 266 CPUser &U, unsigned &Growth); 267 bool fixupImmediateBr(ImmBranch &Br); 268 bool fixupConditionalBr(ImmBranch &Br); 269 bool fixupUnconditionalBr(ImmBranch &Br); 270 bool optimizeThumb2Instructions(); 271 bool optimizeThumb2Branches(); 272 bool reorderThumb2JumpTables(); 273 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 274 unsigned &DeadSize, bool &CanDeleteLEA, 275 bool &BaseRegKill); 276 bool optimizeThumb2JumpTables(); 277 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 278 MachineBasicBlock *JTBB); 279 280 unsigned getUserOffset(CPUser&) const; 281 void dumpBBs(); 282 void verify(); 283 284 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 285 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 286 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 287 const CPUser &U) { 288 return isOffsetInRange(UserOffset, TrialOffset, 289 U.getMaxDisp(), U.NegOk, U.IsSoImm); 290 } 291 }; 292 293 } // end anonymous namespace 294 295 char ARMConstantIslands::ID = 0; 296 297 /// verify - check BBOffsets, BBSizes, alignment of islands 298 void ARMConstantIslands::verify() { 299 #ifndef NDEBUG 300 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 301 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 // Align blocks where the previous block does not fall through. This may add 342 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a 343 // measure of how much to align, and only runs at CodeGenOpt::Aggressive. 344 static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) { 345 if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive || 346 MF->getFunction().hasOptSize()) 347 return false; 348 349 auto *TLI = STI->getTargetLowering(); 350 const Align Alignment = TLI->getPrefLoopAlignment(); 351 if (Alignment < 4) 352 return false; 353 354 bool Changed = false; 355 bool PrevCanFallthough = true; 356 for (auto &MBB : *MF) { 357 if (!PrevCanFallthough) { 358 Changed = true; 359 MBB.setAlignment(Alignment); 360 } 361 362 PrevCanFallthough = MBB.canFallThrough(); 363 364 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional 365 // branch later in the pipeline. 366 if (STI->hasLOB()) { 367 for (const auto &MI : reverse(MBB.terminators())) { 368 if (MI.getOpcode() == ARM::t2B && 369 MI.getOperand(0).getMBB() == MBB.getNextNode()) 370 continue; 371 if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd || 372 MI.getOpcode() == ARM::t2LoopEndDec) { 373 PrevCanFallthough = true; 374 break; 375 } 376 // Any other terminator - nothing to do 377 break; 378 } 379 } 380 } 381 382 return Changed; 383 } 384 385 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 386 MF = &mf; 387 MCP = mf.getConstantPool(); 388 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 389 390 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 391 << MCP->getConstants().size() << " CP entries, aligned to " 392 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 393 394 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 395 TII = STI->getInstrInfo(); 396 isPositionIndependentOrROPI = 397 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 398 AFI = MF->getInfo<ARMFunctionInfo>(); 399 DT = &getAnalysis<MachineDominatorTree>(); 400 401 isThumb = AFI->isThumbFunction(); 402 isThumb1 = AFI->isThumb1OnlyFunction(); 403 isThumb2 = AFI->isThumb2Function(); 404 405 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 406 // TBB generation code in this constant island pass has not been adapted to 407 // deal with speculation barriers. 408 if (STI->hardenSlsRetBr()) 409 GenerateTBB = false; 410 411 // Renumber all of the machine basic blocks in the function, guaranteeing that 412 // the numbers agree with the position of the block in the function. 413 MF->RenumberBlocks(); 414 415 // Try to reorder and otherwise adjust the block layout to make good use 416 // of the TB[BH] instructions. 417 bool MadeChange = false; 418 if (GenerateTBB && AdjustJumpTableBlocks) { 419 scanFunctionJumpTables(); 420 MadeChange |= reorderThumb2JumpTables(); 421 // Data is out of date, so clear it. It'll be re-computed later. 422 T2JumpTables.clear(); 423 // Blocks may have shifted around. Keep the numbering up to date. 424 MF->RenumberBlocks(); 425 } 426 427 // Align any non-fallthrough blocks 428 MadeChange |= AlignBlocks(MF, STI); 429 430 // Perform the initial placement of the constant pool entries. To start with, 431 // we put them all at the end of the function. 432 std::vector<MachineInstr*> CPEMIs; 433 if (!MCP->isEmpty()) 434 doInitialConstPlacement(CPEMIs); 435 436 if (MF->getJumpTableInfo()) 437 doInitialJumpTablePlacement(CPEMIs); 438 439 /// The next UID to take is the first unused one. 440 AFI->initPICLabelUId(CPEMIs.size()); 441 442 // Do the initial scan of the function, building up information about the 443 // sizes of each block, the location of all the water, and finding all of the 444 // constant pool users. 445 initializeFunctionInfo(CPEMIs); 446 CPEMIs.clear(); 447 LLVM_DEBUG(dumpBBs()); 448 449 // Functions with jump tables need an alignment of 4 because they use the ADR 450 // instruction, which aligns the PC to 4 bytes before adding an offset. 451 if (!T2JumpTables.empty()) 452 MF->ensureAlignment(Align(4)); 453 454 /// Remove dead constant pool entries. 455 MadeChange |= removeUnusedCPEntries(); 456 457 // Iteratively place constant pool entries and fix up branches until there 458 // is no change. 459 unsigned NoCPIters = 0, NoBRIters = 0; 460 while (true) { 461 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 462 bool CPChange = false; 463 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 464 // For most inputs, it converges in no more than 5 iterations. 465 // If it doesn't end in 10, the input may have huge BB or many CPEs. 466 // In this case, we will try different heuristics. 467 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 468 if (CPChange && ++NoCPIters > CPMaxIteration) 469 report_fatal_error("Constant Island pass failed to converge!"); 470 LLVM_DEBUG(dumpBBs()); 471 472 // Clear NewWaterList now. If we split a block for branches, it should 473 // appear as "new water" for the next iteration of constant pool placement. 474 NewWaterList.clear(); 475 476 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 477 bool BRChange = false; 478 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 479 BRChange |= fixupImmediateBr(ImmBranches[i]); 480 if (BRChange && ++NoBRIters > 30) 481 report_fatal_error("Branch Fix Up pass failed to converge!"); 482 LLVM_DEBUG(dumpBBs()); 483 484 if (!CPChange && !BRChange) 485 break; 486 MadeChange = true; 487 } 488 489 // Shrink 32-bit Thumb2 load and store instructions. 490 if (isThumb2 && !STI->prefers32BitThumb()) 491 MadeChange |= optimizeThumb2Instructions(); 492 493 // Shrink 32-bit branch instructions. 494 if (isThumb && STI->hasV8MBaselineOps()) 495 MadeChange |= optimizeThumb2Branches(); 496 497 // Optimize jump tables using TBB / TBH. 498 if (GenerateTBB && !STI->genExecuteOnly()) 499 MadeChange |= optimizeThumb2JumpTables(); 500 501 // After a while, this might be made debug-only, but it is not expensive. 502 verify(); 503 504 // Save the mapping between original and cloned constpool entries. 505 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 506 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 507 const CPEntry & CPE = CPEntries[i][j]; 508 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 509 AFI->recordCPEClone(i, CPE.CPI); 510 } 511 } 512 513 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 514 515 BBUtils->clear(); 516 WaterList.clear(); 517 CPUsers.clear(); 518 CPEntries.clear(); 519 JumpTableEntryIndices.clear(); 520 JumpTableUserIndices.clear(); 521 ImmBranches.clear(); 522 PushPopMIs.clear(); 523 T2JumpTables.clear(); 524 525 return MadeChange; 526 } 527 528 /// Perform the initial placement of the regular constant pool entries. 529 /// To start with, we put them all at the end of the function. 530 void 531 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 532 // Create the basic block to hold the CPE's. 533 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 534 MF->push_back(BB); 535 536 // MachineConstantPool measures alignment in bytes. 537 const Align MaxAlign = MCP->getConstantPoolAlign(); 538 const unsigned MaxLogAlign = Log2(MaxAlign); 539 540 // Mark the basic block as required by the const-pool. 541 BB->setAlignment(MaxAlign); 542 543 // The function needs to be as aligned as the basic blocks. The linker may 544 // move functions around based on their alignment. 545 // Special case: halfword literals still need word alignment on the function. 546 Align FuncAlign = MaxAlign; 547 if (MaxAlign == 2) 548 FuncAlign = Align(4); 549 MF->ensureAlignment(FuncAlign); 550 551 // Order the entries in BB by descending alignment. That ensures correct 552 // alignment of all entries as long as BB is sufficiently aligned. Keep 553 // track of the insertion point for each alignment. We are going to bucket 554 // sort the entries as they are created. 555 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 556 BB->end()); 557 558 // Add all of the constants from the constant pool to the end block, use an 559 // identity mapping of CPI's to CPE's. 560 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 561 562 const DataLayout &TD = MF->getDataLayout(); 563 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 564 unsigned Size = CPs[i].getSizeInBytes(TD); 565 Align Alignment = CPs[i].getAlign(); 566 // Verify that all constant pool entries are a multiple of their alignment. 567 // If not, we would have to pad them out so that instructions stay aligned. 568 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 569 570 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 571 unsigned LogAlign = Log2(Alignment); 572 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 573 MachineInstr *CPEMI = 574 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 575 .addImm(i).addConstantPoolIndex(i).addImm(Size); 576 CPEMIs.push_back(CPEMI); 577 578 // Ensure that future entries with higher alignment get inserted before 579 // CPEMI. This is bucket sort with iterators. 580 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 581 if (InsPoint[a] == InsAt) 582 InsPoint[a] = CPEMI; 583 584 // Add a new CPEntry, but no corresponding CPUser yet. 585 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 586 ++NumCPEs; 587 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 588 << Size << ", align = " << Alignment.value() << '\n'); 589 } 590 LLVM_DEBUG(BB->dump()); 591 } 592 593 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 594 /// instructions can be made more efficient if the jump table immediately 595 /// follows the instruction, it's best to place them immediately next to their 596 /// jumps to begin with. In almost all cases they'll never be moved from that 597 /// position. 598 void ARMConstantIslands::doInitialJumpTablePlacement( 599 std::vector<MachineInstr *> &CPEMIs) { 600 unsigned i = CPEntries.size(); 601 auto MJTI = MF->getJumpTableInfo(); 602 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 603 604 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 605 for (MachineBasicBlock &MBB : *MF) { 606 auto MI = MBB.getLastNonDebugInstr(); 607 // Look past potential SpeculationBarriers at end of BB. 608 while (MI != MBB.end() && 609 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 610 MI->isDebugInstr())) 611 --MI; 612 613 if (MI == MBB.end()) 614 continue; 615 616 unsigned JTOpcode; 617 switch (MI->getOpcode()) { 618 default: 619 continue; 620 case ARM::BR_JTadd: 621 case ARM::BR_JTr: 622 case ARM::tBR_JTr: 623 case ARM::BR_JTm_i12: 624 case ARM::BR_JTm_rs: 625 JTOpcode = ARM::JUMPTABLE_ADDRS; 626 break; 627 case ARM::t2BR_JT: 628 JTOpcode = ARM::JUMPTABLE_INSTS; 629 break; 630 case ARM::tTBB_JT: 631 case ARM::t2TBB_JT: 632 JTOpcode = ARM::JUMPTABLE_TBB; 633 break; 634 case ARM::tTBH_JT: 635 case ARM::t2TBH_JT: 636 JTOpcode = ARM::JUMPTABLE_TBH; 637 break; 638 } 639 640 unsigned NumOps = MI->getDesc().getNumOperands(); 641 MachineOperand JTOp = 642 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 643 unsigned JTI = JTOp.getIndex(); 644 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 645 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 646 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 647 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 648 DebugLoc(), TII->get(JTOpcode)) 649 .addImm(i++) 650 .addJumpTableIndex(JTI) 651 .addImm(Size); 652 CPEMIs.push_back(CPEMI); 653 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 654 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 655 if (!LastCorrectlyNumberedBB) 656 LastCorrectlyNumberedBB = &MBB; 657 } 658 659 // If we did anything then we need to renumber the subsequent blocks. 660 if (LastCorrectlyNumberedBB) 661 MF->RenumberBlocks(LastCorrectlyNumberedBB); 662 } 663 664 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 665 /// into the block immediately after it. 666 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 667 // Get the next machine basic block in the function. 668 MachineFunction::iterator MBBI = MBB->getIterator(); 669 // Can't fall off end of function. 670 if (std::next(MBBI) == MBB->getParent()->end()) 671 return false; 672 673 MachineBasicBlock *NextBB = &*std::next(MBBI); 674 if (!MBB->isSuccessor(NextBB)) 675 return false; 676 677 // Try to analyze the end of the block. A potential fallthrough may already 678 // have an unconditional branch for whatever reason. 679 MachineBasicBlock *TBB, *FBB; 680 SmallVector<MachineOperand, 4> Cond; 681 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 682 return TooDifficult || FBB == nullptr; 683 } 684 685 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 686 /// look up the corresponding CPEntry. 687 ARMConstantIslands::CPEntry * 688 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 689 const MachineInstr *CPEMI) { 690 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 691 // Number of entries per constpool index should be small, just do a 692 // linear search. 693 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 694 if (CPEs[i].CPEMI == CPEMI) 695 return &CPEs[i]; 696 } 697 return nullptr; 698 } 699 700 /// getCPEAlign - Returns the required alignment of the constant pool entry 701 /// represented by CPEMI. 702 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 703 switch (CPEMI->getOpcode()) { 704 case ARM::CONSTPOOL_ENTRY: 705 break; 706 case ARM::JUMPTABLE_TBB: 707 return isThumb1 ? Align(4) : Align(1); 708 case ARM::JUMPTABLE_TBH: 709 return isThumb1 ? Align(4) : Align(2); 710 case ARM::JUMPTABLE_INSTS: 711 return Align(2); 712 case ARM::JUMPTABLE_ADDRS: 713 return Align(4); 714 default: 715 llvm_unreachable("unknown constpool entry kind"); 716 } 717 718 unsigned CPI = getCombinedIndex(CPEMI); 719 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 720 return MCP->getConstants()[CPI].getAlign(); 721 } 722 723 /// scanFunctionJumpTables - Do a scan of the function, building up 724 /// information about the sizes of each block and the locations of all 725 /// the jump tables. 726 void ARMConstantIslands::scanFunctionJumpTables() { 727 for (MachineBasicBlock &MBB : *MF) { 728 for (MachineInstr &I : MBB) 729 if (I.isBranch() && 730 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 731 T2JumpTables.push_back(&I); 732 } 733 } 734 735 /// initializeFunctionInfo - Do the initial scan of the function, building up 736 /// information about the sizes of each block, the location of all the water, 737 /// and finding all of the constant pool users. 738 void ARMConstantIslands:: 739 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 740 741 BBUtils->computeAllBlockSizes(); 742 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 743 // The known bits of the entry block offset are determined by the function 744 // alignment. 745 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 746 747 // Compute block offsets and known bits. 748 BBUtils->adjustBBOffsetsAfter(&MF->front()); 749 750 // Now go back through the instructions and build up our data structures. 751 for (MachineBasicBlock &MBB : *MF) { 752 // If this block doesn't fall through into the next MBB, then this is 753 // 'water' that a constant pool island could be placed. 754 if (!BBHasFallthrough(&MBB)) 755 WaterList.push_back(&MBB); 756 757 for (MachineInstr &I : MBB) { 758 if (I.isDebugInstr()) 759 continue; 760 761 unsigned Opc = I.getOpcode(); 762 if (I.isBranch()) { 763 bool isCond = false; 764 unsigned Bits = 0; 765 unsigned Scale = 1; 766 int UOpc = Opc; 767 switch (Opc) { 768 default: 769 continue; // Ignore other JT branches 770 case ARM::t2BR_JT: 771 case ARM::tBR_JTr: 772 T2JumpTables.push_back(&I); 773 continue; // Does not get an entry in ImmBranches 774 case ARM::Bcc: 775 isCond = true; 776 UOpc = ARM::B; 777 LLVM_FALLTHROUGH; 778 case ARM::B: 779 Bits = 24; 780 Scale = 4; 781 break; 782 case ARM::tBcc: 783 isCond = true; 784 UOpc = ARM::tB; 785 Bits = 8; 786 Scale = 2; 787 break; 788 case ARM::tB: 789 Bits = 11; 790 Scale = 2; 791 break; 792 case ARM::t2Bcc: 793 isCond = true; 794 UOpc = ARM::t2B; 795 Bits = 20; 796 Scale = 2; 797 break; 798 case ARM::t2B: 799 Bits = 24; 800 Scale = 2; 801 break; 802 } 803 804 // Record this immediate branch. 805 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 806 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 807 } 808 809 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 810 PushPopMIs.push_back(&I); 811 812 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 813 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 814 Opc == ARM::JUMPTABLE_TBH) 815 continue; 816 817 // Scan the instructions for constant pool operands. 818 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 819 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 820 // We found one. The addressing mode tells us the max displacement 821 // from the PC that this instruction permits. 822 823 // Basic size info comes from the TSFlags field. 824 unsigned Bits = 0; 825 unsigned Scale = 1; 826 bool NegOk = false; 827 bool IsSoImm = false; 828 829 switch (Opc) { 830 default: 831 llvm_unreachable("Unknown addressing mode for CP reference!"); 832 833 // Taking the address of a CP entry. 834 case ARM::LEApcrel: 835 case ARM::LEApcrelJT: { 836 // This takes a SoImm, which is 8 bit immediate rotated. We'll 837 // pretend the maximum offset is 255 * 4. Since each instruction 838 // 4 byte wide, this is always correct. We'll check for other 839 // displacements that fits in a SoImm as well. 840 Bits = 8; 841 NegOk = true; 842 IsSoImm = true; 843 unsigned CPI = I.getOperand(op).getIndex(); 844 assert(CPI < CPEMIs.size()); 845 MachineInstr *CPEMI = CPEMIs[CPI]; 846 const Align CPEAlign = getCPEAlign(CPEMI); 847 const unsigned LogCPEAlign = Log2(CPEAlign); 848 if (LogCPEAlign >= 2) 849 Scale = 4; 850 else 851 // For constants with less than 4-byte alignment, 852 // we'll pretend the maximum offset is 255 * 1. 853 Scale = 1; 854 } 855 break; 856 case ARM::t2LEApcrel: 857 case ARM::t2LEApcrelJT: 858 Bits = 12; 859 NegOk = true; 860 break; 861 case ARM::tLEApcrel: 862 case ARM::tLEApcrelJT: 863 Bits = 8; 864 Scale = 4; 865 break; 866 867 case ARM::LDRBi12: 868 case ARM::LDRi12: 869 case ARM::LDRcp: 870 case ARM::t2LDRpci: 871 case ARM::t2LDRHpci: 872 case ARM::t2LDRSHpci: 873 case ARM::t2LDRBpci: 874 case ARM::t2LDRSBpci: 875 Bits = 12; // +-offset_12 876 NegOk = true; 877 break; 878 879 case ARM::tLDRpci: 880 Bits = 8; 881 Scale = 4; // +(offset_8*4) 882 break; 883 884 case ARM::VLDRD: 885 case ARM::VLDRS: 886 Bits = 8; 887 Scale = 4; // +-(offset_8*4) 888 NegOk = true; 889 break; 890 case ARM::VLDRH: 891 Bits = 8; 892 Scale = 2; // +-(offset_8*2) 893 NegOk = true; 894 break; 895 } 896 897 // Remember that this is a user of a CP entry. 898 unsigned CPI = I.getOperand(op).getIndex(); 899 if (I.getOperand(op).isJTI()) { 900 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 901 CPI = JumpTableEntryIndices[CPI]; 902 } 903 904 MachineInstr *CPEMI = CPEMIs[CPI]; 905 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 906 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 907 908 // Increment corresponding CPEntry reference count. 909 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 910 assert(CPE && "Cannot find a corresponding CPEntry!"); 911 CPE->RefCount++; 912 913 // Instructions can only use one CP entry, don't bother scanning the 914 // rest of the operands. 915 break; 916 } 917 } 918 } 919 } 920 921 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 922 /// ID. 923 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 924 const MachineBasicBlock *RHS) { 925 return LHS->getNumber() < RHS->getNumber(); 926 } 927 928 /// updateForInsertedWaterBlock - When a block is newly inserted into the 929 /// machine function, it upsets all of the block numbers. Renumber the blocks 930 /// and update the arrays that parallel this numbering. 931 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 932 // Renumber the MBB's to keep them consecutive. 933 NewBB->getParent()->RenumberBlocks(NewBB); 934 935 // Insert an entry into BBInfo to align it properly with the (newly 936 // renumbered) block numbers. 937 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 938 939 // Next, update WaterList. Specifically, we need to add NewMBB as having 940 // available water after it. 941 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 942 WaterList.insert(IP, NewBB); 943 } 944 945 /// Split the basic block containing MI into two blocks, which are joined by 946 /// an unconditional branch. Update data structures and renumber blocks to 947 /// account for this change and returns the newly created block. 948 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 949 MachineBasicBlock *OrigBB = MI->getParent(); 950 951 // Collect liveness information at MI. 952 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 953 LRs.addLiveOuts(*OrigBB); 954 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 955 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 956 LRs.stepBackward(LiveMI); 957 958 // Create a new MBB for the code after the OrigBB. 959 MachineBasicBlock *NewBB = 960 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 961 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 962 MF->insert(MBBI, NewBB); 963 964 // Splice the instructions starting with MI over to NewBB. 965 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 966 967 // Add an unconditional branch from OrigBB to NewBB. 968 // Note the new unconditional branch is not being recorded. 969 // There doesn't seem to be meaningful DebugInfo available; this doesn't 970 // correspond to anything in the source. 971 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 972 if (!isThumb) 973 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 974 else 975 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 976 .addMBB(NewBB) 977 .add(predOps(ARMCC::AL)); 978 ++NumSplit; 979 980 // Update the CFG. All succs of OrigBB are now succs of NewBB. 981 NewBB->transferSuccessors(OrigBB); 982 983 // OrigBB branches to NewBB. 984 OrigBB->addSuccessor(NewBB); 985 986 // Update live-in information in the new block. 987 MachineRegisterInfo &MRI = MF->getRegInfo(); 988 for (MCPhysReg L : LRs) 989 if (!MRI.isReserved(L)) 990 NewBB->addLiveIn(L); 991 992 // Update internal data structures to account for the newly inserted MBB. 993 // This is almost the same as updateForInsertedWaterBlock, except that 994 // the Water goes after OrigBB, not NewBB. 995 MF->RenumberBlocks(NewBB); 996 997 // Insert an entry into BBInfo to align it properly with the (newly 998 // renumbered) block numbers. 999 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 1000 1001 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1002 // available water after it (but not if it's already there, which happens 1003 // when splitting before a conditional branch that is followed by an 1004 // unconditional branch - in that case we want to insert NewBB). 1005 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 1006 MachineBasicBlock* WaterBB = *IP; 1007 if (WaterBB == OrigBB) 1008 WaterList.insert(std::next(IP), NewBB); 1009 else 1010 WaterList.insert(IP, OrigBB); 1011 NewWaterList.insert(OrigBB); 1012 1013 // Figure out how large the OrigBB is. As the first half of the original 1014 // block, it cannot contain a tablejump. The size includes 1015 // the new jump we added. (It should be possible to do this without 1016 // recounting everything, but it's very confusing, and this is rarely 1017 // executed.) 1018 BBUtils->computeBlockSize(OrigBB); 1019 1020 // Figure out how large the NewMBB is. As the second half of the original 1021 // block, it may contain a tablejump. 1022 BBUtils->computeBlockSize(NewBB); 1023 1024 // All BBOffsets following these blocks must be modified. 1025 BBUtils->adjustBBOffsetsAfter(OrigBB); 1026 1027 return NewBB; 1028 } 1029 1030 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1031 /// displacement computation. Update U.KnownAlignment to match its current 1032 /// basic block location. 1033 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1034 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 1035 1036 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 1037 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1038 unsigned KnownBits = BBI.internalKnownBits(); 1039 1040 // The value read from PC is offset from the actual instruction address. 1041 UserOffset += (isThumb ? 4 : 8); 1042 1043 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1044 // Make sure U.getMaxDisp() returns a constrained range. 1045 U.KnownAlignment = (KnownBits >= 2); 1046 1047 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1048 // purposes of the displacement computation; compensate for that here. 1049 // For unknown alignments, getMaxDisp() constrains the range instead. 1050 if (isThumb && U.KnownAlignment) 1051 UserOffset &= ~3u; 1052 1053 return UserOffset; 1054 } 1055 1056 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1057 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1058 /// constant pool entry). 1059 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1060 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1061 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1062 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1063 unsigned TrialOffset, unsigned MaxDisp, 1064 bool NegativeOK, bool IsSoImm) { 1065 if (UserOffset <= TrialOffset) { 1066 // User before the Trial. 1067 if (TrialOffset - UserOffset <= MaxDisp) 1068 return true; 1069 // FIXME: Make use full range of soimm values. 1070 } else if (NegativeOK) { 1071 if (UserOffset - TrialOffset <= MaxDisp) 1072 return true; 1073 // FIXME: Make use full range of soimm values. 1074 } 1075 return false; 1076 } 1077 1078 /// isWaterInRange - Returns true if a CPE placed after the specified 1079 /// Water (a basic block) will be in range for the specific MI. 1080 /// 1081 /// Compute how much the function will grow by inserting a CPE after Water. 1082 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1083 MachineBasicBlock* Water, CPUser &U, 1084 unsigned &Growth) { 1085 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1086 const Align CPEAlign = getCPEAlign(U.CPEMI); 1087 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1088 unsigned NextBlockOffset; 1089 Align NextBlockAlignment; 1090 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1091 if (++NextBlock == MF->end()) { 1092 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1093 } else { 1094 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1095 NextBlockAlignment = NextBlock->getAlignment(); 1096 } 1097 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1098 unsigned CPEEnd = CPEOffset + Size; 1099 1100 // The CPE may be able to hide in the alignment padding before the next 1101 // block. It may also cause more padding to be required if it is more aligned 1102 // that the next block. 1103 if (CPEEnd > NextBlockOffset) { 1104 Growth = CPEEnd - NextBlockOffset; 1105 // Compute the padding that would go at the end of the CPE to align the next 1106 // block. 1107 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1108 1109 // If the CPE is to be inserted before the instruction, that will raise 1110 // the offset of the instruction. Also account for unknown alignment padding 1111 // in blocks between CPE and the user. 1112 if (CPEOffset < UserOffset) 1113 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1114 } else 1115 // CPE fits in existing padding. 1116 Growth = 0; 1117 1118 return isOffsetInRange(UserOffset, CPEOffset, U); 1119 } 1120 1121 /// isCPEntryInRange - Returns true if the distance between specific MI and 1122 /// specific ConstPool entry instruction can fit in MI's displacement field. 1123 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1124 MachineInstr *CPEMI, unsigned MaxDisp, 1125 bool NegOk, bool DoDump) { 1126 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1127 1128 if (DoDump) { 1129 LLVM_DEBUG({ 1130 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1131 unsigned Block = MI->getParent()->getNumber(); 1132 const BasicBlockInfo &BBI = BBInfo[Block]; 1133 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1134 << " max delta=" << MaxDisp 1135 << format(" insn address=%#x", UserOffset) << " in " 1136 << printMBBReference(*MI->getParent()) << ": " 1137 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1138 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1139 int(CPEOffset - UserOffset)); 1140 }); 1141 } 1142 1143 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1144 } 1145 1146 #ifndef NDEBUG 1147 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1148 /// unconditionally branches to its only successor. 1149 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1150 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1151 return false; 1152 1153 MachineBasicBlock *Succ = *MBB->succ_begin(); 1154 MachineBasicBlock *Pred = *MBB->pred_begin(); 1155 MachineInstr *PredMI = &Pred->back(); 1156 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1157 || PredMI->getOpcode() == ARM::t2B) 1158 return PredMI->getOperand(0).getMBB() == Succ; 1159 return false; 1160 } 1161 #endif // NDEBUG 1162 1163 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1164 /// and instruction CPEMI, and decrement its refcount. If the refcount 1165 /// becomes 0 remove the entry and instruction. Returns true if we removed 1166 /// the entry, false if we didn't. 1167 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1168 MachineInstr *CPEMI) { 1169 // Find the old entry. Eliminate it if it is no longer used. 1170 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1171 assert(CPE && "Unexpected!"); 1172 if (--CPE->RefCount == 0) { 1173 removeDeadCPEMI(CPEMI); 1174 CPE->CPEMI = nullptr; 1175 --NumCPEs; 1176 return true; 1177 } 1178 return false; 1179 } 1180 1181 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1182 if (CPEMI->getOperand(1).isCPI()) 1183 return CPEMI->getOperand(1).getIndex(); 1184 1185 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1186 } 1187 1188 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1189 /// if not, see if an in-range clone of the CPE is in range, and if so, 1190 /// change the data structures so the user references the clone. Returns: 1191 /// 0 = no existing entry found 1192 /// 1 = entry found, and there were no code insertions or deletions 1193 /// 2 = entry found, and there were code insertions or deletions 1194 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1195 MachineInstr *UserMI = U.MI; 1196 MachineInstr *CPEMI = U.CPEMI; 1197 1198 // Check to see if the CPE is already in-range. 1199 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1200 true)) { 1201 LLVM_DEBUG(dbgs() << "In range\n"); 1202 return 1; 1203 } 1204 1205 // No. Look for previously created clones of the CPE that are in range. 1206 unsigned CPI = getCombinedIndex(CPEMI); 1207 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1208 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1209 // We already tried this one 1210 if (CPEs[i].CPEMI == CPEMI) 1211 continue; 1212 // Removing CPEs can leave empty entries, skip 1213 if (CPEs[i].CPEMI == nullptr) 1214 continue; 1215 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1216 U.NegOk)) { 1217 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1218 << CPEs[i].CPI << "\n"); 1219 // Point the CPUser node to the replacement 1220 U.CPEMI = CPEs[i].CPEMI; 1221 // Change the CPI in the instruction operand to refer to the clone. 1222 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1223 if (UserMI->getOperand(j).isCPI()) { 1224 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1225 break; 1226 } 1227 // Adjust the refcount of the clone... 1228 CPEs[i].RefCount++; 1229 // ...and the original. If we didn't remove the old entry, none of the 1230 // addresses changed, so we don't need another pass. 1231 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1232 } 1233 } 1234 return 0; 1235 } 1236 1237 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1238 /// the specific unconditional branch instruction. 1239 static inline unsigned getUnconditionalBrDisp(int Opc) { 1240 switch (Opc) { 1241 case ARM::tB: 1242 return ((1<<10)-1)*2; 1243 case ARM::t2B: 1244 return ((1<<23)-1)*2; 1245 default: 1246 break; 1247 } 1248 1249 return ((1<<23)-1)*4; 1250 } 1251 1252 /// findAvailableWater - Look for an existing entry in the WaterList in which 1253 /// we can place the CPE referenced from U so it's within range of U's MI. 1254 /// Returns true if found, false if not. If it returns true, WaterIter 1255 /// is set to the WaterList entry. For Thumb, prefer water that will not 1256 /// introduce padding to water that will. To ensure that this pass 1257 /// terminates, the CPE location for a particular CPUser is only allowed to 1258 /// move to a lower address, so search backward from the end of the list and 1259 /// prefer the first water that is in range. 1260 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1261 water_iterator &WaterIter, 1262 bool CloserWater) { 1263 if (WaterList.empty()) 1264 return false; 1265 1266 unsigned BestGrowth = ~0u; 1267 // The nearest water without splitting the UserBB is right after it. 1268 // If the distance is still large (we have a big BB), then we need to split it 1269 // if we don't converge after certain iterations. This helps the following 1270 // situation to converge: 1271 // BB0: 1272 // Big BB 1273 // BB1: 1274 // Constant Pool 1275 // When a CP access is out of range, BB0 may be used as water. However, 1276 // inserting islands between BB0 and BB1 makes other accesses out of range. 1277 MachineBasicBlock *UserBB = U.MI->getParent(); 1278 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1279 const Align CPEAlign = getCPEAlign(U.CPEMI); 1280 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1281 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1282 return false; 1283 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1284 --IP) { 1285 MachineBasicBlock* WaterBB = *IP; 1286 // Check if water is in range and is either at a lower address than the 1287 // current "high water mark" or a new water block that was created since 1288 // the previous iteration by inserting an unconditional branch. In the 1289 // latter case, we want to allow resetting the high water mark back to 1290 // this new water since we haven't seen it before. Inserting branches 1291 // should be relatively uncommon and when it does happen, we want to be 1292 // sure to take advantage of it for all the CPEs near that block, so that 1293 // we don't insert more branches than necessary. 1294 // When CloserWater is true, we try to find the lowest address after (or 1295 // equal to) user MI's BB no matter of padding growth. 1296 unsigned Growth; 1297 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1298 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1299 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1300 Growth < BestGrowth) { 1301 // This is the least amount of required padding seen so far. 1302 BestGrowth = Growth; 1303 WaterIter = IP; 1304 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1305 << " Growth=" << Growth << '\n'); 1306 1307 if (CloserWater && WaterBB == U.MI->getParent()) 1308 return true; 1309 // Keep looking unless it is perfect and we're not looking for the lowest 1310 // possible address. 1311 if (!CloserWater && BestGrowth == 0) 1312 return true; 1313 } 1314 if (IP == B) 1315 break; 1316 } 1317 return BestGrowth != ~0u; 1318 } 1319 1320 /// createNewWater - No existing WaterList entry will work for 1321 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1322 /// block is used if in range, and the conditional branch munged so control 1323 /// flow is correct. Otherwise the block is split to create a hole with an 1324 /// unconditional branch around it. In either case NewMBB is set to a 1325 /// block following which the new island can be inserted (the WaterList 1326 /// is not adjusted). 1327 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1328 unsigned UserOffset, 1329 MachineBasicBlock *&NewMBB) { 1330 CPUser &U = CPUsers[CPUserIndex]; 1331 MachineInstr *UserMI = U.MI; 1332 MachineInstr *CPEMI = U.CPEMI; 1333 const Align CPEAlign = getCPEAlign(CPEMI); 1334 MachineBasicBlock *UserMBB = UserMI->getParent(); 1335 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1336 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1337 1338 // If the block does not end in an unconditional branch already, and if the 1339 // end of the block is within range, make new water there. (The addition 1340 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1341 // Thumb2, 2 on Thumb1. 1342 if (BBHasFallthrough(UserMBB)) { 1343 // Size of branch to insert. 1344 unsigned Delta = isThumb1 ? 2 : 4; 1345 // Compute the offset where the CPE will begin. 1346 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1347 1348 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1349 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1350 << format(", expected CPE offset %#x\n", CPEOffset)); 1351 NewMBB = &*++UserMBB->getIterator(); 1352 // Add an unconditional branch from UserMBB to fallthrough block. Record 1353 // it for branch lengthening; this new branch will not get out of range, 1354 // but if the preceding conditional branch is out of range, the targets 1355 // will be exchanged, and the altered branch may be out of range, so the 1356 // machinery has to know about it. 1357 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1358 if (!isThumb) 1359 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1360 else 1361 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1362 .addMBB(NewMBB) 1363 .add(predOps(ARMCC::AL)); 1364 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1365 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1366 MaxDisp, false, UncondBr)); 1367 BBUtils->computeBlockSize(UserMBB); 1368 BBUtils->adjustBBOffsetsAfter(UserMBB); 1369 return; 1370 } 1371 } 1372 1373 // What a big block. Find a place within the block to split it. This is a 1374 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1375 // entries are 4 bytes: if instruction I references island CPE, and 1376 // instruction I+1 references CPE', it will not work well to put CPE as far 1377 // forward as possible, since then CPE' cannot immediately follow it (that 1378 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1379 // need to create a new island. So, we make a first guess, then walk through 1380 // the instructions between the one currently being looked at and the 1381 // possible insertion point, and make sure any other instructions that 1382 // reference CPEs will be able to use the same island area; if not, we back 1383 // up the insertion point. 1384 1385 // Try to split the block so it's fully aligned. Compute the latest split 1386 // point where we can add a 4-byte branch instruction, and then align to 1387 // Align which is the largest possible alignment in the function. 1388 const Align Align = MF->getAlignment(); 1389 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1390 unsigned KnownBits = UserBBI.internalKnownBits(); 1391 unsigned UPad = UnknownPadding(Align, KnownBits); 1392 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1393 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1394 BaseInsertOffset)); 1395 1396 // The 4 in the following is for the unconditional branch we'll be inserting 1397 // (allows for long branch on Thumb1). Alignment of the island is handled 1398 // inside isOffsetInRange. 1399 BaseInsertOffset -= 4; 1400 1401 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1402 << " la=" << Log2(Align) << " kb=" << KnownBits 1403 << " up=" << UPad << '\n'); 1404 1405 // This could point off the end of the block if we've already got constant 1406 // pool entries following this block; only the last one is in the water list. 1407 // Back past any possible branches (allow for a conditional and a maximally 1408 // long unconditional). 1409 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1410 // Ensure BaseInsertOffset is larger than the offset of the instruction 1411 // following UserMI so that the loop which searches for the split point 1412 // iterates at least once. 1413 BaseInsertOffset = 1414 std::max(UserBBI.postOffset() - UPad - 8, 1415 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1416 // If the CP is referenced(ie, UserOffset) is in first four instructions 1417 // after IT, this recalculated BaseInsertOffset could be in the middle of 1418 // an IT block. If it is, change the BaseInsertOffset to just after the 1419 // IT block. This still make the CP Entry is in range becuase of the 1420 // following reasons. 1421 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1422 // U.getMaxDisp() - UPad). 1423 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1424 // bytes). 1425 // 3. All the relevant instructions support much larger Maximum 1426 // displacement. 1427 MachineBasicBlock::iterator I = UserMI; 1428 ++I; 1429 Register PredReg; 1430 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1431 I->getOpcode() != ARM::t2IT && 1432 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1433 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1434 BaseInsertOffset = 1435 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1436 assert(I != UserMBB->end() && "Fell off end of block"); 1437 } 1438 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1439 } 1440 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1441 CPEMI->getOperand(2).getImm(); 1442 MachineBasicBlock::iterator MI = UserMI; 1443 ++MI; 1444 unsigned CPUIndex = CPUserIndex+1; 1445 unsigned NumCPUsers = CPUsers.size(); 1446 MachineInstr *LastIT = nullptr; 1447 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1448 Offset < BaseInsertOffset; 1449 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1450 assert(MI != UserMBB->end() && "Fell off end of block"); 1451 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1452 CPUser &U = CPUsers[CPUIndex]; 1453 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1454 // Shift intertion point by one unit of alignment so it is within reach. 1455 BaseInsertOffset -= Align.value(); 1456 EndInsertOffset -= Align.value(); 1457 } 1458 // This is overly conservative, as we don't account for CPEMIs being 1459 // reused within the block, but it doesn't matter much. Also assume CPEs 1460 // are added in order with alignment padding. We may eventually be able 1461 // to pack the aligned CPEs better. 1462 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1463 CPUIndex++; 1464 } 1465 1466 // Remember the last IT instruction. 1467 if (MI->getOpcode() == ARM::t2IT) 1468 LastIT = &*MI; 1469 } 1470 1471 --MI; 1472 1473 // Avoid splitting an IT block. 1474 if (LastIT) { 1475 Register PredReg; 1476 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1477 if (CC != ARMCC::AL) 1478 MI = LastIT; 1479 } 1480 1481 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1482 // On Windows, this instruction pair is covered by one single 1483 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1484 // constant island is injected inbetween them, the relocation will clobber 1485 // the instruction and fail to update the MOVT instruction. 1486 // (These instructions are bundled up until right before the ConstantIslands 1487 // pass.) 1488 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1489 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1490 ARMII::MO_HI16) { 1491 --MI; 1492 assert(MI->getOpcode() == ARM::t2MOVi16 && 1493 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1494 ARMII::MO_LO16); 1495 } 1496 1497 // We really must not split an IT block. 1498 #ifndef NDEBUG 1499 Register PredReg; 1500 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1501 #endif 1502 NewMBB = splitBlockBeforeInstr(&*MI); 1503 } 1504 1505 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1506 /// is out-of-range. If so, pick up the constant pool value and move it some 1507 /// place in-range. Return true if we changed any addresses (thus must run 1508 /// another pass of branch lengthening), false otherwise. 1509 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1510 bool CloserWater) { 1511 CPUser &U = CPUsers[CPUserIndex]; 1512 MachineInstr *UserMI = U.MI; 1513 MachineInstr *CPEMI = U.CPEMI; 1514 unsigned CPI = getCombinedIndex(CPEMI); 1515 unsigned Size = CPEMI->getOperand(2).getImm(); 1516 // Compute this only once, it's expensive. 1517 unsigned UserOffset = getUserOffset(U); 1518 1519 // See if the current entry is within range, or there is a clone of it 1520 // in range. 1521 int result = findInRangeCPEntry(U, UserOffset); 1522 if (result==1) return false; 1523 else if (result==2) return true; 1524 1525 // No existing clone of this CPE is within range. 1526 // We will be generating a new clone. Get a UID for it. 1527 unsigned ID = AFI->createPICLabelUId(); 1528 1529 // Look for water where we can place this CPE. 1530 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1531 MachineBasicBlock *NewMBB; 1532 water_iterator IP; 1533 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1534 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1535 MachineBasicBlock *WaterBB = *IP; 1536 1537 // If the original WaterList entry was "new water" on this iteration, 1538 // propagate that to the new island. This is just keeping NewWaterList 1539 // updated to match the WaterList, which will be updated below. 1540 if (NewWaterList.erase(WaterBB)) 1541 NewWaterList.insert(NewIsland); 1542 1543 // The new CPE goes before the following block (NewMBB). 1544 NewMBB = &*++WaterBB->getIterator(); 1545 } else { 1546 // No water found. 1547 LLVM_DEBUG(dbgs() << "No water found\n"); 1548 createNewWater(CPUserIndex, UserOffset, NewMBB); 1549 1550 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1551 // called while handling branches so that the water will be seen on the 1552 // next iteration for constant pools, but in this context, we don't want 1553 // it. Check for this so it will be removed from the WaterList. 1554 // Also remove any entry from NewWaterList. 1555 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1556 IP = find(WaterList, WaterBB); 1557 if (IP != WaterList.end()) 1558 NewWaterList.erase(WaterBB); 1559 1560 // We are adding new water. Update NewWaterList. 1561 NewWaterList.insert(NewIsland); 1562 } 1563 // Always align the new block because CP entries can be smaller than 4 1564 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1565 // be an already aligned constant pool block. 1566 const Align Alignment = isThumb ? Align(2) : Align(4); 1567 if (NewMBB->getAlignment() < Alignment) 1568 NewMBB->setAlignment(Alignment); 1569 1570 // Remove the original WaterList entry; we want subsequent insertions in 1571 // this vicinity to go after the one we're about to insert. This 1572 // considerably reduces the number of times we have to move the same CPE 1573 // more than once and is also important to ensure the algorithm terminates. 1574 if (IP != WaterList.end()) 1575 WaterList.erase(IP); 1576 1577 // Okay, we know we can put an island before NewMBB now, do it! 1578 MF->insert(NewMBB->getIterator(), NewIsland); 1579 1580 // Update internal data structures to account for the newly inserted MBB. 1581 updateForInsertedWaterBlock(NewIsland); 1582 1583 // Now that we have an island to add the CPE to, clone the original CPE and 1584 // add it to the island. 1585 U.HighWaterMark = NewIsland; 1586 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1587 .addImm(ID) 1588 .add(CPEMI->getOperand(1)) 1589 .addImm(Size); 1590 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1591 ++NumCPEs; 1592 1593 // Decrement the old entry, and remove it if refcount becomes 0. 1594 decrementCPEReferenceCount(CPI, CPEMI); 1595 1596 // Mark the basic block as aligned as required by the const-pool entry. 1597 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1598 1599 // Increase the size of the island block to account for the new entry. 1600 BBUtils->adjustBBSize(NewIsland, Size); 1601 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1602 1603 // Finally, change the CPI in the instruction operand to be ID. 1604 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1605 if (UserMI->getOperand(i).isCPI()) { 1606 UserMI->getOperand(i).setIndex(ID); 1607 break; 1608 } 1609 1610 LLVM_DEBUG( 1611 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1612 << format(" offset=%#x\n", 1613 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1614 1615 return true; 1616 } 1617 1618 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1619 /// sizes and offsets of impacted basic blocks. 1620 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1621 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1622 unsigned Size = CPEMI->getOperand(2).getImm(); 1623 CPEMI->eraseFromParent(); 1624 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1625 BBUtils->adjustBBSize(CPEBB, -Size); 1626 // All succeeding offsets have the current size value added in, fix this. 1627 if (CPEBB->empty()) { 1628 BBInfo[CPEBB->getNumber()].Size = 0; 1629 1630 // This block no longer needs to be aligned. 1631 CPEBB->setAlignment(Align(1)); 1632 } else { 1633 // Entries are sorted by descending alignment, so realign from the front. 1634 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1635 } 1636 1637 BBUtils->adjustBBOffsetsAfter(CPEBB); 1638 // An island has only one predecessor BB and one successor BB. Check if 1639 // this BB's predecessor jumps directly to this BB's successor. This 1640 // shouldn't happen currently. 1641 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1642 // FIXME: remove the empty blocks after all the work is done? 1643 } 1644 1645 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1646 /// are zero. 1647 bool ARMConstantIslands::removeUnusedCPEntries() { 1648 unsigned MadeChange = false; 1649 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1650 std::vector<CPEntry> &CPEs = CPEntries[i]; 1651 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1652 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1653 removeDeadCPEMI(CPEs[j].CPEMI); 1654 CPEs[j].CPEMI = nullptr; 1655 MadeChange = true; 1656 } 1657 } 1658 } 1659 return MadeChange; 1660 } 1661 1662 1663 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1664 /// away to fit in its displacement field. 1665 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1666 MachineInstr *MI = Br.MI; 1667 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1668 1669 // Check to see if the DestBB is already in-range. 1670 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1671 return false; 1672 1673 if (!Br.isCond) 1674 return fixupUnconditionalBr(Br); 1675 return fixupConditionalBr(Br); 1676 } 1677 1678 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1679 /// too far away to fit in its displacement field. If the LR register has been 1680 /// spilled in the epilogue, then we can use BL to implement a far jump. 1681 /// Otherwise, add an intermediate branch instruction to a branch. 1682 bool 1683 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1684 MachineInstr *MI = Br.MI; 1685 MachineBasicBlock *MBB = MI->getParent(); 1686 if (!isThumb1) 1687 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1688 1689 if (!AFI->isLRSpilled()) 1690 report_fatal_error("underestimated function size"); 1691 1692 // Use BL to implement far jump. 1693 Br.MaxDisp = (1 << 21) * 2; 1694 MI->setDesc(TII->get(ARM::tBfar)); 1695 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1696 BBInfo[MBB->getNumber()].Size += 2; 1697 BBUtils->adjustBBOffsetsAfter(MBB); 1698 ++NumUBrFixed; 1699 1700 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1701 1702 return true; 1703 } 1704 1705 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1706 /// far away to fit in its displacement field. It is converted to an inverse 1707 /// conditional branch + an unconditional branch to the destination. 1708 bool 1709 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1710 MachineInstr *MI = Br.MI; 1711 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1712 1713 // Add an unconditional branch to the destination and invert the branch 1714 // condition to jump over it: 1715 // blt L1 1716 // => 1717 // bge L2 1718 // b L1 1719 // L2: 1720 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1721 CC = ARMCC::getOppositeCondition(CC); 1722 Register CCReg = MI->getOperand(2).getReg(); 1723 1724 // If the branch is at the end of its MBB and that has a fall-through block, 1725 // direct the updated conditional branch to the fall-through block. Otherwise, 1726 // split the MBB before the next instruction. 1727 MachineBasicBlock *MBB = MI->getParent(); 1728 MachineInstr *BMI = &MBB->back(); 1729 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1730 1731 ++NumCBrFixed; 1732 if (BMI != MI) { 1733 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1734 BMI->getOpcode() == Br.UncondBr) { 1735 // Last MI in the BB is an unconditional branch. Can we simply invert the 1736 // condition and swap destinations: 1737 // beq L1 1738 // b L2 1739 // => 1740 // bne L2 1741 // b L1 1742 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1743 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1744 LLVM_DEBUG( 1745 dbgs() << " Invert Bcc condition and swap its destination with " 1746 << *BMI); 1747 BMI->getOperand(0).setMBB(DestBB); 1748 MI->getOperand(0).setMBB(NewDest); 1749 MI->getOperand(1).setImm(CC); 1750 return true; 1751 } 1752 } 1753 } 1754 1755 if (NeedSplit) { 1756 splitBlockBeforeInstr(MI); 1757 // No need for the branch to the next block. We're adding an unconditional 1758 // branch to the destination. 1759 int delta = TII->getInstSizeInBytes(MBB->back()); 1760 BBUtils->adjustBBSize(MBB, -delta); 1761 MBB->back().eraseFromParent(); 1762 1763 // The conditional successor will be swapped between the BBs after this, so 1764 // update CFG. 1765 MBB->addSuccessor(DestBB); 1766 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1767 1768 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1769 } 1770 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1771 1772 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1773 << " also invert condition and change dest. to " 1774 << printMBBReference(*NextBB) << "\n"); 1775 1776 // Insert a new conditional branch and a new unconditional branch. 1777 // Also update the ImmBranch as well as adding a new entry for the new branch. 1778 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1779 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1780 Br.MI = &MBB->back(); 1781 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1782 if (isThumb) 1783 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1784 .addMBB(DestBB) 1785 .add(predOps(ARMCC::AL)); 1786 else 1787 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1788 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1789 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1790 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1791 1792 // Remove the old conditional branch. It may or may not still be in MBB. 1793 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1794 MI->eraseFromParent(); 1795 BBUtils->adjustBBOffsetsAfter(MBB); 1796 return true; 1797 } 1798 1799 bool ARMConstantIslands::optimizeThumb2Instructions() { 1800 bool MadeChange = false; 1801 1802 // Shrink ADR and LDR from constantpool. 1803 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1804 CPUser &U = CPUsers[i]; 1805 unsigned Opcode = U.MI->getOpcode(); 1806 unsigned NewOpc = 0; 1807 unsigned Scale = 1; 1808 unsigned Bits = 0; 1809 switch (Opcode) { 1810 default: break; 1811 case ARM::t2LEApcrel: 1812 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1813 NewOpc = ARM::tLEApcrel; 1814 Bits = 8; 1815 Scale = 4; 1816 } 1817 break; 1818 case ARM::t2LDRpci: 1819 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1820 NewOpc = ARM::tLDRpci; 1821 Bits = 8; 1822 Scale = 4; 1823 } 1824 break; 1825 } 1826 1827 if (!NewOpc) 1828 continue; 1829 1830 unsigned UserOffset = getUserOffset(U); 1831 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1832 1833 // Be conservative with inline asm. 1834 if (!U.KnownAlignment) 1835 MaxOffs -= 2; 1836 1837 // FIXME: Check if offset is multiple of scale if scale is not 4. 1838 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1839 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1840 U.MI->setDesc(TII->get(NewOpc)); 1841 MachineBasicBlock *MBB = U.MI->getParent(); 1842 BBUtils->adjustBBSize(MBB, -2); 1843 BBUtils->adjustBBOffsetsAfter(MBB); 1844 ++NumT2CPShrunk; 1845 MadeChange = true; 1846 } 1847 } 1848 1849 return MadeChange; 1850 } 1851 1852 1853 bool ARMConstantIslands::optimizeThumb2Branches() { 1854 1855 auto TryShrinkBranch = [this](ImmBranch &Br) { 1856 unsigned Opcode = Br.MI->getOpcode(); 1857 unsigned NewOpc = 0; 1858 unsigned Scale = 1; 1859 unsigned Bits = 0; 1860 switch (Opcode) { 1861 default: break; 1862 case ARM::t2B: 1863 NewOpc = ARM::tB; 1864 Bits = 11; 1865 Scale = 2; 1866 break; 1867 case ARM::t2Bcc: 1868 NewOpc = ARM::tBcc; 1869 Bits = 8; 1870 Scale = 2; 1871 break; 1872 } 1873 if (NewOpc) { 1874 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1875 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1876 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1877 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1878 Br.MI->setDesc(TII->get(NewOpc)); 1879 MachineBasicBlock *MBB = Br.MI->getParent(); 1880 BBUtils->adjustBBSize(MBB, -2); 1881 BBUtils->adjustBBOffsetsAfter(MBB); 1882 ++NumT2BrShrunk; 1883 return true; 1884 } 1885 } 1886 return false; 1887 }; 1888 1889 struct ImmCompare { 1890 MachineInstr* MI = nullptr; 1891 unsigned NewOpc = 0; 1892 }; 1893 1894 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1895 MachineBasicBlock *DestBB) { 1896 ImmCmp.MI = nullptr; 1897 ImmCmp.NewOpc = 0; 1898 1899 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1900 // so this transformation is not safe. 1901 if (!Br.MI->killsRegister(ARM::CPSR)) 1902 return false; 1903 1904 Register PredReg; 1905 unsigned NewOpc = 0; 1906 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1907 if (Pred == ARMCC::EQ) 1908 NewOpc = ARM::tCBZ; 1909 else if (Pred == ARMCC::NE) 1910 NewOpc = ARM::tCBNZ; 1911 else 1912 return false; 1913 1914 // Check if the distance is within 126. Subtract starting offset by 2 1915 // because the cmp will be eliminated. 1916 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1917 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1918 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1919 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1920 return false; 1921 1922 // Search backwards to find a tCMPi8 1923 auto *TRI = STI->getRegisterInfo(); 1924 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1925 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1926 return false; 1927 1928 ImmCmp.MI = CmpMI; 1929 ImmCmp.NewOpc = NewOpc; 1930 return true; 1931 }; 1932 1933 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1934 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1935 STI->hasMinSize()) 1936 return false; 1937 1938 MachineBasicBlock *MBB = Br.MI->getParent(); 1939 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1940 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1941 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1942 return false; 1943 1944 if (!DT->dominates(DestBB, MBB)) 1945 return false; 1946 1947 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1948 // target of Br. So now we need to reverse the condition. 1949 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1950 1951 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1952 TII->get(ARM::t2LE)); 1953 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1954 MIB.add(Br.MI->getOperand(0)); 1955 Br.MI->eraseFromParent(); 1956 Br.MI = MIB; 1957 ++NumLEInserted; 1958 return true; 1959 }; 1960 1961 bool MadeChange = false; 1962 1963 // The order in which branches appear in ImmBranches is approximately their 1964 // order within the function body. By visiting later branches first, we reduce 1965 // the distance between earlier forward branches and their targets, making it 1966 // more likely that the cbn?z optimization, which can only apply to forward 1967 // branches, will succeed. 1968 for (ImmBranch &Br : reverse(ImmBranches)) { 1969 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1970 MachineBasicBlock *MBB = Br.MI->getParent(); 1971 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1972 MBB->getFallThrough() : 1973 MBB->back().getOperand(0).getMBB(); 1974 1975 ImmCompare Cmp; 1976 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1977 DestBB = ExitBB; 1978 MadeChange = true; 1979 } else { 1980 FindCmpForCBZ(Br, Cmp, DestBB); 1981 MadeChange |= TryShrinkBranch(Br); 1982 } 1983 1984 unsigned Opcode = Br.MI->getOpcode(); 1985 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1986 continue; 1987 1988 Register Reg = Cmp.MI->getOperand(0).getReg(); 1989 1990 // Check for Kill flags on Reg. If they are present remove them and set kill 1991 // on the new CBZ. 1992 auto *TRI = STI->getRegisterInfo(); 1993 MachineBasicBlock::iterator KillMI = Br.MI; 1994 bool RegKilled = false; 1995 do { 1996 --KillMI; 1997 if (KillMI->killsRegister(Reg, TRI)) { 1998 KillMI->clearRegisterKills(Reg, TRI); 1999 RegKilled = true; 2000 break; 2001 } 2002 } while (KillMI != Cmp.MI); 2003 2004 // Create the new CBZ/CBNZ 2005 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 2006 MachineInstr *NewBR = 2007 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 2008 .addReg(Reg, getKillRegState(RegKilled) | 2009 getRegState(Cmp.MI->getOperand(0))) 2010 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 2011 2012 Cmp.MI->eraseFromParent(); 2013 2014 if (Br.MI->getOpcode() == ARM::tBcc) { 2015 Br.MI->eraseFromParent(); 2016 Br.MI = NewBR; 2017 BBUtils->adjustBBSize(MBB, -2); 2018 } else if (MBB->back().getOpcode() != ARM::t2LE) { 2019 // An LE has been generated, but it's not the terminator - that is an 2020 // unconditional branch. However, the logic has now been reversed with the 2021 // CBN?Z being the conditional branch and the LE being the unconditional 2022 // branch. So this means we can remove the redundant unconditional branch 2023 // at the end of the block. 2024 MachineInstr *LastMI = &MBB->back(); 2025 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 2026 LastMI->eraseFromParent(); 2027 } 2028 BBUtils->adjustBBOffsetsAfter(MBB); 2029 ++NumCBZ; 2030 MadeChange = true; 2031 } 2032 2033 return MadeChange; 2034 } 2035 2036 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2037 unsigned BaseReg) { 2038 if (I.getOpcode() != ARM::t2ADDrs) 2039 return false; 2040 2041 if (I.getOperand(0).getReg() != EntryReg) 2042 return false; 2043 2044 if (I.getOperand(1).getReg() != BaseReg) 2045 return false; 2046 2047 // FIXME: what about CC and IdxReg? 2048 return true; 2049 } 2050 2051 /// While trying to form a TBB/TBH instruction, we may (if the table 2052 /// doesn't immediately follow the BR_JT) need access to the start of the 2053 /// jump-table. We know one instruction that produces such a register; this 2054 /// function works out whether that definition can be preserved to the BR_JT, 2055 /// possibly by removing an intervening addition (which is usually needed to 2056 /// calculate the actual entry to jump to). 2057 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2058 MachineInstr *LEAMI, 2059 unsigned &DeadSize, 2060 bool &CanDeleteLEA, 2061 bool &BaseRegKill) { 2062 if (JumpMI->getParent() != LEAMI->getParent()) 2063 return false; 2064 2065 // Now we hope that we have at least these instructions in the basic block: 2066 // BaseReg = t2LEA ... 2067 // [...] 2068 // EntryReg = t2ADDrs BaseReg, ... 2069 // [...] 2070 // t2BR_JT EntryReg 2071 // 2072 // We have to be very conservative about what we recognise here though. The 2073 // main perturbing factors to watch out for are: 2074 // + Spills at any point in the chain: not direct problems but we would 2075 // expect a blocking Def of the spilled register so in practice what we 2076 // can do is limited. 2077 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2078 // of BaseReg, but only if the t2ADDrs can be removed. 2079 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2080 // the wild, but we should be careful. 2081 Register EntryReg = JumpMI->getOperand(0).getReg(); 2082 Register BaseReg = LEAMI->getOperand(0).getReg(); 2083 2084 CanDeleteLEA = true; 2085 BaseRegKill = false; 2086 MachineInstr *RemovableAdd = nullptr; 2087 MachineBasicBlock::iterator I(LEAMI); 2088 for (++I; &*I != JumpMI; ++I) { 2089 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2090 RemovableAdd = &*I; 2091 break; 2092 } 2093 2094 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2095 const MachineOperand &MO = I->getOperand(K); 2096 if (!MO.isReg() || !MO.getReg()) 2097 continue; 2098 if (MO.isDef() && MO.getReg() == BaseReg) 2099 return false; 2100 if (MO.isUse() && MO.getReg() == BaseReg) { 2101 BaseRegKill = BaseRegKill || MO.isKill(); 2102 CanDeleteLEA = false; 2103 } 2104 } 2105 } 2106 2107 if (!RemovableAdd) 2108 return true; 2109 2110 // Check the add really is removable, and that nothing else in the block 2111 // clobbers BaseReg. 2112 for (++I; &*I != JumpMI; ++I) { 2113 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2114 const MachineOperand &MO = I->getOperand(K); 2115 if (!MO.isReg() || !MO.getReg()) 2116 continue; 2117 if (MO.isDef() && MO.getReg() == BaseReg) 2118 return false; 2119 if (MO.isUse() && MO.getReg() == EntryReg) 2120 RemovableAdd = nullptr; 2121 } 2122 } 2123 2124 if (RemovableAdd) { 2125 RemovableAdd->eraseFromParent(); 2126 DeadSize += isThumb2 ? 4 : 2; 2127 } else if (BaseReg == EntryReg) { 2128 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2129 // preserve it. 2130 return false; 2131 } 2132 2133 // We reached the end of the block without seeing another definition of 2134 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2135 // used in the TBB/TBH if necessary. 2136 return true; 2137 } 2138 2139 /// Returns whether CPEMI is the first instruction in the block 2140 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2141 /// we can switch the first register to PC and usually remove the address 2142 /// calculation that preceded it. 2143 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2144 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2145 MachineFunction *MF = MBB->getParent(); 2146 ++MBB; 2147 2148 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI; 2149 } 2150 2151 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2152 MachineInstr *JumpMI, 2153 unsigned &DeadSize) { 2154 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2155 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2156 // and is not clobbered / used. 2157 MachineInstr *RemovableAdd = nullptr; 2158 Register EntryReg = JumpMI->getOperand(0).getReg(); 2159 2160 // Find the last ADD to set EntryReg 2161 MachineBasicBlock::iterator I(LEAMI); 2162 for (++I; &*I != JumpMI; ++I) { 2163 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2164 RemovableAdd = &*I; 2165 } 2166 2167 if (!RemovableAdd) 2168 return; 2169 2170 // Ensure EntryReg is not clobbered or used. 2171 MachineBasicBlock::iterator J(RemovableAdd); 2172 for (++J; &*J != JumpMI; ++J) { 2173 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2174 const MachineOperand &MO = J->getOperand(K); 2175 if (!MO.isReg() || !MO.getReg()) 2176 continue; 2177 if (MO.isDef() && MO.getReg() == EntryReg) 2178 return; 2179 if (MO.isUse() && MO.getReg() == EntryReg) 2180 return; 2181 } 2182 } 2183 2184 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2185 RemovableAdd->eraseFromParent(); 2186 DeadSize += 4; 2187 } 2188 2189 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2190 /// jumptables when it's possible. 2191 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2192 bool MadeChange = false; 2193 2194 // FIXME: After the tables are shrunk, can we get rid some of the 2195 // constantpool tables? 2196 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2197 if (!MJTI) return false; 2198 2199 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2200 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2201 MachineInstr *MI = T2JumpTables[i]; 2202 const MCInstrDesc &MCID = MI->getDesc(); 2203 unsigned NumOps = MCID.getNumOperands(); 2204 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2205 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2206 unsigned JTI = JTOP.getIndex(); 2207 assert(JTI < JT.size()); 2208 2209 bool ByteOk = true; 2210 bool HalfWordOk = true; 2211 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2212 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2213 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2214 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2215 MachineBasicBlock *MBB = JTBBs[j]; 2216 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2217 // Negative offset is not ok. FIXME: We should change BB layout to make 2218 // sure all the branches are forward. 2219 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2220 ByteOk = false; 2221 unsigned TBHLimit = ((1<<16)-1)*2; 2222 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2223 HalfWordOk = false; 2224 if (!ByteOk && !HalfWordOk) 2225 break; 2226 } 2227 2228 if (!ByteOk && !HalfWordOk) 2229 continue; 2230 2231 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2232 MachineBasicBlock *MBB = MI->getParent(); 2233 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2234 continue; 2235 2236 unsigned DeadSize = 0; 2237 bool CanDeleteLEA = false; 2238 bool BaseRegKill = false; 2239 2240 unsigned IdxReg = ~0U; 2241 bool IdxRegKill = true; 2242 if (isThumb2) { 2243 IdxReg = MI->getOperand(1).getReg(); 2244 IdxRegKill = MI->getOperand(1).isKill(); 2245 2246 bool PreservedBaseReg = 2247 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2248 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2249 continue; 2250 } else { 2251 // We're in thumb-1 mode, so we must have something like: 2252 // %idx = tLSLri %idx, 2 2253 // %base = tLEApcrelJT 2254 // %t = tLDRr %base, %idx 2255 Register BaseReg = User.MI->getOperand(0).getReg(); 2256 2257 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2258 continue; 2259 MachineInstr *Shift = User.MI->getPrevNode(); 2260 if (Shift->getOpcode() != ARM::tLSLri || 2261 Shift->getOperand(3).getImm() != 2 || 2262 !Shift->getOperand(2).isKill()) 2263 continue; 2264 IdxReg = Shift->getOperand(2).getReg(); 2265 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2266 2267 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2268 // the range is checked later, but the LEA might still clobber it and not 2269 // actually get removed. 2270 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2271 continue; 2272 2273 MachineInstr *Load = User.MI->getNextNode(); 2274 if (Load->getOpcode() != ARM::tLDRr) 2275 continue; 2276 if (Load->getOperand(1).getReg() != BaseReg || 2277 Load->getOperand(2).getReg() != ShiftedIdxReg || 2278 !Load->getOperand(2).isKill()) 2279 continue; 2280 2281 // If we're in PIC mode, there should be another ADD following. 2282 auto *TRI = STI->getRegisterInfo(); 2283 2284 // %base cannot be redefined after the load as it will appear before 2285 // TBB/TBH like: 2286 // %base = 2287 // %base = 2288 // tBB %base, %idx 2289 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2290 continue; 2291 2292 if (isPositionIndependentOrROPI) { 2293 MachineInstr *Add = Load->getNextNode(); 2294 if (Add->getOpcode() != ARM::tADDrr || 2295 Add->getOperand(2).getReg() != BaseReg || 2296 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2297 !Add->getOperand(3).isKill()) 2298 continue; 2299 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2300 continue; 2301 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2302 // IdxReg gets redefined in the middle of the sequence. 2303 continue; 2304 Add->eraseFromParent(); 2305 DeadSize += 2; 2306 } else { 2307 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2308 continue; 2309 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2310 // IdxReg gets redefined in the middle of the sequence. 2311 continue; 2312 } 2313 2314 // Now safe to delete the load and lsl. The LEA will be removed later. 2315 CanDeleteLEA = true; 2316 Shift->eraseFromParent(); 2317 Load->eraseFromParent(); 2318 DeadSize += 4; 2319 } 2320 2321 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2322 MachineInstr *CPEMI = User.CPEMI; 2323 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2324 if (!isThumb2) 2325 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2326 2327 MachineBasicBlock::iterator MI_JT = MI; 2328 MachineInstr *NewJTMI = 2329 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2330 .addReg(User.MI->getOperand(0).getReg(), 2331 getKillRegState(BaseRegKill)) 2332 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2333 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2334 .addImm(CPEMI->getOperand(0).getImm()); 2335 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2336 2337 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2338 CPEMI->setDesc(TII->get(JTOpc)); 2339 2340 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2341 NewJTMI->getOperand(0).setReg(ARM::PC); 2342 NewJTMI->getOperand(0).setIsKill(false); 2343 2344 if (CanDeleteLEA) { 2345 if (isThumb2) 2346 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2347 2348 User.MI->eraseFromParent(); 2349 DeadSize += isThumb2 ? 4 : 2; 2350 2351 // The LEA was eliminated, the TBB instruction becomes the only new user 2352 // of the jump table. 2353 User.MI = NewJTMI; 2354 User.MaxDisp = 4; 2355 User.NegOk = false; 2356 User.IsSoImm = false; 2357 User.KnownAlignment = false; 2358 } else { 2359 // The LEA couldn't be eliminated, so we must add another CPUser to 2360 // record the TBB or TBH use. 2361 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2362 auto &CPEs = CPEntries[CPEntryIdx]; 2363 auto Entry = 2364 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2365 ++Entry->RefCount; 2366 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2367 } 2368 } 2369 2370 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2371 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2372 MI->eraseFromParent(); 2373 2374 int Delta = OrigSize - NewSize + DeadSize; 2375 BBInfo[MBB->getNumber()].Size -= Delta; 2376 BBUtils->adjustBBOffsetsAfter(MBB); 2377 2378 ++NumTBs; 2379 MadeChange = true; 2380 } 2381 2382 return MadeChange; 2383 } 2384 2385 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2386 /// jump tables always branch forwards, since that's what tbb and tbh need. 2387 bool ARMConstantIslands::reorderThumb2JumpTables() { 2388 bool MadeChange = false; 2389 2390 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2391 if (!MJTI) return false; 2392 2393 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2394 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2395 MachineInstr *MI = T2JumpTables[i]; 2396 const MCInstrDesc &MCID = MI->getDesc(); 2397 unsigned NumOps = MCID.getNumOperands(); 2398 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2399 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2400 unsigned JTI = JTOP.getIndex(); 2401 assert(JTI < JT.size()); 2402 2403 // We prefer if target blocks for the jump table come after the jump 2404 // instruction so we can use TB[BH]. Loop through the target blocks 2405 // and try to adjust them such that that's true. 2406 int JTNumber = MI->getParent()->getNumber(); 2407 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2408 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2409 MachineBasicBlock *MBB = JTBBs[j]; 2410 int DTNumber = MBB->getNumber(); 2411 2412 if (DTNumber < JTNumber) { 2413 // The destination precedes the switch. Try to move the block forward 2414 // so we have a positive offset. 2415 MachineBasicBlock *NewBB = 2416 adjustJTTargetBlockForward(MBB, MI->getParent()); 2417 if (NewBB) 2418 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2419 MadeChange = true; 2420 } 2421 } 2422 } 2423 2424 return MadeChange; 2425 } 2426 2427 MachineBasicBlock *ARMConstantIslands:: 2428 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2429 // If the destination block is terminated by an unconditional branch, 2430 // try to move it; otherwise, create a new block following the jump 2431 // table that branches back to the actual target. This is a very simple 2432 // heuristic. FIXME: We can definitely improve it. 2433 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2434 SmallVector<MachineOperand, 4> Cond; 2435 SmallVector<MachineOperand, 4> CondPrior; 2436 MachineFunction::iterator BBi = BB->getIterator(); 2437 MachineFunction::iterator OldPrior = std::prev(BBi); 2438 MachineFunction::iterator OldNext = std::next(BBi); 2439 2440 // If the block terminator isn't analyzable, don't try to move the block 2441 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2442 2443 // If the block ends in an unconditional branch, move it. The prior block 2444 // has to have an analyzable terminator for us to move this one. Be paranoid 2445 // and make sure we're not trying to move the entry block of the function. 2446 if (!B && Cond.empty() && BB != &MF->front() && 2447 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2448 BB->moveAfter(JTBB); 2449 OldPrior->updateTerminator(BB); 2450 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2451 // Update numbering to account for the block being moved. 2452 MF->RenumberBlocks(); 2453 ++NumJTMoved; 2454 return nullptr; 2455 } 2456 2457 // Create a new MBB for the code after the jump BB. 2458 MachineBasicBlock *NewBB = 2459 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2460 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2461 MF->insert(MBBI, NewBB); 2462 2463 // Copy live-in information to new block. 2464 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2465 NewBB->addLiveIn(RegMaskPair); 2466 2467 // Add an unconditional branch from NewBB to BB. 2468 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2469 // correspond directly to anything in the source. 2470 if (isThumb2) 2471 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2472 .addMBB(BB) 2473 .add(predOps(ARMCC::AL)); 2474 else 2475 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2476 .addMBB(BB) 2477 .add(predOps(ARMCC::AL)); 2478 2479 // Update internal data structures to account for the newly inserted MBB. 2480 MF->RenumberBlocks(NewBB); 2481 2482 // Update the CFG. 2483 NewBB->addSuccessor(BB); 2484 JTBB->replaceSuccessor(BB, NewBB); 2485 2486 ++NumJTInserted; 2487 return NewBB; 2488 } 2489 2490 /// createARMConstantIslandPass - returns an instance of the constpool 2491 /// island pass. 2492 FunctionPass *llvm::createARMConstantIslandPass() { 2493 return new ARMConstantIslands(); 2494 } 2495 2496 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2497 false, false) 2498