1 //===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMCallLowering.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMSubtarget.h" 19 #include "Utils/ARMBaseInfo.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/LowLevelTypeImpl.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <utility> 49 50 using namespace llvm; 51 52 ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI) 53 : CallLowering(&TLI) {} 54 55 static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI, 56 Type *T) { 57 if (T->isArrayTy()) 58 return isSupportedType(DL, TLI, T->getArrayElementType()); 59 60 if (T->isStructTy()) { 61 // For now we only allow homogeneous structs that we can manipulate with 62 // G_MERGE_VALUES and G_UNMERGE_VALUES 63 auto StructT = cast<StructType>(T); 64 for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i) 65 if (StructT->getElementType(i) != StructT->getElementType(0)) 66 return false; 67 return isSupportedType(DL, TLI, StructT->getElementType(0)); 68 } 69 70 EVT VT = TLI.getValueType(DL, T, true); 71 if (!VT.isSimple() || VT.isVector() || 72 !(VT.isInteger() || VT.isFloatingPoint())) 73 return false; 74 75 unsigned VTSize = VT.getSimpleVT().getSizeInBits(); 76 77 if (VTSize == 64) 78 // FIXME: Support i64 too 79 return VT.isFloatingPoint(); 80 81 return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32; 82 } 83 84 namespace { 85 86 /// Helper class for values going out through an ABI boundary (used for handling 87 /// function return values and call parameters). 88 struct OutgoingValueHandler : public CallLowering::ValueHandler { 89 OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 90 MachineInstrBuilder &MIB, CCAssignFn *AssignFn) 91 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 92 93 Register getStackAddress(uint64_t Size, int64_t Offset, 94 MachinePointerInfo &MPO) override { 95 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 96 "Unsupported size"); 97 98 LLT p0 = LLT::pointer(0, 32); 99 LLT s32 = LLT::scalar(32); 100 Register SPReg = MRI.createGenericVirtualRegister(p0); 101 MIRBuilder.buildCopy(SPReg, Register(ARM::SP)); 102 103 Register OffsetReg = MRI.createGenericVirtualRegister(s32); 104 MIRBuilder.buildConstant(OffsetReg, Offset); 105 106 Register AddrReg = MRI.createGenericVirtualRegister(p0); 107 MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg); 108 109 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); 110 return AddrReg; 111 } 112 113 void assignValueToReg(Register ValVReg, Register PhysReg, 114 CCValAssign &VA) override { 115 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 116 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 117 118 assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size"); 119 assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size"); 120 121 Register ExtReg = extendRegister(ValVReg, VA); 122 MIRBuilder.buildCopy(PhysReg, ExtReg); 123 MIB.addUse(PhysReg, RegState::Implicit); 124 } 125 126 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 127 MachinePointerInfo &MPO, CCValAssign &VA) override { 128 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 129 "Unsupported size"); 130 131 Register ExtReg = extendRegister(ValVReg, VA); 132 auto MMO = MIRBuilder.getMF().getMachineMemOperand( 133 MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), 134 /* Alignment */ 1); 135 MIRBuilder.buildStore(ExtReg, Addr, *MMO); 136 } 137 138 unsigned assignCustomValue(const CallLowering::ArgInfo &Arg, 139 ArrayRef<CCValAssign> VAs) override { 140 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 141 142 CCValAssign VA = VAs[0]; 143 assert(VA.needsCustom() && "Value doesn't need custom handling"); 144 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 145 146 CCValAssign NextVA = VAs[1]; 147 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 148 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 149 150 assert(VA.getValNo() == NextVA.getValNo() && 151 "Values belong to different arguments"); 152 153 assert(VA.isRegLoc() && "Value should be in reg"); 154 assert(NextVA.isRegLoc() && "Value should be in reg"); 155 156 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 157 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 158 MIRBuilder.buildUnmerge(NewRegs, Arg.Regs[0]); 159 160 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 161 if (!IsLittle) 162 std::swap(NewRegs[0], NewRegs[1]); 163 164 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 165 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 166 167 return 1; 168 } 169 170 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 171 CCValAssign::LocInfo LocInfo, 172 const CallLowering::ArgInfo &Info, CCState &State) override { 173 if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State)) 174 return true; 175 176 StackSize = 177 std::max(StackSize, static_cast<uint64_t>(State.getNextStackOffset())); 178 return false; 179 } 180 181 MachineInstrBuilder &MIB; 182 uint64_t StackSize = 0; 183 }; 184 185 } // end anonymous namespace 186 187 void ARMCallLowering::splitToValueTypes(const ArgInfo &OrigArg, 188 SmallVectorImpl<ArgInfo> &SplitArgs, 189 MachineFunction &MF) const { 190 const ARMTargetLowering &TLI = *getTLI<ARMTargetLowering>(); 191 LLVMContext &Ctx = OrigArg.Ty->getContext(); 192 const DataLayout &DL = MF.getDataLayout(); 193 const Function &F = MF.getFunction(); 194 195 SmallVector<EVT, 4> SplitVTs; 196 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, nullptr, nullptr, 0); 197 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 198 199 if (SplitVTs.size() == 1) { 200 // Even if there is no splitting to do, we still want to replace the 201 // original type (e.g. pointer type -> integer). 202 auto Flags = OrigArg.Flags; 203 unsigned OriginalAlignment = DL.getABITypeAlignment(OrigArg.Ty); 204 Flags.setOrigAlign(OriginalAlignment); 205 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 206 Flags, OrigArg.IsFixed); 207 return; 208 } 209 210 // Create one ArgInfo for each virtual register. 211 for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { 212 EVT SplitVT = SplitVTs[i]; 213 Type *SplitTy = SplitVT.getTypeForEVT(Ctx); 214 auto Flags = OrigArg.Flags; 215 216 unsigned OriginalAlignment = DL.getABITypeAlignment(SplitTy); 217 Flags.setOrigAlign(OriginalAlignment); 218 219 bool NeedsConsecutiveRegisters = 220 TLI.functionArgumentNeedsConsecutiveRegisters( 221 SplitTy, F.getCallingConv(), F.isVarArg()); 222 if (NeedsConsecutiveRegisters) { 223 Flags.setInConsecutiveRegs(); 224 if (i == e - 1) 225 Flags.setInConsecutiveRegsLast(); 226 } 227 228 // FIXME: We also want to split SplitTy further. 229 Register PartReg = OrigArg.Regs[i]; 230 SplitArgs.emplace_back(PartReg, SplitTy, Flags, OrigArg.IsFixed); 231 } 232 } 233 234 /// Lower the return value for the already existing \p Ret. This assumes that 235 /// \p MIRBuilder's insertion point is correct. 236 bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder, 237 const Value *Val, ArrayRef<Register> VRegs, 238 MachineInstrBuilder &Ret) const { 239 if (!Val) 240 // Nothing to do here. 241 return true; 242 243 auto &MF = MIRBuilder.getMF(); 244 const auto &F = MF.getFunction(); 245 246 auto DL = MF.getDataLayout(); 247 auto &TLI = *getTLI<ARMTargetLowering>(); 248 if (!isSupportedType(DL, TLI, Val->getType())) 249 return false; 250 251 ArgInfo OrigRetInfo(VRegs, Val->getType()); 252 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F); 253 254 SmallVector<ArgInfo, 4> SplitRetInfos; 255 splitToValueTypes(OrigRetInfo, SplitRetInfos, MF); 256 257 CCAssignFn *AssignFn = 258 TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg()); 259 260 OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn); 261 return handleAssignments(MIRBuilder, SplitRetInfos, RetHandler); 262 } 263 264 bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 265 const Value *Val, 266 ArrayRef<Register> VRegs) const { 267 assert(!Val == VRegs.empty() && "Return value without a vreg"); 268 269 auto const &ST = MIRBuilder.getMF().getSubtarget<ARMSubtarget>(); 270 unsigned Opcode = ST.getReturnOpcode(); 271 auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL)); 272 273 if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret)) 274 return false; 275 276 MIRBuilder.insertInstr(Ret); 277 return true; 278 } 279 280 namespace { 281 282 /// Helper class for values coming in through an ABI boundary (used for handling 283 /// formal arguments and call return values). 284 struct IncomingValueHandler : public CallLowering::ValueHandler { 285 IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 286 CCAssignFn AssignFn) 287 : ValueHandler(MIRBuilder, MRI, AssignFn) {} 288 289 bool isArgumentHandler() const override { return true; } 290 291 Register getStackAddress(uint64_t Size, int64_t Offset, 292 MachinePointerInfo &MPO) override { 293 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 294 "Unsupported size"); 295 296 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 297 298 int FI = MFI.CreateFixedObject(Size, Offset, true); 299 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 300 301 unsigned AddrReg = 302 MRI.createGenericVirtualRegister(LLT::pointer(MPO.getAddrSpace(), 32)); 303 MIRBuilder.buildFrameIndex(AddrReg, FI); 304 305 return AddrReg; 306 } 307 308 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 309 MachinePointerInfo &MPO, CCValAssign &VA) override { 310 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 311 "Unsupported size"); 312 313 if (VA.getLocInfo() == CCValAssign::SExt || 314 VA.getLocInfo() == CCValAssign::ZExt) { 315 // If the value is zero- or sign-extended, its size becomes 4 bytes, so 316 // that's what we should load. 317 Size = 4; 318 assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm"); 319 320 auto LoadVReg = MRI.createGenericVirtualRegister(LLT::scalar(32)); 321 buildLoad(LoadVReg, Addr, Size, /* Alignment */ 1, MPO); 322 MIRBuilder.buildTrunc(ValVReg, LoadVReg); 323 } else { 324 // If the value is not extended, a simple load will suffice. 325 buildLoad(ValVReg, Addr, Size, /* Alignment */ 1, MPO); 326 } 327 } 328 329 void buildLoad(Register Val, Register Addr, uint64_t Size, unsigned Alignment, 330 MachinePointerInfo &MPO) { 331 auto MMO = MIRBuilder.getMF().getMachineMemOperand( 332 MPO, MachineMemOperand::MOLoad, Size, Alignment); 333 MIRBuilder.buildLoad(Val, Addr, *MMO); 334 } 335 336 void assignValueToReg(Register ValVReg, Register PhysReg, 337 CCValAssign &VA) override { 338 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 339 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 340 341 auto ValSize = VA.getValVT().getSizeInBits(); 342 auto LocSize = VA.getLocVT().getSizeInBits(); 343 344 assert(ValSize <= 64 && "Unsupported value size"); 345 assert(LocSize <= 64 && "Unsupported location size"); 346 347 markPhysRegUsed(PhysReg); 348 if (ValSize == LocSize) { 349 MIRBuilder.buildCopy(ValVReg, PhysReg); 350 } else { 351 assert(ValSize < LocSize && "Extensions not supported"); 352 353 // We cannot create a truncating copy, nor a trunc of a physical register. 354 // Therefore, we need to copy the content of the physical register into a 355 // virtual one and then truncate that. 356 auto PhysRegToVReg = 357 MRI.createGenericVirtualRegister(LLT::scalar(LocSize)); 358 MIRBuilder.buildCopy(PhysRegToVReg, PhysReg); 359 MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg); 360 } 361 } 362 363 unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg, 364 ArrayRef<CCValAssign> VAs) override { 365 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 366 367 CCValAssign VA = VAs[0]; 368 assert(VA.needsCustom() && "Value doesn't need custom handling"); 369 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 370 371 CCValAssign NextVA = VAs[1]; 372 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 373 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 374 375 assert(VA.getValNo() == NextVA.getValNo() && 376 "Values belong to different arguments"); 377 378 assert(VA.isRegLoc() && "Value should be in reg"); 379 assert(NextVA.isRegLoc() && "Value should be in reg"); 380 381 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 382 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 383 384 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 385 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 386 387 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 388 if (!IsLittle) 389 std::swap(NewRegs[0], NewRegs[1]); 390 391 MIRBuilder.buildMerge(Arg.Regs[0], NewRegs); 392 393 return 1; 394 } 395 396 /// Marking a physical register as used is different between formal 397 /// parameters, where it's a basic block live-in, and call returns, where it's 398 /// an implicit-def of the call instruction. 399 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 400 }; 401 402 struct FormalArgHandler : public IncomingValueHandler { 403 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 404 CCAssignFn AssignFn) 405 : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} 406 407 void markPhysRegUsed(unsigned PhysReg) override { 408 MIRBuilder.getMBB().addLiveIn(PhysReg); 409 } 410 }; 411 412 } // end anonymous namespace 413 414 bool ARMCallLowering::lowerFormalArguments( 415 MachineIRBuilder &MIRBuilder, const Function &F, 416 ArrayRef<ArrayRef<Register>> VRegs) const { 417 auto &TLI = *getTLI<ARMTargetLowering>(); 418 auto Subtarget = TLI.getSubtarget(); 419 420 if (Subtarget->isThumb1Only()) 421 return false; 422 423 // Quick exit if there aren't any args 424 if (F.arg_empty()) 425 return true; 426 427 if (F.isVarArg()) 428 return false; 429 430 auto &MF = MIRBuilder.getMF(); 431 auto &MBB = MIRBuilder.getMBB(); 432 auto DL = MF.getDataLayout(); 433 434 for (auto &Arg : F.args()) { 435 if (!isSupportedType(DL, TLI, Arg.getType())) 436 return false; 437 if (Arg.hasByValOrInAllocaAttr()) 438 return false; 439 } 440 441 CCAssignFn *AssignFn = 442 TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg()); 443 444 FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(), 445 AssignFn); 446 447 SmallVector<ArgInfo, 8> SplitArgInfos; 448 unsigned Idx = 0; 449 for (auto &Arg : F.args()) { 450 ArgInfo OrigArgInfo(VRegs[Idx], Arg.getType()); 451 452 setArgFlags(OrigArgInfo, Idx + AttributeList::FirstArgIndex, DL, F); 453 splitToValueTypes(OrigArgInfo, SplitArgInfos, MF); 454 455 Idx++; 456 } 457 458 if (!MBB.empty()) 459 MIRBuilder.setInstr(*MBB.begin()); 460 461 if (!handleAssignments(MIRBuilder, SplitArgInfos, ArgHandler)) 462 return false; 463 464 // Move back to the end of the basic block. 465 MIRBuilder.setMBB(MBB); 466 return true; 467 } 468 469 namespace { 470 471 struct CallReturnHandler : public IncomingValueHandler { 472 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 473 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 474 : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 475 476 void markPhysRegUsed(unsigned PhysReg) override { 477 MIB.addDef(PhysReg, RegState::Implicit); 478 } 479 480 MachineInstrBuilder MIB; 481 }; 482 483 // FIXME: This should move to the ARMSubtarget when it supports all the opcodes. 484 unsigned getCallOpcode(const ARMSubtarget &STI, bool isDirect) { 485 if (isDirect) 486 return STI.isThumb() ? ARM::tBL : ARM::BL; 487 488 if (STI.isThumb()) 489 return ARM::tBLXr; 490 491 if (STI.hasV5TOps()) 492 return ARM::BLX; 493 494 if (STI.hasV4TOps()) 495 return ARM::BX_CALL; 496 497 return ARM::BMOVPCRX_CALL; 498 } 499 } // end anonymous namespace 500 501 bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 502 CallingConv::ID CallConv, 503 const MachineOperand &Callee, 504 const ArgInfo &OrigRet, 505 ArrayRef<ArgInfo> OrigArgs) const { 506 MachineFunction &MF = MIRBuilder.getMF(); 507 const auto &TLI = *getTLI<ARMTargetLowering>(); 508 const auto &DL = MF.getDataLayout(); 509 const auto &STI = MF.getSubtarget<ARMSubtarget>(); 510 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 511 MachineRegisterInfo &MRI = MF.getRegInfo(); 512 513 if (STI.genLongCalls()) 514 return false; 515 516 if (STI.isThumb1Only()) 517 return false; 518 519 auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN); 520 521 // Create the call instruction so we can add the implicit uses of arg 522 // registers, but don't insert it yet. 523 bool IsDirect = !Callee.isReg(); 524 auto CallOpcode = getCallOpcode(STI, IsDirect); 525 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode); 526 527 bool IsThumb = STI.isThumb(); 528 if (IsThumb) 529 MIB.add(predOps(ARMCC::AL)); 530 531 MIB.add(Callee); 532 if (!IsDirect) { 533 auto CalleeReg = Callee.getReg(); 534 if (CalleeReg && !TRI->isPhysicalRegister(CalleeReg)) { 535 unsigned CalleeIdx = IsThumb ? 2 : 0; 536 MIB->getOperand(CalleeIdx).setReg(constrainOperandRegClass( 537 MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(), 538 *MIB.getInstr(), MIB->getDesc(), Callee, CalleeIdx)); 539 } 540 } 541 542 MIB.addRegMask(TRI->getCallPreservedMask(MF, CallConv)); 543 544 bool IsVarArg = false; 545 SmallVector<ArgInfo, 8> ArgInfos; 546 for (auto Arg : OrigArgs) { 547 if (!isSupportedType(DL, TLI, Arg.Ty)) 548 return false; 549 550 if (!Arg.IsFixed) 551 IsVarArg = true; 552 553 if (Arg.Flags.isByVal()) 554 return false; 555 556 splitToValueTypes(Arg, ArgInfos, MF); 557 } 558 559 auto ArgAssignFn = TLI.CCAssignFnForCall(CallConv, IsVarArg); 560 OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn); 561 if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler)) 562 return false; 563 564 // Now we can add the actual call instruction to the correct basic block. 565 MIRBuilder.insertInstr(MIB); 566 567 if (!OrigRet.Ty->isVoidTy()) { 568 if (!isSupportedType(DL, TLI, OrigRet.Ty)) 569 return false; 570 571 ArgInfos.clear(); 572 splitToValueTypes(OrigRet, ArgInfos, MF); 573 auto RetAssignFn = TLI.CCAssignFnForReturn(CallConv, IsVarArg); 574 CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn); 575 if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler)) 576 return false; 577 } 578 579 // We now know the size of the stack - update the ADJCALLSTACKDOWN 580 // accordingly. 581 CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL)); 582 583 MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP) 584 .addImm(ArgHandler.StackSize) 585 .addImm(0) 586 .add(predOps(ARMCC::AL)); 587 588 return true; 589 } 590