1 //===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// The pass tries to use the 32-bit encoding for instructions when possible. 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "si-shrink-instructions" 27 28 STATISTIC(NumInstructionsShrunk, 29 "Number of 64-bit instruction reduced to 32-bit."); 30 STATISTIC(NumLiteralConstantsFolded, 31 "Number of literal constants folded into 32-bit instructions."); 32 33 using namespace llvm; 34 35 namespace { 36 37 class SIShrinkInstructions : public MachineFunctionPass { 38 public: 39 static char ID; 40 41 void shrinkMIMG(MachineInstr &MI); 42 43 public: 44 SIShrinkInstructions() : MachineFunctionPass(ID) { 45 } 46 47 bool runOnMachineFunction(MachineFunction &MF) override; 48 49 StringRef getPassName() const override { return "SI Shrink Instructions"; } 50 51 void getAnalysisUsage(AnalysisUsage &AU) const override { 52 AU.setPreservesCFG(); 53 MachineFunctionPass::getAnalysisUsage(AU); 54 } 55 }; 56 57 } // End anonymous namespace. 58 59 INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE, 60 "SI Shrink Instructions", false, false) 61 62 char SIShrinkInstructions::ID = 0; 63 64 FunctionPass *llvm::createSIShrinkInstructionsPass() { 65 return new SIShrinkInstructions(); 66 } 67 68 /// This function checks \p MI for operands defined by a move immediate 69 /// instruction and then folds the literal constant into the instruction if it 70 /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions. 71 static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII, 72 MachineRegisterInfo &MRI, bool TryToCommute = true) { 73 assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI)); 74 75 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 76 77 // Try to fold Src0 78 MachineOperand &Src0 = MI.getOperand(Src0Idx); 79 if (Src0.isReg()) { 80 unsigned Reg = Src0.getReg(); 81 if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) { 82 MachineInstr *Def = MRI.getUniqueVRegDef(Reg); 83 if (Def && Def->isMoveImmediate()) { 84 MachineOperand &MovSrc = Def->getOperand(1); 85 bool ConstantFolded = false; 86 87 if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) || 88 isUInt<32>(MovSrc.getImm()))) { 89 // It's possible to have only one component of a super-reg defined by 90 // a single mov, so we need to clear any subregister flag. 91 Src0.setSubReg(0); 92 Src0.ChangeToImmediate(MovSrc.getImm()); 93 ConstantFolded = true; 94 } else if (MovSrc.isFI()) { 95 Src0.setSubReg(0); 96 Src0.ChangeToFrameIndex(MovSrc.getIndex()); 97 ConstantFolded = true; 98 } else if (MovSrc.isGlobal()) { 99 Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(), 100 MovSrc.getTargetFlags()); 101 ConstantFolded = true; 102 } 103 104 if (ConstantFolded) { 105 assert(MRI.use_empty(Reg)); 106 Def->eraseFromParent(); 107 ++NumLiteralConstantsFolded; 108 return true; 109 } 110 } 111 } 112 } 113 114 // We have failed to fold src0, so commute the instruction and try again. 115 if (TryToCommute && MI.isCommutable()) { 116 if (TII->commuteInstruction(MI)) { 117 if (foldImmediates(MI, TII, MRI, false)) 118 return true; 119 120 // Commute back. 121 TII->commuteInstruction(MI); 122 } 123 } 124 125 return false; 126 } 127 128 static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { 129 return isInt<16>(Src.getImm()) && 130 !TII->isInlineConstant(*Src.getParent(), 131 Src.getParent()->getOperandNo(&Src)); 132 } 133 134 static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { 135 return isUInt<16>(Src.getImm()) && 136 !TII->isInlineConstant(*Src.getParent(), 137 Src.getParent()->getOperandNo(&Src)); 138 } 139 140 static bool isKImmOrKUImmOperand(const SIInstrInfo *TII, 141 const MachineOperand &Src, 142 bool &IsUnsigned) { 143 if (isInt<16>(Src.getImm())) { 144 IsUnsigned = false; 145 return !TII->isInlineConstant(Src); 146 } 147 148 if (isUInt<16>(Src.getImm())) { 149 IsUnsigned = true; 150 return !TII->isInlineConstant(Src); 151 } 152 153 return false; 154 } 155 156 /// \returns true if the constant in \p Src should be replaced with a bitreverse 157 /// of an inline immediate. 158 static bool isReverseInlineImm(const SIInstrInfo *TII, 159 const MachineOperand &Src, 160 int32_t &ReverseImm) { 161 if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src)) 162 return false; 163 164 ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm())); 165 return ReverseImm >= -16 && ReverseImm <= 64; 166 } 167 168 /// Copy implicit register operands from specified instruction to this 169 /// instruction that are not part of the instruction definition. 170 static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF, 171 const MachineInstr &MI) { 172 for (unsigned i = MI.getDesc().getNumOperands() + 173 MI.getDesc().getNumImplicitUses() + 174 MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands(); 175 i != e; ++i) { 176 const MachineOperand &MO = MI.getOperand(i); 177 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 178 NewMI.addOperand(MF, MO); 179 } 180 } 181 182 static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) { 183 // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to 184 // get constants on the RHS. 185 if (!MI.getOperand(0).isReg()) 186 TII->commuteInstruction(MI, false, 0, 1); 187 188 const MachineOperand &Src1 = MI.getOperand(1); 189 if (!Src1.isImm()) 190 return; 191 192 int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode()); 193 if (SOPKOpc == -1) 194 return; 195 196 // eq/ne is special because the imm16 can be treated as signed or unsigned, 197 // and initially selectd to the unsigned versions. 198 if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) { 199 bool HasUImm; 200 if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) { 201 if (!HasUImm) { 202 SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ? 203 AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32; 204 } 205 206 MI.setDesc(TII->get(SOPKOpc)); 207 } 208 209 return; 210 } 211 212 const MCInstrDesc &NewDesc = TII->get(SOPKOpc); 213 214 if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) || 215 (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) { 216 MI.setDesc(NewDesc); 217 } 218 } 219 220 // Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding. 221 void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) { 222 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 223 if (Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA) 224 return; 225 226 MachineFunction *MF = MI.getParent()->getParent(); 227 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 228 const SIInstrInfo *TII = ST.getInstrInfo(); 229 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 230 int VAddr0Idx = 231 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 232 unsigned NewAddrDwords = Info->VAddrDwords; 233 const TargetRegisterClass *RC; 234 235 if (Info->VAddrDwords == 2) { 236 RC = &AMDGPU::VReg_64RegClass; 237 } else if (Info->VAddrDwords == 3) { 238 RC = &AMDGPU::VReg_96RegClass; 239 } else if (Info->VAddrDwords == 4) { 240 RC = &AMDGPU::VReg_128RegClass; 241 } else if (Info->VAddrDwords <= 8) { 242 RC = &AMDGPU::VReg_256RegClass; 243 NewAddrDwords = 8; 244 } else { 245 RC = &AMDGPU::VReg_512RegClass; 246 NewAddrDwords = 16; 247 } 248 249 unsigned VgprBase = 0; 250 bool IsUndef = true; 251 bool IsKill = NewAddrDwords == Info->VAddrDwords; 252 for (unsigned i = 0; i < Info->VAddrDwords; ++i) { 253 const MachineOperand &Op = MI.getOperand(VAddr0Idx + i); 254 unsigned Vgpr = TRI.getHWRegIndex(Op.getReg()); 255 256 if (i == 0) { 257 VgprBase = Vgpr; 258 } else if (VgprBase + i != Vgpr) 259 return; 260 261 if (!Op.isUndef()) 262 IsUndef = false; 263 if (!Op.isKill()) 264 IsKill = false; 265 } 266 267 if (VgprBase + NewAddrDwords > 256) 268 return; 269 270 // Further check for implicit tied operands - this may be present if TFE is 271 // enabled 272 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 273 int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe); 274 unsigned TFEVal = MI.getOperand(TFEIdx).getImm(); 275 unsigned LWEVal = MI.getOperand(LWEIdx).getImm(); 276 int ToUntie = -1; 277 if (TFEVal || LWEVal) { 278 // TFE/LWE is enabled so we need to deal with an implicit tied operand 279 for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) { 280 if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() && 281 MI.getOperand(i).isImplicit()) { 282 // This is the tied operand 283 assert( 284 ToUntie == -1 && 285 "found more than one tied implicit operand when expecting only 1"); 286 ToUntie = i; 287 MI.untieRegOperand(ToUntie); 288 } 289 } 290 } 291 292 unsigned NewOpcode = 293 AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default, 294 Info->VDataDwords, NewAddrDwords); 295 MI.setDesc(TII->get(NewOpcode)); 296 MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase)); 297 MI.getOperand(VAddr0Idx).setIsUndef(IsUndef); 298 MI.getOperand(VAddr0Idx).setIsKill(IsKill); 299 300 for (unsigned i = 1; i < Info->VAddrDwords; ++i) 301 MI.RemoveOperand(VAddr0Idx + 1); 302 303 if (ToUntie >= 0) { 304 MI.tieOperands( 305 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata), 306 ToUntie - (Info->VAddrDwords - 1)); 307 } 308 } 309 310 /// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals. 311 /// For AND or OR, try using S_BITSET{0,1} to clear or set bits. 312 /// If the inverse of the immediate is legal, use ANDN2, ORN2 or 313 /// XNOR (as a ^ b == ~(a ^ ~b)). 314 /// \returns true if the caller should continue the machine function iterator 315 static bool shrinkScalarLogicOp(const GCNSubtarget &ST, 316 MachineRegisterInfo &MRI, 317 const SIInstrInfo *TII, 318 MachineInstr &MI) { 319 unsigned Opc = MI.getOpcode(); 320 const MachineOperand *Dest = &MI.getOperand(0); 321 MachineOperand *Src0 = &MI.getOperand(1); 322 MachineOperand *Src1 = &MI.getOperand(2); 323 MachineOperand *SrcReg = Src0; 324 MachineOperand *SrcImm = Src1; 325 326 if (SrcImm->isImm() && 327 !AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) { 328 uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm()); 329 uint32_t NewImm = 0; 330 331 if (Opc == AMDGPU::S_AND_B32) { 332 if (isPowerOf2_32(~Imm)) { 333 NewImm = countTrailingOnes(Imm); 334 Opc = AMDGPU::S_BITSET0_B32; 335 } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { 336 NewImm = ~Imm; 337 Opc = AMDGPU::S_ANDN2_B32; 338 } 339 } else if (Opc == AMDGPU::S_OR_B32) { 340 if (isPowerOf2_32(Imm)) { 341 NewImm = countTrailingZeros(Imm); 342 Opc = AMDGPU::S_BITSET1_B32; 343 } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { 344 NewImm = ~Imm; 345 Opc = AMDGPU::S_ORN2_B32; 346 } 347 } else if (Opc == AMDGPU::S_XOR_B32) { 348 if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { 349 NewImm = ~Imm; 350 Opc = AMDGPU::S_XNOR_B32; 351 } 352 } else { 353 llvm_unreachable("unexpected opcode"); 354 } 355 356 if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) && 357 SrcImm == Src0) { 358 if (!TII->commuteInstruction(MI, false, 1, 2)) 359 NewImm = 0; 360 } 361 362 if (NewImm != 0) { 363 if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) && 364 SrcReg->isReg()) { 365 MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg()); 366 MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg()); 367 return true; 368 } 369 370 if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) { 371 MI.setDesc(TII->get(Opc)); 372 if (Opc == AMDGPU::S_BITSET0_B32 || 373 Opc == AMDGPU::S_BITSET1_B32) { 374 Src0->ChangeToImmediate(NewImm); 375 // Remove the immediate and add the tied input. 376 MI.getOperand(2).ChangeToRegister(Dest->getReg(), false); 377 MI.tieOperands(0, 2); 378 } else { 379 SrcImm->setImm(NewImm); 380 } 381 } 382 } 383 } 384 385 return false; 386 } 387 388 // This is the same as MachineInstr::readsRegister/modifiesRegister except 389 // it takes subregs into account. 390 static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R, 391 unsigned Reg, unsigned SubReg, 392 const SIRegisterInfo &TRI) { 393 for (const MachineOperand &MO : R) { 394 if (!MO.isReg()) 395 continue; 396 397 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 398 TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 399 if (TRI.regsOverlap(Reg, MO.getReg())) 400 return true; 401 } else if (MO.getReg() == Reg && 402 TargetRegisterInfo::isVirtualRegister(Reg)) { 403 LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) & 404 TRI.getSubRegIndexLaneMask(MO.getSubReg()); 405 if (Overlap.any()) 406 return true; 407 } 408 } 409 return false; 410 } 411 412 static bool instReadsReg(const MachineInstr *MI, 413 unsigned Reg, unsigned SubReg, 414 const SIRegisterInfo &TRI) { 415 return instAccessReg(MI->uses(), Reg, SubReg, TRI); 416 } 417 418 static bool instModifiesReg(const MachineInstr *MI, 419 unsigned Reg, unsigned SubReg, 420 const SIRegisterInfo &TRI) { 421 return instAccessReg(MI->defs(), Reg, SubReg, TRI); 422 } 423 424 static TargetInstrInfo::RegSubRegPair 425 getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I, 426 const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { 427 if (TRI.getRegSizeInBits(Reg, MRI) != 32) { 428 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 429 Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I)); 430 } else { 431 LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub); 432 Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger())); 433 } 434 } 435 return TargetInstrInfo::RegSubRegPair(Reg, Sub); 436 } 437 438 // Match: 439 // mov t, x 440 // mov x, y 441 // mov y, t 442 // 443 // => 444 // 445 // mov t, x (t is potentially dead and move eliminated) 446 // v_swap_b32 x, y 447 // 448 // Returns next valid instruction pointer if was able to create v_swap_b32. 449 // 450 // This shall not be done too early not to prevent possible folding which may 451 // remove matched moves, and this should prefereably be done before RA to 452 // release saved registers and also possibly after RA which can insert copies 453 // too. 454 // 455 // This is really just a generic peephole that is not a canocical shrinking, 456 // although requirements match the pass placement and it reduces code size too. 457 static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI, 458 const SIInstrInfo *TII) { 459 assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 || 460 MovT.getOpcode() == AMDGPU::COPY); 461 462 unsigned T = MovT.getOperand(0).getReg(); 463 unsigned Tsub = MovT.getOperand(0).getSubReg(); 464 MachineOperand &Xop = MovT.getOperand(1); 465 466 if (!Xop.isReg()) 467 return nullptr; 468 unsigned X = Xop.getReg(); 469 unsigned Xsub = Xop.getSubReg(); 470 471 unsigned Size = TII->getOpSize(MovT, 0) / 4; 472 473 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 474 if (!TRI.isVGPR(MRI, X)) 475 return nullptr; 476 477 for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) { 478 if (YTop.getSubReg() != Tsub) 479 continue; 480 481 MachineInstr &MovY = *YTop.getParent(); 482 if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 && 483 MovY.getOpcode() != AMDGPU::COPY) || 484 MovY.getOperand(1).getSubReg() != Tsub) 485 continue; 486 487 unsigned Y = MovY.getOperand(0).getReg(); 488 unsigned Ysub = MovY.getOperand(0).getSubReg(); 489 490 if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent()) 491 continue; 492 493 MachineInstr *MovX = nullptr; 494 auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end(); 495 for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) { 496 if (instReadsReg(&*I, X, Xsub, TRI) || 497 instModifiesReg(&*I, Y, Ysub, TRI) || 498 instModifiesReg(&*I, T, Tsub, TRI) || 499 (MovX && instModifiesReg(&*I, X, Xsub, TRI))) { 500 MovX = nullptr; 501 break; 502 } 503 if (!instReadsReg(&*I, Y, Ysub, TRI)) { 504 if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) { 505 MovX = nullptr; 506 break; 507 } 508 continue; 509 } 510 if (MovX || 511 (I->getOpcode() != AMDGPU::V_MOV_B32_e32 && 512 I->getOpcode() != AMDGPU::COPY) || 513 I->getOperand(0).getReg() != X || 514 I->getOperand(0).getSubReg() != Xsub) { 515 MovX = nullptr; 516 break; 517 } 518 MovX = &*I; 519 } 520 521 if (!MovX || I == E) 522 continue; 523 524 LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY); 525 526 for (unsigned I = 0; I < Size; ++I) { 527 TargetInstrInfo::RegSubRegPair X1, Y1; 528 X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI); 529 Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI); 530 BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(), 531 TII->get(AMDGPU::V_SWAP_B32)) 532 .addDef(X1.Reg, 0, X1.SubReg) 533 .addDef(Y1.Reg, 0, Y1.SubReg) 534 .addReg(Y1.Reg, 0, Y1.SubReg) 535 .addReg(X1.Reg, 0, X1.SubReg).getInstr(); 536 } 537 MovX->eraseFromParent(); 538 MovY.eraseFromParent(); 539 MachineInstr *Next = &*std::next(MovT.getIterator()); 540 if (MRI.use_nodbg_empty(T)) 541 MovT.eraseFromParent(); 542 else 543 Xop.setIsKill(false); 544 545 return Next; 546 } 547 548 return nullptr; 549 } 550 551 bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { 552 if (skipFunction(MF.getFunction())) 553 return false; 554 555 MachineRegisterInfo &MRI = MF.getRegInfo(); 556 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 557 const SIInstrInfo *TII = ST.getInstrInfo(); 558 unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 559 560 std::vector<unsigned> I1Defs; 561 562 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 563 BI != BE; ++BI) { 564 565 MachineBasicBlock &MBB = *BI; 566 MachineBasicBlock::iterator I, Next; 567 for (I = MBB.begin(); I != MBB.end(); I = Next) { 568 Next = std::next(I); 569 MachineInstr &MI = *I; 570 571 if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) { 572 // If this has a literal constant source that is the same as the 573 // reversed bits of an inline immediate, replace with a bitreverse of 574 // that constant. This saves 4 bytes in the common case of materializing 575 // sign bits. 576 577 // Test if we are after regalloc. We only want to do this after any 578 // optimizations happen because this will confuse them. 579 // XXX - not exactly a check for post-regalloc run. 580 MachineOperand &Src = MI.getOperand(1); 581 if (Src.isImm() && 582 TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) { 583 int32_t ReverseImm; 584 if (isReverseInlineImm(TII, Src, ReverseImm)) { 585 MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32)); 586 Src.setImm(ReverseImm); 587 continue; 588 } 589 } 590 } 591 592 if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 || 593 MI.getOpcode() == AMDGPU::COPY)) { 594 if (auto *NextMI = matchSwap(MI, MRI, TII)) { 595 Next = NextMI->getIterator(); 596 continue; 597 } 598 } 599 600 // Combine adjacent s_nops to use the immediate operand encoding how long 601 // to wait. 602 // 603 // s_nop N 604 // s_nop M 605 // => 606 // s_nop (N + M) 607 if (MI.getOpcode() == AMDGPU::S_NOP && 608 Next != MBB.end() && 609 (*Next).getOpcode() == AMDGPU::S_NOP) { 610 611 MachineInstr &NextMI = *Next; 612 // The instruction encodes the amount to wait with an offset of 1, 613 // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back 614 // after adding. 615 uint8_t Nop0 = MI.getOperand(0).getImm() + 1; 616 uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1; 617 618 // Make sure we don't overflow the bounds. 619 if (Nop0 + Nop1 <= 8) { 620 NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1); 621 MI.eraseFromParent(); 622 } 623 624 continue; 625 } 626 627 // FIXME: We also need to consider movs of constant operands since 628 // immediate operands are not folded if they have more than one use, and 629 // the operand folding pass is unaware if the immediate will be free since 630 // it won't know if the src == dest constraint will end up being 631 // satisfied. 632 if (MI.getOpcode() == AMDGPU::S_ADD_I32 || 633 MI.getOpcode() == AMDGPU::S_MUL_I32) { 634 const MachineOperand *Dest = &MI.getOperand(0); 635 MachineOperand *Src0 = &MI.getOperand(1); 636 MachineOperand *Src1 = &MI.getOperand(2); 637 638 if (!Src0->isReg() && Src1->isReg()) { 639 if (TII->commuteInstruction(MI, false, 1, 2)) 640 std::swap(Src0, Src1); 641 } 642 643 // FIXME: This could work better if hints worked with subregisters. If 644 // we have a vector add of a constant, we usually don't get the correct 645 // allocation due to the subregister usage. 646 if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) && 647 Src0->isReg()) { 648 MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg()); 649 MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg()); 650 continue; 651 } 652 653 if (Src0->isReg() && Src0->getReg() == Dest->getReg()) { 654 if (Src1->isImm() && isKImmOperand(TII, *Src1)) { 655 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ? 656 AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32; 657 658 MI.setDesc(TII->get(Opc)); 659 MI.tieOperands(0, 1); 660 } 661 } 662 } 663 664 // Try to use s_cmpk_* 665 if (MI.isCompare() && TII->isSOPC(MI)) { 666 shrinkScalarCompare(TII, MI); 667 continue; 668 } 669 670 // Try to use S_MOVK_I32, which will save 4 bytes for small immediates. 671 if (MI.getOpcode() == AMDGPU::S_MOV_B32) { 672 const MachineOperand &Dst = MI.getOperand(0); 673 MachineOperand &Src = MI.getOperand(1); 674 675 if (Src.isImm() && 676 TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) { 677 int32_t ReverseImm; 678 if (isKImmOperand(TII, Src)) 679 MI.setDesc(TII->get(AMDGPU::S_MOVK_I32)); 680 else if (isReverseInlineImm(TII, Src, ReverseImm)) { 681 MI.setDesc(TII->get(AMDGPU::S_BREV_B32)); 682 Src.setImm(ReverseImm); 683 } 684 } 685 686 continue; 687 } 688 689 // Shrink scalar logic operations. 690 if (MI.getOpcode() == AMDGPU::S_AND_B32 || 691 MI.getOpcode() == AMDGPU::S_OR_B32 || 692 MI.getOpcode() == AMDGPU::S_XOR_B32) { 693 if (shrinkScalarLogicOp(ST, MRI, TII, MI)) 694 continue; 695 } 696 697 if (TII->isMIMG(MI.getOpcode()) && 698 ST.getGeneration() >= AMDGPUSubtarget::GFX10 && 699 MF.getProperties().hasProperty( 700 MachineFunctionProperties::Property::NoVRegs)) { 701 shrinkMIMG(MI); 702 continue; 703 } 704 705 if (!TII->hasVALU32BitEncoding(MI.getOpcode())) 706 continue; 707 708 if (!TII->canShrink(MI, MRI)) { 709 // Try commuting the instruction and see if that enables us to shrink 710 // it. 711 if (!MI.isCommutable() || !TII->commuteInstruction(MI) || 712 !TII->canShrink(MI, MRI)) 713 continue; 714 } 715 716 // getVOPe32 could be -1 here if we started with an instruction that had 717 // a 32-bit encoding and then commuted it to an instruction that did not. 718 if (!TII->hasVALU32BitEncoding(MI.getOpcode())) 719 continue; 720 721 int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); 722 723 if (TII->isVOPC(Op32)) { 724 unsigned DstReg = MI.getOperand(0).getReg(); 725 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 726 // VOPC instructions can only write to the VCC register. We can't 727 // force them to use VCC here, because this is only one register and 728 // cannot deal with sequences which would require multiple copies of 729 // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...) 730 // 731 // So, instead of forcing the instruction to write to VCC, we provide 732 // a hint to the register allocator to use VCC and then we will run 733 // this pass again after RA and shrink it if it outputs to VCC. 734 MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg); 735 continue; 736 } 737 if (DstReg != VCCReg) 738 continue; 739 } 740 741 if (Op32 == AMDGPU::V_CNDMASK_B32_e32) { 742 // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC 743 // instructions. 744 const MachineOperand *Src2 = 745 TII->getNamedOperand(MI, AMDGPU::OpName::src2); 746 if (!Src2->isReg()) 747 continue; 748 unsigned SReg = Src2->getReg(); 749 if (TargetRegisterInfo::isVirtualRegister(SReg)) { 750 MRI.setRegAllocationHint(SReg, 0, VCCReg); 751 continue; 752 } 753 if (SReg != VCCReg) 754 continue; 755 } 756 757 // Check for the bool flag output for instructions like V_ADD_I32_e64. 758 const MachineOperand *SDst = TII->getNamedOperand(MI, 759 AMDGPU::OpName::sdst); 760 761 // Check the carry-in operand for v_addc_u32_e64. 762 const MachineOperand *Src2 = TII->getNamedOperand(MI, 763 AMDGPU::OpName::src2); 764 765 if (SDst) { 766 bool Next = false; 767 768 if (SDst->getReg() != VCCReg) { 769 if (TargetRegisterInfo::isVirtualRegister(SDst->getReg())) 770 MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg); 771 Next = true; 772 } 773 774 // All of the instructions with carry outs also have an SGPR input in 775 // src2. 776 if (Src2 && Src2->getReg() != VCCReg) { 777 if (TargetRegisterInfo::isVirtualRegister(Src2->getReg())) 778 MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg); 779 Next = true; 780 } 781 782 if (Next) 783 continue; 784 } 785 786 // We can shrink this instruction 787 LLVM_DEBUG(dbgs() << "Shrinking " << MI); 788 789 MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32); 790 ++NumInstructionsShrunk; 791 792 // Copy extra operands not present in the instruction definition. 793 copyExtraImplicitOps(*Inst32, MF, MI); 794 795 MI.eraseFromParent(); 796 foldImmediates(*Inst32, TII, MRI); 797 798 LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); 799 } 800 } 801 return false; 802 } 803