1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for SI 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIISelLowering.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "SIRegisterInfo.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/FloatingPointMode.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/UniformityAnalysis.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/ByteProvider.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 32 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 33 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/KnownBits.h" 44 #include "llvm/Support/ModRef.h" 45 #include <optional> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "si-lower" 50 51 STATISTIC(NumTailCalls, "Number of tail calls"); 52 53 static cl::opt<bool> DisableLoopAlignment( 54 "amdgpu-disable-loop-alignment", 55 cl::desc("Do not align and prefetch loops"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseDivergentRegisterIndexing( 59 "amdgpu-use-divergent-register-indexing", 60 cl::Hidden, 61 cl::desc("Use indirect register addressing for divergent indexes"), 62 cl::init(false)); 63 64 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) { 65 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 66 return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign(); 67 } 68 69 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) { 70 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 71 return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign(); 72 } 73 74 static unsigned findFirstFreeSGPR(CCState &CCInfo) { 75 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); 76 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { 77 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { 78 return AMDGPU::SGPR0 + Reg; 79 } 80 } 81 llvm_unreachable("Cannot allocate sgpr"); 82 } 83 84 SITargetLowering::SITargetLowering(const TargetMachine &TM, 85 const GCNSubtarget &STI) 86 : AMDGPUTargetLowering(TM, STI), 87 Subtarget(&STI) { 88 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); 89 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); 90 91 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); 92 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); 93 94 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); 95 96 const SIRegisterInfo *TRI = STI.getRegisterInfo(); 97 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); 98 99 addRegisterClass(MVT::f64, V64RegClass); 100 addRegisterClass(MVT::v2f32, V64RegClass); 101 102 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); 103 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); 104 105 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); 106 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); 107 108 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); 109 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); 110 111 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); 112 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); 113 114 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); 115 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); 116 117 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); 118 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); 119 120 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); 121 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); 122 123 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); 124 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); 125 126 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); 127 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); 128 129 addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); 130 addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); 131 132 addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); 133 addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); 134 135 addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); 136 addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); 137 138 addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); 139 addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); 140 141 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); 142 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); 143 144 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); 145 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); 146 147 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); 148 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); 149 150 if (Subtarget->has16BitInsts()) { 151 if (Subtarget->useRealTrue16Insts()) { 152 addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass); 153 addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass); 154 addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass); 155 } else { 156 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); 157 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); 158 addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass); 159 } 160 161 // Unless there are also VOP3P operations, not operations are really legal. 162 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); 163 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); 164 addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass); 165 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); 166 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); 167 addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass); 168 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); 169 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); 170 addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass); 171 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); 172 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); 173 addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass); 174 addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass); 175 addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass); 176 addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass); 177 } 178 179 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); 180 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); 181 182 computeRegisterProperties(Subtarget->getRegisterInfo()); 183 184 // The boolean content concept here is too inflexible. Compares only ever 185 // really produce a 1-bit result. Any copy/extend from these will turn into a 186 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as 187 // it's what most targets use. 188 setBooleanContents(ZeroOrOneBooleanContent); 189 setBooleanVectorContents(ZeroOrOneBooleanContent); 190 191 // We need to custom lower vector stores from local memory 192 setOperationAction(ISD::LOAD, 193 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 194 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 195 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 196 MVT::i1, MVT::v32i32}, 197 Custom); 198 199 setOperationAction(ISD::STORE, 200 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 201 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 202 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, 203 MVT::i1, MVT::v32i32}, 204 Custom); 205 206 if (isTypeLegal(MVT::bf16)) { 207 for (unsigned Opc : 208 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, 209 ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, 210 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT, 211 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI, 212 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2, 213 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, 214 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, 215 ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE, 216 ISD::SETCC}) { 217 // FIXME: The promoted to type shouldn't need to be explicit 218 setOperationAction(Opc, MVT::bf16, Promote); 219 AddPromotedToType(Opc, MVT::bf16, MVT::f32); 220 } 221 222 setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand); 223 224 setOperationAction(ISD::SELECT, MVT::bf16, Promote); 225 AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16); 226 227 // TODO: Could make these legal 228 setOperationAction(ISD::FABS, MVT::bf16, Expand); 229 setOperationAction(ISD::FNEG, MVT::bf16, Expand); 230 setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); 231 232 // We only need to custom lower because we can't specify an action for bf16 233 // sources. 234 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 235 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 236 237 setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Promote); 238 AddPromotedToType(ISD::BUILD_VECTOR, MVT::v2bf16, MVT::v2i16); 239 } 240 241 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 242 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); 243 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 244 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); 245 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); 246 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); 247 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); 248 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); 249 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); 250 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); 251 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); 252 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); 253 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); 254 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); 255 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); 256 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); 257 258 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 259 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 260 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); 261 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); 262 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); 263 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); 264 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); 265 266 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); 267 268 setOperationAction(ISD::SELECT, MVT::i1, Promote); 269 setOperationAction(ISD::SELECT, MVT::i64, Custom); 270 setOperationAction(ISD::SELECT, MVT::f64, Promote); 271 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); 272 273 setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom); 274 275 setOperationAction(ISD::SELECT_CC, 276 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); 277 278 setOperationAction(ISD::SETCC, MVT::i1, Promote); 279 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); 280 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 281 282 setOperationAction(ISD::TRUNCATE, 283 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, 284 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, 285 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, 286 Expand); 287 setOperationAction(ISD::FP_ROUND, 288 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, 289 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, 290 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, 291 Expand); 292 293 setOperationAction(ISD::SIGN_EXTEND_INREG, 294 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, 295 MVT::v3i16, MVT::v4i16, MVT::Other}, 296 Custom); 297 298 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 299 setOperationAction(ISD::BR_CC, 300 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); 301 302 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); 303 304 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); 305 306 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, 307 Expand); 308 309 #if 0 310 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); 311 #endif 312 313 // We only support LOAD/STORE and vector manipulation ops for vectors 314 // with > 4 elements. 315 for (MVT VT : 316 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, 317 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, 318 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, 319 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32, 320 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, 321 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, 322 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32, 323 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { 324 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 325 switch (Op) { 326 case ISD::LOAD: 327 case ISD::STORE: 328 case ISD::BUILD_VECTOR: 329 case ISD::BITCAST: 330 case ISD::UNDEF: 331 case ISD::EXTRACT_VECTOR_ELT: 332 case ISD::INSERT_VECTOR_ELT: 333 case ISD::SCALAR_TO_VECTOR: 334 case ISD::IS_FPCLASS: 335 break; 336 case ISD::EXTRACT_SUBVECTOR: 337 case ISD::INSERT_SUBVECTOR: 338 case ISD::CONCAT_VECTORS: 339 setOperationAction(Op, VT, Custom); 340 break; 341 default: 342 setOperationAction(Op, VT, Expand); 343 break; 344 } 345 } 346 } 347 348 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); 349 350 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that 351 // is expanded to avoid having two separate loops in case the index is a VGPR. 352 353 // Most operations are naturally 32-bit vector operations. We only support 354 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. 355 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { 356 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 357 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); 358 359 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 360 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); 361 362 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 363 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); 364 365 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 366 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); 367 } 368 369 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { 370 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 371 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); 372 373 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 374 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); 375 376 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 377 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); 378 379 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 380 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); 381 } 382 383 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { 384 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 385 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); 386 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 388 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); 389 390 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 391 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); 392 393 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 394 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); 395 } 396 397 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { 398 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 399 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); 400 401 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 402 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); 403 404 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 405 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); 406 407 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 408 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); 409 } 410 411 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { 412 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); 413 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); 414 415 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); 416 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); 417 418 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); 419 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); 420 421 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); 422 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); 423 } 424 425 setOperationAction(ISD::VECTOR_SHUFFLE, 426 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, 427 Expand); 428 429 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16}, 430 Custom); 431 432 // Avoid stack access for these. 433 // TODO: Generalize to more vector types. 434 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, 435 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8, 436 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16}, 437 Custom); 438 439 // Deal with vec3 vector operations when widened to vec4. 440 setOperationAction(ISD::INSERT_SUBVECTOR, 441 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); 442 443 // Deal with vec5/6/7 vector operations when widened to vec8. 444 setOperationAction(ISD::INSERT_SUBVECTOR, 445 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, 446 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, 447 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, 448 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, 449 Custom); 450 451 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, 452 // and output demarshalling 453 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); 454 455 // We can't return success/failure, only the old value, 456 // let LLVM add the comparison 457 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, 458 Expand); 459 460 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); 461 462 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); 463 464 // FIXME: This should be narrowed to i32, but that only happens if i64 is 465 // illegal. 466 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. 467 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); 468 469 // On SI this is s_memtime and s_memrealtime on VI. 470 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 471 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); 472 473 if (Subtarget->has16BitInsts()) { 474 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); 475 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); 476 } else { 477 setOperationAction(ISD::FSQRT, MVT::f16, Custom); 478 } 479 480 if (Subtarget->hasMadMacF32Insts()) 481 setOperationAction(ISD::FMAD, MVT::f32, Legal); 482 483 if (!Subtarget->hasBFI()) 484 // fcopysign can be done in a single instruction with BFI. 485 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 486 487 if (!Subtarget->hasBCNT(32)) 488 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 489 490 if (!Subtarget->hasBCNT(64)) 491 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 492 493 if (Subtarget->hasFFBH()) 494 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); 495 496 if (Subtarget->hasFFBL()) 497 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); 498 499 // We only really have 32-bit BFE instructions (and 16-bit on VI). 500 // 501 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any 502 // effort to match them now. We want this to be false for i64 cases when the 503 // extraction isn't restricted to the upper or lower half. Ideally we would 504 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that 505 // span the midpoint are probably relatively rare, so don't worry about them 506 // for now. 507 if (Subtarget->hasBFE()) 508 setHasExtractBitsInsn(true); 509 510 // Clamp modifier on add/sub 511 if (Subtarget->hasIntClamp()) 512 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); 513 514 if (Subtarget->hasAddNoCarry()) 515 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, 516 Legal); 517 518 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, 519 Custom); 520 521 // These are really only legal for ieee_mode functions. We should be avoiding 522 // them for functions that don't have ieee_mode enabled, so just say they are 523 // legal. 524 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 525 {MVT::f32, MVT::f64}, Legal); 526 527 if (Subtarget->haveRoundOpsF64()) 528 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64, 529 Legal); 530 else 531 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR}, 532 MVT::f64, Custom); 533 534 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 535 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64}, 536 Legal); 537 setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom); 538 539 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); 540 setOperationAction(ISD::FDIV, MVT::f64, Custom); 541 542 setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); 543 setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); 544 545 // Custom lower these because we can't specify a rule based on an illegal 546 // source bf16. 547 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom); 548 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom); 549 550 if (Subtarget->has16BitInsts()) { 551 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, 552 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, 553 MVT::i16, Legal); 554 555 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); 556 557 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, 558 MVT::i16, Expand); 559 560 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, 561 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, 562 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, 563 ISD::CTPOP}, 564 MVT::i16, Promote); 565 566 setOperationAction(ISD::LOAD, MVT::i16, Custom); 567 568 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 569 570 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); 571 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); 572 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); 573 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); 574 575 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); 576 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 577 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); 578 579 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom); 580 581 // F16 - Constant Actions. 582 setOperationAction(ISD::ConstantFP, MVT::f16, Legal); 583 setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); 584 585 // F16 - Load/Store Actions. 586 setOperationAction(ISD::LOAD, MVT::f16, Promote); 587 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); 588 setOperationAction(ISD::STORE, MVT::f16, Promote); 589 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); 590 591 // BF16 - Load/Store Actions. 592 setOperationAction(ISD::LOAD, MVT::bf16, Promote); 593 AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16); 594 setOperationAction(ISD::STORE, MVT::bf16, Promote); 595 AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16); 596 597 // F16 - VOP1 Actions. 598 setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS, 599 ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, 600 MVT::f16, Custom); 601 602 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote); 603 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote); 604 605 // F16 - VOP2 Actions. 606 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16}, 607 Expand); 608 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom); 609 setOperationAction(ISD::FFREXP, MVT::f16, Custom); 610 setOperationAction(ISD::FDIV, MVT::f16, Custom); 611 612 // F16 - VOP3 Actions. 613 setOperationAction(ISD::FMA, MVT::f16, Legal); 614 if (STI.hasMadF16()) 615 setOperationAction(ISD::FMAD, MVT::f16, Legal); 616 617 for (MVT VT : 618 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16, 619 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, 620 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) { 621 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 622 switch (Op) { 623 case ISD::LOAD: 624 case ISD::STORE: 625 case ISD::BUILD_VECTOR: 626 case ISD::BITCAST: 627 case ISD::UNDEF: 628 case ISD::EXTRACT_VECTOR_ELT: 629 case ISD::INSERT_VECTOR_ELT: 630 case ISD::INSERT_SUBVECTOR: 631 case ISD::EXTRACT_SUBVECTOR: 632 case ISD::SCALAR_TO_VECTOR: 633 case ISD::IS_FPCLASS: 634 break; 635 case ISD::CONCAT_VECTORS: 636 setOperationAction(Op, VT, Custom); 637 break; 638 default: 639 setOperationAction(Op, VT, Expand); 640 break; 641 } 642 } 643 } 644 645 // v_perm_b32 can handle either of these. 646 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); 647 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); 648 649 // XXX - Do these do anything? Vector constants turn into build_vector. 650 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); 651 652 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, 653 Legal); 654 655 setOperationAction(ISD::STORE, MVT::v2i16, Promote); 656 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); 657 setOperationAction(ISD::STORE, MVT::v2f16, Promote); 658 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); 659 660 setOperationAction(ISD::LOAD, MVT::v2i16, Promote); 661 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); 662 setOperationAction(ISD::LOAD, MVT::v2f16, Promote); 663 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); 664 665 setOperationAction(ISD::AND, MVT::v2i16, Promote); 666 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); 667 setOperationAction(ISD::OR, MVT::v2i16, Promote); 668 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); 669 setOperationAction(ISD::XOR, MVT::v2i16, Promote); 670 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); 671 672 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 673 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); 674 setOperationAction(ISD::LOAD, MVT::v4f16, Promote); 675 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); 676 setOperationAction(ISD::LOAD, MVT::v4bf16, Promote); 677 AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32); 678 679 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 680 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 681 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 682 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 683 setOperationAction(ISD::STORE, MVT::v4bf16, Promote); 684 AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32); 685 686 setOperationAction(ISD::LOAD, MVT::v8i16, Promote); 687 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); 688 setOperationAction(ISD::LOAD, MVT::v8f16, Promote); 689 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); 690 setOperationAction(ISD::LOAD, MVT::v8bf16, Promote); 691 AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32); 692 693 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 694 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); 695 setOperationAction(ISD::STORE, MVT::v4f16, Promote); 696 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); 697 698 setOperationAction(ISD::STORE, MVT::v8i16, Promote); 699 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); 700 setOperationAction(ISD::STORE, MVT::v8f16, Promote); 701 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); 702 setOperationAction(ISD::STORE, MVT::v8bf16, Promote); 703 AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32); 704 705 setOperationAction(ISD::LOAD, MVT::v16i16, Promote); 706 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); 707 setOperationAction(ISD::LOAD, MVT::v16f16, Promote); 708 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); 709 setOperationAction(ISD::LOAD, MVT::v16bf16, Promote); 710 AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32); 711 712 setOperationAction(ISD::STORE, MVT::v16i16, Promote); 713 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); 714 setOperationAction(ISD::STORE, MVT::v16f16, Promote); 715 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); 716 setOperationAction(ISD::STORE, MVT::v16bf16, Promote); 717 AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32); 718 719 setOperationAction(ISD::LOAD, MVT::v32i16, Promote); 720 AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32); 721 setOperationAction(ISD::LOAD, MVT::v32f16, Promote); 722 AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32); 723 setOperationAction(ISD::LOAD, MVT::v32bf16, Promote); 724 AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32); 725 726 setOperationAction(ISD::STORE, MVT::v32i16, Promote); 727 AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32); 728 setOperationAction(ISD::STORE, MVT::v32f16, Promote); 729 AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32); 730 setOperationAction(ISD::STORE, MVT::v32bf16, Promote); 731 AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32); 732 733 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 734 MVT::v2i32, Expand); 735 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); 736 737 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 738 MVT::v4i32, Expand); 739 740 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, 741 MVT::v8i32, Expand); 742 743 if (!Subtarget->hasVOP3PInsts()) 744 setOperationAction(ISD::BUILD_VECTOR, 745 {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom); 746 747 setOperationAction(ISD::FNEG, MVT::v2f16, Legal); 748 // This isn't really legal, but this avoids the legalizer unrolling it (and 749 // allows matching fneg (fabs x) patterns) 750 setOperationAction(ISD::FABS, MVT::v2f16, Legal); 751 752 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); 753 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); 754 755 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, 756 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, 757 Custom); 758 759 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, 760 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, 761 Expand); 762 763 for (MVT Vec16 : 764 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, 765 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { 766 setOperationAction( 767 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, 768 Vec16, Custom); 769 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); 770 } 771 } 772 773 if (Subtarget->hasVOP3PInsts()) { 774 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, 775 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 776 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, 777 MVT::v2i16, Legal); 778 779 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, 780 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, 781 MVT::v2f16, Legal); 782 783 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, 784 Custom); 785 786 setOperationAction(ISD::VECTOR_SHUFFLE, 787 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, 788 MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16}, 789 Custom); 790 791 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16}) 792 // Split vector operations. 793 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, 794 ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, 795 ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, 796 ISD::SSUBSAT}, 797 VT, Custom); 798 799 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}) 800 // Split vector operations. 801 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, 802 VT, Custom); 803 804 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, 805 Custom); 806 807 setOperationAction(ISD::FEXP, MVT::v2f16, Custom); 808 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16}, 809 Custom); 810 811 if (Subtarget->hasPackedFP32Ops()) { 812 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, 813 MVT::v2f32, Legal); 814 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, 815 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, 816 Custom); 817 } 818 } 819 820 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); 821 822 if (Subtarget->has16BitInsts()) { 823 setOperationAction(ISD::SELECT, MVT::v2i16, Promote); 824 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); 825 setOperationAction(ISD::SELECT, MVT::v2f16, Promote); 826 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); 827 } else { 828 // Legalization hack. 829 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); 830 831 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); 832 } 833 834 setOperationAction(ISD::SELECT, 835 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8, 836 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16, 837 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, 838 MVT::v32f16, MVT::v32bf16}, 839 Custom); 840 841 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); 842 843 if (Subtarget->hasScalarSMulU64()) 844 setOperationAction(ISD::MUL, MVT::i64, Custom); 845 846 if (Subtarget->hasMad64_32()) 847 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); 848 849 if (Subtarget->hasPrefetch()) 850 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 851 852 if (Subtarget->hasIEEEMinMax()) 853 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, 854 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal); 855 856 setOperationAction(ISD::INTRINSIC_WO_CHAIN, 857 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, 858 MVT::v2i16, MVT::v2f16, MVT::i128}, 859 Custom); 860 861 setOperationAction(ISD::INTRINSIC_W_CHAIN, 862 {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, 863 MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, 864 MVT::i16, MVT::i8, MVT::i128}, 865 Custom); 866 867 setOperationAction(ISD::INTRINSIC_VOID, 868 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, 869 MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, 870 MVT::i8, MVT::i128}, 871 Custom); 872 873 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 874 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 875 876 // TODO: Could move this to custom lowering, could benefit from combines on 877 // extract of relevant bits. 878 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal); 879 880 setOperationAction(ISD::MUL, MVT::i1, Promote); 881 882 setTargetDAGCombine({ISD::ADD, 883 ISD::UADDO_CARRY, 884 ISD::SUB, 885 ISD::USUBO_CARRY, 886 ISD::FADD, 887 ISD::FSUB, 888 ISD::FDIV, 889 ISD::FMINNUM, 890 ISD::FMAXNUM, 891 ISD::FMINNUM_IEEE, 892 ISD::FMAXNUM_IEEE, 893 ISD::FMINIMUM, 894 ISD::FMAXIMUM, 895 ISD::FMA, 896 ISD::SMIN, 897 ISD::SMAX, 898 ISD::UMIN, 899 ISD::UMAX, 900 ISD::SETCC, 901 ISD::AND, 902 ISD::OR, 903 ISD::XOR, 904 ISD::FSHR, 905 ISD::SINT_TO_FP, 906 ISD::UINT_TO_FP, 907 ISD::FCANONICALIZE, 908 ISD::SCALAR_TO_VECTOR, 909 ISD::ZERO_EXTEND, 910 ISD::SIGN_EXTEND_INREG, 911 ISD::EXTRACT_VECTOR_ELT, 912 ISD::INSERT_VECTOR_ELT, 913 ISD::FCOPYSIGN}); 914 915 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16()) 916 setTargetDAGCombine(ISD::FP_ROUND); 917 918 // All memory operations. Some folding on the pointer operand is done to help 919 // matching the constant offsets in the addressing modes. 920 setTargetDAGCombine({ISD::LOAD, 921 ISD::STORE, 922 ISD::ATOMIC_LOAD, 923 ISD::ATOMIC_STORE, 924 ISD::ATOMIC_CMP_SWAP, 925 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 926 ISD::ATOMIC_SWAP, 927 ISD::ATOMIC_LOAD_ADD, 928 ISD::ATOMIC_LOAD_SUB, 929 ISD::ATOMIC_LOAD_AND, 930 ISD::ATOMIC_LOAD_OR, 931 ISD::ATOMIC_LOAD_XOR, 932 ISD::ATOMIC_LOAD_NAND, 933 ISD::ATOMIC_LOAD_MIN, 934 ISD::ATOMIC_LOAD_MAX, 935 ISD::ATOMIC_LOAD_UMIN, 936 ISD::ATOMIC_LOAD_UMAX, 937 ISD::ATOMIC_LOAD_FADD, 938 ISD::ATOMIC_LOAD_UINC_WRAP, 939 ISD::ATOMIC_LOAD_UDEC_WRAP, 940 ISD::INTRINSIC_VOID, 941 ISD::INTRINSIC_W_CHAIN}); 942 943 // FIXME: In other contexts we pretend this is a per-function property. 944 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); 945 946 setSchedulingPreference(Sched::RegPressure); 947 } 948 949 const GCNSubtarget *SITargetLowering::getSubtarget() const { 950 return Subtarget; 951 } 952 953 //===----------------------------------------------------------------------===// 954 // TargetLowering queries 955 //===----------------------------------------------------------------------===// 956 957 // v_mad_mix* support a conversion from f16 to f32. 958 // 959 // There is only one special case when denormals are enabled we don't currently, 960 // where this is OK to use. 961 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, 962 EVT DestVT, EVT SrcVT) const { 963 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || 964 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && 965 DestVT.getScalarType() == MVT::f32 && 966 SrcVT.getScalarType() == MVT::f16 && 967 // TODO: This probably only requires no input flushing? 968 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 969 } 970 971 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, 972 LLT DestTy, LLT SrcTy) const { 973 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || 974 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && 975 DestTy.getScalarSizeInBits() == 32 && 976 SrcTy.getScalarSizeInBits() == 16 && 977 // TODO: This probably only requires no input flushing? 978 denormalModeIsFlushAllF32(*MI.getMF()); 979 } 980 981 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { 982 // SI has some legal vector types, but no legal vector operations. Say no 983 // shuffles are legal in order to prefer scalarizing some vector operations. 984 return false; 985 } 986 987 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 988 CallingConv::ID CC, 989 EVT VT) const { 990 if (CC == CallingConv::AMDGPU_KERNEL) 991 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 992 993 if (VT.isVector()) { 994 EVT ScalarVT = VT.getScalarType(); 995 unsigned Size = ScalarVT.getSizeInBits(); 996 if (Size == 16) { 997 if (Subtarget->has16BitInsts()) { 998 if (VT.isInteger()) 999 return MVT::v2i16; 1000 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); 1001 } 1002 return VT.isInteger() ? MVT::i32 : MVT::f32; 1003 } 1004 1005 if (Size < 16) 1006 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; 1007 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; 1008 } 1009 1010 if (VT.getSizeInBits() > 32) 1011 return MVT::i32; 1012 1013 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1014 } 1015 1016 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1017 CallingConv::ID CC, 1018 EVT VT) const { 1019 if (CC == CallingConv::AMDGPU_KERNEL) 1020 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1021 1022 if (VT.isVector()) { 1023 unsigned NumElts = VT.getVectorNumElements(); 1024 EVT ScalarVT = VT.getScalarType(); 1025 unsigned Size = ScalarVT.getSizeInBits(); 1026 1027 // FIXME: Should probably promote 8-bit vectors to i16. 1028 if (Size == 16 && Subtarget->has16BitInsts()) 1029 return (NumElts + 1) / 2; 1030 1031 if (Size <= 32) 1032 return NumElts; 1033 1034 if (Size > 32) 1035 return NumElts * ((Size + 31) / 32); 1036 } else if (VT.getSizeInBits() > 32) 1037 return (VT.getSizeInBits() + 31) / 32; 1038 1039 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1040 } 1041 1042 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( 1043 LLVMContext &Context, CallingConv::ID CC, 1044 EVT VT, EVT &IntermediateVT, 1045 unsigned &NumIntermediates, MVT &RegisterVT) const { 1046 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { 1047 unsigned NumElts = VT.getVectorNumElements(); 1048 EVT ScalarVT = VT.getScalarType(); 1049 unsigned Size = ScalarVT.getSizeInBits(); 1050 // FIXME: We should fix the ABI to be the same on targets without 16-bit 1051 // support, but unless we can properly handle 3-vectors, it will be still be 1052 // inconsistent. 1053 if (Size == 16 && Subtarget->has16BitInsts()) { 1054 if (ScalarVT == MVT::bf16) { 1055 RegisterVT = MVT::i32; 1056 IntermediateVT = MVT::v2bf16; 1057 } else { 1058 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; 1059 IntermediateVT = RegisterVT; 1060 } 1061 NumIntermediates = (NumElts + 1) / 2; 1062 return NumIntermediates; 1063 } 1064 1065 if (Size == 32) { 1066 RegisterVT = ScalarVT.getSimpleVT(); 1067 IntermediateVT = RegisterVT; 1068 NumIntermediates = NumElts; 1069 return NumIntermediates; 1070 } 1071 1072 if (Size < 16 && Subtarget->has16BitInsts()) { 1073 // FIXME: Should probably form v2i16 pieces 1074 RegisterVT = MVT::i16; 1075 IntermediateVT = ScalarVT; 1076 NumIntermediates = NumElts; 1077 return NumIntermediates; 1078 } 1079 1080 1081 if (Size != 16 && Size <= 32) { 1082 RegisterVT = MVT::i32; 1083 IntermediateVT = ScalarVT; 1084 NumIntermediates = NumElts; 1085 return NumIntermediates; 1086 } 1087 1088 if (Size > 32) { 1089 RegisterVT = MVT::i32; 1090 IntermediateVT = RegisterVT; 1091 NumIntermediates = NumElts * ((Size + 31) / 32); 1092 return NumIntermediates; 1093 } 1094 } 1095 1096 return TargetLowering::getVectorTypeBreakdownForCallingConv( 1097 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); 1098 } 1099 1100 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { 1101 assert(MaxNumLanes != 0); 1102 1103 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1104 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); 1105 return EVT::getVectorVT(Ty->getContext(), 1106 EVT::getEVT(VT->getElementType()), 1107 NumElts); 1108 } 1109 1110 return EVT::getEVT(Ty); 1111 } 1112 1113 // Peek through TFE struct returns to only use the data size. 1114 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { 1115 auto *ST = dyn_cast<StructType>(Ty); 1116 if (!ST) 1117 return memVTFromLoadIntrData(Ty, MaxNumLanes); 1118 1119 // TFE intrinsics return an aggregate type. 1120 assert(ST->getNumContainedTypes() == 2 && 1121 ST->getContainedType(1)->isIntegerTy(32)); 1122 return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); 1123 } 1124 1125 /// Map address space 7 to MVT::v5i32 because that's its in-memory 1126 /// representation. This return value is vector-typed because there is no 1127 /// MVT::i160 and it is not clear if one can be added. While this could 1128 /// cause issues during codegen, these address space 7 pointers will be 1129 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order 1130 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost 1131 /// modeling, to work. 1132 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const { 1133 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) 1134 return MVT::v5i32; 1135 if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && 1136 DL.getPointerSizeInBits(AS) == 192) 1137 return MVT::v6i32; 1138 return AMDGPUTargetLowering::getPointerTy(DL, AS); 1139 } 1140 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka 1141 /// v8i32 when padding is added. 1142 /// The in-memory representation of a p9 is {p8, i32, i32}, which is 1143 /// also v8i32 with padding. 1144 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const { 1145 if ((AMDGPUAS::BUFFER_FAT_POINTER == AS && 1146 DL.getPointerSizeInBits(AS) == 160) || 1147 (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && 1148 DL.getPointerSizeInBits(AS) == 192)) 1149 return MVT::v8i32; 1150 return AMDGPUTargetLowering::getPointerMemTy(DL, AS); 1151 } 1152 1153 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1154 const CallInst &CI, 1155 MachineFunction &MF, 1156 unsigned IntrID) const { 1157 Info.flags = MachineMemOperand::MONone; 1158 if (CI.hasMetadata(LLVMContext::MD_invariant_load)) 1159 Info.flags |= MachineMemOperand::MOInvariant; 1160 1161 if (const AMDGPU::RsrcIntrinsic *RsrcIntr = 1162 AMDGPU::lookupRsrcIntrinsic(IntrID)) { 1163 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), 1164 (Intrinsic::ID)IntrID); 1165 MemoryEffects ME = Attr.getMemoryEffects(); 1166 if (ME.doesNotAccessMemory()) 1167 return false; 1168 1169 // TODO: Should images get their own address space? 1170 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1171 1172 if (RsrcIntr->IsImage) 1173 Info.align.reset(); 1174 1175 Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg); 1176 if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) { 1177 if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE) 1178 // We conservatively set the memory operand of a buffer intrinsic to the 1179 // base resource pointer, so that we can access alias information about 1180 // those pointers. Cases like "this points at the same value 1181 // but with a different offset" are handled in 1182 // areMemAccessesTriviallyDisjoint. 1183 Info.ptrVal = RsrcArg; 1184 } 1185 1186 Info.flags |= MachineMemOperand::MODereferenceable; 1187 if (ME.onlyReadsMemory()) { 1188 unsigned MaxNumLanes = 4; 1189 1190 if (RsrcIntr->IsImage) { 1191 const AMDGPU::ImageDimIntrinsicInfo *Intr 1192 = AMDGPU::getImageDimIntrinsicInfo(IntrID); 1193 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1194 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 1195 1196 if (!BaseOpcode->Gather4) { 1197 // If this isn't a gather, we may have excess loaded elements in the 1198 // IR type. Check the dmask for the real number of elements loaded. 1199 unsigned DMask 1200 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); 1201 MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1202 } 1203 } 1204 1205 Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); 1206 1207 // FIXME: What does alignment mean for an image? 1208 Info.opc = ISD::INTRINSIC_W_CHAIN; 1209 Info.flags |= MachineMemOperand::MOLoad; 1210 } else if (ME.onlyWritesMemory()) { 1211 Info.opc = ISD::INTRINSIC_VOID; 1212 1213 Type *DataTy = CI.getArgOperand(0)->getType(); 1214 if (RsrcIntr->IsImage) { 1215 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); 1216 unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); 1217 Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); 1218 } else 1219 Info.memVT = EVT::getEVT(DataTy); 1220 1221 Info.flags |= MachineMemOperand::MOStore; 1222 } else { 1223 // Atomic 1224 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : 1225 ISD::INTRINSIC_W_CHAIN; 1226 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); 1227 Info.flags |= MachineMemOperand::MOLoad | 1228 MachineMemOperand::MOStore | 1229 MachineMemOperand::MODereferenceable; 1230 1231 switch (IntrID) { 1232 default: 1233 // XXX - Should this be volatile without known ordering? 1234 Info.flags |= MachineMemOperand::MOVolatile; 1235 break; 1236 case Intrinsic::amdgcn_raw_buffer_load_lds: 1237 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 1238 case Intrinsic::amdgcn_struct_buffer_load_lds: 1239 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 1240 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1241 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1242 Info.ptrVal = CI.getArgOperand(1); 1243 return true; 1244 } 1245 } 1246 } 1247 return true; 1248 } 1249 1250 switch (IntrID) { 1251 case Intrinsic::amdgcn_ds_ordered_add: 1252 case Intrinsic::amdgcn_ds_ordered_swap: 1253 case Intrinsic::amdgcn_ds_fadd: 1254 case Intrinsic::amdgcn_ds_fmin: 1255 case Intrinsic::amdgcn_ds_fmax: { 1256 Info.opc = ISD::INTRINSIC_W_CHAIN; 1257 Info.memVT = MVT::getVT(CI.getType()); 1258 Info.ptrVal = CI.getOperand(0); 1259 Info.align.reset(); 1260 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1261 1262 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); 1263 if (!Vol->isZero()) 1264 Info.flags |= MachineMemOperand::MOVolatile; 1265 1266 return true; 1267 } 1268 case Intrinsic::amdgcn_buffer_atomic_fadd: { 1269 Info.opc = ISD::INTRINSIC_W_CHAIN; 1270 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1271 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1272 Info.align.reset(); 1273 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1274 1275 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); 1276 if (!Vol || !Vol->isZero()) 1277 Info.flags |= MachineMemOperand::MOVolatile; 1278 1279 return true; 1280 } 1281 case Intrinsic::amdgcn_ds_add_gs_reg_rtn: 1282 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { 1283 Info.opc = ISD::INTRINSIC_W_CHAIN; 1284 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); 1285 Info.ptrVal = nullptr; 1286 Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; 1287 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1288 return true; 1289 } 1290 case Intrinsic::amdgcn_ds_append: 1291 case Intrinsic::amdgcn_ds_consume: { 1292 Info.opc = ISD::INTRINSIC_W_CHAIN; 1293 Info.memVT = MVT::getVT(CI.getType()); 1294 Info.ptrVal = CI.getOperand(0); 1295 Info.align.reset(); 1296 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1297 1298 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); 1299 if (!Vol->isZero()) 1300 Info.flags |= MachineMemOperand::MOVolatile; 1301 1302 return true; 1303 } 1304 case Intrinsic::amdgcn_global_atomic_csub: { 1305 Info.opc = ISD::INTRINSIC_W_CHAIN; 1306 Info.memVT = MVT::getVT(CI.getType()); 1307 Info.ptrVal = CI.getOperand(0); 1308 Info.align.reset(); 1309 Info.flags |= MachineMemOperand::MOLoad | 1310 MachineMemOperand::MOStore | 1311 MachineMemOperand::MOVolatile; 1312 return true; 1313 } 1314 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 1315 Info.opc = ISD::INTRINSIC_W_CHAIN; 1316 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? 1317 1318 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; 1319 Info.align.reset(); 1320 Info.flags |= MachineMemOperand::MOLoad | 1321 MachineMemOperand::MODereferenceable; 1322 return true; 1323 } 1324 case Intrinsic::amdgcn_global_atomic_fadd: 1325 case Intrinsic::amdgcn_global_atomic_fmin: 1326 case Intrinsic::amdgcn_global_atomic_fmax: 1327 case Intrinsic::amdgcn_global_atomic_fmin_num: 1328 case Intrinsic::amdgcn_global_atomic_fmax_num: 1329 case Intrinsic::amdgcn_global_atomic_ordered_add_b64: 1330 case Intrinsic::amdgcn_flat_atomic_fadd: 1331 case Intrinsic::amdgcn_flat_atomic_fmin: 1332 case Intrinsic::amdgcn_flat_atomic_fmax: 1333 case Intrinsic::amdgcn_flat_atomic_fmin_num: 1334 case Intrinsic::amdgcn_flat_atomic_fmax_num: 1335 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1336 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { 1337 Info.opc = ISD::INTRINSIC_W_CHAIN; 1338 Info.memVT = MVT::getVT(CI.getType()); 1339 Info.ptrVal = CI.getOperand(0); 1340 Info.align.reset(); 1341 Info.flags |= MachineMemOperand::MOLoad | 1342 MachineMemOperand::MOStore | 1343 MachineMemOperand::MODereferenceable | 1344 MachineMemOperand::MOVolatile; 1345 return true; 1346 } 1347 case Intrinsic::amdgcn_ds_gws_init: 1348 case Intrinsic::amdgcn_ds_gws_barrier: 1349 case Intrinsic::amdgcn_ds_gws_sema_v: 1350 case Intrinsic::amdgcn_ds_gws_sema_br: 1351 case Intrinsic::amdgcn_ds_gws_sema_p: 1352 case Intrinsic::amdgcn_ds_gws_sema_release_all: { 1353 Info.opc = ISD::INTRINSIC_VOID; 1354 1355 const GCNTargetMachine &TM = 1356 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1357 1358 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1359 Info.ptrVal = MFI->getGWSPSV(TM); 1360 1361 // This is an abstract access, but we need to specify a type and size. 1362 Info.memVT = MVT::i32; 1363 Info.size = 4; 1364 Info.align = Align(4); 1365 1366 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) 1367 Info.flags |= MachineMemOperand::MOLoad; 1368 else 1369 Info.flags |= MachineMemOperand::MOStore; 1370 return true; 1371 } 1372 case Intrinsic::amdgcn_global_load_lds: { 1373 Info.opc = ISD::INTRINSIC_VOID; 1374 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 1375 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); 1376 Info.ptrVal = CI.getArgOperand(1); 1377 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1378 return true; 1379 } 1380 case Intrinsic::amdgcn_ds_bvh_stack_rtn: { 1381 Info.opc = ISD::INTRINSIC_W_CHAIN; 1382 1383 const GCNTargetMachine &TM = 1384 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1385 1386 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1387 Info.ptrVal = MFI->getGWSPSV(TM); 1388 1389 // This is an abstract access, but we need to specify a type and size. 1390 Info.memVT = MVT::i32; 1391 Info.size = 4; 1392 Info.align = Align(4); 1393 1394 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1395 return true; 1396 } 1397 default: 1398 return false; 1399 } 1400 } 1401 1402 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, 1403 SmallVectorImpl<Value*> &Ops, 1404 Type *&AccessTy) const { 1405 switch (II->getIntrinsicID()) { 1406 case Intrinsic::amdgcn_ds_ordered_add: 1407 case Intrinsic::amdgcn_ds_ordered_swap: 1408 case Intrinsic::amdgcn_ds_append: 1409 case Intrinsic::amdgcn_ds_consume: 1410 case Intrinsic::amdgcn_ds_fadd: 1411 case Intrinsic::amdgcn_ds_fmin: 1412 case Intrinsic::amdgcn_ds_fmax: 1413 case Intrinsic::amdgcn_global_atomic_fadd: 1414 case Intrinsic::amdgcn_flat_atomic_fadd: 1415 case Intrinsic::amdgcn_flat_atomic_fmin: 1416 case Intrinsic::amdgcn_flat_atomic_fmax: 1417 case Intrinsic::amdgcn_flat_atomic_fmin_num: 1418 case Intrinsic::amdgcn_flat_atomic_fmax_num: 1419 case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: 1420 case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: 1421 case Intrinsic::amdgcn_global_atomic_csub: { 1422 Value *Ptr = II->getArgOperand(0); 1423 AccessTy = II->getType(); 1424 Ops.push_back(Ptr); 1425 return true; 1426 } 1427 default: 1428 return false; 1429 } 1430 } 1431 1432 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM, 1433 unsigned AddrSpace, 1434 uint64_t FlatVariant) const { 1435 if (!Subtarget->hasFlatInstOffsets()) { 1436 // Flat instructions do not have offsets, and only have the register 1437 // address. 1438 return AM.BaseOffs == 0 && AM.Scale == 0; 1439 } 1440 1441 return AM.Scale == 0 && 1442 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( 1443 AM.BaseOffs, AddrSpace, FlatVariant)); 1444 } 1445 1446 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { 1447 if (Subtarget->hasFlatGlobalInsts()) 1448 return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS, 1449 SIInstrFlags::FlatGlobal); 1450 1451 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { 1452 // Assume the we will use FLAT for all global memory accesses 1453 // on VI. 1454 // FIXME: This assumption is currently wrong. On VI we still use 1455 // MUBUF instructions for the r + i addressing mode. As currently 1456 // implemented, the MUBUF instructions only work on buffer < 4GB. 1457 // It may be possible to support > 4GB buffers with MUBUF instructions, 1458 // by setting the stride value in the resource descriptor which would 1459 // increase the size limit to (stride * 4GB). However, this is risky, 1460 // because it has never been validated. 1461 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS, 1462 SIInstrFlags::FLAT); 1463 } 1464 1465 return isLegalMUBUFAddressingMode(AM); 1466 } 1467 1468 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { 1469 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and 1470 // additionally can do r + r + i with addr64. 32-bit has more addressing 1471 // mode options. Depending on the resource constant, it can also do 1472 // (i64 r0) + (i32 r1) * (i14 i). 1473 // 1474 // Private arrays end up using a scratch buffer most of the time, so also 1475 // assume those use MUBUF instructions. Scratch loads / stores are currently 1476 // implemented as mubuf instructions with offen bit set, so slightly 1477 // different than the normal addr64. 1478 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1479 if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs)) 1480 return false; 1481 1482 // FIXME: Since we can split immediate into soffset and immediate offset, 1483 // would it make sense to allow any immediate? 1484 1485 switch (AM.Scale) { 1486 case 0: // r + i or just i, depending on HasBaseReg. 1487 return true; 1488 case 1: 1489 return true; // We have r + r or r + i. 1490 case 2: 1491 if (AM.HasBaseReg) { 1492 // Reject 2 * r + r. 1493 return false; 1494 } 1495 1496 // Allow 2 * r as r + r 1497 // Or 2 * r + i is allowed as r + r + i. 1498 return true; 1499 default: // Don't allow n * r 1500 return false; 1501 } 1502 } 1503 1504 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, 1505 const AddrMode &AM, Type *Ty, 1506 unsigned AS, Instruction *I) const { 1507 // No global is ever allowed as a base. 1508 if (AM.BaseGV) 1509 return false; 1510 1511 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 1512 return isLegalGlobalAddressingMode(AM); 1513 1514 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 1515 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 1516 AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE || 1517 AS == AMDGPUAS::BUFFER_STRIDED_POINTER) { 1518 // If the offset isn't a multiple of 4, it probably isn't going to be 1519 // correctly aligned. 1520 // FIXME: Can we get the real alignment here? 1521 if (AM.BaseOffs % 4 != 0) 1522 return isLegalMUBUFAddressingMode(AM); 1523 1524 // There are no SMRD extloads, so if we have to do a small type access we 1525 // will use a MUBUF load. 1526 // FIXME?: We also need to do this if unaligned, but we don't know the 1527 // alignment here. 1528 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) 1529 return isLegalGlobalAddressingMode(AM); 1530 1531 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { 1532 // SMRD instructions have an 8-bit, dword offset on SI. 1533 if (!isUInt<8>(AM.BaseOffs / 4)) 1534 return false; 1535 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { 1536 // On CI+, this can also be a 32-bit literal constant offset. If it fits 1537 // in 8-bits, it can use a smaller encoding. 1538 if (!isUInt<32>(AM.BaseOffs / 4)) 1539 return false; 1540 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) { 1541 // On VI, these use the SMEM format and the offset is 20-bit in bytes. 1542 if (!isUInt<20>(AM.BaseOffs)) 1543 return false; 1544 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) { 1545 // On GFX9 the offset is signed 21-bit in bytes (but must not be negative 1546 // for S_BUFFER_* instructions). 1547 if (!isInt<21>(AM.BaseOffs)) 1548 return false; 1549 } else { 1550 // On GFX12, all offsets are signed 24-bit in bytes. 1551 if (!isInt<24>(AM.BaseOffs)) 1552 return false; 1553 } 1554 1555 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1556 return true; 1557 1558 if (AM.Scale == 1 && AM.HasBaseReg) 1559 return true; 1560 1561 return false; 1562 } 1563 1564 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 1565 return Subtarget->enableFlatScratch() 1566 ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS, 1567 SIInstrFlags::FlatScratch) 1568 : isLegalMUBUFAddressingMode(AM); 1569 1570 if (AS == AMDGPUAS::LOCAL_ADDRESS || 1571 (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) { 1572 // Basic, single offset DS instructions allow a 16-bit unsigned immediate 1573 // field. 1574 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have 1575 // an 8-bit dword offset but we don't know the alignment here. 1576 if (!isUInt<16>(AM.BaseOffs)) 1577 return false; 1578 1579 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. 1580 return true; 1581 1582 if (AM.Scale == 1 && AM.HasBaseReg) 1583 return true; 1584 1585 return false; 1586 } 1587 1588 if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { 1589 // For an unknown address space, this usually means that this is for some 1590 // reason being used for pure arithmetic, and not based on some addressing 1591 // computation. We don't have instructions that compute pointers with any 1592 // addressing modes, so treat them as having no offset like flat 1593 // instructions. 1594 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS, 1595 SIInstrFlags::FLAT); 1596 } 1597 1598 // Assume a user alias of global for unknown address spaces. 1599 return isLegalGlobalAddressingMode(AM); 1600 } 1601 1602 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1603 const MachineFunction &MF) const { 1604 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { 1605 return (MemVT.getSizeInBits() <= 4 * 32); 1606 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1607 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); 1608 return (MemVT.getSizeInBits() <= MaxPrivateBits); 1609 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 1610 return (MemVT.getSizeInBits() <= 2 * 32); 1611 } 1612 return true; 1613 } 1614 1615 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( 1616 unsigned Size, unsigned AddrSpace, Align Alignment, 1617 MachineMemOperand::Flags Flags, unsigned *IsFast) const { 1618 if (IsFast) 1619 *IsFast = 0; 1620 1621 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1622 AddrSpace == AMDGPUAS::REGION_ADDRESS) { 1623 // Check if alignment requirements for ds_read/write instructions are 1624 // disabled. 1625 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) 1626 return false; 1627 1628 Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. 1629 if (Subtarget->hasLDSMisalignedBug() && Size > 32 && 1630 Alignment < RequiredAlignment) 1631 return false; 1632 1633 // Either, the alignment requirements are "enabled", or there is an 1634 // unaligned LDS access related hardware bug though alignment requirements 1635 // are "disabled". In either case, we need to check for proper alignment 1636 // requirements. 1637 // 1638 switch (Size) { 1639 case 64: 1640 // SI has a hardware bug in the LDS / GDS bounds checking: if the base 1641 // address is negative, then the instruction is incorrectly treated as 1642 // out-of-bounds even if base + offsets is in bounds. Split vectorized 1643 // loads here to avoid emitting ds_read2_b32. We may re-combine the 1644 // load later in the SILoadStoreOptimizer. 1645 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) 1646 return false; 1647 1648 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we 1649 // can do a 4 byte aligned, 8 byte access in a single operation using 1650 // ds_read2/write2_b32 with adjacent offsets. 1651 RequiredAlignment = Align(4); 1652 1653 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1654 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ 1655 // ds_write2_b32 depending on the alignment. In either case with either 1656 // alignment there is no faster way of doing this. 1657 1658 // The numbers returned here and below are not additive, it is a 'speed 1659 // rank'. They are just meant to be compared to decide if a certain way 1660 // of lowering an operation is faster than another. For that purpose 1661 // naturally aligned operation gets it bitsize to indicate that "it 1662 // operates with a speed comparable to N-bit wide load". With the full 1663 // alignment ds128 is slower than ds96 for example. If underaligned it 1664 // is comparable to a speed of a single dword access, which would then 1665 // mean 32 < 128 and it is faster to issue a wide load regardless. 1666 // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a 1667 // wider load which will not be aligned anymore the latter is slower. 1668 if (IsFast) 1669 *IsFast = (Alignment >= RequiredAlignment) ? 64 1670 : (Alignment < Align(4)) ? 32 1671 : 1; 1672 return true; 1673 } 1674 1675 break; 1676 case 96: 1677 if (!Subtarget->hasDS96AndDS128()) 1678 return false; 1679 1680 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on 1681 // gfx8 and older. 1682 1683 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1684 // Naturally aligned access is fastest. However, also report it is Fast 1685 // if memory is aligned less than DWORD. A narrow load or store will be 1686 // be equally slow as a single ds_read_b96/ds_write_b96, but there will 1687 // be more of them, so overall we will pay less penalty issuing a single 1688 // instruction. 1689 1690 // See comment on the values above. 1691 if (IsFast) 1692 *IsFast = (Alignment >= RequiredAlignment) ? 96 1693 : (Alignment < Align(4)) ? 32 1694 : 1; 1695 return true; 1696 } 1697 1698 break; 1699 case 128: 1700 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) 1701 return false; 1702 1703 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on 1704 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a 1705 // single operation using ds_read2/write2_b64. 1706 RequiredAlignment = Align(8); 1707 1708 if (Subtarget->hasUnalignedDSAccessEnabled()) { 1709 // Naturally aligned access is fastest. However, also report it is Fast 1710 // if memory is aligned less than DWORD. A narrow load or store will be 1711 // be equally slow as a single ds_read_b128/ds_write_b128, but there 1712 // will be more of them, so overall we will pay less penalty issuing a 1713 // single instruction. 1714 1715 // See comment on the values above. 1716 if (IsFast) 1717 *IsFast = (Alignment >= RequiredAlignment) ? 128 1718 : (Alignment < Align(4)) ? 32 1719 : 1; 1720 return true; 1721 } 1722 1723 break; 1724 default: 1725 if (Size > 32) 1726 return false; 1727 1728 break; 1729 } 1730 1731 // See comment on the values above. 1732 // Note that we have a single-dword or sub-dword here, so if underaligned 1733 // it is a slowest possible access, hence returned value is 0. 1734 if (IsFast) 1735 *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; 1736 1737 return Alignment >= RequiredAlignment || 1738 Subtarget->hasUnalignedDSAccessEnabled(); 1739 } 1740 1741 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 1742 bool AlignedBy4 = Alignment >= Align(4); 1743 if (IsFast) 1744 *IsFast = AlignedBy4; 1745 1746 return AlignedBy4 || 1747 Subtarget->enableFlatScratch() || 1748 Subtarget->hasUnalignedScratchAccess(); 1749 } 1750 1751 // FIXME: We have to be conservative here and assume that flat operations 1752 // will access scratch. If we had access to the IR function, then we 1753 // could determine if any private memory was used in the function. 1754 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && 1755 !Subtarget->hasUnalignedScratchAccess()) { 1756 bool AlignedBy4 = Alignment >= Align(4); 1757 if (IsFast) 1758 *IsFast = AlignedBy4; 1759 1760 return AlignedBy4; 1761 } 1762 1763 // So long as they are correct, wide global memory operations perform better 1764 // than multiple smaller memory ops -- even when misaligned 1765 if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { 1766 if (IsFast) 1767 *IsFast = Size; 1768 1769 return Alignment >= Align(4) || 1770 Subtarget->hasUnalignedBufferAccessEnabled(); 1771 } 1772 1773 // Smaller than dword value must be aligned. 1774 if (Size < 32) 1775 return false; 1776 1777 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the 1778 // byte-address are ignored, thus forcing Dword alignment. 1779 // This applies to private, global, and constant memory. 1780 if (IsFast) 1781 *IsFast = 1; 1782 1783 return Size >= 32 && Alignment >= Align(4); 1784 } 1785 1786 bool SITargetLowering::allowsMisalignedMemoryAccesses( 1787 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1788 unsigned *IsFast) const { 1789 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, 1790 Alignment, Flags, IsFast); 1791 } 1792 1793 EVT SITargetLowering::getOptimalMemOpType( 1794 const MemOp &Op, const AttributeList &FuncAttributes) const { 1795 // FIXME: Should account for address space here. 1796 1797 // The default fallback uses the private pointer size as a guess for a type to 1798 // use. Make sure we switch these to 64-bit accesses. 1799 1800 if (Op.size() >= 16 && 1801 Op.isDstAligned(Align(4))) // XXX: Should only do for global 1802 return MVT::v4i32; 1803 1804 if (Op.size() >= 8 && Op.isDstAligned(Align(4))) 1805 return MVT::v2i32; 1806 1807 // Use the default. 1808 return MVT::Other; 1809 } 1810 1811 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { 1812 const MemSDNode *MemNode = cast<MemSDNode>(N); 1813 return MemNode->getMemOperand()->getFlags() & MONoClobber; 1814 } 1815 1816 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { 1817 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || 1818 AS == AMDGPUAS::PRIVATE_ADDRESS; 1819 } 1820 1821 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, 1822 unsigned DestAS) const { 1823 // Flat -> private/local is a simple truncate. 1824 // Flat -> global is no-op 1825 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 1826 return true; 1827 1828 const GCNTargetMachine &TM = 1829 static_cast<const GCNTargetMachine &>(getTargetMachine()); 1830 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 1831 } 1832 1833 bool SITargetLowering::isMemOpUniform(const SDNode *N) const { 1834 const MemSDNode *MemNode = cast<MemSDNode>(N); 1835 1836 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); 1837 } 1838 1839 TargetLoweringBase::LegalizeTypeAction 1840 SITargetLowering::getPreferredVectorAction(MVT VT) const { 1841 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && 1842 VT.getScalarType().bitsLE(MVT::i16)) 1843 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; 1844 return TargetLoweringBase::getPreferredVectorAction(VT); 1845 } 1846 1847 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 1848 Type *Ty) const { 1849 // FIXME: Could be smarter if called for vector constants. 1850 return true; 1851 } 1852 1853 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 1854 unsigned Index) const { 1855 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 1856 return false; 1857 1858 // TODO: Add more cases that are cheap. 1859 return Index == 0; 1860 } 1861 1862 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { 1863 if (Subtarget->has16BitInsts() && VT == MVT::i16) { 1864 switch (Op) { 1865 case ISD::LOAD: 1866 case ISD::STORE: 1867 1868 // These operations are done with 32-bit instructions anyway. 1869 case ISD::AND: 1870 case ISD::OR: 1871 case ISD::XOR: 1872 case ISD::SELECT: 1873 // TODO: Extensions? 1874 return true; 1875 default: 1876 return false; 1877 } 1878 } 1879 1880 // SimplifySetCC uses this function to determine whether or not it should 1881 // create setcc with i1 operands. We don't have instructions for i1 setcc. 1882 if (VT == MVT::i1 && Op == ISD::SETCC) 1883 return false; 1884 1885 return TargetLowering::isTypeDesirableForOp(Op, VT); 1886 } 1887 1888 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, 1889 const SDLoc &SL, 1890 SDValue Chain, 1891 uint64_t Offset) const { 1892 const DataLayout &DL = DAG.getDataLayout(); 1893 MachineFunction &MF = DAG.getMachineFunction(); 1894 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1895 1896 const ArgDescriptor *InputPtrReg; 1897 const TargetRegisterClass *RC; 1898 LLT ArgTy; 1899 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 1900 1901 std::tie(InputPtrReg, RC, ArgTy) = 1902 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 1903 1904 // We may not have the kernarg segment argument if we have no kernel 1905 // arguments. 1906 if (!InputPtrReg) 1907 return DAG.getConstant(Offset, SL, PtrVT); 1908 1909 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1910 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, 1911 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); 1912 1913 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset)); 1914 } 1915 1916 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, 1917 const SDLoc &SL) const { 1918 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), 1919 FIRST_IMPLICIT); 1920 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); 1921 } 1922 1923 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, 1924 const SDLoc &SL) const { 1925 1926 Function &F = DAG.getMachineFunction().getFunction(); 1927 std::optional<uint32_t> KnownSize = 1928 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 1929 if (KnownSize.has_value()) 1930 return DAG.getConstant(*KnownSize, SL, MVT::i32); 1931 return SDValue(); 1932 } 1933 1934 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, 1935 const SDLoc &SL, SDValue Val, 1936 bool Signed, 1937 const ISD::InputArg *Arg) const { 1938 // First, if it is a widened vector, narrow it. 1939 if (VT.isVector() && 1940 VT.getVectorNumElements() != MemVT.getVectorNumElements()) { 1941 EVT NarrowedVT = 1942 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 1943 VT.getVectorNumElements()); 1944 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, 1945 DAG.getConstant(0, SL, MVT::i32)); 1946 } 1947 1948 // Then convert the vector elements or scalar value. 1949 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && 1950 VT.bitsLT(MemVT)) { 1951 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; 1952 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); 1953 } 1954 1955 if (MemVT.isFloatingPoint()) 1956 Val = getFPExtOrFPRound(DAG, Val, SL, VT); 1957 else if (Signed) 1958 Val = DAG.getSExtOrTrunc(Val, SL, VT); 1959 else 1960 Val = DAG.getZExtOrTrunc(Val, SL, VT); 1961 1962 return Val; 1963 } 1964 1965 SDValue SITargetLowering::lowerKernargMemParameter( 1966 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, 1967 uint64_t Offset, Align Alignment, bool Signed, 1968 const ISD::InputArg *Arg) const { 1969 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 1970 1971 // Try to avoid using an extload by loading earlier than the argument address, 1972 // and extracting the relevant bits. The load should hopefully be merged with 1973 // the previous argument. 1974 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 1975 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). 1976 int64_t AlignDownOffset = alignDown(Offset, 4); 1977 int64_t OffsetDiff = Offset - AlignDownOffset; 1978 1979 EVT IntVT = MemVT.changeTypeToInteger(); 1980 1981 // TODO: If we passed in the base kernel offset we could have a better 1982 // alignment than 4, but we don't really need it. 1983 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); 1984 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), 1985 MachineMemOperand::MODereferenceable | 1986 MachineMemOperand::MOInvariant); 1987 1988 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); 1989 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); 1990 1991 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); 1992 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); 1993 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); 1994 1995 1996 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); 1997 } 1998 1999 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); 2000 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, 2001 MachineMemOperand::MODereferenceable | 2002 MachineMemOperand::MOInvariant); 2003 2004 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); 2005 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); 2006 } 2007 2008 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, 2009 const SDLoc &SL, SDValue Chain, 2010 const ISD::InputArg &Arg) const { 2011 MachineFunction &MF = DAG.getMachineFunction(); 2012 MachineFrameInfo &MFI = MF.getFrameInfo(); 2013 2014 if (Arg.Flags.isByVal()) { 2015 unsigned Size = Arg.Flags.getByValSize(); 2016 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); 2017 return DAG.getFrameIndex(FrameIdx, MVT::i32); 2018 } 2019 2020 unsigned ArgOffset = VA.getLocMemOffset(); 2021 unsigned ArgSize = VA.getValVT().getStoreSize(); 2022 2023 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); 2024 2025 // Create load nodes to retrieve arguments from the stack. 2026 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 2027 SDValue ArgValue; 2028 2029 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 2030 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 2031 MVT MemVT = VA.getValVT(); 2032 2033 switch (VA.getLocInfo()) { 2034 default: 2035 break; 2036 case CCValAssign::BCvt: 2037 MemVT = VA.getLocVT(); 2038 break; 2039 case CCValAssign::SExt: 2040 ExtType = ISD::SEXTLOAD; 2041 break; 2042 case CCValAssign::ZExt: 2043 ExtType = ISD::ZEXTLOAD; 2044 break; 2045 case CCValAssign::AExt: 2046 ExtType = ISD::EXTLOAD; 2047 break; 2048 } 2049 2050 ArgValue = DAG.getExtLoad( 2051 ExtType, SL, VA.getLocVT(), Chain, FIN, 2052 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 2053 MemVT); 2054 return ArgValue; 2055 } 2056 2057 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, 2058 const SIMachineFunctionInfo &MFI, 2059 EVT VT, 2060 AMDGPUFunctionArgInfo::PreloadedValue PVID) const { 2061 const ArgDescriptor *Reg; 2062 const TargetRegisterClass *RC; 2063 LLT Ty; 2064 2065 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); 2066 if (!Reg) { 2067 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { 2068 // It's possible for a kernarg intrinsic call to appear in a kernel with 2069 // no allocated segment, in which case we do not add the user sgpr 2070 // argument, so just return null. 2071 return DAG.getConstant(0, SDLoc(), VT); 2072 } 2073 2074 // It's undefined behavior if a function marked with the amdgpu-no-* 2075 // attributes uses the corresponding intrinsic. 2076 return DAG.getUNDEF(VT); 2077 } 2078 2079 return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); 2080 } 2081 2082 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, 2083 CallingConv::ID CallConv, 2084 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, 2085 FunctionType *FType, 2086 SIMachineFunctionInfo *Info) { 2087 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { 2088 const ISD::InputArg *Arg = &Ins[I]; 2089 2090 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && 2091 "vector type argument should have been split"); 2092 2093 // First check if it's a PS input addr. 2094 if (CallConv == CallingConv::AMDGPU_PS && 2095 !Arg->Flags.isInReg() && PSInputNum <= 15) { 2096 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); 2097 2098 // Inconveniently only the first part of the split is marked as isSplit, 2099 // so skip to the end. We only want to increment PSInputNum once for the 2100 // entire split argument. 2101 if (Arg->Flags.isSplit()) { 2102 while (!Arg->Flags.isSplitEnd()) { 2103 assert((!Arg->VT.isVector() || 2104 Arg->VT.getScalarSizeInBits() == 16) && 2105 "unexpected vector split in ps argument type"); 2106 if (!SkipArg) 2107 Splits.push_back(*Arg); 2108 Arg = &Ins[++I]; 2109 } 2110 } 2111 2112 if (SkipArg) { 2113 // We can safely skip PS inputs. 2114 Skipped.set(Arg->getOrigArgIndex()); 2115 ++PSInputNum; 2116 continue; 2117 } 2118 2119 Info->markPSInputAllocated(PSInputNum); 2120 if (Arg->Used) 2121 Info->markPSInputEnabled(PSInputNum); 2122 2123 ++PSInputNum; 2124 } 2125 2126 Splits.push_back(*Arg); 2127 } 2128 } 2129 2130 // Allocate special inputs passed in VGPRs. 2131 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, 2132 MachineFunction &MF, 2133 const SIRegisterInfo &TRI, 2134 SIMachineFunctionInfo &Info) const { 2135 const LLT S32 = LLT::scalar(32); 2136 MachineRegisterInfo &MRI = MF.getRegInfo(); 2137 2138 if (Info.hasWorkItemIDX()) { 2139 Register Reg = AMDGPU::VGPR0; 2140 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2141 2142 CCInfo.AllocateReg(Reg); 2143 unsigned Mask = (Subtarget->hasPackedTID() && 2144 Info.hasWorkItemIDY()) ? 0x3ff : ~0u; 2145 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2146 } 2147 2148 if (Info.hasWorkItemIDY()) { 2149 assert(Info.hasWorkItemIDX()); 2150 if (Subtarget->hasPackedTID()) { 2151 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 2152 0x3ff << 10)); 2153 } else { 2154 unsigned Reg = AMDGPU::VGPR1; 2155 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2156 2157 CCInfo.AllocateReg(Reg); 2158 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); 2159 } 2160 } 2161 2162 if (Info.hasWorkItemIDZ()) { 2163 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); 2164 if (Subtarget->hasPackedTID()) { 2165 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 2166 0x3ff << 20)); 2167 } else { 2168 unsigned Reg = AMDGPU::VGPR2; 2169 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); 2170 2171 CCInfo.AllocateReg(Reg); 2172 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); 2173 } 2174 } 2175 } 2176 2177 // Try to allocate a VGPR at the end of the argument list, or if no argument 2178 // VGPRs are left allocating a stack slot. 2179 // If \p Mask is is given it indicates bitfield position in the register. 2180 // If \p Arg is given use it with new ]p Mask instead of allocating new. 2181 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, 2182 ArgDescriptor Arg = ArgDescriptor()) { 2183 if (Arg.isSet()) 2184 return ArgDescriptor::createArg(Arg, Mask); 2185 2186 ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); 2187 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); 2188 if (RegIdx == ArgVGPRs.size()) { 2189 // Spill to stack required. 2190 int64_t Offset = CCInfo.AllocateStack(4, Align(4)); 2191 2192 return ArgDescriptor::createStack(Offset, Mask); 2193 } 2194 2195 unsigned Reg = ArgVGPRs[RegIdx]; 2196 Reg = CCInfo.AllocateReg(Reg); 2197 assert(Reg != AMDGPU::NoRegister); 2198 2199 MachineFunction &MF = CCInfo.getMachineFunction(); 2200 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); 2201 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); 2202 return ArgDescriptor::createRegister(Reg, Mask); 2203 } 2204 2205 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, 2206 const TargetRegisterClass *RC, 2207 unsigned NumArgRegs) { 2208 ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); 2209 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); 2210 if (RegIdx == ArgSGPRs.size()) 2211 report_fatal_error("ran out of SGPRs for arguments"); 2212 2213 unsigned Reg = ArgSGPRs[RegIdx]; 2214 Reg = CCInfo.AllocateReg(Reg); 2215 assert(Reg != AMDGPU::NoRegister); 2216 2217 MachineFunction &MF = CCInfo.getMachineFunction(); 2218 MF.addLiveIn(Reg, RC); 2219 return ArgDescriptor::createRegister(Reg); 2220 } 2221 2222 // If this has a fixed position, we still should allocate the register in the 2223 // CCInfo state. Technically we could get away with this for values passed 2224 // outside of the normal argument range. 2225 static void allocateFixedSGPRInputImpl(CCState &CCInfo, 2226 const TargetRegisterClass *RC, 2227 MCRegister Reg) { 2228 Reg = CCInfo.AllocateReg(Reg); 2229 assert(Reg != AMDGPU::NoRegister); 2230 MachineFunction &MF = CCInfo.getMachineFunction(); 2231 MF.addLiveIn(Reg, RC); 2232 } 2233 2234 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { 2235 if (Arg) { 2236 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 2237 Arg.getRegister()); 2238 } else 2239 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); 2240 } 2241 2242 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { 2243 if (Arg) { 2244 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 2245 Arg.getRegister()); 2246 } else 2247 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); 2248 } 2249 2250 /// Allocate implicit function VGPR arguments at the end of allocated user 2251 /// arguments. 2252 void SITargetLowering::allocateSpecialInputVGPRs( 2253 CCState &CCInfo, MachineFunction &MF, 2254 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2255 const unsigned Mask = 0x3ff; 2256 ArgDescriptor Arg; 2257 2258 if (Info.hasWorkItemIDX()) { 2259 Arg = allocateVGPR32Input(CCInfo, Mask); 2260 Info.setWorkItemIDX(Arg); 2261 } 2262 2263 if (Info.hasWorkItemIDY()) { 2264 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); 2265 Info.setWorkItemIDY(Arg); 2266 } 2267 2268 if (Info.hasWorkItemIDZ()) 2269 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); 2270 } 2271 2272 /// Allocate implicit function VGPR arguments in fixed registers. 2273 void SITargetLowering::allocateSpecialInputVGPRsFixed( 2274 CCState &CCInfo, MachineFunction &MF, 2275 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2276 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); 2277 if (!Reg) 2278 report_fatal_error("failed to allocated VGPR for implicit arguments"); 2279 2280 const unsigned Mask = 0x3ff; 2281 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); 2282 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); 2283 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); 2284 } 2285 2286 void SITargetLowering::allocateSpecialInputSGPRs( 2287 CCState &CCInfo, 2288 MachineFunction &MF, 2289 const SIRegisterInfo &TRI, 2290 SIMachineFunctionInfo &Info) const { 2291 auto &ArgInfo = Info.getArgInfo(); 2292 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); 2293 2294 // TODO: Unify handling with private memory pointers. 2295 if (UserSGPRInfo.hasDispatchPtr()) 2296 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); 2297 2298 const Module *M = MF.getFunction().getParent(); 2299 if (UserSGPRInfo.hasQueuePtr() && 2300 AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) 2301 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); 2302 2303 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a 2304 // constant offset from the kernarg segment. 2305 if (Info.hasImplicitArgPtr()) 2306 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); 2307 2308 if (UserSGPRInfo.hasDispatchID()) 2309 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); 2310 2311 // flat_scratch_init is not applicable for non-kernel functions. 2312 2313 if (Info.hasWorkGroupIDX()) 2314 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); 2315 2316 if (Info.hasWorkGroupIDY()) 2317 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); 2318 2319 if (Info.hasWorkGroupIDZ()) 2320 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); 2321 2322 if (Info.hasLDSKernelId()) 2323 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); 2324 } 2325 2326 // Allocate special inputs passed in user SGPRs. 2327 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, 2328 MachineFunction &MF, 2329 const SIRegisterInfo &TRI, 2330 SIMachineFunctionInfo &Info) const { 2331 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); 2332 if (UserSGPRInfo.hasImplicitBufferPtr()) { 2333 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); 2334 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 2335 CCInfo.AllocateReg(ImplicitBufferPtrReg); 2336 } 2337 2338 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 2339 if (UserSGPRInfo.hasPrivateSegmentBuffer()) { 2340 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 2341 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 2342 CCInfo.AllocateReg(PrivateSegmentBufferReg); 2343 } 2344 2345 if (UserSGPRInfo.hasDispatchPtr()) { 2346 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 2347 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 2348 CCInfo.AllocateReg(DispatchPtrReg); 2349 } 2350 2351 const Module *M = MF.getFunction().getParent(); 2352 if (UserSGPRInfo.hasQueuePtr() && 2353 AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { 2354 Register QueuePtrReg = Info.addQueuePtr(TRI); 2355 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 2356 CCInfo.AllocateReg(QueuePtrReg); 2357 } 2358 2359 if (UserSGPRInfo.hasKernargSegmentPtr()) { 2360 MachineRegisterInfo &MRI = MF.getRegInfo(); 2361 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 2362 CCInfo.AllocateReg(InputPtrReg); 2363 2364 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); 2365 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); 2366 } 2367 2368 if (UserSGPRInfo.hasDispatchID()) { 2369 Register DispatchIDReg = Info.addDispatchID(TRI); 2370 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 2371 CCInfo.AllocateReg(DispatchIDReg); 2372 } 2373 2374 if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { 2375 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 2376 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 2377 CCInfo.AllocateReg(FlatScratchInitReg); 2378 } 2379 2380 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 2381 // these from the dispatch pointer. 2382 } 2383 2384 // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be 2385 // sequential starting from the first argument. 2386 void SITargetLowering::allocatePreloadKernArgSGPRs( 2387 CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs, 2388 const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF, 2389 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { 2390 Function &F = MF.getFunction(); 2391 unsigned LastExplicitArgOffset = 2392 MF.getSubtarget<GCNSubtarget>().getExplicitKernelArgOffset(); 2393 GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo(); 2394 bool InPreloadSequence = true; 2395 unsigned InIdx = 0; 2396 for (auto &Arg : F.args()) { 2397 if (!InPreloadSequence || !Arg.hasInRegAttr()) 2398 break; 2399 2400 int ArgIdx = Arg.getArgNo(); 2401 // Don't preload non-original args or parts not in the current preload 2402 // sequence. 2403 if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() || 2404 (int)Ins[InIdx].getOrigArgIndex() != ArgIdx)) 2405 break; 2406 2407 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() && 2408 (int)Ins[InIdx].getOrigArgIndex() == ArgIdx; 2409 InIdx++) { 2410 assert(ArgLocs[ArgIdx].isMemLoc()); 2411 auto &ArgLoc = ArgLocs[InIdx]; 2412 const Align KernelArgBaseAlign = Align(16); 2413 unsigned ArgOffset = ArgLoc.getLocMemOffset(); 2414 Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset); 2415 unsigned NumAllocSGPRs = 2416 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32; 2417 2418 // Arg is preloaded into the previous SGPR. 2419 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) { 2420 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back( 2421 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]); 2422 continue; 2423 } 2424 2425 unsigned Padding = ArgOffset - LastExplicitArgOffset; 2426 unsigned PaddingSGPRs = alignTo(Padding, 4) / 4; 2427 // Check for free user SGPRs for preloading. 2428 if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ > 2429 SGPRInfo.getNumFreeUserSGPRs()) { 2430 InPreloadSequence = false; 2431 break; 2432 } 2433 2434 // Preload this argument. 2435 const TargetRegisterClass *RC = 2436 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32); 2437 SmallVectorImpl<MCRegister> *PreloadRegs = 2438 Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs); 2439 2440 if (PreloadRegs->size() > 1) 2441 RC = &AMDGPU::SGPR_32RegClass; 2442 for (auto &Reg : *PreloadRegs) { 2443 assert(Reg); 2444 MF.addLiveIn(Reg, RC); 2445 CCInfo.AllocateReg(Reg); 2446 } 2447 2448 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset; 2449 } 2450 } 2451 } 2452 2453 void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, 2454 const SIRegisterInfo &TRI, 2455 SIMachineFunctionInfo &Info) const { 2456 // Always allocate this last since it is a synthetic preload. 2457 if (Info.hasLDSKernelId()) { 2458 Register Reg = Info.addLDSKernelId(); 2459 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2460 CCInfo.AllocateReg(Reg); 2461 } 2462 } 2463 2464 // Allocate special input registers that are initialized per-wave. 2465 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, 2466 MachineFunction &MF, 2467 SIMachineFunctionInfo &Info, 2468 CallingConv::ID CallConv, 2469 bool IsShader) const { 2470 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); 2471 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { 2472 // Note: user SGPRs are handled by the front-end for graphics shaders 2473 // Pad up the used user SGPRs with dead inputs. 2474 2475 // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately 2476 // before enabling architected SGPRs for workgroup IDs. 2477 assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget"); 2478 2479 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); 2480 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to 2481 // rely on it to reach 16 since if we end up having no stack usage, it will 2482 // not really be added. 2483 unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + 2484 Info.hasWorkGroupIDY() + 2485 Info.hasWorkGroupIDZ() + 2486 Info.hasWorkGroupInfo(); 2487 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { 2488 Register Reg = Info.addReservedUserSGPR(); 2489 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2490 CCInfo.AllocateReg(Reg); 2491 } 2492 } 2493 2494 if (Info.hasWorkGroupIDX()) { 2495 Register Reg = Info.addWorkGroupIDX(HasArchitectedSGPRs); 2496 if (!HasArchitectedSGPRs) 2497 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2498 2499 CCInfo.AllocateReg(Reg); 2500 } 2501 2502 if (Info.hasWorkGroupIDY()) { 2503 Register Reg = Info.addWorkGroupIDY(HasArchitectedSGPRs); 2504 if (!HasArchitectedSGPRs) 2505 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2506 2507 CCInfo.AllocateReg(Reg); 2508 } 2509 2510 if (Info.hasWorkGroupIDZ()) { 2511 Register Reg = Info.addWorkGroupIDZ(HasArchitectedSGPRs); 2512 if (!HasArchitectedSGPRs) 2513 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2514 2515 CCInfo.AllocateReg(Reg); 2516 } 2517 2518 if (Info.hasWorkGroupInfo()) { 2519 Register Reg = Info.addWorkGroupInfo(); 2520 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); 2521 CCInfo.AllocateReg(Reg); 2522 } 2523 2524 if (Info.hasPrivateSegmentWaveByteOffset()) { 2525 // Scratch wave offset passed in system SGPR. 2526 unsigned PrivateSegmentWaveByteOffsetReg; 2527 2528 if (IsShader) { 2529 PrivateSegmentWaveByteOffsetReg = 2530 Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); 2531 2532 // This is true if the scratch wave byte offset doesn't have a fixed 2533 // location. 2534 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { 2535 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); 2536 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); 2537 } 2538 } else 2539 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); 2540 2541 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); 2542 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); 2543 } 2544 2545 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || 2546 Info.getNumPreloadedSGPRs() >= 16); 2547 } 2548 2549 static void reservePrivateMemoryRegs(const TargetMachine &TM, 2550 MachineFunction &MF, 2551 const SIRegisterInfo &TRI, 2552 SIMachineFunctionInfo &Info) { 2553 // Now that we've figured out where the scratch register inputs are, see if 2554 // should reserve the arguments and use them directly. 2555 MachineFrameInfo &MFI = MF.getFrameInfo(); 2556 bool HasStackObjects = MFI.hasStackObjects(); 2557 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 2558 2559 // Record that we know we have non-spill stack objects so we don't need to 2560 // check all stack objects later. 2561 if (HasStackObjects) 2562 Info.setHasNonSpillStackObjects(true); 2563 2564 // Everything live out of a block is spilled with fast regalloc, so it's 2565 // almost certain that spilling will be required. 2566 if (TM.getOptLevel() == CodeGenOptLevel::None) 2567 HasStackObjects = true; 2568 2569 // For now assume stack access is needed in any callee functions, so we need 2570 // the scratch registers to pass in. 2571 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); 2572 2573 if (!ST.enableFlatScratch()) { 2574 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { 2575 // If we have stack objects, we unquestionably need the private buffer 2576 // resource. For the Code Object V2 ABI, this will be the first 4 user 2577 // SGPR inputs. We can reserve those and use them directly. 2578 2579 Register PrivateSegmentBufferReg = 2580 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); 2581 Info.setScratchRSrcReg(PrivateSegmentBufferReg); 2582 } else { 2583 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); 2584 // We tentatively reserve the last registers (skipping the last registers 2585 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, 2586 // we'll replace these with the ones immediately after those which were 2587 // really allocated. In the prologue copies will be inserted from the 2588 // argument to these reserved registers. 2589 2590 // Without HSA, relocations are used for the scratch pointer and the 2591 // buffer resource setup is always inserted in the prologue. Scratch wave 2592 // offset is still in an input SGPR. 2593 Info.setScratchRSrcReg(ReservedBufferReg); 2594 } 2595 } 2596 2597 MachineRegisterInfo &MRI = MF.getRegInfo(); 2598 2599 // For entry functions we have to set up the stack pointer if we use it, 2600 // whereas non-entry functions get this "for free". This means there is no 2601 // intrinsic advantage to using S32 over S34 in cases where we do not have 2602 // calls but do need a frame pointer (i.e. if we are requested to have one 2603 // because frame pointer elimination is disabled). To keep things simple we 2604 // only ever use S32 as the call ABI stack pointer, and so using it does not 2605 // imply we need a separate frame pointer. 2606 // 2607 // Try to use s32 as the SP, but move it if it would interfere with input 2608 // arguments. This won't work with calls though. 2609 // 2610 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input 2611 // registers. 2612 if (!MRI.isLiveIn(AMDGPU::SGPR32)) { 2613 Info.setStackPtrOffsetReg(AMDGPU::SGPR32); 2614 } else { 2615 assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); 2616 2617 if (MFI.hasCalls()) 2618 report_fatal_error("call in graphics shader with too many input SGPRs"); 2619 2620 for (unsigned Reg : AMDGPU::SGPR_32RegClass) { 2621 if (!MRI.isLiveIn(Reg)) { 2622 Info.setStackPtrOffsetReg(Reg); 2623 break; 2624 } 2625 } 2626 2627 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) 2628 report_fatal_error("failed to find register for SP"); 2629 } 2630 2631 // hasFP should be accurate for entry functions even before the frame is 2632 // finalized, because it does not rely on the known stack size, only 2633 // properties like whether variable sized objects are present. 2634 if (ST.getFrameLowering()->hasFP(MF)) { 2635 Info.setFrameOffsetReg(AMDGPU::SGPR33); 2636 } 2637 } 2638 2639 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { 2640 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2641 return !Info->isEntryFunction(); 2642 } 2643 2644 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 2645 2646 } 2647 2648 void SITargetLowering::insertCopiesSplitCSR( 2649 MachineBasicBlock *Entry, 2650 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2651 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2652 2653 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 2654 if (!IStart) 2655 return; 2656 2657 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2658 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 2659 MachineBasicBlock::iterator MBBI = Entry->begin(); 2660 for (const MCPhysReg *I = IStart; *I; ++I) { 2661 const TargetRegisterClass *RC = nullptr; 2662 if (AMDGPU::SReg_64RegClass.contains(*I)) 2663 RC = &AMDGPU::SGPR_64RegClass; 2664 else if (AMDGPU::SReg_32RegClass.contains(*I)) 2665 RC = &AMDGPU::SGPR_32RegClass; 2666 else 2667 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 2668 2669 Register NewVR = MRI->createVirtualRegister(RC); 2670 // Create copy from CSR to a virtual register. 2671 Entry->addLiveIn(*I); 2672 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 2673 .addReg(*I); 2674 2675 // Insert the copy-back instructions right before the terminator. 2676 for (auto *Exit : Exits) 2677 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 2678 TII->get(TargetOpcode::COPY), *I) 2679 .addReg(NewVR); 2680 } 2681 } 2682 2683 SDValue SITargetLowering::LowerFormalArguments( 2684 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2685 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 2686 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2687 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 2688 2689 MachineFunction &MF = DAG.getMachineFunction(); 2690 const Function &Fn = MF.getFunction(); 2691 FunctionType *FType = MF.getFunction().getFunctionType(); 2692 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2693 2694 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { 2695 DiagnosticInfoUnsupported NoGraphicsHSA( 2696 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); 2697 DAG.getContext()->diagnose(NoGraphicsHSA); 2698 return DAG.getEntryNode(); 2699 } 2700 2701 SmallVector<ISD::InputArg, 16> Splits; 2702 SmallVector<CCValAssign, 16> ArgLocs; 2703 BitVector Skipped(Ins.size()); 2704 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2705 *DAG.getContext()); 2706 2707 bool IsGraphics = AMDGPU::isGraphics(CallConv); 2708 bool IsKernel = AMDGPU::isKernel(CallConv); 2709 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); 2710 2711 if (IsGraphics) { 2712 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); 2713 assert(!UserSGPRInfo.hasDispatchPtr() && 2714 !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && 2715 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && 2716 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); 2717 (void)UserSGPRInfo; 2718 if (!Subtarget->enableFlatScratch()) 2719 assert(!UserSGPRInfo.hasFlatScratchInit()); 2720 if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs()) 2721 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && 2722 !Info->hasWorkGroupIDZ()); 2723 } 2724 2725 if (CallConv == CallingConv::AMDGPU_PS) { 2726 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); 2727 2728 // At least one interpolation mode must be enabled or else the GPU will 2729 // hang. 2730 // 2731 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 2732 // set PSInputAddr, the user wants to enable some bits after the compilation 2733 // based on run-time states. Since we can't know what the final PSInputEna 2734 // will look like, so we shouldn't do anything here and the user should take 2735 // responsibility for the correct programming. 2736 // 2737 // Otherwise, the following restrictions apply: 2738 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 2739 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 2740 // enabled too. 2741 if ((Info->getPSInputAddr() & 0x7F) == 0 || 2742 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { 2743 CCInfo.AllocateReg(AMDGPU::VGPR0); 2744 CCInfo.AllocateReg(AMDGPU::VGPR1); 2745 Info->markPSInputAllocated(0); 2746 Info->markPSInputEnabled(0); 2747 } 2748 if (Subtarget->isAmdPalOS()) { 2749 // For isAmdPalOS, the user does not enable some bits after compilation 2750 // based on run-time states; the register values being generated here are 2751 // the final ones set in hardware. Therefore we need to apply the 2752 // workaround to PSInputAddr and PSInputEnable together. (The case where 2753 // a bit is set in PSInputAddr but not PSInputEnable is where the 2754 // frontend set up an input arg for a particular interpolation mode, but 2755 // nothing uses that input arg. Really we should have an earlier pass 2756 // that removes such an arg.) 2757 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 2758 if ((PsInputBits & 0x7F) == 0 || 2759 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) 2760 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); 2761 } 2762 } else if (IsKernel) { 2763 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); 2764 } else { 2765 Splits.append(Ins.begin(), Ins.end()); 2766 } 2767 2768 if (IsKernel) 2769 analyzeFormalArgumentsCompute(CCInfo, Ins); 2770 2771 if (IsEntryFunc) { 2772 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 2773 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); 2774 if (IsKernel && Subtarget->hasKernargPreload() && 2775 !Subtarget->needsKernargPreloadBackwardsCompatibility()) 2776 allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info); 2777 2778 allocateLDSKernelId(CCInfo, MF, *TRI, *Info); 2779 } else if (!IsGraphics) { 2780 // For the fixed ABI, pass workitem IDs in the last argument register. 2781 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 2782 } 2783 2784 if (!IsKernel) { 2785 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); 2786 if (!IsGraphics && !Subtarget->enableFlatScratch()) { 2787 CCInfo.AllocateRegBlock(ArrayRef<MCPhysReg>{AMDGPU::SGPR0, AMDGPU::SGPR1, 2788 AMDGPU::SGPR2, AMDGPU::SGPR3}, 2789 4); 2790 } 2791 CCInfo.AnalyzeFormalArguments(Splits, AssignFn); 2792 } 2793 2794 SmallVector<SDValue, 16> Chains; 2795 2796 // FIXME: This is the minimum kernel argument alignment. We should improve 2797 // this to the maximum alignment of the arguments. 2798 // 2799 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit 2800 // kern arg offset. 2801 const Align KernelArgBaseAlign = Align(16); 2802 2803 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { 2804 const ISD::InputArg &Arg = Ins[i]; 2805 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { 2806 InVals.push_back(DAG.getUNDEF(Arg.VT)); 2807 continue; 2808 } 2809 2810 CCValAssign &VA = ArgLocs[ArgIdx++]; 2811 MVT VT = VA.getLocVT(); 2812 2813 if (IsEntryFunc && VA.isMemLoc()) { 2814 VT = Ins[i].VT; 2815 EVT MemVT = VA.getLocVT(); 2816 2817 const uint64_t Offset = VA.getLocMemOffset(); 2818 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); 2819 2820 if (Arg.Flags.isByRef()) { 2821 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); 2822 2823 const GCNTargetMachine &TM = 2824 static_cast<const GCNTargetMachine &>(getTargetMachine()); 2825 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, 2826 Arg.Flags.getPointerAddrSpace())) { 2827 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, 2828 Arg.Flags.getPointerAddrSpace()); 2829 } 2830 2831 InVals.push_back(Ptr); 2832 continue; 2833 } 2834 2835 SDValue NewArg; 2836 if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) { 2837 if (MemVT.getStoreSize() < 4 && Alignment < 4) { 2838 // In this case the argument is packed into the previous preload SGPR. 2839 int64_t AlignDownOffset = alignDown(Offset, 4); 2840 int64_t OffsetDiff = Offset - AlignDownOffset; 2841 EVT IntVT = MemVT.changeTypeToInteger(); 2842 2843 const SIMachineFunctionInfo *Info = 2844 MF.getInfo<SIMachineFunctionInfo>(); 2845 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 2846 Register Reg = 2847 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0]; 2848 2849 assert(Reg); 2850 Register VReg = MRI.getLiveInVirtReg(Reg); 2851 SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); 2852 2853 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32); 2854 SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt); 2855 2856 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract); 2857 ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal); 2858 NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal, 2859 Ins[i].Flags.isSExt(), &Ins[i]); 2860 2861 NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL); 2862 } else { 2863 const SIMachineFunctionInfo *Info = 2864 MF.getInfo<SIMachineFunctionInfo>(); 2865 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 2866 const SmallVectorImpl<MCRegister> &PreloadRegs = 2867 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs; 2868 2869 SDValue Copy; 2870 if (PreloadRegs.size() == 1) { 2871 Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]); 2872 const TargetRegisterClass *RC = MRI.getRegClass(VReg); 2873 NewArg = DAG.getCopyFromReg( 2874 Chain, DL, VReg, 2875 EVT::getIntegerVT(*DAG.getContext(), 2876 TRI->getRegSizeInBits(*RC))); 2877 2878 } else { 2879 // If the kernarg alignment does not match the alignment of the SGPR 2880 // tuple RC that can accommodate this argument, it will be built up 2881 // via copies from from the individual SGPRs that the argument was 2882 // preloaded to. 2883 SmallVector<SDValue, 4> Elts; 2884 for (auto Reg : PreloadRegs) { 2885 Register VReg = MRI.getLiveInVirtReg(Reg); 2886 Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); 2887 Elts.push_back(Copy); 2888 } 2889 NewArg = 2890 DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32, 2891 PreloadRegs.size()), 2892 DL, Elts); 2893 } 2894 2895 SDValue CMemVT; 2896 if (VT.isScalarInteger() && VT.bitsLT(NewArg.getSimpleValueType())) 2897 CMemVT = DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewArg); 2898 else 2899 CMemVT = DAG.getBitcast(MemVT, NewArg); 2900 NewArg = convertArgType(DAG, VT, MemVT, DL, CMemVT, 2901 Ins[i].Flags.isSExt(), &Ins[i]); 2902 NewArg = DAG.getMergeValues({NewArg, Chain}, DL); 2903 } 2904 } else { 2905 NewArg = 2906 lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, 2907 Alignment, Ins[i].Flags.isSExt(), &Ins[i]); 2908 } 2909 Chains.push_back(NewArg.getValue(1)); 2910 2911 auto *ParamTy = 2912 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); 2913 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && 2914 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 2915 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { 2916 // On SI local pointers are just offsets into LDS, so they are always 2917 // less than 16-bits. On CI and newer they could potentially be 2918 // real pointers, so we can't guarantee their size. 2919 NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg, 2920 DAG.getValueType(MVT::i16)); 2921 } 2922 2923 InVals.push_back(NewArg); 2924 continue; 2925 } else if (!IsEntryFunc && VA.isMemLoc()) { 2926 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); 2927 InVals.push_back(Val); 2928 if (!Arg.Flags.isByVal()) 2929 Chains.push_back(Val.getValue(1)); 2930 continue; 2931 } 2932 2933 assert(VA.isRegLoc() && "Parameter must be in a register!"); 2934 2935 Register Reg = VA.getLocReg(); 2936 const TargetRegisterClass *RC = nullptr; 2937 if (AMDGPU::VGPR_32RegClass.contains(Reg)) 2938 RC = &AMDGPU::VGPR_32RegClass; 2939 else if (AMDGPU::SGPR_32RegClass.contains(Reg)) 2940 RC = &AMDGPU::SGPR_32RegClass; 2941 else 2942 llvm_unreachable("Unexpected register class in LowerFormalArguments!"); 2943 EVT ValVT = VA.getValVT(); 2944 2945 Reg = MF.addLiveIn(Reg, RC); 2946 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); 2947 2948 if (Arg.Flags.isSRet()) { 2949 // The return object should be reasonably addressable. 2950 2951 // FIXME: This helps when the return is a real sret. If it is a 2952 // automatically inserted sret (i.e. CanLowerReturn returns false), an 2953 // extra copy is inserted in SelectionDAGBuilder which obscures this. 2954 unsigned NumBits 2955 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); 2956 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2957 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); 2958 } 2959 2960 // If this is an 8 or 16-bit value, it is really passed promoted 2961 // to 32 bits. Insert an assert[sz]ext to capture this, then 2962 // truncate to the right size. 2963 switch (VA.getLocInfo()) { 2964 case CCValAssign::Full: 2965 break; 2966 case CCValAssign::BCvt: 2967 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2968 break; 2969 case CCValAssign::SExt: 2970 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, 2971 DAG.getValueType(ValVT)); 2972 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2973 break; 2974 case CCValAssign::ZExt: 2975 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, 2976 DAG.getValueType(ValVT)); 2977 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2978 break; 2979 case CCValAssign::AExt: 2980 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2981 break; 2982 default: 2983 llvm_unreachable("Unknown loc info!"); 2984 } 2985 2986 InVals.push_back(Val); 2987 } 2988 2989 // Start adding system SGPRs. 2990 if (IsEntryFunc) { 2991 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); 2992 } else { 2993 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 2994 if (!IsGraphics) 2995 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 2996 } 2997 2998 auto &ArgUsageInfo = 2999 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 3000 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); 3001 3002 unsigned StackArgSize = CCInfo.getStackSize(); 3003 Info->setBytesInStackArgArea(StackArgSize); 3004 3005 return Chains.empty() ? Chain : 3006 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3007 } 3008 3009 // TODO: If return values can't fit in registers, we should return as many as 3010 // possible in registers before passing on stack. 3011 bool SITargetLowering::CanLowerReturn( 3012 CallingConv::ID CallConv, 3013 MachineFunction &MF, bool IsVarArg, 3014 const SmallVectorImpl<ISD::OutputArg> &Outs, 3015 LLVMContext &Context) const { 3016 // Replacing returns with sret/stack usage doesn't make sense for shaders. 3017 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn 3018 // for shaders. Vector types should be explicitly handled by CC. 3019 if (AMDGPU::isEntryFunctionCC(CallConv)) 3020 return true; 3021 3022 SmallVector<CCValAssign, 16> RVLocs; 3023 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3024 if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg))) 3025 return false; 3026 3027 // We must use the stack if return would require unavailable registers. 3028 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF); 3029 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs(); 3030 for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) 3031 if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i))) 3032 return false; 3033 3034 return true; 3035 } 3036 3037 SDValue 3038 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3039 bool isVarArg, 3040 const SmallVectorImpl<ISD::OutputArg> &Outs, 3041 const SmallVectorImpl<SDValue> &OutVals, 3042 const SDLoc &DL, SelectionDAG &DAG) const { 3043 MachineFunction &MF = DAG.getMachineFunction(); 3044 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3045 3046 if (AMDGPU::isKernel(CallConv)) { 3047 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, 3048 OutVals, DL, DAG); 3049 } 3050 3051 bool IsShader = AMDGPU::isShader(CallConv); 3052 3053 Info->setIfReturnsVoid(Outs.empty()); 3054 bool IsWaveEnd = Info->returnsVoid() && IsShader; 3055 3056 // CCValAssign - represent the assignment of the return value to a location. 3057 SmallVector<CCValAssign, 48> RVLocs; 3058 SmallVector<ISD::OutputArg, 48> Splits; 3059 3060 // CCState - Info about the registers and stack slots. 3061 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3062 *DAG.getContext()); 3063 3064 // Analyze outgoing return values. 3065 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 3066 3067 SDValue Glue; 3068 SmallVector<SDValue, 48> RetOps; 3069 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 3070 3071 // Copy the result values into the output registers. 3072 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; 3073 ++I, ++RealRVLocIdx) { 3074 CCValAssign &VA = RVLocs[I]; 3075 assert(VA.isRegLoc() && "Can only return in registers!"); 3076 // TODO: Partially return in registers if return values don't fit. 3077 SDValue Arg = OutVals[RealRVLocIdx]; 3078 3079 // Copied from other backends. 3080 switch (VA.getLocInfo()) { 3081 case CCValAssign::Full: 3082 break; 3083 case CCValAssign::BCvt: 3084 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3085 break; 3086 case CCValAssign::SExt: 3087 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3088 break; 3089 case CCValAssign::ZExt: 3090 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3091 break; 3092 case CCValAssign::AExt: 3093 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3094 break; 3095 default: 3096 llvm_unreachable("Unknown loc info!"); 3097 } 3098 3099 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 3100 Glue = Chain.getValue(1); 3101 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3102 } 3103 3104 // FIXME: Does sret work properly? 3105 if (!Info->isEntryFunction()) { 3106 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3107 const MCPhysReg *I = 3108 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 3109 if (I) { 3110 for (; *I; ++I) { 3111 if (AMDGPU::SReg_64RegClass.contains(*I)) 3112 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 3113 else if (AMDGPU::SReg_32RegClass.contains(*I)) 3114 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 3115 else 3116 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 3117 } 3118 } 3119 } 3120 3121 // Update chain and glue. 3122 RetOps[0] = Chain; 3123 if (Glue.getNode()) 3124 RetOps.push_back(Glue); 3125 3126 unsigned Opc = AMDGPUISD::ENDPGM; 3127 if (!IsWaveEnd) 3128 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; 3129 return DAG.getNode(Opc, DL, MVT::Other, RetOps); 3130 } 3131 3132 SDValue SITargetLowering::LowerCallResult( 3133 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 3134 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3135 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, 3136 SDValue ThisVal) const { 3137 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); 3138 3139 // Assign locations to each value returned by this call. 3140 SmallVector<CCValAssign, 16> RVLocs; 3141 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3142 *DAG.getContext()); 3143 CCInfo.AnalyzeCallResult(Ins, RetCC); 3144 3145 // Copy all of the result registers out of their specified physreg. 3146 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3147 CCValAssign VA = RVLocs[i]; 3148 SDValue Val; 3149 3150 if (VA.isRegLoc()) { 3151 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); 3152 Chain = Val.getValue(1); 3153 InGlue = Val.getValue(2); 3154 } else if (VA.isMemLoc()) { 3155 report_fatal_error("TODO: return values in memory"); 3156 } else 3157 llvm_unreachable("unknown argument location type"); 3158 3159 switch (VA.getLocInfo()) { 3160 case CCValAssign::Full: 3161 break; 3162 case CCValAssign::BCvt: 3163 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3164 break; 3165 case CCValAssign::ZExt: 3166 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 3167 DAG.getValueType(VA.getValVT())); 3168 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3169 break; 3170 case CCValAssign::SExt: 3171 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 3172 DAG.getValueType(VA.getValVT())); 3173 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3174 break; 3175 case CCValAssign::AExt: 3176 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 3177 break; 3178 default: 3179 llvm_unreachable("Unknown loc info!"); 3180 } 3181 3182 InVals.push_back(Val); 3183 } 3184 3185 return Chain; 3186 } 3187 3188 // Add code to pass special inputs required depending on used features separate 3189 // from the explicit user arguments present in the IR. 3190 void SITargetLowering::passSpecialInputs( 3191 CallLoweringInfo &CLI, 3192 CCState &CCInfo, 3193 const SIMachineFunctionInfo &Info, 3194 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 3195 SmallVectorImpl<SDValue> &MemOpChains, 3196 SDValue Chain) const { 3197 // If we don't have a call site, this was a call inserted by 3198 // legalization. These can never use special inputs. 3199 if (!CLI.CB) 3200 return; 3201 3202 SelectionDAG &DAG = CLI.DAG; 3203 const SDLoc &DL = CLI.DL; 3204 const Function &F = DAG.getMachineFunction().getFunction(); 3205 3206 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3207 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); 3208 3209 const AMDGPUFunctionArgInfo *CalleeArgInfo 3210 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 3211 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { 3212 auto &ArgUsageInfo = 3213 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); 3214 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); 3215 } 3216 3217 // TODO: Unify with private memory register handling. This is complicated by 3218 // the fact that at least in kernels, the input argument is not necessarily 3219 // in the same location as the input. 3220 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, 3221 StringLiteral> ImplicitAttrs[] = { 3222 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, 3223 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, 3224 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, 3225 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, 3226 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, 3227 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, 3228 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, 3229 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, 3230 }; 3231 3232 for (auto Attr : ImplicitAttrs) { 3233 const ArgDescriptor *OutgoingArg; 3234 const TargetRegisterClass *ArgRC; 3235 LLT ArgTy; 3236 3237 AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; 3238 3239 // If the callee does not use the attribute value, skip copying the value. 3240 if (CLI.CB->hasFnAttr(Attr.second)) 3241 continue; 3242 3243 std::tie(OutgoingArg, ArgRC, ArgTy) = 3244 CalleeArgInfo->getPreloadedValue(InputID); 3245 if (!OutgoingArg) 3246 continue; 3247 3248 const ArgDescriptor *IncomingArg; 3249 const TargetRegisterClass *IncomingArgRC; 3250 LLT Ty; 3251 std::tie(IncomingArg, IncomingArgRC, Ty) = 3252 CallerArgInfo.getPreloadedValue(InputID); 3253 assert(IncomingArgRC == ArgRC); 3254 3255 // All special arguments are ints for now. 3256 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; 3257 SDValue InputReg; 3258 3259 if (IncomingArg) { 3260 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); 3261 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 3262 // The implicit arg ptr is special because it doesn't have a corresponding 3263 // input for kernels, and is computed from the kernarg segment pointer. 3264 InputReg = getImplicitArgPtr(DAG, DL); 3265 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 3266 std::optional<uint32_t> Id = 3267 AMDGPUMachineFunction::getLDSKernelIdMetadata(F); 3268 if (Id.has_value()) { 3269 InputReg = DAG.getConstant(*Id, DL, ArgVT); 3270 } else { 3271 InputReg = DAG.getUNDEF(ArgVT); 3272 } 3273 } else { 3274 // We may have proven the input wasn't needed, although the ABI is 3275 // requiring it. We just need to allocate the register appropriately. 3276 InputReg = DAG.getUNDEF(ArgVT); 3277 } 3278 3279 if (OutgoingArg->isRegister()) { 3280 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 3281 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 3282 report_fatal_error("failed to allocate implicit input argument"); 3283 } else { 3284 unsigned SpecialArgOffset = 3285 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); 3286 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 3287 SpecialArgOffset); 3288 MemOpChains.push_back(ArgStore); 3289 } 3290 } 3291 3292 // Pack workitem IDs into a single register or pass it as is if already 3293 // packed. 3294 const ArgDescriptor *OutgoingArg; 3295 const TargetRegisterClass *ArgRC; 3296 LLT Ty; 3297 3298 std::tie(OutgoingArg, ArgRC, Ty) = 3299 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 3300 if (!OutgoingArg) 3301 std::tie(OutgoingArg, ArgRC, Ty) = 3302 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 3303 if (!OutgoingArg) 3304 std::tie(OutgoingArg, ArgRC, Ty) = 3305 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 3306 if (!OutgoingArg) 3307 return; 3308 3309 const ArgDescriptor *IncomingArgX = std::get<0>( 3310 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); 3311 const ArgDescriptor *IncomingArgY = std::get<0>( 3312 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); 3313 const ArgDescriptor *IncomingArgZ = std::get<0>( 3314 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); 3315 3316 SDValue InputReg; 3317 SDLoc SL; 3318 3319 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 3320 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 3321 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 3322 3323 // If incoming ids are not packed we need to pack them. 3324 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 3325 NeedWorkItemIDX) { 3326 if (Subtarget->getMaxWorkitemID(F, 0) != 0) { 3327 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); 3328 } else { 3329 InputReg = DAG.getConstant(0, DL, MVT::i32); 3330 } 3331 } 3332 3333 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 3334 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { 3335 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); 3336 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, 3337 DAG.getShiftAmountConstant(10, MVT::i32, SL)); 3338 InputReg = InputReg.getNode() ? 3339 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; 3340 } 3341 3342 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 3343 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { 3344 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); 3345 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, 3346 DAG.getShiftAmountConstant(20, MVT::i32, SL)); 3347 InputReg = InputReg.getNode() ? 3348 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; 3349 } 3350 3351 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 3352 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 3353 // We're in a situation where the outgoing function requires the workitem 3354 // ID, but the calling function does not have it (e.g a graphics function 3355 // calling a C calling convention function). This is illegal, but we need 3356 // to produce something. 3357 InputReg = DAG.getUNDEF(MVT::i32); 3358 } else { 3359 // Workitem ids are already packed, any of present incoming arguments 3360 // will carry all required fields. 3361 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 3362 IncomingArgX ? *IncomingArgX : 3363 IncomingArgY ? *IncomingArgY : 3364 *IncomingArgZ, ~0u); 3365 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); 3366 } 3367 } 3368 3369 if (OutgoingArg->isRegister()) { 3370 if (InputReg) 3371 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); 3372 3373 CCInfo.AllocateReg(OutgoingArg->getRegister()); 3374 } else { 3375 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); 3376 if (InputReg) { 3377 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, 3378 SpecialArgOffset); 3379 MemOpChains.push_back(ArgStore); 3380 } 3381 } 3382 } 3383 3384 static bool canGuaranteeTCO(CallingConv::ID CC) { 3385 return CC == CallingConv::Fast; 3386 } 3387 3388 /// Return true if we might ever do TCO for calls with this calling convention. 3389 static bool mayTailCallThisCC(CallingConv::ID CC) { 3390 switch (CC) { 3391 case CallingConv::C: 3392 case CallingConv::AMDGPU_Gfx: 3393 return true; 3394 default: 3395 return canGuaranteeTCO(CC); 3396 } 3397 } 3398 3399 bool SITargetLowering::isEligibleForTailCallOptimization( 3400 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 3401 const SmallVectorImpl<ISD::OutputArg> &Outs, 3402 const SmallVectorImpl<SDValue> &OutVals, 3403 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3404 if (AMDGPU::isChainCC(CalleeCC)) 3405 return true; 3406 3407 if (!mayTailCallThisCC(CalleeCC)) 3408 return false; 3409 3410 // For a divergent call target, we need to do a waterfall loop over the 3411 // possible callees which precludes us from using a simple jump. 3412 if (Callee->isDivergent()) 3413 return false; 3414 3415 MachineFunction &MF = DAG.getMachineFunction(); 3416 const Function &CallerF = MF.getFunction(); 3417 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3418 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 3419 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3420 3421 // Kernels aren't callable, and don't have a live in return address so it 3422 // doesn't make sense to do a tail call with entry functions. 3423 if (!CallerPreserved) 3424 return false; 3425 3426 bool CCMatch = CallerCC == CalleeCC; 3427 3428 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 3429 if (canGuaranteeTCO(CalleeCC) && CCMatch) 3430 return true; 3431 return false; 3432 } 3433 3434 // TODO: Can we handle var args? 3435 if (IsVarArg) 3436 return false; 3437 3438 for (const Argument &Arg : CallerF.args()) { 3439 if (Arg.hasByValAttr()) 3440 return false; 3441 } 3442 3443 LLVMContext &Ctx = *DAG.getContext(); 3444 3445 // Check that the call results are passed in the same way. 3446 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, 3447 CCAssignFnForCall(CalleeCC, IsVarArg), 3448 CCAssignFnForCall(CallerCC, IsVarArg))) 3449 return false; 3450 3451 // The callee has to preserve all registers the caller needs to preserve. 3452 if (!CCMatch) { 3453 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3454 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3455 return false; 3456 } 3457 3458 // Nothing more to check if the callee is taking no arguments. 3459 if (Outs.empty()) 3460 return true; 3461 3462 SmallVector<CCValAssign, 16> ArgLocs; 3463 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); 3464 3465 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); 3466 3467 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 3468 // If the stack arguments for this call do not fit into our own save area then 3469 // the call cannot be made tail. 3470 // TODO: Is this really necessary? 3471 if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) 3472 return false; 3473 3474 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3475 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); 3476 } 3477 3478 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3479 if (!CI->isTailCall()) 3480 return false; 3481 3482 const Function *ParentFn = CI->getParent()->getParent(); 3483 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) 3484 return false; 3485 return true; 3486 } 3487 3488 // The wave scratch offset register is used as the global base pointer. 3489 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, 3490 SmallVectorImpl<SDValue> &InVals) const { 3491 CallingConv::ID CallConv = CLI.CallConv; 3492 bool IsChainCallConv = AMDGPU::isChainCC(CallConv); 3493 3494 SelectionDAG &DAG = CLI.DAG; 3495 3496 TargetLowering::ArgListEntry RequestedExec; 3497 if (IsChainCallConv) { 3498 // The last argument should be the value that we need to put in EXEC. 3499 // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we 3500 // don't treat it like the rest of the arguments. 3501 RequestedExec = CLI.Args.back(); 3502 assert(RequestedExec.Node && "No node for EXEC"); 3503 3504 if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize())) 3505 return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC"); 3506 3507 assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg"); 3508 CLI.Outs.pop_back(); 3509 CLI.OutVals.pop_back(); 3510 3511 if (RequestedExec.Ty->isIntegerTy(64)) { 3512 assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up"); 3513 CLI.Outs.pop_back(); 3514 CLI.OutVals.pop_back(); 3515 } 3516 3517 assert(CLI.Outs.back().OrigArgIndex != 2 && 3518 "Haven't popped all the pieces of the EXEC mask"); 3519 } 3520 3521 const SDLoc &DL = CLI.DL; 3522 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3523 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3524 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3525 SDValue Chain = CLI.Chain; 3526 SDValue Callee = CLI.Callee; 3527 bool &IsTailCall = CLI.IsTailCall; 3528 bool IsVarArg = CLI.IsVarArg; 3529 bool IsSibCall = false; 3530 bool IsThisReturn = false; 3531 MachineFunction &MF = DAG.getMachineFunction(); 3532 3533 if (Callee.isUndef() || isNullConstant(Callee)) { 3534 if (!CLI.IsTailCall) { 3535 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 3536 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 3537 } 3538 3539 return Chain; 3540 } 3541 3542 if (IsVarArg) { 3543 return lowerUnhandledCall(CLI, InVals, 3544 "unsupported call to variadic function "); 3545 } 3546 3547 if (!CLI.CB) 3548 report_fatal_error("unsupported libcall legalization"); 3549 3550 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { 3551 return lowerUnhandledCall(CLI, InVals, 3552 "unsupported required tail call to function "); 3553 } 3554 3555 if (IsTailCall) { 3556 IsTailCall = isEligibleForTailCallOptimization( 3557 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3558 if (!IsTailCall && 3559 ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) { 3560 report_fatal_error("failed to perform tail call elimination on a call " 3561 "site marked musttail or on llvm.amdgcn.cs.chain"); 3562 } 3563 3564 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3565 3566 // A sibling call is one where we're under the usual C ABI and not planning 3567 // to change that but can still do a tail call: 3568 if (!TailCallOpt && IsTailCall) 3569 IsSibCall = true; 3570 3571 if (IsTailCall) 3572 ++NumTailCalls; 3573 } 3574 3575 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3576 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3577 SmallVector<SDValue, 8> MemOpChains; 3578 3579 // Analyze operands of the call, assigning locations to each operand. 3580 SmallVector<CCValAssign, 16> ArgLocs; 3581 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3582 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); 3583 3584 if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) { 3585 // With a fixed ABI, allocate fixed registers before user arguments. 3586 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); 3587 } 3588 3589 CCInfo.AnalyzeCallOperands(Outs, AssignFn); 3590 3591 // Get a count of how many bytes are to be pushed on the stack. 3592 unsigned NumBytes = CCInfo.getStackSize(); 3593 3594 if (IsSibCall) { 3595 // Since we're not changing the ABI to make this a tail call, the memory 3596 // operands are already available in the caller's incoming argument space. 3597 NumBytes = 0; 3598 } 3599 3600 // FPDiff is the byte offset of the call's argument area from the callee's. 3601 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3602 // by this amount for a tail call. In a sibling call it must be 0 because the 3603 // caller will deallocate the entire stack and the callee still expects its 3604 // arguments to begin at SP+0. Completely unused for non-tail calls. 3605 int32_t FPDiff = 0; 3606 MachineFrameInfo &MFI = MF.getFrameInfo(); 3607 3608 // Adjust the stack pointer for the new arguments... 3609 // These operations are automatically eliminated by the prolog/epilog pass 3610 if (!IsSibCall) 3611 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3612 3613 if (!IsSibCall || IsChainCallConv) { 3614 if (!Subtarget->enableFlatScratch()) { 3615 SmallVector<SDValue, 4> CopyFromChains; 3616 3617 // In the HSA case, this should be an identity copy. 3618 SDValue ScratchRSrcReg 3619 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); 3620 RegsToPass.emplace_back(IsChainCallConv 3621 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 3622 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, 3623 ScratchRSrcReg); 3624 CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); 3625 Chain = DAG.getTokenFactor(DL, CopyFromChains); 3626 } 3627 } 3628 3629 MVT PtrVT = MVT::i32; 3630 3631 // Walk the register/memloc assignments, inserting copies/loads. 3632 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3633 CCValAssign &VA = ArgLocs[i]; 3634 SDValue Arg = OutVals[i]; 3635 3636 // Promote the value if needed. 3637 switch (VA.getLocInfo()) { 3638 case CCValAssign::Full: 3639 break; 3640 case CCValAssign::BCvt: 3641 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 3642 break; 3643 case CCValAssign::ZExt: 3644 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 3645 break; 3646 case CCValAssign::SExt: 3647 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 3648 break; 3649 case CCValAssign::AExt: 3650 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 3651 break; 3652 case CCValAssign::FPExt: 3653 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 3654 break; 3655 default: 3656 llvm_unreachable("Unknown loc info!"); 3657 } 3658 3659 if (VA.isRegLoc()) { 3660 RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); 3661 } else { 3662 assert(VA.isMemLoc()); 3663 3664 SDValue DstAddr; 3665 MachinePointerInfo DstInfo; 3666 3667 unsigned LocMemOffset = VA.getLocMemOffset(); 3668 int32_t Offset = LocMemOffset; 3669 3670 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); 3671 MaybeAlign Alignment; 3672 3673 if (IsTailCall) { 3674 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3675 unsigned OpSize = Flags.isByVal() ? 3676 Flags.getByValSize() : VA.getValVT().getStoreSize(); 3677 3678 // FIXME: We can have better than the minimum byval required alignment. 3679 Alignment = 3680 Flags.isByVal() 3681 ? Flags.getNonZeroByValAlign() 3682 : commonAlignment(Subtarget->getStackAlignment(), Offset); 3683 3684 Offset = Offset + FPDiff; 3685 int FI = MFI.CreateFixedObject(OpSize, Offset, true); 3686 3687 DstAddr = DAG.getFrameIndex(FI, PtrVT); 3688 DstInfo = MachinePointerInfo::getFixedStack(MF, FI); 3689 3690 // Make sure any stack arguments overlapping with where we're storing 3691 // are loaded before this eventual operation. Otherwise they'll be 3692 // clobbered. 3693 3694 // FIXME: Why is this really necessary? This seems to just result in a 3695 // lot of code to copy the stack and write them back to the same 3696 // locations, which are supposed to be immutable? 3697 Chain = addTokenForArgument(Chain, DAG, MFI, FI); 3698 } else { 3699 // Stores to the argument stack area are relative to the stack pointer. 3700 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), 3701 MVT::i32); 3702 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); 3703 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); 3704 Alignment = 3705 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); 3706 } 3707 3708 if (Outs[i].Flags.isByVal()) { 3709 SDValue SizeNode = 3710 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); 3711 SDValue Cpy = 3712 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, 3713 Outs[i].Flags.getNonZeroByValAlign(), 3714 /*isVol = */ false, /*AlwaysInline = */ true, 3715 /*isTailCall = */ false, DstInfo, 3716 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); 3717 3718 MemOpChains.push_back(Cpy); 3719 } else { 3720 SDValue Store = 3721 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); 3722 MemOpChains.push_back(Store); 3723 } 3724 } 3725 } 3726 3727 if (!MemOpChains.empty()) 3728 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3729 3730 // Build a sequence of copy-to-reg nodes chained together with token chain 3731 // and flag operands which copy the outgoing args into the appropriate regs. 3732 SDValue InGlue; 3733 for (auto &RegToPass : RegsToPass) { 3734 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 3735 RegToPass.second, InGlue); 3736 InGlue = Chain.getValue(1); 3737 } 3738 3739 3740 // We don't usually want to end the call-sequence here because we would tidy 3741 // the frame up *after* the call, however in the ABI-changing tail-call case 3742 // we've carefully laid out the parameters so that when sp is reset they'll be 3743 // in the correct location. 3744 if (IsTailCall && !IsSibCall) { 3745 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); 3746 InGlue = Chain.getValue(1); 3747 } 3748 3749 std::vector<SDValue> Ops; 3750 Ops.push_back(Chain); 3751 Ops.push_back(Callee); 3752 // Add a redundant copy of the callee global which will not be legalized, as 3753 // we need direct access to the callee later. 3754 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { 3755 const GlobalValue *GV = GSD->getGlobal(); 3756 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); 3757 } else { 3758 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); 3759 } 3760 3761 if (IsTailCall) { 3762 // Each tail call may have to adjust the stack by a different amount, so 3763 // this information must travel along with the operation for eventual 3764 // consumption by emitEpilogue. 3765 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 3766 } 3767 3768 if (IsChainCallConv) 3769 Ops.push_back(RequestedExec.Node); 3770 3771 // Add argument registers to the end of the list so that they are known live 3772 // into the call. 3773 for (auto &RegToPass : RegsToPass) { 3774 Ops.push_back(DAG.getRegister(RegToPass.first, 3775 RegToPass.second.getValueType())); 3776 } 3777 3778 // Add a register mask operand representing the call-preserved registers. 3779 auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3780 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3781 assert(Mask && "Missing call preserved mask for calling convention"); 3782 Ops.push_back(DAG.getRegisterMask(Mask)); 3783 3784 if (InGlue.getNode()) 3785 Ops.push_back(InGlue); 3786 3787 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3788 3789 // If we're doing a tall call, use a TC_RETURN here rather than an 3790 // actual call instruction. 3791 if (IsTailCall) { 3792 MFI.setHasTailCall(); 3793 unsigned OPC = AMDGPUISD::TC_RETURN; 3794 switch (CallConv) { 3795 case CallingConv::AMDGPU_Gfx: 3796 OPC = AMDGPUISD::TC_RETURN_GFX; 3797 break; 3798 case CallingConv::AMDGPU_CS_Chain: 3799 case CallingConv::AMDGPU_CS_ChainPreserve: 3800 OPC = AMDGPUISD::TC_RETURN_CHAIN; 3801 break; 3802 } 3803 3804 return DAG.getNode(OPC, DL, NodeTys, Ops); 3805 } 3806 3807 // Returns a chain and a flag for retval copy to use. 3808 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); 3809 Chain = Call.getValue(0); 3810 InGlue = Call.getValue(1); 3811 3812 uint64_t CalleePopBytes = NumBytes; 3813 Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); 3814 if (!Ins.empty()) 3815 InGlue = Chain.getValue(1); 3816 3817 // Handle result values, copying them out of physregs into vregs that we 3818 // return. 3819 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 3820 InVals, IsThisReturn, 3821 IsThisReturn ? OutVals[0] : SDValue()); 3822 } 3823 3824 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, 3825 // except for applying the wave size scale to the increment amount. 3826 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( 3827 SDValue Op, SelectionDAG &DAG) const { 3828 const MachineFunction &MF = DAG.getMachineFunction(); 3829 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 3830 3831 SDLoc dl(Op); 3832 EVT VT = Op.getValueType(); 3833 SDValue Tmp1 = Op; 3834 SDValue Tmp2 = Op.getValue(1); 3835 SDValue Tmp3 = Op.getOperand(2); 3836 SDValue Chain = Tmp1.getOperand(0); 3837 3838 Register SPReg = Info->getStackPtrOffsetReg(); 3839 3840 // Chain the dynamic stack allocation so that it doesn't modify the stack 3841 // pointer when other instructions are using the stack. 3842 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 3843 3844 SDValue Size = Tmp2.getOperand(1); 3845 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 3846 Chain = SP.getValue(1); 3847 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); 3848 const TargetFrameLowering *TFL = Subtarget->getFrameLowering(); 3849 unsigned Opc = 3850 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 3851 ISD::ADD : ISD::SUB; 3852 3853 SDValue ScaledSize = DAG.getNode( 3854 ISD::SHL, dl, VT, Size, 3855 DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32)); 3856 3857 Align StackAlign = TFL->getStackAlign(); 3858 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value 3859 if (Alignment && *Alignment > StackAlign) { 3860 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 3861 DAG.getConstant(-(uint64_t)Alignment->value() 3862 << Subtarget->getWavefrontSizeLog2(), 3863 dl, VT)); 3864 } 3865 3866 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 3867 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); 3868 3869 return DAG.getMergeValues({Tmp1, Tmp2}, dl); 3870 } 3871 3872 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3873 SelectionDAG &DAG) const { 3874 // We only handle constant sizes here to allow non-entry block, static sized 3875 // allocas. A truly dynamic value is more difficult to support because we 3876 // don't know if the size value is uniform or not. If the size isn't uniform, 3877 // we would need to do a wave reduction to get the maximum size to know how 3878 // much to increment the uniform stack pointer. 3879 SDValue Size = Op.getOperand(1); 3880 if (isa<ConstantSDNode>(Size)) 3881 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. 3882 3883 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); 3884 } 3885 3886 SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { 3887 if (Op.getValueType() != MVT::i32) 3888 return Op; // Defer to cannot select error. 3889 3890 Register SP = getStackPointerRegisterToSaveRestore(); 3891 SDLoc SL(Op); 3892 3893 SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32); 3894 3895 // Convert from wave uniform to swizzled vector address. This should protect 3896 // from any edge cases where the stacksave result isn't directly used with 3897 // stackrestore. 3898 SDValue VectorAddress = 3899 DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP); 3900 return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL); 3901 } 3902 3903 SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op, 3904 SelectionDAG &DAG) const { 3905 SDLoc SL(Op); 3906 assert(Op.getValueType() == MVT::i32); 3907 3908 uint32_t BothRoundHwReg = 3909 AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_MODE, 0, 4); 3910 SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); 3911 3912 SDValue IntrinID = 3913 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); 3914 SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(), 3915 Op.getOperand(0), IntrinID, GetRoundBothImm); 3916 3917 // There are two rounding modes, one for f32 and one for f64/f16. We only 3918 // report in the standard value range if both are the same. 3919 // 3920 // The raw values also differ from the expected FLT_ROUNDS values. Nearest 3921 // ties away from zero is not supported, and the other values are rotated by 3922 // 1. 3923 // 3924 // If the two rounding modes are not the same, report a target defined value. 3925 3926 // Mode register rounding mode fields: 3927 // 3928 // [1:0] Single-precision round mode. 3929 // [3:2] Double/Half-precision round mode. 3930 // 3931 // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero. 3932 // 3933 // Hardware Spec 3934 // Toward-0 3 0 3935 // Nearest Even 0 1 3936 // +Inf 1 2 3937 // -Inf 2 3 3938 // NearestAway0 N/A 4 3939 // 3940 // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit 3941 // table we can index by the raw hardware mode. 3942 // 3943 // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf 3944 3945 SDValue BitTable = 3946 DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64); 3947 3948 SDValue Two = DAG.getConstant(2, SL, MVT::i32); 3949 SDValue RoundModeTimesNumBits = 3950 DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two); 3951 3952 // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we 3953 // knew only one mode was demanded. 3954 SDValue TableValue = 3955 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); 3956 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); 3957 3958 SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32); 3959 SDValue TableEntry = 3960 DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask); 3961 3962 // There's a gap in the 4-bit encoded table and actual enum values, so offset 3963 // if it's an extended value. 3964 SDValue Four = DAG.getConstant(4, SL, MVT::i32); 3965 SDValue IsStandardValue = 3966 DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT); 3967 SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four); 3968 SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue, 3969 TableEntry, EnumOffset); 3970 3971 return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL); 3972 } 3973 3974 SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { 3975 if (Op->isDivergent()) 3976 return SDValue(); 3977 3978 switch (cast<MemSDNode>(Op)->getAddressSpace()) { 3979 case AMDGPUAS::FLAT_ADDRESS: 3980 case AMDGPUAS::GLOBAL_ADDRESS: 3981 case AMDGPUAS::CONSTANT_ADDRESS: 3982 case AMDGPUAS::CONSTANT_ADDRESS_32BIT: 3983 break; 3984 default: 3985 return SDValue(); 3986 } 3987 3988 return Op; 3989 } 3990 3991 // Work around DAG legality rules only based on the result type. 3992 SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 3993 bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND; 3994 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 3995 EVT SrcVT = Src.getValueType(); 3996 3997 if (SrcVT.getScalarType() != MVT::bf16) 3998 return Op; 3999 4000 SDLoc SL(Op); 4001 SDValue BitCast = 4002 DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src); 4003 4004 EVT DstVT = Op.getValueType(); 4005 if (IsStrict) 4006 llvm_unreachable("Need STRICT_BF16_TO_FP"); 4007 4008 return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast); 4009 } 4010 4011 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, 4012 const MachineFunction &MF) const { 4013 Register Reg = StringSwitch<Register>(RegName) 4014 .Case("m0", AMDGPU::M0) 4015 .Case("exec", AMDGPU::EXEC) 4016 .Case("exec_lo", AMDGPU::EXEC_LO) 4017 .Case("exec_hi", AMDGPU::EXEC_HI) 4018 .Case("flat_scratch", AMDGPU::FLAT_SCR) 4019 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) 4020 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) 4021 .Default(Register()); 4022 4023 if (Reg == AMDGPU::NoRegister) { 4024 report_fatal_error(Twine("invalid register name \"" 4025 + StringRef(RegName) + "\".")); 4026 4027 } 4028 4029 if (!Subtarget->hasFlatScrRegister() && 4030 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { 4031 report_fatal_error(Twine("invalid register \"" 4032 + StringRef(RegName) + "\" for subtarget.")); 4033 } 4034 4035 switch (Reg) { 4036 case AMDGPU::M0: 4037 case AMDGPU::EXEC_LO: 4038 case AMDGPU::EXEC_HI: 4039 case AMDGPU::FLAT_SCR_LO: 4040 case AMDGPU::FLAT_SCR_HI: 4041 if (VT.getSizeInBits() == 32) 4042 return Reg; 4043 break; 4044 case AMDGPU::EXEC: 4045 case AMDGPU::FLAT_SCR: 4046 if (VT.getSizeInBits() == 64) 4047 return Reg; 4048 break; 4049 default: 4050 llvm_unreachable("missing register type checking"); 4051 } 4052 4053 report_fatal_error(Twine("invalid type for register \"" 4054 + StringRef(RegName) + "\".")); 4055 } 4056 4057 // If kill is not the last instruction, split the block so kill is always a 4058 // proper terminator. 4059 MachineBasicBlock * 4060 SITargetLowering::splitKillBlock(MachineInstr &MI, 4061 MachineBasicBlock *BB) const { 4062 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 4063 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4064 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); 4065 return SplitBB; 4066 } 4067 4068 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, 4069 // \p MI will be the only instruction in the loop body block. Otherwise, it will 4070 // be the first instruction in the remainder block. 4071 // 4072 /// \returns { LoopBody, Remainder } 4073 static std::pair<MachineBasicBlock *, MachineBasicBlock *> 4074 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { 4075 MachineFunction *MF = MBB.getParent(); 4076 MachineBasicBlock::iterator I(&MI); 4077 4078 // To insert the loop we need to split the block. Move everything after this 4079 // point to a new block, and insert a new empty block between the two. 4080 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); 4081 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); 4082 MachineFunction::iterator MBBI(MBB); 4083 ++MBBI; 4084 4085 MF->insert(MBBI, LoopBB); 4086 MF->insert(MBBI, RemainderBB); 4087 4088 LoopBB->addSuccessor(LoopBB); 4089 LoopBB->addSuccessor(RemainderBB); 4090 4091 // Move the rest of the block into a new block. 4092 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 4093 4094 if (InstInLoop) { 4095 auto Next = std::next(I); 4096 4097 // Move instruction to loop body. 4098 LoopBB->splice(LoopBB->begin(), &MBB, I, Next); 4099 4100 // Move the rest of the block. 4101 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); 4102 } else { 4103 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); 4104 } 4105 4106 MBB.addSuccessor(LoopBB); 4107 4108 return std::pair(LoopBB, RemainderBB); 4109 } 4110 4111 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. 4112 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { 4113 MachineBasicBlock *MBB = MI.getParent(); 4114 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4115 auto I = MI.getIterator(); 4116 auto E = std::next(I); 4117 4118 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 4119 .addImm(0); 4120 4121 MIBundleBuilder Bundler(*MBB, I, E); 4122 finalizeBundle(*MBB, Bundler.begin()); 4123 } 4124 4125 MachineBasicBlock * 4126 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, 4127 MachineBasicBlock *BB) const { 4128 const DebugLoc &DL = MI.getDebugLoc(); 4129 4130 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4131 4132 MachineBasicBlock *LoopBB; 4133 MachineBasicBlock *RemainderBB; 4134 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4135 4136 // Apparently kill flags are only valid if the def is in the same block? 4137 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) 4138 Src->setIsKill(false); 4139 4140 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); 4141 4142 MachineBasicBlock::iterator I = LoopBB->end(); 4143 4144 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( 4145 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); 4146 4147 // Clear TRAP_STS.MEM_VIOL 4148 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 4149 .addImm(0) 4150 .addImm(EncodedReg); 4151 4152 bundleInstWithWaitcnt(MI); 4153 4154 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 4155 4156 // Load and check TRAP_STS.MEM_VIOL 4157 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) 4158 .addImm(EncodedReg); 4159 4160 // FIXME: Do we need to use an isel pseudo that may clobber scc? 4161 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4162 .addReg(Reg, RegState::Kill) 4163 .addImm(0); 4164 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4165 .addMBB(LoopBB); 4166 4167 return RemainderBB; 4168 } 4169 4170 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the 4171 // wavefront. If the value is uniform and just happens to be in a VGPR, this 4172 // will only do one iteration. In the worst case, this will loop 64 times. 4173 // 4174 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. 4175 static MachineBasicBlock::iterator 4176 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, 4177 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 4178 const DebugLoc &DL, const MachineOperand &Idx, 4179 unsigned InitReg, unsigned ResultReg, unsigned PhiReg, 4180 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, 4181 Register &SGPRIdxReg) { 4182 4183 MachineFunction *MF = OrigBB.getParent(); 4184 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4185 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4186 MachineBasicBlock::iterator I = LoopBB.begin(); 4187 4188 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4189 Register PhiExec = MRI.createVirtualRegister(BoolRC); 4190 Register NewExec = MRI.createVirtualRegister(BoolRC); 4191 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 4192 Register CondReg = MRI.createVirtualRegister(BoolRC); 4193 4194 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) 4195 .addReg(InitReg) 4196 .addMBB(&OrigBB) 4197 .addReg(ResultReg) 4198 .addMBB(&LoopBB); 4199 4200 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) 4201 .addReg(InitSaveExecReg) 4202 .addMBB(&OrigBB) 4203 .addReg(NewExec) 4204 .addMBB(&LoopBB); 4205 4206 // Read the next variant <- also loop target. 4207 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) 4208 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); 4209 4210 // Compare the just read M0 value to all possible Idx values. 4211 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) 4212 .addReg(CurrentIdxReg) 4213 .addReg(Idx.getReg(), 0, Idx.getSubReg()); 4214 4215 // Update EXEC, save the original EXEC value to VCC. 4216 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 4217 : AMDGPU::S_AND_SAVEEXEC_B64), 4218 NewExec) 4219 .addReg(CondReg, RegState::Kill); 4220 4221 MRI.setSimpleHint(NewExec, CondReg); 4222 4223 if (UseGPRIdxMode) { 4224 if (Offset == 0) { 4225 SGPRIdxReg = CurrentIdxReg; 4226 } else { 4227 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 4228 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) 4229 .addReg(CurrentIdxReg, RegState::Kill) 4230 .addImm(Offset); 4231 } 4232 } else { 4233 // Move index from VCC into M0 4234 if (Offset == 0) { 4235 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4236 .addReg(CurrentIdxReg, RegState::Kill); 4237 } else { 4238 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 4239 .addReg(CurrentIdxReg, RegState::Kill) 4240 .addImm(Offset); 4241 } 4242 } 4243 4244 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 4245 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4246 MachineInstr *InsertPt = 4247 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term 4248 : AMDGPU::S_XOR_B64_term), Exec) 4249 .addReg(Exec) 4250 .addReg(NewExec); 4251 4252 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use 4253 // s_cbranch_scc0? 4254 4255 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. 4256 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 4257 .addMBB(&LoopBB); 4258 4259 return InsertPt->getIterator(); 4260 } 4261 4262 // This has slightly sub-optimal regalloc when the source vector is killed by 4263 // the read. The register allocator does not understand that the kill is 4264 // per-workitem, so is kept alive for the whole loop so we end up not re-using a 4265 // subregister from it, using 1 more VGPR than necessary. This was saved when 4266 // this was expanded after register allocation. 4267 static MachineBasicBlock::iterator 4268 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, 4269 unsigned InitResultReg, unsigned PhiReg, int Offset, 4270 bool UseGPRIdxMode, Register &SGPRIdxReg) { 4271 MachineFunction *MF = MBB.getParent(); 4272 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4273 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4274 MachineRegisterInfo &MRI = MF->getRegInfo(); 4275 const DebugLoc &DL = MI.getDebugLoc(); 4276 MachineBasicBlock::iterator I(&MI); 4277 4278 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4279 Register DstReg = MI.getOperand(0).getReg(); 4280 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 4281 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); 4282 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4283 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 4284 4285 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); 4286 4287 // Save the EXEC mask 4288 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) 4289 .addReg(Exec); 4290 4291 MachineBasicBlock *LoopBB; 4292 MachineBasicBlock *RemainderBB; 4293 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); 4294 4295 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4296 4297 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, 4298 InitResultReg, DstReg, PhiReg, TmpExec, 4299 Offset, UseGPRIdxMode, SGPRIdxReg); 4300 4301 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); 4302 MachineFunction::iterator MBBI(LoopBB); 4303 ++MBBI; 4304 MF->insert(MBBI, LandingPad); 4305 LoopBB->removeSuccessor(RemainderBB); 4306 LandingPad->addSuccessor(RemainderBB); 4307 LoopBB->addSuccessor(LandingPad); 4308 MachineBasicBlock::iterator First = LandingPad->begin(); 4309 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) 4310 .addReg(SaveExec); 4311 4312 return InsPt; 4313 } 4314 4315 // Returns subreg index, offset 4316 static std::pair<unsigned, int> 4317 computeIndirectRegAndOffset(const SIRegisterInfo &TRI, 4318 const TargetRegisterClass *SuperRC, 4319 unsigned VecReg, 4320 int Offset) { 4321 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; 4322 4323 // Skip out of bounds offsets, or else we would end up using an undefined 4324 // register. 4325 if (Offset >= NumElts || Offset < 0) 4326 return std::pair(AMDGPU::sub0, Offset); 4327 4328 return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); 4329 } 4330 4331 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, 4332 MachineRegisterInfo &MRI, MachineInstr &MI, 4333 int Offset) { 4334 MachineBasicBlock *MBB = MI.getParent(); 4335 const DebugLoc &DL = MI.getDebugLoc(); 4336 MachineBasicBlock::iterator I(&MI); 4337 4338 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4339 4340 assert(Idx->getReg() != AMDGPU::NoRegister); 4341 4342 if (Offset == 0) { 4343 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); 4344 } else { 4345 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) 4346 .add(*Idx) 4347 .addImm(Offset); 4348 } 4349 } 4350 4351 static Register getIndirectSGPRIdx(const SIInstrInfo *TII, 4352 MachineRegisterInfo &MRI, MachineInstr &MI, 4353 int Offset) { 4354 MachineBasicBlock *MBB = MI.getParent(); 4355 const DebugLoc &DL = MI.getDebugLoc(); 4356 MachineBasicBlock::iterator I(&MI); 4357 4358 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4359 4360 if (Offset == 0) 4361 return Idx->getReg(); 4362 4363 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 4364 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) 4365 .add(*Idx) 4366 .addImm(Offset); 4367 return Tmp; 4368 } 4369 4370 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, 4371 MachineBasicBlock &MBB, 4372 const GCNSubtarget &ST) { 4373 const SIInstrInfo *TII = ST.getInstrInfo(); 4374 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 4375 MachineFunction *MF = MBB.getParent(); 4376 MachineRegisterInfo &MRI = MF->getRegInfo(); 4377 4378 Register Dst = MI.getOperand(0).getReg(); 4379 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4380 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); 4381 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 4382 4383 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); 4384 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 4385 4386 unsigned SubReg; 4387 std::tie(SubReg, Offset) 4388 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); 4389 4390 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 4391 4392 // Check for a SGPR index. 4393 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 4394 MachineBasicBlock::iterator I(&MI); 4395 const DebugLoc &DL = MI.getDebugLoc(); 4396 4397 if (UseGPRIdxMode) { 4398 // TODO: Look at the uses to avoid the copy. This may require rescheduling 4399 // to avoid interfering with other uses, so probably requires a new 4400 // optimization pass. 4401 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 4402 4403 const MCInstrDesc &GPRIDXDesc = 4404 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 4405 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 4406 .addReg(SrcReg) 4407 .addReg(Idx) 4408 .addImm(SubReg); 4409 } else { 4410 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 4411 4412 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 4413 .addReg(SrcReg, 0, SubReg) 4414 .addReg(SrcReg, RegState::Implicit); 4415 } 4416 4417 MI.eraseFromParent(); 4418 4419 return &MBB; 4420 } 4421 4422 // Control flow needs to be inserted if indexing with a VGPR. 4423 const DebugLoc &DL = MI.getDebugLoc(); 4424 MachineBasicBlock::iterator I(&MI); 4425 4426 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4427 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4428 4429 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); 4430 4431 Register SGPRIdxReg; 4432 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, 4433 UseGPRIdxMode, SGPRIdxReg); 4434 4435 MachineBasicBlock *LoopBB = InsPt->getParent(); 4436 4437 if (UseGPRIdxMode) { 4438 const MCInstrDesc &GPRIDXDesc = 4439 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); 4440 4441 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4442 .addReg(SrcReg) 4443 .addReg(SGPRIdxReg) 4444 .addImm(SubReg); 4445 } else { 4446 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) 4447 .addReg(SrcReg, 0, SubReg) 4448 .addReg(SrcReg, RegState::Implicit); 4449 } 4450 4451 MI.eraseFromParent(); 4452 4453 return LoopBB; 4454 } 4455 4456 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, 4457 MachineBasicBlock &MBB, 4458 const GCNSubtarget &ST) { 4459 const SIInstrInfo *TII = ST.getInstrInfo(); 4460 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 4461 MachineFunction *MF = MBB.getParent(); 4462 MachineRegisterInfo &MRI = MF->getRegInfo(); 4463 4464 Register Dst = MI.getOperand(0).getReg(); 4465 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); 4466 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); 4467 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); 4468 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); 4469 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); 4470 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); 4471 4472 // This can be an immediate, but will be folded later. 4473 assert(Val->getReg()); 4474 4475 unsigned SubReg; 4476 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, 4477 SrcVec->getReg(), 4478 Offset); 4479 const bool UseGPRIdxMode = ST.useVGPRIndexMode(); 4480 4481 if (Idx->getReg() == AMDGPU::NoRegister) { 4482 MachineBasicBlock::iterator I(&MI); 4483 const DebugLoc &DL = MI.getDebugLoc(); 4484 4485 assert(Offset == 0); 4486 4487 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) 4488 .add(*SrcVec) 4489 .add(*Val) 4490 .addImm(SubReg); 4491 4492 MI.eraseFromParent(); 4493 return &MBB; 4494 } 4495 4496 // Check for a SGPR index. 4497 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { 4498 MachineBasicBlock::iterator I(&MI); 4499 const DebugLoc &DL = MI.getDebugLoc(); 4500 4501 if (UseGPRIdxMode) { 4502 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); 4503 4504 const MCInstrDesc &GPRIDXDesc = 4505 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4506 BuildMI(MBB, I, DL, GPRIDXDesc, Dst) 4507 .addReg(SrcVec->getReg()) 4508 .add(*Val) 4509 .addReg(Idx) 4510 .addImm(SubReg); 4511 } else { 4512 setM0ToIndexFromSGPR(TII, MRI, MI, Offset); 4513 4514 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4515 TRI.getRegSizeInBits(*VecRC), 32, false); 4516 BuildMI(MBB, I, DL, MovRelDesc, Dst) 4517 .addReg(SrcVec->getReg()) 4518 .add(*Val) 4519 .addImm(SubReg); 4520 } 4521 MI.eraseFromParent(); 4522 return &MBB; 4523 } 4524 4525 // Control flow needs to be inserted if indexing with a VGPR. 4526 if (Val->isReg()) 4527 MRI.clearKillFlags(Val->getReg()); 4528 4529 const DebugLoc &DL = MI.getDebugLoc(); 4530 4531 Register PhiReg = MRI.createVirtualRegister(VecRC); 4532 4533 Register SGPRIdxReg; 4534 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, 4535 UseGPRIdxMode, SGPRIdxReg); 4536 MachineBasicBlock *LoopBB = InsPt->getParent(); 4537 4538 if (UseGPRIdxMode) { 4539 const MCInstrDesc &GPRIDXDesc = 4540 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); 4541 4542 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) 4543 .addReg(PhiReg) 4544 .add(*Val) 4545 .addReg(SGPRIdxReg) 4546 .addImm(AMDGPU::sub0); 4547 } else { 4548 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( 4549 TRI.getRegSizeInBits(*VecRC), 32, false); 4550 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) 4551 .addReg(PhiReg) 4552 .add(*Val) 4553 .addImm(AMDGPU::sub0); 4554 } 4555 4556 MI.eraseFromParent(); 4557 return LoopBB; 4558 } 4559 4560 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI, 4561 MachineBasicBlock &BB, 4562 const GCNSubtarget &ST, 4563 unsigned Opc) { 4564 MachineRegisterInfo &MRI = BB.getParent()->getRegInfo(); 4565 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4566 const DebugLoc &DL = MI.getDebugLoc(); 4567 const SIInstrInfo *TII = ST.getInstrInfo(); 4568 4569 // Reduction operations depend on whether the input operand is SGPR or VGPR. 4570 Register SrcReg = MI.getOperand(1).getReg(); 4571 bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg)); 4572 Register DstReg = MI.getOperand(0).getReg(); 4573 MachineBasicBlock *RetBB = nullptr; 4574 if (isSGPR) { 4575 // These operations with a uniform value i.e. SGPR are idempotent. 4576 // Reduced value will be same as given sgpr. 4577 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg); 4578 RetBB = &BB; 4579 } else { 4580 // TODO: Implement DPP Strategy and switch based on immediate strategy 4581 // operand. For now, for all the cases (default, Iterative and DPP we use 4582 // iterative approach by default.) 4583 4584 // To reduce the VGPR using iterative approach, we need to iterate 4585 // over all the active lanes. Lowering consists of ComputeLoop, 4586 // which iterate over only active lanes. We use copy of EXEC register 4587 // as induction variable and every active lane modifies it using bitset0 4588 // so that we will get the next active lane for next iteration. 4589 MachineBasicBlock::iterator I = BB.end(); 4590 Register SrcReg = MI.getOperand(1).getReg(); 4591 4592 // Create Control flow for loop 4593 // Split MI's Machine Basic block into For loop 4594 auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true); 4595 4596 // Create virtual registers required for lowering. 4597 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass(); 4598 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg); 4599 Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass); 4600 Register InitalValReg = MRI.createVirtualRegister(DstRegClass); 4601 4602 Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass); 4603 Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4604 Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); 4605 4606 Register FF1Reg = MRI.createVirtualRegister(DstRegClass); 4607 Register LaneValueReg = MRI.createVirtualRegister(DstRegClass); 4608 4609 bool IsWave32 = ST.isWave32(); 4610 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 4611 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 4612 4613 // Create initail values of induction variable from Exec, Accumulator and 4614 // insert branch instr to newly created ComputeBlockk 4615 uint32_t InitalValue = 4616 (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0; 4617 auto TmpSReg = 4618 BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg); 4619 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg) 4620 .addImm(InitalValue); 4621 BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop); 4622 4623 // Start constructing ComputeLoop 4624 I = ComputeLoop->end(); 4625 auto Accumulator = 4626 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg) 4627 .addReg(InitalValReg) 4628 .addMBB(&BB); 4629 auto ActiveBits = 4630 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg) 4631 .addReg(TmpSReg->getOperand(0).getReg()) 4632 .addMBB(&BB); 4633 4634 // Perform the computations 4635 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64; 4636 auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg) 4637 .addReg(ActiveBits->getOperand(0).getReg()); 4638 auto LaneValue = BuildMI(*ComputeLoop, I, DL, 4639 TII->get(AMDGPU::V_READLANE_B32), LaneValueReg) 4640 .addReg(SrcReg) 4641 .addReg(FF1->getOperand(0).getReg()); 4642 auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg) 4643 .addReg(Accumulator->getOperand(0).getReg()) 4644 .addReg(LaneValue->getOperand(0).getReg()); 4645 4646 // Manipulate the iterator to get the next active lane 4647 unsigned BITSETOpc = 4648 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64; 4649 auto NewActiveBits = 4650 BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg) 4651 .addReg(FF1->getOperand(0).getReg()) 4652 .addReg(ActiveBits->getOperand(0).getReg()); 4653 4654 // Add phi nodes 4655 Accumulator.addReg(NewAccumulator->getOperand(0).getReg()) 4656 .addMBB(ComputeLoop); 4657 ActiveBits.addReg(NewActiveBits->getOperand(0).getReg()) 4658 .addMBB(ComputeLoop); 4659 4660 // Creating branching 4661 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64; 4662 BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc)) 4663 .addReg(NewActiveBits->getOperand(0).getReg()) 4664 .addImm(0); 4665 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 4666 .addMBB(ComputeLoop); 4667 4668 RetBB = ComputeEnd; 4669 } 4670 MI.eraseFromParent(); 4671 return RetBB; 4672 } 4673 4674 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( 4675 MachineInstr &MI, MachineBasicBlock *BB) const { 4676 4677 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 4678 MachineFunction *MF = BB->getParent(); 4679 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 4680 4681 switch (MI.getOpcode()) { 4682 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32: 4683 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32); 4684 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32: 4685 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32); 4686 case AMDGPU::S_UADDO_PSEUDO: 4687 case AMDGPU::S_USUBO_PSEUDO: { 4688 const DebugLoc &DL = MI.getDebugLoc(); 4689 MachineOperand &Dest0 = MI.getOperand(0); 4690 MachineOperand &Dest1 = MI.getOperand(1); 4691 MachineOperand &Src0 = MI.getOperand(2); 4692 MachineOperand &Src1 = MI.getOperand(3); 4693 4694 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 4695 ? AMDGPU::S_ADD_I32 4696 : AMDGPU::S_SUB_I32; 4697 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); 4698 4699 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) 4700 .addImm(1) 4701 .addImm(0); 4702 4703 MI.eraseFromParent(); 4704 return BB; 4705 } 4706 case AMDGPU::S_ADD_U64_PSEUDO: 4707 case AMDGPU::S_SUB_U64_PSEUDO: { 4708 // For targets older than GFX12, we emit a sequence of 32-bit operations. 4709 // For GFX12, we emit s_add_u64 and s_sub_u64. 4710 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4711 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4712 const DebugLoc &DL = MI.getDebugLoc(); 4713 MachineOperand &Dest = MI.getOperand(0); 4714 MachineOperand &Src0 = MI.getOperand(1); 4715 MachineOperand &Src1 = MI.getOperand(2); 4716 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 4717 if (Subtarget->hasScalarAddSub64()) { 4718 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64; 4719 BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg()) 4720 .addReg(Src0.getReg()) 4721 .addReg(Src1.getReg()); 4722 } else { 4723 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4724 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 4725 4726 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4727 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4728 4729 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 4730 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4731 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 4732 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4733 4734 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 4735 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); 4736 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 4737 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); 4738 4739 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 4740 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 4741 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4742 .add(Src0Sub0) 4743 .add(Src1Sub0); 4744 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4745 .add(Src0Sub1) 4746 .add(Src1Sub1); 4747 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4748 .addReg(DestSub0) 4749 .addImm(AMDGPU::sub0) 4750 .addReg(DestSub1) 4751 .addImm(AMDGPU::sub1); 4752 } 4753 MI.eraseFromParent(); 4754 return BB; 4755 } 4756 case AMDGPU::V_ADD_U64_PSEUDO: 4757 case AMDGPU::V_SUB_U64_PSEUDO: { 4758 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4759 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4760 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4761 const DebugLoc &DL = MI.getDebugLoc(); 4762 4763 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); 4764 4765 MachineOperand &Dest = MI.getOperand(0); 4766 MachineOperand &Src0 = MI.getOperand(1); 4767 MachineOperand &Src1 = MI.getOperand(2); 4768 4769 if (IsAdd && ST.hasLshlAddB64()) { 4770 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), 4771 Dest.getReg()) 4772 .add(Src0) 4773 .addImm(0) 4774 .add(Src1); 4775 TII->legalizeOperands(*Add); 4776 MI.eraseFromParent(); 4777 return BB; 4778 } 4779 4780 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 4781 4782 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4783 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 4784 4785 Register CarryReg = MRI.createVirtualRegister(CarryRC); 4786 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 4787 4788 const TargetRegisterClass *Src0RC = Src0.isReg() 4789 ? MRI.getRegClass(Src0.getReg()) 4790 : &AMDGPU::VReg_64RegClass; 4791 const TargetRegisterClass *Src1RC = Src1.isReg() 4792 ? MRI.getRegClass(Src1.getReg()) 4793 : &AMDGPU::VReg_64RegClass; 4794 4795 const TargetRegisterClass *Src0SubRC = 4796 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); 4797 const TargetRegisterClass *Src1SubRC = 4798 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); 4799 4800 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( 4801 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 4802 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( 4803 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 4804 4805 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( 4806 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 4807 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( 4808 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 4809 4810 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 4811 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) 4812 .addReg(CarryReg, RegState::Define) 4813 .add(SrcReg0Sub0) 4814 .add(SrcReg1Sub0) 4815 .addImm(0); // clamp bit 4816 4817 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 4818 MachineInstr *HiHalf = 4819 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) 4820 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 4821 .add(SrcReg0Sub1) 4822 .add(SrcReg1Sub1) 4823 .addReg(CarryReg, RegState::Kill) 4824 .addImm(0); // clamp bit 4825 4826 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) 4827 .addReg(DestSub0) 4828 .addImm(AMDGPU::sub0) 4829 .addReg(DestSub1) 4830 .addImm(AMDGPU::sub1); 4831 TII->legalizeOperands(*LoHalf); 4832 TII->legalizeOperands(*HiHalf); 4833 MI.eraseFromParent(); 4834 return BB; 4835 } 4836 case AMDGPU::S_ADD_CO_PSEUDO: 4837 case AMDGPU::S_SUB_CO_PSEUDO: { 4838 // This pseudo has a chance to be selected 4839 // only from uniform add/subcarry node. All the VGPR operands 4840 // therefore assumed to be splat vectors. 4841 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4842 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 4843 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 4844 MachineBasicBlock::iterator MII = MI; 4845 const DebugLoc &DL = MI.getDebugLoc(); 4846 MachineOperand &Dest = MI.getOperand(0); 4847 MachineOperand &CarryDest = MI.getOperand(1); 4848 MachineOperand &Src0 = MI.getOperand(2); 4849 MachineOperand &Src1 = MI.getOperand(3); 4850 MachineOperand &Src2 = MI.getOperand(4); 4851 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 4852 ? AMDGPU::S_ADDC_U32 4853 : AMDGPU::S_SUBB_U32; 4854 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { 4855 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4856 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) 4857 .addReg(Src0.getReg()); 4858 Src0.setReg(RegOp0); 4859 } 4860 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { 4861 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4862 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) 4863 .addReg(Src1.getReg()); 4864 Src1.setReg(RegOp1); 4865 } 4866 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4867 if (TRI->isVectorRegister(MRI, Src2.getReg())) { 4868 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) 4869 .addReg(Src2.getReg()); 4870 Src2.setReg(RegOp2); 4871 } 4872 4873 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); 4874 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); 4875 assert(WaveSize == 64 || WaveSize == 32); 4876 4877 if (WaveSize == 64) { 4878 if (ST.hasScalarCompareEq64()) { 4879 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) 4880 .addReg(Src2.getReg()) 4881 .addImm(0); 4882 } else { 4883 const TargetRegisterClass *SubRC = 4884 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); 4885 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( 4886 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); 4887 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( 4888 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); 4889 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4890 4891 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) 4892 .add(Src2Sub0) 4893 .add(Src2Sub1); 4894 4895 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4896 .addReg(Src2_32, RegState::Kill) 4897 .addImm(0); 4898 } 4899 } else { 4900 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) 4901 .addReg(Src2.getReg()) 4902 .addImm(0); 4903 } 4904 4905 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); 4906 4907 unsigned SelOpc = 4908 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 4909 4910 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) 4911 .addImm(-1) 4912 .addImm(0); 4913 4914 MI.eraseFromParent(); 4915 return BB; 4916 } 4917 case AMDGPU::SI_INIT_M0: { 4918 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), 4919 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) 4920 .add(MI.getOperand(0)); 4921 MI.eraseFromParent(); 4922 return BB; 4923 } 4924 case AMDGPU::GET_GROUPSTATICSIZE: { 4925 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || 4926 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); 4927 DebugLoc DL = MI.getDebugLoc(); 4928 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) 4929 .add(MI.getOperand(0)) 4930 .addImm(MFI->getLDSSize()); 4931 MI.eraseFromParent(); 4932 return BB; 4933 } 4934 case AMDGPU::GET_SHADERCYCLESHILO: { 4935 assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters()); 4936 MachineRegisterInfo &MRI = MF->getRegInfo(); 4937 const DebugLoc &DL = MI.getDebugLoc(); 4938 // The algorithm is: 4939 // 4940 // hi1 = getreg(SHADER_CYCLES_HI) 4941 // lo1 = getreg(SHADER_CYCLES_LO) 4942 // hi2 = getreg(SHADER_CYCLES_HI) 4943 // 4944 // If hi1 == hi2 then there was no overflow and the result is hi2:lo1. 4945 // Otherwise there was overflow and the result is hi2:0. In both cases the 4946 // result should represent the actual time at some point during the sequence 4947 // of three getregs. 4948 Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4949 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1) 4950 .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI, 4951 0, 32)); 4952 Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4953 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1) 4954 .addImm( 4955 AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES, 0, 32)); 4956 Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4957 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2) 4958 .addImm(AMDGPU::Hwreg::encodeHwreg(AMDGPU::Hwreg::ID_SHADER_CYCLES_HI, 4959 0, 32)); 4960 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) 4961 .addReg(RegHi1) 4962 .addReg(RegHi2); 4963 Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 4964 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo) 4965 .addReg(RegLo1) 4966 .addImm(0); 4967 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE)) 4968 .add(MI.getOperand(0)) 4969 .addReg(RegLo) 4970 .addImm(AMDGPU::sub0) 4971 .addReg(RegHi2) 4972 .addImm(AMDGPU::sub1); 4973 MI.eraseFromParent(); 4974 return BB; 4975 } 4976 case AMDGPU::SI_INDIRECT_SRC_V1: 4977 case AMDGPU::SI_INDIRECT_SRC_V2: 4978 case AMDGPU::SI_INDIRECT_SRC_V4: 4979 case AMDGPU::SI_INDIRECT_SRC_V8: 4980 case AMDGPU::SI_INDIRECT_SRC_V9: 4981 case AMDGPU::SI_INDIRECT_SRC_V10: 4982 case AMDGPU::SI_INDIRECT_SRC_V11: 4983 case AMDGPU::SI_INDIRECT_SRC_V12: 4984 case AMDGPU::SI_INDIRECT_SRC_V16: 4985 case AMDGPU::SI_INDIRECT_SRC_V32: 4986 return emitIndirectSrc(MI, *BB, *getSubtarget()); 4987 case AMDGPU::SI_INDIRECT_DST_V1: 4988 case AMDGPU::SI_INDIRECT_DST_V2: 4989 case AMDGPU::SI_INDIRECT_DST_V4: 4990 case AMDGPU::SI_INDIRECT_DST_V8: 4991 case AMDGPU::SI_INDIRECT_DST_V9: 4992 case AMDGPU::SI_INDIRECT_DST_V10: 4993 case AMDGPU::SI_INDIRECT_DST_V11: 4994 case AMDGPU::SI_INDIRECT_DST_V12: 4995 case AMDGPU::SI_INDIRECT_DST_V16: 4996 case AMDGPU::SI_INDIRECT_DST_V32: 4997 return emitIndirectDst(MI, *BB, *getSubtarget()); 4998 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 4999 case AMDGPU::SI_KILL_I1_PSEUDO: 5000 return splitKillBlock(MI, BB); 5001 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 5002 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5003 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5004 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5005 5006 Register Dst = MI.getOperand(0).getReg(); 5007 const MachineOperand &Src0 = MI.getOperand(1); 5008 const MachineOperand &Src1 = MI.getOperand(2); 5009 const DebugLoc &DL = MI.getDebugLoc(); 5010 Register SrcCond = MI.getOperand(3).getReg(); 5011 5012 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5013 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5014 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5015 Register SrcCondCopy = MRI.createVirtualRegister(CondRC); 5016 5017 const TargetRegisterClass *Src0RC = Src0.isReg() 5018 ? MRI.getRegClass(Src0.getReg()) 5019 : &AMDGPU::VReg_64RegClass; 5020 const TargetRegisterClass *Src1RC = Src1.isReg() 5021 ? MRI.getRegClass(Src1.getReg()) 5022 : &AMDGPU::VReg_64RegClass; 5023 5024 const TargetRegisterClass *Src0SubRC = 5025 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); 5026 const TargetRegisterClass *Src1SubRC = 5027 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); 5028 5029 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( 5030 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 5031 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( 5032 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 5033 5034 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( 5035 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 5036 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( 5037 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 5038 5039 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) 5040 .addReg(SrcCond); 5041 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 5042 .addImm(0) 5043 .add(Src0Sub0) 5044 .addImm(0) 5045 .add(Src1Sub0) 5046 .addReg(SrcCondCopy); 5047 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 5048 .addImm(0) 5049 .add(Src0Sub1) 5050 .addImm(0) 5051 .add(Src1Sub1) 5052 .addReg(SrcCondCopy); 5053 5054 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) 5055 .addReg(DstLo) 5056 .addImm(AMDGPU::sub0) 5057 .addReg(DstHi) 5058 .addImm(AMDGPU::sub1); 5059 MI.eraseFromParent(); 5060 return BB; 5061 } 5062 case AMDGPU::SI_BR_UNDEF: { 5063 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 5064 const DebugLoc &DL = MI.getDebugLoc(); 5065 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) 5066 .add(MI.getOperand(0)); 5067 Br->getOperand(1).setIsUndef(); // read undef SCC 5068 MI.eraseFromParent(); 5069 return BB; 5070 } 5071 case AMDGPU::ADJCALLSTACKUP: 5072 case AMDGPU::ADJCALLSTACKDOWN: { 5073 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 5074 MachineInstrBuilder MIB(*MF, &MI); 5075 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) 5076 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); 5077 return BB; 5078 } 5079 case AMDGPU::SI_CALL_ISEL: { 5080 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 5081 const DebugLoc &DL = MI.getDebugLoc(); 5082 5083 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); 5084 5085 MachineInstrBuilder MIB; 5086 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); 5087 5088 for (const MachineOperand &MO : MI.operands()) 5089 MIB.add(MO); 5090 5091 MIB.cloneMemRefs(MI); 5092 MI.eraseFromParent(); 5093 return BB; 5094 } 5095 case AMDGPU::V_ADD_CO_U32_e32: 5096 case AMDGPU::V_SUB_CO_U32_e32: 5097 case AMDGPU::V_SUBREV_CO_U32_e32: { 5098 // TODO: Define distinct V_*_I32_Pseudo instructions instead. 5099 const DebugLoc &DL = MI.getDebugLoc(); 5100 unsigned Opc = MI.getOpcode(); 5101 5102 bool NeedClampOperand = false; 5103 if (TII->pseudoToMCOpcode(Opc) == -1) { 5104 Opc = AMDGPU::getVOPe64(Opc); 5105 NeedClampOperand = true; 5106 } 5107 5108 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); 5109 if (TII->isVOP3(*I)) { 5110 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5111 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5112 I.addReg(TRI->getVCC(), RegState::Define); 5113 } 5114 I.add(MI.getOperand(1)) 5115 .add(MI.getOperand(2)); 5116 if (NeedClampOperand) 5117 I.addImm(0); // clamp bit for e64 encoding 5118 5119 TII->legalizeOperands(*I); 5120 5121 MI.eraseFromParent(); 5122 return BB; 5123 } 5124 case AMDGPU::V_ADDC_U32_e32: 5125 case AMDGPU::V_SUBB_U32_e32: 5126 case AMDGPU::V_SUBBREV_U32_e32: 5127 // These instructions have an implicit use of vcc which counts towards the 5128 // constant bus limit. 5129 TII->legalizeOperands(MI); 5130 return BB; 5131 case AMDGPU::DS_GWS_INIT: 5132 case AMDGPU::DS_GWS_SEMA_BR: 5133 case AMDGPU::DS_GWS_BARRIER: 5134 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); 5135 [[fallthrough]]; 5136 case AMDGPU::DS_GWS_SEMA_V: 5137 case AMDGPU::DS_GWS_SEMA_P: 5138 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: 5139 // A s_waitcnt 0 is required to be the instruction immediately following. 5140 if (getSubtarget()->hasGWSAutoReplay()) { 5141 bundleInstWithWaitcnt(MI); 5142 return BB; 5143 } 5144 5145 return emitGWSMemViolTestLoop(MI, BB); 5146 case AMDGPU::S_SETREG_B32: { 5147 // Try to optimize cases that only set the denormal mode or rounding mode. 5148 // 5149 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or 5150 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode 5151 // instead. 5152 // 5153 // FIXME: This could be predicates on the immediate, but tablegen doesn't 5154 // allow you to have a no side effect instruction in the output of a 5155 // sideeffecting pattern. 5156 unsigned ID, Offset, Width; 5157 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); 5158 if (ID != AMDGPU::Hwreg::ID_MODE) 5159 return BB; 5160 5161 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); 5162 const unsigned SetMask = WidthMask << Offset; 5163 5164 if (getSubtarget()->hasDenormModeInst()) { 5165 unsigned SetDenormOp = 0; 5166 unsigned SetRoundOp = 0; 5167 5168 // The dedicated instructions can only set the whole denorm or round mode 5169 // at once, not a subset of bits in either. 5170 if (SetMask == 5171 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { 5172 // If this fully sets both the round and denorm mode, emit the two 5173 // dedicated instructions for these. 5174 SetRoundOp = AMDGPU::S_ROUND_MODE; 5175 SetDenormOp = AMDGPU::S_DENORM_MODE; 5176 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { 5177 SetRoundOp = AMDGPU::S_ROUND_MODE; 5178 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { 5179 SetDenormOp = AMDGPU::S_DENORM_MODE; 5180 } 5181 5182 if (SetRoundOp || SetDenormOp) { 5183 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5184 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); 5185 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { 5186 unsigned ImmVal = Def->getOperand(1).getImm(); 5187 if (SetRoundOp) { 5188 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) 5189 .addImm(ImmVal & 0xf); 5190 5191 // If we also have the denorm mode, get just the denorm mode bits. 5192 ImmVal >>= 4; 5193 } 5194 5195 if (SetDenormOp) { 5196 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) 5197 .addImm(ImmVal & 0xf); 5198 } 5199 5200 MI.eraseFromParent(); 5201 return BB; 5202 } 5203 } 5204 } 5205 5206 // If only FP bits are touched, used the no side effects pseudo. 5207 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | 5208 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) 5209 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); 5210 5211 return BB; 5212 } 5213 case AMDGPU::S_INVERSE_BALLOT_U32: 5214 case AMDGPU::S_INVERSE_BALLOT_U64: { 5215 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5216 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 5217 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5218 const DebugLoc &DL = MI.getDebugLoc(); 5219 const Register DstReg = MI.getOperand(0).getReg(); 5220 Register MaskReg = MI.getOperand(1).getReg(); 5221 5222 const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg); 5223 5224 if (IsVALU) { 5225 MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI); 5226 } 5227 5228 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg); 5229 MI.eraseFromParent(); 5230 return BB; 5231 } 5232 case AMDGPU::ENDPGM_TRAP: { 5233 const DebugLoc &DL = MI.getDebugLoc(); 5234 if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) { 5235 MI.setDesc(TII->get(AMDGPU::S_ENDPGM)); 5236 MI.addOperand(MachineOperand::CreateImm(0)); 5237 return BB; 5238 } 5239 5240 // We need a block split to make the real endpgm a terminator. We also don't 5241 // want to break phis in successor blocks, so we can't just delete to the 5242 // end of the block. 5243 5244 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); 5245 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 5246 MF->push_back(TrapBB); 5247 BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM)) 5248 .addImm(0); 5249 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) 5250 .addMBB(TrapBB); 5251 5252 BB->addSuccessor(TrapBB); 5253 MI.eraseFromParent(); 5254 return SplitBB; 5255 } 5256 default: 5257 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 5258 } 5259 } 5260 5261 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { 5262 switch (Op.getValue(0).getSimpleValueType().SimpleTy) { 5263 case MVT::f32: 5264 return Subtarget->hasAtomicFaddRtnInsts(); 5265 case MVT::v2f16: 5266 case MVT::f64: 5267 return Subtarget->hasGFX90AInsts(); 5268 default: 5269 return false; 5270 } 5271 } 5272 5273 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { 5274 // This currently forces unfolding various combinations of fsub into fma with 5275 // free fneg'd operands. As long as we have fast FMA (controlled by 5276 // isFMAFasterThanFMulAndFAdd), we should perform these. 5277 5278 // When fma is quarter rate, for f64 where add / sub are at best half rate, 5279 // most of these combines appear to be cycle neutral but save on instruction 5280 // count / code size. 5281 return true; 5282 } 5283 5284 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } 5285 5286 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, 5287 EVT VT) const { 5288 if (!VT.isVector()) { 5289 return MVT::i1; 5290 } 5291 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); 5292 } 5293 5294 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { 5295 // TODO: Should i16 be used always if legal? For now it would force VALU 5296 // shifts. 5297 return (VT == MVT::i16) ? MVT::i16 : MVT::i32; 5298 } 5299 5300 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { 5301 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) 5302 ? Ty.changeElementSize(16) 5303 : Ty.changeElementSize(32); 5304 } 5305 5306 // Answering this is somewhat tricky and depends on the specific device which 5307 // have different rates for fma or all f64 operations. 5308 // 5309 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other 5310 // regardless of which device (although the number of cycles differs between 5311 // devices), so it is always profitable for f64. 5312 // 5313 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable 5314 // only on full rate devices. Normally, we should prefer selecting v_mad_f32 5315 // which we can always do even without fused FP ops since it returns the same 5316 // result as the separate operations and since it is always full 5317 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 5318 // however does not support denormals, so we do report fma as faster if we have 5319 // a fast fma device and require denormals. 5320 // 5321 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 5322 EVT VT) const { 5323 VT = VT.getScalarType(); 5324 5325 switch (VT.getSimpleVT().SimpleTy) { 5326 case MVT::f32: { 5327 // If mad is not available this depends only on if f32 fma is full rate. 5328 if (!Subtarget->hasMadMacF32Insts()) 5329 return Subtarget->hasFastFMAF32(); 5330 5331 // Otherwise f32 mad is always full rate and returns the same result as 5332 // the separate operations so should be preferred over fma. 5333 // However does not support denormals. 5334 if (!denormalModeIsFlushAllF32(MF)) 5335 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); 5336 5337 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. 5338 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); 5339 } 5340 case MVT::f64: 5341 return true; 5342 case MVT::f16: 5343 return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF); 5344 default: 5345 break; 5346 } 5347 5348 return false; 5349 } 5350 5351 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 5352 LLT Ty) const { 5353 switch (Ty.getScalarSizeInBits()) { 5354 case 16: 5355 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); 5356 case 32: 5357 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); 5358 case 64: 5359 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); 5360 default: 5361 break; 5362 } 5363 5364 return false; 5365 } 5366 5367 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { 5368 if (!Ty.isScalar()) 5369 return false; 5370 5371 if (Ty.getScalarSizeInBits() == 16) 5372 return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF()); 5373 if (Ty.getScalarSizeInBits() == 32) 5374 return Subtarget->hasMadMacF32Insts() && 5375 denormalModeIsFlushAllF32(*MI.getMF()); 5376 5377 return false; 5378 } 5379 5380 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, 5381 const SDNode *N) const { 5382 // TODO: Check future ftz flag 5383 // v_mad_f32/v_mac_f32 do not support denormals. 5384 EVT VT = N->getValueType(0); 5385 if (VT == MVT::f32) 5386 return Subtarget->hasMadMacF32Insts() && 5387 denormalModeIsFlushAllF32(DAG.getMachineFunction()); 5388 if (VT == MVT::f16) { 5389 return Subtarget->hasMadF16() && 5390 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 5391 } 5392 5393 return false; 5394 } 5395 5396 //===----------------------------------------------------------------------===// 5397 // Custom DAG Lowering Operations 5398 //===----------------------------------------------------------------------===// 5399 5400 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 5401 // wider vector type is legal. 5402 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, 5403 SelectionDAG &DAG) const { 5404 unsigned Opc = Op.getOpcode(); 5405 EVT VT = Op.getValueType(); 5406 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 5407 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 5408 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5409 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); 5410 5411 SDValue Lo, Hi; 5412 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5413 5414 SDLoc SL(Op); 5415 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, 5416 Op->getFlags()); 5417 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, 5418 Op->getFlags()); 5419 5420 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5421 } 5422 5423 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the 5424 // wider vector type is legal. 5425 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, 5426 SelectionDAG &DAG) const { 5427 unsigned Opc = Op.getOpcode(); 5428 EVT VT = Op.getValueType(); 5429 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || 5430 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || 5431 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5432 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); 5433 5434 SDValue Lo0, Hi0; 5435 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); 5436 SDValue Lo1, Hi1; 5437 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 5438 5439 SDLoc SL(Op); 5440 5441 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, 5442 Op->getFlags()); 5443 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, 5444 Op->getFlags()); 5445 5446 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5447 } 5448 5449 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, 5450 SelectionDAG &DAG) const { 5451 unsigned Opc = Op.getOpcode(); 5452 EVT VT = Op.getValueType(); 5453 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 5454 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || 5455 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || 5456 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 || 5457 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 || 5458 VT == MVT::v32bf16); 5459 5460 SDValue Lo0, Hi0; 5461 SDValue Op0 = Op.getOperand(0); 5462 std::tie(Lo0, Hi0) = Op0.getValueType().isVector() 5463 ? DAG.SplitVectorOperand(Op.getNode(), 0) 5464 : std::pair(Op0, Op0); 5465 SDValue Lo1, Hi1; 5466 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); 5467 SDValue Lo2, Hi2; 5468 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); 5469 5470 SDLoc SL(Op); 5471 auto ResVT = DAG.GetSplitDestVTs(VT); 5472 5473 SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, 5474 Op->getFlags()); 5475 SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, 5476 Op->getFlags()); 5477 5478 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); 5479 } 5480 5481 5482 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5483 switch (Op.getOpcode()) { 5484 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 5485 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 5486 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5487 case ISD::LOAD: { 5488 SDValue Result = LowerLOAD(Op, DAG); 5489 assert((!Result.getNode() || 5490 Result.getNode()->getNumValues() == 2) && 5491 "Load should return a value and a chain"); 5492 return Result; 5493 } 5494 case ISD::FSQRT: { 5495 EVT VT = Op.getValueType(); 5496 if (VT == MVT::f32) 5497 return lowerFSQRTF32(Op, DAG); 5498 if (VT == MVT::f64) 5499 return lowerFSQRTF64(Op, DAG); 5500 return SDValue(); 5501 } 5502 case ISD::FSIN: 5503 case ISD::FCOS: 5504 return LowerTrig(Op, DAG); 5505 case ISD::SELECT: return LowerSELECT(Op, DAG); 5506 case ISD::FDIV: return LowerFDIV(Op, DAG); 5507 case ISD::FFREXP: return LowerFFREXP(Op, DAG); 5508 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); 5509 case ISD::STORE: return LowerSTORE(Op, DAG); 5510 case ISD::GlobalAddress: { 5511 MachineFunction &MF = DAG.getMachineFunction(); 5512 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 5513 return LowerGlobalAddress(MFI, Op, DAG); 5514 } 5515 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5516 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); 5517 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); 5518 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); 5519 case ISD::INSERT_SUBVECTOR: 5520 return lowerINSERT_SUBVECTOR(Op, DAG); 5521 case ISD::INSERT_VECTOR_ELT: 5522 return lowerINSERT_VECTOR_ELT(Op, DAG); 5523 case ISD::EXTRACT_VECTOR_ELT: 5524 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5525 case ISD::VECTOR_SHUFFLE: 5526 return lowerVECTOR_SHUFFLE(Op, DAG); 5527 case ISD::SCALAR_TO_VECTOR: 5528 return lowerSCALAR_TO_VECTOR(Op, DAG); 5529 case ISD::BUILD_VECTOR: 5530 return lowerBUILD_VECTOR(Op, DAG); 5531 case ISD::FP_ROUND: 5532 case ISD::STRICT_FP_ROUND: 5533 return lowerFP_ROUND(Op, DAG); 5534 case ISD::FPTRUNC_ROUND: { 5535 unsigned Opc; 5536 SDLoc DL(Op); 5537 5538 if (Op.getOperand(0)->getValueType(0) != MVT::f32) 5539 return SDValue(); 5540 5541 // Get the rounding mode from the last operand 5542 int RoundMode = Op.getConstantOperandVal(1); 5543 if (RoundMode == (int)RoundingMode::TowardPositive) 5544 Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; 5545 else if (RoundMode == (int)RoundingMode::TowardNegative) 5546 Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; 5547 else 5548 return SDValue(); 5549 5550 return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); 5551 } 5552 case ISD::TRAP: 5553 return lowerTRAP(Op, DAG); 5554 case ISD::DEBUGTRAP: 5555 return lowerDEBUGTRAP(Op, DAG); 5556 case ISD::FABS: 5557 case ISD::FNEG: 5558 case ISD::FCANONICALIZE: 5559 case ISD::BSWAP: 5560 return splitUnaryVectorOp(Op, DAG); 5561 case ISD::FMINNUM: 5562 case ISD::FMAXNUM: 5563 return lowerFMINNUM_FMAXNUM(Op, DAG); 5564 case ISD::FLDEXP: 5565 case ISD::STRICT_FLDEXP: 5566 return lowerFLDEXP(Op, DAG); 5567 case ISD::FMA: 5568 return splitTernaryVectorOp(Op, DAG); 5569 case ISD::FP_TO_SINT: 5570 case ISD::FP_TO_UINT: 5571 return LowerFP_TO_INT(Op, DAG); 5572 case ISD::SHL: 5573 case ISD::SRA: 5574 case ISD::SRL: 5575 case ISD::ADD: 5576 case ISD::SUB: 5577 case ISD::SMIN: 5578 case ISD::SMAX: 5579 case ISD::UMIN: 5580 case ISD::UMAX: 5581 case ISD::FADD: 5582 case ISD::FMUL: 5583 case ISD::FMINNUM_IEEE: 5584 case ISD::FMAXNUM_IEEE: 5585 case ISD::UADDSAT: 5586 case ISD::USUBSAT: 5587 case ISD::SADDSAT: 5588 case ISD::SSUBSAT: 5589 return splitBinaryVectorOp(Op, DAG); 5590 case ISD::MUL: 5591 return lowerMUL(Op, DAG); 5592 case ISD::SMULO: 5593 case ISD::UMULO: 5594 return lowerXMULO(Op, DAG); 5595 case ISD::SMUL_LOHI: 5596 case ISD::UMUL_LOHI: 5597 return lowerXMUL_LOHI(Op, DAG); 5598 case ISD::DYNAMIC_STACKALLOC: 5599 return LowerDYNAMIC_STACKALLOC(Op, DAG); 5600 case ISD::STACKSAVE: 5601 return LowerSTACKSAVE(Op, DAG); 5602 case ISD::GET_ROUNDING: 5603 return lowerGET_ROUNDING(Op, DAG); 5604 case ISD::PREFETCH: 5605 return lowerPREFETCH(Op, DAG); 5606 case ISD::FP_EXTEND: 5607 case ISD::STRICT_FP_EXTEND: 5608 return lowerFP_EXTEND(Op, DAG); 5609 } 5610 return SDValue(); 5611 } 5612 5613 // Used for D16: Casts the result of an instruction into the right vector, 5614 // packs values if loads return unpacked values. 5615 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, 5616 const SDLoc &DL, 5617 SelectionDAG &DAG, bool Unpacked) { 5618 if (!LoadVT.isVector()) 5619 return Result; 5620 5621 // Cast back to the original packed type or to a larger type that is a 5622 // multiple of 32 bit for D16. Widening the return type is a required for 5623 // legalization. 5624 EVT FittingLoadVT = LoadVT; 5625 if ((LoadVT.getVectorNumElements() % 2) == 1) { 5626 FittingLoadVT = 5627 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5628 LoadVT.getVectorNumElements() + 1); 5629 } 5630 5631 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. 5632 // Truncate to v2i16/v4i16. 5633 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); 5634 5635 // Workaround legalizer not scalarizing truncate after vector op 5636 // legalization but not creating intermediate vector trunc. 5637 SmallVector<SDValue, 4> Elts; 5638 DAG.ExtractVectorElements(Result, Elts); 5639 for (SDValue &Elt : Elts) 5640 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); 5641 5642 // Pad illegal v1i16/v3fi6 to v4i16 5643 if ((LoadVT.getVectorNumElements() % 2) == 1) 5644 Elts.push_back(DAG.getUNDEF(MVT::i16)); 5645 5646 Result = DAG.getBuildVector(IntLoadVT, DL, Elts); 5647 5648 // Bitcast to original type (v2f16/v4f16). 5649 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5650 } 5651 5652 // Cast back to the original packed type. 5653 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); 5654 } 5655 5656 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, 5657 MemSDNode *M, 5658 SelectionDAG &DAG, 5659 ArrayRef<SDValue> Ops, 5660 bool IsIntrinsic) const { 5661 SDLoc DL(M); 5662 5663 bool Unpacked = Subtarget->hasUnpackedD16VMem(); 5664 EVT LoadVT = M->getValueType(0); 5665 5666 EVT EquivLoadVT = LoadVT; 5667 if (LoadVT.isVector()) { 5668 if (Unpacked) { 5669 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 5670 LoadVT.getVectorNumElements()); 5671 } else if ((LoadVT.getVectorNumElements() % 2) == 1) { 5672 // Widen v3f16 to legal type 5673 EquivLoadVT = 5674 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), 5675 LoadVT.getVectorNumElements() + 1); 5676 } 5677 } 5678 5679 // Change from v4f16/v2f16 to EquivLoadVT. 5680 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); 5681 5682 SDValue Load 5683 = DAG.getMemIntrinsicNode( 5684 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, 5685 VTList, Ops, M->getMemoryVT(), 5686 M->getMemOperand()); 5687 5688 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); 5689 5690 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); 5691 } 5692 5693 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, 5694 SelectionDAG &DAG, 5695 ArrayRef<SDValue> Ops) const { 5696 SDLoc DL(M); 5697 EVT LoadVT = M->getValueType(0); 5698 EVT EltType = LoadVT.getScalarType(); 5699 EVT IntVT = LoadVT.changeTypeToInteger(); 5700 5701 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 5702 5703 assert(M->getNumValues() == 2 || M->getNumValues() == 3); 5704 bool IsTFE = M->getNumValues() == 3; 5705 5706 unsigned Opc; 5707 if (IsFormat) { 5708 Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE 5709 : AMDGPUISD::BUFFER_LOAD_FORMAT; 5710 } else { 5711 // TODO: Support non-format TFE loads. 5712 if (IsTFE) 5713 return SDValue(); 5714 Opc = AMDGPUISD::BUFFER_LOAD; 5715 } 5716 5717 if (IsD16) { 5718 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); 5719 } 5720 5721 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 5722 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) 5723 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 5724 5725 if (isTypeLegal(LoadVT)) { 5726 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, 5727 M->getMemOperand(), DAG); 5728 } 5729 5730 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); 5731 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); 5732 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, 5733 M->getMemOperand(), DAG); 5734 return DAG.getMergeValues( 5735 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, 5736 DL); 5737 } 5738 5739 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, 5740 SDNode *N, SelectionDAG &DAG) { 5741 EVT VT = N->getValueType(0); 5742 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 5743 unsigned CondCode = CD->getZExtValue(); 5744 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) 5745 return DAG.getUNDEF(VT); 5746 5747 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); 5748 5749 SDValue LHS = N->getOperand(1); 5750 SDValue RHS = N->getOperand(2); 5751 5752 SDLoc DL(N); 5753 5754 EVT CmpVT = LHS.getValueType(); 5755 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { 5756 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? 5757 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5758 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); 5759 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); 5760 } 5761 5762 ISD::CondCode CCOpcode = getICmpCondCode(IcInput); 5763 5764 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5765 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5766 5767 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, 5768 DAG.getCondCode(CCOpcode)); 5769 if (VT.bitsEq(CCVT)) 5770 return SetCC; 5771 return DAG.getZExtOrTrunc(SetCC, DL, VT); 5772 } 5773 5774 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, 5775 SDNode *N, SelectionDAG &DAG) { 5776 EVT VT = N->getValueType(0); 5777 const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); 5778 5779 unsigned CondCode = CD->getZExtValue(); 5780 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) 5781 return DAG.getUNDEF(VT); 5782 5783 SDValue Src0 = N->getOperand(1); 5784 SDValue Src1 = N->getOperand(2); 5785 EVT CmpVT = Src0.getValueType(); 5786 SDLoc SL(N); 5787 5788 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { 5789 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 5790 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 5791 } 5792 5793 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); 5794 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); 5795 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); 5796 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); 5797 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, 5798 Src1, DAG.getCondCode(CCOpcode)); 5799 if (VT.bitsEq(CCVT)) 5800 return SetCC; 5801 return DAG.getZExtOrTrunc(SetCC, SL, VT); 5802 } 5803 5804 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, 5805 SelectionDAG &DAG) { 5806 EVT VT = N->getValueType(0); 5807 SDValue Src = N->getOperand(1); 5808 SDLoc SL(N); 5809 5810 if (Src.getOpcode() == ISD::SETCC) { 5811 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) 5812 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), 5813 Src.getOperand(1), Src.getOperand(2)); 5814 } 5815 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { 5816 // (ballot 0) -> 0 5817 if (Arg->isZero()) 5818 return DAG.getConstant(0, SL, VT); 5819 5820 // (ballot 1) -> EXEC/EXEC_LO 5821 if (Arg->isOne()) { 5822 Register Exec; 5823 if (VT.getScalarSizeInBits() == 32) 5824 Exec = AMDGPU::EXEC_LO; 5825 else if (VT.getScalarSizeInBits() == 64) 5826 Exec = AMDGPU::EXEC; 5827 else 5828 return SDValue(); 5829 5830 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); 5831 } 5832 } 5833 5834 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) 5835 // ISD::SETNE) 5836 return DAG.getNode( 5837 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), 5838 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); 5839 } 5840 5841 void SITargetLowering::ReplaceNodeResults(SDNode *N, 5842 SmallVectorImpl<SDValue> &Results, 5843 SelectionDAG &DAG) const { 5844 switch (N->getOpcode()) { 5845 case ISD::INSERT_VECTOR_ELT: { 5846 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) 5847 Results.push_back(Res); 5848 return; 5849 } 5850 case ISD::EXTRACT_VECTOR_ELT: { 5851 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) 5852 Results.push_back(Res); 5853 return; 5854 } 5855 case ISD::INTRINSIC_WO_CHAIN: { 5856 unsigned IID = N->getConstantOperandVal(0); 5857 switch (IID) { 5858 case Intrinsic::amdgcn_make_buffer_rsrc: 5859 Results.push_back(lowerPointerAsRsrcIntrin(N, DAG)); 5860 return; 5861 case Intrinsic::amdgcn_cvt_pkrtz: { 5862 SDValue Src0 = N->getOperand(1); 5863 SDValue Src1 = N->getOperand(2); 5864 SDLoc SL(N); 5865 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, 5866 Src0, Src1); 5867 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); 5868 return; 5869 } 5870 case Intrinsic::amdgcn_cvt_pknorm_i16: 5871 case Intrinsic::amdgcn_cvt_pknorm_u16: 5872 case Intrinsic::amdgcn_cvt_pk_i16: 5873 case Intrinsic::amdgcn_cvt_pk_u16: { 5874 SDValue Src0 = N->getOperand(1); 5875 SDValue Src1 = N->getOperand(2); 5876 SDLoc SL(N); 5877 unsigned Opcode; 5878 5879 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) 5880 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 5881 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) 5882 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 5883 else if (IID == Intrinsic::amdgcn_cvt_pk_i16) 5884 Opcode = AMDGPUISD::CVT_PK_I16_I32; 5885 else 5886 Opcode = AMDGPUISD::CVT_PK_U16_U32; 5887 5888 EVT VT = N->getValueType(0); 5889 if (isTypeLegal(VT)) 5890 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); 5891 else { 5892 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); 5893 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); 5894 } 5895 return; 5896 } 5897 } 5898 break; 5899 } 5900 case ISD::INTRINSIC_W_CHAIN: { 5901 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { 5902 if (Res.getOpcode() == ISD::MERGE_VALUES) { 5903 // FIXME: Hacky 5904 for (unsigned I = 0; I < Res.getNumOperands(); I++) { 5905 Results.push_back(Res.getOperand(I)); 5906 } 5907 } else { 5908 Results.push_back(Res); 5909 Results.push_back(Res.getValue(1)); 5910 } 5911 return; 5912 } 5913 5914 break; 5915 } 5916 case ISD::SELECT: { 5917 SDLoc SL(N); 5918 EVT VT = N->getValueType(0); 5919 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 5920 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); 5921 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); 5922 5923 EVT SelectVT = NewVT; 5924 if (NewVT.bitsLT(MVT::i32)) { 5925 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); 5926 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); 5927 SelectVT = MVT::i32; 5928 } 5929 5930 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, 5931 N->getOperand(0), LHS, RHS); 5932 5933 if (NewVT != SelectVT) 5934 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); 5935 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); 5936 return; 5937 } 5938 case ISD::FNEG: { 5939 if (N->getValueType(0) != MVT::v2f16) 5940 break; 5941 5942 SDLoc SL(N); 5943 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5944 5945 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, 5946 BC, 5947 DAG.getConstant(0x80008000, SL, MVT::i32)); 5948 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5949 return; 5950 } 5951 case ISD::FABS: { 5952 if (N->getValueType(0) != MVT::v2f16) 5953 break; 5954 5955 SDLoc SL(N); 5956 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); 5957 5958 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, 5959 BC, 5960 DAG.getConstant(0x7fff7fff, SL, MVT::i32)); 5961 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); 5962 return; 5963 } 5964 case ISD::FSQRT: { 5965 if (N->getValueType(0) != MVT::f16) 5966 break; 5967 Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG)); 5968 break; 5969 } 5970 default: 5971 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 5972 break; 5973 } 5974 } 5975 5976 /// Helper function for LowerBRCOND 5977 static SDNode *findUser(SDValue Value, unsigned Opcode) { 5978 5979 SDNode *Parent = Value.getNode(); 5980 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); 5981 I != E; ++I) { 5982 5983 if (I.getUse().get() != Value) 5984 continue; 5985 5986 if (I->getOpcode() == Opcode) 5987 return *I; 5988 } 5989 return nullptr; 5990 } 5991 5992 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { 5993 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 5994 switch (Intr->getConstantOperandVal(1)) { 5995 case Intrinsic::amdgcn_if: 5996 return AMDGPUISD::IF; 5997 case Intrinsic::amdgcn_else: 5998 return AMDGPUISD::ELSE; 5999 case Intrinsic::amdgcn_loop: 6000 return AMDGPUISD::LOOP; 6001 case Intrinsic::amdgcn_end_cf: 6002 llvm_unreachable("should not occur"); 6003 default: 6004 return 0; 6005 } 6006 } 6007 6008 // break, if_break, else_break are all only used as inputs to loop, not 6009 // directly as branch conditions. 6010 return 0; 6011 } 6012 6013 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { 6014 const Triple &TT = getTargetMachine().getTargetTriple(); 6015 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 6016 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 6017 AMDGPU::shouldEmitConstantsToTextSection(TT); 6018 } 6019 6020 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { 6021 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) 6022 return false; 6023 6024 // FIXME: Either avoid relying on address space here or change the default 6025 // address space for functions to avoid the explicit check. 6026 return (GV->getValueType()->isFunctionTy() || 6027 !isNonGlobalAddrSpace(GV->getAddressSpace())) && 6028 !shouldEmitFixup(GV) && 6029 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 6030 } 6031 6032 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { 6033 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); 6034 } 6035 6036 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { 6037 if (!GV->hasExternalLinkage()) 6038 return true; 6039 6040 const auto OS = getTargetMachine().getTargetTriple().getOS(); 6041 return OS == Triple::AMDHSA || OS == Triple::AMDPAL; 6042 } 6043 6044 /// This transforms the control flow intrinsics to get the branch destination as 6045 /// last parameter, also switches branch target with BR if the need arise 6046 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, 6047 SelectionDAG &DAG) const { 6048 SDLoc DL(BRCOND); 6049 6050 SDNode *Intr = BRCOND.getOperand(1).getNode(); 6051 SDValue Target = BRCOND.getOperand(2); 6052 SDNode *BR = nullptr; 6053 SDNode *SetCC = nullptr; 6054 6055 if (Intr->getOpcode() == ISD::SETCC) { 6056 // As long as we negate the condition everything is fine 6057 SetCC = Intr; 6058 Intr = SetCC->getOperand(0).getNode(); 6059 6060 } else { 6061 // Get the target from BR if we don't negate the condition 6062 BR = findUser(BRCOND, ISD::BR); 6063 assert(BR && "brcond missing unconditional branch user"); 6064 Target = BR->getOperand(1); 6065 } 6066 6067 unsigned CFNode = isCFIntrinsic(Intr); 6068 if (CFNode == 0) { 6069 // This is a uniform branch so we don't need to legalize. 6070 return BRCOND; 6071 } 6072 6073 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || 6074 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; 6075 6076 assert(!SetCC || 6077 (SetCC->getConstantOperandVal(1) == 1 && 6078 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == 6079 ISD::SETNE)); 6080 6081 // operands of the new intrinsic call 6082 SmallVector<SDValue, 4> Ops; 6083 if (HaveChain) 6084 Ops.push_back(BRCOND.getOperand(0)); 6085 6086 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); 6087 Ops.push_back(Target); 6088 6089 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); 6090 6091 // build the new intrinsic call 6092 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); 6093 6094 if (!HaveChain) { 6095 SDValue Ops[] = { 6096 SDValue(Result, 0), 6097 BRCOND.getOperand(0) 6098 }; 6099 6100 Result = DAG.getMergeValues(Ops, DL).getNode(); 6101 } 6102 6103 if (BR) { 6104 // Give the branch instruction our target 6105 SDValue Ops[] = { 6106 BR->getOperand(0), 6107 BRCOND.getOperand(2) 6108 }; 6109 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); 6110 DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); 6111 } 6112 6113 SDValue Chain = SDValue(Result, Result->getNumValues() - 1); 6114 6115 // Copy the intrinsic results to registers 6116 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { 6117 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); 6118 if (!CopyToReg) 6119 continue; 6120 6121 Chain = DAG.getCopyToReg( 6122 Chain, DL, 6123 CopyToReg->getOperand(1), 6124 SDValue(Result, i - 1), 6125 SDValue()); 6126 6127 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); 6128 } 6129 6130 // Remove the old intrinsic from the chain 6131 DAG.ReplaceAllUsesOfValueWith( 6132 SDValue(Intr, Intr->getNumValues() - 1), 6133 Intr->getOperand(0)); 6134 6135 return Chain; 6136 } 6137 6138 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, 6139 SelectionDAG &DAG) const { 6140 MVT VT = Op.getSimpleValueType(); 6141 SDLoc DL(Op); 6142 // Checking the depth 6143 if (Op.getConstantOperandVal(0) != 0) 6144 return DAG.getConstant(0, DL, VT); 6145 6146 MachineFunction &MF = DAG.getMachineFunction(); 6147 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6148 // Check for kernel and shader functions 6149 if (Info->isEntryFunction()) 6150 return DAG.getConstant(0, DL, VT); 6151 6152 MachineFrameInfo &MFI = MF.getFrameInfo(); 6153 // There is a call to @llvm.returnaddress in this function 6154 MFI.setReturnAddressIsTaken(true); 6155 6156 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); 6157 // Get the return address reg and mark it as an implicit live-in 6158 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); 6159 6160 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 6161 } 6162 6163 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, 6164 SDValue Op, 6165 const SDLoc &DL, 6166 EVT VT) const { 6167 return Op.getValueType().bitsLE(VT) ? 6168 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : 6169 DAG.getNode(ISD::FP_ROUND, DL, VT, Op, 6170 DAG.getTargetConstant(0, DL, MVT::i32)); 6171 } 6172 6173 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 6174 assert(Op.getValueType() == MVT::f16 && 6175 "Do not know how to custom lower FP_ROUND for non-f16 type"); 6176 6177 SDValue Src = Op.getOperand(0); 6178 EVT SrcVT = Src.getValueType(); 6179 if (SrcVT != MVT::f64) 6180 return Op; 6181 6182 // TODO: Handle strictfp 6183 if (Op.getOpcode() != ISD::FP_ROUND) 6184 return Op; 6185 6186 SDLoc DL(Op); 6187 6188 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); 6189 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); 6190 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); 6191 } 6192 6193 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, 6194 SelectionDAG &DAG) const { 6195 EVT VT = Op.getValueType(); 6196 const MachineFunction &MF = DAG.getMachineFunction(); 6197 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6198 bool IsIEEEMode = Info->getMode().IEEE; 6199 6200 // FIXME: Assert during selection that this is only selected for 6201 // ieee_mode. Currently a combine can produce the ieee version for non-ieee 6202 // mode functions, but this happens to be OK since it's only done in cases 6203 // where there is known no sNaN. 6204 if (IsIEEEMode) 6205 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); 6206 6207 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 || 6208 VT == MVT::v16f16) 6209 return splitBinaryVectorOp(Op, DAG); 6210 return Op; 6211 } 6212 6213 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const { 6214 bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP; 6215 EVT VT = Op.getValueType(); 6216 assert(VT == MVT::f16); 6217 6218 SDValue Exp = Op.getOperand(IsStrict ? 2 : 1); 6219 EVT ExpVT = Exp.getValueType(); 6220 if (ExpVT == MVT::i16) 6221 return Op; 6222 6223 SDLoc DL(Op); 6224 6225 // Correct the exponent type for f16 to i16. 6226 // Clamp the range of the exponent to the instruction's range. 6227 6228 // TODO: This should be a generic narrowing legalization, and can easily be 6229 // for GlobalISel. 6230 6231 SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT); 6232 SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp); 6233 6234 SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT); 6235 SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp); 6236 6237 SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp); 6238 6239 if (IsStrict) { 6240 return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other}, 6241 {Op.getOperand(0), Op.getOperand(1), TruncExp}); 6242 } 6243 6244 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp); 6245 } 6246 6247 // Custom lowering for vector multiplications and s_mul_u64. 6248 SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const { 6249 EVT VT = Op.getValueType(); 6250 6251 // Split vector operands. 6252 if (VT.isVector()) 6253 return splitBinaryVectorOp(Op, DAG); 6254 6255 assert(VT == MVT::i64 && "The following code is a special for s_mul_u64"); 6256 6257 // There are four ways to lower s_mul_u64: 6258 // 6259 // 1. If all the operands are uniform, then we lower it as it is. 6260 // 6261 // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit 6262 // multiplications because there is not a vector equivalent of s_mul_u64. 6263 // 6264 // 3. If the cost model decides that it is more efficient to use vector 6265 // registers, then we have to split s_mul_u64 in 32-bit multiplications. 6266 // This happens in splitScalarSMULU64() in SIInstrInfo.cpp . 6267 // 6268 // 4. If the cost model decides to use vector registers and both of the 6269 // operands are zero-extended/sign-extended from 32-bits, then we split the 6270 // s_mul_u64 in two 32-bit multiplications. The problem is that it is not 6271 // possible to check if the operands are zero-extended or sign-extended in 6272 // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with 6273 // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace 6274 // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended. 6275 // If the cost model decides that we have to use vector registers, then 6276 // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/ 6277 // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model 6278 // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/ 6279 // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in 6280 // SIInstrInfo.cpp . 6281 6282 if (Op->isDivergent()) 6283 return SDValue(); 6284 6285 SDValue Op0 = Op.getOperand(0); 6286 SDValue Op1 = Op.getOperand(1); 6287 // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64 6288 // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to 6289 // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo. 6290 KnownBits Op0KnownBits = DAG.computeKnownBits(Op0); 6291 unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros(); 6292 KnownBits Op1KnownBits = DAG.computeKnownBits(Op1); 6293 unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros(); 6294 SDLoc SL(Op); 6295 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32) 6296 return SDValue( 6297 DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0); 6298 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0); 6299 unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1); 6300 if (Op0SignBits >= 33 && Op1SignBits >= 33) 6301 return SDValue( 6302 DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0); 6303 // If all the operands are uniform, then we lower s_mul_u64 as it is. 6304 return Op; 6305 } 6306 6307 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { 6308 EVT VT = Op.getValueType(); 6309 SDLoc SL(Op); 6310 SDValue LHS = Op.getOperand(0); 6311 SDValue RHS = Op.getOperand(1); 6312 bool isSigned = Op.getOpcode() == ISD::SMULO; 6313 6314 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6315 const APInt &C = RHSC->getAPIntValue(); 6316 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6317 if (C.isPowerOf2()) { 6318 // smulo(x, signed_min) is same as umulo(x, signed_min). 6319 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6320 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); 6321 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); 6322 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, 6323 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6324 SL, VT, Result, ShiftAmt), 6325 LHS, ISD::SETNE); 6326 return DAG.getMergeValues({ Result, Overflow }, SL); 6327 } 6328 } 6329 6330 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); 6331 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, 6332 SL, VT, LHS, RHS); 6333 6334 SDValue Sign = isSigned 6335 ? DAG.getNode(ISD::SRA, SL, VT, Result, 6336 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) 6337 : DAG.getConstant(0, SL, VT); 6338 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); 6339 6340 return DAG.getMergeValues({ Result, Overflow }, SL); 6341 } 6342 6343 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { 6344 if (Op->isDivergent()) { 6345 // Select to V_MAD_[IU]64_[IU]32. 6346 return Op; 6347 } 6348 if (Subtarget->hasSMulHi()) { 6349 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. 6350 return SDValue(); 6351 } 6352 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to 6353 // calculate the high part, so we might as well do the whole thing with 6354 // V_MAD_[IU]64_[IU]32. 6355 return Op; 6356 } 6357 6358 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { 6359 if (!Subtarget->isTrapHandlerEnabled() || 6360 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) 6361 return lowerTrapEndpgm(Op, DAG); 6362 6363 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : 6364 lowerTrapHsaQueuePtr(Op, DAG); 6365 } 6366 6367 SDValue SITargetLowering::lowerTrapEndpgm( 6368 SDValue Op, SelectionDAG &DAG) const { 6369 SDLoc SL(Op); 6370 SDValue Chain = Op.getOperand(0); 6371 return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain); 6372 } 6373 6374 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, 6375 const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { 6376 MachineFunction &MF = DAG.getMachineFunction(); 6377 uint64_t Offset = getImplicitParameterOffset(MF, Param); 6378 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); 6379 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 6380 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, 6381 MachineMemOperand::MODereferenceable | 6382 MachineMemOperand::MOInvariant); 6383 } 6384 6385 SDValue SITargetLowering::lowerTrapHsaQueuePtr( 6386 SDValue Op, SelectionDAG &DAG) const { 6387 SDLoc SL(Op); 6388 SDValue Chain = Op.getOperand(0); 6389 6390 SDValue QueuePtr; 6391 // For code object version 5, QueuePtr is passed through implicit kernarg. 6392 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 6393 if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 6394 QueuePtr = 6395 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); 6396 } else { 6397 MachineFunction &MF = DAG.getMachineFunction(); 6398 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6399 Register UserSGPR = Info->getQueuePtrUserSGPR(); 6400 6401 if (UserSGPR == AMDGPU::NoRegister) { 6402 // We probably are in a function incorrectly marked with 6403 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the 6404 // trap, so just use a null pointer. 6405 QueuePtr = DAG.getConstant(0, SL, MVT::i64); 6406 } else { 6407 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, 6408 MVT::i64); 6409 } 6410 } 6411 6412 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); 6413 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, 6414 QueuePtr, SDValue()); 6415 6416 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 6417 SDValue Ops[] = { 6418 ToReg, 6419 DAG.getTargetConstant(TrapID, SL, MVT::i16), 6420 SGPR01, 6421 ToReg.getValue(1) 6422 }; 6423 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6424 } 6425 6426 SDValue SITargetLowering::lowerTrapHsa( 6427 SDValue Op, SelectionDAG &DAG) const { 6428 SDLoc SL(Op); 6429 SDValue Chain = Op.getOperand(0); 6430 6431 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); 6432 SDValue Ops[] = { 6433 Chain, 6434 DAG.getTargetConstant(TrapID, SL, MVT::i16) 6435 }; 6436 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6437 } 6438 6439 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { 6440 SDLoc SL(Op); 6441 SDValue Chain = Op.getOperand(0); 6442 MachineFunction &MF = DAG.getMachineFunction(); 6443 6444 if (!Subtarget->isTrapHandlerEnabled() || 6445 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { 6446 DiagnosticInfoUnsupported NoTrap(MF.getFunction(), 6447 "debugtrap handler not supported", 6448 Op.getDebugLoc(), 6449 DS_Warning); 6450 LLVMContext &Ctx = MF.getFunction().getContext(); 6451 Ctx.diagnose(NoTrap); 6452 return Chain; 6453 } 6454 6455 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); 6456 SDValue Ops[] = { 6457 Chain, 6458 DAG.getTargetConstant(TrapID, SL, MVT::i16) 6459 }; 6460 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); 6461 } 6462 6463 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, 6464 SelectionDAG &DAG) const { 6465 if (Subtarget->hasApertureRegs()) { 6466 const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) 6467 ? AMDGPU::SRC_SHARED_BASE 6468 : AMDGPU::SRC_PRIVATE_BASE; 6469 // Note: this feature (register) is broken. When used as a 32-bit operand, 6470 // it returns a wrong value (all zeroes?). The real value is in the upper 32 6471 // bits. 6472 // 6473 // To work around the issue, directly emit a 64 bit mov from this register 6474 // then extract the high bits. Note that this shouldn't even result in a 6475 // shift being emitted and simply become a pair of registers (e.g.): 6476 // s_mov_b64 s[6:7], src_shared_base 6477 // v_mov_b32_e32 v1, s7 6478 // 6479 // FIXME: It would be more natural to emit a CopyFromReg here, but then copy 6480 // coalescing would kick in and it would think it's okay to use the "HI" 6481 // subregister directly (instead of extracting the HI 32 bits) which is an 6482 // artificial (unusable) register. 6483 // Register TableGen definitions would need an overhaul to get rid of the 6484 // artificial "HI" aperture registers and prevent this kind of issue from 6485 // happening. 6486 SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, 6487 DAG.getRegister(ApertureRegNo, MVT::i64)); 6488 return DAG.getNode( 6489 ISD::TRUNCATE, DL, MVT::i32, 6490 DAG.getNode(ISD::SRL, DL, MVT::i64, 6491 {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); 6492 } 6493 6494 // For code object version 5, private_base and shared_base are passed through 6495 // implicit kernargs. 6496 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 6497 if (AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { 6498 ImplicitParameter Param = 6499 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; 6500 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); 6501 } 6502 6503 MachineFunction &MF = DAG.getMachineFunction(); 6504 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 6505 Register UserSGPR = Info->getQueuePtrUserSGPR(); 6506 if (UserSGPR == AMDGPU::NoRegister) { 6507 // We probably are in a function incorrectly marked with 6508 // amdgpu-no-queue-ptr. This is undefined. 6509 return DAG.getUNDEF(MVT::i32); 6510 } 6511 6512 SDValue QueuePtr = CreateLiveInRegister( 6513 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); 6514 6515 // Offset into amd_queue_t for group_segment_aperture_base_hi / 6516 // private_segment_aperture_base_hi. 6517 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; 6518 6519 SDValue Ptr = 6520 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset)); 6521 6522 // TODO: Use custom target PseudoSourceValue. 6523 // TODO: We should use the value from the IR intrinsic call, but it might not 6524 // be available and how do we get it? 6525 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 6526 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, 6527 commonAlignment(Align(64), StructOffset), 6528 MachineMemOperand::MODereferenceable | 6529 MachineMemOperand::MOInvariant); 6530 } 6531 6532 /// Return true if the value is a known valid address, such that a null check is 6533 /// not necessary. 6534 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, 6535 const AMDGPUTargetMachine &TM, unsigned AddrSpace) { 6536 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || 6537 isa<BasicBlockSDNode>(Val)) 6538 return true; 6539 6540 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) 6541 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); 6542 6543 // TODO: Search through arithmetic, handle arguments and loads 6544 // marked nonnull. 6545 return false; 6546 } 6547 6548 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, 6549 SelectionDAG &DAG) const { 6550 SDLoc SL(Op); 6551 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 6552 6553 SDValue Src = ASC->getOperand(0); 6554 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); 6555 unsigned SrcAS = ASC->getSrcAddressSpace(); 6556 6557 const AMDGPUTargetMachine &TM = 6558 static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); 6559 6560 // flat -> local/private 6561 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { 6562 unsigned DestAS = ASC->getDestAddressSpace(); 6563 6564 if (DestAS == AMDGPUAS::LOCAL_ADDRESS || 6565 DestAS == AMDGPUAS::PRIVATE_ADDRESS) { 6566 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 6567 6568 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 6569 return Ptr; 6570 6571 unsigned NullVal = TM.getNullPointerValue(DestAS); 6572 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 6573 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); 6574 6575 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, 6576 SegmentNullPtr); 6577 } 6578 } 6579 6580 // local/private -> flat 6581 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { 6582 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 6583 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { 6584 6585 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); 6586 SDValue CvtPtr = 6587 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); 6588 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); 6589 6590 if (isKnownNonNull(Src, DAG, TM, SrcAS)) 6591 return CvtPtr; 6592 6593 unsigned NullVal = TM.getNullPointerValue(SrcAS); 6594 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); 6595 6596 SDValue NonNull 6597 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); 6598 6599 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, 6600 FlatNullPtr); 6601 } 6602 } 6603 6604 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 6605 Op.getValueType() == MVT::i64) { 6606 const SIMachineFunctionInfo *Info = 6607 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); 6608 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); 6609 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); 6610 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 6611 } 6612 6613 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && 6614 Src.getValueType() == MVT::i64) 6615 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); 6616 6617 // global <-> flat are no-ops and never emitted. 6618 6619 const MachineFunction &MF = DAG.getMachineFunction(); 6620 DiagnosticInfoUnsupported InvalidAddrSpaceCast( 6621 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); 6622 DAG.getContext()->diagnose(InvalidAddrSpaceCast); 6623 6624 return DAG.getUNDEF(ASC->getValueType(0)); 6625 } 6626 6627 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from 6628 // the small vector and inserting them into the big vector. That is better than 6629 // the default expansion of doing it via a stack slot. Even though the use of 6630 // the stack slot would be optimized away afterwards, the stack slot itself 6631 // remains. 6632 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 6633 SelectionDAG &DAG) const { 6634 SDValue Vec = Op.getOperand(0); 6635 SDValue Ins = Op.getOperand(1); 6636 SDValue Idx = Op.getOperand(2); 6637 EVT VecVT = Vec.getValueType(); 6638 EVT InsVT = Ins.getValueType(); 6639 EVT EltVT = VecVT.getVectorElementType(); 6640 unsigned InsNumElts = InsVT.getVectorNumElements(); 6641 unsigned IdxVal = Idx->getAsZExtVal(); 6642 SDLoc SL(Op); 6643 6644 if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { 6645 // Insert 32-bit registers at a time. 6646 assert(InsNumElts % 2 == 0 && "expect legal vector types"); 6647 6648 unsigned VecNumElts = VecVT.getVectorNumElements(); 6649 EVT NewVecVT = 6650 EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); 6651 EVT NewInsVT = InsNumElts == 2 ? MVT::i32 6652 : EVT::getVectorVT(*DAG.getContext(), 6653 MVT::i32, InsNumElts / 2); 6654 6655 Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); 6656 Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); 6657 6658 for (unsigned I = 0; I != InsNumElts / 2; ++I) { 6659 SDValue Elt; 6660 if (InsNumElts == 2) { 6661 Elt = Ins; 6662 } else { 6663 Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, 6664 DAG.getConstant(I, SL, MVT::i32)); 6665 } 6666 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, 6667 DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); 6668 } 6669 6670 return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); 6671 } 6672 6673 for (unsigned I = 0; I != InsNumElts; ++I) { 6674 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, 6675 DAG.getConstant(I, SL, MVT::i32)); 6676 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, 6677 DAG.getConstant(IdxVal + I, SL, MVT::i32)); 6678 } 6679 return Vec; 6680 } 6681 6682 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 6683 SelectionDAG &DAG) const { 6684 SDValue Vec = Op.getOperand(0); 6685 SDValue InsVal = Op.getOperand(1); 6686 SDValue Idx = Op.getOperand(2); 6687 EVT VecVT = Vec.getValueType(); 6688 EVT EltVT = VecVT.getVectorElementType(); 6689 unsigned VecSize = VecVT.getSizeInBits(); 6690 unsigned EltSize = EltVT.getSizeInBits(); 6691 SDLoc SL(Op); 6692 6693 // Specially handle the case of v4i16 with static indexing. 6694 unsigned NumElts = VecVT.getVectorNumElements(); 6695 auto KIdx = dyn_cast<ConstantSDNode>(Idx); 6696 if (NumElts == 4 && EltSize == 16 && KIdx) { 6697 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); 6698 6699 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6700 DAG.getConstant(0, SL, MVT::i32)); 6701 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, 6702 DAG.getConstant(1, SL, MVT::i32)); 6703 6704 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); 6705 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); 6706 6707 unsigned Idx = KIdx->getZExtValue(); 6708 bool InsertLo = Idx < 2; 6709 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, 6710 InsertLo ? LoVec : HiVec, 6711 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), 6712 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); 6713 6714 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); 6715 6716 SDValue Concat = InsertLo ? 6717 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : 6718 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); 6719 6720 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); 6721 } 6722 6723 // Static indexing does not lower to stack access, and hence there is no need 6724 // for special custom lowering to avoid stack access. 6725 if (isa<ConstantSDNode>(Idx)) 6726 return SDValue(); 6727 6728 // Avoid stack access for dynamic indexing by custom lowering to 6729 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec 6730 6731 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); 6732 6733 MVT IntVT = MVT::getIntegerVT(VecSize); 6734 6735 // Convert vector index to bit-index and get the required bit mask. 6736 assert(isPowerOf2_32(EltSize)); 6737 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); 6738 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6739 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6740 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, 6741 DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); 6742 6743 // 1. Create a congruent vector with the target value in each element. 6744 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, 6745 DAG.getSplatBuildVector(VecVT, SL, InsVal)); 6746 6747 // 2. Mask off all other indicies except the required index within (1). 6748 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); 6749 6750 // 3. Mask off the required index within the target vector. 6751 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6752 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, 6753 DAG.getNOT(SL, BFM, IntVT), BCVec); 6754 6755 // 4. Get (2) and (3) ORed into the target vector. 6756 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); 6757 6758 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); 6759 } 6760 6761 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 6762 SelectionDAG &DAG) const { 6763 SDLoc SL(Op); 6764 6765 EVT ResultVT = Op.getValueType(); 6766 SDValue Vec = Op.getOperand(0); 6767 SDValue Idx = Op.getOperand(1); 6768 EVT VecVT = Vec.getValueType(); 6769 unsigned VecSize = VecVT.getSizeInBits(); 6770 EVT EltVT = VecVT.getVectorElementType(); 6771 6772 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 6773 6774 // Make sure we do any optimizations that will make it easier to fold 6775 // source modifiers before obscuring it with bit operations. 6776 6777 // XXX - Why doesn't this get called when vector_shuffle is expanded? 6778 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) 6779 return Combined; 6780 6781 if (VecSize == 128 || VecSize == 256 || VecSize == 512) { 6782 SDValue Lo, Hi; 6783 EVT LoVT, HiVT; 6784 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 6785 6786 if (VecSize == 128) { 6787 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); 6788 Lo = DAG.getBitcast(LoVT, 6789 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6790 DAG.getConstant(0, SL, MVT::i32))); 6791 Hi = DAG.getBitcast(HiVT, 6792 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6793 DAG.getConstant(1, SL, MVT::i32))); 6794 } else if (VecSize == 256) { 6795 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); 6796 SDValue Parts[4]; 6797 for (unsigned P = 0; P < 4; ++P) { 6798 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6799 DAG.getConstant(P, SL, MVT::i32)); 6800 } 6801 6802 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6803 Parts[0], Parts[1])); 6804 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, 6805 Parts[2], Parts[3])); 6806 } else { 6807 assert(VecSize == 512); 6808 6809 SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec); 6810 SDValue Parts[8]; 6811 for (unsigned P = 0; P < 8; ++P) { 6812 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, 6813 DAG.getConstant(P, SL, MVT::i32)); 6814 } 6815 6816 Lo = DAG.getBitcast(LoVT, 6817 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, 6818 Parts[0], Parts[1], Parts[2], Parts[3])); 6819 Hi = DAG.getBitcast(HiVT, 6820 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, 6821 Parts[4], Parts[5],Parts[6], Parts[7])); 6822 } 6823 6824 EVT IdxVT = Idx.getValueType(); 6825 unsigned NElem = VecVT.getVectorNumElements(); 6826 assert(isPowerOf2_32(NElem)); 6827 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); 6828 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); 6829 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); 6830 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); 6831 } 6832 6833 assert(VecSize <= 64); 6834 6835 MVT IntVT = MVT::getIntegerVT(VecSize); 6836 6837 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. 6838 SDValue VecBC = peekThroughBitcasts(Vec); 6839 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { 6840 SDValue Src = VecBC.getOperand(0); 6841 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); 6842 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); 6843 } 6844 6845 unsigned EltSize = EltVT.getSizeInBits(); 6846 assert(isPowerOf2_32(EltSize)); 6847 6848 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); 6849 6850 // Convert vector index to bit-index (* EltSize) 6851 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); 6852 6853 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); 6854 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); 6855 6856 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) { 6857 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); 6858 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); 6859 } 6860 6861 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); 6862 } 6863 6864 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { 6865 assert(Elt % 2 == 0); 6866 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); 6867 } 6868 6869 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 6870 SelectionDAG &DAG) const { 6871 SDLoc SL(Op); 6872 EVT ResultVT = Op.getValueType(); 6873 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 6874 6875 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; 6876 EVT EltVT = PackVT.getVectorElementType(); 6877 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); 6878 6879 // vector_shuffle <0,1,6,7> lhs, rhs 6880 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) 6881 // 6882 // vector_shuffle <6,7,2,3> lhs, rhs 6883 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) 6884 // 6885 // vector_shuffle <6,7,0,1> lhs, rhs 6886 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) 6887 6888 // Avoid scalarizing when both halves are reading from consecutive elements. 6889 SmallVector<SDValue, 4> Pieces; 6890 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { 6891 if (elementPairIsContiguous(SVN->getMask(), I)) { 6892 const int Idx = SVN->getMaskElt(I); 6893 int VecIdx = Idx < SrcNumElts ? 0 : 1; 6894 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; 6895 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, 6896 PackVT, SVN->getOperand(VecIdx), 6897 DAG.getConstant(EltIdx, SL, MVT::i32)); 6898 Pieces.push_back(SubVec); 6899 } else { 6900 const int Idx0 = SVN->getMaskElt(I); 6901 const int Idx1 = SVN->getMaskElt(I + 1); 6902 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; 6903 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; 6904 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; 6905 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; 6906 6907 SDValue Vec0 = SVN->getOperand(VecIdx0); 6908 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 6909 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); 6910 6911 SDValue Vec1 = SVN->getOperand(VecIdx1); 6912 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 6913 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); 6914 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); 6915 } 6916 } 6917 6918 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); 6919 } 6920 6921 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 6922 SelectionDAG &DAG) const { 6923 SDValue SVal = Op.getOperand(0); 6924 EVT ResultVT = Op.getValueType(); 6925 EVT SValVT = SVal.getValueType(); 6926 SDValue UndefVal = DAG.getUNDEF(SValVT); 6927 SDLoc SL(Op); 6928 6929 SmallVector<SDValue, 8> VElts; 6930 VElts.push_back(SVal); 6931 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) 6932 VElts.push_back(UndefVal); 6933 6934 return DAG.getBuildVector(ResultVT, SL, VElts); 6935 } 6936 6937 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, 6938 SelectionDAG &DAG) const { 6939 SDLoc SL(Op); 6940 EVT VT = Op.getValueType(); 6941 6942 if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || 6943 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { 6944 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 6945 VT.getVectorNumElements() / 2); 6946 MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); 6947 6948 // Turn into pair of packed build_vectors. 6949 // TODO: Special case for constants that can be materialized with s_mov_b64. 6950 SmallVector<SDValue, 4> LoOps, HiOps; 6951 for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { 6952 LoOps.push_back(Op.getOperand(I)); 6953 HiOps.push_back(Op.getOperand(I + E)); 6954 } 6955 SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); 6956 SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); 6957 6958 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); 6959 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); 6960 6961 SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, 6962 { CastLo, CastHi }); 6963 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 6964 } 6965 6966 if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) { 6967 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 6968 VT.getVectorNumElements() / 4); 6969 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 6970 6971 SmallVector<SDValue, 4> Parts[4]; 6972 for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { 6973 for (unsigned P = 0; P < 4; ++P) 6974 Parts[P].push_back(Op.getOperand(I + P * E)); 6975 } 6976 SDValue Casts[4]; 6977 for (unsigned P = 0; P < 4; ++P) { 6978 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 6979 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 6980 } 6981 6982 SDValue Blend = 6983 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); 6984 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 6985 } 6986 6987 if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) { 6988 EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 6989 VT.getVectorNumElements() / 8); 6990 MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); 6991 6992 SmallVector<SDValue, 8> Parts[8]; 6993 for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) { 6994 for (unsigned P = 0; P < 8; ++P) 6995 Parts[P].push_back(Op.getOperand(I + P * E)); 6996 } 6997 SDValue Casts[8]; 6998 for (unsigned P = 0; P < 8; ++P) { 6999 SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); 7000 Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); 7001 } 7002 7003 SDValue Blend = 7004 DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts); 7005 return DAG.getNode(ISD::BITCAST, SL, VT, Blend); 7006 } 7007 7008 assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16); 7009 assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); 7010 7011 SDValue Lo = Op.getOperand(0); 7012 SDValue Hi = Op.getOperand(1); 7013 7014 // Avoid adding defined bits with the zero_extend. 7015 if (Hi.isUndef()) { 7016 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 7017 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); 7018 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); 7019 } 7020 7021 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); 7022 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); 7023 7024 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, 7025 DAG.getConstant(16, SL, MVT::i32)); 7026 if (Lo.isUndef()) 7027 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); 7028 7029 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); 7030 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); 7031 7032 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); 7033 return DAG.getNode(ISD::BITCAST, SL, VT, Or); 7034 } 7035 7036 bool 7037 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 7038 // We can fold offsets for anything that doesn't require a GOT relocation. 7039 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || 7040 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 7041 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 7042 !shouldEmitGOTReloc(GA->getGlobal()); 7043 } 7044 7045 static SDValue 7046 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, 7047 const SDLoc &DL, int64_t Offset, EVT PtrVT, 7048 unsigned GAFlags = SIInstrInfo::MO_NONE) { 7049 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); 7050 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is 7051 // lowered to the following code sequence: 7052 // 7053 // For constant address space: 7054 // s_getpc_b64 s[0:1] 7055 // s_add_u32 s0, s0, $symbol 7056 // s_addc_u32 s1, s1, 0 7057 // 7058 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 7059 // a fixup or relocation is emitted to replace $symbol with a literal 7060 // constant, which is a pc-relative offset from the encoding of the $symbol 7061 // operand to the global variable. 7062 // 7063 // For global address space: 7064 // s_getpc_b64 s[0:1] 7065 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo 7066 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi 7067 // 7068 // s_getpc_b64 returns the address of the s_add_u32 instruction and then 7069 // fixups or relocations are emitted to replace $symbol@*@lo and 7070 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, 7071 // which is a 64-bit pc-relative offset from the encoding of the $symbol 7072 // operand to the global variable. 7073 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags); 7074 SDValue PtrHi; 7075 if (GAFlags == SIInstrInfo::MO_NONE) 7076 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); 7077 else 7078 PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1); 7079 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); 7080 } 7081 7082 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 7083 SDValue Op, 7084 SelectionDAG &DAG) const { 7085 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 7086 SDLoc DL(GSD); 7087 EVT PtrVT = Op.getValueType(); 7088 7089 const GlobalValue *GV = GSD->getGlobal(); 7090 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 7091 shouldUseLDSConstAddress(GV)) || 7092 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || 7093 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { 7094 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && 7095 GV->hasExternalLinkage()) { 7096 Type *Ty = GV->getValueType(); 7097 // HIP uses an unsized array `extern __shared__ T s[]` or similar 7098 // zero-sized type in other languages to declare the dynamic shared 7099 // memory which size is not known at the compile time. They will be 7100 // allocated by the runtime and placed directly after the static 7101 // allocated ones. They all share the same offset. 7102 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { 7103 assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); 7104 // Adjust alignment for that dynamic shared memory array. 7105 Function &F = DAG.getMachineFunction().getFunction(); 7106 MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV)); 7107 MFI->setUsesDynamicLDS(true); 7108 return SDValue( 7109 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); 7110 } 7111 } 7112 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 7113 } 7114 7115 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7116 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), 7117 SIInstrInfo::MO_ABS32_LO); 7118 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); 7119 } 7120 7121 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) { 7122 SDValue AddrLo = DAG.getTargetGlobalAddress( 7123 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); 7124 AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0}; 7125 7126 SDValue AddrHi = DAG.getTargetGlobalAddress( 7127 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI); 7128 AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0}; 7129 7130 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi); 7131 } 7132 7133 if (shouldEmitFixup(GV)) 7134 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); 7135 7136 if (shouldEmitPCReloc(GV)) 7137 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, 7138 SIInstrInfo::MO_REL32); 7139 7140 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, 7141 SIInstrInfo::MO_GOTPCREL32); 7142 7143 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); 7144 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); 7145 const DataLayout &DataLayout = DAG.getDataLayout(); 7146 Align Alignment = DataLayout.getABITypeAlign(PtrTy); 7147 MachinePointerInfo PtrInfo 7148 = MachinePointerInfo::getGOT(DAG.getMachineFunction()); 7149 7150 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, 7151 MachineMemOperand::MODereferenceable | 7152 MachineMemOperand::MOInvariant); 7153 } 7154 7155 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, 7156 const SDLoc &DL, SDValue V) const { 7157 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as 7158 // the destination register. 7159 // 7160 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, 7161 // so we will end up with redundant moves to m0. 7162 // 7163 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. 7164 7165 // A Null SDValue creates a glue result. 7166 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, 7167 V, Chain); 7168 return SDValue(M0, 0); 7169 } 7170 7171 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, 7172 SDValue Op, 7173 MVT VT, 7174 unsigned Offset) const { 7175 SDLoc SL(Op); 7176 SDValue Param = lowerKernargMemParameter( 7177 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); 7178 // The local size values will have the hi 16-bits as zero. 7179 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, 7180 DAG.getValueType(VT)); 7181 } 7182 7183 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 7184 EVT VT) { 7185 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 7186 "non-hsa intrinsic with hsa target", 7187 DL.getDebugLoc()); 7188 DAG.getContext()->diagnose(BadIntrin); 7189 return DAG.getUNDEF(VT); 7190 } 7191 7192 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, 7193 EVT VT) { 7194 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), 7195 "intrinsic not supported on subtarget", 7196 DL.getDebugLoc()); 7197 DAG.getContext()->diagnose(BadIntrin); 7198 return DAG.getUNDEF(VT); 7199 } 7200 7201 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, 7202 ArrayRef<SDValue> Elts) { 7203 assert(!Elts.empty()); 7204 MVT Type; 7205 unsigned NumElts = Elts.size(); 7206 7207 if (NumElts <= 12) { 7208 Type = MVT::getVectorVT(MVT::f32, NumElts); 7209 } else { 7210 assert(Elts.size() <= 16); 7211 Type = MVT::v16f32; 7212 NumElts = 16; 7213 } 7214 7215 SmallVector<SDValue, 16> VecElts(NumElts); 7216 for (unsigned i = 0; i < Elts.size(); ++i) { 7217 SDValue Elt = Elts[i]; 7218 if (Elt.getValueType() != MVT::f32) 7219 Elt = DAG.getBitcast(MVT::f32, Elt); 7220 VecElts[i] = Elt; 7221 } 7222 for (unsigned i = Elts.size(); i < NumElts; ++i) 7223 VecElts[i] = DAG.getUNDEF(MVT::f32); 7224 7225 if (NumElts == 1) 7226 return VecElts[0]; 7227 return DAG.getBuildVector(Type, DL, VecElts); 7228 } 7229 7230 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, 7231 SDValue Src, int ExtraElts) { 7232 EVT SrcVT = Src.getValueType(); 7233 7234 SmallVector<SDValue, 8> Elts; 7235 7236 if (SrcVT.isVector()) 7237 DAG.ExtractVectorElements(Src, Elts); 7238 else 7239 Elts.push_back(Src); 7240 7241 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); 7242 while (ExtraElts--) 7243 Elts.push_back(Undef); 7244 7245 return DAG.getBuildVector(CastVT, DL, Elts); 7246 } 7247 7248 // Re-construct the required return value for a image load intrinsic. 7249 // This is more complicated due to the optional use TexFailCtrl which means the required 7250 // return type is an aggregate 7251 static SDValue constructRetValue(SelectionDAG &DAG, 7252 MachineSDNode *Result, 7253 ArrayRef<EVT> ResultTypes, 7254 bool IsTexFail, bool Unpacked, bool IsD16, 7255 int DMaskPop, int NumVDataDwords, 7256 const SDLoc &DL) { 7257 // Determine the required return type. This is the same regardless of IsTexFail flag 7258 EVT ReqRetVT = ResultTypes[0]; 7259 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; 7260 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? 7261 ReqRetNumElts : (ReqRetNumElts + 1) / 2; 7262 7263 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? 7264 DMaskPop : (DMaskPop + 1) / 2; 7265 7266 MVT DataDwordVT = NumDataDwords == 1 ? 7267 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); 7268 7269 MVT MaskPopVT = MaskPopDwords == 1 ? 7270 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); 7271 7272 SDValue Data(Result, 0); 7273 SDValue TexFail; 7274 7275 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { 7276 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); 7277 if (MaskPopVT.isVector()) { 7278 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, 7279 SDValue(Result, 0), ZeroIdx); 7280 } else { 7281 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, 7282 SDValue(Result, 0), ZeroIdx); 7283 } 7284 } 7285 7286 if (DataDwordVT.isVector()) 7287 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, 7288 NumDataDwords - MaskPopDwords); 7289 7290 if (IsD16) 7291 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); 7292 7293 EVT LegalReqRetVT = ReqRetVT; 7294 if (!ReqRetVT.isVector()) { 7295 if (!Data.getValueType().isInteger()) 7296 Data = DAG.getNode(ISD::BITCAST, DL, 7297 Data.getValueType().changeTypeToInteger(), Data); 7298 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); 7299 } else { 7300 // We need to widen the return vector to a legal type 7301 if ((ReqRetVT.getVectorNumElements() % 2) == 1 && 7302 ReqRetVT.getVectorElementType().getSizeInBits() == 16) { 7303 LegalReqRetVT = 7304 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), 7305 ReqRetVT.getVectorNumElements() + 1); 7306 } 7307 } 7308 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); 7309 7310 if (IsTexFail) { 7311 TexFail = 7312 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), 7313 DAG.getConstant(MaskPopDwords, DL, MVT::i32)); 7314 7315 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); 7316 } 7317 7318 if (Result->getNumValues() == 1) 7319 return Data; 7320 7321 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); 7322 } 7323 7324 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, 7325 SDValue *LWE, bool &IsTexFail) { 7326 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); 7327 7328 uint64_t Value = TexFailCtrlConst->getZExtValue(); 7329 if (Value) { 7330 IsTexFail = true; 7331 } 7332 7333 SDLoc DL(TexFailCtrlConst); 7334 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); 7335 Value &= ~(uint64_t)0x1; 7336 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); 7337 Value &= ~(uint64_t)0x2; 7338 7339 return Value == 0; 7340 } 7341 7342 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, 7343 MVT PackVectorVT, 7344 SmallVectorImpl<SDValue> &PackedAddrs, 7345 unsigned DimIdx, unsigned EndIdx, 7346 unsigned NumGradients) { 7347 SDLoc DL(Op); 7348 for (unsigned I = DimIdx; I < EndIdx; I++) { 7349 SDValue Addr = Op.getOperand(I); 7350 7351 // Gradients are packed with undef for each coordinate. 7352 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: 7353 // 1D: undef,dx/dh; undef,dx/dv 7354 // 2D: dy/dh,dx/dh; dy/dv,dx/dv 7355 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv 7356 if (((I + 1) >= EndIdx) || 7357 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || 7358 I == DimIdx + NumGradients - 1))) { 7359 if (Addr.getValueType() != MVT::i16) 7360 Addr = DAG.getBitcast(MVT::i16, Addr); 7361 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); 7362 } else { 7363 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); 7364 I++; 7365 } 7366 Addr = DAG.getBitcast(MVT::f32, Addr); 7367 PackedAddrs.push_back(Addr); 7368 } 7369 } 7370 7371 SDValue SITargetLowering::lowerImage(SDValue Op, 7372 const AMDGPU::ImageDimIntrinsicInfo *Intr, 7373 SelectionDAG &DAG, bool WithChain) const { 7374 SDLoc DL(Op); 7375 MachineFunction &MF = DAG.getMachineFunction(); 7376 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); 7377 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 7378 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); 7379 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); 7380 unsigned IntrOpcode = Intr->BaseOpcode; 7381 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); 7382 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 7383 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); 7384 7385 SmallVector<EVT, 3> ResultTypes(Op->values()); 7386 SmallVector<EVT, 3> OrigResultTypes(Op->values()); 7387 bool IsD16 = false; 7388 bool IsG16 = false; 7389 bool IsA16 = false; 7390 SDValue VData; 7391 int NumVDataDwords; 7392 bool AdjustRetType = false; 7393 7394 // Offset of intrinsic arguments 7395 const unsigned ArgOffset = WithChain ? 2 : 1; 7396 7397 unsigned DMask; 7398 unsigned DMaskLanes = 0; 7399 7400 if (BaseOpcode->Atomic) { 7401 VData = Op.getOperand(2); 7402 7403 bool Is64Bit = VData.getValueSizeInBits() == 64; 7404 if (BaseOpcode->AtomicX2) { 7405 SDValue VData2 = Op.getOperand(3); 7406 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, 7407 {VData, VData2}); 7408 if (Is64Bit) 7409 VData = DAG.getBitcast(MVT::v4i32, VData); 7410 7411 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; 7412 DMask = Is64Bit ? 0xf : 0x3; 7413 NumVDataDwords = Is64Bit ? 4 : 2; 7414 } else { 7415 DMask = Is64Bit ? 0x3 : 0x1; 7416 NumVDataDwords = Is64Bit ? 2 : 1; 7417 } 7418 } else { 7419 auto *DMaskConst = 7420 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); 7421 DMask = DMaskConst->getZExtValue(); 7422 DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); 7423 7424 if (BaseOpcode->Store) { 7425 VData = Op.getOperand(2); 7426 7427 MVT StoreVT = VData.getSimpleValueType(); 7428 if (StoreVT.getScalarType() == MVT::f16) { 7429 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 7430 return Op; // D16 is unsupported for this instruction 7431 7432 IsD16 = true; 7433 VData = handleD16VData(VData, DAG, true); 7434 } 7435 7436 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; 7437 } else { 7438 // Work out the num dwords based on the dmask popcount and underlying type 7439 // and whether packing is supported. 7440 MVT LoadVT = ResultTypes[0].getSimpleVT(); 7441 if (LoadVT.getScalarType() == MVT::f16) { 7442 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) 7443 return Op; // D16 is unsupported for this instruction 7444 7445 IsD16 = true; 7446 } 7447 7448 // Confirm that the return type is large enough for the dmask specified 7449 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || 7450 (!LoadVT.isVector() && DMaskLanes > 1)) 7451 return Op; 7452 7453 // The sq block of gfx8 and gfx9 do not estimate register use correctly 7454 // for d16 image_gather4, image_gather4_l, and image_gather4_lz 7455 // instructions. 7456 if (IsD16 && !Subtarget->hasUnpackedD16VMem() && 7457 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) 7458 NumVDataDwords = (DMaskLanes + 1) / 2; 7459 else 7460 NumVDataDwords = DMaskLanes; 7461 7462 AdjustRetType = true; 7463 } 7464 } 7465 7466 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; 7467 SmallVector<SDValue, 4> VAddrs; 7468 7469 // Check for 16 bit addresses or derivatives and pack if true. 7470 MVT VAddrVT = 7471 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); 7472 MVT VAddrScalarVT = VAddrVT.getScalarType(); 7473 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 7474 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 7475 7476 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); 7477 VAddrScalarVT = VAddrVT.getScalarType(); 7478 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; 7479 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; 7480 7481 // Push back extra arguments. 7482 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { 7483 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { 7484 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); 7485 // Special handling of bias when A16 is on. Bias is of type half but 7486 // occupies full 32-bit. 7487 SDValue Bias = DAG.getBuildVector( 7488 MVT::v2f16, DL, 7489 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); 7490 VAddrs.push_back(Bias); 7491 } else { 7492 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && 7493 "Bias needs to be converted to 16 bit in A16 mode"); 7494 VAddrs.push_back(Op.getOperand(ArgOffset + I)); 7495 } 7496 } 7497 7498 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { 7499 // 16 bit gradients are supported, but are tied to the A16 control 7500 // so both gradients and addresses must be 16 bit 7501 LLVM_DEBUG( 7502 dbgs() << "Failed to lower image intrinsic: 16 bit addresses " 7503 "require 16 bit args for both gradients and addresses"); 7504 return Op; 7505 } 7506 7507 if (IsA16) { 7508 if (!ST->hasA16()) { 7509 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " 7510 "support 16 bit addresses\n"); 7511 return Op; 7512 } 7513 } 7514 7515 // We've dealt with incorrect input so we know that if IsA16, IsG16 7516 // are set then we have to compress/pack operands (either address, 7517 // gradient or both) 7518 // In the case where a16 and gradients are tied (no G16 support) then we 7519 // have already verified that both IsA16 and IsG16 are true 7520 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { 7521 // Activate g16 7522 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = 7523 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); 7524 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 7525 } 7526 7527 // Add gradients (packed or unpacked) 7528 if (IsG16) { 7529 // Pack the gradients 7530 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); 7531 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, 7532 ArgOffset + Intr->GradientStart, 7533 ArgOffset + Intr->CoordStart, Intr->NumGradients); 7534 } else { 7535 for (unsigned I = ArgOffset + Intr->GradientStart; 7536 I < ArgOffset + Intr->CoordStart; I++) 7537 VAddrs.push_back(Op.getOperand(I)); 7538 } 7539 7540 // Add addresses (packed or unpacked) 7541 if (IsA16) { 7542 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, 7543 ArgOffset + Intr->CoordStart, VAddrEnd, 7544 0 /* No gradients */); 7545 } else { 7546 // Add uncompressed address 7547 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) 7548 VAddrs.push_back(Op.getOperand(I)); 7549 } 7550 7551 // If the register allocator cannot place the address registers contiguously 7552 // without introducing moves, then using the non-sequential address encoding 7553 // is always preferable, since it saves VALU instructions and is usually a 7554 // wash in terms of code size or even better. 7555 // 7556 // However, we currently have no way of hinting to the register allocator that 7557 // MIMG addresses should be placed contiguously when it is possible to do so, 7558 // so force non-NSA for the common 2-address case as a heuristic. 7559 // 7560 // SIShrinkInstructions will convert NSA encodings to non-NSA after register 7561 // allocation when possible. 7562 // 7563 // Partial NSA is allowed on GFX11+ where the final register is a contiguous 7564 // set of the remaining addresses. 7565 const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler); 7566 const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); 7567 const bool UseNSA = ST->hasNSAEncoding() && 7568 VAddrs.size() >= ST->getNSAThreshold(MF) && 7569 (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); 7570 const bool UsePartialNSA = 7571 UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; 7572 7573 SDValue VAddr; 7574 if (UsePartialNSA) { 7575 VAddr = getBuildDwordsVector(DAG, DL, 7576 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); 7577 } 7578 else if (!UseNSA) { 7579 VAddr = getBuildDwordsVector(DAG, DL, VAddrs); 7580 } 7581 7582 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); 7583 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); 7584 SDValue Unorm; 7585 if (!BaseOpcode->Sampler) { 7586 Unorm = True; 7587 } else { 7588 auto UnormConst = 7589 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); 7590 7591 Unorm = UnormConst->getZExtValue() ? True : False; 7592 } 7593 7594 SDValue TFE; 7595 SDValue LWE; 7596 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); 7597 bool IsTexFail = false; 7598 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) 7599 return Op; 7600 7601 if (IsTexFail) { 7602 if (!DMaskLanes) { 7603 // Expecting to get an error flag since TFC is on - and dmask is 0 7604 // Force dmask to be at least 1 otherwise the instruction will fail 7605 DMask = 0x1; 7606 DMaskLanes = 1; 7607 NumVDataDwords = 1; 7608 } 7609 NumVDataDwords += 1; 7610 AdjustRetType = true; 7611 } 7612 7613 // Has something earlier tagged that the return type needs adjusting 7614 // This happens if the instruction is a load or has set TexFailCtrl flags 7615 if (AdjustRetType) { 7616 // NumVDataDwords reflects the true number of dwords required in the return type 7617 if (DMaskLanes == 0 && !BaseOpcode->Store) { 7618 // This is a no-op load. This can be eliminated 7619 SDValue Undef = DAG.getUNDEF(Op.getValueType()); 7620 if (isa<MemSDNode>(Op)) 7621 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); 7622 return Undef; 7623 } 7624 7625 EVT NewVT = NumVDataDwords > 1 ? 7626 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) 7627 : MVT::i32; 7628 7629 ResultTypes[0] = NewVT; 7630 if (ResultTypes.size() == 3) { 7631 // Original result was aggregate type used for TexFailCtrl results 7632 // The actual instruction returns as a vector type which has now been 7633 // created. Remove the aggregate result. 7634 ResultTypes.erase(&ResultTypes[1]); 7635 } 7636 } 7637 7638 unsigned CPol = cast<ConstantSDNode>( 7639 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); 7640 if (BaseOpcode->Atomic) 7641 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization 7642 if (CPol & ~(IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12)) 7643 return Op; 7644 7645 SmallVector<SDValue, 26> Ops; 7646 if (BaseOpcode->Store || BaseOpcode->Atomic) 7647 Ops.push_back(VData); // vdata 7648 if (UsePartialNSA) { 7649 append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); 7650 Ops.push_back(VAddr); 7651 } 7652 else if (UseNSA) 7653 append_range(Ops, VAddrs); 7654 else 7655 Ops.push_back(VAddr); 7656 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); 7657 if (BaseOpcode->Sampler) 7658 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); 7659 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); 7660 if (IsGFX10Plus) 7661 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); 7662 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) 7663 Ops.push_back(Unorm); 7664 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); 7665 Ops.push_back(IsA16 && // r128, a16 for gfx9 7666 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); 7667 if (IsGFX10Plus) 7668 Ops.push_back(IsA16 ? True : False); 7669 if (!Subtarget->hasGFX90AInsts()) { 7670 Ops.push_back(TFE); //tfe 7671 } else if (TFE->getAsZExtVal()) { 7672 report_fatal_error("TFE is not supported on this GPU"); 7673 } 7674 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) 7675 Ops.push_back(LWE); // lwe 7676 if (!IsGFX10Plus) 7677 Ops.push_back(DimInfo->DA ? True : False); 7678 if (BaseOpcode->HasD16) 7679 Ops.push_back(IsD16 ? True : False); 7680 if (isa<MemSDNode>(Op)) 7681 Ops.push_back(Op.getOperand(0)); // chain 7682 7683 int NumVAddrDwords = 7684 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; 7685 int Opcode = -1; 7686 7687 if (IsGFX12Plus) { 7688 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12, 7689 NumVDataDwords, NumVAddrDwords); 7690 } else if (IsGFX11Plus) { 7691 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7692 UseNSA ? AMDGPU::MIMGEncGfx11NSA 7693 : AMDGPU::MIMGEncGfx11Default, 7694 NumVDataDwords, NumVAddrDwords); 7695 } else if (IsGFX10Plus) { 7696 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, 7697 UseNSA ? AMDGPU::MIMGEncGfx10NSA 7698 : AMDGPU::MIMGEncGfx10Default, 7699 NumVDataDwords, NumVAddrDwords); 7700 } else { 7701 if (Subtarget->hasGFX90AInsts()) { 7702 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, 7703 NumVDataDwords, NumVAddrDwords); 7704 if (Opcode == -1) 7705 report_fatal_error( 7706 "requested image instruction is not supported on this GPU"); 7707 } 7708 if (Opcode == -1 && 7709 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7710 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, 7711 NumVDataDwords, NumVAddrDwords); 7712 if (Opcode == -1) 7713 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, 7714 NumVDataDwords, NumVAddrDwords); 7715 } 7716 if (Opcode == -1) 7717 return Op; 7718 7719 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); 7720 if (auto MemOp = dyn_cast<MemSDNode>(Op)) { 7721 MachineMemOperand *MemRef = MemOp->getMemOperand(); 7722 DAG.setNodeMemRefs(NewNode, {MemRef}); 7723 } 7724 7725 if (BaseOpcode->AtomicX2) { 7726 SmallVector<SDValue, 1> Elt; 7727 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); 7728 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); 7729 } 7730 if (BaseOpcode->Store) 7731 return SDValue(NewNode, 0); 7732 return constructRetValue(DAG, NewNode, 7733 OrigResultTypes, IsTexFail, 7734 Subtarget->hasUnpackedD16VMem(), IsD16, 7735 DMaskLanes, NumVDataDwords, DL); 7736 } 7737 7738 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, 7739 SDValue Offset, SDValue CachePolicy, 7740 SelectionDAG &DAG) const { 7741 MachineFunction &MF = DAG.getMachineFunction(); 7742 7743 const DataLayout &DataLayout = DAG.getDataLayout(); 7744 Align Alignment = 7745 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); 7746 7747 MachineMemOperand *MMO = MF.getMachineMemOperand( 7748 MachinePointerInfo(), 7749 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 7750 MachineMemOperand::MOInvariant, 7751 VT.getStoreSize(), Alignment); 7752 7753 if (!Offset->isDivergent()) { 7754 SDValue Ops[] = { 7755 Rsrc, 7756 Offset, // Offset 7757 CachePolicy 7758 }; 7759 7760 // Widen vec3 load to vec4. 7761 if (VT.isVector() && VT.getVectorNumElements() == 3 && 7762 !Subtarget->hasScalarDwordx3Loads()) { 7763 EVT WidenedVT = 7764 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 7765 auto WidenedOp = DAG.getMemIntrinsicNode( 7766 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, 7767 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); 7768 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, 7769 DAG.getVectorIdxConstant(0, DL)); 7770 return Subvector; 7771 } 7772 7773 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, 7774 DAG.getVTList(VT), Ops, VT, MMO); 7775 } 7776 7777 // We have a divergent offset. Emit a MUBUF buffer load instead. We can 7778 // assume that the buffer is unswizzled. 7779 SmallVector<SDValue, 4> Loads; 7780 unsigned NumLoads = 1; 7781 MVT LoadVT = VT.getSimpleVT(); 7782 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; 7783 assert((LoadVT.getScalarType() == MVT::i32 || 7784 LoadVT.getScalarType() == MVT::f32)); 7785 7786 if (NumElts == 8 || NumElts == 16) { 7787 NumLoads = NumElts / 4; 7788 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); 7789 } 7790 7791 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); 7792 SDValue Ops[] = { 7793 DAG.getEntryNode(), // Chain 7794 Rsrc, // rsrc 7795 DAG.getConstant(0, DL, MVT::i32), // vindex 7796 {}, // voffset 7797 {}, // soffset 7798 {}, // offset 7799 CachePolicy, // cachepolicy 7800 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 7801 }; 7802 7803 // Use the alignment to ensure that the required offsets will fit into the 7804 // immediate offsets. 7805 setBufferOffsets(Offset, DAG, &Ops[3], 7806 NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); 7807 7808 uint64_t InstOffset = Ops[5]->getAsZExtVal(); 7809 for (unsigned i = 0; i < NumLoads; ++i) { 7810 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); 7811 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, 7812 LoadVT, MMO, DAG)); 7813 } 7814 7815 if (NumElts == 8 || NumElts == 16) 7816 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); 7817 7818 return Loads[0]; 7819 } 7820 7821 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, 7822 unsigned Dim, 7823 const ArgDescriptor &Arg) const { 7824 SDLoc SL(Op); 7825 MachineFunction &MF = DAG.getMachineFunction(); 7826 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); 7827 if (MaxID == 0) 7828 return DAG.getConstant(0, SL, MVT::i32); 7829 7830 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, 7831 SDLoc(DAG.getEntryNode()), Arg); 7832 7833 // Don't bother inserting AssertZext for packed IDs since we're emitting the 7834 // masking operations anyway. 7835 // 7836 // TODO: We could assert the top bit is 0 for the source copy. 7837 if (Arg.isMasked()) 7838 return Val; 7839 7840 // Preserve the known bits after expansion to a copy. 7841 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); 7842 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, 7843 DAG.getValueType(SmallVT)); 7844 } 7845 7846 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7847 SelectionDAG &DAG) const { 7848 MachineFunction &MF = DAG.getMachineFunction(); 7849 auto MFI = MF.getInfo<SIMachineFunctionInfo>(); 7850 7851 EVT VT = Op.getValueType(); 7852 SDLoc DL(Op); 7853 unsigned IntrinsicID = Op.getConstantOperandVal(0); 7854 7855 // TODO: Should this propagate fast-math-flags? 7856 7857 switch (IntrinsicID) { 7858 case Intrinsic::amdgcn_implicit_buffer_ptr: { 7859 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) 7860 return emitNonHSAIntrinsicError(DAG, DL, VT); 7861 return getPreloadedValue(DAG, *MFI, VT, 7862 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); 7863 } 7864 case Intrinsic::amdgcn_dispatch_ptr: 7865 case Intrinsic::amdgcn_queue_ptr: { 7866 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { 7867 DiagnosticInfoUnsupported BadIntrin( 7868 MF.getFunction(), "unsupported hsa intrinsic without hsa target", 7869 DL.getDebugLoc()); 7870 DAG.getContext()->diagnose(BadIntrin); 7871 return DAG.getUNDEF(VT); 7872 } 7873 7874 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? 7875 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; 7876 return getPreloadedValue(DAG, *MFI, VT, RegID); 7877 } 7878 case Intrinsic::amdgcn_implicitarg_ptr: { 7879 if (MFI->isEntryFunction()) 7880 return getImplicitArgPtr(DAG, DL); 7881 return getPreloadedValue(DAG, *MFI, VT, 7882 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 7883 } 7884 case Intrinsic::amdgcn_kernarg_segment_ptr: { 7885 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { 7886 // This only makes sense to call in a kernel, so just lower to null. 7887 return DAG.getConstant(0, DL, VT); 7888 } 7889 7890 return getPreloadedValue(DAG, *MFI, VT, 7891 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 7892 } 7893 case Intrinsic::amdgcn_dispatch_id: { 7894 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); 7895 } 7896 case Intrinsic::amdgcn_rcp: 7897 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 7898 case Intrinsic::amdgcn_rsq: 7899 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 7900 case Intrinsic::amdgcn_rsq_legacy: 7901 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7902 return emitRemovedIntrinsicError(DAG, DL, VT); 7903 return SDValue(); 7904 case Intrinsic::amdgcn_rcp_legacy: 7905 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7906 return emitRemovedIntrinsicError(DAG, DL, VT); 7907 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); 7908 case Intrinsic::amdgcn_rsq_clamp: { 7909 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 7910 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 7911 7912 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 7913 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 7914 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 7915 7916 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 7917 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 7918 DAG.getConstantFP(Max, DL, VT)); 7919 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 7920 DAG.getConstantFP(Min, DL, VT)); 7921 } 7922 case Intrinsic::r600_read_ngroups_x: 7923 if (Subtarget->isAmdHsaOS()) 7924 return emitNonHSAIntrinsicError(DAG, DL, VT); 7925 7926 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7927 SI::KernelInputOffsets::NGROUPS_X, Align(4), 7928 false); 7929 case Intrinsic::r600_read_ngroups_y: 7930 if (Subtarget->isAmdHsaOS()) 7931 return emitNonHSAIntrinsicError(DAG, DL, VT); 7932 7933 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7934 SI::KernelInputOffsets::NGROUPS_Y, Align(4), 7935 false); 7936 case Intrinsic::r600_read_ngroups_z: 7937 if (Subtarget->isAmdHsaOS()) 7938 return emitNonHSAIntrinsicError(DAG, DL, VT); 7939 7940 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7941 SI::KernelInputOffsets::NGROUPS_Z, Align(4), 7942 false); 7943 case Intrinsic::r600_read_global_size_x: 7944 if (Subtarget->isAmdHsaOS()) 7945 return emitNonHSAIntrinsicError(DAG, DL, VT); 7946 7947 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7948 SI::KernelInputOffsets::GLOBAL_SIZE_X, 7949 Align(4), false); 7950 case Intrinsic::r600_read_global_size_y: 7951 if (Subtarget->isAmdHsaOS()) 7952 return emitNonHSAIntrinsicError(DAG, DL, VT); 7953 7954 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7955 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 7956 Align(4), false); 7957 case Intrinsic::r600_read_global_size_z: 7958 if (Subtarget->isAmdHsaOS()) 7959 return emitNonHSAIntrinsicError(DAG, DL, VT); 7960 7961 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 7962 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 7963 Align(4), false); 7964 case Intrinsic::r600_read_local_size_x: 7965 if (Subtarget->isAmdHsaOS()) 7966 return emitNonHSAIntrinsicError(DAG, DL, VT); 7967 7968 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7969 SI::KernelInputOffsets::LOCAL_SIZE_X); 7970 case Intrinsic::r600_read_local_size_y: 7971 if (Subtarget->isAmdHsaOS()) 7972 return emitNonHSAIntrinsicError(DAG, DL, VT); 7973 7974 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7975 SI::KernelInputOffsets::LOCAL_SIZE_Y); 7976 case Intrinsic::r600_read_local_size_z: 7977 if (Subtarget->isAmdHsaOS()) 7978 return emitNonHSAIntrinsicError(DAG, DL, VT); 7979 7980 return lowerImplicitZextParam(DAG, Op, MVT::i16, 7981 SI::KernelInputOffsets::LOCAL_SIZE_Z); 7982 case Intrinsic::amdgcn_workgroup_id_x: 7983 return getPreloadedValue(DAG, *MFI, VT, 7984 AMDGPUFunctionArgInfo::WORKGROUP_ID_X); 7985 case Intrinsic::amdgcn_workgroup_id_y: 7986 return getPreloadedValue(DAG, *MFI, VT, 7987 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); 7988 case Intrinsic::amdgcn_workgroup_id_z: 7989 return getPreloadedValue(DAG, *MFI, VT, 7990 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); 7991 case Intrinsic::amdgcn_lds_kernel_id: { 7992 if (MFI->isEntryFunction()) 7993 return getLDSKernelId(DAG, DL); 7994 return getPreloadedValue(DAG, *MFI, VT, 7995 AMDGPUFunctionArgInfo::LDS_KERNEL_ID); 7996 } 7997 case Intrinsic::amdgcn_workitem_id_x: 7998 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); 7999 case Intrinsic::amdgcn_workitem_id_y: 8000 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); 8001 case Intrinsic::amdgcn_workitem_id_z: 8002 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); 8003 case Intrinsic::amdgcn_wavefrontsize: 8004 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), 8005 SDLoc(Op), MVT::i32); 8006 case Intrinsic::amdgcn_s_buffer_load: { 8007 unsigned CPol = Op.getConstantOperandVal(3); 8008 if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12) 8009 ? AMDGPU::CPol::ALL 8010 : AMDGPU::CPol::ALL_pregfx12)) 8011 return Op; 8012 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8013 DAG); 8014 } 8015 case Intrinsic::amdgcn_fdiv_fast: 8016 return lowerFDIV_FAST(Op, DAG); 8017 case Intrinsic::amdgcn_sin: 8018 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); 8019 8020 case Intrinsic::amdgcn_cos: 8021 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); 8022 8023 case Intrinsic::amdgcn_mul_u24: 8024 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8025 case Intrinsic::amdgcn_mul_i24: 8026 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8027 8028 case Intrinsic::amdgcn_log_clamp: { 8029 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 8030 return SDValue(); 8031 8032 return emitRemovedIntrinsicError(DAG, DL, VT); 8033 } 8034 case Intrinsic::amdgcn_fract: 8035 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); 8036 8037 case Intrinsic::amdgcn_class: 8038 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 8039 Op.getOperand(1), Op.getOperand(2)); 8040 case Intrinsic::amdgcn_div_fmas: 8041 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 8042 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8043 Op.getOperand(4)); 8044 8045 case Intrinsic::amdgcn_div_fixup: 8046 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 8047 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8048 8049 case Intrinsic::amdgcn_div_scale: { 8050 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); 8051 8052 // Translate to the operands expected by the machine instruction. The 8053 // first parameter must be the same as the first instruction. 8054 SDValue Numerator = Op.getOperand(1); 8055 SDValue Denominator = Op.getOperand(2); 8056 8057 // Note this order is opposite of the machine instruction's operations, 8058 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 8059 // intrinsic has the numerator as the first operand to match a normal 8060 // division operation. 8061 8062 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; 8063 8064 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 8065 Denominator, Numerator); 8066 } 8067 case Intrinsic::amdgcn_icmp: { 8068 // There is a Pat that handles this variant, so return it as-is. 8069 if (Op.getOperand(1).getValueType() == MVT::i1 && 8070 Op.getConstantOperandVal(2) == 0 && 8071 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) 8072 return Op; 8073 return lowerICMPIntrinsic(*this, Op.getNode(), DAG); 8074 } 8075 case Intrinsic::amdgcn_fcmp: { 8076 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); 8077 } 8078 case Intrinsic::amdgcn_ballot: 8079 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); 8080 case Intrinsic::amdgcn_fmed3: 8081 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, 8082 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8083 case Intrinsic::amdgcn_fdot2: 8084 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, 8085 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 8086 Op.getOperand(4)); 8087 case Intrinsic::amdgcn_fmul_legacy: 8088 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, 8089 Op.getOperand(1), Op.getOperand(2)); 8090 case Intrinsic::amdgcn_sffbh: 8091 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); 8092 case Intrinsic::amdgcn_sbfe: 8093 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 8094 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8095 case Intrinsic::amdgcn_ubfe: 8096 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 8097 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 8098 case Intrinsic::amdgcn_cvt_pkrtz: 8099 case Intrinsic::amdgcn_cvt_pknorm_i16: 8100 case Intrinsic::amdgcn_cvt_pknorm_u16: 8101 case Intrinsic::amdgcn_cvt_pk_i16: 8102 case Intrinsic::amdgcn_cvt_pk_u16: { 8103 // FIXME: Stop adding cast if v2f16/v2i16 are legal. 8104 EVT VT = Op.getValueType(); 8105 unsigned Opcode; 8106 8107 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) 8108 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; 8109 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) 8110 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; 8111 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) 8112 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; 8113 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) 8114 Opcode = AMDGPUISD::CVT_PK_I16_I32; 8115 else 8116 Opcode = AMDGPUISD::CVT_PK_U16_U32; 8117 8118 if (isTypeLegal(VT)) 8119 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); 8120 8121 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, 8122 Op.getOperand(1), Op.getOperand(2)); 8123 return DAG.getNode(ISD::BITCAST, DL, VT, Node); 8124 } 8125 case Intrinsic::amdgcn_fmad_ftz: 8126 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), 8127 Op.getOperand(2), Op.getOperand(3)); 8128 8129 case Intrinsic::amdgcn_if_break: 8130 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, 8131 Op->getOperand(1), Op->getOperand(2)), 0); 8132 8133 case Intrinsic::amdgcn_groupstaticsize: { 8134 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); 8135 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 8136 return Op; 8137 8138 const Module *M = MF.getFunction().getParent(); 8139 const GlobalValue *GV = 8140 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); 8141 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, 8142 SIInstrInfo::MO_ABS32_LO); 8143 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 8144 } 8145 case Intrinsic::amdgcn_is_shared: 8146 case Intrinsic::amdgcn_is_private: { 8147 SDLoc SL(Op); 8148 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? 8149 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 8150 SDValue Aperture = getSegmentAperture(AS, SL, DAG); 8151 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, 8152 Op.getOperand(1)); 8153 8154 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, 8155 DAG.getConstant(1, SL, MVT::i32)); 8156 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); 8157 } 8158 case Intrinsic::amdgcn_perm: 8159 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), 8160 Op.getOperand(2), Op.getOperand(3)); 8161 case Intrinsic::amdgcn_reloc_constant: { 8162 Module *M = const_cast<Module *>(MF.getFunction().getParent()); 8163 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); 8164 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); 8165 auto RelocSymbol = cast<GlobalVariable>( 8166 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); 8167 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, 8168 SIInstrInfo::MO_ABS32_LO); 8169 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; 8170 } 8171 default: 8172 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8173 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 8174 return lowerImage(Op, ImageDimIntr, DAG, false); 8175 8176 return Op; 8177 } 8178 } 8179 8180 // On targets not supporting constant in soffset field, turn zero to 8181 // SGPR_NULL to avoid generating an extra s_mov with zero. 8182 static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, 8183 const GCNSubtarget *Subtarget) { 8184 if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset)) 8185 return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32); 8186 return SOffset; 8187 } 8188 8189 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, 8190 SelectionDAG &DAG, 8191 unsigned NewOpcode) const { 8192 SDLoc DL(Op); 8193 8194 SDValue VData = Op.getOperand(2); 8195 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8196 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8197 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8198 SDValue Ops[] = { 8199 Op.getOperand(0), // Chain 8200 VData, // vdata 8201 Rsrc, // rsrc 8202 DAG.getConstant(0, DL, MVT::i32), // vindex 8203 Offsets.first, // voffset 8204 SOffset, // soffset 8205 Offsets.second, // offset 8206 Op.getOperand(6), // cachepolicy 8207 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8208 }; 8209 8210 auto *M = cast<MemSDNode>(Op); 8211 8212 EVT MemVT = VData.getValueType(); 8213 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 8214 M->getMemOperand()); 8215 } 8216 8217 // Return a value to use for the idxen operand by examining the vindex operand. 8218 static unsigned getIdxEn(SDValue VIndex) { 8219 // No need to set idxen if vindex is known to be zero. 8220 return isNullConstant(VIndex) ? 0 : 1; 8221 } 8222 8223 SDValue 8224 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, 8225 unsigned NewOpcode) const { 8226 SDLoc DL(Op); 8227 8228 SDValue VData = Op.getOperand(2); 8229 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 8230 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8231 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 8232 SDValue Ops[] = { 8233 Op.getOperand(0), // Chain 8234 VData, // vdata 8235 Rsrc, // rsrc 8236 Op.getOperand(4), // vindex 8237 Offsets.first, // voffset 8238 SOffset, // soffset 8239 Offsets.second, // offset 8240 Op.getOperand(7), // cachepolicy 8241 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8242 }; 8243 8244 auto *M = cast<MemSDNode>(Op); 8245 8246 EVT MemVT = VData.getValueType(); 8247 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, 8248 M->getMemOperand()); 8249 } 8250 8251 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 8252 SelectionDAG &DAG) const { 8253 unsigned IntrID = Op.getConstantOperandVal(1); 8254 SDLoc DL(Op); 8255 8256 switch (IntrID) { 8257 case Intrinsic::amdgcn_ds_ordered_add: 8258 case Intrinsic::amdgcn_ds_ordered_swap: { 8259 MemSDNode *M = cast<MemSDNode>(Op); 8260 SDValue Chain = M->getOperand(0); 8261 SDValue M0 = M->getOperand(2); 8262 SDValue Value = M->getOperand(3); 8263 unsigned IndexOperand = M->getConstantOperandVal(7); 8264 unsigned WaveRelease = M->getConstantOperandVal(8); 8265 unsigned WaveDone = M->getConstantOperandVal(9); 8266 8267 unsigned OrderedCountIndex = IndexOperand & 0x3f; 8268 IndexOperand &= ~0x3f; 8269 unsigned CountDw = 0; 8270 8271 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { 8272 CountDw = (IndexOperand >> 24) & 0xf; 8273 IndexOperand &= ~(0xf << 24); 8274 8275 if (CountDw < 1 || CountDw > 4) { 8276 report_fatal_error( 8277 "ds_ordered_count: dword count must be between 1 and 4"); 8278 } 8279 } 8280 8281 if (IndexOperand) 8282 report_fatal_error("ds_ordered_count: bad index operand"); 8283 8284 if (WaveDone && !WaveRelease) 8285 report_fatal_error("ds_ordered_count: wave_done requires wave_release"); 8286 8287 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; 8288 unsigned ShaderType = 8289 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); 8290 unsigned Offset0 = OrderedCountIndex << 2; 8291 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); 8292 8293 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) 8294 Offset1 |= (CountDw - 1) << 6; 8295 8296 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) 8297 Offset1 |= ShaderType << 2; 8298 8299 unsigned Offset = Offset0 | (Offset1 << 8); 8300 8301 SDValue Ops[] = { 8302 Chain, 8303 Value, 8304 DAG.getTargetConstant(Offset, DL, MVT::i16), 8305 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue 8306 }; 8307 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, 8308 M->getVTList(), Ops, M->getMemoryVT(), 8309 M->getMemOperand()); 8310 } 8311 case Intrinsic::amdgcn_ds_fadd: { 8312 MemSDNode *M = cast<MemSDNode>(Op); 8313 unsigned Opc; 8314 switch (IntrID) { 8315 case Intrinsic::amdgcn_ds_fadd: 8316 Opc = ISD::ATOMIC_LOAD_FADD; 8317 break; 8318 } 8319 8320 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), 8321 M->getOperand(0), M->getOperand(2), M->getOperand(3), 8322 M->getMemOperand()); 8323 } 8324 case Intrinsic::amdgcn_ds_fmin: 8325 case Intrinsic::amdgcn_ds_fmax: { 8326 MemSDNode *M = cast<MemSDNode>(Op); 8327 unsigned Opc; 8328 switch (IntrID) { 8329 case Intrinsic::amdgcn_ds_fmin: 8330 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; 8331 break; 8332 case Intrinsic::amdgcn_ds_fmax: 8333 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; 8334 break; 8335 default: 8336 llvm_unreachable("Unknown intrinsic!"); 8337 } 8338 SDValue Ops[] = { 8339 M->getOperand(0), // Chain 8340 M->getOperand(2), // Ptr 8341 M->getOperand(3) // Value 8342 }; 8343 8344 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, 8345 M->getMemoryVT(), M->getMemOperand()); 8346 } 8347 case Intrinsic::amdgcn_buffer_load: 8348 case Intrinsic::amdgcn_buffer_load_format: { 8349 unsigned Glc = Op.getConstantOperandVal(5); 8350 unsigned Slc = Op.getConstantOperandVal(6); 8351 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 8352 SDValue Ops[] = { 8353 Op.getOperand(0), // Chain 8354 Op.getOperand(2), // rsrc 8355 Op.getOperand(3), // vindex 8356 SDValue(), // voffset -- will be set by setBufferOffsets 8357 SDValue(), // soffset -- will be set by setBufferOffsets 8358 SDValue(), // offset -- will be set by setBufferOffsets 8359 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8360 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8361 }; 8362 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); 8363 8364 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? 8365 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; 8366 8367 EVT VT = Op.getValueType(); 8368 EVT IntVT = VT.changeTypeToInteger(); 8369 auto *M = cast<MemSDNode>(Op); 8370 EVT LoadVT = Op.getValueType(); 8371 8372 if (LoadVT.getScalarType() == MVT::f16) 8373 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, 8374 M, DAG, Ops); 8375 8376 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics 8377 if (LoadVT.getScalarType() == MVT::i8 || 8378 LoadVT.getScalarType() == MVT::i16) 8379 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); 8380 8381 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, 8382 M->getMemOperand(), DAG); 8383 } 8384 case Intrinsic::amdgcn_raw_buffer_load: 8385 case Intrinsic::amdgcn_raw_ptr_buffer_load: 8386 case Intrinsic::amdgcn_raw_buffer_load_format: 8387 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: { 8388 const bool IsFormat = 8389 IntrID == Intrinsic::amdgcn_raw_buffer_load_format || 8390 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format; 8391 8392 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8393 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 8394 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); 8395 SDValue Ops[] = { 8396 Op.getOperand(0), // Chain 8397 Rsrc, // rsrc 8398 DAG.getConstant(0, DL, MVT::i32), // vindex 8399 Offsets.first, // voffset 8400 SOffset, // soffset 8401 Offsets.second, // offset 8402 Op.getOperand(5), // cachepolicy, swizzled buffer 8403 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8404 }; 8405 8406 auto *M = cast<MemSDNode>(Op); 8407 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); 8408 } 8409 case Intrinsic::amdgcn_struct_buffer_load: 8410 case Intrinsic::amdgcn_struct_ptr_buffer_load: 8411 case Intrinsic::amdgcn_struct_buffer_load_format: 8412 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: { 8413 const bool IsFormat = 8414 IntrID == Intrinsic::amdgcn_struct_buffer_load_format || 8415 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format; 8416 8417 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8418 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8419 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8420 SDValue Ops[] = { 8421 Op.getOperand(0), // Chain 8422 Rsrc, // rsrc 8423 Op.getOperand(3), // vindex 8424 Offsets.first, // voffset 8425 SOffset, // soffset 8426 Offsets.second, // offset 8427 Op.getOperand(6), // cachepolicy, swizzled buffer 8428 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8429 }; 8430 8431 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); 8432 } 8433 case Intrinsic::amdgcn_tbuffer_load: { 8434 MemSDNode *M = cast<MemSDNode>(Op); 8435 EVT LoadVT = Op.getValueType(); 8436 8437 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8438 unsigned Dfmt = Op.getConstantOperandVal(7); 8439 unsigned Nfmt = Op.getConstantOperandVal(8); 8440 unsigned Glc = Op.getConstantOperandVal(9); 8441 unsigned Slc = Op.getConstantOperandVal(10); 8442 unsigned IdxEn = getIdxEn(Op.getOperand(3)); 8443 SDValue Ops[] = { 8444 Op.getOperand(0), // Chain 8445 Op.getOperand(2), // rsrc 8446 Op.getOperand(3), // vindex 8447 Op.getOperand(4), // voffset 8448 SOffset, // soffset 8449 Op.getOperand(6), // offset 8450 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 8451 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 8452 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen 8453 }; 8454 8455 if (LoadVT.getScalarType() == MVT::f16) 8456 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8457 M, DAG, Ops); 8458 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8459 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8460 DAG); 8461 } 8462 case Intrinsic::amdgcn_raw_tbuffer_load: 8463 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: { 8464 MemSDNode *M = cast<MemSDNode>(Op); 8465 EVT LoadVT = Op.getValueType(); 8466 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8467 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); 8468 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); 8469 8470 SDValue Ops[] = { 8471 Op.getOperand(0), // Chain 8472 Rsrc, // rsrc 8473 DAG.getConstant(0, DL, MVT::i32), // vindex 8474 Offsets.first, // voffset 8475 SOffset, // soffset 8476 Offsets.second, // offset 8477 Op.getOperand(5), // format 8478 Op.getOperand(6), // cachepolicy, swizzled buffer 8479 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8480 }; 8481 8482 if (LoadVT.getScalarType() == MVT::f16) 8483 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8484 M, DAG, Ops); 8485 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8486 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8487 DAG); 8488 } 8489 case Intrinsic::amdgcn_struct_tbuffer_load: 8490 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: { 8491 MemSDNode *M = cast<MemSDNode>(Op); 8492 EVT LoadVT = Op.getValueType(); 8493 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 8494 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 8495 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 8496 8497 SDValue Ops[] = { 8498 Op.getOperand(0), // Chain 8499 Rsrc, // rsrc 8500 Op.getOperand(3), // vindex 8501 Offsets.first, // voffset 8502 SOffset, // soffset 8503 Offsets.second, // offset 8504 Op.getOperand(6), // format 8505 Op.getOperand(7), // cachepolicy, swizzled buffer 8506 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8507 }; 8508 8509 if (LoadVT.getScalarType() == MVT::f16) 8510 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, 8511 M, DAG, Ops); 8512 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, 8513 Op->getVTList(), Ops, LoadVT, M->getMemOperand(), 8514 DAG); 8515 } 8516 case Intrinsic::amdgcn_buffer_atomic_swap: 8517 case Intrinsic::amdgcn_buffer_atomic_add: 8518 case Intrinsic::amdgcn_buffer_atomic_sub: 8519 case Intrinsic::amdgcn_buffer_atomic_csub: 8520 case Intrinsic::amdgcn_buffer_atomic_smin: 8521 case Intrinsic::amdgcn_buffer_atomic_umin: 8522 case Intrinsic::amdgcn_buffer_atomic_smax: 8523 case Intrinsic::amdgcn_buffer_atomic_umax: 8524 case Intrinsic::amdgcn_buffer_atomic_and: 8525 case Intrinsic::amdgcn_buffer_atomic_or: 8526 case Intrinsic::amdgcn_buffer_atomic_xor: 8527 case Intrinsic::amdgcn_buffer_atomic_fadd: { 8528 unsigned Slc = Op.getConstantOperandVal(6); 8529 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 8530 SDValue Ops[] = { 8531 Op.getOperand(0), // Chain 8532 Op.getOperand(2), // vdata 8533 Op.getOperand(3), // rsrc 8534 Op.getOperand(4), // vindex 8535 SDValue(), // voffset -- will be set by setBufferOffsets 8536 SDValue(), // soffset -- will be set by setBufferOffsets 8537 SDValue(), // offset -- will be set by setBufferOffsets 8538 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 8539 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8540 }; 8541 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 8542 8543 EVT VT = Op.getValueType(); 8544 8545 auto *M = cast<MemSDNode>(Op); 8546 unsigned Opcode = 0; 8547 8548 switch (IntrID) { 8549 case Intrinsic::amdgcn_buffer_atomic_swap: 8550 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; 8551 break; 8552 case Intrinsic::amdgcn_buffer_atomic_add: 8553 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; 8554 break; 8555 case Intrinsic::amdgcn_buffer_atomic_sub: 8556 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; 8557 break; 8558 case Intrinsic::amdgcn_buffer_atomic_csub: 8559 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; 8560 break; 8561 case Intrinsic::amdgcn_buffer_atomic_smin: 8562 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; 8563 break; 8564 case Intrinsic::amdgcn_buffer_atomic_umin: 8565 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; 8566 break; 8567 case Intrinsic::amdgcn_buffer_atomic_smax: 8568 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; 8569 break; 8570 case Intrinsic::amdgcn_buffer_atomic_umax: 8571 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; 8572 break; 8573 case Intrinsic::amdgcn_buffer_atomic_and: 8574 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; 8575 break; 8576 case Intrinsic::amdgcn_buffer_atomic_or: 8577 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; 8578 break; 8579 case Intrinsic::amdgcn_buffer_atomic_xor: 8580 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; 8581 break; 8582 case Intrinsic::amdgcn_buffer_atomic_fadd: 8583 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; 8584 break; 8585 default: 8586 llvm_unreachable("unhandled atomic opcode"); 8587 } 8588 8589 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, 8590 M->getMemOperand()); 8591 } 8592 case Intrinsic::amdgcn_raw_buffer_atomic_fadd: 8593 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd: 8594 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 8595 case Intrinsic::amdgcn_struct_buffer_atomic_fadd: 8596 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd: 8597 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); 8598 case Intrinsic::amdgcn_raw_buffer_atomic_fmin: 8599 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin: 8600 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 8601 case Intrinsic::amdgcn_struct_buffer_atomic_fmin: 8602 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin: 8603 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); 8604 case Intrinsic::amdgcn_raw_buffer_atomic_fmax: 8605 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax: 8606 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 8607 case Intrinsic::amdgcn_struct_buffer_atomic_fmax: 8608 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax: 8609 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); 8610 case Intrinsic::amdgcn_raw_buffer_atomic_swap: 8611 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap: 8612 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); 8613 case Intrinsic::amdgcn_raw_buffer_atomic_add: 8614 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: 8615 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 8616 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 8617 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: 8618 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 8619 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 8620 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: 8621 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); 8622 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 8623 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: 8624 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); 8625 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 8626 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: 8627 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); 8628 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 8629 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: 8630 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); 8631 case Intrinsic::amdgcn_raw_buffer_atomic_and: 8632 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: 8633 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 8634 case Intrinsic::amdgcn_raw_buffer_atomic_or: 8635 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: 8636 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 8637 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 8638 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: 8639 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 8640 case Intrinsic::amdgcn_raw_buffer_atomic_inc: 8641 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc: 8642 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 8643 case Intrinsic::amdgcn_raw_buffer_atomic_dec: 8644 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec: 8645 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 8646 case Intrinsic::amdgcn_struct_buffer_atomic_swap: 8647 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap: 8648 return lowerStructBufferAtomicIntrin(Op, DAG, 8649 AMDGPUISD::BUFFER_ATOMIC_SWAP); 8650 case Intrinsic::amdgcn_struct_buffer_atomic_add: 8651 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: 8652 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); 8653 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 8654 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: 8655 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); 8656 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 8657 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: 8658 return lowerStructBufferAtomicIntrin(Op, DAG, 8659 AMDGPUISD::BUFFER_ATOMIC_SMIN); 8660 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 8661 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: 8662 return lowerStructBufferAtomicIntrin(Op, DAG, 8663 AMDGPUISD::BUFFER_ATOMIC_UMIN); 8664 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 8665 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: 8666 return lowerStructBufferAtomicIntrin(Op, DAG, 8667 AMDGPUISD::BUFFER_ATOMIC_SMAX); 8668 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 8669 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: 8670 return lowerStructBufferAtomicIntrin(Op, DAG, 8671 AMDGPUISD::BUFFER_ATOMIC_UMAX); 8672 case Intrinsic::amdgcn_struct_buffer_atomic_and: 8673 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: 8674 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); 8675 case Intrinsic::amdgcn_struct_buffer_atomic_or: 8676 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: 8677 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); 8678 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 8679 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: 8680 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); 8681 case Intrinsic::amdgcn_struct_buffer_atomic_inc: 8682 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc: 8683 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); 8684 case Intrinsic::amdgcn_struct_buffer_atomic_dec: 8685 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec: 8686 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); 8687 8688 case Intrinsic::amdgcn_buffer_atomic_cmpswap: { 8689 unsigned Slc = Op.getConstantOperandVal(7); 8690 unsigned IdxEn = getIdxEn(Op.getOperand(5)); 8691 SDValue Ops[] = { 8692 Op.getOperand(0), // Chain 8693 Op.getOperand(2), // src 8694 Op.getOperand(3), // cmp 8695 Op.getOperand(4), // rsrc 8696 Op.getOperand(5), // vindex 8697 SDValue(), // voffset -- will be set by setBufferOffsets 8698 SDValue(), // soffset -- will be set by setBufferOffsets 8699 SDValue(), // offset -- will be set by setBufferOffsets 8700 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy 8701 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 8702 }; 8703 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); 8704 8705 EVT VT = Op.getValueType(); 8706 auto *M = cast<MemSDNode>(Op); 8707 8708 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8709 Op->getVTList(), Ops, VT, M->getMemOperand()); 8710 } 8711 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: 8712 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: { 8713 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG); 8714 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 8715 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 8716 SDValue Ops[] = { 8717 Op.getOperand(0), // Chain 8718 Op.getOperand(2), // src 8719 Op.getOperand(3), // cmp 8720 Rsrc, // rsrc 8721 DAG.getConstant(0, DL, MVT::i32), // vindex 8722 Offsets.first, // voffset 8723 SOffset, // soffset 8724 Offsets.second, // offset 8725 Op.getOperand(7), // cachepolicy 8726 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 8727 }; 8728 EVT VT = Op.getValueType(); 8729 auto *M = cast<MemSDNode>(Op); 8730 8731 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8732 Op->getVTList(), Ops, VT, M->getMemOperand()); 8733 } 8734 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: 8735 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: { 8736 SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG); 8737 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); 8738 auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget); 8739 SDValue Ops[] = { 8740 Op.getOperand(0), // Chain 8741 Op.getOperand(2), // src 8742 Op.getOperand(3), // cmp 8743 Rsrc, // rsrc 8744 Op.getOperand(5), // vindex 8745 Offsets.first, // voffset 8746 SOffset, // soffset 8747 Offsets.second, // offset 8748 Op.getOperand(8), // cachepolicy 8749 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 8750 }; 8751 EVT VT = Op.getValueType(); 8752 auto *M = cast<MemSDNode>(Op); 8753 8754 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, 8755 Op->getVTList(), Ops, VT, M->getMemOperand()); 8756 } 8757 case Intrinsic::amdgcn_image_bvh_intersect_ray: { 8758 MemSDNode *M = cast<MemSDNode>(Op); 8759 SDValue NodePtr = M->getOperand(2); 8760 SDValue RayExtent = M->getOperand(3); 8761 SDValue RayOrigin = M->getOperand(4); 8762 SDValue RayDir = M->getOperand(5); 8763 SDValue RayInvDir = M->getOperand(6); 8764 SDValue TDescr = M->getOperand(7); 8765 8766 assert(NodePtr.getValueType() == MVT::i32 || 8767 NodePtr.getValueType() == MVT::i64); 8768 assert(RayDir.getValueType() == MVT::v3f16 || 8769 RayDir.getValueType() == MVT::v3f32); 8770 8771 if (!Subtarget->hasGFX10_AEncoding()) { 8772 emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); 8773 return SDValue(); 8774 } 8775 8776 const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget); 8777 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); 8778 const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); 8779 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; 8780 const bool Is64 = NodePtr.getValueType() == MVT::i64; 8781 const unsigned NumVDataDwords = 4; 8782 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); 8783 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; 8784 const bool UseNSA = (Subtarget->hasNSAEncoding() && 8785 NumVAddrs <= Subtarget->getNSAMaxSize()) || 8786 IsGFX12Plus; 8787 const unsigned BaseOpcodes[2][2] = { 8788 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, 8789 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, 8790 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; 8791 int Opcode; 8792 if (UseNSA) { 8793 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8794 IsGFX12Plus ? AMDGPU::MIMGEncGfx12 8795 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA 8796 : AMDGPU::MIMGEncGfx10NSA, 8797 NumVDataDwords, NumVAddrDwords); 8798 } else { 8799 assert(!IsGFX12Plus); 8800 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], 8801 IsGFX11 ? AMDGPU::MIMGEncGfx11Default 8802 : AMDGPU::MIMGEncGfx10Default, 8803 NumVDataDwords, NumVAddrDwords); 8804 } 8805 assert(Opcode != -1); 8806 8807 SmallVector<SDValue, 16> Ops; 8808 8809 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { 8810 SmallVector<SDValue, 3> Lanes; 8811 DAG.ExtractVectorElements(Op, Lanes, 0, 3); 8812 if (Lanes[0].getValueSizeInBits() == 32) { 8813 for (unsigned I = 0; I < 3; ++I) 8814 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); 8815 } else { 8816 if (IsAligned) { 8817 Ops.push_back( 8818 DAG.getBitcast(MVT::i32, 8819 DAG.getBuildVector(MVT::v2f16, DL, 8820 { Lanes[0], Lanes[1] }))); 8821 Ops.push_back(Lanes[2]); 8822 } else { 8823 SDValue Elt0 = Ops.pop_back_val(); 8824 Ops.push_back( 8825 DAG.getBitcast(MVT::i32, 8826 DAG.getBuildVector(MVT::v2f16, DL, 8827 { Elt0, Lanes[0] }))); 8828 Ops.push_back( 8829 DAG.getBitcast(MVT::i32, 8830 DAG.getBuildVector(MVT::v2f16, DL, 8831 { Lanes[1], Lanes[2] }))); 8832 } 8833 } 8834 }; 8835 8836 if (UseNSA && IsGFX11Plus) { 8837 Ops.push_back(NodePtr); 8838 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 8839 Ops.push_back(RayOrigin); 8840 if (IsA16) { 8841 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; 8842 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); 8843 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); 8844 for (unsigned I = 0; I < 3; ++I) { 8845 MergedLanes.push_back(DAG.getBitcast( 8846 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, 8847 {DirLanes[I], InvDirLanes[I]}))); 8848 } 8849 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); 8850 } else { 8851 Ops.push_back(RayDir); 8852 Ops.push_back(RayInvDir); 8853 } 8854 } else { 8855 if (Is64) 8856 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 8857 2); 8858 else 8859 Ops.push_back(NodePtr); 8860 8861 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); 8862 packLanes(RayOrigin, true); 8863 packLanes(RayDir, true); 8864 packLanes(RayInvDir, false); 8865 } 8866 8867 if (!UseNSA) { 8868 // Build a single vector containing all the operands so far prepared. 8869 if (NumVAddrDwords > 12) { 8870 SDValue Undef = DAG.getUNDEF(MVT::i32); 8871 Ops.append(16 - Ops.size(), Undef); 8872 } 8873 assert(Ops.size() >= 8 && Ops.size() <= 12); 8874 SDValue MergedOps = DAG.getBuildVector( 8875 MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); 8876 Ops.clear(); 8877 Ops.push_back(MergedOps); 8878 } 8879 8880 Ops.push_back(TDescr); 8881 Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1)); 8882 Ops.push_back(M->getChain()); 8883 8884 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); 8885 MachineMemOperand *MemRef = M->getMemOperand(); 8886 DAG.setNodeMemRefs(NewNode, {MemRef}); 8887 return SDValue(NewNode, 0); 8888 } 8889 case Intrinsic::amdgcn_global_atomic_fmin: 8890 case Intrinsic::amdgcn_global_atomic_fmax: 8891 case Intrinsic::amdgcn_global_atomic_fmin_num: 8892 case Intrinsic::amdgcn_global_atomic_fmax_num: 8893 case Intrinsic::amdgcn_flat_atomic_fmin: 8894 case Intrinsic::amdgcn_flat_atomic_fmax: 8895 case Intrinsic::amdgcn_flat_atomic_fmin_num: 8896 case Intrinsic::amdgcn_flat_atomic_fmax_num: { 8897 MemSDNode *M = cast<MemSDNode>(Op); 8898 SDValue Ops[] = { 8899 M->getOperand(0), // Chain 8900 M->getOperand(2), // Ptr 8901 M->getOperand(3) // Value 8902 }; 8903 unsigned Opcode = 0; 8904 switch (IntrID) { 8905 case Intrinsic::amdgcn_global_atomic_fmin: 8906 case Intrinsic::amdgcn_global_atomic_fmin_num: 8907 case Intrinsic::amdgcn_flat_atomic_fmin: 8908 case Intrinsic::amdgcn_flat_atomic_fmin_num: { 8909 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; 8910 break; 8911 } 8912 case Intrinsic::amdgcn_global_atomic_fmax: 8913 case Intrinsic::amdgcn_global_atomic_fmax_num: 8914 case Intrinsic::amdgcn_flat_atomic_fmax: 8915 case Intrinsic::amdgcn_flat_atomic_fmax_num: { 8916 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; 8917 break; 8918 } 8919 default: 8920 llvm_unreachable("unhandled atomic opcode"); 8921 } 8922 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), 8923 M->getVTList(), Ops, M->getMemoryVT(), 8924 M->getMemOperand()); 8925 } 8926 case Intrinsic::amdgcn_s_get_barrier_state: { 8927 SDValue Chain = Op->getOperand(0); 8928 SmallVector<SDValue, 2> Ops; 8929 unsigned Opc; 8930 bool IsInlinableBarID = false; 8931 int64_t BarID; 8932 8933 if (isa<ConstantSDNode>(Op->getOperand(2))) { 8934 BarID = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 8935 IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID); 8936 } 8937 8938 if (IsInlinableBarID) { 8939 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM; 8940 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32); 8941 Ops.push_back(K); 8942 } else { 8943 Opc = AMDGPU::S_GET_BARRIER_STATE_M0; 8944 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2)); 8945 Ops.push_back(M0Val.getValue(0)); 8946 } 8947 8948 auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 8949 return SDValue(NewMI, 0); 8950 } 8951 default: 8952 8953 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 8954 AMDGPU::getImageDimIntrinsicInfo(IntrID)) 8955 return lowerImage(Op, ImageDimIntr, DAG, true); 8956 8957 return SDValue(); 8958 } 8959 } 8960 8961 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to 8962 // dwordx4 if on SI and handle TFE loads. 8963 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, 8964 SDVTList VTList, 8965 ArrayRef<SDValue> Ops, EVT MemVT, 8966 MachineMemOperand *MMO, 8967 SelectionDAG &DAG) const { 8968 LLVMContext &C = *DAG.getContext(); 8969 MachineFunction &MF = DAG.getMachineFunction(); 8970 EVT VT = VTList.VTs[0]; 8971 8972 assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); 8973 bool IsTFE = VTList.NumVTs == 3; 8974 if (IsTFE) { 8975 unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); 8976 unsigned NumOpDWords = NumValueDWords + 1; 8977 EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); 8978 SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); 8979 MachineMemOperand *OpDWordsMMO = 8980 MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); 8981 SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, 8982 OpDWordsVT, OpDWordsMMO, DAG); 8983 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, 8984 DAG.getVectorIdxConstant(NumValueDWords, DL)); 8985 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); 8986 SDValue ValueDWords = 8987 NumValueDWords == 1 8988 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) 8989 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 8990 EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, 8991 ZeroIdx); 8992 SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); 8993 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); 8994 } 8995 8996 if (!Subtarget->hasDwordx3LoadStores() && 8997 (VT == MVT::v3i32 || VT == MVT::v3f32)) { 8998 EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); 8999 EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); 9000 MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); 9001 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); 9002 SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, 9003 WidenedMemVT, WidenedMMO); 9004 SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, 9005 DAG.getVectorIdxConstant(0, DL)); 9006 return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); 9007 } 9008 9009 return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); 9010 } 9011 9012 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, 9013 bool ImageStore) const { 9014 EVT StoreVT = VData.getValueType(); 9015 9016 // No change for f16 and legal vector D16 types. 9017 if (!StoreVT.isVector()) 9018 return VData; 9019 9020 SDLoc DL(VData); 9021 unsigned NumElements = StoreVT.getVectorNumElements(); 9022 9023 if (Subtarget->hasUnpackedD16VMem()) { 9024 // We need to unpack the packed data to store. 9025 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 9026 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9027 9028 EVT EquivStoreVT = 9029 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); 9030 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); 9031 return DAG.UnrollVectorOp(ZExt.getNode()); 9032 } 9033 9034 // The sq block of gfx8.1 does not estimate register use correctly for d16 9035 // image store instructions. The data operand is computed as if it were not a 9036 // d16 image instruction. 9037 if (ImageStore && Subtarget->hasImageStoreD16Bug()) { 9038 // Bitcast to i16 9039 EVT IntStoreVT = StoreVT.changeTypeToInteger(); 9040 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9041 9042 // Decompose into scalars 9043 SmallVector<SDValue, 4> Elts; 9044 DAG.ExtractVectorElements(IntVData, Elts); 9045 9046 // Group pairs of i16 into v2i16 and bitcast to i32 9047 SmallVector<SDValue, 4> PackedElts; 9048 for (unsigned I = 0; I < Elts.size() / 2; I += 1) { 9049 SDValue Pair = 9050 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); 9051 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 9052 PackedElts.push_back(IntPair); 9053 } 9054 if ((NumElements % 2) == 1) { 9055 // Handle v3i16 9056 unsigned I = Elts.size() / 2; 9057 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, 9058 {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); 9059 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); 9060 PackedElts.push_back(IntPair); 9061 } 9062 9063 // Pad using UNDEF 9064 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); 9065 9066 // Build final vector 9067 EVT VecVT = 9068 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); 9069 return DAG.getBuildVector(VecVT, DL, PackedElts); 9070 } 9071 9072 if (NumElements == 3) { 9073 EVT IntStoreVT = 9074 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); 9075 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); 9076 9077 EVT WidenedStoreVT = EVT::getVectorVT( 9078 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); 9079 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), 9080 WidenedStoreVT.getStoreSizeInBits()); 9081 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); 9082 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); 9083 } 9084 9085 assert(isTypeLegal(StoreVT)); 9086 return VData; 9087 } 9088 9089 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9090 SelectionDAG &DAG) const { 9091 SDLoc DL(Op); 9092 SDValue Chain = Op.getOperand(0); 9093 unsigned IntrinsicID = Op.getConstantOperandVal(1); 9094 MachineFunction &MF = DAG.getMachineFunction(); 9095 9096 switch (IntrinsicID) { 9097 case Intrinsic::amdgcn_exp_compr: { 9098 if (!Subtarget->hasCompressedExport()) { 9099 DiagnosticInfoUnsupported BadIntrin( 9100 DAG.getMachineFunction().getFunction(), 9101 "intrinsic not supported on subtarget", DL.getDebugLoc()); 9102 DAG.getContext()->diagnose(BadIntrin); 9103 } 9104 SDValue Src0 = Op.getOperand(4); 9105 SDValue Src1 = Op.getOperand(5); 9106 // Hack around illegal type on SI by directly selecting it. 9107 if (isTypeLegal(Src0.getValueType())) 9108 return SDValue(); 9109 9110 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); 9111 SDValue Undef = DAG.getUNDEF(MVT::f32); 9112 const SDValue Ops[] = { 9113 Op.getOperand(2), // tgt 9114 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 9115 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 9116 Undef, // src2 9117 Undef, // src3 9118 Op.getOperand(7), // vm 9119 DAG.getTargetConstant(1, DL, MVT::i1), // compr 9120 Op.getOperand(3), // en 9121 Op.getOperand(0) // Chain 9122 }; 9123 9124 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; 9125 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); 9126 } 9127 case Intrinsic::amdgcn_s_barrier: { 9128 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 9129 if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) { 9130 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; 9131 if (WGSize <= ST.getWavefrontSize()) 9132 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, 9133 Op.getOperand(0)), 0); 9134 } 9135 9136 // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait 9137 if (ST.hasSplitBarriers()) { 9138 SDValue K = 9139 DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32); 9140 SDValue BarSignal = 9141 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL, 9142 MVT::Other, K, Op.getOperand(0)), 9143 0); 9144 SDValue BarWait = 9145 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K, 9146 BarSignal.getValue(0)), 9147 0); 9148 return BarWait; 9149 } 9150 9151 return SDValue(); 9152 }; 9153 case Intrinsic::amdgcn_tbuffer_store: { 9154 SDValue VData = Op.getOperand(2); 9155 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9156 if (IsD16) 9157 VData = handleD16VData(VData, DAG); 9158 unsigned Dfmt = Op.getConstantOperandVal(8); 9159 unsigned Nfmt = Op.getConstantOperandVal(9); 9160 unsigned Glc = Op.getConstantOperandVal(10); 9161 unsigned Slc = Op.getConstantOperandVal(11); 9162 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 9163 SDValue Ops[] = { 9164 Chain, 9165 VData, // vdata 9166 Op.getOperand(3), // rsrc 9167 Op.getOperand(4), // vindex 9168 Op.getOperand(5), // voffset 9169 Op.getOperand(6), // soffset 9170 Op.getOperand(7), // offset 9171 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format 9172 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 9173 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 9174 }; 9175 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9176 AMDGPUISD::TBUFFER_STORE_FORMAT; 9177 MemSDNode *M = cast<MemSDNode>(Op); 9178 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9179 M->getMemoryVT(), M->getMemOperand()); 9180 } 9181 9182 case Intrinsic::amdgcn_struct_tbuffer_store: 9183 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: { 9184 SDValue VData = Op.getOperand(2); 9185 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9186 if (IsD16) 9187 VData = handleD16VData(VData, DAG); 9188 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9189 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 9190 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 9191 SDValue Ops[] = { 9192 Chain, 9193 VData, // vdata 9194 Rsrc, // rsrc 9195 Op.getOperand(4), // vindex 9196 Offsets.first, // voffset 9197 SOffset, // soffset 9198 Offsets.second, // offset 9199 Op.getOperand(7), // format 9200 Op.getOperand(8), // cachepolicy, swizzled buffer 9201 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 9202 }; 9203 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9204 AMDGPUISD::TBUFFER_STORE_FORMAT; 9205 MemSDNode *M = cast<MemSDNode>(Op); 9206 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9207 M->getMemoryVT(), M->getMemOperand()); 9208 } 9209 9210 case Intrinsic::amdgcn_raw_tbuffer_store: 9211 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: { 9212 SDValue VData = Op.getOperand(2); 9213 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9214 if (IsD16) 9215 VData = handleD16VData(VData, DAG); 9216 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9217 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 9218 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 9219 SDValue Ops[] = { 9220 Chain, 9221 VData, // vdata 9222 Rsrc, // rsrc 9223 DAG.getConstant(0, DL, MVT::i32), // vindex 9224 Offsets.first, // voffset 9225 SOffset, // soffset 9226 Offsets.second, // offset 9227 Op.getOperand(6), // format 9228 Op.getOperand(7), // cachepolicy, swizzled buffer 9229 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 9230 }; 9231 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : 9232 AMDGPUISD::TBUFFER_STORE_FORMAT; 9233 MemSDNode *M = cast<MemSDNode>(Op); 9234 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9235 M->getMemoryVT(), M->getMemOperand()); 9236 } 9237 9238 case Intrinsic::amdgcn_buffer_store: 9239 case Intrinsic::amdgcn_buffer_store_format: { 9240 SDValue VData = Op.getOperand(2); 9241 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); 9242 if (IsD16) 9243 VData = handleD16VData(VData, DAG); 9244 unsigned Glc = Op.getConstantOperandVal(6); 9245 unsigned Slc = Op.getConstantOperandVal(7); 9246 unsigned IdxEn = getIdxEn(Op.getOperand(4)); 9247 SDValue Ops[] = { 9248 Chain, 9249 VData, 9250 Op.getOperand(3), // rsrc 9251 Op.getOperand(4), // vindex 9252 SDValue(), // voffset -- will be set by setBufferOffsets 9253 SDValue(), // soffset -- will be set by setBufferOffsets 9254 SDValue(), // offset -- will be set by setBufferOffsets 9255 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy 9256 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen 9257 }; 9258 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); 9259 9260 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? 9261 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 9262 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9263 MemSDNode *M = cast<MemSDNode>(Op); 9264 9265 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9266 EVT VDataType = VData.getValueType().getScalarType(); 9267 if (VDataType == MVT::i8 || VDataType == MVT::i16) 9268 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 9269 9270 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9271 M->getMemoryVT(), M->getMemOperand()); 9272 } 9273 9274 case Intrinsic::amdgcn_raw_buffer_store: 9275 case Intrinsic::amdgcn_raw_ptr_buffer_store: 9276 case Intrinsic::amdgcn_raw_buffer_store_format: 9277 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: { 9278 const bool IsFormat = 9279 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format || 9280 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format; 9281 9282 SDValue VData = Op.getOperand(2); 9283 EVT VDataVT = VData.getValueType(); 9284 EVT EltType = VDataVT.getScalarType(); 9285 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 9286 if (IsD16) { 9287 VData = handleD16VData(VData, DAG); 9288 VDataVT = VData.getValueType(); 9289 } 9290 9291 if (!isTypeLegal(VDataVT)) { 9292 VData = 9293 DAG.getNode(ISD::BITCAST, DL, 9294 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 9295 } 9296 9297 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9298 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); 9299 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); 9300 SDValue Ops[] = { 9301 Chain, 9302 VData, 9303 Rsrc, 9304 DAG.getConstant(0, DL, MVT::i32), // vindex 9305 Offsets.first, // voffset 9306 SOffset, // soffset 9307 Offsets.second, // offset 9308 Op.getOperand(6), // cachepolicy, swizzled buffer 9309 DAG.getTargetConstant(0, DL, MVT::i1), // idxen 9310 }; 9311 unsigned Opc = 9312 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; 9313 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9314 MemSDNode *M = cast<MemSDNode>(Op); 9315 9316 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9317 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 9318 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); 9319 9320 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9321 M->getMemoryVT(), M->getMemOperand()); 9322 } 9323 9324 case Intrinsic::amdgcn_struct_buffer_store: 9325 case Intrinsic::amdgcn_struct_ptr_buffer_store: 9326 case Intrinsic::amdgcn_struct_buffer_store_format: 9327 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: { 9328 const bool IsFormat = 9329 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format || 9330 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format; 9331 9332 SDValue VData = Op.getOperand(2); 9333 EVT VDataVT = VData.getValueType(); 9334 EVT EltType = VDataVT.getScalarType(); 9335 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); 9336 9337 if (IsD16) { 9338 VData = handleD16VData(VData, DAG); 9339 VDataVT = VData.getValueType(); 9340 } 9341 9342 if (!isTypeLegal(VDataVT)) { 9343 VData = 9344 DAG.getNode(ISD::BITCAST, DL, 9345 getEquivalentMemType(*DAG.getContext(), VDataVT), VData); 9346 } 9347 9348 auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); 9349 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); 9350 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); 9351 SDValue Ops[] = { 9352 Chain, 9353 VData, 9354 Rsrc, 9355 Op.getOperand(4), // vindex 9356 Offsets.first, // voffset 9357 SOffset, // soffset 9358 Offsets.second, // offset 9359 Op.getOperand(7), // cachepolicy, swizzled buffer 9360 DAG.getTargetConstant(1, DL, MVT::i1), // idxen 9361 }; 9362 unsigned Opc = 9363 !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; 9364 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; 9365 MemSDNode *M = cast<MemSDNode>(Op); 9366 9367 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics 9368 EVT VDataType = VData.getValueType().getScalarType(); 9369 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) 9370 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); 9371 9372 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, 9373 M->getMemoryVT(), M->getMemOperand()); 9374 } 9375 case Intrinsic::amdgcn_raw_buffer_load_lds: 9376 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: 9377 case Intrinsic::amdgcn_struct_buffer_load_lds: 9378 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { 9379 unsigned Opc; 9380 bool HasVIndex = 9381 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds || 9382 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds; 9383 unsigned OpOffset = HasVIndex ? 1 : 0; 9384 SDValue VOffset = Op.getOperand(5 + OpOffset); 9385 bool HasVOffset = !isNullConstant(VOffset); 9386 unsigned Size = Op->getConstantOperandVal(4); 9387 9388 switch (Size) { 9389 default: 9390 return SDValue(); 9391 case 1: 9392 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN 9393 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN 9394 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN 9395 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; 9396 break; 9397 case 2: 9398 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN 9399 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN 9400 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN 9401 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; 9402 break; 9403 case 4: 9404 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN 9405 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN 9406 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN 9407 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; 9408 break; 9409 } 9410 9411 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 9412 9413 SmallVector<SDValue, 8> Ops; 9414 9415 if (HasVIndex && HasVOffset) 9416 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, 9417 { Op.getOperand(5), // VIndex 9418 VOffset })); 9419 else if (HasVIndex) 9420 Ops.push_back(Op.getOperand(5)); 9421 else if (HasVOffset) 9422 Ops.push_back(VOffset); 9423 9424 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); 9425 Ops.push_back(Rsrc); 9426 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset 9427 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset 9428 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); 9429 Ops.push_back( 9430 DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol 9431 Ops.push_back( 9432 DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz 9433 Ops.push_back(M0Val.getValue(0)); // Chain 9434 Ops.push_back(M0Val.getValue(1)); // Glue 9435 9436 auto *M = cast<MemSDNode>(Op); 9437 MachineMemOperand *LoadMMO = M->getMemOperand(); 9438 // Don't set the offset value here because the pointer points to the base of 9439 // the buffer. 9440 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 9441 9442 MachinePointerInfo StorePtrI = LoadPtrI; 9443 LoadPtrI.V = PoisonValue::get( 9444 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); 9445 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 9446 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 9447 9448 auto F = LoadMMO->getFlags() & 9449 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 9450 LoadMMO = 9451 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, 9452 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9453 9454 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 9455 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), 9456 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9457 9458 auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); 9459 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 9460 9461 return SDValue(Load, 0); 9462 } 9463 case Intrinsic::amdgcn_global_load_lds: { 9464 unsigned Opc; 9465 unsigned Size = Op->getConstantOperandVal(4); 9466 switch (Size) { 9467 default: 9468 return SDValue(); 9469 case 1: 9470 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; 9471 break; 9472 case 2: 9473 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; 9474 break; 9475 case 4: 9476 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; 9477 break; 9478 } 9479 9480 auto *M = cast<MemSDNode>(Op); 9481 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); 9482 9483 SmallVector<SDValue, 6> Ops; 9484 9485 SDValue Addr = Op.getOperand(2); // Global ptr 9486 SDValue VOffset; 9487 // Try to split SAddr and VOffset. Global and LDS pointers share the same 9488 // immediate offset, so we cannot use a regular SelectGlobalSAddr(). 9489 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { 9490 SDValue LHS = Addr.getOperand(0); 9491 SDValue RHS = Addr.getOperand(1); 9492 9493 if (LHS->isDivergent()) 9494 std::swap(LHS, RHS); 9495 9496 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && 9497 RHS.getOperand(0).getValueType() == MVT::i32) { 9498 // add (i64 sgpr), (zero_extend (i32 vgpr)) 9499 Addr = LHS; 9500 VOffset = RHS.getOperand(0); 9501 } 9502 } 9503 9504 Ops.push_back(Addr); 9505 if (!Addr->isDivergent()) { 9506 Opc = AMDGPU::getGlobalSaddrOp(Opc); 9507 if (!VOffset) 9508 VOffset = SDValue( 9509 DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, 9510 DAG.getTargetConstant(0, DL, MVT::i32)), 0); 9511 Ops.push_back(VOffset); 9512 } 9513 9514 Ops.push_back(Op.getOperand(5)); // Offset 9515 Ops.push_back(Op.getOperand(6)); // CPol 9516 Ops.push_back(M0Val.getValue(0)); // Chain 9517 Ops.push_back(M0Val.getValue(1)); // Glue 9518 9519 MachineMemOperand *LoadMMO = M->getMemOperand(); 9520 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); 9521 LoadPtrI.Offset = Op->getConstantOperandVal(5); 9522 MachinePointerInfo StorePtrI = LoadPtrI; 9523 LoadPtrI.V = PoisonValue::get( 9524 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); 9525 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; 9526 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; 9527 auto F = LoadMMO->getFlags() & 9528 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); 9529 LoadMMO = 9530 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, 9531 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); 9532 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 9533 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4), 9534 LoadMMO->getAAInfo()); 9535 9536 auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 9537 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); 9538 9539 return SDValue(Load, 0); 9540 } 9541 case Intrinsic::amdgcn_end_cf: 9542 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, 9543 Op->getOperand(2), Chain), 0); 9544 case Intrinsic::amdgcn_s_barrier_init: 9545 case Intrinsic::amdgcn_s_barrier_join: 9546 case Intrinsic::amdgcn_s_wakeup_barrier: { 9547 SDValue Chain = Op->getOperand(0); 9548 SmallVector<SDValue, 2> Ops; 9549 SDValue BarOp = Op->getOperand(2); 9550 unsigned Opc; 9551 bool IsInlinableBarID = false; 9552 int64_t BarVal; 9553 9554 if (isa<ConstantSDNode>(BarOp)) { 9555 BarVal = cast<ConstantSDNode>(BarOp)->getSExtValue(); 9556 IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal); 9557 } 9558 9559 if (IsInlinableBarID) { 9560 switch (IntrinsicID) { 9561 default: 9562 return SDValue(); 9563 case Intrinsic::amdgcn_s_barrier_init: 9564 Opc = AMDGPU::S_BARRIER_INIT_IMM; 9565 break; 9566 case Intrinsic::amdgcn_s_barrier_join: 9567 Opc = AMDGPU::S_BARRIER_JOIN_IMM; 9568 break; 9569 case Intrinsic::amdgcn_s_wakeup_barrier: 9570 Opc = AMDGPU::S_WAKEUP_BARRIER_IMM; 9571 break; 9572 } 9573 9574 SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32); 9575 Ops.push_back(K); 9576 } else { 9577 switch (IntrinsicID) { 9578 default: 9579 return SDValue(); 9580 case Intrinsic::amdgcn_s_barrier_init: 9581 Opc = AMDGPU::S_BARRIER_INIT_M0; 9582 break; 9583 case Intrinsic::amdgcn_s_barrier_join: 9584 Opc = AMDGPU::S_BARRIER_JOIN_M0; 9585 break; 9586 case Intrinsic::amdgcn_s_wakeup_barrier: 9587 Opc = AMDGPU::S_WAKEUP_BARRIER_M0; 9588 break; 9589 } 9590 } 9591 9592 if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) { 9593 SDValue M0Val; 9594 // Member count will be read from M0[16:22] 9595 M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3), 9596 DAG.getShiftAmountConstant(16, MVT::i32, DL)); 9597 9598 if (!IsInlinableBarID) { 9599 // If reference to barrier id is not an inline constant then it must be 9600 // referenced with M0[4:0]. Perform an OR with the member count to 9601 // include it in M0. 9602 M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, 9603 Op.getOperand(2), M0Val), 9604 0); 9605 } 9606 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0)); 9607 } else if (!IsInlinableBarID) { 9608 Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0)); 9609 } 9610 9611 auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); 9612 return SDValue(NewMI, 0); 9613 } 9614 default: { 9615 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 9616 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) 9617 return lowerImage(Op, ImageDimIntr, DAG, true); 9618 9619 return Op; 9620 } 9621 } 9622 } 9623 9624 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: 9625 // offset (the offset that is included in bounds checking and swizzling, to be 9626 // split between the instruction's voffset and immoffset fields) and soffset 9627 // (the offset that is excluded from bounds checking and swizzling, to go in 9628 // the instruction's soffset field). This function takes the first kind of 9629 // offset and figures out how to split it between voffset and immoffset. 9630 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( 9631 SDValue Offset, SelectionDAG &DAG) const { 9632 SDLoc DL(Offset); 9633 const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 9634 SDValue N0 = Offset; 9635 ConstantSDNode *C1 = nullptr; 9636 9637 if ((C1 = dyn_cast<ConstantSDNode>(N0))) 9638 N0 = SDValue(); 9639 else if (DAG.isBaseWithConstantOffset(N0)) { 9640 C1 = cast<ConstantSDNode>(N0.getOperand(1)); 9641 N0 = N0.getOperand(0); 9642 } 9643 9644 if (C1) { 9645 unsigned ImmOffset = C1->getZExtValue(); 9646 // If the immediate value is too big for the immoffset field, put only bits 9647 // that would normally fit in the immoffset field. The remaining value that 9648 // is copied/added for the voffset field is a large power of 2, and it 9649 // stands more chance of being CSEd with the copy/add for another similar 9650 // load/store. 9651 // However, do not do that rounding down if that is a negative 9652 // number, as it appears to be illegal to have a negative offset in the 9653 // vgpr, even if adding the immediate offset makes it positive. 9654 unsigned Overflow = ImmOffset & ~MaxImm; 9655 ImmOffset -= Overflow; 9656 if ((int32_t)Overflow < 0) { 9657 Overflow += ImmOffset; 9658 ImmOffset = 0; 9659 } 9660 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); 9661 if (Overflow) { 9662 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); 9663 if (!N0) 9664 N0 = OverflowVal; 9665 else { 9666 SDValue Ops[] = { N0, OverflowVal }; 9667 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); 9668 } 9669 } 9670 } 9671 if (!N0) 9672 N0 = DAG.getConstant(0, DL, MVT::i32); 9673 if (!C1) 9674 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); 9675 return {N0, SDValue(C1, 0)}; 9676 } 9677 9678 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the 9679 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array 9680 // pointed to by Offsets. 9681 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, 9682 SelectionDAG &DAG, SDValue *Offsets, 9683 Align Alignment) const { 9684 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 9685 SDLoc DL(CombinedOffset); 9686 if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) { 9687 uint32_t Imm = C->getZExtValue(); 9688 uint32_t SOffset, ImmOffset; 9689 if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { 9690 Offsets[0] = DAG.getConstant(0, DL, MVT::i32); 9691 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 9692 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 9693 return; 9694 } 9695 } 9696 if (DAG.isBaseWithConstantOffset(CombinedOffset)) { 9697 SDValue N0 = CombinedOffset.getOperand(0); 9698 SDValue N1 = CombinedOffset.getOperand(1); 9699 uint32_t SOffset, ImmOffset; 9700 int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); 9701 if (Offset >= 0 && 9702 TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { 9703 Offsets[0] = N0; 9704 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); 9705 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); 9706 return; 9707 } 9708 } 9709 9710 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset() 9711 ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32) 9712 : DAG.getConstant(0, DL, MVT::i32); 9713 9714 Offsets[0] = CombinedOffset; 9715 Offsets[1] = SOffsetZero; 9716 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); 9717 } 9718 9719 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer, 9720 SelectionDAG &DAG) const { 9721 if (!MaybePointer.getValueType().isScalarInteger()) 9722 return MaybePointer; 9723 9724 SDLoc DL(MaybePointer); 9725 9726 SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer); 9727 return Rsrc; 9728 } 9729 9730 // Wrap a global or flat pointer into a buffer intrinsic using the flags 9731 // specified in the intrinsic. 9732 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op, 9733 SelectionDAG &DAG) const { 9734 SDLoc Loc(Op); 9735 9736 SDValue Pointer = Op->getOperand(1); 9737 SDValue Stride = Op->getOperand(2); 9738 SDValue NumRecords = Op->getOperand(3); 9739 SDValue Flags = Op->getOperand(4); 9740 9741 auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32); 9742 SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32); 9743 SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask); 9744 std::optional<uint32_t> ConstStride = std::nullopt; 9745 if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride)) 9746 ConstStride = ConstNode->getZExtValue(); 9747 9748 SDValue NewHighHalf = Masked; 9749 if (!ConstStride || *ConstStride != 0) { 9750 SDValue ShiftedStride; 9751 if (ConstStride) { 9752 ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32); 9753 } else { 9754 SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32); 9755 ShiftedStride = 9756 DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride, 9757 DAG.getShiftAmountConstant(16, MVT::i32, Loc)); 9758 } 9759 NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride); 9760 } 9761 9762 SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf, 9763 NewHighHalf, NumRecords, Flags); 9764 SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc); 9765 return RsrcPtr; 9766 } 9767 9768 // Handle 8 bit and 16 bit buffer loads 9769 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, 9770 EVT LoadVT, SDLoc DL, 9771 ArrayRef<SDValue> Ops, 9772 MemSDNode *M) const { 9773 EVT IntVT = LoadVT.changeTypeToInteger(); 9774 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? 9775 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; 9776 9777 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); 9778 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, 9779 Ops, IntVT, 9780 M->getMemOperand()); 9781 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); 9782 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); 9783 9784 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); 9785 } 9786 9787 // Handle 8 bit and 16 bit buffer stores 9788 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, 9789 EVT VDataType, SDLoc DL, 9790 SDValue Ops[], 9791 MemSDNode *M) const { 9792 if (VDataType == MVT::f16) 9793 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); 9794 9795 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); 9796 Ops[1] = BufferStoreExt; 9797 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : 9798 AMDGPUISD::BUFFER_STORE_SHORT; 9799 ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9); 9800 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, 9801 M->getMemOperand()); 9802 } 9803 9804 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, 9805 ISD::LoadExtType ExtType, SDValue Op, 9806 const SDLoc &SL, EVT VT) { 9807 if (VT.bitsLT(Op.getValueType())) 9808 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); 9809 9810 switch (ExtType) { 9811 case ISD::SEXTLOAD: 9812 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); 9813 case ISD::ZEXTLOAD: 9814 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); 9815 case ISD::EXTLOAD: 9816 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); 9817 case ISD::NON_EXTLOAD: 9818 return Op; 9819 } 9820 9821 llvm_unreachable("invalid ext type"); 9822 } 9823 9824 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { 9825 SelectionDAG &DAG = DCI.DAG; 9826 if (Ld->getAlign() < Align(4) || Ld->isDivergent()) 9827 return SDValue(); 9828 9829 // FIXME: Constant loads should all be marked invariant. 9830 unsigned AS = Ld->getAddressSpace(); 9831 if (AS != AMDGPUAS::CONSTANT_ADDRESS && 9832 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && 9833 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) 9834 return SDValue(); 9835 9836 // Don't do this early, since it may interfere with adjacent load merging for 9837 // illegal types. We can avoid losing alignment information for exotic types 9838 // pre-legalize. 9839 EVT MemVT = Ld->getMemoryVT(); 9840 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || 9841 MemVT.getSizeInBits() >= 32) 9842 return SDValue(); 9843 9844 SDLoc SL(Ld); 9845 9846 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && 9847 "unexpected vector extload"); 9848 9849 // TODO: Drop only high part of range. 9850 SDValue Ptr = Ld->getBasePtr(); 9851 SDValue NewLoad = DAG.getLoad( 9852 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, 9853 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), 9854 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), 9855 nullptr); // Drop ranges 9856 9857 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); 9858 if (MemVT.isFloatingPoint()) { 9859 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && 9860 "unexpected fp extload"); 9861 TruncVT = MemVT.changeTypeToInteger(); 9862 } 9863 9864 SDValue Cvt = NewLoad; 9865 if (Ld->getExtensionType() == ISD::SEXTLOAD) { 9866 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, 9867 DAG.getValueType(TruncVT)); 9868 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || 9869 Ld->getExtensionType() == ISD::NON_EXTLOAD) { 9870 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); 9871 } else { 9872 assert(Ld->getExtensionType() == ISD::EXTLOAD); 9873 } 9874 9875 EVT VT = Ld->getValueType(0); 9876 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9877 9878 DCI.AddToWorklist(Cvt.getNode()); 9879 9880 // We may need to handle exotic cases, such as i16->i64 extloads, so insert 9881 // the appropriate extension from the 32-bit load. 9882 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); 9883 DCI.AddToWorklist(Cvt.getNode()); 9884 9885 // Handle conversion back to floating point if necessary. 9886 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); 9887 9888 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); 9889 } 9890 9891 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, 9892 const SIMachineFunctionInfo &Info) { 9893 // TODO: Should check if the address can definitely not access stack. 9894 if (Info.isEntryFunction()) 9895 return Info.getUserSGPRInfo().hasFlatScratchInit(); 9896 return true; 9897 } 9898 9899 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 9900 SDLoc DL(Op); 9901 LoadSDNode *Load = cast<LoadSDNode>(Op); 9902 ISD::LoadExtType ExtType = Load->getExtensionType(); 9903 EVT MemVT = Load->getMemoryVT(); 9904 9905 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { 9906 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) 9907 return SDValue(); 9908 9909 // FIXME: Copied from PPC 9910 // First, load into 32 bits, then truncate to 1 bit. 9911 9912 SDValue Chain = Load->getChain(); 9913 SDValue BasePtr = Load->getBasePtr(); 9914 MachineMemOperand *MMO = Load->getMemOperand(); 9915 9916 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; 9917 9918 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 9919 BasePtr, RealMemVT, MMO); 9920 9921 if (!MemVT.isVector()) { 9922 SDValue Ops[] = { 9923 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), 9924 NewLD.getValue(1) 9925 }; 9926 9927 return DAG.getMergeValues(Ops, DL); 9928 } 9929 9930 SmallVector<SDValue, 3> Elts; 9931 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { 9932 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, 9933 DAG.getConstant(I, DL, MVT::i32)); 9934 9935 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); 9936 } 9937 9938 SDValue Ops[] = { 9939 DAG.getBuildVector(MemVT, DL, Elts), 9940 NewLD.getValue(1) 9941 }; 9942 9943 return DAG.getMergeValues(Ops, DL); 9944 } 9945 9946 if (!MemVT.isVector()) 9947 return SDValue(); 9948 9949 assert(Op.getValueType().getVectorElementType() == MVT::i32 && 9950 "Custom lowering for non-i32 vectors hasn't been implemented."); 9951 9952 Align Alignment = Load->getAlign(); 9953 unsigned AS = Load->getAddressSpace(); 9954 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && 9955 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { 9956 return SplitVectorLoad(Op, DAG); 9957 } 9958 9959 MachineFunction &MF = DAG.getMachineFunction(); 9960 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9961 // If there is a possibility that flat instruction access scratch memory 9962 // then we need to use the same legalization rules we use for private. 9963 if (AS == AMDGPUAS::FLAT_ADDRESS && 9964 !Subtarget->hasMultiDwordFlatScratchAddressing()) 9965 AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? 9966 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 9967 9968 unsigned NumElements = MemVT.getVectorNumElements(); 9969 9970 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 9971 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { 9972 if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { 9973 if (MemVT.isPow2VectorType() || 9974 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) 9975 return SDValue(); 9976 return WidenOrSplitVectorLoad(Op, DAG); 9977 } 9978 // Non-uniform loads will be selected to MUBUF instructions, so they 9979 // have the same legalization requirements as global and private 9980 // loads. 9981 // 9982 } 9983 9984 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 9985 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 9986 AS == AMDGPUAS::GLOBAL_ADDRESS) { 9987 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && 9988 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && 9989 Alignment >= Align(4) && NumElements < 32) { 9990 if (MemVT.isPow2VectorType() || 9991 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) 9992 return SDValue(); 9993 return WidenOrSplitVectorLoad(Op, DAG); 9994 } 9995 // Non-uniform loads will be selected to MUBUF instructions, so they 9996 // have the same legalization requirements as global and private 9997 // loads. 9998 // 9999 } 10000 if (AS == AMDGPUAS::CONSTANT_ADDRESS || 10001 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 10002 AS == AMDGPUAS::GLOBAL_ADDRESS || 10003 AS == AMDGPUAS::FLAT_ADDRESS) { 10004 if (NumElements > 4) 10005 return SplitVectorLoad(Op, DAG); 10006 // v3 loads not supported on SI. 10007 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10008 return WidenOrSplitVectorLoad(Op, DAG); 10009 10010 // v3 and v4 loads are supported for private and global memory. 10011 return SDValue(); 10012 } 10013 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 10014 // Depending on the setting of the private_element_size field in the 10015 // resource descriptor, we can only make private accesses up to a certain 10016 // size. 10017 switch (Subtarget->getMaxPrivateElementSize()) { 10018 case 4: { 10019 SDValue Ops[2]; 10020 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 10021 return DAG.getMergeValues(Ops, DL); 10022 } 10023 case 8: 10024 if (NumElements > 2) 10025 return SplitVectorLoad(Op, DAG); 10026 return SDValue(); 10027 case 16: 10028 // Same as global/flat 10029 if (NumElements > 4) 10030 return SplitVectorLoad(Op, DAG); 10031 // v3 loads not supported on SI. 10032 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10033 return WidenOrSplitVectorLoad(Op, DAG); 10034 10035 return SDValue(); 10036 default: 10037 llvm_unreachable("unsupported private_element_size"); 10038 } 10039 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 10040 unsigned Fast = 0; 10041 auto Flags = Load->getMemOperand()->getFlags(); 10042 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, 10043 Load->getAlign(), Flags, &Fast) && 10044 Fast > 1) 10045 return SDValue(); 10046 10047 if (MemVT.isVector()) 10048 return SplitVectorLoad(Op, DAG); 10049 } 10050 10051 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10052 MemVT, *Load->getMemOperand())) { 10053 SDValue Ops[2]; 10054 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); 10055 return DAG.getMergeValues(Ops, DL); 10056 } 10057 10058 return SDValue(); 10059 } 10060 10061 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 10062 EVT VT = Op.getValueType(); 10063 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 || 10064 VT.getSizeInBits() == 512) 10065 return splitTernaryVectorOp(Op, DAG); 10066 10067 assert(VT.getSizeInBits() == 64); 10068 10069 SDLoc DL(Op); 10070 SDValue Cond = Op.getOperand(0); 10071 10072 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 10073 SDValue One = DAG.getConstant(1, DL, MVT::i32); 10074 10075 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); 10076 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); 10077 10078 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); 10079 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); 10080 10081 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); 10082 10083 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); 10084 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); 10085 10086 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); 10087 10088 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); 10089 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 10090 } 10091 10092 // Catch division cases where we can use shortcuts with rcp and rsq 10093 // instructions. 10094 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, 10095 SelectionDAG &DAG) const { 10096 SDLoc SL(Op); 10097 SDValue LHS = Op.getOperand(0); 10098 SDValue RHS = Op.getOperand(1); 10099 EVT VT = Op.getValueType(); 10100 const SDNodeFlags Flags = Op->getFlags(); 10101 10102 bool AllowInaccurateRcp = Flags.hasApproximateFuncs() || 10103 DAG.getTarget().Options.UnsafeFPMath; 10104 10105 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 10106 // Without !fpmath accuracy information, we can't do more because we don't 10107 // know exactly whether rcp is accurate enough to meet !fpmath requirement. 10108 // f16 is always accurate enough 10109 if (!AllowInaccurateRcp && VT != MVT::f16) 10110 return SDValue(); 10111 10112 if (CLHS->isExactlyValue(1.0)) { 10113 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 10114 // the CI documentation has a worst case error of 1 ulp. 10115 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 10116 // use it as long as we aren't trying to use denormals. 10117 // 10118 // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp. 10119 10120 // 1.0 / sqrt(x) -> rsq(x) 10121 10122 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP 10123 // error seems really high at 2^29 ULP. 10124 // 1.0 / x -> rcp(x) 10125 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 10126 } 10127 10128 // Same as for 1.0, but expand the sign out of the constant. 10129 if (CLHS->isExactlyValue(-1.0)) { 10130 // -1.0 / x -> rcp (fneg x) 10131 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 10132 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); 10133 } 10134 } 10135 10136 // For f16 require afn or arcp. 10137 // For f32 require afn. 10138 if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal())) 10139 return SDValue(); 10140 10141 // Turn into multiply by the reciprocal. 10142 // x / y -> x * (1.0 / y) 10143 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); 10144 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); 10145 } 10146 10147 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, 10148 SelectionDAG &DAG) const { 10149 SDLoc SL(Op); 10150 SDValue X = Op.getOperand(0); 10151 SDValue Y = Op.getOperand(1); 10152 EVT VT = Op.getValueType(); 10153 const SDNodeFlags Flags = Op->getFlags(); 10154 10155 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || 10156 DAG.getTarget().Options.UnsafeFPMath; 10157 if (!AllowInaccurateDiv) 10158 return SDValue(); 10159 10160 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); 10161 SDValue One = DAG.getConstantFP(1.0, SL, VT); 10162 10163 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); 10164 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 10165 10166 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); 10167 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); 10168 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); 10169 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); 10170 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); 10171 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); 10172 } 10173 10174 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 10175 EVT VT, SDValue A, SDValue B, SDValue GlueChain, 10176 SDNodeFlags Flags) { 10177 if (GlueChain->getNumValues() <= 1) { 10178 return DAG.getNode(Opcode, SL, VT, A, B, Flags); 10179 } 10180 10181 assert(GlueChain->getNumValues() == 3); 10182 10183 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 10184 switch (Opcode) { 10185 default: llvm_unreachable("no chain equivalent for opcode"); 10186 case ISD::FMUL: 10187 Opcode = AMDGPUISD::FMUL_W_CHAIN; 10188 break; 10189 } 10190 10191 return DAG.getNode(Opcode, SL, VTList, 10192 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, 10193 Flags); 10194 } 10195 10196 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, 10197 EVT VT, SDValue A, SDValue B, SDValue C, 10198 SDValue GlueChain, SDNodeFlags Flags) { 10199 if (GlueChain->getNumValues() <= 1) { 10200 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); 10201 } 10202 10203 assert(GlueChain->getNumValues() == 3); 10204 10205 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); 10206 switch (Opcode) { 10207 default: llvm_unreachable("no chain equivalent for opcode"); 10208 case ISD::FMA: 10209 Opcode = AMDGPUISD::FMA_W_CHAIN; 10210 break; 10211 } 10212 10213 return DAG.getNode(Opcode, SL, VTList, 10214 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, 10215 Flags); 10216 } 10217 10218 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { 10219 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 10220 return FastLowered; 10221 10222 SDLoc SL(Op); 10223 SDValue Src0 = Op.getOperand(0); 10224 SDValue Src1 = Op.getOperand(1); 10225 10226 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); 10227 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); 10228 10229 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); 10230 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); 10231 10232 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); 10233 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); 10234 10235 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); 10236 } 10237 10238 // Faster 2.5 ULP division that does not support denormals. 10239 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { 10240 SDNodeFlags Flags = Op->getFlags(); 10241 SDLoc SL(Op); 10242 SDValue LHS = Op.getOperand(1); 10243 SDValue RHS = Op.getOperand(2); 10244 10245 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags); 10246 10247 const APFloat K0Val(0x1p+96f); 10248 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); 10249 10250 const APFloat K1Val(0x1p-32f); 10251 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); 10252 10253 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 10254 10255 EVT SetCCVT = 10256 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 10257 10258 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); 10259 10260 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags); 10261 10262 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags); 10263 10264 // rcp does not support denormals. 10265 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags); 10266 10267 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags); 10268 10269 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags); 10270 } 10271 10272 // Returns immediate value for setting the F32 denorm mode when using the 10273 // S_DENORM_MODE instruction. 10274 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, 10275 const SIMachineFunctionInfo *Info, 10276 const GCNSubtarget *ST) { 10277 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); 10278 uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue(); 10279 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2); 10280 return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32); 10281 } 10282 10283 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { 10284 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) 10285 return FastLowered; 10286 10287 // The selection matcher assumes anything with a chain selecting to a 10288 // mayRaiseFPException machine instruction. Since we're introducing a chain 10289 // here, we need to explicitly report nofpexcept for the regular fdiv 10290 // lowering. 10291 SDNodeFlags Flags = Op->getFlags(); 10292 Flags.setNoFPExcept(true); 10293 10294 SDLoc SL(Op); 10295 SDValue LHS = Op.getOperand(0); 10296 SDValue RHS = Op.getOperand(1); 10297 10298 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 10299 10300 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); 10301 10302 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 10303 {RHS, RHS, LHS}, Flags); 10304 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, 10305 {LHS, RHS, LHS}, Flags); 10306 10307 // Denominator is scaled to not be denormal, so using rcp is ok. 10308 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, 10309 DenominatorScaled, Flags); 10310 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, 10311 DenominatorScaled, Flags); 10312 10313 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | 10314 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | 10315 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); 10316 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); 10317 10318 const MachineFunction &MF = DAG.getMachineFunction(); 10319 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 10320 const DenormalMode DenormMode = Info->getMode().FP32Denormals; 10321 10322 const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE(); 10323 const bool HasDynamicDenormals = 10324 (DenormMode.Input == DenormalMode::Dynamic) || 10325 (DenormMode.Output == DenormalMode::Dynamic); 10326 10327 SDValue SavedDenormMode; 10328 10329 if (!PreservesDenormals) { 10330 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV 10331 // lowering. The chain dependence is insufficient, and we need glue. We do 10332 // not need the glue variants in a strictfp function. 10333 10334 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); 10335 10336 SDValue Glue = DAG.getEntryNode(); 10337 if (HasDynamicDenormals) { 10338 SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL, 10339 DAG.getVTList(MVT::i32, MVT::Glue), 10340 {BitField, Glue}); 10341 SavedDenormMode = SDValue(GetReg, 0); 10342 10343 Glue = DAG.getMergeValues( 10344 {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL); 10345 } 10346 10347 SDNode *EnableDenorm; 10348 if (Subtarget->hasDenormModeInst()) { 10349 const SDValue EnableDenormValue = 10350 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget); 10351 10352 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue, 10353 EnableDenormValue) 10354 .getNode(); 10355 } else { 10356 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, 10357 SL, MVT::i32); 10358 EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, 10359 {EnableDenormValue, BitField, Glue}); 10360 } 10361 10362 SDValue Ops[3] = { 10363 NegDivScale0, 10364 SDValue(EnableDenorm, 0), 10365 SDValue(EnableDenorm, 1) 10366 }; 10367 10368 NegDivScale0 = DAG.getMergeValues(Ops, SL); 10369 } 10370 10371 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, 10372 ApproxRcp, One, NegDivScale0, Flags); 10373 10374 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, 10375 ApproxRcp, Fma0, Flags); 10376 10377 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, 10378 Fma1, Fma1, Flags); 10379 10380 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, 10381 NumeratorScaled, Mul, Flags); 10382 10383 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, 10384 Fma2, Fma1, Mul, Fma2, Flags); 10385 10386 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, 10387 NumeratorScaled, Fma3, Flags); 10388 10389 if (!PreservesDenormals) { 10390 SDNode *DisableDenorm; 10391 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) { 10392 const SDValue DisableDenormValue = getSPDenormModeValue( 10393 FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget); 10394 10395 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, 10396 Fma4.getValue(1), DisableDenormValue, 10397 Fma4.getValue(2)).getNode(); 10398 } else { 10399 assert(HasDynamicDenormals == (bool)SavedDenormMode); 10400 const SDValue DisableDenormValue = 10401 HasDynamicDenormals 10402 ? SavedDenormMode 10403 : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); 10404 10405 DisableDenorm = DAG.getMachineNode( 10406 AMDGPU::S_SETREG_B32, SL, MVT::Other, 10407 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); 10408 } 10409 10410 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 10411 SDValue(DisableDenorm, 0), DAG.getRoot()); 10412 DAG.setRoot(OutputChain); 10413 } 10414 10415 SDValue Scale = NumeratorScaled.getValue(1); 10416 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, 10417 {Fma4, Fma1, Fma3, Scale}, Flags); 10418 10419 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); 10420 } 10421 10422 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { 10423 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) 10424 return FastLowered; 10425 10426 SDLoc SL(Op); 10427 SDValue X = Op.getOperand(0); 10428 SDValue Y = Op.getOperand(1); 10429 10430 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 10431 10432 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); 10433 10434 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); 10435 10436 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); 10437 10438 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); 10439 10440 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); 10441 10442 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); 10443 10444 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); 10445 10446 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); 10447 10448 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); 10449 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); 10450 10451 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, 10452 NegDivScale0, Mul, DivScale1); 10453 10454 SDValue Scale; 10455 10456 if (!Subtarget->hasUsableDivScaleConditionOutput()) { 10457 // Workaround a hardware bug on SI where the condition output from div_scale 10458 // is not usable. 10459 10460 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); 10461 10462 // Figure out if the scale to use for div_fmas. 10463 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 10464 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); 10465 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); 10466 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); 10467 10468 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); 10469 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); 10470 10471 SDValue Scale0Hi 10472 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); 10473 SDValue Scale1Hi 10474 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); 10475 10476 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); 10477 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); 10478 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); 10479 } else { 10480 Scale = DivScale1.getValue(1); 10481 } 10482 10483 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, 10484 Fma4, Fma3, Mul, Scale); 10485 10486 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); 10487 } 10488 10489 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { 10490 EVT VT = Op.getValueType(); 10491 10492 if (VT == MVT::f32) 10493 return LowerFDIV32(Op, DAG); 10494 10495 if (VT == MVT::f64) 10496 return LowerFDIV64(Op, DAG); 10497 10498 if (VT == MVT::f16) 10499 return LowerFDIV16(Op, DAG); 10500 10501 llvm_unreachable("Unexpected type for fdiv"); 10502 } 10503 10504 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const { 10505 SDLoc dl(Op); 10506 SDValue Val = Op.getOperand(0); 10507 EVT VT = Val.getValueType(); 10508 EVT ResultExpVT = Op->getValueType(1); 10509 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32; 10510 10511 SDValue Mant = DAG.getNode( 10512 ISD::INTRINSIC_WO_CHAIN, dl, VT, 10513 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val); 10514 10515 SDValue Exp = DAG.getNode( 10516 ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT, 10517 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val); 10518 10519 if (Subtarget->hasFractBug()) { 10520 SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val); 10521 SDValue Inf = DAG.getConstantFP( 10522 APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT); 10523 10524 SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT); 10525 SDValue Zero = DAG.getConstant(0, dl, InstrExpVT); 10526 Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero); 10527 Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val); 10528 } 10529 10530 SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT); 10531 return DAG.getMergeValues({Mant, CastExp}, dl); 10532 } 10533 10534 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 10535 SDLoc DL(Op); 10536 StoreSDNode *Store = cast<StoreSDNode>(Op); 10537 EVT VT = Store->getMemoryVT(); 10538 10539 if (VT == MVT::i1) { 10540 return DAG.getTruncStore(Store->getChain(), DL, 10541 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), 10542 Store->getBasePtr(), MVT::i1, Store->getMemOperand()); 10543 } 10544 10545 assert(VT.isVector() && 10546 Store->getValue().getValueType().getScalarType() == MVT::i32); 10547 10548 unsigned AS = Store->getAddressSpace(); 10549 if (Subtarget->hasLDSMisalignedBug() && 10550 AS == AMDGPUAS::FLAT_ADDRESS && 10551 Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { 10552 return SplitVectorStore(Op, DAG); 10553 } 10554 10555 MachineFunction &MF = DAG.getMachineFunction(); 10556 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 10557 // If there is a possibility that flat instruction access scratch memory 10558 // then we need to use the same legalization rules we use for private. 10559 if (AS == AMDGPUAS::FLAT_ADDRESS && 10560 !Subtarget->hasMultiDwordFlatScratchAddressing()) 10561 AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? 10562 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; 10563 10564 unsigned NumElements = VT.getVectorNumElements(); 10565 if (AS == AMDGPUAS::GLOBAL_ADDRESS || 10566 AS == AMDGPUAS::FLAT_ADDRESS) { 10567 if (NumElements > 4) 10568 return SplitVectorStore(Op, DAG); 10569 // v3 stores not supported on SI. 10570 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) 10571 return SplitVectorStore(Op, DAG); 10572 10573 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 10574 VT, *Store->getMemOperand())) 10575 return expandUnalignedStore(Store, DAG); 10576 10577 return SDValue(); 10578 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 10579 switch (Subtarget->getMaxPrivateElementSize()) { 10580 case 4: 10581 return scalarizeVectorStore(Store, DAG); 10582 case 8: 10583 if (NumElements > 2) 10584 return SplitVectorStore(Op, DAG); 10585 return SDValue(); 10586 case 16: 10587 if (NumElements > 4 || 10588 (NumElements == 3 && !Subtarget->enableFlatScratch())) 10589 return SplitVectorStore(Op, DAG); 10590 return SDValue(); 10591 default: 10592 llvm_unreachable("unsupported private_element_size"); 10593 } 10594 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { 10595 unsigned Fast = 0; 10596 auto Flags = Store->getMemOperand()->getFlags(); 10597 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, 10598 Store->getAlign(), Flags, &Fast) && 10599 Fast > 1) 10600 return SDValue(); 10601 10602 if (VT.isVector()) 10603 return SplitVectorStore(Op, DAG); 10604 10605 return expandUnalignedStore(Store, DAG); 10606 } 10607 10608 // Probably an invalid store. If so we'll end up emitting a selection error. 10609 return SDValue(); 10610 } 10611 10612 // Avoid the full correct expansion for f32 sqrt when promoting from f16. 10613 SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const { 10614 SDLoc SL(Op); 10615 assert(!Subtarget->has16BitInsts()); 10616 SDNodeFlags Flags = Op->getFlags(); 10617 SDValue Ext = 10618 DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags); 10619 10620 SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32); 10621 SDValue Sqrt = 10622 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags); 10623 10624 return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt, 10625 DAG.getTargetConstant(0, SL, MVT::i32), Flags); 10626 } 10627 10628 SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const { 10629 SDLoc DL(Op); 10630 SDNodeFlags Flags = Op->getFlags(); 10631 MVT VT = Op.getValueType().getSimpleVT(); 10632 const SDValue X = Op.getOperand(0); 10633 10634 if (allowApproxFunc(DAG, Flags)) { 10635 // Instruction is 1ulp but ignores denormals. 10636 return DAG.getNode( 10637 ISD::INTRINSIC_WO_CHAIN, DL, VT, 10638 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags); 10639 } 10640 10641 SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT); 10642 SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT); 10643 10644 SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT); 10645 10646 SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags); 10647 10648 SDValue SqrtX = 10649 DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags); 10650 10651 SDValue SqrtS; 10652 if (needsDenormHandlingF32(DAG, X, Flags)) { 10653 SDValue SqrtID = 10654 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32); 10655 SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags); 10656 10657 SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS); 10658 SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, 10659 DAG.getConstant(-1, DL, MVT::i32)); 10660 SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt); 10661 10662 SDValue NegSqrtSNextDown = 10663 DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags); 10664 10665 SDValue SqrtVP = 10666 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags); 10667 10668 SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, 10669 DAG.getConstant(1, DL, MVT::i32)); 10670 SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt); 10671 10672 SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags); 10673 SDValue SqrtVS = 10674 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags); 10675 10676 SDValue Zero = DAG.getConstantFP(0.0f, DL, VT); 10677 SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE); 10678 10679 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS, 10680 Flags); 10681 10682 SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT); 10683 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS, 10684 Flags); 10685 } else { 10686 SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags); 10687 10688 SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags); 10689 10690 SDValue Half = DAG.getConstantFP(0.5f, DL, VT); 10691 SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags); 10692 SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags); 10693 10694 SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags); 10695 SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags); 10696 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags); 10697 10698 SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags); 10699 SDValue SqrtD = 10700 DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags); 10701 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags); 10702 } 10703 10704 SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT); 10705 10706 SDValue ScaledDown = 10707 DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags); 10708 10709 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags); 10710 SDValue IsZeroOrInf = 10711 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, 10712 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); 10713 10714 return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags); 10715 } 10716 10717 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const { 10718 // For double type, the SQRT and RSQ instructions don't have required 10719 // precision, we apply Goldschmidt's algorithm to improve the result: 10720 // 10721 // y0 = rsq(x) 10722 // g0 = x * y0 10723 // h0 = 0.5 * y0 10724 // 10725 // r0 = 0.5 - h0 * g0 10726 // g1 = g0 * r0 + g0 10727 // h1 = h0 * r0 + h0 10728 // 10729 // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1 10730 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1 10731 // h2 = h1 * r1 + h1 10732 // 10733 // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2 10734 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2 10735 // 10736 // sqrt(x) = g3 10737 10738 SDNodeFlags Flags = Op->getFlags(); 10739 10740 SDLoc DL(Op); 10741 10742 SDValue X = Op.getOperand(0); 10743 SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64); 10744 10745 SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT); 10746 10747 SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32); 10748 10749 // Scale up input if it is too small. 10750 SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32); 10751 SDValue ScaleUp = 10752 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt); 10753 SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags); 10754 10755 SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX); 10756 10757 SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY); 10758 10759 SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64); 10760 SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half); 10761 10762 SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0); 10763 SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half); 10764 10765 SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0); 10766 10767 SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0); 10768 10769 SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1); 10770 SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX); 10771 10772 SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1); 10773 10774 SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2); 10775 SDValue SqrtD1 = 10776 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX); 10777 10778 SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2); 10779 10780 SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32); 10781 SDValue ScaleDown = 10782 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt); 10783 SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags); 10784 10785 // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check 10786 // with finite only or nsz because rsq(+/-0) = +/-inf 10787 10788 // TODO: Check for DAZ and expand to subnormals 10789 SDValue IsZeroOrInf = 10790 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, 10791 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); 10792 10793 // If x is +INF, +0, or -0, use its original value 10794 return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet, 10795 Flags); 10796 } 10797 10798 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 10799 SDLoc DL(Op); 10800 EVT VT = Op.getValueType(); 10801 SDValue Arg = Op.getOperand(0); 10802 SDValue TrigVal; 10803 10804 // Propagate fast-math flags so that the multiply we introduce can be folded 10805 // if Arg is already the result of a multiply by constant. 10806 auto Flags = Op->getFlags(); 10807 10808 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); 10809 10810 if (Subtarget->hasTrigReducedRange()) { 10811 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 10812 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); 10813 } else { 10814 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); 10815 } 10816 10817 switch (Op.getOpcode()) { 10818 case ISD::FCOS: 10819 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); 10820 case ISD::FSIN: 10821 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); 10822 default: 10823 llvm_unreachable("Wrong trig opcode"); 10824 } 10825 } 10826 10827 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 10828 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); 10829 assert(AtomicNode->isCompareAndSwap()); 10830 unsigned AS = AtomicNode->getAddressSpace(); 10831 10832 // No custom lowering required for local address space 10833 if (!AMDGPU::isFlatGlobalAddrSpace(AS)) 10834 return Op; 10835 10836 // Non-local address space requires custom lowering for atomic compare 10837 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 10838 SDLoc DL(Op); 10839 SDValue ChainIn = Op.getOperand(0); 10840 SDValue Addr = Op.getOperand(1); 10841 SDValue Old = Op.getOperand(2); 10842 SDValue New = Op.getOperand(3); 10843 EVT VT = Op.getValueType(); 10844 MVT SimpleVT = VT.getSimpleVT(); 10845 MVT VecType = MVT::getVectorVT(SimpleVT, 2); 10846 10847 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); 10848 SDValue Ops[] = { ChainIn, Addr, NewOld }; 10849 10850 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), 10851 Ops, VT, AtomicNode->getMemOperand()); 10852 } 10853 10854 //===----------------------------------------------------------------------===// 10855 // Custom DAG optimizations 10856 //===----------------------------------------------------------------------===// 10857 10858 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, 10859 DAGCombinerInfo &DCI) const { 10860 EVT VT = N->getValueType(0); 10861 EVT ScalarVT = VT.getScalarType(); 10862 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) 10863 return SDValue(); 10864 10865 SelectionDAG &DAG = DCI.DAG; 10866 SDLoc DL(N); 10867 10868 SDValue Src = N->getOperand(0); 10869 EVT SrcVT = Src.getValueType(); 10870 10871 // TODO: We could try to match extracting the higher bytes, which would be 10872 // easier if i8 vectors weren't promoted to i32 vectors, particularly after 10873 // types are legalized. v4i8 -> v4f32 is probably the only case to worry 10874 // about in practice. 10875 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { 10876 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { 10877 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); 10878 DCI.AddToWorklist(Cvt.getNode()); 10879 10880 // For the f16 case, fold to a cast to f32 and then cast back to f16. 10881 if (ScalarVT != MVT::f32) { 10882 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, 10883 DAG.getTargetConstant(0, DL, MVT::i32)); 10884 } 10885 return Cvt; 10886 } 10887 } 10888 10889 return SDValue(); 10890 } 10891 10892 SDValue SITargetLowering::performFCopySignCombine(SDNode *N, 10893 DAGCombinerInfo &DCI) const { 10894 SDValue MagnitudeOp = N->getOperand(0); 10895 SDValue SignOp = N->getOperand(1); 10896 SelectionDAG &DAG = DCI.DAG; 10897 SDLoc DL(N); 10898 10899 // f64 fcopysign is really an f32 copysign on the high bits, so replace the 10900 // lower half with a copy. 10901 // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) 10902 if (MagnitudeOp.getValueType() == MVT::f64) { 10903 SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); 10904 SDValue MagLo = 10905 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 10906 DAG.getConstant(0, DL, MVT::i32)); 10907 SDValue MagHi = 10908 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, 10909 DAG.getConstant(1, DL, MVT::i32)); 10910 10911 SDValue HiOp = 10912 DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); 10913 10914 SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); 10915 10916 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); 10917 } 10918 10919 if (SignOp.getValueType() != MVT::f64) 10920 return SDValue(); 10921 10922 // Reduce width of sign operand, we only need the highest bit. 10923 // 10924 // fcopysign f64:x, f64:y -> 10925 // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) 10926 // TODO: In some cases it might make sense to go all the way to f16. 10927 SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); 10928 SDValue SignAsF32 = 10929 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, 10930 DAG.getConstant(1, DL, MVT::i32)); 10931 10932 return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), 10933 SignAsF32); 10934 } 10935 10936 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) 10937 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no 10938 // bits 10939 10940 // This is a variant of 10941 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), 10942 // 10943 // The normal DAG combiner will do this, but only if the add has one use since 10944 // that would increase the number of instructions. 10945 // 10946 // This prevents us from seeing a constant offset that can be folded into a 10947 // memory instruction's addressing mode. If we know the resulting add offset of 10948 // a pointer can be folded into an addressing offset, we can replace the pointer 10949 // operand with the add of new constant offset. This eliminates one of the uses, 10950 // and may allow the remaining use to also be simplified. 10951 // 10952 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, 10953 unsigned AddrSpace, 10954 EVT MemVT, 10955 DAGCombinerInfo &DCI) const { 10956 SDValue N0 = N->getOperand(0); 10957 SDValue N1 = N->getOperand(1); 10958 10959 // We only do this to handle cases where it's profitable when there are 10960 // multiple uses of the add, so defer to the standard combine. 10961 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || 10962 N0->hasOneUse()) 10963 return SDValue(); 10964 10965 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); 10966 if (!CN1) 10967 return SDValue(); 10968 10969 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 10970 if (!CAdd) 10971 return SDValue(); 10972 10973 SelectionDAG &DAG = DCI.DAG; 10974 10975 if (N0->getOpcode() == ISD::OR && 10976 !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) 10977 return SDValue(); 10978 10979 // If the resulting offset is too large, we can't fold it into the 10980 // addressing mode offset. 10981 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); 10982 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); 10983 10984 AddrMode AM; 10985 AM.HasBaseReg = true; 10986 AM.BaseOffs = Offset.getSExtValue(); 10987 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) 10988 return SDValue(); 10989 10990 SDLoc SL(N); 10991 EVT VT = N->getValueType(0); 10992 10993 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); 10994 SDValue COffset = DAG.getConstant(Offset, SL, VT); 10995 10996 SDNodeFlags Flags; 10997 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && 10998 (N0.getOpcode() == ISD::OR || 10999 N0->getFlags().hasNoUnsignedWrap())); 11000 11001 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); 11002 } 11003 11004 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset 11005 /// by the chain and intrinsic ID. Theoretically we would also need to check the 11006 /// specific intrinsic, but they all place the pointer operand first. 11007 static unsigned getBasePtrIndex(const MemSDNode *N) { 11008 switch (N->getOpcode()) { 11009 case ISD::STORE: 11010 case ISD::INTRINSIC_W_CHAIN: 11011 case ISD::INTRINSIC_VOID: 11012 return 2; 11013 default: 11014 return 1; 11015 } 11016 } 11017 11018 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, 11019 DAGCombinerInfo &DCI) const { 11020 SelectionDAG &DAG = DCI.DAG; 11021 SDLoc SL(N); 11022 11023 unsigned PtrIdx = getBasePtrIndex(N); 11024 SDValue Ptr = N->getOperand(PtrIdx); 11025 11026 // TODO: We could also do this for multiplies. 11027 if (Ptr.getOpcode() == ISD::SHL) { 11028 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), 11029 N->getMemoryVT(), DCI); 11030 if (NewPtr) { 11031 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); 11032 11033 NewOps[PtrIdx] = NewPtr; 11034 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 11035 } 11036 } 11037 11038 return SDValue(); 11039 } 11040 11041 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { 11042 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || 11043 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || 11044 (Opc == ISD::XOR && Val == 0); 11045 } 11046 11047 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This 11048 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit 11049 // integer combine opportunities since most 64-bit operations are decomposed 11050 // this way. TODO: We won't want this for SALU especially if it is an inline 11051 // immediate. 11052 SDValue SITargetLowering::splitBinaryBitConstantOp( 11053 DAGCombinerInfo &DCI, 11054 const SDLoc &SL, 11055 unsigned Opc, SDValue LHS, 11056 const ConstantSDNode *CRHS) const { 11057 uint64_t Val = CRHS->getZExtValue(); 11058 uint32_t ValLo = Lo_32(Val); 11059 uint32_t ValHi = Hi_32(Val); 11060 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11061 11062 if ((bitOpWithConstantIsReducible(Opc, ValLo) || 11063 bitOpWithConstantIsReducible(Opc, ValHi)) || 11064 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { 11065 // If we need to materialize a 64-bit immediate, it will be split up later 11066 // anyway. Avoid creating the harder to understand 64-bit immediate 11067 // materialization. 11068 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); 11069 } 11070 11071 return SDValue(); 11072 } 11073 11074 bool llvm::isBoolSGPR(SDValue V) { 11075 if (V.getValueType() != MVT::i1) 11076 return false; 11077 switch (V.getOpcode()) { 11078 default: 11079 break; 11080 case ISD::SETCC: 11081 case AMDGPUISD::FP_CLASS: 11082 return true; 11083 case ISD::AND: 11084 case ISD::OR: 11085 case ISD::XOR: 11086 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); 11087 } 11088 return false; 11089 } 11090 11091 // If a constant has all zeroes or all ones within each byte return it. 11092 // Otherwise return 0. 11093 static uint32_t getConstantPermuteMask(uint32_t C) { 11094 // 0xff for any zero byte in the mask 11095 uint32_t ZeroByteMask = 0; 11096 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; 11097 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; 11098 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; 11099 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; 11100 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte 11101 if ((NonZeroByteMask & C) != NonZeroByteMask) 11102 return 0; // Partial bytes selected. 11103 return C; 11104 } 11105 11106 // Check if a node selects whole bytes from its operand 0 starting at a byte 11107 // boundary while masking the rest. Returns select mask as in the v_perm_b32 11108 // or -1 if not succeeded. 11109 // Note byte select encoding: 11110 // value 0-3 selects corresponding source byte; 11111 // value 0xc selects zero; 11112 // value 0xff selects 0xff. 11113 static uint32_t getPermuteMask(SDValue V) { 11114 assert(V.getValueSizeInBits() == 32); 11115 11116 if (V.getNumOperands() != 2) 11117 return ~0; 11118 11119 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); 11120 if (!N1) 11121 return ~0; 11122 11123 uint32_t C = N1->getZExtValue(); 11124 11125 switch (V.getOpcode()) { 11126 default: 11127 break; 11128 case ISD::AND: 11129 if (uint32_t ConstMask = getConstantPermuteMask(C)) 11130 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); 11131 break; 11132 11133 case ISD::OR: 11134 if (uint32_t ConstMask = getConstantPermuteMask(C)) 11135 return (0x03020100 & ~ConstMask) | ConstMask; 11136 break; 11137 11138 case ISD::SHL: 11139 if (C % 8) 11140 return ~0; 11141 11142 return uint32_t((0x030201000c0c0c0cull << C) >> 32); 11143 11144 case ISD::SRL: 11145 if (C % 8) 11146 return ~0; 11147 11148 return uint32_t(0x0c0c0c0c03020100ull >> C); 11149 } 11150 11151 return ~0; 11152 } 11153 11154 SDValue SITargetLowering::performAndCombine(SDNode *N, 11155 DAGCombinerInfo &DCI) const { 11156 if (DCI.isBeforeLegalize()) 11157 return SDValue(); 11158 11159 SelectionDAG &DAG = DCI.DAG; 11160 EVT VT = N->getValueType(0); 11161 SDValue LHS = N->getOperand(0); 11162 SDValue RHS = N->getOperand(1); 11163 11164 11165 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 11166 if (VT == MVT::i64 && CRHS) { 11167 if (SDValue Split 11168 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) 11169 return Split; 11170 } 11171 11172 if (CRHS && VT == MVT::i32) { 11173 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb 11174 // nb = number of trailing zeroes in mask 11175 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, 11176 // given that we are selecting 8 or 16 bit fields starting at byte boundary. 11177 uint64_t Mask = CRHS->getZExtValue(); 11178 unsigned Bits = llvm::popcount(Mask); 11179 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && 11180 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { 11181 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { 11182 unsigned Shift = CShift->getZExtValue(); 11183 unsigned NB = CRHS->getAPIntValue().countr_zero(); 11184 unsigned Offset = NB + Shift; 11185 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. 11186 SDLoc SL(N); 11187 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 11188 LHS->getOperand(0), 11189 DAG.getConstant(Offset, SL, MVT::i32), 11190 DAG.getConstant(Bits, SL, MVT::i32)); 11191 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 11192 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, 11193 DAG.getValueType(NarrowVT)); 11194 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, 11195 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); 11196 return Shl; 11197 } 11198 } 11199 } 11200 11201 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 11202 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && 11203 isa<ConstantSDNode>(LHS.getOperand(2))) { 11204 uint32_t Sel = getConstantPermuteMask(Mask); 11205 if (!Sel) 11206 return SDValue(); 11207 11208 // Select 0xc for all zero bytes 11209 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); 11210 SDLoc DL(N); 11211 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 11212 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 11213 } 11214 } 11215 11216 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> 11217 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) 11218 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { 11219 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 11220 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); 11221 11222 SDValue X = LHS.getOperand(0); 11223 SDValue Y = RHS.getOperand(0); 11224 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || 11225 !isTypeLegal(X.getValueType())) 11226 return SDValue(); 11227 11228 if (LCC == ISD::SETO) { 11229 if (X != LHS.getOperand(1)) 11230 return SDValue(); 11231 11232 if (RCC == ISD::SETUNE) { 11233 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); 11234 if (!C1 || !C1->isInfinity() || C1->isNegative()) 11235 return SDValue(); 11236 11237 const uint32_t Mask = SIInstrFlags::N_NORMAL | 11238 SIInstrFlags::N_SUBNORMAL | 11239 SIInstrFlags::N_ZERO | 11240 SIInstrFlags::P_ZERO | 11241 SIInstrFlags::P_SUBNORMAL | 11242 SIInstrFlags::P_NORMAL; 11243 11244 static_assert(((~(SIInstrFlags::S_NAN | 11245 SIInstrFlags::Q_NAN | 11246 SIInstrFlags::N_INFINITY | 11247 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, 11248 "mask not equal"); 11249 11250 SDLoc DL(N); 11251 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 11252 X, DAG.getConstant(Mask, DL, MVT::i32)); 11253 } 11254 } 11255 } 11256 11257 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) 11258 std::swap(LHS, RHS); 11259 11260 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && 11261 RHS.hasOneUse()) { 11262 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 11263 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) 11264 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) 11265 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11266 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && 11267 (RHS.getOperand(0) == LHS.getOperand(0) && 11268 LHS.getOperand(0) == LHS.getOperand(1))) { 11269 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; 11270 unsigned NewMask = LCC == ISD::SETO ? 11271 Mask->getZExtValue() & ~OrdMask : 11272 Mask->getZExtValue() & OrdMask; 11273 11274 SDLoc DL(N); 11275 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), 11276 DAG.getConstant(NewMask, DL, MVT::i32)); 11277 } 11278 } 11279 11280 if (VT == MVT::i32 && 11281 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { 11282 // and x, (sext cc from i1) => select cc, x, 0 11283 if (RHS.getOpcode() != ISD::SIGN_EXTEND) 11284 std::swap(LHS, RHS); 11285 if (isBoolSGPR(RHS.getOperand(0))) 11286 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), 11287 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); 11288 } 11289 11290 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 11291 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11292 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 11293 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 11294 uint32_t LHSMask = getPermuteMask(LHS); 11295 uint32_t RHSMask = getPermuteMask(RHS); 11296 if (LHSMask != ~0u && RHSMask != ~0u) { 11297 // Canonicalize the expression in an attempt to have fewer unique masks 11298 // and therefore fewer registers used to hold the masks. 11299 if (LHSMask > RHSMask) { 11300 std::swap(LHSMask, RHSMask); 11301 std::swap(LHS, RHS); 11302 } 11303 11304 // Select 0xc for each lane used from source operand. Zero has 0xc mask 11305 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 11306 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11307 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11308 11309 // Check of we need to combine values from two sources within a byte. 11310 if (!(LHSUsedLanes & RHSUsedLanes) && 11311 // If we select high and lower word keep it for SDWA. 11312 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 11313 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 11314 // Each byte in each mask is either selector mask 0-3, or has higher 11315 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for 11316 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise 11317 // mask which is not 0xff wins. By anding both masks we have a correct 11318 // result except that 0x0c shall be corrected to give 0x0c only. 11319 uint32_t Mask = LHSMask & RHSMask; 11320 for (unsigned I = 0; I < 32; I += 8) { 11321 uint32_t ByteSel = 0xff << I; 11322 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) 11323 Mask &= (0x0c << I) & 0xffffffff; 11324 } 11325 11326 // Add 4 to each active LHS lane. It will not affect any existing 0xff 11327 // or 0x0c. 11328 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); 11329 SDLoc DL(N); 11330 11331 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 11332 LHS.getOperand(0), RHS.getOperand(0), 11333 DAG.getConstant(Sel, DL, MVT::i32)); 11334 } 11335 } 11336 } 11337 11338 return SDValue(); 11339 } 11340 11341 // A key component of v_perm is a mapping between byte position of the src 11342 // operands, and the byte position of the dest. To provide such, we need: 1. the 11343 // node that provides x byte of the dest of the OR, and 2. the byte of the node 11344 // used to provide that x byte. calculateByteProvider finds which node provides 11345 // a certain byte of the dest of the OR, and calculateSrcByte takes that node, 11346 // and finds an ultimate src and byte position For example: The supported 11347 // LoadCombine pattern for vector loads is as follows 11348 // t1 11349 // or 11350 // / \ 11351 // t2 t3 11352 // zext shl 11353 // | | \ 11354 // t4 t5 16 11355 // or anyext 11356 // / \ | 11357 // t6 t7 t8 11358 // srl shl or 11359 // / | / \ / \ 11360 // t9 t10 t11 t12 t13 t14 11361 // trunc* 8 trunc* 8 and and 11362 // | | / | | \ 11363 // t15 t16 t17 t18 t19 t20 11364 // trunc* 255 srl -256 11365 // | / \ 11366 // t15 t15 16 11367 // 11368 // *In this example, the truncs are from i32->i16 11369 // 11370 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3 11371 // respectively. calculateSrcByte would find (given node) -> ultimate src & 11372 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3. 11373 // After finding the mapping, we can combine the tree into vperm t15, t16, 11374 // 0x05000407 11375 11376 // Find the source and byte position from a node. 11377 // \p DestByte is the byte position of the dest of the or that the src 11378 // ultimately provides. \p SrcIndex is the byte of the src that maps to this 11379 // dest of the or byte. \p Depth tracks how many recursive iterations we have 11380 // performed. 11381 static const std::optional<ByteProvider<SDValue>> 11382 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0, 11383 unsigned Depth = 0) { 11384 // We may need to recursively traverse a series of SRLs 11385 if (Depth >= 6) 11386 return std::nullopt; 11387 11388 auto ValueSize = Op.getValueSizeInBits(); 11389 if (ValueSize != 8 && ValueSize != 16 && ValueSize != 32) 11390 return std::nullopt; 11391 11392 switch (Op->getOpcode()) { 11393 case ISD::TRUNCATE: { 11394 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11395 } 11396 11397 case ISD::SIGN_EXTEND: 11398 case ISD::ZERO_EXTEND: 11399 case ISD::SIGN_EXTEND_INREG: { 11400 SDValue NarrowOp = Op->getOperand(0); 11401 auto NarrowVT = NarrowOp.getValueType(); 11402 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) { 11403 auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); 11404 NarrowVT = VTSign->getVT(); 11405 } 11406 if (!NarrowVT.isByteSized()) 11407 return std::nullopt; 11408 uint64_t NarrowByteWidth = NarrowVT.getStoreSize(); 11409 11410 if (SrcIndex >= NarrowByteWidth) 11411 return std::nullopt; 11412 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11413 } 11414 11415 case ISD::SRA: 11416 case ISD::SRL: { 11417 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11418 if (!ShiftOp) 11419 return std::nullopt; 11420 11421 uint64_t BitShift = ShiftOp->getZExtValue(); 11422 11423 if (BitShift % 8 != 0) 11424 return std::nullopt; 11425 11426 SrcIndex += BitShift / 8; 11427 11428 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); 11429 } 11430 11431 default: { 11432 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex); 11433 } 11434 } 11435 llvm_unreachable("fully handled switch"); 11436 } 11437 11438 // For a byte position in the result of an Or, traverse the tree and find the 11439 // node (and the byte of the node) which ultimately provides this {Or, 11440 // BytePosition}. \p Op is the operand we are currently examining. \p Index is 11441 // the byte position of the Op that corresponds with the originally requested 11442 // byte of the Or \p Depth tracks how many recursive iterations we have 11443 // performed. \p StartingIndex is the originally requested byte of the Or 11444 static const std::optional<ByteProvider<SDValue>> 11445 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth, 11446 unsigned StartingIndex = 0) { 11447 // Finding Src tree of RHS of or typically requires at least 1 additional 11448 // depth 11449 if (Depth > 6) 11450 return std::nullopt; 11451 11452 unsigned BitWidth = Op.getScalarValueSizeInBits(); 11453 if (BitWidth % 8 != 0) 11454 return std::nullopt; 11455 if (Index > BitWidth / 8 - 1) 11456 return std::nullopt; 11457 11458 switch (Op.getOpcode()) { 11459 case ISD::OR: { 11460 auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1, 11461 StartingIndex); 11462 if (!RHS) 11463 return std::nullopt; 11464 auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 11465 StartingIndex); 11466 if (!LHS) 11467 return std::nullopt; 11468 // A well formed Or will have two ByteProviders for each byte, one of which 11469 // is constant zero 11470 if (!LHS->isConstantZero() && !RHS->isConstantZero()) 11471 return std::nullopt; 11472 if (!LHS || LHS->isConstantZero()) 11473 return RHS; 11474 if (!RHS || RHS->isConstantZero()) 11475 return LHS; 11476 return std::nullopt; 11477 } 11478 11479 case ISD::AND: { 11480 auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11481 if (!BitMaskOp) 11482 return std::nullopt; 11483 11484 uint32_t BitMask = BitMaskOp->getZExtValue(); 11485 // Bits we expect for our StartingIndex 11486 uint32_t IndexMask = 0xFF << (Index * 8); 11487 11488 if ((IndexMask & BitMask) != IndexMask) { 11489 // If the result of the and partially provides the byte, then it 11490 // is not well formatted 11491 if (IndexMask & BitMask) 11492 return std::nullopt; 11493 return ByteProvider<SDValue>::getConstantZero(); 11494 } 11495 11496 return calculateSrcByte(Op->getOperand(0), StartingIndex, Index); 11497 } 11498 11499 case ISD::FSHR: { 11500 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 11501 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2)); 11502 if (!ShiftOp || Op.getValueType().isVector()) 11503 return std::nullopt; 11504 11505 uint64_t BitsProvided = Op.getValueSizeInBits(); 11506 if (BitsProvided % 8 != 0) 11507 return std::nullopt; 11508 11509 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided); 11510 if (BitShift % 8) 11511 return std::nullopt; 11512 11513 uint64_t ConcatSizeInBytes = BitsProvided / 4; 11514 uint64_t ByteShift = BitShift / 8; 11515 11516 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes; 11517 uint64_t BytesProvided = BitsProvided / 8; 11518 SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1); 11519 NewIndex %= BytesProvided; 11520 return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex); 11521 } 11522 11523 case ISD::SRA: 11524 case ISD::SRL: { 11525 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11526 if (!ShiftOp) 11527 return std::nullopt; 11528 11529 uint64_t BitShift = ShiftOp->getZExtValue(); 11530 if (BitShift % 8) 11531 return std::nullopt; 11532 11533 auto BitsProvided = Op.getScalarValueSizeInBits(); 11534 if (BitsProvided % 8 != 0) 11535 return std::nullopt; 11536 11537 uint64_t BytesProvided = BitsProvided / 8; 11538 uint64_t ByteShift = BitShift / 8; 11539 // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes. 11540 // If the byte we are trying to provide (as tracked by index) falls in this 11541 // range, then the SRL provides the byte. The byte of interest of the src of 11542 // the SRL is Index + ByteShift 11543 return BytesProvided - ByteShift > Index 11544 ? calculateSrcByte(Op->getOperand(0), StartingIndex, 11545 Index + ByteShift) 11546 : ByteProvider<SDValue>::getConstantZero(); 11547 } 11548 11549 case ISD::SHL: { 11550 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11551 if (!ShiftOp) 11552 return std::nullopt; 11553 11554 uint64_t BitShift = ShiftOp->getZExtValue(); 11555 if (BitShift % 8 != 0) 11556 return std::nullopt; 11557 uint64_t ByteShift = BitShift / 8; 11558 11559 // If we are shifting by an amount greater than (or equal to) 11560 // the index we are trying to provide, then it provides 0s. If not, 11561 // then this bytes are not definitively 0s, and the corresponding byte 11562 // of interest is Index - ByteShift of the src 11563 return Index < ByteShift 11564 ? ByteProvider<SDValue>::getConstantZero() 11565 : calculateByteProvider(Op.getOperand(0), Index - ByteShift, 11566 Depth + 1, StartingIndex); 11567 } 11568 case ISD::ANY_EXTEND: 11569 case ISD::SIGN_EXTEND: 11570 case ISD::ZERO_EXTEND: 11571 case ISD::SIGN_EXTEND_INREG: 11572 case ISD::AssertZext: 11573 case ISD::AssertSext: { 11574 SDValue NarrowOp = Op->getOperand(0); 11575 unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits(); 11576 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG || 11577 Op->getOpcode() == ISD::AssertZext || 11578 Op->getOpcode() == ISD::AssertSext) { 11579 auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); 11580 NarrowBitWidth = VTSign->getVT().getSizeInBits(); 11581 } 11582 if (NarrowBitWidth % 8 != 0) 11583 return std::nullopt; 11584 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 11585 11586 if (Index >= NarrowByteWidth) 11587 return Op.getOpcode() == ISD::ZERO_EXTEND 11588 ? std::optional<ByteProvider<SDValue>>( 11589 ByteProvider<SDValue>::getConstantZero()) 11590 : std::nullopt; 11591 return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex); 11592 } 11593 11594 case ISD::TRUNCATE: { 11595 uint64_t NarrowByteWidth = BitWidth / 8; 11596 11597 if (NarrowByteWidth >= Index) { 11598 return calculateByteProvider(Op.getOperand(0), Index, Depth + 1, 11599 StartingIndex); 11600 } 11601 11602 return std::nullopt; 11603 } 11604 11605 case ISD::CopyFromReg: { 11606 if (BitWidth / 8 > Index) 11607 return calculateSrcByte(Op, StartingIndex, Index); 11608 11609 return std::nullopt; 11610 } 11611 11612 case ISD::LOAD: { 11613 auto L = cast<LoadSDNode>(Op.getNode()); 11614 11615 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); 11616 if (NarrowBitWidth % 8 != 0) 11617 return std::nullopt; 11618 uint64_t NarrowByteWidth = NarrowBitWidth / 8; 11619 11620 // If the width of the load does not reach byte we are trying to provide for 11621 // and it is not a ZEXTLOAD, then the load does not provide for the byte in 11622 // question 11623 if (Index >= NarrowByteWidth) { 11624 return L->getExtensionType() == ISD::ZEXTLOAD 11625 ? std::optional<ByteProvider<SDValue>>( 11626 ByteProvider<SDValue>::getConstantZero()) 11627 : std::nullopt; 11628 } 11629 11630 if (NarrowByteWidth > Index) { 11631 return calculateSrcByte(Op, StartingIndex, Index); 11632 } 11633 11634 return std::nullopt; 11635 } 11636 11637 case ISD::BSWAP: 11638 return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1, 11639 Depth + 1, StartingIndex); 11640 11641 case ISD::EXTRACT_VECTOR_ELT: { 11642 auto IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 11643 if (!IdxOp) 11644 return std::nullopt; 11645 auto VecIdx = IdxOp->getZExtValue(); 11646 auto ScalarSize = Op.getScalarValueSizeInBits(); 11647 if (ScalarSize != 32) { 11648 if ((VecIdx + 1) * ScalarSize > 32) 11649 return std::nullopt; 11650 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index; 11651 } 11652 11653 return calculateSrcByte(ScalarSize == 32 ? Op : Op.getOperand(0), 11654 StartingIndex, Index); 11655 } 11656 11657 case AMDGPUISD::PERM: { 11658 auto PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2)); 11659 if (!PermMask) 11660 return std::nullopt; 11661 11662 auto IdxMask = 11663 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8); 11664 if (IdxMask > 0x07 && IdxMask != 0x0c) 11665 return std::nullopt; 11666 11667 auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1); 11668 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask; 11669 11670 return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex) 11671 : ByteProvider<SDValue>( 11672 ByteProvider<SDValue>::getConstantZero()); 11673 } 11674 11675 default: { 11676 return std::nullopt; 11677 } 11678 } 11679 11680 llvm_unreachable("fully handled switch"); 11681 } 11682 11683 // Returns true if the Operand is a scalar and is 16 bits 11684 static bool isExtendedFrom16Bits(SDValue &Operand) { 11685 11686 switch (Operand.getOpcode()) { 11687 case ISD::ANY_EXTEND: 11688 case ISD::SIGN_EXTEND: 11689 case ISD::ZERO_EXTEND: { 11690 auto OpVT = Operand.getOperand(0).getValueType(); 11691 return !OpVT.isVector() && OpVT.getSizeInBits() == 16; 11692 } 11693 case ISD::LOAD: { 11694 LoadSDNode *L = cast<LoadSDNode>(Operand.getNode()); 11695 auto ExtType = cast<LoadSDNode>(L)->getExtensionType(); 11696 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD || 11697 ExtType == ISD::EXTLOAD) { 11698 auto MemVT = L->getMemoryVT(); 11699 return !MemVT.isVector() && MemVT.getSizeInBits() == 16; 11700 } 11701 return L->getMemoryVT().getSizeInBits() == 16; 11702 } 11703 default: 11704 return false; 11705 } 11706 } 11707 11708 // Returns true if the mask matches consecutive bytes, and the first byte 11709 // begins at a power of 2 byte offset from 0th byte 11710 static bool addresses16Bits(int Mask) { 11711 int Low8 = Mask & 0xff; 11712 int Hi8 = (Mask & 0xff00) >> 8; 11713 11714 assert(Low8 < 8 && Hi8 < 8); 11715 // Are the bytes contiguous in the order of increasing addresses. 11716 bool IsConsecutive = (Hi8 - Low8 == 1); 11717 // Is the first byte at location that is aligned for 16 bit instructions. 11718 // A counter example is taking 2 consecutive bytes starting at the 8th bit. 11719 // In this case, we still need code to extract the 16 bit operand, so it 11720 // is better to use i8 v_perm 11721 bool Is16Aligned = !(Low8 % 2); 11722 11723 return IsConsecutive && Is16Aligned; 11724 } 11725 11726 // Do not lower into v_perm if the operands are actually 16 bit 11727 // and the selected bits (based on PermMask) correspond with two 11728 // easily addressable 16 bit operands. 11729 static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, 11730 SDValue &OtherOp) { 11731 int Low16 = PermMask & 0xffff; 11732 int Hi16 = (PermMask & 0xffff0000) >> 16; 11733 11734 assert(Op.getValueType().isByteSized()); 11735 assert(OtherOp.getValueType().isByteSized()); 11736 11737 auto TempOp = peekThroughBitcasts(Op); 11738 auto TempOtherOp = peekThroughBitcasts(OtherOp); 11739 11740 auto OpIs16Bit = 11741 TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp); 11742 if (!OpIs16Bit) 11743 return true; 11744 11745 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 || 11746 isExtendedFrom16Bits(TempOtherOp); 11747 if (!OtherOpIs16Bit) 11748 return true; 11749 11750 // Do we cleanly address both 11751 return !addresses16Bits(Low16) || !addresses16Bits(Hi16); 11752 } 11753 11754 static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 11755 SelectionDAG &DAG = DCI.DAG; 11756 EVT VT = N->getValueType(0); 11757 11758 if (VT != MVT::i32) 11759 return SDValue(); 11760 11761 // VT is known to be MVT::i32, so we need to provide 4 bytes. 11762 SmallVector<ByteProvider<SDValue>, 8> PermNodes; 11763 for (int i = 0; i < 4; i++) { 11764 // Find the ByteProvider that provides the ith byte of the result of OR 11765 std::optional<ByteProvider<SDValue>> P = 11766 calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i); 11767 // TODO support constantZero 11768 if (!P || P->isConstantZero()) 11769 return SDValue(); 11770 11771 PermNodes.push_back(*P); 11772 } 11773 if (PermNodes.size() != 4) 11774 return SDValue(); 11775 11776 int FirstSrc = 0; 11777 std::optional<int> SecondSrc; 11778 uint64_t PermMask = 0x00000000; 11779 for (size_t i = 0; i < PermNodes.size(); i++) { 11780 auto PermOp = PermNodes[i]; 11781 // Since the mask is applied to Src1:Src2, Src1 bytes must be offset 11782 // by sizeof(Src2) = 4 11783 int SrcByteAdjust = 4; 11784 11785 if (!PermOp.hasSameSrc(PermNodes[FirstSrc])) { 11786 if (SecondSrc.has_value()) 11787 if (!PermOp.hasSameSrc(PermNodes[*SecondSrc])) 11788 return SDValue(); 11789 11790 // Set the index of the second distinct Src node 11791 SecondSrc = i; 11792 assert(!(PermNodes[*SecondSrc].Src->getValueSizeInBits() % 8)); 11793 SrcByteAdjust = 0; 11794 } 11795 assert(PermOp.SrcOffset + SrcByteAdjust < 8); 11796 assert(!DAG.getDataLayout().isBigEndian()); 11797 PermMask |= (PermOp.SrcOffset + SrcByteAdjust) << (i * 8); 11798 } 11799 11800 SDValue Op = *PermNodes[FirstSrc].Src; 11801 SDValue OtherOp = SecondSrc.has_value() ? *PermNodes[*SecondSrc].Src 11802 : *PermNodes[FirstSrc].Src; 11803 11804 // Check that we haven't just recreated the same FSHR node. 11805 if (N->getOpcode() == ISD::FSHR && 11806 (N->getOperand(0) == Op || N->getOperand(0) == OtherOp) && 11807 (N->getOperand(1) == Op || N->getOperand(1) == OtherOp)) 11808 return SDValue(); 11809 11810 // Check that we are not just extracting the bytes in order from an op 11811 if (Op == OtherOp && Op.getValueSizeInBits() == 32) { 11812 int Low16 = PermMask & 0xffff; 11813 int Hi16 = (PermMask & 0xffff0000) >> 16; 11814 11815 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100); 11816 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302); 11817 11818 // The perm op would really just produce Op. So combine into Op 11819 if (WellFormedLow && WellFormedHi) 11820 return DAG.getBitcast(MVT::getIntegerVT(32), Op); 11821 } 11822 11823 if (hasNon16BitAccesses(PermMask, Op, OtherOp)) { 11824 SDLoc DL(N); 11825 assert(Op.getValueType().isByteSized() && 11826 OtherOp.getValueType().isByteSized()); 11827 11828 // If the ultimate src is less than 32 bits, then we will only be 11829 // using bytes 0: Op.getValueSizeInBytes() - 1 in the or. 11830 // CalculateByteProvider would not have returned Op as source if we 11831 // used a byte that is outside its ValueType. Thus, we are free to 11832 // ANY_EXTEND as the extended bits are dont-cares. 11833 Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32); 11834 OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32); 11835 11836 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp, 11837 DAG.getConstant(PermMask, DL, MVT::i32)); 11838 } 11839 11840 return SDValue(); 11841 } 11842 11843 SDValue SITargetLowering::performOrCombine(SDNode *N, 11844 DAGCombinerInfo &DCI) const { 11845 SelectionDAG &DAG = DCI.DAG; 11846 SDValue LHS = N->getOperand(0); 11847 SDValue RHS = N->getOperand(1); 11848 11849 EVT VT = N->getValueType(0); 11850 if (VT == MVT::i1) { 11851 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) 11852 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && 11853 RHS.getOpcode() == AMDGPUISD::FP_CLASS) { 11854 SDValue Src = LHS.getOperand(0); 11855 if (Src != RHS.getOperand(0)) 11856 return SDValue(); 11857 11858 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); 11859 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); 11860 if (!CLHS || !CRHS) 11861 return SDValue(); 11862 11863 // Only 10 bits are used. 11864 static const uint32_t MaxMask = 0x3ff; 11865 11866 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; 11867 SDLoc DL(N); 11868 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, 11869 Src, DAG.getConstant(NewMask, DL, MVT::i32)); 11870 } 11871 11872 return SDValue(); 11873 } 11874 11875 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) 11876 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && 11877 LHS.getOpcode() == AMDGPUISD::PERM && 11878 isa<ConstantSDNode>(LHS.getOperand(2))) { 11879 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); 11880 if (!Sel) 11881 return SDValue(); 11882 11883 Sel |= LHS.getConstantOperandVal(2); 11884 SDLoc DL(N); 11885 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), 11886 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); 11887 } 11888 11889 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) 11890 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 11891 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && 11892 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 11893 11894 // If all the uses of an or need to extract the individual elements, do not 11895 // attempt to lower into v_perm 11896 auto usesCombinedOperand = [](SDNode *OrUse) { 11897 // If we have any non-vectorized use, then it is a candidate for v_perm 11898 if (OrUse->getOpcode() != ISD::BITCAST || 11899 !OrUse->getValueType(0).isVector()) 11900 return true; 11901 11902 // If we have any non-vectorized use, then it is a candidate for v_perm 11903 for (auto VUse : OrUse->uses()) { 11904 if (!VUse->getValueType(0).isVector()) 11905 return true; 11906 11907 // If the use of a vector is a store, then combining via a v_perm 11908 // is beneficial. 11909 // TODO -- whitelist more uses 11910 for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg}) 11911 if (VUse->getOpcode() == VectorwiseOp) 11912 return true; 11913 } 11914 return false; 11915 }; 11916 11917 if (!any_of(N->uses(), usesCombinedOperand)) 11918 return SDValue(); 11919 11920 uint32_t LHSMask = getPermuteMask(LHS); 11921 uint32_t RHSMask = getPermuteMask(RHS); 11922 11923 if (LHSMask != ~0u && RHSMask != ~0u) { 11924 // Canonicalize the expression in an attempt to have fewer unique masks 11925 // and therefore fewer registers used to hold the masks. 11926 if (LHSMask > RHSMask) { 11927 std::swap(LHSMask, RHSMask); 11928 std::swap(LHS, RHS); 11929 } 11930 11931 // Select 0xc for each lane used from source operand. Zero has 0xc mask 11932 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. 11933 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11934 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; 11935 11936 // Check of we need to combine values from two sources within a byte. 11937 if (!(LHSUsedLanes & RHSUsedLanes) && 11938 // If we select high and lower word keep it for SDWA. 11939 // TODO: teach SDWA to work with v_perm_b32 and remove the check. 11940 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { 11941 // Kill zero bytes selected by other mask. Zero value is 0xc. 11942 LHSMask &= ~RHSUsedLanes; 11943 RHSMask &= ~LHSUsedLanes; 11944 // Add 4 to each active LHS lane 11945 LHSMask |= LHSUsedLanes & 0x04040404; 11946 // Combine masks 11947 uint32_t Sel = LHSMask | RHSMask; 11948 SDLoc DL(N); 11949 11950 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, 11951 LHS.getOperand(0), RHS.getOperand(0), 11952 DAG.getConstant(Sel, DL, MVT::i32)); 11953 } 11954 } 11955 if (LHSMask == ~0u || RHSMask == ~0u) { 11956 if (SDValue Perm = matchPERM(N, DCI)) 11957 return Perm; 11958 } 11959 } 11960 11961 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) 11962 return SDValue(); 11963 11964 // TODO: This could be a generic combine with a predicate for extracting the 11965 // high half of an integer being free. 11966 11967 // (or i64:x, (zero_extend i32:y)) -> 11968 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) 11969 if (LHS.getOpcode() == ISD::ZERO_EXTEND && 11970 RHS.getOpcode() != ISD::ZERO_EXTEND) 11971 std::swap(LHS, RHS); 11972 11973 if (RHS.getOpcode() == ISD::ZERO_EXTEND) { 11974 SDValue ExtSrc = RHS.getOperand(0); 11975 EVT SrcVT = ExtSrc.getValueType(); 11976 if (SrcVT == MVT::i32) { 11977 SDLoc SL(N); 11978 SDValue LowLHS, HiBits; 11979 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); 11980 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); 11981 11982 DCI.AddToWorklist(LowOr.getNode()); 11983 DCI.AddToWorklist(HiBits.getNode()); 11984 11985 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 11986 LowOr, HiBits); 11987 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 11988 } 11989 } 11990 11991 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 11992 if (CRHS) { 11993 if (SDValue Split 11994 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, 11995 N->getOperand(0), CRHS)) 11996 return Split; 11997 } 11998 11999 return SDValue(); 12000 } 12001 12002 SDValue SITargetLowering::performXorCombine(SDNode *N, 12003 DAGCombinerInfo &DCI) const { 12004 if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) 12005 return RV; 12006 12007 SDValue LHS = N->getOperand(0); 12008 SDValue RHS = N->getOperand(1); 12009 12010 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); 12011 SelectionDAG &DAG = DCI.DAG; 12012 12013 EVT VT = N->getValueType(0); 12014 if (CRHS && VT == MVT::i64) { 12015 if (SDValue Split 12016 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) 12017 return Split; 12018 } 12019 12020 // Make sure to apply the 64-bit constant splitting fold before trying to fold 12021 // fneg-like xors into 64-bit select. 12022 if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { 12023 // This looks like an fneg, try to fold as a source modifier. 12024 if (CRHS && CRHS->getAPIntValue().isSignMask() && 12025 shouldFoldFNegIntoSrc(N, LHS)) { 12026 // xor (select c, a, b), 0x80000000 -> 12027 // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) 12028 SDLoc DL(N); 12029 SDValue CastLHS = 12030 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); 12031 SDValue CastRHS = 12032 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); 12033 SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); 12034 SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); 12035 SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, 12036 LHS->getOperand(0), FNegLHS, FNegRHS); 12037 return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); 12038 } 12039 } 12040 12041 return SDValue(); 12042 } 12043 12044 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, 12045 DAGCombinerInfo &DCI) const { 12046 if (!Subtarget->has16BitInsts() || 12047 DCI.getDAGCombineLevel() < AfterLegalizeDAG) 12048 return SDValue(); 12049 12050 EVT VT = N->getValueType(0); 12051 if (VT != MVT::i32) 12052 return SDValue(); 12053 12054 SDValue Src = N->getOperand(0); 12055 if (Src.getValueType() != MVT::i16) 12056 return SDValue(); 12057 12058 return SDValue(); 12059 } 12060 12061 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, 12062 DAGCombinerInfo &DCI) 12063 const { 12064 SDValue Src = N->getOperand(0); 12065 auto *VTSign = cast<VTSDNode>(N->getOperand(1)); 12066 12067 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && 12068 VTSign->getVT() == MVT::i8) || 12069 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && 12070 VTSign->getVT() == MVT::i16)) && 12071 Src.hasOneUse()) { 12072 auto *M = cast<MemSDNode>(Src); 12073 SDValue Ops[] = { 12074 Src.getOperand(0), // Chain 12075 Src.getOperand(1), // rsrc 12076 Src.getOperand(2), // vindex 12077 Src.getOperand(3), // voffset 12078 Src.getOperand(4), // soffset 12079 Src.getOperand(5), // offset 12080 Src.getOperand(6), 12081 Src.getOperand(7) 12082 }; 12083 // replace with BUFFER_LOAD_BYTE/SHORT 12084 SDVTList ResList = DCI.DAG.getVTList(MVT::i32, 12085 Src.getOperand(0).getValueType()); 12086 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? 12087 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; 12088 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), 12089 ResList, 12090 Ops, M->getMemoryVT(), 12091 M->getMemOperand()); 12092 return DCI.DAG.getMergeValues({BufferLoadSignExt, 12093 BufferLoadSignExt.getValue(1)}, SDLoc(N)); 12094 } 12095 return SDValue(); 12096 } 12097 12098 SDValue SITargetLowering::performClassCombine(SDNode *N, 12099 DAGCombinerInfo &DCI) const { 12100 SelectionDAG &DAG = DCI.DAG; 12101 SDValue Mask = N->getOperand(1); 12102 12103 // fp_class x, 0 -> false 12104 if (isNullConstant(Mask)) 12105 return DAG.getConstant(0, SDLoc(N), MVT::i1); 12106 12107 if (N->getOperand(0).isUndef()) 12108 return DAG.getUNDEF(MVT::i1); 12109 12110 return SDValue(); 12111 } 12112 12113 SDValue SITargetLowering::performRcpCombine(SDNode *N, 12114 DAGCombinerInfo &DCI) const { 12115 EVT VT = N->getValueType(0); 12116 SDValue N0 = N->getOperand(0); 12117 12118 if (N0.isUndef()) { 12119 return DCI.DAG.getConstantFP( 12120 APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), 12121 VT); 12122 } 12123 12124 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || 12125 N0.getOpcode() == ISD::SINT_TO_FP)) { 12126 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, 12127 N->getFlags()); 12128 } 12129 12130 // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here. 12131 if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) && 12132 N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) { 12133 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, 12134 N0.getOperand(0), N->getFlags()); 12135 } 12136 12137 return AMDGPUTargetLowering::performRcpCombine(N, DCI); 12138 } 12139 12140 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, 12141 unsigned MaxDepth) const { 12142 unsigned Opcode = Op.getOpcode(); 12143 if (Opcode == ISD::FCANONICALIZE) 12144 return true; 12145 12146 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 12147 const auto &F = CFP->getValueAPF(); 12148 if (F.isNaN() && F.isSignaling()) 12149 return false; 12150 if (!F.isDenormal()) 12151 return true; 12152 12153 DenormalMode Mode = 12154 DAG.getMachineFunction().getDenormalMode(F.getSemantics()); 12155 return Mode == DenormalMode::getIEEE(); 12156 } 12157 12158 // If source is a result of another standard FP operation it is already in 12159 // canonical form. 12160 if (MaxDepth == 0) 12161 return false; 12162 12163 switch (Opcode) { 12164 // These will flush denorms if required. 12165 case ISD::FADD: 12166 case ISD::FSUB: 12167 case ISD::FMUL: 12168 case ISD::FCEIL: 12169 case ISD::FFLOOR: 12170 case ISD::FMA: 12171 case ISD::FMAD: 12172 case ISD::FSQRT: 12173 case ISD::FDIV: 12174 case ISD::FREM: 12175 case ISD::FP_ROUND: 12176 case ISD::FP_EXTEND: 12177 case ISD::FLDEXP: 12178 case AMDGPUISD::FMUL_LEGACY: 12179 case AMDGPUISD::FMAD_FTZ: 12180 case AMDGPUISD::RCP: 12181 case AMDGPUISD::RSQ: 12182 case AMDGPUISD::RSQ_CLAMP: 12183 case AMDGPUISD::RCP_LEGACY: 12184 case AMDGPUISD::RCP_IFLAG: 12185 case AMDGPUISD::LOG: 12186 case AMDGPUISD::EXP: 12187 case AMDGPUISD::DIV_SCALE: 12188 case AMDGPUISD::DIV_FMAS: 12189 case AMDGPUISD::DIV_FIXUP: 12190 case AMDGPUISD::FRACT: 12191 case AMDGPUISD::CVT_PKRTZ_F16_F32: 12192 case AMDGPUISD::CVT_F32_UBYTE0: 12193 case AMDGPUISD::CVT_F32_UBYTE1: 12194 case AMDGPUISD::CVT_F32_UBYTE2: 12195 case AMDGPUISD::CVT_F32_UBYTE3: 12196 return true; 12197 12198 // It can/will be lowered or combined as a bit operation. 12199 // Need to check their input recursively to handle. 12200 case ISD::FNEG: 12201 case ISD::FABS: 12202 case ISD::FCOPYSIGN: 12203 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12204 12205 case ISD::FSIN: 12206 case ISD::FCOS: 12207 case ISD::FSINCOS: 12208 return Op.getValueType().getScalarType() != MVT::f16; 12209 12210 case ISD::FMINNUM: 12211 case ISD::FMAXNUM: 12212 case ISD::FMINNUM_IEEE: 12213 case ISD::FMAXNUM_IEEE: 12214 case ISD::FMINIMUM: 12215 case ISD::FMAXIMUM: 12216 case AMDGPUISD::CLAMP: 12217 case AMDGPUISD::FMED3: 12218 case AMDGPUISD::FMAX3: 12219 case AMDGPUISD::FMIN3: 12220 case AMDGPUISD::FMAXIMUM3: 12221 case AMDGPUISD::FMINIMUM3: { 12222 // FIXME: Shouldn't treat the generic operations different based these. 12223 // However, we aren't really required to flush the result from 12224 // minnum/maxnum.. 12225 12226 // snans will be quieted, so we only need to worry about denormals. 12227 if (Subtarget->supportsMinMaxDenormModes() || 12228 // FIXME: denormalsEnabledForType is broken for dynamic 12229 denormalsEnabledForType(DAG, Op.getValueType())) 12230 return true; 12231 12232 // Flushing may be required. 12233 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such 12234 // targets need to check their input recursively. 12235 12236 // FIXME: Does this apply with clamp? It's implemented with max. 12237 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { 12238 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) 12239 return false; 12240 } 12241 12242 return true; 12243 } 12244 case ISD::SELECT: { 12245 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && 12246 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); 12247 } 12248 case ISD::BUILD_VECTOR: { 12249 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 12250 SDValue SrcOp = Op.getOperand(i); 12251 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) 12252 return false; 12253 } 12254 12255 return true; 12256 } 12257 case ISD::EXTRACT_VECTOR_ELT: 12258 case ISD::EXTRACT_SUBVECTOR: { 12259 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12260 } 12261 case ISD::INSERT_VECTOR_ELT: { 12262 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && 12263 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); 12264 } 12265 case ISD::UNDEF: 12266 // Could be anything. 12267 return false; 12268 12269 case ISD::BITCAST: 12270 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); 12271 case ISD::TRUNCATE: { 12272 // Hack round the mess we make when legalizing extract_vector_elt 12273 if (Op.getValueType() == MVT::i16) { 12274 SDValue TruncSrc = Op.getOperand(0); 12275 if (TruncSrc.getValueType() == MVT::i32 && 12276 TruncSrc.getOpcode() == ISD::BITCAST && 12277 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { 12278 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); 12279 } 12280 } 12281 return false; 12282 } 12283 case ISD::INTRINSIC_WO_CHAIN: { 12284 unsigned IntrinsicID = Op.getConstantOperandVal(0); 12285 // TODO: Handle more intrinsics 12286 switch (IntrinsicID) { 12287 case Intrinsic::amdgcn_cvt_pkrtz: 12288 case Intrinsic::amdgcn_cubeid: 12289 case Intrinsic::amdgcn_frexp_mant: 12290 case Intrinsic::amdgcn_fdot2: 12291 case Intrinsic::amdgcn_rcp: 12292 case Intrinsic::amdgcn_rsq: 12293 case Intrinsic::amdgcn_rsq_clamp: 12294 case Intrinsic::amdgcn_rcp_legacy: 12295 case Intrinsic::amdgcn_rsq_legacy: 12296 case Intrinsic::amdgcn_trig_preop: 12297 case Intrinsic::amdgcn_log: 12298 case Intrinsic::amdgcn_exp2: 12299 return true; 12300 default: 12301 break; 12302 } 12303 12304 [[fallthrough]]; 12305 } 12306 default: 12307 // FIXME: denormalsEnabledForType is broken for dynamic 12308 return denormalsEnabledForType(DAG, Op.getValueType()) && 12309 DAG.isKnownNeverSNaN(Op); 12310 } 12311 12312 llvm_unreachable("invalid operation"); 12313 } 12314 12315 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, 12316 unsigned MaxDepth) const { 12317 MachineRegisterInfo &MRI = MF.getRegInfo(); 12318 MachineInstr *MI = MRI.getVRegDef(Reg); 12319 unsigned Opcode = MI->getOpcode(); 12320 12321 if (Opcode == AMDGPU::G_FCANONICALIZE) 12322 return true; 12323 12324 std::optional<FPValueAndVReg> FCR; 12325 // Constant splat (can be padded with undef) or scalar constant. 12326 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { 12327 if (FCR->Value.isSignaling()) 12328 return false; 12329 if (!FCR->Value.isDenormal()) 12330 return true; 12331 12332 DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics()); 12333 return Mode == DenormalMode::getIEEE(); 12334 } 12335 12336 if (MaxDepth == 0) 12337 return false; 12338 12339 switch (Opcode) { 12340 case AMDGPU::G_FADD: 12341 case AMDGPU::G_FSUB: 12342 case AMDGPU::G_FMUL: 12343 case AMDGPU::G_FCEIL: 12344 case AMDGPU::G_FFLOOR: 12345 case AMDGPU::G_FRINT: 12346 case AMDGPU::G_FNEARBYINT: 12347 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: 12348 case AMDGPU::G_INTRINSIC_TRUNC: 12349 case AMDGPU::G_INTRINSIC_ROUNDEVEN: 12350 case AMDGPU::G_FMA: 12351 case AMDGPU::G_FMAD: 12352 case AMDGPU::G_FSQRT: 12353 case AMDGPU::G_FDIV: 12354 case AMDGPU::G_FREM: 12355 case AMDGPU::G_FPOW: 12356 case AMDGPU::G_FPEXT: 12357 case AMDGPU::G_FLOG: 12358 case AMDGPU::G_FLOG2: 12359 case AMDGPU::G_FLOG10: 12360 case AMDGPU::G_FPTRUNC: 12361 case AMDGPU::G_AMDGPU_RCP_IFLAG: 12362 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: 12363 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: 12364 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: 12365 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: 12366 return true; 12367 case AMDGPU::G_FNEG: 12368 case AMDGPU::G_FABS: 12369 case AMDGPU::G_FCOPYSIGN: 12370 return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); 12371 case AMDGPU::G_FMINNUM: 12372 case AMDGPU::G_FMAXNUM: 12373 case AMDGPU::G_FMINNUM_IEEE: 12374 case AMDGPU::G_FMAXNUM_IEEE: 12375 case AMDGPU::G_FMINIMUM: 12376 case AMDGPU::G_FMAXIMUM: { 12377 if (Subtarget->supportsMinMaxDenormModes() || 12378 // FIXME: denormalsEnabledForType is broken for dynamic 12379 denormalsEnabledForType(MRI.getType(Reg), MF)) 12380 return true; 12381 12382 [[fallthrough]]; 12383 } 12384 case AMDGPU::G_BUILD_VECTOR: 12385 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 12386 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) 12387 return false; 12388 return true; 12389 case AMDGPU::G_INTRINSIC: 12390 case AMDGPU::G_INTRINSIC_CONVERGENT: 12391 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) { 12392 case Intrinsic::amdgcn_fmul_legacy: 12393 case Intrinsic::amdgcn_fmad_ftz: 12394 case Intrinsic::amdgcn_sqrt: 12395 case Intrinsic::amdgcn_fmed3: 12396 case Intrinsic::amdgcn_sin: 12397 case Intrinsic::amdgcn_cos: 12398 case Intrinsic::amdgcn_log: 12399 case Intrinsic::amdgcn_exp2: 12400 case Intrinsic::amdgcn_log_clamp: 12401 case Intrinsic::amdgcn_rcp: 12402 case Intrinsic::amdgcn_rcp_legacy: 12403 case Intrinsic::amdgcn_rsq: 12404 case Intrinsic::amdgcn_rsq_clamp: 12405 case Intrinsic::amdgcn_rsq_legacy: 12406 case Intrinsic::amdgcn_div_scale: 12407 case Intrinsic::amdgcn_div_fmas: 12408 case Intrinsic::amdgcn_div_fixup: 12409 case Intrinsic::amdgcn_fract: 12410 case Intrinsic::amdgcn_cvt_pkrtz: 12411 case Intrinsic::amdgcn_cubeid: 12412 case Intrinsic::amdgcn_cubema: 12413 case Intrinsic::amdgcn_cubesc: 12414 case Intrinsic::amdgcn_cubetc: 12415 case Intrinsic::amdgcn_frexp_mant: 12416 case Intrinsic::amdgcn_fdot2: 12417 case Intrinsic::amdgcn_trig_preop: 12418 return true; 12419 default: 12420 break; 12421 } 12422 12423 [[fallthrough]]; 12424 default: 12425 return false; 12426 } 12427 12428 llvm_unreachable("invalid operation"); 12429 } 12430 12431 // Constant fold canonicalize. 12432 SDValue SITargetLowering::getCanonicalConstantFP( 12433 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { 12434 // Flush denormals to 0 if not enabled. 12435 if (C.isDenormal()) { 12436 DenormalMode Mode = 12437 DAG.getMachineFunction().getDenormalMode(C.getSemantics()); 12438 if (Mode == DenormalMode::getPreserveSign()) { 12439 return DAG.getConstantFP( 12440 APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); 12441 } 12442 12443 if (Mode != DenormalMode::getIEEE()) 12444 return SDValue(); 12445 } 12446 12447 if (C.isNaN()) { 12448 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); 12449 if (C.isSignaling()) { 12450 // Quiet a signaling NaN. 12451 // FIXME: Is this supposed to preserve payload bits? 12452 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 12453 } 12454 12455 // Make sure it is the canonical NaN bitpattern. 12456 // 12457 // TODO: Can we use -1 as the canonical NaN value since it's an inline 12458 // immediate? 12459 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) 12460 return DAG.getConstantFP(CanonicalQNaN, SL, VT); 12461 } 12462 12463 // Already canonical. 12464 return DAG.getConstantFP(C, SL, VT); 12465 } 12466 12467 static bool vectorEltWillFoldAway(SDValue Op) { 12468 return Op.isUndef() || isa<ConstantFPSDNode>(Op); 12469 } 12470 12471 SDValue SITargetLowering::performFCanonicalizeCombine( 12472 SDNode *N, 12473 DAGCombinerInfo &DCI) const { 12474 SelectionDAG &DAG = DCI.DAG; 12475 SDValue N0 = N->getOperand(0); 12476 EVT VT = N->getValueType(0); 12477 12478 // fcanonicalize undef -> qnan 12479 if (N0.isUndef()) { 12480 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); 12481 return DAG.getConstantFP(QNaN, SDLoc(N), VT); 12482 } 12483 12484 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { 12485 EVT VT = N->getValueType(0); 12486 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); 12487 } 12488 12489 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), 12490 // (fcanonicalize k) 12491 // 12492 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 12493 12494 // TODO: This could be better with wider vectors that will be split to v2f16, 12495 // and to consider uses since there aren't that many packed operations. 12496 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && 12497 isTypeLegal(MVT::v2f16)) { 12498 SDLoc SL(N); 12499 SDValue NewElts[2]; 12500 SDValue Lo = N0.getOperand(0); 12501 SDValue Hi = N0.getOperand(1); 12502 EVT EltVT = Lo.getValueType(); 12503 12504 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { 12505 for (unsigned I = 0; I != 2; ++I) { 12506 SDValue Op = N0.getOperand(I); 12507 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { 12508 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, 12509 CFP->getValueAPF()); 12510 } else if (Op.isUndef()) { 12511 // Handled below based on what the other operand is. 12512 NewElts[I] = Op; 12513 } else { 12514 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); 12515 } 12516 } 12517 12518 // If one half is undef, and one is constant, prefer a splat vector rather 12519 // than the normal qNaN. If it's a register, prefer 0.0 since that's 12520 // cheaper to use and may be free with a packed operation. 12521 if (NewElts[0].isUndef()) { 12522 if (isa<ConstantFPSDNode>(NewElts[1])) 12523 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? 12524 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); 12525 } 12526 12527 if (NewElts[1].isUndef()) { 12528 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? 12529 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); 12530 } 12531 12532 return DAG.getBuildVector(VT, SL, NewElts); 12533 } 12534 } 12535 12536 unsigned SrcOpc = N0.getOpcode(); 12537 12538 // If it's free to do so, push canonicalizes further up the source, which may 12539 // find a canonical source. 12540 // 12541 // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for 12542 // sNaNs. 12543 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { 12544 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 12545 if (CRHS && N0.hasOneUse()) { 12546 SDLoc SL(N); 12547 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, 12548 N0.getOperand(0)); 12549 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); 12550 DCI.AddToWorklist(Canon0.getNode()); 12551 12552 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); 12553 } 12554 } 12555 12556 return isCanonicalized(DAG, N0) ? N0 : SDValue(); 12557 } 12558 12559 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { 12560 switch (Opc) { 12561 case ISD::FMAXNUM: 12562 case ISD::FMAXNUM_IEEE: 12563 return AMDGPUISD::FMAX3; 12564 case ISD::FMAXIMUM: 12565 return AMDGPUISD::FMAXIMUM3; 12566 case ISD::SMAX: 12567 return AMDGPUISD::SMAX3; 12568 case ISD::UMAX: 12569 return AMDGPUISD::UMAX3; 12570 case ISD::FMINNUM: 12571 case ISD::FMINNUM_IEEE: 12572 return AMDGPUISD::FMIN3; 12573 case ISD::FMINIMUM: 12574 return AMDGPUISD::FMINIMUM3; 12575 case ISD::SMIN: 12576 return AMDGPUISD::SMIN3; 12577 case ISD::UMIN: 12578 return AMDGPUISD::UMIN3; 12579 default: 12580 llvm_unreachable("Not a min/max opcode"); 12581 } 12582 } 12583 12584 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, 12585 const SDLoc &SL, SDValue Src, 12586 SDValue MinVal, 12587 SDValue MaxVal, 12588 bool Signed) const { 12589 12590 // med3 comes from 12591 // min(max(x, K0), K1), K0 < K1 12592 // max(min(x, K0), K1), K1 < K0 12593 // 12594 // "MinVal" and "MaxVal" respectively refer to the rhs of the 12595 // min/max op. 12596 ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal); 12597 ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal); 12598 12599 if (!MinK || !MaxK) 12600 return SDValue(); 12601 12602 if (Signed) { 12603 if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) 12604 return SDValue(); 12605 } else { 12606 if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) 12607 return SDValue(); 12608 } 12609 12610 EVT VT = MinK->getValueType(0); 12611 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; 12612 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) 12613 return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); 12614 12615 // Note: we could also extend to i32 and use i32 med3 if i16 med3 is 12616 // not available, but this is unlikely to be profitable as constants 12617 // will often need to be materialized & extended, especially on 12618 // pre-GFX10 where VOP3 instructions couldn't take literal operands. 12619 return SDValue(); 12620 } 12621 12622 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { 12623 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 12624 return C; 12625 12626 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { 12627 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) 12628 return C; 12629 } 12630 12631 return nullptr; 12632 } 12633 12634 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, 12635 const SDLoc &SL, 12636 SDValue Op0, 12637 SDValue Op1) const { 12638 ConstantFPSDNode *K1 = getSplatConstantFP(Op1); 12639 if (!K1) 12640 return SDValue(); 12641 12642 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); 12643 if (!K0) 12644 return SDValue(); 12645 12646 // Ordered >= (although NaN inputs should have folded away by now). 12647 if (K0->getValueAPF() > K1->getValueAPF()) 12648 return SDValue(); 12649 12650 const MachineFunction &MF = DAG.getMachineFunction(); 12651 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12652 12653 // TODO: Check IEEE bit enabled? 12654 EVT VT = Op0.getValueType(); 12655 if (Info->getMode().DX10Clamp) { 12656 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the 12657 // hardware fmed3 behavior converting to a min. 12658 // FIXME: Should this be allowing -0.0? 12659 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) 12660 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); 12661 } 12662 12663 // med3 for f16 is only available on gfx9+, and not available for v2f16. 12664 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { 12665 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a 12666 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would 12667 // then give the other result, which is different from med3 with a NaN 12668 // input. 12669 SDValue Var = Op0.getOperand(0); 12670 if (!DAG.isKnownNeverSNaN(Var)) 12671 return SDValue(); 12672 12673 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 12674 12675 if ((!K0->hasOneUse() || 12676 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && 12677 (!K1->hasOneUse() || 12678 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { 12679 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), 12680 Var, SDValue(K0, 0), SDValue(K1, 0)); 12681 } 12682 } 12683 12684 return SDValue(); 12685 } 12686 12687 SDValue SITargetLowering::performMinMaxCombine(SDNode *N, 12688 DAGCombinerInfo &DCI) const { 12689 SelectionDAG &DAG = DCI.DAG; 12690 12691 EVT VT = N->getValueType(0); 12692 unsigned Opc = N->getOpcode(); 12693 SDValue Op0 = N->getOperand(0); 12694 SDValue Op1 = N->getOperand(1); 12695 12696 // Only do this if the inner op has one use since this will just increases 12697 // register pressure for no benefit. 12698 12699 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && 12700 !VT.isVector() && 12701 (VT == MVT::i32 || VT == MVT::f32 || 12702 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { 12703 // max(max(a, b), c) -> max3(a, b, c) 12704 // min(min(a, b), c) -> min3(a, b, c) 12705 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { 12706 SDLoc DL(N); 12707 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 12708 DL, 12709 N->getValueType(0), 12710 Op0.getOperand(0), 12711 Op0.getOperand(1), 12712 Op1); 12713 } 12714 12715 // Try commuted. 12716 // max(a, max(b, c)) -> max3(a, b, c) 12717 // min(a, min(b, c)) -> min3(a, b, c) 12718 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { 12719 SDLoc DL(N); 12720 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), 12721 DL, 12722 N->getValueType(0), 12723 Op0, 12724 Op1.getOperand(0), 12725 Op1.getOperand(1)); 12726 } 12727 } 12728 12729 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) 12730 // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) 12731 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { 12732 if (SDValue Med3 = performIntMed3ImmCombine( 12733 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) 12734 return Med3; 12735 } 12736 if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { 12737 if (SDValue Med3 = performIntMed3ImmCombine( 12738 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) 12739 return Med3; 12740 } 12741 12742 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { 12743 if (SDValue Med3 = performIntMed3ImmCombine( 12744 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) 12745 return Med3; 12746 } 12747 if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { 12748 if (SDValue Med3 = performIntMed3ImmCombine( 12749 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) 12750 return Med3; 12751 } 12752 12753 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) 12754 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || 12755 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || 12756 (Opc == AMDGPUISD::FMIN_LEGACY && 12757 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && 12758 (VT == MVT::f32 || VT == MVT::f64 || 12759 (VT == MVT::f16 && Subtarget->has16BitInsts()) || 12760 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && 12761 Op0.hasOneUse()) { 12762 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) 12763 return Res; 12764 } 12765 12766 return SDValue(); 12767 } 12768 12769 static bool isClampZeroToOne(SDValue A, SDValue B) { 12770 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { 12771 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { 12772 // FIXME: Should this be allowing -0.0? 12773 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || 12774 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); 12775 } 12776 } 12777 12778 return false; 12779 } 12780 12781 // FIXME: Should only worry about snans for version with chain. 12782 SDValue SITargetLowering::performFMed3Combine(SDNode *N, 12783 DAGCombinerInfo &DCI) const { 12784 EVT VT = N->getValueType(0); 12785 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and 12786 // NaNs. With a NaN input, the order of the operands may change the result. 12787 12788 SelectionDAG &DAG = DCI.DAG; 12789 SDLoc SL(N); 12790 12791 SDValue Src0 = N->getOperand(0); 12792 SDValue Src1 = N->getOperand(1); 12793 SDValue Src2 = N->getOperand(2); 12794 12795 if (isClampZeroToOne(Src0, Src1)) { 12796 // const_a, const_b, x -> clamp is safe in all cases including signaling 12797 // nans. 12798 // FIXME: Should this be allowing -0.0? 12799 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); 12800 } 12801 12802 const MachineFunction &MF = DAG.getMachineFunction(); 12803 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 12804 12805 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother 12806 // handling no dx10-clamp? 12807 if (Info->getMode().DX10Clamp) { 12808 // If NaNs is clamped to 0, we are free to reorder the inputs. 12809 12810 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 12811 std::swap(Src0, Src1); 12812 12813 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) 12814 std::swap(Src1, Src2); 12815 12816 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) 12817 std::swap(Src0, Src1); 12818 12819 if (isClampZeroToOne(Src1, Src2)) 12820 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); 12821 } 12822 12823 return SDValue(); 12824 } 12825 12826 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, 12827 DAGCombinerInfo &DCI) const { 12828 SDValue Src0 = N->getOperand(0); 12829 SDValue Src1 = N->getOperand(1); 12830 if (Src0.isUndef() && Src1.isUndef()) 12831 return DCI.DAG.getUNDEF(N->getValueType(0)); 12832 return SDValue(); 12833 } 12834 12835 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be 12836 // expanded into a set of cmp/select instructions. 12837 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, 12838 unsigned NumElem, 12839 bool IsDivergentIdx, 12840 const GCNSubtarget *Subtarget) { 12841 if (UseDivergentRegisterIndexing) 12842 return false; 12843 12844 unsigned VecSize = EltSize * NumElem; 12845 12846 // Sub-dword vectors of size 2 dword or less have better implementation. 12847 if (VecSize <= 64 && EltSize < 32) 12848 return false; 12849 12850 // Always expand the rest of sub-dword instructions, otherwise it will be 12851 // lowered via memory. 12852 if (EltSize < 32) 12853 return true; 12854 12855 // Always do this if var-idx is divergent, otherwise it will become a loop. 12856 if (IsDivergentIdx) 12857 return true; 12858 12859 // Large vectors would yield too many compares and v_cndmask_b32 instructions. 12860 unsigned NumInsts = NumElem /* Number of compares */ + 12861 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; 12862 12863 // On some architectures (GFX9) movrel is not available and it's better 12864 // to expand. 12865 if (!Subtarget->hasMovrel()) 12866 return NumInsts <= 16; 12867 12868 // If movrel is available, use it instead of expanding for vector of 8 12869 // elements. 12870 return NumInsts <= 15; 12871 } 12872 12873 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { 12874 SDValue Idx = N->getOperand(N->getNumOperands() - 1); 12875 if (isa<ConstantSDNode>(Idx)) 12876 return false; 12877 12878 SDValue Vec = N->getOperand(0); 12879 EVT VecVT = Vec.getValueType(); 12880 EVT EltVT = VecVT.getVectorElementType(); 12881 unsigned EltSize = EltVT.getSizeInBits(); 12882 unsigned NumElem = VecVT.getVectorNumElements(); 12883 12884 return SITargetLowering::shouldExpandVectorDynExt( 12885 EltSize, NumElem, Idx->isDivergent(), getSubtarget()); 12886 } 12887 12888 SDValue SITargetLowering::performExtractVectorEltCombine( 12889 SDNode *N, DAGCombinerInfo &DCI) const { 12890 SDValue Vec = N->getOperand(0); 12891 SelectionDAG &DAG = DCI.DAG; 12892 12893 EVT VecVT = Vec.getValueType(); 12894 EVT VecEltVT = VecVT.getVectorElementType(); 12895 EVT ResVT = N->getValueType(0); 12896 12897 unsigned VecSize = VecVT.getSizeInBits(); 12898 unsigned VecEltSize = VecEltVT.getSizeInBits(); 12899 12900 if ((Vec.getOpcode() == ISD::FNEG || 12901 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { 12902 SDLoc SL(N); 12903 SDValue Idx = N->getOperand(1); 12904 SDValue Elt = 12905 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); 12906 return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); 12907 } 12908 12909 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) 12910 // => 12911 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) 12912 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) 12913 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt 12914 if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { 12915 SDLoc SL(N); 12916 SDValue Idx = N->getOperand(1); 12917 unsigned Opc = Vec.getOpcode(); 12918 12919 switch(Opc) { 12920 default: 12921 break; 12922 // TODO: Support other binary operations. 12923 case ISD::FADD: 12924 case ISD::FSUB: 12925 case ISD::FMUL: 12926 case ISD::ADD: 12927 case ISD::UMIN: 12928 case ISD::UMAX: 12929 case ISD::SMIN: 12930 case ISD::SMAX: 12931 case ISD::FMAXNUM: 12932 case ISD::FMINNUM: 12933 case ISD::FMAXNUM_IEEE: 12934 case ISD::FMINNUM_IEEE: 12935 case ISD::FMAXIMUM: 12936 case ISD::FMINIMUM: { 12937 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 12938 Vec.getOperand(0), Idx); 12939 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, 12940 Vec.getOperand(1), Idx); 12941 12942 DCI.AddToWorklist(Elt0.getNode()); 12943 DCI.AddToWorklist(Elt1.getNode()); 12944 return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); 12945 } 12946 } 12947 } 12948 12949 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) 12950 if (shouldExpandVectorDynExt(N)) { 12951 SDLoc SL(N); 12952 SDValue Idx = N->getOperand(1); 12953 SDValue V; 12954 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 12955 SDValue IC = DAG.getVectorIdxConstant(I, SL); 12956 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); 12957 if (I == 0) 12958 V = Elt; 12959 else 12960 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); 12961 } 12962 return V; 12963 } 12964 12965 if (!DCI.isBeforeLegalize()) 12966 return SDValue(); 12967 12968 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit 12969 // elements. This exposes more load reduction opportunities by replacing 12970 // multiple small extract_vector_elements with a single 32-bit extract. 12971 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12972 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && 12973 VecSize > 32 && VecSize % 32 == 0 && Idx) { 12974 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); 12975 12976 unsigned BitIndex = Idx->getZExtValue() * VecEltSize; 12977 unsigned EltIdx = BitIndex / 32; 12978 unsigned LeftoverBitIdx = BitIndex % 32; 12979 SDLoc SL(N); 12980 12981 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); 12982 DCI.AddToWorklist(Cast.getNode()); 12983 12984 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, 12985 DAG.getConstant(EltIdx, SL, MVT::i32)); 12986 DCI.AddToWorklist(Elt.getNode()); 12987 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, 12988 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); 12989 DCI.AddToWorklist(Srl.getNode()); 12990 12991 EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); 12992 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); 12993 DCI.AddToWorklist(Trunc.getNode()); 12994 12995 if (VecEltVT == ResVT) { 12996 return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); 12997 } 12998 12999 assert(ResVT.isScalarInteger()); 13000 return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); 13001 } 13002 13003 return SDValue(); 13004 } 13005 13006 SDValue 13007 SITargetLowering::performInsertVectorEltCombine(SDNode *N, 13008 DAGCombinerInfo &DCI) const { 13009 SDValue Vec = N->getOperand(0); 13010 SDValue Idx = N->getOperand(2); 13011 EVT VecVT = Vec.getValueType(); 13012 EVT EltVT = VecVT.getVectorElementType(); 13013 13014 // INSERT_VECTOR_ELT (<n x e>, var-idx) 13015 // => BUILD_VECTOR n x select (e, const-idx) 13016 if (!shouldExpandVectorDynExt(N)) 13017 return SDValue(); 13018 13019 SelectionDAG &DAG = DCI.DAG; 13020 SDLoc SL(N); 13021 SDValue Ins = N->getOperand(1); 13022 EVT IdxVT = Idx.getValueType(); 13023 13024 SmallVector<SDValue, 16> Ops; 13025 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { 13026 SDValue IC = DAG.getConstant(I, SL, IdxVT); 13027 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); 13028 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); 13029 Ops.push_back(V); 13030 } 13031 13032 return DAG.getBuildVector(VecVT, SL, Ops); 13033 } 13034 13035 /// Return the source of an fp_extend from f16 to f32, or a converted FP 13036 /// constant. 13037 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) { 13038 if (Src.getOpcode() == ISD::FP_EXTEND && 13039 Src.getOperand(0).getValueType() == MVT::f16) { 13040 return Src.getOperand(0); 13041 } 13042 13043 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) { 13044 APFloat Val = CFP->getValueAPF(); 13045 bool LosesInfo = true; 13046 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 13047 if (!LosesInfo) 13048 return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16); 13049 } 13050 13051 return SDValue(); 13052 } 13053 13054 SDValue SITargetLowering::performFPRoundCombine(SDNode *N, 13055 DAGCombinerInfo &DCI) const { 13056 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() && 13057 "combine only useful on gfx8"); 13058 13059 SDValue TruncSrc = N->getOperand(0); 13060 EVT VT = N->getValueType(0); 13061 if (VT != MVT::f16) 13062 return SDValue(); 13063 13064 if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 || 13065 TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse()) 13066 return SDValue(); 13067 13068 SelectionDAG &DAG = DCI.DAG; 13069 SDLoc SL(N); 13070 13071 // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3, 13072 // and expanding it with min/max saves 1 instruction vs. casting to f32 and 13073 // casting back. 13074 13075 // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) => 13076 // fmin(fmax(a, b), fmax(fmin(a, b), c)) 13077 SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0)); 13078 if (!A) 13079 return SDValue(); 13080 13081 SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1)); 13082 if (!B) 13083 return SDValue(); 13084 13085 SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2)); 13086 if (!C) 13087 return SDValue(); 13088 13089 // This changes signaling nan behavior. If an input is a signaling nan, it 13090 // would have been quieted by the fpext originally. We don't care because 13091 // these are unconstrained ops. If we needed to insert quieting canonicalizes 13092 // we would be worse off than just doing the promotion. 13093 SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B); 13094 SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B); 13095 SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C); 13096 return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1); 13097 } 13098 13099 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, 13100 const SDNode *N0, 13101 const SDNode *N1) const { 13102 EVT VT = N0->getValueType(0); 13103 13104 // Only do this if we are not trying to support denormals. v_mad_f32 does not 13105 // support denormals ever. 13106 if (((VT == MVT::f32 && 13107 denormalModeIsFlushAllF32(DAG.getMachineFunction())) || 13108 (VT == MVT::f16 && Subtarget->hasMadF16() && 13109 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) && 13110 isOperationLegal(ISD::FMAD, VT)) 13111 return ISD::FMAD; 13112 13113 const TargetOptions &Options = DAG.getTarget().Options; 13114 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13115 (N0->getFlags().hasAllowContract() && 13116 N1->getFlags().hasAllowContract())) && 13117 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 13118 return ISD::FMA; 13119 } 13120 13121 return 0; 13122 } 13123 13124 // For a reassociatable opcode perform: 13125 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform 13126 SDValue SITargetLowering::reassociateScalarOps(SDNode *N, 13127 SelectionDAG &DAG) const { 13128 EVT VT = N->getValueType(0); 13129 if (VT != MVT::i32 && VT != MVT::i64) 13130 return SDValue(); 13131 13132 if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) 13133 return SDValue(); 13134 13135 unsigned Opc = N->getOpcode(); 13136 SDValue Op0 = N->getOperand(0); 13137 SDValue Op1 = N->getOperand(1); 13138 13139 if (!(Op0->isDivergent() ^ Op1->isDivergent())) 13140 return SDValue(); 13141 13142 if (Op0->isDivergent()) 13143 std::swap(Op0, Op1); 13144 13145 if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) 13146 return SDValue(); 13147 13148 SDValue Op2 = Op1.getOperand(1); 13149 Op1 = Op1.getOperand(0); 13150 if (!(Op1->isDivergent() ^ Op2->isDivergent())) 13151 return SDValue(); 13152 13153 if (Op1->isDivergent()) 13154 std::swap(Op1, Op2); 13155 13156 SDLoc SL(N); 13157 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); 13158 return DAG.getNode(Opc, SL, VT, Add1, Op2); 13159 } 13160 13161 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, 13162 EVT VT, 13163 SDValue N0, SDValue N1, SDValue N2, 13164 bool Signed) { 13165 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; 13166 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); 13167 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); 13168 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); 13169 } 13170 13171 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high 13172 // multiplies, if any. 13173 // 13174 // Full 64-bit multiplies that feed into an addition are lowered here instead 13175 // of using the generic expansion. The generic expansion ends up with 13176 // a tree of ADD nodes that prevents us from using the "add" part of the 13177 // MAD instruction. The expansion produced here results in a chain of ADDs 13178 // instead of a tree. 13179 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, 13180 DAGCombinerInfo &DCI) const { 13181 assert(N->getOpcode() == ISD::ADD); 13182 13183 SelectionDAG &DAG = DCI.DAG; 13184 EVT VT = N->getValueType(0); 13185 SDLoc SL(N); 13186 SDValue LHS = N->getOperand(0); 13187 SDValue RHS = N->getOperand(1); 13188 13189 if (VT.isVector()) 13190 return SDValue(); 13191 13192 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall 13193 // result in scalar registers for uniform values. 13194 if (!N->isDivergent() && Subtarget->hasSMulHi()) 13195 return SDValue(); 13196 13197 unsigned NumBits = VT.getScalarSizeInBits(); 13198 if (NumBits <= 32 || NumBits > 64) 13199 return SDValue(); 13200 13201 if (LHS.getOpcode() != ISD::MUL) { 13202 assert(RHS.getOpcode() == ISD::MUL); 13203 std::swap(LHS, RHS); 13204 } 13205 13206 // Avoid the fold if it would unduly increase the number of multiplies due to 13207 // multiple uses, except on hardware with full-rate multiply-add (which is 13208 // part of full-rate 64-bit ops). 13209 if (!Subtarget->hasFullRate64Ops()) { 13210 unsigned NumUsers = 0; 13211 for (SDNode *Use : LHS->uses()) { 13212 // There is a use that does not feed into addition, so the multiply can't 13213 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. 13214 if (Use->getOpcode() != ISD::ADD) 13215 return SDValue(); 13216 13217 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer 13218 // MUL + 3xADD + 3xADDC over 3xMAD. 13219 ++NumUsers; 13220 if (NumUsers >= 3) 13221 return SDValue(); 13222 } 13223 } 13224 13225 SDValue MulLHS = LHS.getOperand(0); 13226 SDValue MulRHS = LHS.getOperand(1); 13227 SDValue AddRHS = RHS; 13228 13229 // Always check whether operands are small unsigned values, since that 13230 // knowledge is useful in more cases. Check for small signed values only if 13231 // doing so can unlock a shorter code sequence. 13232 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; 13233 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; 13234 13235 bool MulSignedLo = false; 13236 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { 13237 MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && 13238 numBitsSigned(MulRHS, DAG) <= 32; 13239 } 13240 13241 // The operands and final result all have the same number of bits. If 13242 // operands need to be extended, they can be extended with garbage. The 13243 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is 13244 // truncated away in the end. 13245 if (VT != MVT::i64) { 13246 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); 13247 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); 13248 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); 13249 } 13250 13251 // The basic code generated is conceptually straightforward. Pseudo code: 13252 // 13253 // accum = mad_64_32 lhs.lo, rhs.lo, accum 13254 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi 13255 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi 13256 // 13257 // The second and third lines are optional, depending on whether the factors 13258 // are {sign,zero}-extended or not. 13259 // 13260 // The actual DAG is noisier than the pseudo code, but only due to 13261 // instructions that disassemble values into low and high parts, and 13262 // assemble the final result. 13263 SDValue One = DAG.getConstant(1, SL, MVT::i32); 13264 13265 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); 13266 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); 13267 SDValue Accum = 13268 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); 13269 13270 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { 13271 SDValue AccumLo, AccumHi; 13272 std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); 13273 13274 if (!MulLHSUnsigned32) { 13275 auto MulLHSHi = 13276 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); 13277 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); 13278 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 13279 } 13280 13281 if (!MulRHSUnsigned32) { 13282 auto MulRHSHi = 13283 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); 13284 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); 13285 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); 13286 } 13287 13288 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); 13289 Accum = DAG.getBitcast(MVT::i64, Accum); 13290 } 13291 13292 if (VT != MVT::i64) 13293 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); 13294 return Accum; 13295 } 13296 13297 // Collect the ultimate src of each of the mul node's operands, and confirm 13298 // each operand is 8 bytes. 13299 static std::optional<ByteProvider<SDValue>> 13300 handleMulOperand(const SDValue &MulOperand) { 13301 auto Byte0 = calculateByteProvider(MulOperand, 0, 0); 13302 if (!Byte0 || Byte0->isConstantZero()) { 13303 return std::nullopt; 13304 } 13305 auto Byte1 = calculateByteProvider(MulOperand, 1, 0); 13306 if (Byte1 && !Byte1->isConstantZero()) { 13307 return std::nullopt; 13308 } 13309 return Byte0; 13310 } 13311 13312 static unsigned addPermMasks(unsigned First, unsigned Second) { 13313 unsigned FirstCs = First & 0x0c0c0c0c; 13314 unsigned SecondCs = Second & 0x0c0c0c0c; 13315 unsigned FirstNoCs = First & ~0x0c0c0c0c; 13316 unsigned SecondNoCs = Second & ~0x0c0c0c0c; 13317 13318 assert((FirstCs & 0xFF) | (SecondCs & 0xFF)); 13319 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00)); 13320 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000)); 13321 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000)); 13322 13323 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs); 13324 } 13325 13326 static void placeSources(ByteProvider<SDValue> &Src0, 13327 ByteProvider<SDValue> &Src1, 13328 SmallVectorImpl<std::pair<SDValue, unsigned>> &Src0s, 13329 SmallVectorImpl<std::pair<SDValue, unsigned>> &Src1s, 13330 int Step) { 13331 13332 assert(Src0.Src.has_value() && Src1.Src.has_value()); 13333 // Src0s and Src1s are empty, just place arbitrarily. 13334 if (Step == 0) { 13335 Src0s.push_back({*Src0.Src, (Src0.SrcOffset << 24) + 0x0c0c0c}); 13336 Src1s.push_back({*Src1.Src, (Src1.SrcOffset << 24) + 0x0c0c0c}); 13337 return; 13338 } 13339 13340 for (int BPI = 0; BPI < 2; BPI++) { 13341 std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1}; 13342 if (BPI == 1) { 13343 BPP = {Src1, Src0}; 13344 } 13345 unsigned ZeroMask = 0x0c0c0c0c; 13346 unsigned FMask = 0xFF << (8 * (3 - Step)); 13347 13348 unsigned FirstMask = 13349 BPP.first.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask); 13350 unsigned SecondMask = 13351 BPP.second.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask); 13352 // Attempt to find Src vector which contains our SDValue, if so, add our 13353 // perm mask to the existing one. If we are unable to find a match for the 13354 // first SDValue, attempt to find match for the second. 13355 int FirstGroup = -1; 13356 for (int I = 0; I < 2; I++) { 13357 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs = 13358 I == 0 ? Src0s : Src1s; 13359 auto MatchesFirst = [&BPP](std::pair<SDValue, unsigned> IterElt) { 13360 return IterElt.first == *BPP.first.Src; 13361 }; 13362 13363 auto Match = llvm::find_if(Srcs, MatchesFirst); 13364 if (Match != Srcs.end()) { 13365 Match->second = addPermMasks(FirstMask, Match->second); 13366 FirstGroup = I; 13367 break; 13368 } 13369 } 13370 if (FirstGroup != -1) { 13371 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs = 13372 FirstGroup == 1 ? Src0s : Src1s; 13373 auto MatchesSecond = [&BPP](std::pair<SDValue, unsigned> IterElt) { 13374 return IterElt.first == *BPP.second.Src; 13375 }; 13376 auto Match = llvm::find_if(Srcs, MatchesSecond); 13377 if (Match != Srcs.end()) { 13378 Match->second = addPermMasks(SecondMask, Match->second); 13379 } else 13380 Srcs.push_back({*BPP.second.Src, SecondMask}); 13381 return; 13382 } 13383 } 13384 13385 // If we have made it here, then we could not find a match in Src0s or Src1s 13386 // for either Src0 or Src1, so just place them arbitrarily. 13387 13388 unsigned ZeroMask = 0x0c0c0c0c; 13389 unsigned FMask = 0xFF << (8 * (3 - Step)); 13390 13391 Src0s.push_back( 13392 {*Src0.Src, (Src0.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))}); 13393 Src1s.push_back( 13394 {*Src1.Src, (Src1.SrcOffset << (8 * (3 - Step)) | (ZeroMask & ~FMask))}); 13395 13396 return; 13397 } 13398 13399 static SDValue 13400 resolveSources(SelectionDAG &DAG, SDLoc SL, 13401 SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs, 13402 bool IsSigned, bool IsAny) { 13403 13404 // If we just have one source, just permute it accordingly. 13405 if (Srcs.size() == 1) { 13406 auto Elt = Srcs.begin(); 13407 auto EltVal = DAG.getBitcastedAnyExtOrTrunc(Elt->first, SL, MVT::i32); 13408 13409 // v_perm will produce the original value. 13410 if (Elt->second == 0x3020100) 13411 return EltVal; 13412 13413 return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal, 13414 DAG.getConstant(Elt->second, SL, MVT::i32)); 13415 } 13416 13417 auto FirstElt = Srcs.begin(); 13418 auto SecondElt = std::next(FirstElt); 13419 13420 SmallVector<SDValue, 2> Perms; 13421 13422 // If we have multiple sources in the chain, combine them via perms (using 13423 // calculated perm mask) and Ors. 13424 while (true) { 13425 auto FirstMask = FirstElt->second; 13426 auto SecondMask = SecondElt->second; 13427 13428 unsigned FirstCs = FirstMask & 0x0c0c0c0c; 13429 unsigned FirstPlusFour = FirstMask | 0x04040404; 13430 // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any 13431 // original 0x0C. 13432 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs; 13433 13434 auto PermMask = addPermMasks(FirstMask, SecondMask); 13435 auto FirstVal = 13436 DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32); 13437 auto SecondVal = 13438 DAG.getBitcastedAnyExtOrTrunc(SecondElt->first, SL, MVT::i32); 13439 13440 Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal, 13441 SecondVal, 13442 DAG.getConstant(PermMask, SL, MVT::i32))); 13443 13444 FirstElt = std::next(SecondElt); 13445 if (FirstElt == Srcs.end()) 13446 break; 13447 13448 SecondElt = std::next(FirstElt); 13449 // If we only have a FirstElt, then just combine that into the cumulative 13450 // source node. 13451 if (SecondElt == Srcs.end()) { 13452 auto EltVal = 13453 DAG.getBitcastedAnyExtOrTrunc(FirstElt->first, SL, MVT::i32); 13454 13455 Perms.push_back( 13456 DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltVal, EltVal, 13457 DAG.getConstant(FirstElt->second, SL, MVT::i32))); 13458 break; 13459 } 13460 } 13461 13462 assert(Perms.size() == 1 || Perms.size() == 2); 13463 return Perms.size() == 2 13464 ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1]) 13465 : Perms[0]; 13466 } 13467 13468 static void fixMasks(SmallVectorImpl<std::pair<SDValue, unsigned>> &Srcs, 13469 unsigned ChainLength) { 13470 for (auto &[EntryVal, EntryMask] : Srcs) { 13471 EntryMask = EntryMask >> ((4 - ChainLength) * 8); 13472 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000; 13473 EntryMask += ZeroMask; 13474 } 13475 } 13476 13477 static bool isMul(const SDValue Op) { 13478 auto Opcode = Op.getOpcode(); 13479 13480 return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 || 13481 Opcode == AMDGPUISD::MUL_I24); 13482 } 13483 13484 static std::optional<bool> 13485 checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0, 13486 ByteProvider<SDValue> &Src1, const SDValue &S0Op, 13487 const SDValue &S1Op, const SelectionDAG &DAG) { 13488 // If we both ops are i8s (pre legalize-dag), then the signedness semantics 13489 // of the dot4 is irrelevant. 13490 if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8) 13491 return false; 13492 13493 auto Known0 = DAG.computeKnownBits(S0Op, 0); 13494 bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0; 13495 bool S0IsSigned = Known0.countMinLeadingOnes() > 0; 13496 auto Known1 = DAG.computeKnownBits(S1Op, 0); 13497 bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0; 13498 bool S1IsSigned = Known1.countMinLeadingOnes() > 0; 13499 13500 assert(!(S0IsUnsigned && S0IsSigned)); 13501 assert(!(S1IsUnsigned && S1IsSigned)); 13502 13503 // There are 9 possible permutations of 13504 // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned} 13505 13506 // In two permutations, the sign bits are known to be the same for both Ops, 13507 // so simply return Signed / Unsigned corresponding to the MSB 13508 13509 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned)) 13510 return S0IsSigned; 13511 13512 // In another two permutations, the sign bits are known to be opposite. In 13513 // this case return std::nullopt to indicate a bad match. 13514 13515 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned)) 13516 return std::nullopt; 13517 13518 // In the remaining five permutations, we don't know the value of the sign 13519 // bit for at least one Op. Since we have a valid ByteProvider, we know that 13520 // the upper bits must be extension bits. Thus, the only ways for the sign 13521 // bit to be unknown is if it was sign extended from unknown value, or if it 13522 // was any extended. In either case, it is correct to use the signed 13523 // version of the signedness semantics of dot4 13524 13525 // In two of such permutations, we known the sign bit is set for 13526 // one op, and the other is unknown. It is okay to used signed version of 13527 // dot4. 13528 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) || 13529 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned)))) 13530 return true; 13531 13532 // In one such permutation, we don't know either of the sign bits. It is okay 13533 // to used the signed version of dot4. 13534 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned))) 13535 return true; 13536 13537 // In two of such permutations, we known the sign bit is unset for 13538 // one op, and the other is unknown. Return std::nullopt to indicate a 13539 // bad match. 13540 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) || 13541 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned)))) 13542 return std::nullopt; 13543 13544 llvm_unreachable("Fully covered condition"); 13545 } 13546 13547 SDValue SITargetLowering::performAddCombine(SDNode *N, 13548 DAGCombinerInfo &DCI) const { 13549 SelectionDAG &DAG = DCI.DAG; 13550 EVT VT = N->getValueType(0); 13551 SDLoc SL(N); 13552 SDValue LHS = N->getOperand(0); 13553 SDValue RHS = N->getOperand(1); 13554 13555 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { 13556 if (Subtarget->hasMad64_32()) { 13557 if (SDValue Folded = tryFoldToMad64_32(N, DCI)) 13558 return Folded; 13559 } 13560 } 13561 13562 if (SDValue V = reassociateScalarOps(N, DAG)) { 13563 return V; 13564 } 13565 13566 if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() && 13567 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) { 13568 SDValue TempNode(N, 0); 13569 std::optional<bool> IsSigned; 13570 SmallVector<std::pair<SDValue, unsigned>, 4> Src0s; 13571 SmallVector<std::pair<SDValue, unsigned>, 4> Src1s; 13572 SmallVector<SDValue, 4> Src2s; 13573 13574 // Match the v_dot4 tree, while collecting src nodes. 13575 int ChainLength = 0; 13576 for (int I = 0; I < 4; I++) { 13577 auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1; 13578 if (MulIdx == -1) 13579 break; 13580 auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0)); 13581 if (!Src0) 13582 break; 13583 auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1)); 13584 if (!Src1) 13585 break; 13586 13587 auto IterIsSigned = checkDot4MulSignedness( 13588 TempNode->getOperand(MulIdx), *Src0, *Src1, 13589 TempNode->getOperand(MulIdx)->getOperand(0), 13590 TempNode->getOperand(MulIdx)->getOperand(1), DAG); 13591 if (!IterIsSigned) 13592 break; 13593 if (!IsSigned) 13594 IsSigned = *IterIsSigned; 13595 if (*IterIsSigned != *IsSigned) 13596 break; 13597 placeSources(*Src0, *Src1, Src0s, Src1s, I); 13598 auto AddIdx = 1 - MulIdx; 13599 // Allow the special case where add (add (mul24, 0), mul24) became -> 13600 // add (mul24, mul24). 13601 if (I == 2 && isMul(TempNode->getOperand(AddIdx))) { 13602 Src2s.push_back(TempNode->getOperand(AddIdx)); 13603 auto Src0 = 13604 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0)); 13605 if (!Src0) 13606 break; 13607 auto Src1 = 13608 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1)); 13609 if (!Src1) 13610 break; 13611 auto IterIsSigned = checkDot4MulSignedness( 13612 TempNode->getOperand(AddIdx), *Src0, *Src1, 13613 TempNode->getOperand(AddIdx)->getOperand(0), 13614 TempNode->getOperand(AddIdx)->getOperand(1), DAG); 13615 if (!IterIsSigned) 13616 break; 13617 assert(IsSigned); 13618 if (*IterIsSigned != *IsSigned) 13619 break; 13620 placeSources(*Src0, *Src1, Src0s, Src1s, I + 1); 13621 Src2s.push_back(DAG.getConstant(0, SL, MVT::i32)); 13622 ChainLength = I + 2; 13623 break; 13624 } 13625 13626 TempNode = TempNode->getOperand(AddIdx); 13627 Src2s.push_back(TempNode); 13628 ChainLength = I + 1; 13629 if (TempNode->getNumOperands() < 2) 13630 break; 13631 LHS = TempNode->getOperand(0); 13632 RHS = TempNode->getOperand(1); 13633 } 13634 13635 if (ChainLength < 2) 13636 return SDValue(); 13637 13638 // Masks were constructed with assumption that we would find a chain of 13639 // length 4. If not, then we need to 0 out the MSB bits (via perm mask of 13640 // 0x0c) so they do not affect dot calculation. 13641 if (ChainLength < 4) { 13642 fixMasks(Src0s, ChainLength); 13643 fixMasks(Src1s, ChainLength); 13644 } 13645 13646 SDValue Src0, Src1; 13647 13648 // If we are just using a single source for both, and have permuted the 13649 // bytes consistently, we can just use the sources without permuting 13650 // (commutation). 13651 bool UseOriginalSrc = false; 13652 if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 && 13653 Src0s.begin()->second == Src1s.begin()->second && 13654 Src0s.begin()->first.getValueSizeInBits() == 32 && 13655 Src1s.begin()->first.getValueSizeInBits() == 32) { 13656 SmallVector<unsigned, 4> SrcBytes; 13657 auto Src0Mask = Src0s.begin()->second; 13658 SrcBytes.push_back(Src0Mask & 0xFF000000); 13659 bool UniqueEntries = true; 13660 for (auto I = 1; I < 4; I++) { 13661 auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8)); 13662 13663 if (is_contained(SrcBytes, NextByte)) { 13664 UniqueEntries = false; 13665 break; 13666 } 13667 SrcBytes.push_back(NextByte); 13668 } 13669 13670 if (UniqueEntries) { 13671 UseOriginalSrc = true; 13672 // Must be 32 bits to enter above conditional. 13673 assert(Src0s.begin()->first.getValueSizeInBits() == 32); 13674 assert(Src1s.begin()->first.getValueSizeInBits() == 32); 13675 Src0 = DAG.getBitcast(MVT::getIntegerVT(32), Src0s.begin()->first); 13676 Src1 = DAG.getBitcast(MVT::getIntegerVT(32), Src1s.begin()->first); 13677 } 13678 } 13679 13680 if (!UseOriginalSrc) { 13681 Src0 = resolveSources(DAG, SL, Src0s, false, true); 13682 Src1 = resolveSources(DAG, SL, Src1s, false, true); 13683 } 13684 13685 assert(IsSigned); 13686 SDValue Src2 = 13687 DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32); 13688 13689 SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4 13690 : Intrinsic::amdgcn_udot4, 13691 SL, MVT::i64); 13692 13693 assert(!VT.isVector()); 13694 auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0, 13695 Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1)); 13696 13697 return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT); 13698 } 13699 13700 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) 13701 return SDValue(); 13702 13703 // add x, zext (setcc) => uaddo_carry x, 0, setcc 13704 // add x, sext (setcc) => usubo_carry x, 0, setcc 13705 unsigned Opc = LHS.getOpcode(); 13706 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || 13707 Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) 13708 std::swap(RHS, LHS); 13709 13710 Opc = RHS.getOpcode(); 13711 switch (Opc) { 13712 default: break; 13713 case ISD::ZERO_EXTEND: 13714 case ISD::SIGN_EXTEND: 13715 case ISD::ANY_EXTEND: { 13716 auto Cond = RHS.getOperand(0); 13717 // If this won't be a real VOPC output, we would still need to insert an 13718 // extra instruction anyway. 13719 if (!isBoolSGPR(Cond)) 13720 break; 13721 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 13722 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 13723 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; 13724 return DAG.getNode(Opc, SL, VTList, Args); 13725 } 13726 case ISD::UADDO_CARRY: { 13727 // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc 13728 if (!isNullConstant(RHS.getOperand(1))) 13729 break; 13730 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; 13731 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); 13732 } 13733 } 13734 return SDValue(); 13735 } 13736 13737 SDValue SITargetLowering::performSubCombine(SDNode *N, 13738 DAGCombinerInfo &DCI) const { 13739 SelectionDAG &DAG = DCI.DAG; 13740 EVT VT = N->getValueType(0); 13741 13742 if (VT != MVT::i32) 13743 return SDValue(); 13744 13745 SDLoc SL(N); 13746 SDValue LHS = N->getOperand(0); 13747 SDValue RHS = N->getOperand(1); 13748 13749 // sub x, zext (setcc) => usubo_carry x, 0, setcc 13750 // sub x, sext (setcc) => uaddo_carry x, 0, setcc 13751 unsigned Opc = RHS.getOpcode(); 13752 switch (Opc) { 13753 default: break; 13754 case ISD::ZERO_EXTEND: 13755 case ISD::SIGN_EXTEND: 13756 case ISD::ANY_EXTEND: { 13757 auto Cond = RHS.getOperand(0); 13758 // If this won't be a real VOPC output, we would still need to insert an 13759 // extra instruction anyway. 13760 if (!isBoolSGPR(Cond)) 13761 break; 13762 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); 13763 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; 13764 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 13765 return DAG.getNode(Opc, SL, VTList, Args); 13766 } 13767 } 13768 13769 if (LHS.getOpcode() == ISD::USUBO_CARRY) { 13770 // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc 13771 if (!isNullConstant(LHS.getOperand(1))) 13772 return SDValue(); 13773 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; 13774 return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); 13775 } 13776 return SDValue(); 13777 } 13778 13779 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, 13780 DAGCombinerInfo &DCI) const { 13781 13782 if (N->getValueType(0) != MVT::i32) 13783 return SDValue(); 13784 13785 if (!isNullConstant(N->getOperand(1))) 13786 return SDValue(); 13787 13788 SelectionDAG &DAG = DCI.DAG; 13789 SDValue LHS = N->getOperand(0); 13790 13791 // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc 13792 // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc 13793 unsigned LHSOpc = LHS.getOpcode(); 13794 unsigned Opc = N->getOpcode(); 13795 if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || 13796 (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { 13797 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; 13798 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); 13799 } 13800 return SDValue(); 13801 } 13802 13803 SDValue SITargetLowering::performFAddCombine(SDNode *N, 13804 DAGCombinerInfo &DCI) const { 13805 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 13806 return SDValue(); 13807 13808 SelectionDAG &DAG = DCI.DAG; 13809 EVT VT = N->getValueType(0); 13810 13811 SDLoc SL(N); 13812 SDValue LHS = N->getOperand(0); 13813 SDValue RHS = N->getOperand(1); 13814 13815 // These should really be instruction patterns, but writing patterns with 13816 // source modifiers is a pain. 13817 13818 // fadd (fadd (a, a), b) -> mad 2.0, a, b 13819 if (LHS.getOpcode() == ISD::FADD) { 13820 SDValue A = LHS.getOperand(0); 13821 if (A == LHS.getOperand(1)) { 13822 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 13823 if (FusedOp != 0) { 13824 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 13825 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); 13826 } 13827 } 13828 } 13829 13830 // fadd (b, fadd (a, a)) -> mad 2.0, a, b 13831 if (RHS.getOpcode() == ISD::FADD) { 13832 SDValue A = RHS.getOperand(0); 13833 if (A == RHS.getOperand(1)) { 13834 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 13835 if (FusedOp != 0) { 13836 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 13837 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); 13838 } 13839 } 13840 } 13841 13842 return SDValue(); 13843 } 13844 13845 SDValue SITargetLowering::performFSubCombine(SDNode *N, 13846 DAGCombinerInfo &DCI) const { 13847 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 13848 return SDValue(); 13849 13850 SelectionDAG &DAG = DCI.DAG; 13851 SDLoc SL(N); 13852 EVT VT = N->getValueType(0); 13853 assert(!VT.isVector()); 13854 13855 // Try to get the fneg to fold into the source modifier. This undoes generic 13856 // DAG combines and folds them into the mad. 13857 // 13858 // Only do this if we are not trying to support denormals. v_mad_f32 does 13859 // not support denormals ever. 13860 SDValue LHS = N->getOperand(0); 13861 SDValue RHS = N->getOperand(1); 13862 if (LHS.getOpcode() == ISD::FADD) { 13863 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) 13864 SDValue A = LHS.getOperand(0); 13865 if (A == LHS.getOperand(1)) { 13866 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); 13867 if (FusedOp != 0){ 13868 const SDValue Two = DAG.getConstantFP(2.0, SL, VT); 13869 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 13870 13871 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); 13872 } 13873 } 13874 } 13875 13876 if (RHS.getOpcode() == ISD::FADD) { 13877 // (fsub c, (fadd a, a)) -> mad -2.0, a, c 13878 13879 SDValue A = RHS.getOperand(0); 13880 if (A == RHS.getOperand(1)) { 13881 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); 13882 if (FusedOp != 0){ 13883 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); 13884 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); 13885 } 13886 } 13887 } 13888 13889 return SDValue(); 13890 } 13891 13892 SDValue SITargetLowering::performFDivCombine(SDNode *N, 13893 DAGCombinerInfo &DCI) const { 13894 SelectionDAG &DAG = DCI.DAG; 13895 SDLoc SL(N); 13896 EVT VT = N->getValueType(0); 13897 if (VT != MVT::f16 || !Subtarget->has16BitInsts()) 13898 return SDValue(); 13899 13900 SDValue LHS = N->getOperand(0); 13901 SDValue RHS = N->getOperand(1); 13902 13903 SDNodeFlags Flags = N->getFlags(); 13904 SDNodeFlags RHSFlags = RHS->getFlags(); 13905 if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() || 13906 !RHS->hasOneUse()) 13907 return SDValue(); 13908 13909 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { 13910 bool IsNegative = false; 13911 if (CLHS->isExactlyValue(1.0) || 13912 (IsNegative = CLHS->isExactlyValue(-1.0))) { 13913 // fdiv contract 1.0, (sqrt contract x) -> rsq for f16 13914 // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16 13915 if (RHS.getOpcode() == ISD::FSQRT) { 13916 // TODO: Or in RHS flags, somehow missing from SDNodeFlags 13917 SDValue Rsq = 13918 DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags); 13919 return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq; 13920 } 13921 } 13922 } 13923 13924 return SDValue(); 13925 } 13926 13927 SDValue SITargetLowering::performFMACombine(SDNode *N, 13928 DAGCombinerInfo &DCI) const { 13929 SelectionDAG &DAG = DCI.DAG; 13930 EVT VT = N->getValueType(0); 13931 SDLoc SL(N); 13932 13933 if (!Subtarget->hasDot7Insts() || VT != MVT::f32) 13934 return SDValue(); 13935 13936 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> 13937 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) 13938 SDValue Op1 = N->getOperand(0); 13939 SDValue Op2 = N->getOperand(1); 13940 SDValue FMA = N->getOperand(2); 13941 13942 if (FMA.getOpcode() != ISD::FMA || 13943 Op1.getOpcode() != ISD::FP_EXTEND || 13944 Op2.getOpcode() != ISD::FP_EXTEND) 13945 return SDValue(); 13946 13947 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, 13948 // regardless of the denorm mode setting. Therefore, 13949 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. 13950 const TargetOptions &Options = DAG.getTarget().Options; 13951 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || 13952 (N->getFlags().hasAllowContract() && 13953 FMA->getFlags().hasAllowContract())) { 13954 Op1 = Op1.getOperand(0); 13955 Op2 = Op2.getOperand(0); 13956 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13957 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13958 return SDValue(); 13959 13960 SDValue Vec1 = Op1.getOperand(0); 13961 SDValue Idx1 = Op1.getOperand(1); 13962 SDValue Vec2 = Op2.getOperand(0); 13963 13964 SDValue FMAOp1 = FMA.getOperand(0); 13965 SDValue FMAOp2 = FMA.getOperand(1); 13966 SDValue FMAAcc = FMA.getOperand(2); 13967 13968 if (FMAOp1.getOpcode() != ISD::FP_EXTEND || 13969 FMAOp2.getOpcode() != ISD::FP_EXTEND) 13970 return SDValue(); 13971 13972 FMAOp1 = FMAOp1.getOperand(0); 13973 FMAOp2 = FMAOp2.getOperand(0); 13974 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13975 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13976 return SDValue(); 13977 13978 SDValue Vec3 = FMAOp1.getOperand(0); 13979 SDValue Vec4 = FMAOp2.getOperand(0); 13980 SDValue Idx2 = FMAOp1.getOperand(1); 13981 13982 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || 13983 // Idx1 and Idx2 cannot be the same. 13984 Idx1 == Idx2) 13985 return SDValue(); 13986 13987 if (Vec1 == Vec2 || Vec3 == Vec4) 13988 return SDValue(); 13989 13990 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) 13991 return SDValue(); 13992 13993 if ((Vec1 == Vec3 && Vec2 == Vec4) || 13994 (Vec1 == Vec4 && Vec2 == Vec3)) { 13995 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, 13996 DAG.getTargetConstant(0, SL, MVT::i1)); 13997 } 13998 } 13999 return SDValue(); 14000 } 14001 14002 SDValue SITargetLowering::performSetCCCombine(SDNode *N, 14003 DAGCombinerInfo &DCI) const { 14004 SelectionDAG &DAG = DCI.DAG; 14005 SDLoc SL(N); 14006 14007 SDValue LHS = N->getOperand(0); 14008 SDValue RHS = N->getOperand(1); 14009 EVT VT = LHS.getValueType(); 14010 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14011 14012 auto CRHS = dyn_cast<ConstantSDNode>(RHS); 14013 if (!CRHS) { 14014 CRHS = dyn_cast<ConstantSDNode>(LHS); 14015 if (CRHS) { 14016 std::swap(LHS, RHS); 14017 CC = getSetCCSwappedOperands(CC); 14018 } 14019 } 14020 14021 if (CRHS) { 14022 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && 14023 isBoolSGPR(LHS.getOperand(0))) { 14024 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 14025 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc 14026 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 14027 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc 14028 if ((CRHS->isAllOnes() && 14029 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || 14030 (CRHS->isZero() && 14031 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) 14032 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 14033 DAG.getConstant(-1, SL, MVT::i1)); 14034 if ((CRHS->isAllOnes() && 14035 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || 14036 (CRHS->isZero() && 14037 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) 14038 return LHS.getOperand(0); 14039 } 14040 14041 const APInt &CRHSVal = CRHS->getAPIntValue(); 14042 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 14043 LHS.getOpcode() == ISD::SELECT && 14044 isa<ConstantSDNode>(LHS.getOperand(1)) && 14045 isa<ConstantSDNode>(LHS.getOperand(2)) && 14046 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && 14047 isBoolSGPR(LHS.getOperand(0))) { 14048 // Given CT != FT: 14049 // setcc (select cc, CT, CF), CF, eq => xor cc, -1 14050 // setcc (select cc, CT, CF), CF, ne => cc 14051 // setcc (select cc, CT, CF), CT, ne => xor cc, -1 14052 // setcc (select cc, CT, CF), CT, eq => cc 14053 const APInt &CT = LHS.getConstantOperandAPInt(1); 14054 const APInt &CF = LHS.getConstantOperandAPInt(2); 14055 14056 if ((CF == CRHSVal && CC == ISD::SETEQ) || 14057 (CT == CRHSVal && CC == ISD::SETNE)) 14058 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), 14059 DAG.getConstant(-1, SL, MVT::i1)); 14060 if ((CF == CRHSVal && CC == ISD::SETNE) || 14061 (CT == CRHSVal && CC == ISD::SETEQ)) 14062 return LHS.getOperand(0); 14063 } 14064 } 14065 14066 if (VT != MVT::f32 && VT != MVT::f64 && 14067 (!Subtarget->has16BitInsts() || VT != MVT::f16)) 14068 return SDValue(); 14069 14070 // Match isinf/isfinite pattern 14071 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) 14072 // (fcmp one (fabs x), inf) -> (fp_class x, 14073 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) 14074 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { 14075 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 14076 if (!CRHS) 14077 return SDValue(); 14078 14079 const APFloat &APF = CRHS->getValueAPF(); 14080 if (APF.isInfinity() && !APF.isNegative()) { 14081 const unsigned IsInfMask = SIInstrFlags::P_INFINITY | 14082 SIInstrFlags::N_INFINITY; 14083 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | 14084 SIInstrFlags::P_ZERO | 14085 SIInstrFlags::N_NORMAL | 14086 SIInstrFlags::P_NORMAL | 14087 SIInstrFlags::N_SUBNORMAL | 14088 SIInstrFlags::P_SUBNORMAL; 14089 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; 14090 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), 14091 DAG.getConstant(Mask, SL, MVT::i32)); 14092 } 14093 } 14094 14095 return SDValue(); 14096 } 14097 14098 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, 14099 DAGCombinerInfo &DCI) const { 14100 SelectionDAG &DAG = DCI.DAG; 14101 SDLoc SL(N); 14102 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; 14103 14104 SDValue Src = N->getOperand(0); 14105 SDValue Shift = N->getOperand(0); 14106 14107 // TODO: Extend type shouldn't matter (assuming legal types). 14108 if (Shift.getOpcode() == ISD::ZERO_EXTEND) 14109 Shift = Shift.getOperand(0); 14110 14111 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { 14112 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x 14113 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x 14114 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x 14115 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x 14116 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x 14117 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { 14118 SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), 14119 SDLoc(Shift.getOperand(0)), MVT::i32); 14120 14121 unsigned ShiftOffset = 8 * Offset; 14122 if (Shift.getOpcode() == ISD::SHL) 14123 ShiftOffset -= C->getZExtValue(); 14124 else 14125 ShiftOffset += C->getZExtValue(); 14126 14127 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { 14128 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, 14129 MVT::f32, Shifted); 14130 } 14131 } 14132 } 14133 14134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 14135 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); 14136 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { 14137 // We simplified Src. If this node is not dead, visit it again so it is 14138 // folded properly. 14139 if (N->getOpcode() != ISD::DELETED_NODE) 14140 DCI.AddToWorklist(N); 14141 return SDValue(N, 0); 14142 } 14143 14144 // Handle (or x, (srl y, 8)) pattern when known bits are zero. 14145 if (SDValue DemandedSrc = 14146 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) 14147 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); 14148 14149 return SDValue(); 14150 } 14151 14152 SDValue SITargetLowering::performClampCombine(SDNode *N, 14153 DAGCombinerInfo &DCI) const { 14154 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 14155 if (!CSrc) 14156 return SDValue(); 14157 14158 const MachineFunction &MF = DCI.DAG.getMachineFunction(); 14159 const APFloat &F = CSrc->getValueAPF(); 14160 APFloat Zero = APFloat::getZero(F.getSemantics()); 14161 if (F < Zero || 14162 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { 14163 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); 14164 } 14165 14166 APFloat One(F.getSemantics(), "1.0"); 14167 if (F > One) 14168 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); 14169 14170 return SDValue(CSrc, 0); 14171 } 14172 14173 14174 SDValue SITargetLowering::PerformDAGCombine(SDNode *N, 14175 DAGCombinerInfo &DCI) const { 14176 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) 14177 return SDValue(); 14178 switch (N->getOpcode()) { 14179 case ISD::ADD: 14180 return performAddCombine(N, DCI); 14181 case ISD::SUB: 14182 return performSubCombine(N, DCI); 14183 case ISD::UADDO_CARRY: 14184 case ISD::USUBO_CARRY: 14185 return performAddCarrySubCarryCombine(N, DCI); 14186 case ISD::FADD: 14187 return performFAddCombine(N, DCI); 14188 case ISD::FSUB: 14189 return performFSubCombine(N, DCI); 14190 case ISD::FDIV: 14191 return performFDivCombine(N, DCI); 14192 case ISD::SETCC: 14193 return performSetCCCombine(N, DCI); 14194 case ISD::FMAXNUM: 14195 case ISD::FMINNUM: 14196 case ISD::FMAXNUM_IEEE: 14197 case ISD::FMINNUM_IEEE: 14198 case ISD::FMAXIMUM: 14199 case ISD::FMINIMUM: 14200 case ISD::SMAX: 14201 case ISD::SMIN: 14202 case ISD::UMAX: 14203 case ISD::UMIN: 14204 case AMDGPUISD::FMIN_LEGACY: 14205 case AMDGPUISD::FMAX_LEGACY: 14206 return performMinMaxCombine(N, DCI); 14207 case ISD::FMA: 14208 return performFMACombine(N, DCI); 14209 case ISD::AND: 14210 return performAndCombine(N, DCI); 14211 case ISD::OR: 14212 return performOrCombine(N, DCI); 14213 case ISD::FSHR: { 14214 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14215 if (N->getValueType(0) == MVT::i32 && N->isDivergent() && 14216 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { 14217 return matchPERM(N, DCI); 14218 } 14219 break; 14220 } 14221 case ISD::XOR: 14222 return performXorCombine(N, DCI); 14223 case ISD::ZERO_EXTEND: 14224 return performZeroExtendCombine(N, DCI); 14225 case ISD::SIGN_EXTEND_INREG: 14226 return performSignExtendInRegCombine(N , DCI); 14227 case AMDGPUISD::FP_CLASS: 14228 return performClassCombine(N, DCI); 14229 case ISD::FCANONICALIZE: 14230 return performFCanonicalizeCombine(N, DCI); 14231 case AMDGPUISD::RCP: 14232 return performRcpCombine(N, DCI); 14233 case ISD::FLDEXP: 14234 case AMDGPUISD::FRACT: 14235 case AMDGPUISD::RSQ: 14236 case AMDGPUISD::RCP_LEGACY: 14237 case AMDGPUISD::RCP_IFLAG: 14238 case AMDGPUISD::RSQ_CLAMP: { 14239 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 14240 SDValue Src = N->getOperand(0); 14241 if (Src.isUndef()) 14242 return Src; 14243 break; 14244 } 14245 case ISD::SINT_TO_FP: 14246 case ISD::UINT_TO_FP: 14247 return performUCharToFloatCombine(N, DCI); 14248 case ISD::FCOPYSIGN: 14249 return performFCopySignCombine(N, DCI); 14250 case AMDGPUISD::CVT_F32_UBYTE0: 14251 case AMDGPUISD::CVT_F32_UBYTE1: 14252 case AMDGPUISD::CVT_F32_UBYTE2: 14253 case AMDGPUISD::CVT_F32_UBYTE3: 14254 return performCvtF32UByteNCombine(N, DCI); 14255 case AMDGPUISD::FMED3: 14256 return performFMed3Combine(N, DCI); 14257 case AMDGPUISD::CVT_PKRTZ_F16_F32: 14258 return performCvtPkRTZCombine(N, DCI); 14259 case AMDGPUISD::CLAMP: 14260 return performClampCombine(N, DCI); 14261 case ISD::SCALAR_TO_VECTOR: { 14262 SelectionDAG &DAG = DCI.DAG; 14263 EVT VT = N->getValueType(0); 14264 14265 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) 14266 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2f16) { 14267 SDLoc SL(N); 14268 SDValue Src = N->getOperand(0); 14269 EVT EltVT = Src.getValueType(); 14270 if (EltVT != MVT::i16) 14271 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); 14272 14273 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); 14274 return DAG.getNode(ISD::BITCAST, SL, VT, Ext); 14275 } 14276 14277 break; 14278 } 14279 case ISD::EXTRACT_VECTOR_ELT: 14280 return performExtractVectorEltCombine(N, DCI); 14281 case ISD::INSERT_VECTOR_ELT: 14282 return performInsertVectorEltCombine(N, DCI); 14283 case ISD::FP_ROUND: 14284 return performFPRoundCombine(N, DCI); 14285 case ISD::LOAD: { 14286 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) 14287 return Widended; 14288 [[fallthrough]]; 14289 } 14290 default: { 14291 if (!DCI.isBeforeLegalize()) { 14292 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) 14293 return performMemSDNodeCombine(MemNode, DCI); 14294 } 14295 14296 break; 14297 } 14298 } 14299 14300 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 14301 } 14302 14303 /// Helper function for adjustWritemask 14304 static unsigned SubIdx2Lane(unsigned Idx) { 14305 switch (Idx) { 14306 default: return ~0u; 14307 case AMDGPU::sub0: return 0; 14308 case AMDGPU::sub1: return 1; 14309 case AMDGPU::sub2: return 2; 14310 case AMDGPU::sub3: return 3; 14311 case AMDGPU::sub4: return 4; // Possible with TFE/LWE 14312 } 14313 } 14314 14315 /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions 14316 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, 14317 SelectionDAG &DAG) const { 14318 unsigned Opcode = Node->getMachineOpcode(); 14319 14320 // Subtract 1 because the vdata output is not a MachineSDNode operand. 14321 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; 14322 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) 14323 return Node; // not implemented for D16 14324 14325 SDNode *Users[5] = { nullptr }; 14326 unsigned Lane = 0; 14327 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; 14328 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); 14329 unsigned NewDmask = 0; 14330 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; 14331 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; 14332 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || 14333 (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx))) 14334 ? true 14335 : false; 14336 unsigned TFCLane = 0; 14337 bool HasChain = Node->getNumValues() > 1; 14338 14339 if (OldDmask == 0) { 14340 // These are folded out, but on the chance it happens don't assert. 14341 return Node; 14342 } 14343 14344 unsigned OldBitsSet = llvm::popcount(OldDmask); 14345 // Work out which is the TFE/LWE lane if that is enabled. 14346 if (UsesTFC) { 14347 TFCLane = OldBitsSet; 14348 } 14349 14350 // Try to figure out the used register components 14351 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); 14352 I != E; ++I) { 14353 14354 // Don't look at users of the chain. 14355 if (I.getUse().getResNo() != 0) 14356 continue; 14357 14358 // Abort if we can't understand the usage 14359 if (!I->isMachineOpcode() || 14360 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) 14361 return Node; 14362 14363 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. 14364 // Note that subregs are packed, i.e. Lane==0 is the first bit set 14365 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit 14366 // set, etc. 14367 Lane = SubIdx2Lane(I->getConstantOperandVal(1)); 14368 if (Lane == ~0u) 14369 return Node; 14370 14371 // Check if the use is for the TFE/LWE generated result at VGPRn+1. 14372 if (UsesTFC && Lane == TFCLane) { 14373 Users[Lane] = *I; 14374 } else { 14375 // Set which texture component corresponds to the lane. 14376 unsigned Comp; 14377 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { 14378 Comp = llvm::countr_zero(Dmask); 14379 Dmask &= ~(1 << Comp); 14380 } 14381 14382 // Abort if we have more than one user per component. 14383 if (Users[Lane]) 14384 return Node; 14385 14386 Users[Lane] = *I; 14387 NewDmask |= 1 << Comp; 14388 } 14389 } 14390 14391 // Don't allow 0 dmask, as hardware assumes one channel enabled. 14392 bool NoChannels = !NewDmask; 14393 if (NoChannels) { 14394 if (!UsesTFC) { 14395 // No uses of the result and not using TFC. Then do nothing. 14396 return Node; 14397 } 14398 // If the original dmask has one channel - then nothing to do 14399 if (OldBitsSet == 1) 14400 return Node; 14401 // Use an arbitrary dmask - required for the instruction to work 14402 NewDmask = 1; 14403 } 14404 // Abort if there's no change 14405 if (NewDmask == OldDmask) 14406 return Node; 14407 14408 unsigned BitsSet = llvm::popcount(NewDmask); 14409 14410 // Check for TFE or LWE - increase the number of channels by one to account 14411 // for the extra return value 14412 // This will need adjustment for D16 if this is also included in 14413 // adjustWriteMask (this function) but at present D16 are excluded. 14414 unsigned NewChannels = BitsSet + UsesTFC; 14415 14416 int NewOpcode = 14417 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); 14418 assert(NewOpcode != -1 && 14419 NewOpcode != static_cast<int>(Node->getMachineOpcode()) && 14420 "failed to find equivalent MIMG op"); 14421 14422 // Adjust the writemask in the node 14423 SmallVector<SDValue, 12> Ops; 14424 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); 14425 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); 14426 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); 14427 14428 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); 14429 14430 MVT ResultVT = NewChannels == 1 ? 14431 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : 14432 NewChannels == 5 ? 8 : NewChannels); 14433 SDVTList NewVTList = HasChain ? 14434 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); 14435 14436 14437 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), 14438 NewVTList, Ops); 14439 14440 if (HasChain) { 14441 // Update chain. 14442 DAG.setNodeMemRefs(NewNode, Node->memoperands()); 14443 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); 14444 } 14445 14446 if (NewChannels == 1) { 14447 assert(Node->hasNUsesOfValue(1, 0)); 14448 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, 14449 SDLoc(Node), Users[Lane]->getValueType(0), 14450 SDValue(NewNode, 0)); 14451 DAG.ReplaceAllUsesWith(Users[Lane], Copy); 14452 return nullptr; 14453 } 14454 14455 // Update the users of the node with the new indices 14456 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { 14457 SDNode *User = Users[i]; 14458 if (!User) { 14459 // Handle the special case of NoChannels. We set NewDmask to 1 above, but 14460 // Users[0] is still nullptr because channel 0 doesn't really have a use. 14461 if (i || !NoChannels) 14462 continue; 14463 } else { 14464 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); 14465 SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); 14466 if (NewUser != User) { 14467 DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0)); 14468 DAG.RemoveDeadNode(User); 14469 } 14470 } 14471 14472 switch (Idx) { 14473 default: break; 14474 case AMDGPU::sub0: Idx = AMDGPU::sub1; break; 14475 case AMDGPU::sub1: Idx = AMDGPU::sub2; break; 14476 case AMDGPU::sub2: Idx = AMDGPU::sub3; break; 14477 case AMDGPU::sub3: Idx = AMDGPU::sub4; break; 14478 } 14479 } 14480 14481 DAG.RemoveDeadNode(Node); 14482 return nullptr; 14483 } 14484 14485 static bool isFrameIndexOp(SDValue Op) { 14486 if (Op.getOpcode() == ISD::AssertZext) 14487 Op = Op.getOperand(0); 14488 14489 return isa<FrameIndexSDNode>(Op); 14490 } 14491 14492 /// Legalize target independent instructions (e.g. INSERT_SUBREG) 14493 /// with frame index operands. 14494 /// LLVM assumes that inputs are to these instructions are registers. 14495 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, 14496 SelectionDAG &DAG) const { 14497 if (Node->getOpcode() == ISD::CopyToReg) { 14498 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); 14499 SDValue SrcVal = Node->getOperand(2); 14500 14501 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have 14502 // to try understanding copies to physical registers. 14503 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { 14504 SDLoc SL(Node); 14505 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 14506 SDValue VReg = DAG.getRegister( 14507 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); 14508 14509 SDNode *Glued = Node->getGluedNode(); 14510 SDValue ToVReg 14511 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, 14512 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); 14513 SDValue ToResultReg 14514 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), 14515 VReg, ToVReg.getValue(1)); 14516 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); 14517 DAG.RemoveDeadNode(Node); 14518 return ToResultReg.getNode(); 14519 } 14520 } 14521 14522 SmallVector<SDValue, 8> Ops; 14523 for (unsigned i = 0; i < Node->getNumOperands(); ++i) { 14524 if (!isFrameIndexOp(Node->getOperand(i))) { 14525 Ops.push_back(Node->getOperand(i)); 14526 continue; 14527 } 14528 14529 SDLoc DL(Node); 14530 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, 14531 Node->getOperand(i).getValueType(), 14532 Node->getOperand(i)), 0)); 14533 } 14534 14535 return DAG.UpdateNodeOperands(Node, Ops); 14536 } 14537 14538 /// Fold the instructions after selecting them. 14539 /// Returns null if users were already updated. 14540 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, 14541 SelectionDAG &DAG) const { 14542 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14543 unsigned Opcode = Node->getMachineOpcode(); 14544 14545 if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() && 14546 !TII->isGather4(Opcode) && 14547 AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { 14548 return adjustWritemask(Node, DAG); 14549 } 14550 14551 if (Opcode == AMDGPU::INSERT_SUBREG || 14552 Opcode == AMDGPU::REG_SEQUENCE) { 14553 legalizeTargetIndependentNode(Node, DAG); 14554 return Node; 14555 } 14556 14557 switch (Opcode) { 14558 case AMDGPU::V_DIV_SCALE_F32_e64: 14559 case AMDGPU::V_DIV_SCALE_F64_e64: { 14560 // Satisfy the operand register constraint when one of the inputs is 14561 // undefined. Ordinarily each undef value will have its own implicit_def of 14562 // a vreg, so force these to use a single register. 14563 SDValue Src0 = Node->getOperand(1); 14564 SDValue Src1 = Node->getOperand(3); 14565 SDValue Src2 = Node->getOperand(5); 14566 14567 if ((Src0.isMachineOpcode() && 14568 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && 14569 (Src0 == Src1 || Src0 == Src2)) 14570 break; 14571 14572 MVT VT = Src0.getValueType().getSimpleVT(); 14573 const TargetRegisterClass *RC = 14574 getRegClassFor(VT, Src0.getNode()->isDivergent()); 14575 14576 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 14577 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); 14578 14579 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), 14580 UndefReg, Src0, SDValue()); 14581 14582 // src0 must be the same register as src1 or src2, even if the value is 14583 // undefined, so make sure we don't violate this constraint. 14584 if (Src0.isMachineOpcode() && 14585 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { 14586 if (Src1.isMachineOpcode() && 14587 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 14588 Src0 = Src1; 14589 else if (Src2.isMachineOpcode() && 14590 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) 14591 Src0 = Src2; 14592 else { 14593 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); 14594 Src0 = UndefReg; 14595 Src1 = UndefReg; 14596 } 14597 } else 14598 break; 14599 14600 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); 14601 Ops[1] = Src0; 14602 Ops[3] = Src1; 14603 Ops[5] = Src2; 14604 Ops.push_back(ImpDef.getValue(1)); 14605 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 14606 } 14607 default: 14608 break; 14609 } 14610 14611 return Node; 14612 } 14613 14614 // Any MIMG instructions that use tfe or lwe require an initialization of the 14615 // result register that will be written in the case of a memory access failure. 14616 // The required code is also added to tie this init code to the result of the 14617 // img instruction. 14618 void SITargetLowering::AddIMGInit(MachineInstr &MI) const { 14619 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14620 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 14621 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 14622 MachineBasicBlock &MBB = *MI.getParent(); 14623 14624 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); 14625 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); 14626 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); 14627 14628 if (!TFE && !LWE) // intersect_ray 14629 return; 14630 14631 unsigned TFEVal = TFE ? TFE->getImm() : 0; 14632 unsigned LWEVal = LWE ? LWE->getImm() : 0; 14633 unsigned D16Val = D16 ? D16->getImm() : 0; 14634 14635 if (!TFEVal && !LWEVal) 14636 return; 14637 14638 // At least one of TFE or LWE are non-zero 14639 // We have to insert a suitable initialization of the result value and 14640 // tie this to the dest of the image instruction. 14641 14642 const DebugLoc &DL = MI.getDebugLoc(); 14643 14644 int DstIdx = 14645 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 14646 14647 // Calculate which dword we have to initialize to 0. 14648 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); 14649 14650 // check that dmask operand is found. 14651 assert(MO_Dmask && "Expected dmask operand in instruction"); 14652 14653 unsigned dmask = MO_Dmask->getImm(); 14654 // Determine the number of active lanes taking into account the 14655 // Gather4 special case 14656 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); 14657 14658 bool Packed = !Subtarget->hasUnpackedD16VMem(); 14659 14660 unsigned InitIdx = 14661 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; 14662 14663 // Abandon attempt if the dst size isn't large enough 14664 // - this is in fact an error but this is picked up elsewhere and 14665 // reported correctly. 14666 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; 14667 if (DstSize < InitIdx) 14668 return; 14669 14670 // Create a register for the initialization value. 14671 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 14672 unsigned NewDst = 0; // Final initialized value will be in here 14673 14674 // If PRTStrictNull feature is enabled (the default) then initialize 14675 // all the result registers to 0, otherwise just the error indication 14676 // register (VGPRn+1) 14677 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; 14678 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); 14679 14680 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); 14681 for (; SizeLeft; SizeLeft--, CurrIdx++) { 14682 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); 14683 // Initialize dword 14684 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 14685 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) 14686 .addImm(0); 14687 // Insert into the super-reg 14688 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) 14689 .addReg(PrevDst) 14690 .addReg(SubReg) 14691 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); 14692 14693 PrevDst = NewDst; 14694 } 14695 14696 // Add as an implicit operand 14697 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); 14698 14699 // Tie the just added implicit operand to the dst 14700 MI.tieOperands(DstIdx, MI.getNumOperands() - 1); 14701 } 14702 14703 /// Assign the register class depending on the number of 14704 /// bits set in the writemask 14705 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 14706 SDNode *Node) const { 14707 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14708 14709 MachineFunction *MF = MI.getParent()->getParent(); 14710 MachineRegisterInfo &MRI = MF->getRegInfo(); 14711 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 14712 14713 if (TII->isVOP3(MI.getOpcode())) { 14714 // Make sure constant bus requirements are respected. 14715 TII->legalizeOperandsVOP3(MRI, MI); 14716 14717 // Prefer VGPRs over AGPRs in mAI instructions where possible. 14718 // This saves a chain-copy of registers and better balance register 14719 // use between vgpr and agpr as agpr tuples tend to be big. 14720 if (!MI.getDesc().operands().empty()) { 14721 unsigned Opc = MI.getOpcode(); 14722 bool HasAGPRs = Info->mayNeedAGPRs(); 14723 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 14724 int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 14725 for (auto I : 14726 {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 14727 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) { 14728 if (I == -1) 14729 break; 14730 if ((I == Src2Idx) && (HasAGPRs)) 14731 break; 14732 MachineOperand &Op = MI.getOperand(I); 14733 if (!Op.isReg() || !Op.getReg().isVirtual()) 14734 continue; 14735 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); 14736 if (!TRI->hasAGPRs(RC)) 14737 continue; 14738 auto *Src = MRI.getUniqueVRegDef(Op.getReg()); 14739 if (!Src || !Src->isCopy() || 14740 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) 14741 continue; 14742 auto *NewRC = TRI->getEquivalentVGPRClass(RC); 14743 // All uses of agpr64 and agpr32 can also accept vgpr except for 14744 // v_accvgpr_read, but we do not produce agpr reads during selection, 14745 // so no use checks are needed. 14746 MRI.setRegClass(Op.getReg(), NewRC); 14747 } 14748 14749 if (!HasAGPRs) 14750 return; 14751 14752 // Resolve the rest of AV operands to AGPRs. 14753 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { 14754 if (Src2->isReg() && Src2->getReg().isVirtual()) { 14755 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); 14756 if (TRI->isVectorSuperClass(RC)) { 14757 auto *NewRC = TRI->getEquivalentAGPRClass(RC); 14758 MRI.setRegClass(Src2->getReg(), NewRC); 14759 if (Src2->isTied()) 14760 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); 14761 } 14762 } 14763 } 14764 } 14765 14766 return; 14767 } 14768 14769 if (TII->isImage(MI)) { 14770 if (!MI.mayStore()) 14771 AddIMGInit(MI); 14772 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); 14773 } 14774 } 14775 14776 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, 14777 uint64_t Val) { 14778 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); 14779 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); 14780 } 14781 14782 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, 14783 const SDLoc &DL, 14784 SDValue Ptr) const { 14785 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 14786 14787 // Build the half of the subregister with the constants before building the 14788 // full 128-bit register. If we are building multiple resource descriptors, 14789 // this will allow CSEing of the 2-component register. 14790 const SDValue Ops0[] = { 14791 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), 14792 buildSMovImm32(DAG, DL, 0), 14793 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 14794 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), 14795 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) 14796 }; 14797 14798 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, 14799 MVT::v2i32, Ops0), 0); 14800 14801 // Combine the constants and the pointer. 14802 const SDValue Ops1[] = { 14803 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 14804 Ptr, 14805 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), 14806 SubRegHi, 14807 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) 14808 }; 14809 14810 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); 14811 } 14812 14813 /// Return a resource descriptor with the 'Add TID' bit enabled 14814 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] 14815 /// of the resource descriptor) to create an offset, which is added to 14816 /// the resource pointer. 14817 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, 14818 SDValue Ptr, uint32_t RsrcDword1, 14819 uint64_t RsrcDword2And3) const { 14820 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); 14821 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); 14822 if (RsrcDword1) { 14823 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, 14824 DAG.getConstant(RsrcDword1, DL, MVT::i32)), 14825 0); 14826 } 14827 14828 SDValue DataLo = buildSMovImm32(DAG, DL, 14829 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); 14830 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); 14831 14832 const SDValue Ops[] = { 14833 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), 14834 PtrLo, 14835 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 14836 PtrHi, 14837 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), 14838 DataLo, 14839 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), 14840 DataHi, 14841 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) 14842 }; 14843 14844 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); 14845 } 14846 14847 //===----------------------------------------------------------------------===// 14848 // SI Inline Assembly Support 14849 //===----------------------------------------------------------------------===// 14850 14851 std::pair<unsigned, const TargetRegisterClass *> 14852 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, 14853 StringRef Constraint, 14854 MVT VT) const { 14855 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); 14856 14857 const TargetRegisterClass *RC = nullptr; 14858 if (Constraint.size() == 1) { 14859 const unsigned BitWidth = VT.getSizeInBits(); 14860 switch (Constraint[0]) { 14861 default: 14862 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14863 case 's': 14864 case 'r': 14865 switch (BitWidth) { 14866 case 16: 14867 RC = &AMDGPU::SReg_32RegClass; 14868 break; 14869 case 64: 14870 RC = &AMDGPU::SGPR_64RegClass; 14871 break; 14872 default: 14873 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); 14874 if (!RC) 14875 return std::pair(0U, nullptr); 14876 break; 14877 } 14878 break; 14879 case 'v': 14880 switch (BitWidth) { 14881 case 16: 14882 RC = &AMDGPU::VGPR_32RegClass; 14883 break; 14884 default: 14885 RC = TRI->getVGPRClassForBitWidth(BitWidth); 14886 if (!RC) 14887 return std::pair(0U, nullptr); 14888 break; 14889 } 14890 break; 14891 case 'a': 14892 if (!Subtarget->hasMAIInsts()) 14893 break; 14894 switch (BitWidth) { 14895 case 16: 14896 RC = &AMDGPU::AGPR_32RegClass; 14897 break; 14898 default: 14899 RC = TRI->getAGPRClassForBitWidth(BitWidth); 14900 if (!RC) 14901 return std::pair(0U, nullptr); 14902 break; 14903 } 14904 break; 14905 } 14906 // We actually support i128, i16 and f16 as inline parameters 14907 // even if they are not reported as legal 14908 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || 14909 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) 14910 return std::pair(0U, RC); 14911 } 14912 14913 if (Constraint.starts_with("{") && Constraint.ends_with("}")) { 14914 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 14915 if (RegName.consume_front("v")) { 14916 RC = &AMDGPU::VGPR_32RegClass; 14917 } else if (RegName.consume_front("s")) { 14918 RC = &AMDGPU::SGPR_32RegClass; 14919 } else if (RegName.consume_front("a")) { 14920 RC = &AMDGPU::AGPR_32RegClass; 14921 } 14922 14923 if (RC) { 14924 uint32_t Idx; 14925 if (RegName.consume_front("[")) { 14926 uint32_t End; 14927 bool Failed = RegName.consumeInteger(10, Idx); 14928 Failed |= !RegName.consume_front(":"); 14929 Failed |= RegName.consumeInteger(10, End); 14930 Failed |= !RegName.consume_back("]"); 14931 if (!Failed) { 14932 uint32_t Width = (End - Idx + 1) * 32; 14933 MCRegister Reg = RC->getRegister(Idx); 14934 if (SIRegisterInfo::isVGPRClass(RC)) 14935 RC = TRI->getVGPRClassForBitWidth(Width); 14936 else if (SIRegisterInfo::isSGPRClass(RC)) 14937 RC = TRI->getSGPRClassForBitWidth(Width); 14938 else if (SIRegisterInfo::isAGPRClass(RC)) 14939 RC = TRI->getAGPRClassForBitWidth(Width); 14940 if (RC) { 14941 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); 14942 return std::pair(Reg, RC); 14943 } 14944 } 14945 } else { 14946 bool Failed = RegName.getAsInteger(10, Idx); 14947 if (!Failed && Idx < RC->getNumRegs()) 14948 return std::pair(RC->getRegister(Idx), RC); 14949 } 14950 } 14951 } 14952 14953 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14954 if (Ret.first) 14955 Ret.second = TRI->getPhysRegBaseClass(Ret.first); 14956 14957 return Ret; 14958 } 14959 14960 static bool isImmConstraint(StringRef Constraint) { 14961 if (Constraint.size() == 1) { 14962 switch (Constraint[0]) { 14963 default: break; 14964 case 'I': 14965 case 'J': 14966 case 'A': 14967 case 'B': 14968 case 'C': 14969 return true; 14970 } 14971 } else if (Constraint == "DA" || 14972 Constraint == "DB") { 14973 return true; 14974 } 14975 return false; 14976 } 14977 14978 SITargetLowering::ConstraintType 14979 SITargetLowering::getConstraintType(StringRef Constraint) const { 14980 if (Constraint.size() == 1) { 14981 switch (Constraint[0]) { 14982 default: break; 14983 case 's': 14984 case 'v': 14985 case 'a': 14986 return C_RegisterClass; 14987 } 14988 } 14989 if (isImmConstraint(Constraint)) { 14990 return C_Other; 14991 } 14992 return TargetLowering::getConstraintType(Constraint); 14993 } 14994 14995 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { 14996 if (!AMDGPU::isInlinableIntLiteral(Val)) { 14997 Val = Val & maskTrailingOnes<uint64_t>(Size); 14998 } 14999 return Val; 15000 } 15001 15002 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15003 StringRef Constraint, 15004 std::vector<SDValue> &Ops, 15005 SelectionDAG &DAG) const { 15006 if (isImmConstraint(Constraint)) { 15007 uint64_t Val; 15008 if (getAsmOperandConstVal(Op, Val) && 15009 checkAsmConstraintVal(Op, Constraint, Val)) { 15010 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); 15011 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); 15012 } 15013 } else { 15014 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15015 } 15016 } 15017 15018 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { 15019 unsigned Size = Op.getScalarValueSizeInBits(); 15020 if (Size > 64) 15021 return false; 15022 15023 if (Size == 16 && !Subtarget->has16BitInsts()) 15024 return false; 15025 15026 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 15027 Val = C->getSExtValue(); 15028 return true; 15029 } 15030 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 15031 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 15032 return true; 15033 } 15034 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { 15035 if (Size != 16 || Op.getNumOperands() != 2) 15036 return false; 15037 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) 15038 return false; 15039 if (ConstantSDNode *C = V->getConstantSplatNode()) { 15040 Val = C->getSExtValue(); 15041 return true; 15042 } 15043 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { 15044 Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); 15045 return true; 15046 } 15047 } 15048 15049 return false; 15050 } 15051 15052 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint, 15053 uint64_t Val) const { 15054 if (Constraint.size() == 1) { 15055 switch (Constraint[0]) { 15056 case 'I': 15057 return AMDGPU::isInlinableIntLiteral(Val); 15058 case 'J': 15059 return isInt<16>(Val); 15060 case 'A': 15061 return checkAsmConstraintValA(Op, Val); 15062 case 'B': 15063 return isInt<32>(Val); 15064 case 'C': 15065 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || 15066 AMDGPU::isInlinableIntLiteral(Val); 15067 default: 15068 break; 15069 } 15070 } else if (Constraint.size() == 2) { 15071 if (Constraint == "DA") { 15072 int64_t HiBits = static_cast<int32_t>(Val >> 32); 15073 int64_t LoBits = static_cast<int32_t>(Val); 15074 return checkAsmConstraintValA(Op, HiBits, 32) && 15075 checkAsmConstraintValA(Op, LoBits, 32); 15076 } 15077 if (Constraint == "DB") { 15078 return true; 15079 } 15080 } 15081 llvm_unreachable("Invalid asm constraint"); 15082 } 15083 15084 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, 15085 uint64_t Val, 15086 unsigned MaxSize) const { 15087 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); 15088 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); 15089 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || 15090 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || 15091 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { 15092 return true; 15093 } 15094 return false; 15095 } 15096 15097 static int getAlignedAGPRClassID(unsigned UnalignedClassID) { 15098 switch (UnalignedClassID) { 15099 case AMDGPU::VReg_64RegClassID: 15100 return AMDGPU::VReg_64_Align2RegClassID; 15101 case AMDGPU::VReg_96RegClassID: 15102 return AMDGPU::VReg_96_Align2RegClassID; 15103 case AMDGPU::VReg_128RegClassID: 15104 return AMDGPU::VReg_128_Align2RegClassID; 15105 case AMDGPU::VReg_160RegClassID: 15106 return AMDGPU::VReg_160_Align2RegClassID; 15107 case AMDGPU::VReg_192RegClassID: 15108 return AMDGPU::VReg_192_Align2RegClassID; 15109 case AMDGPU::VReg_224RegClassID: 15110 return AMDGPU::VReg_224_Align2RegClassID; 15111 case AMDGPU::VReg_256RegClassID: 15112 return AMDGPU::VReg_256_Align2RegClassID; 15113 case AMDGPU::VReg_288RegClassID: 15114 return AMDGPU::VReg_288_Align2RegClassID; 15115 case AMDGPU::VReg_320RegClassID: 15116 return AMDGPU::VReg_320_Align2RegClassID; 15117 case AMDGPU::VReg_352RegClassID: 15118 return AMDGPU::VReg_352_Align2RegClassID; 15119 case AMDGPU::VReg_384RegClassID: 15120 return AMDGPU::VReg_384_Align2RegClassID; 15121 case AMDGPU::VReg_512RegClassID: 15122 return AMDGPU::VReg_512_Align2RegClassID; 15123 case AMDGPU::VReg_1024RegClassID: 15124 return AMDGPU::VReg_1024_Align2RegClassID; 15125 case AMDGPU::AReg_64RegClassID: 15126 return AMDGPU::AReg_64_Align2RegClassID; 15127 case AMDGPU::AReg_96RegClassID: 15128 return AMDGPU::AReg_96_Align2RegClassID; 15129 case AMDGPU::AReg_128RegClassID: 15130 return AMDGPU::AReg_128_Align2RegClassID; 15131 case AMDGPU::AReg_160RegClassID: 15132 return AMDGPU::AReg_160_Align2RegClassID; 15133 case AMDGPU::AReg_192RegClassID: 15134 return AMDGPU::AReg_192_Align2RegClassID; 15135 case AMDGPU::AReg_256RegClassID: 15136 return AMDGPU::AReg_256_Align2RegClassID; 15137 case AMDGPU::AReg_512RegClassID: 15138 return AMDGPU::AReg_512_Align2RegClassID; 15139 case AMDGPU::AReg_1024RegClassID: 15140 return AMDGPU::AReg_1024_Align2RegClassID; 15141 default: 15142 return -1; 15143 } 15144 } 15145 15146 // Figure out which registers should be reserved for stack access. Only after 15147 // the function is legalized do we know all of the non-spill stack objects or if 15148 // calls are present. 15149 void SITargetLowering::finalizeLowering(MachineFunction &MF) const { 15150 MachineRegisterInfo &MRI = MF.getRegInfo(); 15151 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 15152 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 15153 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15154 const SIInstrInfo *TII = ST.getInstrInfo(); 15155 15156 if (Info->isEntryFunction()) { 15157 // Callable functions have fixed registers used for stack access. 15158 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); 15159 } 15160 15161 // TODO: Move this logic to getReservedRegs() 15162 // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling. 15163 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF); 15164 Register SReg = ST.isWave32() 15165 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1) 15166 : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2, 15167 &AMDGPU::SGPR_64RegClass); 15168 Info->setSGPRForEXECCopy(SReg); 15169 15170 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), 15171 Info->getStackPtrOffsetReg())); 15172 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) 15173 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); 15174 15175 // We need to worry about replacing the default register with itself in case 15176 // of MIR testcases missing the MFI. 15177 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) 15178 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); 15179 15180 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) 15181 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); 15182 15183 Info->limitOccupancy(MF); 15184 15185 if (ST.isWave32() && !MF.empty()) { 15186 for (auto &MBB : MF) { 15187 for (auto &MI : MBB) { 15188 TII->fixImplicitOperands(MI); 15189 } 15190 } 15191 } 15192 15193 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned 15194 // classes if required. Ideally the register class constraints would differ 15195 // per-subtarget, but there's no easy way to achieve that right now. This is 15196 // not a problem for VGPRs because the correctly aligned VGPR class is implied 15197 // from using them as the register class for legal types. 15198 if (ST.needsAlignedVGPRs()) { 15199 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 15200 const Register Reg = Register::index2VirtReg(I); 15201 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); 15202 if (!RC) 15203 continue; 15204 int NewClassID = getAlignedAGPRClassID(RC->getID()); 15205 if (NewClassID != -1) 15206 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); 15207 } 15208 } 15209 15210 TargetLoweringBase::finalizeLowering(MF); 15211 } 15212 15213 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15214 KnownBits &Known, 15215 const APInt &DemandedElts, 15216 const SelectionDAG &DAG, 15217 unsigned Depth) const { 15218 Known.resetAll(); 15219 unsigned Opc = Op.getOpcode(); 15220 switch (Opc) { 15221 case ISD::INTRINSIC_WO_CHAIN: { 15222 unsigned IID = Op.getConstantOperandVal(0); 15223 switch (IID) { 15224 case Intrinsic::amdgcn_mbcnt_lo: 15225 case Intrinsic::amdgcn_mbcnt_hi: { 15226 const GCNSubtarget &ST = 15227 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 15228 // These return at most the (wavefront size - 1) + src1 15229 // As long as src1 is an immediate we can calc known bits 15230 KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); 15231 unsigned Src1ValBits = Src1Known.countMaxActiveBits(); 15232 unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2()); 15233 // Cater for potential carry 15234 MaxActiveBits += Src1ValBits ? 1 : 0; 15235 unsigned Size = Op.getValueType().getSizeInBits(); 15236 if (MaxActiveBits < Size) 15237 Known.Zero.setHighBits(Size - MaxActiveBits); 15238 return; 15239 } 15240 } 15241 break; 15242 } 15243 } 15244 return AMDGPUTargetLowering::computeKnownBitsForTargetNode( 15245 Op, Known, DemandedElts, DAG, Depth); 15246 } 15247 15248 void SITargetLowering::computeKnownBitsForFrameIndex( 15249 const int FI, KnownBits &Known, const MachineFunction &MF) const { 15250 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); 15251 15252 // Set the high bits to zero based on the maximum allowed scratch size per 15253 // wave. We can't use vaddr in MUBUF instructions if we don't know the address 15254 // calculation won't overflow, so assume the sign bit is never set. 15255 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); 15256 } 15257 15258 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, 15259 KnownBits &Known, unsigned Dim) { 15260 unsigned MaxValue = 15261 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); 15262 Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); 15263 } 15264 15265 void SITargetLowering::computeKnownBitsForTargetInstr( 15266 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, 15267 const MachineRegisterInfo &MRI, unsigned Depth) const { 15268 const MachineInstr *MI = MRI.getVRegDef(R); 15269 switch (MI->getOpcode()) { 15270 case AMDGPU::G_INTRINSIC: 15271 case AMDGPU::G_INTRINSIC_CONVERGENT: { 15272 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) { 15273 case Intrinsic::amdgcn_workitem_id_x: 15274 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); 15275 break; 15276 case Intrinsic::amdgcn_workitem_id_y: 15277 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); 15278 break; 15279 case Intrinsic::amdgcn_workitem_id_z: 15280 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); 15281 break; 15282 case Intrinsic::amdgcn_mbcnt_lo: 15283 case Intrinsic::amdgcn_mbcnt_hi: { 15284 // These return at most the wavefront size - 1. 15285 unsigned Size = MRI.getType(R).getSizeInBits(); 15286 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); 15287 break; 15288 } 15289 case Intrinsic::amdgcn_groupstaticsize: { 15290 // We can report everything over the maximum size as 0. We can't report 15291 // based on the actual size because we don't know if it's accurate or not 15292 // at any given point. 15293 Known.Zero.setHighBits( 15294 llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); 15295 break; 15296 } 15297 } 15298 break; 15299 } 15300 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 15301 Known.Zero.setHighBits(24); 15302 break; 15303 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 15304 Known.Zero.setHighBits(16); 15305 break; 15306 case AMDGPU::G_AMDGPU_SMED3: 15307 case AMDGPU::G_AMDGPU_UMED3: { 15308 auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); 15309 15310 KnownBits Known2; 15311 KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1); 15312 if (Known2.isUnknown()) 15313 break; 15314 15315 KnownBits Known1; 15316 KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1); 15317 if (Known1.isUnknown()) 15318 break; 15319 15320 KnownBits Known0; 15321 KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1); 15322 if (Known0.isUnknown()) 15323 break; 15324 15325 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. 15326 Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; 15327 Known.One = Known0.One & Known1.One & Known2.One; 15328 break; 15329 } 15330 } 15331 } 15332 15333 Align SITargetLowering::computeKnownAlignForTargetInstr( 15334 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, 15335 unsigned Depth) const { 15336 const MachineInstr *MI = MRI.getVRegDef(R); 15337 if (auto *GI = dyn_cast<GIntrinsic>(MI)) { 15338 // FIXME: Can this move to generic code? What about the case where the call 15339 // site specifies a lower alignment? 15340 Intrinsic::ID IID = GI->getIntrinsicID(); 15341 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); 15342 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); 15343 if (MaybeAlign RetAlign = Attrs.getRetAlignment()) 15344 return *RetAlign; 15345 } 15346 return Align(1); 15347 } 15348 15349 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15350 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); 15351 const Align CacheLineAlign = Align(64); 15352 15353 // Pre-GFX10 target did not benefit from loop alignment 15354 if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || 15355 getSubtarget()->hasInstFwdPrefetchBug()) 15356 return PrefAlign; 15357 15358 // On GFX10 I$ is 4 x 64 bytes cache lines. 15359 // By default prefetcher keeps one cache line behind and reads two ahead. 15360 // We can modify it with S_INST_PREFETCH for larger loops to have two lines 15361 // behind and one ahead. 15362 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. 15363 // If loop fits 64 bytes it always spans no more than two cache lines and 15364 // does not need an alignment. 15365 // Else if loop is less or equal 128 bytes we do not need to modify prefetch, 15366 // Else if loop is less or equal 192 bytes we need two lines behind. 15367 15368 const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); 15369 const MachineBasicBlock *Header = ML->getHeader(); 15370 if (Header->getAlignment() != PrefAlign) 15371 return Header->getAlignment(); // Already processed. 15372 15373 unsigned LoopSize = 0; 15374 for (const MachineBasicBlock *MBB : ML->blocks()) { 15375 // If inner loop block is aligned assume in average half of the alignment 15376 // size to be added as nops. 15377 if (MBB != Header) 15378 LoopSize += MBB->getAlignment().value() / 2; 15379 15380 for (const MachineInstr &MI : *MBB) { 15381 LoopSize += TII->getInstSizeInBytes(MI); 15382 if (LoopSize > 192) 15383 return PrefAlign; 15384 } 15385 } 15386 15387 if (LoopSize <= 64) 15388 return PrefAlign; 15389 15390 if (LoopSize <= 128) 15391 return CacheLineAlign; 15392 15393 // If any of parent loops is surrounded by prefetch instructions do not 15394 // insert new for inner loop, which would reset parent's settings. 15395 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { 15396 if (MachineBasicBlock *Exit = P->getExitBlock()) { 15397 auto I = Exit->getFirstNonDebugInstr(); 15398 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) 15399 return CacheLineAlign; 15400 } 15401 } 15402 15403 MachineBasicBlock *Pre = ML->getLoopPreheader(); 15404 MachineBasicBlock *Exit = ML->getExitBlock(); 15405 15406 if (Pre && Exit) { 15407 auto PreTerm = Pre->getFirstTerminator(); 15408 if (PreTerm == Pre->begin() || 15409 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) 15410 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 15411 .addImm(1); // prefetch 2 lines behind PC 15412 15413 auto ExitHead = Exit->getFirstNonDebugInstr(); 15414 if (ExitHead == Exit->end() || 15415 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) 15416 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) 15417 .addImm(2); // prefetch 1 line behind PC 15418 } 15419 15420 return CacheLineAlign; 15421 } 15422 15423 LLVM_ATTRIBUTE_UNUSED 15424 static bool isCopyFromRegOfInlineAsm(const SDNode *N) { 15425 assert(N->getOpcode() == ISD::CopyFromReg); 15426 do { 15427 // Follow the chain until we find an INLINEASM node. 15428 N = N->getOperand(0).getNode(); 15429 if (N->getOpcode() == ISD::INLINEASM || 15430 N->getOpcode() == ISD::INLINEASM_BR) 15431 return true; 15432 } while (N->getOpcode() == ISD::CopyFromReg); 15433 return false; 15434 } 15435 15436 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, 15437 FunctionLoweringInfo *FLI, 15438 UniformityInfo *UA) const { 15439 switch (N->getOpcode()) { 15440 case ISD::CopyFromReg: { 15441 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); 15442 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); 15443 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15444 Register Reg = R->getReg(); 15445 15446 // FIXME: Why does this need to consider isLiveIn? 15447 if (Reg.isPhysical() || MRI.isLiveIn(Reg)) 15448 return !TRI->isSGPRReg(MRI, Reg); 15449 15450 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) 15451 return UA->isDivergent(V); 15452 15453 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); 15454 return !TRI->isSGPRReg(MRI, Reg); 15455 } 15456 case ISD::LOAD: { 15457 const LoadSDNode *L = cast<LoadSDNode>(N); 15458 unsigned AS = L->getAddressSpace(); 15459 // A flat load may access private memory. 15460 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; 15461 } 15462 case ISD::CALLSEQ_END: 15463 return true; 15464 case ISD::INTRINSIC_WO_CHAIN: 15465 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0)); 15466 case ISD::INTRINSIC_W_CHAIN: 15467 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1)); 15468 case AMDGPUISD::ATOMIC_CMP_SWAP: 15469 case AMDGPUISD::ATOMIC_LOAD_FMIN: 15470 case AMDGPUISD::ATOMIC_LOAD_FMAX: 15471 case AMDGPUISD::BUFFER_ATOMIC_SWAP: 15472 case AMDGPUISD::BUFFER_ATOMIC_ADD: 15473 case AMDGPUISD::BUFFER_ATOMIC_SUB: 15474 case AMDGPUISD::BUFFER_ATOMIC_SMIN: 15475 case AMDGPUISD::BUFFER_ATOMIC_UMIN: 15476 case AMDGPUISD::BUFFER_ATOMIC_SMAX: 15477 case AMDGPUISD::BUFFER_ATOMIC_UMAX: 15478 case AMDGPUISD::BUFFER_ATOMIC_AND: 15479 case AMDGPUISD::BUFFER_ATOMIC_OR: 15480 case AMDGPUISD::BUFFER_ATOMIC_XOR: 15481 case AMDGPUISD::BUFFER_ATOMIC_INC: 15482 case AMDGPUISD::BUFFER_ATOMIC_DEC: 15483 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: 15484 case AMDGPUISD::BUFFER_ATOMIC_CSUB: 15485 case AMDGPUISD::BUFFER_ATOMIC_FADD: 15486 case AMDGPUISD::BUFFER_ATOMIC_FMIN: 15487 case AMDGPUISD::BUFFER_ATOMIC_FMAX: 15488 // Target-specific read-modify-write atomics are sources of divergence. 15489 return true; 15490 default: 15491 if (auto *A = dyn_cast<AtomicSDNode>(N)) { 15492 // Generic read-modify-write atomics are sources of divergence. 15493 return A->readMem() && A->writeMem(); 15494 } 15495 return false; 15496 } 15497 } 15498 15499 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, 15500 EVT VT) const { 15501 switch (VT.getScalarType().getSimpleVT().SimpleTy) { 15502 case MVT::f32: 15503 return !denormalModeIsFlushAllF32(DAG.getMachineFunction()); 15504 case MVT::f64: 15505 case MVT::f16: 15506 return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); 15507 default: 15508 return false; 15509 } 15510 } 15511 15512 bool SITargetLowering::denormalsEnabledForType(LLT Ty, 15513 MachineFunction &MF) const { 15514 switch (Ty.getScalarSizeInBits()) { 15515 case 32: 15516 return !denormalModeIsFlushAllF32(MF); 15517 case 64: 15518 case 16: 15519 return !denormalModeIsFlushAllF64F16(MF); 15520 default: 15521 return false; 15522 } 15523 } 15524 15525 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 15526 const SelectionDAG &DAG, 15527 bool SNaN, 15528 unsigned Depth) const { 15529 if (Op.getOpcode() == AMDGPUISD::CLAMP) { 15530 const MachineFunction &MF = DAG.getMachineFunction(); 15531 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 15532 15533 if (Info->getMode().DX10Clamp) 15534 return true; // Clamped to 0. 15535 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 15536 } 15537 15538 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, 15539 SNaN, Depth); 15540 } 15541 15542 // Global FP atomic instructions have a hardcoded FP mode and do not support 15543 // FP32 denormals, and only support v2f16 denormals. 15544 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { 15545 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); 15546 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); 15547 if (&Flt == &APFloat::IEEEsingle()) 15548 return DenormMode == DenormalMode::getPreserveSign(); 15549 return DenormMode == DenormalMode::getIEEE(); 15550 } 15551 15552 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe 15553 // floating point atomic instructions. May generate more efficient code, 15554 // but may not respect rounding and denormal modes, and may give incorrect 15555 // results for certain memory destinations. 15556 bool unsafeFPAtomicsDisabled(Function *F) { 15557 return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != 15558 "true"; 15559 } 15560 15561 TargetLowering::AtomicExpansionKind 15562 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 15563 unsigned AS = RMW->getPointerAddressSpace(); 15564 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 15565 return AtomicExpansionKind::NotAtomic; 15566 15567 auto SSID = RMW->getSyncScopeID(); 15568 15569 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { 15570 OptimizationRemarkEmitter ORE(RMW->getFunction()); 15571 LLVMContext &Ctx = RMW->getFunction()->getContext(); 15572 SmallVector<StringRef> SSNs; 15573 Ctx.getSyncScopeNames(SSNs); 15574 auto MemScope = SSNs[RMW->getSyncScopeID()].empty() 15575 ? "system" 15576 : SSNs[RMW->getSyncScopeID()]; 15577 ORE.emit([&]() { 15578 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) 15579 << "Hardware instruction generated for atomic " 15580 << RMW->getOperationName(RMW->getOperation()) 15581 << " operation at memory scope " << MemScope 15582 << " due to an unsafe request."; 15583 }); 15584 return Kind; 15585 }; 15586 15587 bool HasSystemScope = 15588 SSID == SyncScope::System || 15589 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); 15590 15591 switch (RMW->getOperation()) { 15592 case AtomicRMWInst::FAdd: { 15593 Type *Ty = RMW->getType(); 15594 15595 if (Ty->isHalfTy()) 15596 return AtomicExpansionKind::CmpXChg; 15597 15598 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) 15599 return AtomicExpansionKind::CmpXChg; 15600 15601 if (AMDGPU::isFlatGlobalAddrSpace(AS) && 15602 Subtarget->hasAtomicFaddNoRtnInsts()) { 15603 if (Subtarget->hasGFX940Insts()) 15604 return AtomicExpansionKind::None; 15605 15606 if (unsafeFPAtomicsDisabled(RMW->getFunction())) 15607 return AtomicExpansionKind::CmpXChg; 15608 15609 // Always expand system scope fp atomics. 15610 if (HasSystemScope) 15611 return AtomicExpansionKind::CmpXChg; 15612 15613 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) { 15614 // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. 15615 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 15616 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15617 // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. 15618 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 15619 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15620 } 15621 15622 // flat atomic fadd f32: gfx940, gfx11+. 15623 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 15624 Subtarget->hasFlatAtomicFaddF32Inst()) 15625 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15626 15627 // global and flat atomic fadd f64: gfx90a, gfx940. 15628 if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts()) 15629 return ReportUnsafeHWInst(AtomicExpansionKind::None); 15630 15631 // If it is in flat address space, and the type is float, we will try to 15632 // expand it, if the target supports global and lds atomic fadd. The 15633 // reason we need that is, in the expansion, we emit the check of address 15634 // space. If it is in global address space, we emit the global atomic 15635 // fadd; if it is in shared address space, we emit the LDS atomic fadd. 15636 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && 15637 Subtarget->hasLDSFPAtomicAdd()) { 15638 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) 15639 return AtomicExpansionKind::Expand; 15640 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) 15641 return AtomicExpansionKind::Expand; 15642 } 15643 15644 return AtomicExpansionKind::CmpXChg; 15645 } 15646 15647 // DS FP atomics do respect the denormal mode, but the rounding mode is 15648 // fixed to round-to-nearest-even. 15649 // The only exception is DS_ADD_F64 which never flushes regardless of mode. 15650 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { 15651 if (!Ty->isDoubleTy()) 15652 return AtomicExpansionKind::None; 15653 15654 if (fpModeMatchesGlobalFPAtomicMode(RMW)) 15655 return AtomicExpansionKind::None; 15656 15657 return RMW->getFunction() 15658 ->getFnAttribute("amdgpu-unsafe-fp-atomics") 15659 .getValueAsString() == "true" 15660 ? ReportUnsafeHWInst(AtomicExpansionKind::None) 15661 : AtomicExpansionKind::CmpXChg; 15662 } 15663 15664 return AtomicExpansionKind::CmpXChg; 15665 } 15666 case AtomicRMWInst::FMin: 15667 case AtomicRMWInst::FMax: 15668 case AtomicRMWInst::Min: 15669 case AtomicRMWInst::Max: 15670 case AtomicRMWInst::UMin: 15671 case AtomicRMWInst::UMax: { 15672 if (AMDGPU::isFlatGlobalAddrSpace(AS)) { 15673 if (RMW->getType()->isFloatTy() && 15674 unsafeFPAtomicsDisabled(RMW->getFunction())) 15675 return AtomicExpansionKind::CmpXChg; 15676 15677 // Always expand system scope min/max atomics. 15678 if (HasSystemScope) 15679 return AtomicExpansionKind::CmpXChg; 15680 } 15681 break; 15682 } 15683 default: 15684 break; 15685 } 15686 15687 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 15688 } 15689 15690 TargetLowering::AtomicExpansionKind 15691 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 15692 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15693 ? AtomicExpansionKind::NotAtomic 15694 : AtomicExpansionKind::None; 15695 } 15696 15697 TargetLowering::AtomicExpansionKind 15698 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 15699 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15700 ? AtomicExpansionKind::NotAtomic 15701 : AtomicExpansionKind::None; 15702 } 15703 15704 TargetLowering::AtomicExpansionKind 15705 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { 15706 return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS 15707 ? AtomicExpansionKind::NotAtomic 15708 : AtomicExpansionKind::None; 15709 } 15710 15711 const TargetRegisterClass * 15712 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 15713 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); 15714 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 15715 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) 15716 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass 15717 : &AMDGPU::SReg_32RegClass; 15718 if (!TRI->isSGPRClass(RC) && !isDivergent) 15719 return TRI->getEquivalentSGPRClass(RC); 15720 else if (TRI->isSGPRClass(RC) && isDivergent) 15721 return TRI->getEquivalentVGPRClass(RC); 15722 15723 return RC; 15724 } 15725 15726 // FIXME: This is a workaround for DivergenceAnalysis not understanding always 15727 // uniform values (as produced by the mask results of control flow intrinsics) 15728 // used outside of divergent blocks. The phi users need to also be treated as 15729 // always uniform. 15730 // 15731 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? 15732 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, 15733 unsigned WaveSize) { 15734 // FIXME: We assume we never cast the mask results of a control flow 15735 // intrinsic. 15736 // Early exit if the type won't be consistent as a compile time hack. 15737 IntegerType *IT = dyn_cast<IntegerType>(V->getType()); 15738 if (!IT || IT->getBitWidth() != WaveSize) 15739 return false; 15740 15741 if (!isa<Instruction>(V)) 15742 return false; 15743 if (!Visited.insert(V).second) 15744 return false; 15745 bool Result = false; 15746 for (const auto *U : V->users()) { 15747 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { 15748 if (V == U->getOperand(1)) { 15749 switch (Intrinsic->getIntrinsicID()) { 15750 default: 15751 Result = false; 15752 break; 15753 case Intrinsic::amdgcn_if_break: 15754 case Intrinsic::amdgcn_if: 15755 case Intrinsic::amdgcn_else: 15756 Result = true; 15757 break; 15758 } 15759 } 15760 if (V == U->getOperand(0)) { 15761 switch (Intrinsic->getIntrinsicID()) { 15762 default: 15763 Result = false; 15764 break; 15765 case Intrinsic::amdgcn_end_cf: 15766 case Intrinsic::amdgcn_loop: 15767 Result = true; 15768 break; 15769 } 15770 } 15771 } else { 15772 Result = hasCFUser(U, Visited, WaveSize); 15773 } 15774 if (Result) 15775 break; 15776 } 15777 return Result; 15778 } 15779 15780 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, 15781 const Value *V) const { 15782 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 15783 if (CI->isInlineAsm()) { 15784 // FIXME: This cannot give a correct answer. This should only trigger in 15785 // the case where inline asm returns mixed SGPR and VGPR results, used 15786 // outside the defining block. We don't have a specific result to 15787 // consider, so this assumes if any value is SGPR, the overall register 15788 // also needs to be SGPR. 15789 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); 15790 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( 15791 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); 15792 for (auto &TC : TargetConstraints) { 15793 if (TC.Type == InlineAsm::isOutput) { 15794 ComputeConstraintToUse(TC, SDValue()); 15795 const TargetRegisterClass *RC = getRegForInlineAsmConstraint( 15796 SIRI, TC.ConstraintCode, TC.ConstraintVT).second; 15797 if (RC && SIRI->isSGPRClass(RC)) 15798 return true; 15799 } 15800 } 15801 } 15802 } 15803 SmallPtrSet<const Value *, 16> Visited; 15804 return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); 15805 } 15806 15807 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { 15808 SDNode::use_iterator I = N->use_begin(), E = N->use_end(); 15809 for (; I != E; ++I) { 15810 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { 15811 if (getBasePtrIndex(M) == I.getOperandNo()) 15812 return true; 15813 } 15814 } 15815 return false; 15816 } 15817 15818 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, 15819 SDValue N1) const { 15820 if (!N0.hasOneUse()) 15821 return false; 15822 // Take care of the opportunity to keep N0 uniform 15823 if (N0->isDivergent() || !N1->isDivergent()) 15824 return true; 15825 // Check if we have a good chance to form the memory access pattern with the 15826 // base and offset 15827 return (DAG.isBaseWithConstantOffset(N0) && 15828 hasMemSDNodeUser(*N0->use_begin())); 15829 } 15830 15831 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, 15832 Register N0, Register N1) const { 15833 return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks 15834 } 15835 15836 MachineMemOperand::Flags 15837 SITargetLowering::getTargetMMOFlags(const Instruction &I) const { 15838 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. 15839 if (I.getMetadata("amdgpu.noclobber")) 15840 return MONoClobber; 15841 return MachineMemOperand::MONone; 15842 } 15843 15844 bool SITargetLowering::checkForPhysRegDependency( 15845 SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, 15846 const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { 15847 if (User->getOpcode() != ISD::CopyToReg) 15848 return false; 15849 if (!Def->isMachineOpcode()) 15850 return false; 15851 MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def); 15852 if (!MDef) 15853 return false; 15854 15855 unsigned ResNo = User->getOperand(Op).getResNo(); 15856 if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) 15857 return false; 15858 const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); 15859 if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { 15860 PhysReg = AMDGPU::SCC; 15861 const TargetRegisterClass *RC = 15862 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); 15863 Cost = RC->getCopyCost(); 15864 return true; 15865 } 15866 return false; 15867 } 15868 15869 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { 15870 assert(Subtarget->hasAtomicFaddInsts() && 15871 "target should have atomic fadd instructions"); 15872 assert(AI->getType()->isFloatTy() && 15873 AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && 15874 "generic atomicrmw expansion only supports FP32 operand in flat " 15875 "address space"); 15876 assert(AI->getOperation() == AtomicRMWInst::FAdd && 15877 "only fadd is supported for now"); 15878 15879 // Given: atomicrmw fadd ptr %addr, float %val ordering 15880 // 15881 // With this expansion we produce the following code: 15882 // [...] 15883 // br label %atomicrmw.check.shared 15884 // 15885 // atomicrmw.check.shared: 15886 // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) 15887 // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private 15888 // 15889 // atomicrmw.shared: 15890 // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) 15891 // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, 15892 // float %val ordering 15893 // br label %atomicrmw.phi 15894 // 15895 // atomicrmw.check.private: 15896 // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) 15897 // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global 15898 // 15899 // atomicrmw.private: 15900 // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) 15901 // %loaded.private = load float, ptr addrspace(5) %cast.private 15902 // %val.new = fadd float %loaded.private, %val 15903 // store float %val.new, ptr addrspace(5) %cast.private 15904 // br label %atomicrmw.phi 15905 // 15906 // atomicrmw.global: 15907 // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) 15908 // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, 15909 // float %val ordering 15910 // br label %atomicrmw.phi 15911 // 15912 // atomicrmw.phi: 15913 // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], 15914 // [ %loaded.private, %atomicrmw.private ], 15915 // [ %loaded.global, %atomicrmw.global ] 15916 // br label %atomicrmw.end 15917 // 15918 // atomicrmw.end: 15919 // [...] 15920 15921 IRBuilder<> Builder(AI); 15922 LLVMContext &Ctx = Builder.getContext(); 15923 15924 BasicBlock *BB = Builder.GetInsertBlock(); 15925 Function *F = BB->getParent(); 15926 BasicBlock *ExitBB = 15927 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 15928 BasicBlock *CheckSharedBB = 15929 BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); 15930 BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); 15931 BasicBlock *CheckPrivateBB = 15932 BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); 15933 BasicBlock *PrivateBB = 15934 BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); 15935 BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); 15936 BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); 15937 15938 Value *Val = AI->getValOperand(); 15939 Type *ValTy = Val->getType(); 15940 Value *Addr = AI->getPointerOperand(); 15941 15942 auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, 15943 Value *Val) -> Value * { 15944 AtomicRMWInst *OldVal = 15945 Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), 15946 AI->getOrdering(), AI->getSyncScopeID()); 15947 SmallVector<std::pair<unsigned, MDNode *>> MDs; 15948 AI->getAllMetadata(MDs); 15949 for (auto &P : MDs) 15950 OldVal->setMetadata(P.first, P.second); 15951 return OldVal; 15952 }; 15953 15954 std::prev(BB->end())->eraseFromParent(); 15955 Builder.SetInsertPoint(BB); 15956 Builder.CreateBr(CheckSharedBB); 15957 15958 Builder.SetInsertPoint(CheckSharedBB); 15959 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, 15960 {Addr}, nullptr, "is.shared"); 15961 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); 15962 15963 Builder.SetInsertPoint(SharedBB); 15964 Value *CastToLocal = Builder.CreateAddrSpaceCast( 15965 Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS)); 15966 Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); 15967 Builder.CreateBr(PhiBB); 15968 15969 Builder.SetInsertPoint(CheckPrivateBB); 15970 CallInst *IsPrivate = Builder.CreateIntrinsic( 15971 Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); 15972 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); 15973 15974 Builder.SetInsertPoint(PrivateBB); 15975 Value *CastToPrivate = Builder.CreateAddrSpaceCast( 15976 Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS)); 15977 Value *LoadedPrivate = 15978 Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); 15979 Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); 15980 Builder.CreateStore(NewVal, CastToPrivate); 15981 Builder.CreateBr(PhiBB); 15982 15983 Builder.SetInsertPoint(GlobalBB); 15984 Value *CastToGlobal = Builder.CreateAddrSpaceCast( 15985 Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS)); 15986 Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); 15987 Builder.CreateBr(PhiBB); 15988 15989 Builder.SetInsertPoint(PhiBB); 15990 PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); 15991 Loaded->addIncoming(LoadedShared, SharedBB); 15992 Loaded->addIncoming(LoadedPrivate, PrivateBB); 15993 Loaded->addIncoming(LoadedGlobal, GlobalBB); 15994 Builder.CreateBr(ExitBB); 15995 15996 AI->replaceAllUsesWith(Loaded); 15997 AI->eraseFromParent(); 15998 } 15999 16000 LoadInst * 16001 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { 16002 IRBuilder<> Builder(AI); 16003 auto Order = AI->getOrdering(); 16004 16005 // The optimization removes store aspect of the atomicrmw. Therefore, cache 16006 // must be flushed if the atomic ordering had a release semantics. This is 16007 // not necessary a fence, a release fence just coincides to do that flush. 16008 // Avoid replacing of an atomicrmw with a release semantics. 16009 if (isReleaseOrStronger(Order)) 16010 return nullptr; 16011 16012 LoadInst *LI = Builder.CreateAlignedLoad( 16013 AI->getType(), AI->getPointerOperand(), AI->getAlign()); 16014 LI->setAtomic(Order, AI->getSyncScopeID()); 16015 LI->copyMetadata(*AI); 16016 LI->takeName(AI); 16017 AI->replaceAllUsesWith(LI); 16018 AI->eraseFromParent(); 16019 return LI; 16020 } 16021