xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 
19 #define DEBUG_TYPE "si-fold-operands"
20 using namespace llvm;
21 
22 namespace {
23 
24 struct FoldCandidate {
25   MachineInstr *UseMI;
26   union {
27     MachineOperand *OpToFold;
28     uint64_t ImmToFold;
29     int FrameIndexToFold;
30   };
31   int ShrinkOpcode;
32   unsigned UseOpNo;
33   MachineOperand::MachineOperandType Kind;
34   bool Commuted;
35 
36   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
37                 bool Commuted_ = false,
38                 int ShrinkOp = -1) :
39     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
40     Kind(FoldOp->getType()),
41     Commuted(Commuted_) {
42     if (FoldOp->isImm()) {
43       ImmToFold = FoldOp->getImm();
44     } else if (FoldOp->isFI()) {
45       FrameIndexToFold = FoldOp->getIndex();
46     } else {
47       assert(FoldOp->isReg() || FoldOp->isGlobal());
48       OpToFold = FoldOp;
49     }
50   }
51 
52   bool isFI() const {
53     return Kind == MachineOperand::MO_FrameIndex;
54   }
55 
56   bool isImm() const {
57     return Kind == MachineOperand::MO_Immediate;
58   }
59 
60   bool isReg() const {
61     return Kind == MachineOperand::MO_Register;
62   }
63 
64   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
65 
66   bool needsShrink() const { return ShrinkOpcode != -1; }
67 };
68 
69 class SIFoldOperands : public MachineFunctionPass {
70 public:
71   static char ID;
72   MachineRegisterInfo *MRI;
73   const SIInstrInfo *TII;
74   const SIRegisterInfo *TRI;
75   const GCNSubtarget *ST;
76   const SIMachineFunctionInfo *MFI;
77 
78   bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
79                          const MachineOperand &OpToFold) const;
80 
81   bool updateOperand(FoldCandidate &Fold) const;
82 
83   bool canUseImmWithOpSel(FoldCandidate &Fold) const;
84 
85   bool tryFoldImmWithOpSel(FoldCandidate &Fold) const;
86 
87   bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
88                         MachineInstr *MI, unsigned OpNo,
89                         MachineOperand *OpToFold) const;
90   bool isUseSafeToFold(const MachineInstr &MI,
91                        const MachineOperand &UseMO) const;
92   bool
93   getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
94                 Register UseReg, uint8_t OpTy) const;
95   bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI,
96                       unsigned UseOpIdx,
97                       SmallVectorImpl<FoldCandidate> &FoldList) const;
98   void foldOperand(MachineOperand &OpToFold,
99                    MachineInstr *UseMI,
100                    int UseOpIdx,
101                    SmallVectorImpl<FoldCandidate> &FoldList,
102                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
103 
104   MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const;
105   bool tryConstantFoldOp(MachineInstr *MI) const;
106   bool tryFoldCndMask(MachineInstr &MI) const;
107   bool tryFoldZeroHighBits(MachineInstr &MI) const;
108   bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
109   bool tryFoldFoldableCopy(MachineInstr &MI,
110                            MachineOperand *&CurrentKnownM0Val) const;
111 
112   const MachineOperand *isClamp(const MachineInstr &MI) const;
113   bool tryFoldClamp(MachineInstr &MI);
114 
115   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
116   bool tryFoldOMod(MachineInstr &MI);
117   bool tryFoldRegSequence(MachineInstr &MI);
118   bool tryFoldPhiAGPR(MachineInstr &MI);
119   bool tryFoldLoad(MachineInstr &MI);
120 
121   bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB);
122 
123 public:
124   SIFoldOperands() : MachineFunctionPass(ID) {
125     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
126   }
127 
128   bool runOnMachineFunction(MachineFunction &MF) override;
129 
130   StringRef getPassName() const override { return "SI Fold Operands"; }
131 
132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.setPreservesCFG();
134     MachineFunctionPass::getAnalysisUsage(AU);
135   }
136 };
137 
138 } // End anonymous namespace.
139 
140 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
141                 "SI Fold Operands", false, false)
142 
143 char SIFoldOperands::ID = 0;
144 
145 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
146 
147 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI,
148                                              const TargetRegisterInfo &TRI,
149                                              const MachineOperand &MO) {
150   const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg());
151   if (const TargetRegisterClass *SubRC =
152           TRI.getSubRegisterClass(RC, MO.getSubReg()))
153     RC = SubRC;
154   return RC;
155 }
156 
157 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
158 static unsigned macToMad(unsigned Opc) {
159   switch (Opc) {
160   case AMDGPU::V_MAC_F32_e64:
161     return AMDGPU::V_MAD_F32_e64;
162   case AMDGPU::V_MAC_F16_e64:
163     return AMDGPU::V_MAD_F16_e64;
164   case AMDGPU::V_FMAC_F32_e64:
165     return AMDGPU::V_FMA_F32_e64;
166   case AMDGPU::V_FMAC_F16_e64:
167     return AMDGPU::V_FMA_F16_gfx9_e64;
168   case AMDGPU::V_FMAC_F16_t16_e64:
169     return AMDGPU::V_FMA_F16_gfx9_e64;
170   case AMDGPU::V_FMAC_LEGACY_F32_e64:
171     return AMDGPU::V_FMA_LEGACY_F32_e64;
172   case AMDGPU::V_FMAC_F64_e64:
173     return AMDGPU::V_FMA_F64_e64;
174   }
175   return AMDGPU::INSTRUCTION_LIST_END;
176 }
177 
178 // TODO: Add heuristic that the frame index might not fit in the addressing mode
179 // immediate offset to avoid materializing in loops.
180 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
181                                        const MachineOperand &OpToFold) const {
182   if (!OpToFold.isFI())
183     return false;
184 
185   const unsigned Opc = UseMI.getOpcode();
186   if (TII->isMUBUF(UseMI))
187     return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
188   if (!TII->isFLATScratch(UseMI))
189     return false;
190 
191   int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
192   if (OpNo == SIdx)
193     return true;
194 
195   int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
196   return OpNo == VIdx && SIdx == -1;
197 }
198 
199 FunctionPass *llvm::createSIFoldOperandsPass() {
200   return new SIFoldOperands();
201 }
202 
203 bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const {
204   MachineInstr *MI = Fold.UseMI;
205   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
206   const uint64_t TSFlags = MI->getDesc().TSFlags;
207 
208   assert(Old.isReg() && Fold.isImm());
209 
210   if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) ||
211       (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT)) ||
212       isUInt<16>(Fold.ImmToFold) ||
213       !AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, ST->hasInv2PiInlineImm()))
214     return false;
215 
216   unsigned Opcode = MI->getOpcode();
217   int OpNo = MI->getOperandNo(&Old);
218   uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType;
219   switch (OpType) {
220   default:
221     return false;
222   case AMDGPU::OPERAND_REG_IMM_V2FP16:
223   case AMDGPU::OPERAND_REG_IMM_V2INT16:
224   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
225   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
226     break;
227   }
228 
229   return true;
230 }
231 
232 bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const {
233   MachineInstr *MI = Fold.UseMI;
234   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
235   unsigned Opcode = MI->getOpcode();
236   int OpNo = MI->getOperandNo(&Old);
237 
238   // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
239   // already set.
240   int ModIdx = -1;
241   if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
242     ModIdx = AMDGPU::OpName::src0_modifiers;
243   else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
244     ModIdx = AMDGPU::OpName::src1_modifiers;
245   else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
246     ModIdx = AMDGPU::OpName::src2_modifiers;
247   assert(ModIdx != -1);
248   ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
249   MachineOperand &Mod = MI->getOperand(ModIdx);
250   unsigned Val = Mod.getImm();
251   if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
252     return false;
253 
254   // Only apply the following transformation if that operand requires
255   // a packed immediate.
256   // If upper part is all zero we do not need op_sel_hi.
257   if (!(Fold.ImmToFold & 0xffff)) {
258     MachineOperand New =
259         MachineOperand::CreateImm((Fold.ImmToFold >> 16) & 0xffff);
260     if (!TII->isOperandLegal(*MI, OpNo, &New))
261       return false;
262     Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
263     Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
264     Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
265     return true;
266   }
267   MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold & 0xffff);
268   if (!TII->isOperandLegal(*MI, OpNo, &New))
269     return false;
270   Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
271   Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
272   return true;
273 }
274 
275 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const {
276   MachineInstr *MI = Fold.UseMI;
277   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
278   assert(Old.isReg());
279 
280   if (Fold.isImm() && canUseImmWithOpSel(Fold))
281     return tryFoldImmWithOpSel(Fold);
282 
283   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
284     MachineBasicBlock *MBB = MI->getParent();
285     auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16);
286     if (Liveness != MachineBasicBlock::LQR_Dead) {
287       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
288       return false;
289     }
290 
291     int Op32 = Fold.ShrinkOpcode;
292     MachineOperand &Dst0 = MI->getOperand(0);
293     MachineOperand &Dst1 = MI->getOperand(1);
294     assert(Dst0.isDef() && Dst1.isDef());
295 
296     bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg());
297 
298     const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg());
299     Register NewReg0 = MRI->createVirtualRegister(Dst0RC);
300 
301     MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32);
302 
303     if (HaveNonDbgCarryUse) {
304       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY),
305               Dst1.getReg())
306         .addReg(AMDGPU::VCC, RegState::Kill);
307     }
308 
309     // Keep the old instruction around to avoid breaking iterators, but
310     // replace it with a dummy instruction to remove uses.
311     //
312     // FIXME: We should not invert how this pass looks at operands to avoid
313     // this. Should track set of foldable movs instead of looking for uses
314     // when looking at a use.
315     Dst0.setReg(NewReg0);
316     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
317       MI->removeOperand(I);
318     MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF));
319 
320     if (Fold.Commuted)
321       TII->commuteInstruction(*Inst32, false);
322     return true;
323   }
324 
325   assert(!Fold.needsShrink() && "not handled");
326 
327   if (Fold.isImm()) {
328     if (Old.isTied()) {
329       int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode());
330       if (NewMFMAOpc == -1)
331         return false;
332       MI->setDesc(TII->get(NewMFMAOpc));
333       MI->untieRegOperand(0);
334     }
335     Old.ChangeToImmediate(Fold.ImmToFold);
336     return true;
337   }
338 
339   if (Fold.isGlobal()) {
340     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
341                    Fold.OpToFold->getTargetFlags());
342     return true;
343   }
344 
345   if (Fold.isFI()) {
346     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
347     return true;
348   }
349 
350   MachineOperand *New = Fold.OpToFold;
351   Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI);
352   Old.setIsUndef(New->isUndef());
353   return true;
354 }
355 
356 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
357                               const MachineInstr *MI) {
358   return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; });
359 }
360 
361 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
362                                 MachineInstr *MI, unsigned OpNo,
363                                 MachineOperand *FoldOp, bool Commuted = false,
364                                 int ShrinkOp = -1) {
365   // Skip additional folding on the same operand.
366   for (FoldCandidate &Fold : FoldList)
367     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
368       return;
369   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
370                     << " operand " << OpNo << "\n  " << *MI);
371   FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
372 }
373 
374 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
375                                       MachineInstr *MI, unsigned OpNo,
376                                       MachineOperand *OpToFold) const {
377   const unsigned Opc = MI->getOpcode();
378 
379   auto tryToFoldAsFMAAKorMK = [&]() {
380     if (!OpToFold->isImm())
381       return false;
382 
383     const bool TryAK = OpNo == 3;
384     const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32;
385     MI->setDesc(TII->get(NewOpc));
386 
387     // We have to fold into operand which would be Imm not into OpNo.
388     bool FoldAsFMAAKorMK =
389         tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold);
390     if (FoldAsFMAAKorMK) {
391       // Untie Src2 of fmac.
392       MI->untieRegOperand(3);
393       // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1.
394       if (OpNo == 1) {
395         MachineOperand &Op1 = MI->getOperand(1);
396         MachineOperand &Op2 = MI->getOperand(2);
397         Register OldReg = Op1.getReg();
398         // Operand 2 might be an inlinable constant
399         if (Op2.isImm()) {
400           Op1.ChangeToImmediate(Op2.getImm());
401           Op2.ChangeToRegister(OldReg, false);
402         } else {
403           Op1.setReg(Op2.getReg());
404           Op2.setReg(OldReg);
405         }
406       }
407       return true;
408     }
409     MI->setDesc(TII->get(Opc));
410     return false;
411   };
412 
413   bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold);
414   if (!IsLegal && OpToFold->isImm()) {
415     FoldCandidate Fold(MI, OpNo, OpToFold);
416     IsLegal = canUseImmWithOpSel(Fold);
417   }
418 
419   if (!IsLegal) {
420     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
421     unsigned NewOpc = macToMad(Opc);
422     if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
423       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
424       // to fold the operand.
425       MI->setDesc(TII->get(NewOpc));
426       bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) &&
427                       AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel);
428       if (AddOpSel)
429         MI->addOperand(MachineOperand::CreateImm(0));
430       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold);
431       if (FoldAsMAD) {
432         MI->untieRegOperand(OpNo);
433         return true;
434       }
435       if (AddOpSel)
436         MI->removeOperand(MI->getNumExplicitOperands() - 1);
437       MI->setDesc(TII->get(Opc));
438     }
439 
440     // Special case for s_fmac_f32 if we are trying to fold into Src2.
441     // By transforming into fmaak we can untie Src2 and make folding legal.
442     if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) {
443       if (tryToFoldAsFMAAKorMK())
444         return true;
445     }
446 
447     // Special case for s_setreg_b32
448     if (OpToFold->isImm()) {
449       unsigned ImmOpc = 0;
450       if (Opc == AMDGPU::S_SETREG_B32)
451         ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
452       else if (Opc == AMDGPU::S_SETREG_B32_mode)
453         ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
454       if (ImmOpc) {
455         MI->setDesc(TII->get(ImmOpc));
456         appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
457         return true;
458       }
459     }
460 
461     // If we are already folding into another operand of MI, then
462     // we can't commute the instruction, otherwise we risk making the
463     // other fold illegal.
464     if (isUseMIInFoldList(FoldList, MI))
465       return false;
466 
467     // Operand is not legal, so try to commute the instruction to
468     // see if this makes it possible to fold.
469     unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex;
470     bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo);
471     if (!CanCommute)
472       return false;
473 
474     // One of operands might be an Imm operand, and OpNo may refer to it after
475     // the call of commuteInstruction() below. Such situations are avoided
476     // here explicitly as OpNo must be a register operand to be a candidate
477     // for memory folding.
478     if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg())
479       return false;
480 
481     if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo))
482       return false;
483 
484     int Op32 = -1;
485     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
486       if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 &&
487            Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME
488           (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) {
489         TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo);
490         return false;
491       }
492 
493       // Verify the other operand is a VGPR, otherwise we would violate the
494       // constant bus restriction.
495       MachineOperand &OtherOp = MI->getOperand(OpNo);
496       if (!OtherOp.isReg() ||
497           !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg()))
498         return false;
499 
500       assert(MI->getOperand(1).isDef());
501 
502       // Make sure to get the 32-bit version of the commuted opcode.
503       unsigned MaybeCommutedOpc = MI->getOpcode();
504       Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
505     }
506 
507     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
508     return true;
509   }
510 
511   // Inlineable constant might have been folded into Imm operand of fmaak or
512   // fmamk and we are trying to fold a non-inlinable constant.
513   if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) &&
514       !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) {
515     unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2;
516     MachineOperand &OpImm = MI->getOperand(ImmIdx);
517     if (!OpImm.isReg() &&
518         TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm))
519       return tryToFoldAsFMAAKorMK();
520   }
521 
522   // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1.
523   // By changing into fmamk we can untie Src2.
524   // If folding for Src0 happens first and it is identical operand to Src1 we
525   // should avoid transforming into fmamk which requires commuting as it would
526   // cause folding into Src1 to fail later on due to wrong OpNo used.
527   if (Opc == AMDGPU::S_FMAC_F32 &&
528       (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) {
529     if (tryToFoldAsFMAAKorMK())
530       return true;
531   }
532 
533   // Check the case where we might introduce a second constant operand to a
534   // scalar instruction
535   if (TII->isSALU(MI->getOpcode())) {
536     const MCInstrDesc &InstDesc = MI->getDesc();
537     const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
538 
539     // Fine if the operand can be encoded as an inline constant
540     if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) {
541       // Otherwise check for another constant
542       for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
543         auto &Op = MI->getOperand(i);
544         if (OpNo != i && !Op.isReg() &&
545             !TII->isInlineConstant(Op, InstDesc.operands()[i]))
546           return false;
547       }
548     }
549   }
550 
551   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
552   return true;
553 }
554 
555 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI,
556                                      const MachineOperand &UseMO) const {
557   // Operands of SDWA instructions must be registers.
558   return !TII->isSDWA(MI);
559 }
560 
561 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
562 // for each subreg, tracking it to foldable inline immediate if possible.
563 // Returns true on success.
564 bool SIFoldOperands::getRegSeqInit(
565     SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
566     Register UseReg, uint8_t OpTy) const {
567   MachineInstr *Def = MRI->getVRegDef(UseReg);
568   if (!Def || !Def->isRegSequence())
569     return false;
570 
571   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
572     MachineOperand *Sub = &Def->getOperand(I);
573     assert(Sub->isReg());
574 
575     for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg());
576          SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
577          !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
578          SubDef = MRI->getVRegDef(Sub->getReg())) {
579       MachineOperand *Op = &SubDef->getOperand(1);
580       if (Op->isImm()) {
581         if (TII->isInlineConstant(*Op, OpTy))
582           Sub = Op;
583         break;
584       }
585       if (!Op->isReg() || Op->getReg().isPhysical())
586         break;
587       Sub = Op;
588     }
589 
590     Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
591   }
592 
593   return true;
594 }
595 
596 bool SIFoldOperands::tryToFoldACImm(
597     const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx,
598     SmallVectorImpl<FoldCandidate> &FoldList) const {
599   const MCInstrDesc &Desc = UseMI->getDesc();
600   if (UseOpIdx >= Desc.getNumOperands())
601     return false;
602 
603   if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx))
604     return false;
605 
606   uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType;
607   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
608       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
609     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
610     return true;
611   }
612 
613   if (!OpToFold.isReg())
614     return false;
615 
616   Register UseReg = OpToFold.getReg();
617   if (!UseReg.isVirtual())
618     return false;
619 
620   if (isUseMIInFoldList(FoldList, UseMI))
621     return false;
622 
623   // Maybe it is just a COPY of an immediate itself.
624   MachineInstr *Def = MRI->getVRegDef(UseReg);
625   MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
626   if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
627     MachineOperand &DefOp = Def->getOperand(1);
628     if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
629         TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
630       UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
631       return true;
632     }
633   }
634 
635   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
636   if (!getRegSeqInit(Defs, UseReg, OpTy))
637     return false;
638 
639   int32_t Imm;
640   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
641     const MachineOperand *Op = Defs[I].first;
642     if (!Op->isImm())
643       return false;
644 
645     auto SubImm = Op->getImm();
646     if (!I) {
647       Imm = SubImm;
648       if (!TII->isInlineConstant(*Op, OpTy) ||
649           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
650         return false;
651 
652       continue;
653     }
654     if (Imm != SubImm)
655       return false; // Can only fold splat constants
656   }
657 
658   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
659   return true;
660 }
661 
662 void SIFoldOperands::foldOperand(
663   MachineOperand &OpToFold,
664   MachineInstr *UseMI,
665   int UseOpIdx,
666   SmallVectorImpl<FoldCandidate> &FoldList,
667   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
668   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
669 
670   if (!isUseSafeToFold(*UseMI, UseOp))
671     return;
672 
673   // FIXME: Fold operands with subregs.
674   if (UseOp.isReg() && OpToFold.isReg() &&
675       (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister))
676     return;
677 
678   // Special case for REG_SEQUENCE: We can't fold literals into
679   // REG_SEQUENCE instructions, so we have to fold them into the
680   // uses of REG_SEQUENCE.
681   if (UseMI->isRegSequence()) {
682     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
683     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
684 
685     for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
686       MachineInstr *RSUseMI = RSUse.getParent();
687 
688       if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI,
689                          RSUseMI->getOperandNo(&RSUse), FoldList))
690         continue;
691 
692       if (RSUse.getSubReg() != RegSeqDstSubReg)
693         continue;
694 
695       foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
696                   CopiesToReplace);
697     }
698 
699     return;
700   }
701 
702   if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList))
703     return;
704 
705   if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) {
706     // Verify that this is a stack access.
707     // FIXME: Should probably use stack pseudos before frame lowering.
708 
709     if (TII->isMUBUF(*UseMI)) {
710       if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
711           MFI->getScratchRSrcReg())
712         return;
713 
714       // Ensure this is either relative to the current frame or the current
715       // wave.
716       MachineOperand &SOff =
717           *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
718       if (!SOff.isImm() || SOff.getImm() != 0)
719         return;
720     }
721 
722     // A frame index will resolve to a positive constant, so it should always be
723     // safe to fold the addressing mode, even pre-GFX9.
724     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
725 
726     const unsigned Opc = UseMI->getOpcode();
727     if (TII->isFLATScratch(*UseMI) &&
728         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) &&
729         !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) {
730       unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc);
731       UseMI->setDesc(TII->get(NewOpc));
732     }
733 
734     return;
735   }
736 
737   bool FoldingImmLike =
738       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
739 
740   if (FoldingImmLike && UseMI->isCopy()) {
741     Register DestReg = UseMI->getOperand(0).getReg();
742     Register SrcReg = UseMI->getOperand(1).getReg();
743     assert(SrcReg.isVirtual());
744 
745     const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
746 
747     // Don't fold into a copy to a physical register with the same class. Doing
748     // so would interfere with the register coalescer's logic which would avoid
749     // redundant initializations.
750     if (DestReg.isPhysical() && SrcRC->contains(DestReg))
751       return;
752 
753     const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
754     if (!DestReg.isPhysical()) {
755       if (DestRC == &AMDGPU::AGPR_32RegClass &&
756           TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
757         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
758         UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
759         CopiesToReplace.push_back(UseMI);
760         return;
761       }
762     }
763 
764     // In order to fold immediates into copies, we need to change the
765     // copy to a MOV.
766 
767     unsigned MovOp = TII->getMovOpcode(DestRC);
768     if (MovOp == AMDGPU::COPY)
769       return;
770 
771     UseMI->setDesc(TII->get(MovOp));
772     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
773     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
774     while (ImpOpI != ImpOpE) {
775       MachineInstr::mop_iterator Tmp = ImpOpI;
776       ImpOpI++;
777       UseMI->removeOperand(UseMI->getOperandNo(Tmp));
778     }
779     CopiesToReplace.push_back(UseMI);
780   } else {
781     if (UseMI->isCopy() && OpToFold.isReg() &&
782         UseMI->getOperand(0).getReg().isVirtual() &&
783         !UseMI->getOperand(1).getSubReg()) {
784       LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
785       unsigned Size = TII->getOpSize(*UseMI, 1);
786       Register UseReg = OpToFold.getReg();
787       UseMI->getOperand(1).setReg(UseReg);
788       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
789       UseMI->getOperand(1).setIsKill(false);
790       CopiesToReplace.push_back(UseMI);
791       OpToFold.setIsKill(false);
792 
793       // Remove kill flags as kills may now be out of order with uses.
794       MRI->clearKillFlags(OpToFold.getReg());
795 
796       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
797       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
798       // its initializers right here, so we will rematerialize immediates and
799       // avoid copies via different reg classes.
800       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
801       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
802           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
803         const DebugLoc &DL = UseMI->getDebugLoc();
804         MachineBasicBlock &MBB = *UseMI->getParent();
805 
806         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
807         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
808           UseMI->removeOperand(I);
809 
810         MachineInstrBuilder B(*MBB.getParent(), UseMI);
811         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
812         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
813         for (unsigned I = 0; I < Size / 4; ++I) {
814           MachineOperand *Def = Defs[I].first;
815           TargetInstrInfo::RegSubRegPair CopyToVGPR;
816           if (Def->isImm() &&
817               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
818             int64_t Imm = Def->getImm();
819 
820             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
821             BuildMI(MBB, UseMI, DL,
822                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
823             B.addReg(Tmp);
824           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
825             auto Src = getRegSubRegPair(*Def);
826             Def->setIsKill(false);
827             if (!SeenAGPRs.insert(Src)) {
828               // We cannot build a reg_sequence out of the same registers, they
829               // must be copied. Better do it here before copyPhysReg() created
830               // several reads to do the AGPR->VGPR->AGPR copy.
831               CopyToVGPR = Src;
832             } else {
833               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
834                        Src.SubReg);
835             }
836           } else {
837             assert(Def->isReg());
838             Def->setIsKill(false);
839             auto Src = getRegSubRegPair(*Def);
840 
841             // Direct copy from SGPR to AGPR is not possible. To avoid creation
842             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
843             // create a copy here and track if we already have such a copy.
844             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
845               CopyToVGPR = Src;
846             } else {
847               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
848               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
849               B.addReg(Tmp);
850             }
851           }
852 
853           if (CopyToVGPR.Reg) {
854             Register Vgpr;
855             if (VGPRCopies.count(CopyToVGPR)) {
856               Vgpr = VGPRCopies[CopyToVGPR];
857             } else {
858               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
859               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
860               VGPRCopies[CopyToVGPR] = Vgpr;
861             }
862             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
863             BuildMI(MBB, UseMI, DL,
864                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
865             B.addReg(Tmp);
866           }
867 
868           B.addImm(Defs[I].second);
869         }
870         LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
871         return;
872       }
873 
874       if (Size != 4)
875         return;
876 
877       Register Reg0 = UseMI->getOperand(0).getReg();
878       Register Reg1 = UseMI->getOperand(1).getReg();
879       if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1))
880         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
881       else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1))
882         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
883       else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) &&
884                TRI->isAGPR(*MRI, Reg1))
885         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
886       return;
887     }
888 
889     unsigned UseOpc = UseMI->getOpcode();
890     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
891         (UseOpc == AMDGPU::V_READLANE_B32 &&
892          (int)UseOpIdx ==
893          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
894       // %vgpr = V_MOV_B32 imm
895       // %sgpr = V_READFIRSTLANE_B32 %vgpr
896       // =>
897       // %sgpr = S_MOV_B32 imm
898       if (FoldingImmLike) {
899         if (execMayBeModifiedBeforeUse(*MRI,
900                                        UseMI->getOperand(UseOpIdx).getReg(),
901                                        *OpToFold.getParent(),
902                                        *UseMI))
903           return;
904 
905         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
906 
907         if (OpToFold.isImm())
908           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
909         else
910           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
911         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
912         return;
913       }
914 
915       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
916         if (execMayBeModifiedBeforeUse(*MRI,
917                                        UseMI->getOperand(UseOpIdx).getReg(),
918                                        *OpToFold.getParent(),
919                                        *UseMI))
920           return;
921 
922         // %vgpr = COPY %sgpr0
923         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
924         // =>
925         // %sgpr1 = COPY %sgpr0
926         UseMI->setDesc(TII->get(AMDGPU::COPY));
927         UseMI->getOperand(1).setReg(OpToFold.getReg());
928         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
929         UseMI->getOperand(1).setIsKill(false);
930         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
931         return;
932       }
933     }
934 
935     const MCInstrDesc &UseDesc = UseMI->getDesc();
936 
937     // Don't fold into target independent nodes.  Target independent opcodes
938     // don't have defined register classes.
939     if (UseDesc.isVariadic() || UseOp.isImplicit() ||
940         UseDesc.operands()[UseOpIdx].RegClass == -1)
941       return;
942   }
943 
944   if (!FoldingImmLike) {
945     if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
946       // Don't fold if OpToFold doesn't hold an aligned register.
947       const TargetRegisterClass *RC =
948           TRI->getRegClassForReg(*MRI, OpToFold.getReg());
949       if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
950         unsigned SubReg = OpToFold.getSubReg();
951         if (const TargetRegisterClass *SubRC =
952                 TRI->getSubRegisterClass(RC, SubReg))
953           RC = SubRC;
954       }
955 
956       if (!RC || !TRI->isProperlyAlignedRC(*RC))
957         return;
958     }
959 
960     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
961 
962     // FIXME: We could try to change the instruction from 64-bit to 32-bit
963     // to enable more folding opportunities.  The shrink operands pass
964     // already does this.
965     return;
966   }
967 
968 
969   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
970   const TargetRegisterClass *FoldRC =
971       TRI->getRegClass(FoldDesc.operands()[0].RegClass);
972 
973   // Split 64-bit constants into 32-bits for folding.
974   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) {
975     Register UseReg = UseOp.getReg();
976     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
977     if (AMDGPU::getRegBitWidth(*UseRC) != 64)
978       return;
979 
980     APInt Imm(64, OpToFold.getImm());
981     if (UseOp.getSubReg() == AMDGPU::sub0) {
982       Imm = Imm.getLoBits(32);
983     } else {
984       assert(UseOp.getSubReg() == AMDGPU::sub1);
985       Imm = Imm.getHiBits(32);
986     }
987 
988     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
989     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp);
990     return;
991   }
992 
993   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
994 }
995 
996 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
997                                   uint32_t LHS, uint32_t RHS) {
998   switch (Opcode) {
999   case AMDGPU::V_AND_B32_e64:
1000   case AMDGPU::V_AND_B32_e32:
1001   case AMDGPU::S_AND_B32:
1002     Result = LHS & RHS;
1003     return true;
1004   case AMDGPU::V_OR_B32_e64:
1005   case AMDGPU::V_OR_B32_e32:
1006   case AMDGPU::S_OR_B32:
1007     Result = LHS | RHS;
1008     return true;
1009   case AMDGPU::V_XOR_B32_e64:
1010   case AMDGPU::V_XOR_B32_e32:
1011   case AMDGPU::S_XOR_B32:
1012     Result = LHS ^ RHS;
1013     return true;
1014   case AMDGPU::S_XNOR_B32:
1015     Result = ~(LHS ^ RHS);
1016     return true;
1017   case AMDGPU::S_NAND_B32:
1018     Result = ~(LHS & RHS);
1019     return true;
1020   case AMDGPU::S_NOR_B32:
1021     Result = ~(LHS | RHS);
1022     return true;
1023   case AMDGPU::S_ANDN2_B32:
1024     Result = LHS & ~RHS;
1025     return true;
1026   case AMDGPU::S_ORN2_B32:
1027     Result = LHS | ~RHS;
1028     return true;
1029   case AMDGPU::V_LSHL_B32_e64:
1030   case AMDGPU::V_LSHL_B32_e32:
1031   case AMDGPU::S_LSHL_B32:
1032     // The instruction ignores the high bits for out of bounds shifts.
1033     Result = LHS << (RHS & 31);
1034     return true;
1035   case AMDGPU::V_LSHLREV_B32_e64:
1036   case AMDGPU::V_LSHLREV_B32_e32:
1037     Result = RHS << (LHS & 31);
1038     return true;
1039   case AMDGPU::V_LSHR_B32_e64:
1040   case AMDGPU::V_LSHR_B32_e32:
1041   case AMDGPU::S_LSHR_B32:
1042     Result = LHS >> (RHS & 31);
1043     return true;
1044   case AMDGPU::V_LSHRREV_B32_e64:
1045   case AMDGPU::V_LSHRREV_B32_e32:
1046     Result = RHS >> (LHS & 31);
1047     return true;
1048   case AMDGPU::V_ASHR_I32_e64:
1049   case AMDGPU::V_ASHR_I32_e32:
1050   case AMDGPU::S_ASHR_I32:
1051     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
1052     return true;
1053   case AMDGPU::V_ASHRREV_I32_e64:
1054   case AMDGPU::V_ASHRREV_I32_e32:
1055     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1056     return true;
1057   default:
1058     return false;
1059   }
1060 }
1061 
1062 static unsigned getMovOpc(bool IsScalar) {
1063   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1064 }
1065 
1066 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1067   MI.setDesc(NewDesc);
1068 
1069   // Remove any leftover implicit operands from mutating the instruction. e.g.
1070   // if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1071   // anymore.
1072   const MCInstrDesc &Desc = MI.getDesc();
1073   unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() +
1074                     Desc.implicit_defs().size();
1075 
1076   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1077     MI.removeOperand(I);
1078 }
1079 
1080 MachineOperand *
1081 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const {
1082   // If this has a subregister, it obviously is a register source.
1083   if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister ||
1084       !Op.getReg().isVirtual())
1085     return &Op;
1086 
1087   MachineInstr *Def = MRI->getVRegDef(Op.getReg());
1088   if (Def && Def->isMoveImmediate()) {
1089     MachineOperand &ImmSrc = Def->getOperand(1);
1090     if (ImmSrc.isImm())
1091       return &ImmSrc;
1092   }
1093 
1094   return &Op;
1095 }
1096 
1097 // Try to simplify operations with a constant that may appear after instruction
1098 // selection.
1099 // TODO: See if a frame index with a fixed offset can fold.
1100 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const {
1101   if (!MI->allImplicitDefsAreDead())
1102     return false;
1103 
1104   unsigned Opc = MI->getOpcode();
1105 
1106   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1107   if (Src0Idx == -1)
1108     return false;
1109   MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx));
1110 
1111   if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1112        Opc == AMDGPU::S_NOT_B32) &&
1113       Src0->isImm()) {
1114     MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1115     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1116     return true;
1117   }
1118 
1119   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1120   if (Src1Idx == -1)
1121     return false;
1122   MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx));
1123 
1124   if (!Src0->isImm() && !Src1->isImm())
1125     return false;
1126 
1127   // and k0, k1 -> v_mov_b32 (k0 & k1)
1128   // or k0, k1 -> v_mov_b32 (k0 | k1)
1129   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1130   if (Src0->isImm() && Src1->isImm()) {
1131     int32_t NewImm;
1132     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1133       return false;
1134 
1135     bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg());
1136 
1137     // Be careful to change the right operand, src0 may belong to a different
1138     // instruction.
1139     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1140     MI->removeOperand(Src1Idx);
1141     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1142     return true;
1143   }
1144 
1145   if (!MI->isCommutable())
1146     return false;
1147 
1148   if (Src0->isImm() && !Src1->isImm()) {
1149     std::swap(Src0, Src1);
1150     std::swap(Src0Idx, Src1Idx);
1151   }
1152 
1153   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1154   if (Opc == AMDGPU::V_OR_B32_e64 ||
1155       Opc == AMDGPU::V_OR_B32_e32 ||
1156       Opc == AMDGPU::S_OR_B32) {
1157     if (Src1Val == 0) {
1158       // y = or x, 0 => y = copy x
1159       MI->removeOperand(Src1Idx);
1160       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1161     } else if (Src1Val == -1) {
1162       // y = or x, -1 => y = v_mov_b32 -1
1163       MI->removeOperand(Src1Idx);
1164       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1165     } else
1166       return false;
1167 
1168     return true;
1169   }
1170 
1171   if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 ||
1172       Opc == AMDGPU::S_AND_B32) {
1173     if (Src1Val == 0) {
1174       // y = and x, 0 => y = v_mov_b32 0
1175       MI->removeOperand(Src0Idx);
1176       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1177     } else if (Src1Val == -1) {
1178       // y = and x, -1 => y = copy x
1179       MI->removeOperand(Src1Idx);
1180       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1181     } else
1182       return false;
1183 
1184     return true;
1185   }
1186 
1187   if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 ||
1188       Opc == AMDGPU::S_XOR_B32) {
1189     if (Src1Val == 0) {
1190       // y = xor x, 0 => y = copy x
1191       MI->removeOperand(Src1Idx);
1192       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1193       return true;
1194     }
1195   }
1196 
1197   return false;
1198 }
1199 
1200 // Try to fold an instruction into a simpler one
1201 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1202   unsigned Opc = MI.getOpcode();
1203   if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1204       Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1205     return false;
1206 
1207   MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1208   MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1209   if (!Src1->isIdenticalTo(*Src0)) {
1210     auto *Src0Imm = getImmOrMaterializedImm(*Src0);
1211     auto *Src1Imm = getImmOrMaterializedImm(*Src1);
1212     if (!Src1Imm->isIdenticalTo(*Src0Imm))
1213       return false;
1214   }
1215 
1216   int Src1ModIdx =
1217       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1218   int Src0ModIdx =
1219       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1220   if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1221       (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1222     return false;
1223 
1224   LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1225   auto &NewDesc =
1226       TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1227   int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1228   if (Src2Idx != -1)
1229     MI.removeOperand(Src2Idx);
1230   MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1231   if (Src1ModIdx != -1)
1232     MI.removeOperand(Src1ModIdx);
1233   if (Src0ModIdx != -1)
1234     MI.removeOperand(Src0ModIdx);
1235   mutateCopyOp(MI, NewDesc);
1236   LLVM_DEBUG(dbgs() << MI);
1237   return true;
1238 }
1239 
1240 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1241   if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1242       MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1243     return false;
1244 
1245   MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1));
1246   if (!Src0->isImm() || Src0->getImm() != 0xffff)
1247     return false;
1248 
1249   Register Src1 = MI.getOperand(2).getReg();
1250   MachineInstr *SrcDef = MRI->getVRegDef(Src1);
1251   if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode()))
1252     return false;
1253 
1254   Register Dst = MI.getOperand(0).getReg();
1255   MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
1256   MI.eraseFromParent();
1257   return true;
1258 }
1259 
1260 bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
1261                                      MachineOperand &OpToFold) const {
1262   // We need mutate the operands of new mov instructions to add implicit
1263   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1264   // this.
1265   SmallVector<MachineInstr *, 4> CopiesToReplace;
1266   SmallVector<FoldCandidate, 4> FoldList;
1267   MachineOperand &Dst = MI.getOperand(0);
1268   bool Changed = false;
1269 
1270   if (OpToFold.isImm()) {
1271     for (auto &UseMI :
1272          make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1273       // Folding the immediate may reveal operations that can be constant
1274       // folded or replaced with a copy. This can happen for example after
1275       // frame indices are lowered to constants or from splitting 64-bit
1276       // constants.
1277       //
1278       // We may also encounter cases where one or both operands are
1279       // immediates materialized into a register, which would ordinarily not
1280       // be folded due to multiple uses or operand constraints.
1281       if (tryConstantFoldOp(&UseMI)) {
1282         LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1283         Changed = true;
1284       }
1285     }
1286   }
1287 
1288   SmallVector<MachineOperand *, 4> UsesToProcess;
1289   for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1290     UsesToProcess.push_back(&Use);
1291   for (auto *U : UsesToProcess) {
1292     MachineInstr *UseMI = U->getParent();
1293     foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList,
1294                 CopiesToReplace);
1295   }
1296 
1297   if (CopiesToReplace.empty() && FoldList.empty())
1298     return Changed;
1299 
1300   MachineFunction *MF = MI.getParent()->getParent();
1301   // Make sure we add EXEC uses to any new v_mov instructions created.
1302   for (MachineInstr *Copy : CopiesToReplace)
1303     Copy->addImplicitDefUseOperands(*MF);
1304 
1305   for (FoldCandidate &Fold : FoldList) {
1306     assert(!Fold.isReg() || Fold.OpToFold);
1307     if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1308       Register Reg = Fold.OpToFold->getReg();
1309       MachineInstr *DefMI = Fold.OpToFold->getParent();
1310       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1311           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1312         continue;
1313     }
1314     if (updateOperand(Fold)) {
1315       // Clear kill flags.
1316       if (Fold.isReg()) {
1317         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1318         // FIXME: Probably shouldn't bother trying to fold if not an
1319         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1320         // copies.
1321         MRI->clearKillFlags(Fold.OpToFold->getReg());
1322       }
1323       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1324                         << static_cast<int>(Fold.UseOpNo) << " of "
1325                         << *Fold.UseMI);
1326     } else if (Fold.Commuted) {
1327       // Restoring instruction's original operand order if fold has failed.
1328       TII->commuteInstruction(*Fold.UseMI, false);
1329     }
1330   }
1331   return true;
1332 }
1333 
1334 bool SIFoldOperands::tryFoldFoldableCopy(
1335     MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const {
1336   // Specially track simple redefs of m0 to the same value in a block, so we
1337   // can erase the later ones.
1338   if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1339     MachineOperand &NewM0Val = MI.getOperand(1);
1340     if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1341       MI.eraseFromParent();
1342       return true;
1343     }
1344 
1345     // We aren't tracking other physical registers
1346     CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical())
1347                             ? nullptr
1348                             : &NewM0Val;
1349     return false;
1350   }
1351 
1352   MachineOperand &OpToFold = MI.getOperand(1);
1353   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1354 
1355   // FIXME: We could also be folding things like TargetIndexes.
1356   if (!FoldingImm && !OpToFold.isReg())
1357     return false;
1358 
1359   if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1360     return false;
1361 
1362   // Prevent folding operands backwards in the function. For example,
1363   // the COPY opcode must not be replaced by 1 in this example:
1364   //
1365   //    %3 = COPY %vgpr0; VGPR_32:%3
1366   //    ...
1367   //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1368   if (!MI.getOperand(0).getReg().isVirtual())
1369     return false;
1370 
1371   bool Changed = foldInstOperand(MI, OpToFold);
1372 
1373   // If we managed to fold all uses of this copy then we might as well
1374   // delete it now.
1375   // The only reason we need to follow chains of copies here is that
1376   // tryFoldRegSequence looks forward through copies before folding a
1377   // REG_SEQUENCE into its eventual users.
1378   auto *InstToErase = &MI;
1379   while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1380     auto &SrcOp = InstToErase->getOperand(1);
1381     auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1382     InstToErase->eraseFromParent();
1383     Changed = true;
1384     InstToErase = nullptr;
1385     if (!SrcReg || SrcReg.isPhysical())
1386       break;
1387     InstToErase = MRI->getVRegDef(SrcReg);
1388     if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1389       break;
1390   }
1391 
1392   if (InstToErase && InstToErase->isRegSequence() &&
1393       MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1394     InstToErase->eraseFromParent();
1395     Changed = true;
1396   }
1397 
1398   return Changed;
1399 }
1400 
1401 // Clamp patterns are canonically selected to v_max_* instructions, so only
1402 // handle them.
1403 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1404   unsigned Op = MI.getOpcode();
1405   switch (Op) {
1406   case AMDGPU::V_MAX_F32_e64:
1407   case AMDGPU::V_MAX_F16_e64:
1408   case AMDGPU::V_MAX_F16_t16_e64:
1409   case AMDGPU::V_MAX_F16_fake16_e64:
1410   case AMDGPU::V_MAX_F64_e64:
1411   case AMDGPU::V_PK_MAX_F16: {
1412     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1413       return nullptr;
1414 
1415     // Make sure sources are identical.
1416     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1417     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1418     if (!Src0->isReg() || !Src1->isReg() ||
1419         Src0->getReg() != Src1->getReg() ||
1420         Src0->getSubReg() != Src1->getSubReg() ||
1421         Src0->getSubReg() != AMDGPU::NoSubRegister)
1422       return nullptr;
1423 
1424     // Can't fold up if we have modifiers.
1425     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1426       return nullptr;
1427 
1428     unsigned Src0Mods
1429       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1430     unsigned Src1Mods
1431       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1432 
1433     // Having a 0 op_sel_hi would require swizzling the output in the source
1434     // instruction, which we can't do.
1435     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1436                                                       : 0u;
1437     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1438       return nullptr;
1439     return Src0;
1440   }
1441   default:
1442     return nullptr;
1443   }
1444 }
1445 
1446 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1447 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1448   const MachineOperand *ClampSrc = isClamp(MI);
1449   if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1450     return false;
1451 
1452   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1453 
1454   // The type of clamp must be compatible.
1455   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1456     return false;
1457 
1458   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1459   if (!DefClamp)
1460     return false;
1461 
1462   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1463 
1464   // Clamp is applied after omod, so it is OK if omod is set.
1465   DefClamp->setImm(1);
1466   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1467   MI.eraseFromParent();
1468 
1469   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1470   // instruction, so we might as well convert it to the more flexible VOP3-only
1471   // mad/fma form.
1472   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1473     Def->eraseFromParent();
1474 
1475   return true;
1476 }
1477 
1478 static int getOModValue(unsigned Opc, int64_t Val) {
1479   switch (Opc) {
1480   case AMDGPU::V_MUL_F64_e64: {
1481     switch (Val) {
1482     case 0x3fe0000000000000: // 0.5
1483       return SIOutMods::DIV2;
1484     case 0x4000000000000000: // 2.0
1485       return SIOutMods::MUL2;
1486     case 0x4010000000000000: // 4.0
1487       return SIOutMods::MUL4;
1488     default:
1489       return SIOutMods::NONE;
1490     }
1491   }
1492   case AMDGPU::V_MUL_F32_e64: {
1493     switch (static_cast<uint32_t>(Val)) {
1494     case 0x3f000000: // 0.5
1495       return SIOutMods::DIV2;
1496     case 0x40000000: // 2.0
1497       return SIOutMods::MUL2;
1498     case 0x40800000: // 4.0
1499       return SIOutMods::MUL4;
1500     default:
1501       return SIOutMods::NONE;
1502     }
1503   }
1504   case AMDGPU::V_MUL_F16_e64:
1505   case AMDGPU::V_MUL_F16_t16_e64:
1506   case AMDGPU::V_MUL_F16_fake16_e64: {
1507     switch (static_cast<uint16_t>(Val)) {
1508     case 0x3800: // 0.5
1509       return SIOutMods::DIV2;
1510     case 0x4000: // 2.0
1511       return SIOutMods::MUL2;
1512     case 0x4400: // 4.0
1513       return SIOutMods::MUL4;
1514     default:
1515       return SIOutMods::NONE;
1516     }
1517   }
1518   default:
1519     llvm_unreachable("invalid mul opcode");
1520   }
1521 }
1522 
1523 // FIXME: Does this really not support denormals with f16?
1524 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1525 // handled, so will anything other than that break?
1526 std::pair<const MachineOperand *, int>
1527 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1528   unsigned Op = MI.getOpcode();
1529   switch (Op) {
1530   case AMDGPU::V_MUL_F64_e64:
1531   case AMDGPU::V_MUL_F32_e64:
1532   case AMDGPU::V_MUL_F16_t16_e64:
1533   case AMDGPU::V_MUL_F16_fake16_e64:
1534   case AMDGPU::V_MUL_F16_e64: {
1535     // If output denormals are enabled, omod is ignored.
1536     if ((Op == AMDGPU::V_MUL_F32_e64 &&
1537          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1538         ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64 ||
1539           Op == AMDGPU::V_MUL_F16_t16_e64 ||
1540           Op == AMDGPU::V_MUL_F16_fake16_e64) &&
1541          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1542       return std::pair(nullptr, SIOutMods::NONE);
1543 
1544     const MachineOperand *RegOp = nullptr;
1545     const MachineOperand *ImmOp = nullptr;
1546     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1547     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1548     if (Src0->isImm()) {
1549       ImmOp = Src0;
1550       RegOp = Src1;
1551     } else if (Src1->isImm()) {
1552       ImmOp = Src1;
1553       RegOp = Src0;
1554     } else
1555       return std::pair(nullptr, SIOutMods::NONE);
1556 
1557     int OMod = getOModValue(Op, ImmOp->getImm());
1558     if (OMod == SIOutMods::NONE ||
1559         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1560         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1561         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1562         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1563       return std::pair(nullptr, SIOutMods::NONE);
1564 
1565     return std::pair(RegOp, OMod);
1566   }
1567   case AMDGPU::V_ADD_F64_e64:
1568   case AMDGPU::V_ADD_F32_e64:
1569   case AMDGPU::V_ADD_F16_e64:
1570   case AMDGPU::V_ADD_F16_t16_e64:
1571   case AMDGPU::V_ADD_F16_fake16_e64: {
1572     // If output denormals are enabled, omod is ignored.
1573     if ((Op == AMDGPU::V_ADD_F32_e64 &&
1574          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1575         ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64 ||
1576           Op == AMDGPU::V_ADD_F16_t16_e64 ||
1577           Op == AMDGPU::V_ADD_F16_fake16_e64) &&
1578          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1579       return std::pair(nullptr, SIOutMods::NONE);
1580 
1581     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1582     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1583     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1584 
1585     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1586         Src0->getSubReg() == Src1->getSubReg() &&
1587         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1588         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1589         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1590         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1591       return std::pair(Src0, SIOutMods::MUL2);
1592 
1593     return std::pair(nullptr, SIOutMods::NONE);
1594   }
1595   default:
1596     return std::pair(nullptr, SIOutMods::NONE);
1597   }
1598 }
1599 
1600 // FIXME: Does this need to check IEEE bit on function?
1601 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1602   const MachineOperand *RegOp;
1603   int OMod;
1604   std::tie(RegOp, OMod) = isOMod(MI);
1605   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1606       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1607       !MRI->hasOneNonDBGUser(RegOp->getReg()))
1608     return false;
1609 
1610   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1611   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1612   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1613     return false;
1614 
1615   // Clamp is applied after omod. If the source already has clamp set, don't
1616   // fold it.
1617   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1618     return false;
1619 
1620   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1621 
1622   DefOMod->setImm(OMod);
1623   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1624   MI.eraseFromParent();
1625 
1626   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1627   // instruction, so we might as well convert it to the more flexible VOP3-only
1628   // mad/fma form.
1629   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1630     Def->eraseFromParent();
1631 
1632   return true;
1633 }
1634 
1635 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1636 // instruction which can take an agpr. So far that means a store.
1637 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1638   assert(MI.isRegSequence());
1639   auto Reg = MI.getOperand(0).getReg();
1640 
1641   if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1642       !MRI->hasOneNonDBGUse(Reg))
1643     return false;
1644 
1645   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1646   if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER))
1647     return false;
1648 
1649   for (auto &Def : Defs) {
1650     const auto *Op = Def.first;
1651     if (!Op->isReg())
1652       return false;
1653     if (TRI->isAGPR(*MRI, Op->getReg()))
1654       continue;
1655     // Maybe this is a COPY from AREG
1656     const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1657     if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1658       return false;
1659     if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1660       return false;
1661   }
1662 
1663   MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1664   MachineInstr *UseMI = Op->getParent();
1665   while (UseMI->isCopy() && !Op->getSubReg()) {
1666     Reg = UseMI->getOperand(0).getReg();
1667     if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1668       return false;
1669     Op = &*MRI->use_nodbg_begin(Reg);
1670     UseMI = Op->getParent();
1671   }
1672 
1673   if (Op->getSubReg())
1674     return false;
1675 
1676   unsigned OpIdx = Op - &UseMI->getOperand(0);
1677   const MCInstrDesc &InstDesc = UseMI->getDesc();
1678   const TargetRegisterClass *OpRC =
1679       TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
1680   if (!OpRC || !TRI->isVectorSuperClass(OpRC))
1681     return false;
1682 
1683   const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1684   auto Dst = MRI->createVirtualRegister(NewDstRC);
1685   auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1686                     TII->get(AMDGPU::REG_SEQUENCE), Dst);
1687 
1688   for (unsigned I = 0; I < Defs.size(); ++I) {
1689     MachineOperand *Def = Defs[I].first;
1690     Def->setIsKill(false);
1691     if (TRI->isAGPR(*MRI, Def->getReg())) {
1692       RS.add(*Def);
1693     } else { // This is a copy
1694       MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1695       SubDef->getOperand(1).setIsKill(false);
1696       RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1697     }
1698     RS.addImm(Defs[I].second);
1699   }
1700 
1701   Op->setReg(Dst);
1702   if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1703     Op->setReg(Reg);
1704     RS->eraseFromParent();
1705     return false;
1706   }
1707 
1708   LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1709 
1710   // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1711   // in which case we can erase them all later in runOnMachineFunction.
1712   if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1713     MI.eraseFromParent();
1714   return true;
1715 }
1716 
1717 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and
1718 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg
1719 static bool isAGPRCopy(const SIRegisterInfo &TRI,
1720                        const MachineRegisterInfo &MRI, const MachineInstr &Copy,
1721                        Register &OutReg, unsigned &OutSubReg) {
1722   assert(Copy.isCopy());
1723 
1724   const MachineOperand &CopySrc = Copy.getOperand(1);
1725   Register CopySrcReg = CopySrc.getReg();
1726   if (!CopySrcReg.isVirtual())
1727     return false;
1728 
1729   // Common case: copy from AGPR directly, e.g.
1730   //  %1:vgpr_32 = COPY %0:agpr_32
1731   if (TRI.isAGPR(MRI, CopySrcReg)) {
1732     OutReg = CopySrcReg;
1733     OutSubReg = CopySrc.getSubReg();
1734     return true;
1735   }
1736 
1737   // Sometimes it can also involve two copies, e.g.
1738   //  %1:vgpr_256 = COPY %0:agpr_256
1739   //  %2:vgpr_32 = COPY %1:vgpr_256.sub0
1740   const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg);
1741   if (!CopySrcDef || !CopySrcDef->isCopy())
1742     return false;
1743 
1744   const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1);
1745   Register OtherCopySrcReg = OtherCopySrc.getReg();
1746   if (!OtherCopySrcReg.isVirtual() ||
1747       CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister ||
1748       OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister ||
1749       !TRI.isAGPR(MRI, OtherCopySrcReg))
1750     return false;
1751 
1752   OutReg = OtherCopySrcReg;
1753   OutSubReg = CopySrc.getSubReg();
1754   return true;
1755 }
1756 
1757 // Try to hoist an AGPR to VGPR copy across a PHI.
1758 // This should allow folding of an AGPR into a consumer which may support it.
1759 //
1760 // Example 1: LCSSA PHI
1761 //      loop:
1762 //        %1:vreg = COPY %0:areg
1763 //      exit:
1764 //        %2:vreg = PHI %1:vreg, %loop
1765 //  =>
1766 //      loop:
1767 //      exit:
1768 //        %1:areg = PHI %0:areg, %loop
1769 //        %2:vreg = COPY %1:areg
1770 //
1771 // Example 2: PHI with multiple incoming values:
1772 //      entry:
1773 //        %1:vreg = GLOBAL_LOAD(..)
1774 //      loop:
1775 //        %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop
1776 //        %3:areg = COPY %2:vreg
1777 //        %4:areg = (instr using %3:areg)
1778 //        %5:vreg = COPY %4:areg
1779 //  =>
1780 //      entry:
1781 //        %1:vreg = GLOBAL_LOAD(..)
1782 //        %2:areg = COPY %1:vreg
1783 //      loop:
1784 //        %3:areg = PHI %2:areg, %entry, %X:areg,
1785 //        %4:areg = (instr using %3:areg)
1786 bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) {
1787   assert(PHI.isPHI());
1788 
1789   Register PhiOut = PHI.getOperand(0).getReg();
1790   if (!TRI->isVGPR(*MRI, PhiOut))
1791     return false;
1792 
1793   // Iterate once over all incoming values of the PHI to check if this PHI is
1794   // eligible, and determine the exact AGPR RC we'll target.
1795   const TargetRegisterClass *ARC = nullptr;
1796   for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1797     MachineOperand &MO = PHI.getOperand(K);
1798     MachineInstr *Copy = MRI->getVRegDef(MO.getReg());
1799     if (!Copy || !Copy->isCopy())
1800       continue;
1801 
1802     Register AGPRSrc;
1803     unsigned AGPRRegMask = AMDGPU::NoSubRegister;
1804     if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask))
1805       continue;
1806 
1807     const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc);
1808     if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask))
1809       CopyInRC = SubRC;
1810 
1811     if (ARC && !ARC->hasSubClassEq(CopyInRC))
1812       return false;
1813     ARC = CopyInRC;
1814   }
1815 
1816   if (!ARC)
1817     return false;
1818 
1819   bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass);
1820 
1821   // Rewrite the PHI's incoming values to ARC.
1822   LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI);
1823   for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1824     MachineOperand &MO = PHI.getOperand(K);
1825     Register Reg = MO.getReg();
1826 
1827     MachineBasicBlock::iterator InsertPt;
1828     MachineBasicBlock *InsertMBB = nullptr;
1829 
1830     // Look at the def of Reg, ignoring all copies.
1831     unsigned CopyOpc = AMDGPU::COPY;
1832     if (MachineInstr *Def = MRI->getVRegDef(Reg)) {
1833 
1834       // Look at pre-existing COPY instructions from ARC: Steal the operand. If
1835       // the copy was single-use, it will be removed by DCE later.
1836       if (Def->isCopy()) {
1837         Register AGPRSrc;
1838         unsigned AGPRSubReg = AMDGPU::NoSubRegister;
1839         if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) {
1840           MO.setReg(AGPRSrc);
1841           MO.setSubReg(AGPRSubReg);
1842           continue;
1843         }
1844 
1845         // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on
1846         // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try
1847         // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which
1848         // is unlikely to be profitable.
1849         //
1850         // Note that V_ACCVGPR_WRITE is only used for AGPR_32.
1851         MachineOperand &CopyIn = Def->getOperand(1);
1852         if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) &&
1853             TRI->isSGPRReg(*MRI, CopyIn.getReg()))
1854           CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
1855       }
1856 
1857       InsertMBB = Def->getParent();
1858       InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator());
1859     } else {
1860       InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB();
1861       InsertPt = InsertMBB->getFirstTerminator();
1862     }
1863 
1864     Register NewReg = MRI->createVirtualRegister(ARC);
1865     MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(),
1866                                TII->get(CopyOpc), NewReg)
1867                            .addReg(Reg);
1868     MO.setReg(NewReg);
1869 
1870     (void)MI;
1871     LLVM_DEBUG(dbgs() << "  Created COPY: " << *MI);
1872   }
1873 
1874   // Replace the PHI's result with a new register.
1875   Register NewReg = MRI->createVirtualRegister(ARC);
1876   PHI.getOperand(0).setReg(NewReg);
1877 
1878   // COPY that new register back to the original PhiOut register. This COPY will
1879   // usually be folded out later.
1880   MachineBasicBlock *MBB = PHI.getParent();
1881   BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(),
1882           TII->get(AMDGPU::COPY), PhiOut)
1883       .addReg(NewReg);
1884 
1885   LLVM_DEBUG(dbgs() << "  Done: Folded " << PHI);
1886   return true;
1887 }
1888 
1889 // Attempt to convert VGPR load to an AGPR load.
1890 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1891   assert(MI.mayLoad());
1892   if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1893     return false;
1894 
1895   MachineOperand &Def = MI.getOperand(0);
1896   if (!Def.isDef())
1897     return false;
1898 
1899   Register DefReg = Def.getReg();
1900 
1901   if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1902     return false;
1903 
1904   SmallVector<const MachineInstr*, 8> Users;
1905   SmallVector<Register, 8> MoveRegs;
1906   for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg))
1907     Users.push_back(&I);
1908 
1909   if (Users.empty())
1910     return false;
1911 
1912   // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
1913   while (!Users.empty()) {
1914     const MachineInstr *I = Users.pop_back_val();
1915     if (!I->isCopy() && !I->isRegSequence())
1916       return false;
1917     Register DstReg = I->getOperand(0).getReg();
1918     // Physical registers may have more than one instruction definitions
1919     if (DstReg.isPhysical())
1920       return false;
1921     if (TRI->isAGPR(*MRI, DstReg))
1922       continue;
1923     MoveRegs.push_back(DstReg);
1924     for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg))
1925       Users.push_back(&U);
1926   }
1927 
1928   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
1929   MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
1930   if (!TII->isOperandLegal(MI, 0, &Def)) {
1931     MRI->setRegClass(DefReg, RC);
1932     return false;
1933   }
1934 
1935   while (!MoveRegs.empty()) {
1936     Register Reg = MoveRegs.pop_back_val();
1937     MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
1938   }
1939 
1940   LLVM_DEBUG(dbgs() << "Folded " << MI);
1941 
1942   return true;
1943 }
1944 
1945 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs.
1946 // For GFX90A and later, this is pretty much always a good thing, but for GFX908
1947 // there's cases where it can create a lot more AGPR-AGPR copies, which are
1948 // expensive on this architecture due to the lack of V_ACCVGPR_MOV.
1949 //
1950 // This function looks at all AGPR PHIs in a basic block and collects their
1951 // operands. Then, it checks for register that are used more than once across
1952 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from
1953 // having to create one VGPR temporary per use, which can get very messy if
1954 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector
1955 // element).
1956 //
1957 // Example
1958 //      a:
1959 //        %in:agpr_256 = COPY %foo:vgpr_256
1960 //      c:
1961 //        %x:agpr_32 = ..
1962 //      b:
1963 //        %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c
1964 //        %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c
1965 //        %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c
1966 //  =>
1967 //      a:
1968 //        %in:agpr_256 = COPY %foo:vgpr_256
1969 //        %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32
1970 //        %tmp_agpr:agpr_32 = COPY %tmp
1971 //      c:
1972 //        %x:agpr_32 = ..
1973 //      b:
1974 //        %0:areg = PHI %tmp_agpr, %a, %x, %c
1975 //        %1:areg = PHI %tmp_agpr, %a, %y, %c
1976 //        %2:areg = PHI %tmp_agpr, %a, %z, %c
1977 bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) {
1978   // This is only really needed on GFX908 where AGPR-AGPR copies are
1979   // unreasonably difficult.
1980   if (ST->hasGFX90AInsts())
1981     return false;
1982 
1983   // Look at all AGPR Phis and collect the register + subregister used.
1984   DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>>
1985       RegToMO;
1986 
1987   for (auto &MI : MBB) {
1988     if (!MI.isPHI())
1989       break;
1990 
1991     if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg()))
1992       continue;
1993 
1994     for (unsigned K = 1; K < MI.getNumOperands(); K += 2) {
1995       MachineOperand &PhiMO = MI.getOperand(K);
1996       RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO);
1997     }
1998   }
1999 
2000   // For all (Reg, SubReg) pair that are used more than once, cache the value in
2001   // a VGPR.
2002   bool Changed = false;
2003   for (const auto &[Entry, MOs] : RegToMO) {
2004     if (MOs.size() == 1)
2005       continue;
2006 
2007     const auto [Reg, SubReg] = Entry;
2008     MachineInstr *Def = MRI->getVRegDef(Reg);
2009     MachineBasicBlock *DefMBB = Def->getParent();
2010 
2011     // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded
2012     // out.
2013     const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front());
2014     Register TempVGPR =
2015         MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC));
2016     MachineInstr *VGPRCopy =
2017         BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(),
2018                 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR)
2019             .addReg(Reg, /* flags */ 0, SubReg);
2020 
2021     // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs.
2022     Register TempAGPR = MRI->createVirtualRegister(ARC);
2023     BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(),
2024             TII->get(AMDGPU::COPY), TempAGPR)
2025         .addReg(TempVGPR);
2026 
2027     LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy);
2028     for (MachineOperand *MO : MOs) {
2029       MO->setReg(TempAGPR);
2030       MO->setSubReg(AMDGPU::NoSubRegister);
2031       LLVM_DEBUG(dbgs() << "  Changed PHI Operand: " << *MO << "\n");
2032     }
2033 
2034     Changed = true;
2035   }
2036 
2037   return Changed;
2038 }
2039 
2040 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
2041   if (skipFunction(MF.getFunction()))
2042     return false;
2043 
2044   MRI = &MF.getRegInfo();
2045   ST = &MF.getSubtarget<GCNSubtarget>();
2046   TII = ST->getInstrInfo();
2047   TRI = &TII->getRegisterInfo();
2048   MFI = MF.getInfo<SIMachineFunctionInfo>();
2049 
2050   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
2051   // correctly handle signed zeros.
2052   //
2053   // FIXME: Also need to check strictfp
2054   bool IsIEEEMode = MFI->getMode().IEEE;
2055   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
2056 
2057   bool Changed = false;
2058   for (MachineBasicBlock *MBB : depth_first(&MF)) {
2059     MachineOperand *CurrentKnownM0Val = nullptr;
2060     for (auto &MI : make_early_inc_range(*MBB)) {
2061       Changed |= tryFoldCndMask(MI);
2062 
2063       if (tryFoldZeroHighBits(MI)) {
2064         Changed = true;
2065         continue;
2066       }
2067 
2068       if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
2069         Changed = true;
2070         continue;
2071       }
2072 
2073       if (MI.isPHI() && tryFoldPhiAGPR(MI)) {
2074         Changed = true;
2075         continue;
2076       }
2077 
2078       if (MI.mayLoad() && tryFoldLoad(MI)) {
2079         Changed = true;
2080         continue;
2081       }
2082 
2083       if (TII->isFoldableCopy(MI)) {
2084         Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val);
2085         continue;
2086       }
2087 
2088       // Saw an unknown clobber of m0, so we no longer know what it is.
2089       if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
2090         CurrentKnownM0Val = nullptr;
2091 
2092       // TODO: Omod might be OK if there is NSZ only on the source
2093       // instruction, and not the omod multiply.
2094       if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
2095           !tryFoldOMod(MI))
2096         Changed |= tryFoldClamp(MI);
2097     }
2098 
2099     Changed |= tryOptimizeAGPRPhis(*MBB);
2100   }
2101 
2102   return Changed;
2103 }
2104