1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This contains a MachineSchedStrategy implementation for maximizing wave 11 /// occupancy on GCN hardware. 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNSchedStrategy.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIInstrInfo.h" 17 #include "SIMachineFunctionInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "llvm/CodeGen/RegisterClassInfo.h" 20 #include "llvm/Support/MathExtras.h" 21 22 #define DEBUG_TYPE "machine-scheduler" 23 24 using namespace llvm; 25 26 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( 27 const MachineSchedContext *C) : 28 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } 29 30 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { 31 GenericScheduler::initialize(DAG); 32 33 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 34 35 MF = &DAG->MF; 36 37 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 38 39 // FIXME: This is also necessary, because some passes that run after 40 // scheduling and before regalloc increase register pressure. 41 const int ErrorMargin = 3; 42 43 SGPRExcessLimit = Context->RegClassInfo 44 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; 45 VGPRExcessLimit = Context->RegClassInfo 46 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; 47 if (TargetOccupancy) { 48 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); 49 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); 50 } else { 51 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 52 SRI->getSGPRPressureSet()); 53 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, 54 SRI->getVGPRPressureSet()); 55 } 56 57 SGPRCriticalLimit -= ErrorMargin; 58 VGPRCriticalLimit -= ErrorMargin; 59 } 60 61 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, 62 bool AtTop, const RegPressureTracker &RPTracker, 63 const SIRegisterInfo *SRI, 64 unsigned SGPRPressure, 65 unsigned VGPRPressure) { 66 67 Cand.SU = SU; 68 Cand.AtTop = AtTop; 69 70 // getDownwardPressure() and getUpwardPressure() make temporary changes to 71 // the tracker, so we need to pass those function a non-const copy. 72 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 73 74 Pressure.clear(); 75 MaxPressure.clear(); 76 77 if (AtTop) 78 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); 79 else { 80 // FIXME: I think for bottom up scheduling, the register pressure is cached 81 // and can be retrieved by DAG->getPressureDif(SU). 82 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); 83 } 84 85 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 86 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 87 88 // If two instructions increase the pressure of different register sets 89 // by the same amount, the generic scheduler will prefer to schedule the 90 // instruction that increases the set with the least amount of registers, 91 // which in our case would be SGPRs. This is rarely what we want, so 92 // when we report excess/critical register pressure, we do it either 93 // only for VGPRs or only for SGPRs. 94 95 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. 96 const unsigned MaxVGPRPressureInc = 16; 97 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; 98 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; 99 100 101 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold 102 // to increase the likelihood we don't go over the limits. We should improve 103 // the analysis to look through dependencies to find the path with the least 104 // register pressure. 105 106 // We only need to update the RPDelta for instructions that increase register 107 // pressure. Instructions that decrease or keep reg pressure the same will be 108 // marked as RegExcess in tryCandidate() when they are compared with 109 // instructions that increase the register pressure. 110 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { 111 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); 112 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); 113 } 114 115 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { 116 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); 117 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); 118 } 119 120 // Register pressure is considered 'CRITICAL' if it is approaching a value 121 // that would reduce the wave occupancy for the execution unit. When 122 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both 123 // has the same cost, so we don't need to prefer one over the other. 124 125 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; 126 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; 127 128 if (SGPRDelta >= 0 || VGPRDelta >= 0) { 129 if (SGPRDelta > VGPRDelta) { 130 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); 131 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); 132 } else { 133 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); 134 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); 135 } 136 } 137 } 138 139 // This function is mostly cut and pasted from 140 // GenericScheduler::pickNodeFromQueue() 141 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, 142 const CandPolicy &ZonePolicy, 143 const RegPressureTracker &RPTracker, 144 SchedCandidate &Cand) { 145 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); 146 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); 147 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; 148 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; 149 ReadyQueue &Q = Zone.Available; 150 for (SUnit *SU : Q) { 151 152 SchedCandidate TryCand(ZonePolicy); 153 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, 154 SGPRPressure, VGPRPressure); 155 // Pass SchedBoundary only when comparing nodes from the same boundary. 156 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 157 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); 158 if (TryCand.Reason != NoCand) { 159 // Initialize resource delta if needed in case future heuristics query it. 160 if (TryCand.ResDelta == SchedResourceDelta()) 161 TryCand.initResourceDelta(Zone.DAG, SchedModel); 162 Cand.setBest(TryCand); 163 LLVM_DEBUG(traceCandidate(Cand)); 164 } 165 } 166 } 167 168 // This function is mostly cut and pasted from 169 // GenericScheduler::pickNodeBidirectional() 170 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { 171 // Schedule as far as possible in the direction of no choice. This is most 172 // efficient, but also provides the best heuristics for CriticalPSets. 173 if (SUnit *SU = Bot.pickOnlyChoice()) { 174 IsTopNode = false; 175 return SU; 176 } 177 if (SUnit *SU = Top.pickOnlyChoice()) { 178 IsTopNode = true; 179 return SU; 180 } 181 // Set the bottom-up policy based on the state of the current bottom zone and 182 // the instructions outside the zone, including the top zone. 183 CandPolicy BotPolicy; 184 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 185 // Set the top-down policy based on the state of the current top zone and 186 // the instructions outside the zone, including the bottom zone. 187 CandPolicy TopPolicy; 188 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 189 190 // See if BotCand is still valid (because we previously scheduled from Top). 191 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 192 if (!BotCand.isValid() || BotCand.SU->isScheduled || 193 BotCand.Policy != BotPolicy) { 194 BotCand.reset(CandPolicy()); 195 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 196 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 197 } else { 198 LLVM_DEBUG(traceCandidate(BotCand)); 199 #ifndef NDEBUG 200 if (VerifyScheduling) { 201 SchedCandidate TCand; 202 TCand.reset(CandPolicy()); 203 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 204 assert(TCand.SU == BotCand.SU && 205 "Last pick result should correspond to re-picking right now"); 206 } 207 #endif 208 } 209 210 // Check if the top Q has a better candidate. 211 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 212 if (!TopCand.isValid() || TopCand.SU->isScheduled || 213 TopCand.Policy != TopPolicy) { 214 TopCand.reset(CandPolicy()); 215 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 216 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 217 } else { 218 LLVM_DEBUG(traceCandidate(TopCand)); 219 #ifndef NDEBUG 220 if (VerifyScheduling) { 221 SchedCandidate TCand; 222 TCand.reset(CandPolicy()); 223 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 224 assert(TCand.SU == TopCand.SU && 225 "Last pick result should correspond to re-picking right now"); 226 } 227 #endif 228 } 229 230 // Pick best from BotCand and TopCand. 231 LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); 232 dbgs() << "Bot Cand: "; traceCandidate(BotCand);); 233 SchedCandidate Cand; 234 if (TopCand.Reason == BotCand.Reason) { 235 Cand = BotCand; 236 GenericSchedulerBase::CandReason TopReason = TopCand.Reason; 237 TopCand.Reason = NoCand; 238 GenericScheduler::tryCandidate(Cand, TopCand, nullptr); 239 if (TopCand.Reason != NoCand) { 240 Cand.setBest(TopCand); 241 } else { 242 TopCand.Reason = TopReason; 243 } 244 } else { 245 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { 246 Cand = TopCand; 247 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { 248 Cand = BotCand; 249 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 250 Cand = TopCand; 251 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { 252 Cand = BotCand; 253 } else { 254 if (BotCand.Reason > TopCand.Reason) { 255 Cand = TopCand; 256 } else { 257 Cand = BotCand; 258 } 259 } 260 } 261 LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); 262 263 IsTopNode = Cand.AtTop; 264 return Cand.SU; 265 } 266 267 // This function is mostly cut and pasted from 268 // GenericScheduler::pickNode() 269 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { 270 if (DAG->top() == DAG->bottom()) { 271 assert(Top.Available.empty() && Top.Pending.empty() && 272 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 273 return nullptr; 274 } 275 SUnit *SU; 276 do { 277 if (RegionPolicy.OnlyTopDown) { 278 SU = Top.pickOnlyChoice(); 279 if (!SU) { 280 CandPolicy NoPolicy; 281 TopCand.reset(NoPolicy); 282 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 283 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 284 SU = TopCand.SU; 285 } 286 IsTopNode = true; 287 } else if (RegionPolicy.OnlyBottomUp) { 288 SU = Bot.pickOnlyChoice(); 289 if (!SU) { 290 CandPolicy NoPolicy; 291 BotCand.reset(NoPolicy); 292 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 293 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 294 SU = BotCand.SU; 295 } 296 IsTopNode = false; 297 } else { 298 SU = pickNodeBidirectional(IsTopNode); 299 } 300 } while (SU->isScheduled); 301 302 if (SU->isTopReady()) 303 Top.removeReady(SU); 304 if (SU->isBottomReady()) 305 Bot.removeReady(SU); 306 307 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 308 << *SU->getInstr()); 309 return SU; 310 } 311 312 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, 313 std::unique_ptr<MachineSchedStrategy> S) : 314 ScheduleDAGMILive(C, std::move(S)), 315 ST(MF.getSubtarget<GCNSubtarget>()), 316 MFI(*MF.getInfo<SIMachineFunctionInfo>()), 317 StartingOccupancy(MFI.getOccupancy()), 318 MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) { 319 320 LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); 321 } 322 323 void GCNScheduleDAGMILive::schedule() { 324 if (Stage == 0) { 325 // Just record regions at the first pass. 326 Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); 327 return; 328 } 329 330 std::vector<MachineInstr*> Unsched; 331 Unsched.reserve(NumRegionInstrs); 332 for (auto &I : *this) { 333 Unsched.push_back(&I); 334 } 335 336 GCNRegPressure PressureBefore; 337 if (LIS) { 338 PressureBefore = Pressure[RegionIdx]; 339 340 LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; 341 GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); 342 dbgs() << "Region live-in pressure: "; 343 llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); 344 dbgs() << "Region register pressure: "; 345 PressureBefore.print(dbgs())); 346 } 347 348 ScheduleDAGMILive::schedule(); 349 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 350 351 if (!LIS) 352 return; 353 354 // Check the results of scheduling. 355 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 356 auto PressureAfter = getRealRegPressure(); 357 358 LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; 359 PressureAfter.print(dbgs())); 360 361 if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && 362 PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) { 363 Pressure[RegionIdx] = PressureAfter; 364 LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); 365 return; 366 } 367 unsigned Occ = MFI.getOccupancy(); 368 unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST)); 369 unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST)); 370 LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore 371 << ", after " << WavesAfter << ".\n"); 372 373 // We could not keep current target occupancy because of the just scheduled 374 // region. Record new occupancy for next scheduling cycle. 375 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); 376 // Allow memory bound functions to drop to 4 waves if not limited by an 377 // attribute. 378 if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy && 379 WavesAfter >= MFI.getMinAllowedOccupancy()) { 380 LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " 381 << MFI.getMinAllowedOccupancy() << " waves\n"); 382 NewOccupancy = WavesAfter; 383 } 384 if (NewOccupancy < MinOccupancy) { 385 MinOccupancy = NewOccupancy; 386 MFI.limitOccupancy(MinOccupancy); 387 LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " 388 << MinOccupancy << ".\n"); 389 } 390 391 if (WavesAfter >= MinOccupancy) { 392 Pressure[RegionIdx] = PressureAfter; 393 return; 394 } 395 396 LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); 397 RegionEnd = RegionBegin; 398 for (MachineInstr *MI : Unsched) { 399 if (MI->isDebugInstr()) 400 continue; 401 402 if (MI->getIterator() != RegionEnd) { 403 BB->remove(MI); 404 BB->insert(RegionEnd, MI); 405 if (!MI->isDebugInstr()) 406 LIS->handleMove(*MI, true); 407 } 408 // Reset read-undef flags and update them later. 409 for (auto &Op : MI->operands()) 410 if (Op.isReg() && Op.isDef()) 411 Op.setIsUndef(false); 412 RegisterOperands RegOpers; 413 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 414 if (!MI->isDebugInstr()) { 415 if (ShouldTrackLaneMasks) { 416 // Adjust liveness and add missing dead+read-undef flags. 417 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 418 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 419 } else { 420 // Adjust for missing dead-def flags. 421 RegOpers.detectDeadDefs(*MI, *LIS); 422 } 423 } 424 RegionEnd = MI->getIterator(); 425 ++RegionEnd; 426 LLVM_DEBUG(dbgs() << "Scheduling " << *MI); 427 } 428 RegionBegin = Unsched.front()->getIterator(); 429 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); 430 431 placeDebugValues(); 432 } 433 434 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { 435 GCNDownwardRPTracker RPTracker(*LIS); 436 RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); 437 return RPTracker.moveMaxPressure(); 438 } 439 440 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { 441 GCNDownwardRPTracker RPTracker(*LIS); 442 443 // If the block has the only successor then live-ins of that successor are 444 // live-outs of the current block. We can reuse calculated live set if the 445 // successor will be sent to scheduling past current block. 446 const MachineBasicBlock *OnlySucc = nullptr; 447 if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { 448 SlotIndexes *Ind = LIS->getSlotIndexes(); 449 if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) 450 OnlySucc = *MBB->succ_begin(); 451 } 452 453 // Scheduler sends regions from the end of the block upwards. 454 size_t CurRegion = RegionIdx; 455 for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) 456 if (Regions[CurRegion].first->getParent() != MBB) 457 break; 458 --CurRegion; 459 460 auto I = MBB->begin(); 461 auto LiveInIt = MBBLiveIns.find(MBB); 462 if (LiveInIt != MBBLiveIns.end()) { 463 auto LiveIn = std::move(LiveInIt->second); 464 RPTracker.reset(*MBB->begin(), &LiveIn); 465 MBBLiveIns.erase(LiveInIt); 466 } else { 467 auto &Rgn = Regions[CurRegion]; 468 I = Rgn.first; 469 auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second); 470 auto LRS = BBLiveInMap.lookup(NonDbgMI); 471 assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS)); 472 RPTracker.reset(*I, &LRS); 473 } 474 475 for ( ; ; ) { 476 I = RPTracker.getNext(); 477 478 if (Regions[CurRegion].first == I) { 479 LiveIns[CurRegion] = RPTracker.getLiveRegs(); 480 RPTracker.clearMaxPressure(); 481 } 482 483 if (Regions[CurRegion].second == I) { 484 Pressure[CurRegion] = RPTracker.moveMaxPressure(); 485 if (CurRegion-- == RegionIdx) 486 break; 487 } 488 RPTracker.advanceToNext(); 489 RPTracker.advanceBeforeNext(); 490 } 491 492 if (OnlySucc) { 493 if (I != MBB->end()) { 494 RPTracker.advanceToNext(); 495 RPTracker.advance(MBB->end()); 496 } 497 RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); 498 RPTracker.advanceBeforeNext(); 499 MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); 500 } 501 } 502 503 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> 504 GCNScheduleDAGMILive::getBBLiveInMap() const { 505 assert(!Regions.empty()); 506 std::vector<MachineInstr *> BBStarters; 507 BBStarters.reserve(Regions.size()); 508 auto I = Regions.rbegin(), E = Regions.rend(); 509 auto *BB = I->first->getParent(); 510 do { 511 auto *MI = &*skipDebugInstructionsForward(I->first, I->second); 512 BBStarters.push_back(MI); 513 do { 514 ++I; 515 } while (I != E && I->first->getParent() == BB); 516 } while (I != E); 517 return getLiveRegMap(BBStarters, false /*After*/, *LIS); 518 } 519 520 void GCNScheduleDAGMILive::finalizeSchedule() { 521 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; 522 LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); 523 524 LiveIns.resize(Regions.size()); 525 Pressure.resize(Regions.size()); 526 527 if (!Regions.empty()) 528 BBLiveInMap = getBBLiveInMap(); 529 530 do { 531 Stage++; 532 RegionIdx = 0; 533 MachineBasicBlock *MBB = nullptr; 534 535 if (Stage > 1) { 536 // Retry function scheduling if we found resulting occupancy and it is 537 // lower than used for first pass scheduling. This will give more freedom 538 // to schedule low register pressure blocks. 539 // Code is partially copied from MachineSchedulerBase::scheduleRegions(). 540 541 if (!LIS || StartingOccupancy <= MinOccupancy) 542 break; 543 544 LLVM_DEBUG( 545 dbgs() 546 << "Retrying function scheduling with lowest recorded occupancy " 547 << MinOccupancy << ".\n"); 548 549 S.setTargetOccupancy(MinOccupancy); 550 } 551 552 for (auto Region : Regions) { 553 RegionBegin = Region.first; 554 RegionEnd = Region.second; 555 556 if (RegionBegin->getParent() != MBB) { 557 if (MBB) finishBlock(); 558 MBB = RegionBegin->getParent(); 559 startBlock(MBB); 560 if (Stage == 1) 561 computeBlockPressure(MBB); 562 } 563 564 unsigned NumRegionInstrs = std::distance(begin(), end()); 565 enterRegion(MBB, begin(), end(), NumRegionInstrs); 566 567 // Skip empty scheduling regions (0 or 1 schedulable instructions). 568 if (begin() == end() || begin() == std::prev(end())) { 569 exitRegion(); 570 continue; 571 } 572 573 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 574 LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " 575 << MBB->getName() << "\n From: " << *begin() 576 << " To: "; 577 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 578 else dbgs() << "End"; 579 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 580 581 schedule(); 582 583 exitRegion(); 584 ++RegionIdx; 585 } 586 finishBlock(); 587 588 } while (Stage < 2); 589 } 590