1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 95 Offset = SignExtend64<24>(Imm); 96 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 111 uint64_t Addr, 112 const MCDisassembler *Decoder) { 113 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 114 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 115 } 116 117 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 118 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 119 uint64_t /*Addr*/, \ 120 const MCDisassembler *Decoder) { \ 121 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 122 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 123 } 124 125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 126 // number of register. Used by VGPR only and AGPR only operands. 127 #define DECODE_OPERAND_REG_8(RegClass) \ 128 static DecodeStatus Decode##RegClass##RegisterClass( \ 129 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 130 const MCDisassembler *Decoder) { \ 131 assert(Imm < (1 << 8) && "8-bit encoding"); \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand( \ 134 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 135 } 136 137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 138 ImmWidth) \ 139 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 140 const MCDisassembler *Decoder) { \ 141 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 143 return addOperand(Inst, \ 144 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 145 MandatoryLiteral, ImmWidth)); \ 146 } 147 148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 149 // get register class. Used by SGPR only operands. 150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 152 153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 156 // Used by AV_ register classes (AGPR or VGPR only register operands). 157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 158 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 159 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 160 161 // Decoder for Src(9-bit encoding) registers only. 162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 163 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 164 165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 167 // only. 168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 169 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 170 171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 172 // Imm{9} is acc, registers only. 173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 174 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 175 176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 177 // register from RegClass or immediate. Registers that don't belong to RegClass 178 // will be decoded and InstPrinter will report warning. Immediate will be 179 // decoded into constant of size ImmWidth, should match width of immediate used 180 // by OperandType (important for floating point types). 181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 182 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 183 false, ImmWidth) 184 185 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 186 // and decode using 'enum10' from decodeSrcOp. 187 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 188 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 189 Imm | 512, false, ImmWidth) 190 191 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 192 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 193 OpWidth, Imm, true, ImmWidth) 194 195 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 196 // when RegisterClass is used as an operand. Most often used for destination 197 // operands. 198 199 DECODE_OPERAND_REG_8(VGPR_32) 200 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 201 DECODE_OPERAND_REG_8(VReg_64) 202 DECODE_OPERAND_REG_8(VReg_96) 203 DECODE_OPERAND_REG_8(VReg_128) 204 DECODE_OPERAND_REG_8(VReg_256) 205 DECODE_OPERAND_REG_8(VReg_288) 206 DECODE_OPERAND_REG_8(VReg_352) 207 DECODE_OPERAND_REG_8(VReg_384) 208 DECODE_OPERAND_REG_8(VReg_512) 209 DECODE_OPERAND_REG_8(VReg_1024) 210 211 DECODE_OPERAND_REG_7(SReg_32, OPW32) 212 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 213 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 214 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 215 DECODE_OPERAND_REG_7(SReg_64, OPW64) 216 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 217 DECODE_OPERAND_REG_7(SReg_96, OPW96) 218 DECODE_OPERAND_REG_7(SReg_128, OPW128) 219 DECODE_OPERAND_REG_7(SReg_256, OPW256) 220 DECODE_OPERAND_REG_7(SReg_512, OPW512) 221 222 DECODE_OPERAND_REG_8(AGPR_32) 223 DECODE_OPERAND_REG_8(AReg_64) 224 DECODE_OPERAND_REG_8(AReg_128) 225 DECODE_OPERAND_REG_8(AReg_256) 226 DECODE_OPERAND_REG_8(AReg_512) 227 DECODE_OPERAND_REG_8(AReg_1024) 228 229 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 230 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 231 232 // Decoders for register only source RegisterOperands that use use 9-bit Src 233 // encoding: 'decodeOperand_<RegClass>'. 234 235 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 236 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 237 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 238 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 239 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 240 241 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 242 243 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 244 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 245 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 246 247 // Decoders for register or immediate RegisterOperands that use 9-bit Src 248 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 249 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 256 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 264 265 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 266 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 267 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 268 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 269 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 270 271 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 272 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 273 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 274 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 275 276 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 277 uint64_t /*Addr*/, 278 const MCDisassembler *Decoder) { 279 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 280 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 281 282 bool IsHi = Imm & (1 << 9); 283 unsigned RegIdx = Imm & 0xff; 284 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 285 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 286 } 287 288 static DecodeStatus 289 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 290 const MCDisassembler *Decoder) { 291 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 292 293 bool IsHi = Imm & (1 << 7); 294 unsigned RegIdx = Imm & 0x7f; 295 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 296 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 297 } 298 299 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 300 uint64_t /*Addr*/, 301 const MCDisassembler *Decoder) { 302 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 303 304 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 305 bool IsVGPR = Imm & (1 << 8); 306 if (IsVGPR) { 307 bool IsHi = Imm & (1 << 7); 308 unsigned RegIdx = Imm & 0x7f; 309 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 310 } 311 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 312 Imm & 0xFF, false, 16)); 313 } 314 315 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 316 uint64_t /*Addr*/, 317 const MCDisassembler *Decoder) { 318 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 319 320 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 321 bool IsVGPR = Imm & (1 << 8); 322 if (IsVGPR) { 323 bool IsHi = Imm & (1 << 9); 324 unsigned RegIdx = Imm & 0xff; 325 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 326 } 327 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 328 Imm & 0xFF, false, 16)); 329 } 330 331 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 332 uint64_t Addr, 333 const MCDisassembler *Decoder) { 334 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 335 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 336 } 337 338 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 339 uint64_t Addr, const void *Decoder) { 340 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 341 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 342 } 343 344 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 345 const MCRegisterInfo *MRI) { 346 if (OpIdx < 0) 347 return false; 348 349 const MCOperand &Op = Inst.getOperand(OpIdx); 350 if (!Op.isReg()) 351 return false; 352 353 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 354 auto Reg = Sub ? Sub : Op.getReg(); 355 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 356 } 357 358 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 359 AMDGPUDisassembler::OpWidthTy Opw, 360 const MCDisassembler *Decoder) { 361 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 362 if (!DAsm->isGFX90A()) { 363 Imm &= 511; 364 } else { 365 // If atomic has both vdata and vdst their register classes are tied. 366 // The bit is decoded along with the vdst, first operand. We need to 367 // change register class to AGPR if vdst was AGPR. 368 // If a DS instruction has both data0 and data1 their register classes 369 // are also tied. 370 unsigned Opc = Inst.getOpcode(); 371 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 372 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 373 : AMDGPU::OpName::vdata; 374 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 375 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 376 if ((int)Inst.getNumOperands() == DataIdx) { 377 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 378 if (IsAGPROperand(Inst, DstIdx, MRI)) 379 Imm |= 512; 380 } 381 382 if (TSFlags & SIInstrFlags::DS) { 383 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 384 if ((int)Inst.getNumOperands() == Data2Idx && 385 IsAGPROperand(Inst, DataIdx, MRI)) 386 Imm |= 512; 387 } 388 } 389 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 390 } 391 392 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 393 uint64_t Addr, 394 const MCDisassembler *Decoder) { 395 assert(Imm < (1 << 9) && "9-bit encoding"); 396 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 397 return addOperand( 398 Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); 399 } 400 401 static DecodeStatus 402 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 403 const MCDisassembler *Decoder) { 404 return decodeOperand_AVLdSt_Any(Inst, Imm, 405 AMDGPUDisassembler::OPW32, Decoder); 406 } 407 408 static DecodeStatus 409 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 410 const MCDisassembler *Decoder) { 411 return decodeOperand_AVLdSt_Any(Inst, Imm, 412 AMDGPUDisassembler::OPW64, Decoder); 413 } 414 415 static DecodeStatus 416 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 417 const MCDisassembler *Decoder) { 418 return decodeOperand_AVLdSt_Any(Inst, Imm, 419 AMDGPUDisassembler::OPW96, Decoder); 420 } 421 422 static DecodeStatus 423 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 424 const MCDisassembler *Decoder) { 425 return decodeOperand_AVLdSt_Any(Inst, Imm, 426 AMDGPUDisassembler::OPW128, Decoder); 427 } 428 429 static DecodeStatus 430 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 431 const MCDisassembler *Decoder) { 432 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 433 Decoder); 434 } 435 436 #define DECODE_SDWA(DecName) \ 437 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 438 439 DECODE_SDWA(Src32) 440 DECODE_SDWA(Src16) 441 DECODE_SDWA(VopcDst) 442 443 #include "AMDGPUGenDisassemblerTables.inc" 444 445 //===----------------------------------------------------------------------===// 446 // 447 //===----------------------------------------------------------------------===// 448 449 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 450 assert(Bytes.size() >= sizeof(T)); 451 const auto Res = 452 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 453 Bytes = Bytes.slice(sizeof(T)); 454 return Res; 455 } 456 457 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 458 assert(Bytes.size() >= 12); 459 uint64_t Lo = 460 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 461 Bytes = Bytes.slice(8); 462 uint64_t Hi = 463 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 464 Bytes = Bytes.slice(4); 465 return DecoderUInt128(Lo, Hi); 466 } 467 468 // The disassembler is greedy, so we need to check FI operand value to 469 // not parse a dpp if the correct literal is not set. For dpp16 the 470 // autogenerated decoder checks the dpp literal 471 static bool isValidDPP8(const MCInst &MI) { 472 using namespace llvm::AMDGPU::DPP; 473 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 474 assert(FiIdx != -1); 475 if ((unsigned)FiIdx >= MI.getNumOperands()) 476 return false; 477 unsigned Fi = MI.getOperand(FiIdx).getImm(); 478 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 479 } 480 481 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 482 ArrayRef<uint8_t> Bytes_, 483 uint64_t Address, 484 raw_ostream &CS) const { 485 bool IsSDWA = false; 486 487 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 488 Bytes = Bytes_.slice(0, MaxInstBytesNum); 489 490 DecodeStatus Res = MCDisassembler::Fail; 491 do { 492 // ToDo: better to switch encoding length using some bit predicate 493 // but it is unknown yet, so try all we can 494 495 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 496 // encodings 497 if (isGFX11Plus() && Bytes.size() >= 12 ) { 498 DecoderUInt128 DecW = eat12Bytes(Bytes); 499 Res = 500 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 501 MI, DecW, Address, CS); 502 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 503 break; 504 MI = MCInst(); // clear 505 Res = 506 tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, 507 MI, DecW, Address, CS); 508 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 509 break; 510 MI = MCInst(); // clear 511 512 const auto convertVOPDPP = [&]() { 513 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { 514 convertVOP3PDPPInst(MI); 515 } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { 516 convertVOPCDPPInst(MI); // Special VOP3 case 517 } else { 518 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 519 convertVOP3DPPInst(MI); // Regular VOP3 case 520 } 521 }; 522 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 523 MI, DecW, Address, CS); 524 if (Res) { 525 convertVOPDPP(); 526 break; 527 } 528 Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, 529 MI, DecW, Address, CS); 530 if (Res) { 531 convertVOPDPP(); 532 break; 533 } 534 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 535 if (Res) 536 break; 537 538 Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); 539 if (Res) 540 break; 541 } 542 // Reinitialize Bytes 543 Bytes = Bytes_.slice(0, MaxInstBytesNum); 544 545 if (Bytes.size() >= 8) { 546 const uint64_t QW = eatBytes<uint64_t>(Bytes); 547 548 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 549 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 550 if (Res) { 551 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 552 == -1) 553 break; 554 if (convertDPP8Inst(MI) == MCDisassembler::Success) 555 break; 556 MI = MCInst(); // clear 557 } 558 } 559 560 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 561 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 562 break; 563 MI = MCInst(); // clear 564 565 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 566 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 567 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 568 break; 569 MI = MCInst(); // clear 570 571 Res = tryDecodeInst(DecoderTableDPP8GFX1264, 572 DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); 573 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 574 break; 575 MI = MCInst(); // clear 576 577 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 578 if (Res) break; 579 580 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 581 MI, QW, Address, CS); 582 if (Res) { 583 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 584 convertVOPCDPPInst(MI); 585 break; 586 } 587 588 Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, 589 MI, QW, Address, CS); 590 if (Res) { 591 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 592 convertVOPCDPPInst(MI); 593 break; 594 } 595 596 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 597 if (Res) { IsSDWA = true; break; } 598 599 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 600 if (Res) { IsSDWA = true; break; } 601 602 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 603 if (Res) { IsSDWA = true; break; } 604 605 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 606 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 607 if (Res) 608 break; 609 } 610 611 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 612 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 613 // table first so we print the correct name. 614 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 615 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 616 if (Res) 617 break; 618 } 619 } 620 621 // Reinitialize Bytes as DPP64 could have eaten too much 622 Bytes = Bytes_.slice(0, MaxInstBytesNum); 623 624 // Try decode 32-bit instruction 625 if (Bytes.size() < 4) break; 626 const uint32_t DW = eatBytes<uint32_t>(Bytes); 627 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 628 if (Res) break; 629 630 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 631 if (Res) break; 632 633 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 634 if (Res) break; 635 636 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 637 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 638 if (Res) 639 break; 640 } 641 642 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 643 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 644 if (Res) break; 645 } 646 647 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 648 if (Res) break; 649 650 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 651 Address, CS); 652 if (Res) break; 653 654 Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 655 Address, CS); 656 if (Res) 657 break; 658 659 if (Bytes.size() < 4) break; 660 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 661 662 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 663 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 664 if (Res) 665 break; 666 } 667 668 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 669 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 670 if (Res) 671 break; 672 } 673 674 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 675 if (Res) break; 676 677 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 678 if (Res) break; 679 680 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 681 if (Res) break; 682 683 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 684 if (Res) break; 685 686 Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 687 Address, CS); 688 if (Res) 689 break; 690 691 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 692 Address, CS); 693 if (Res) 694 break; 695 696 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 697 } while (false); 698 699 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 700 // Insert dummy unused src2_modifiers. 701 insertNamedMCOperand(MI, MCOperand::createImm(0), 702 AMDGPU::OpName::src2_modifiers); 703 } 704 705 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && 706 !AMDGPU::hasGDS(STI)) { 707 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); 708 } 709 710 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 711 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 712 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 713 AMDGPU::OpName::cpol); 714 if (CPolPos != -1) { 715 unsigned CPol = 716 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 717 AMDGPU::CPol::GLC : 0; 718 if (MI.getNumOperands() <= (unsigned)CPolPos) { 719 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 720 AMDGPU::OpName::cpol); 721 } else if (CPol) { 722 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 723 } 724 } 725 } 726 727 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 728 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 729 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 730 // GFX90A lost TFE, its place is occupied by ACC. 731 int TFEOpIdx = 732 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 733 if (TFEOpIdx != -1) { 734 auto TFEIter = MI.begin(); 735 std::advance(TFEIter, TFEOpIdx); 736 MI.insert(TFEIter, MCOperand::createImm(0)); 737 } 738 } 739 740 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 741 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 742 int SWZOpIdx = 743 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 744 if (SWZOpIdx != -1) { 745 auto SWZIter = MI.begin(); 746 std::advance(SWZIter, SWZOpIdx); 747 MI.insert(SWZIter, MCOperand::createImm(0)); 748 } 749 } 750 751 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 752 int VAddr0Idx = 753 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 754 int RsrcIdx = 755 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 756 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 757 if (VAddr0Idx >= 0 && NSAArgs > 0) { 758 unsigned NSAWords = (NSAArgs + 3) / 4; 759 if (Bytes.size() < 4 * NSAWords) { 760 Res = MCDisassembler::Fail; 761 } else { 762 for (unsigned i = 0; i < NSAArgs; ++i) { 763 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 764 auto VAddrRCID = 765 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 766 MI.insert(MI.begin() + VAddrIdx, 767 createRegOperand(VAddrRCID, Bytes[i])); 768 } 769 Bytes = Bytes.slice(4 * NSAWords); 770 } 771 } 772 773 if (Res) 774 Res = convertMIMGInst(MI); 775 } 776 777 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 778 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) 779 Res = convertMIMGInst(MI); 780 781 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 782 Res = convertEXPInst(MI); 783 784 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 785 Res = convertVINTERPInst(MI); 786 787 if (Res && IsSDWA) 788 Res = convertSDWAInst(MI); 789 790 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 791 AMDGPU::OpName::vdst_in); 792 if (VDstIn_Idx != -1) { 793 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 794 MCOI::OperandConstraint::TIED_TO); 795 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 796 !MI.getOperand(VDstIn_Idx).isReg() || 797 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 798 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 799 MI.erase(&MI.getOperand(VDstIn_Idx)); 800 insertNamedMCOperand(MI, 801 MCOperand::createReg(MI.getOperand(Tied).getReg()), 802 AMDGPU::OpName::vdst_in); 803 } 804 } 805 806 int ImmLitIdx = 807 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 808 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 809 if (Res && ImmLitIdx != -1 && !IsSOPK) 810 Res = convertFMAanyK(MI, ImmLitIdx); 811 812 // if the opcode was not recognized we'll assume a Size of 4 bytes 813 // (unless there are fewer bytes left) 814 Size = Res ? (MaxInstBytesNum - Bytes.size()) 815 : std::min((size_t)4, Bytes_.size()); 816 return Res; 817 } 818 819 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 820 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 821 // The MCInst still has these fields even though they are no longer encoded 822 // in the GFX11 instruction. 823 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 824 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 825 } 826 return MCDisassembler::Success; 827 } 828 829 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 830 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 831 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 832 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 833 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 834 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 835 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 836 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 837 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 838 // The MCInst has this field that is not directly encoded in the 839 // instruction. 840 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 841 } 842 return MCDisassembler::Success; 843 } 844 845 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 846 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 847 STI.hasFeature(AMDGPU::FeatureGFX10)) { 848 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 849 // VOPC - insert clamp 850 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 851 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 852 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 853 if (SDst != -1) { 854 // VOPC - insert VCC register as sdst 855 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 856 AMDGPU::OpName::sdst); 857 } else { 858 // VOP1/2 - insert omod if present in instruction 859 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 860 } 861 } 862 return MCDisassembler::Success; 863 } 864 865 struct VOPModifiers { 866 unsigned OpSel = 0; 867 unsigned OpSelHi = 0; 868 unsigned NegLo = 0; 869 unsigned NegHi = 0; 870 }; 871 872 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 873 // Note that these values do not affect disassembler output, 874 // so this is only necessary for consistency with src_modifiers. 875 static VOPModifiers collectVOPModifiers(const MCInst &MI, 876 bool IsVOP3P = false) { 877 VOPModifiers Modifiers; 878 unsigned Opc = MI.getOpcode(); 879 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 880 AMDGPU::OpName::src1_modifiers, 881 AMDGPU::OpName::src2_modifiers}; 882 for (int J = 0; J < 3; ++J) { 883 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 884 if (OpIdx == -1) 885 continue; 886 887 unsigned Val = MI.getOperand(OpIdx).getImm(); 888 889 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 890 if (IsVOP3P) { 891 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 892 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 893 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 894 } else if (J == 0) { 895 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 896 } 897 } 898 899 return Modifiers; 900 } 901 902 // MAC opcodes have special old and src2 operands. 903 // src2 is tied to dst, while old is not tied (but assumed to be). 904 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 905 constexpr int DST_IDX = 0; 906 auto Opcode = MI.getOpcode(); 907 const auto &Desc = MCII->get(Opcode); 908 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 909 910 if (OldIdx != -1 && Desc.getOperandConstraint( 911 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 912 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 913 assert(Desc.getOperandConstraint( 914 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 915 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 916 (void)DST_IDX; 917 return true; 918 } 919 920 return false; 921 } 922 923 // Create dummy old operand and insert dummy unused src2_modifiers 924 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 925 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 926 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 927 insertNamedMCOperand(MI, MCOperand::createImm(0), 928 AMDGPU::OpName::src2_modifiers); 929 } 930 931 // We must check FI == literal to reject not genuine dpp8 insts, and we must 932 // first add optional MI operands to check FI 933 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 934 unsigned Opc = MI.getOpcode(); 935 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 936 convertVOP3PDPPInst(MI); 937 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 938 AMDGPU::isVOPC64DPP(Opc)) { 939 convertVOPCDPPInst(MI); 940 } else { 941 if (isMacDPP(MI)) 942 convertMacDPPInst(MI); 943 944 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 945 if (MI.getNumOperands() < DescNumOps && 946 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 947 auto Mods = collectVOPModifiers(MI); 948 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 949 AMDGPU::OpName::op_sel); 950 } else { 951 // Insert dummy unused src modifiers. 952 if (MI.getNumOperands() < DescNumOps && 953 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 954 insertNamedMCOperand(MI, MCOperand::createImm(0), 955 AMDGPU::OpName::src0_modifiers); 956 957 if (MI.getNumOperands() < DescNumOps && 958 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 959 insertNamedMCOperand(MI, MCOperand::createImm(0), 960 AMDGPU::OpName::src1_modifiers); 961 } 962 } 963 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 964 } 965 966 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 967 if (isMacDPP(MI)) 968 convertMacDPPInst(MI); 969 970 unsigned Opc = MI.getOpcode(); 971 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 972 if (MI.getNumOperands() < DescNumOps && 973 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 974 auto Mods = collectVOPModifiers(MI); 975 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 976 AMDGPU::OpName::op_sel); 977 } 978 return MCDisassembler::Success; 979 } 980 981 // Note that before gfx10, the MIMG encoding provided no information about 982 // VADDR size. Consequently, decoded instructions always show address as if it 983 // has 1 dword, which could be not really so. 984 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 985 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 986 987 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 988 AMDGPU::OpName::vdst); 989 990 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 991 AMDGPU::OpName::vdata); 992 int VAddr0Idx = 993 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 994 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 995 : AMDGPU::OpName::rsrc; 996 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 997 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 998 AMDGPU::OpName::dmask); 999 1000 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1001 AMDGPU::OpName::tfe); 1002 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1003 AMDGPU::OpName::d16); 1004 1005 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 1006 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1007 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 1008 1009 assert(VDataIdx != -1); 1010 if (BaseOpcode->BVH) { 1011 // Add A16 operand for intersect_ray instructions 1012 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 1013 return MCDisassembler::Success; 1014 } 1015 1016 bool IsAtomic = (VDstIdx != -1); 1017 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 1018 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 1019 bool IsNSA = false; 1020 bool IsPartialNSA = false; 1021 unsigned AddrSize = Info->VAddrDwords; 1022 1023 if (isGFX10Plus()) { 1024 unsigned DimIdx = 1025 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 1026 int A16Idx = 1027 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 1028 const AMDGPU::MIMGDimInfo *Dim = 1029 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 1030 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 1031 1032 AddrSize = 1033 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 1034 1035 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 1036 // VIMAGE insts other than BVH never use vaddr4. 1037 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 1038 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1039 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1040 if (!IsNSA) { 1041 if (!IsVSample && AddrSize > 12) 1042 AddrSize = 16; 1043 } else { 1044 if (AddrSize > Info->VAddrDwords) { 1045 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1046 // The NSA encoding does not contain enough operands for the 1047 // combination of base opcode / dimension. Should this be an error? 1048 return MCDisassembler::Success; 1049 } 1050 IsPartialNSA = true; 1051 } 1052 } 1053 } 1054 1055 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1056 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1057 1058 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1059 if (D16 && AMDGPU::hasPackedD16(STI)) { 1060 DstSize = (DstSize + 1) / 2; 1061 } 1062 1063 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1064 DstSize += 1; 1065 1066 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1067 return MCDisassembler::Success; 1068 1069 int NewOpcode = 1070 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1071 if (NewOpcode == -1) 1072 return MCDisassembler::Success; 1073 1074 // Widen the register to the correct number of enabled channels. 1075 unsigned NewVdata = AMDGPU::NoRegister; 1076 if (DstSize != Info->VDataDwords) { 1077 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1078 1079 // Get first subregister of VData 1080 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1081 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1082 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1083 1084 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1085 &MRI.getRegClass(DataRCID)); 1086 if (NewVdata == AMDGPU::NoRegister) { 1087 // It's possible to encode this such that the low register + enabled 1088 // components exceeds the register count. 1089 return MCDisassembler::Success; 1090 } 1091 } 1092 1093 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1094 // If using partial NSA on GFX11+ widen last address register. 1095 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1096 unsigned NewVAddrSA = AMDGPU::NoRegister; 1097 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1098 AddrSize != Info->VAddrDwords) { 1099 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1100 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1101 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1102 1103 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1104 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1105 &MRI.getRegClass(AddrRCID)); 1106 if (!NewVAddrSA) 1107 return MCDisassembler::Success; 1108 } 1109 1110 MI.setOpcode(NewOpcode); 1111 1112 if (NewVdata != AMDGPU::NoRegister) { 1113 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1114 1115 if (IsAtomic) { 1116 // Atomic operations have an additional operand (a copy of data) 1117 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1118 } 1119 } 1120 1121 if (NewVAddrSA) { 1122 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1123 } else if (IsNSA) { 1124 assert(AddrSize <= Info->VAddrDwords); 1125 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1126 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1127 } 1128 1129 return MCDisassembler::Success; 1130 } 1131 1132 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1133 // decoder only adds to src_modifiers, so manually add the bits to the other 1134 // operands. 1135 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1136 unsigned Opc = MI.getOpcode(); 1137 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1138 auto Mods = collectVOPModifiers(MI, true); 1139 1140 if (MI.getNumOperands() < DescNumOps && 1141 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1142 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1143 1144 if (MI.getNumOperands() < DescNumOps && 1145 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1146 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1147 AMDGPU::OpName::op_sel); 1148 if (MI.getNumOperands() < DescNumOps && 1149 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1150 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1151 AMDGPU::OpName::op_sel_hi); 1152 if (MI.getNumOperands() < DescNumOps && 1153 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1154 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1155 AMDGPU::OpName::neg_lo); 1156 if (MI.getNumOperands() < DescNumOps && 1157 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1158 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1159 AMDGPU::OpName::neg_hi); 1160 1161 return MCDisassembler::Success; 1162 } 1163 1164 // Create dummy old operand and insert optional operands 1165 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1166 unsigned Opc = MI.getOpcode(); 1167 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1168 1169 if (MI.getNumOperands() < DescNumOps && 1170 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1171 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1172 1173 if (MI.getNumOperands() < DescNumOps && 1174 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1175 insertNamedMCOperand(MI, MCOperand::createImm(0), 1176 AMDGPU::OpName::src0_modifiers); 1177 1178 if (MI.getNumOperands() < DescNumOps && 1179 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1180 insertNamedMCOperand(MI, MCOperand::createImm(0), 1181 AMDGPU::OpName::src1_modifiers); 1182 return MCDisassembler::Success; 1183 } 1184 1185 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1186 int ImmLitIdx) const { 1187 assert(HasLiteral && "Should have decoded a literal"); 1188 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1189 unsigned DescNumOps = Desc.getNumOperands(); 1190 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1191 AMDGPU::OpName::immDeferred); 1192 assert(DescNumOps == MI.getNumOperands()); 1193 for (unsigned I = 0; I < DescNumOps; ++I) { 1194 auto &Op = MI.getOperand(I); 1195 auto OpType = Desc.operands()[I].OperandType; 1196 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1197 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1198 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1199 IsDeferredOp) 1200 Op.setImm(Literal); 1201 } 1202 return MCDisassembler::Success; 1203 } 1204 1205 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1206 return getContext().getRegisterInfo()-> 1207 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1208 } 1209 1210 inline 1211 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1212 const Twine& ErrMsg) const { 1213 *CommentStream << "Error: " + ErrMsg; 1214 1215 // ToDo: add support for error operands to MCInst.h 1216 // return MCOperand::createError(V); 1217 return MCOperand(); 1218 } 1219 1220 inline 1221 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1222 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1223 } 1224 1225 inline 1226 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1227 unsigned Val) const { 1228 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1229 if (Val >= RegCl.getNumRegs()) 1230 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1231 ": unknown register " + Twine(Val)); 1232 return createRegOperand(RegCl.getRegister(Val)); 1233 } 1234 1235 inline 1236 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1237 unsigned Val) const { 1238 // ToDo: SI/CI have 104 SGPRs, VI - 102 1239 // Valery: here we accepting as much as we can, let assembler sort it out 1240 int shift = 0; 1241 switch (SRegClassID) { 1242 case AMDGPU::SGPR_32RegClassID: 1243 case AMDGPU::TTMP_32RegClassID: 1244 break; 1245 case AMDGPU::SGPR_64RegClassID: 1246 case AMDGPU::TTMP_64RegClassID: 1247 shift = 1; 1248 break; 1249 case AMDGPU::SGPR_96RegClassID: 1250 case AMDGPU::TTMP_96RegClassID: 1251 case AMDGPU::SGPR_128RegClassID: 1252 case AMDGPU::TTMP_128RegClassID: 1253 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1254 // this bundle? 1255 case AMDGPU::SGPR_256RegClassID: 1256 case AMDGPU::TTMP_256RegClassID: 1257 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1258 // this bundle? 1259 case AMDGPU::SGPR_288RegClassID: 1260 case AMDGPU::TTMP_288RegClassID: 1261 case AMDGPU::SGPR_320RegClassID: 1262 case AMDGPU::TTMP_320RegClassID: 1263 case AMDGPU::SGPR_352RegClassID: 1264 case AMDGPU::TTMP_352RegClassID: 1265 case AMDGPU::SGPR_384RegClassID: 1266 case AMDGPU::TTMP_384RegClassID: 1267 case AMDGPU::SGPR_512RegClassID: 1268 case AMDGPU::TTMP_512RegClassID: 1269 shift = 2; 1270 break; 1271 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1272 // this bundle? 1273 default: 1274 llvm_unreachable("unhandled register class"); 1275 } 1276 1277 if (Val % (1 << shift)) { 1278 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1279 << ": scalar reg isn't aligned " << Val; 1280 } 1281 1282 return createRegOperand(SRegClassID, Val >> shift); 1283 } 1284 1285 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1286 bool IsHi) const { 1287 unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); 1288 return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); 1289 } 1290 1291 // Decode Literals for insts which always have a literal in the encoding 1292 MCOperand 1293 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1294 if (HasLiteral) { 1295 assert( 1296 AMDGPU::hasVOPD(STI) && 1297 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1298 if (Literal != Val) 1299 return errOperand(Val, "More than one unique literal is illegal"); 1300 } 1301 HasLiteral = true; 1302 Literal = Val; 1303 return MCOperand::createImm(Literal); 1304 } 1305 1306 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1307 // For now all literal constants are supposed to be unsigned integer 1308 // ToDo: deal with signed/unsigned 64-bit integer constants 1309 // ToDo: deal with float/double constants 1310 if (!HasLiteral) { 1311 if (Bytes.size() < 4) { 1312 return errOperand(0, "cannot read literal, inst bytes left " + 1313 Twine(Bytes.size())); 1314 } 1315 HasLiteral = true; 1316 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1317 if (ExtendFP64) 1318 Literal64 <<= 32; 1319 } 1320 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1321 } 1322 1323 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1324 using namespace AMDGPU::EncValues; 1325 1326 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1327 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1328 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1329 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1330 // Cast prevents negative overflow. 1331 } 1332 1333 static int64_t getInlineImmVal32(unsigned Imm) { 1334 switch (Imm) { 1335 case 240: 1336 return llvm::bit_cast<uint32_t>(0.5f); 1337 case 241: 1338 return llvm::bit_cast<uint32_t>(-0.5f); 1339 case 242: 1340 return llvm::bit_cast<uint32_t>(1.0f); 1341 case 243: 1342 return llvm::bit_cast<uint32_t>(-1.0f); 1343 case 244: 1344 return llvm::bit_cast<uint32_t>(2.0f); 1345 case 245: 1346 return llvm::bit_cast<uint32_t>(-2.0f); 1347 case 246: 1348 return llvm::bit_cast<uint32_t>(4.0f); 1349 case 247: 1350 return llvm::bit_cast<uint32_t>(-4.0f); 1351 case 248: // 1 / (2 * PI) 1352 return 0x3e22f983; 1353 default: 1354 llvm_unreachable("invalid fp inline imm"); 1355 } 1356 } 1357 1358 static int64_t getInlineImmVal64(unsigned Imm) { 1359 switch (Imm) { 1360 case 240: 1361 return llvm::bit_cast<uint64_t>(0.5); 1362 case 241: 1363 return llvm::bit_cast<uint64_t>(-0.5); 1364 case 242: 1365 return llvm::bit_cast<uint64_t>(1.0); 1366 case 243: 1367 return llvm::bit_cast<uint64_t>(-1.0); 1368 case 244: 1369 return llvm::bit_cast<uint64_t>(2.0); 1370 case 245: 1371 return llvm::bit_cast<uint64_t>(-2.0); 1372 case 246: 1373 return llvm::bit_cast<uint64_t>(4.0); 1374 case 247: 1375 return llvm::bit_cast<uint64_t>(-4.0); 1376 case 248: // 1 / (2 * PI) 1377 return 0x3fc45f306dc9c882; 1378 default: 1379 llvm_unreachable("invalid fp inline imm"); 1380 } 1381 } 1382 1383 static int64_t getInlineImmVal16(unsigned Imm) { 1384 switch (Imm) { 1385 case 240: 1386 return 0x3800; 1387 case 241: 1388 return 0xB800; 1389 case 242: 1390 return 0x3C00; 1391 case 243: 1392 return 0xBC00; 1393 case 244: 1394 return 0x4000; 1395 case 245: 1396 return 0xC000; 1397 case 246: 1398 return 0x4400; 1399 case 247: 1400 return 0xC400; 1401 case 248: // 1 / (2 * PI) 1402 return 0x3118; 1403 default: 1404 llvm_unreachable("invalid fp inline imm"); 1405 } 1406 } 1407 1408 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1409 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1410 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1411 1412 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1413 // ImmWidth 0 is a default case where operand should not allow immediates. 1414 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1415 // use it to print verbose error message. 1416 switch (ImmWidth) { 1417 case 0: 1418 case 32: 1419 return MCOperand::createImm(getInlineImmVal32(Imm)); 1420 case 64: 1421 return MCOperand::createImm(getInlineImmVal64(Imm)); 1422 case 16: 1423 return MCOperand::createImm(getInlineImmVal16(Imm)); 1424 default: 1425 llvm_unreachable("implement me"); 1426 } 1427 } 1428 1429 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1430 using namespace AMDGPU; 1431 1432 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1433 switch (Width) { 1434 default: // fall 1435 case OPW32: 1436 case OPW16: 1437 case OPWV216: 1438 return VGPR_32RegClassID; 1439 case OPW64: 1440 case OPWV232: return VReg_64RegClassID; 1441 case OPW96: return VReg_96RegClassID; 1442 case OPW128: return VReg_128RegClassID; 1443 case OPW160: return VReg_160RegClassID; 1444 case OPW256: return VReg_256RegClassID; 1445 case OPW288: return VReg_288RegClassID; 1446 case OPW320: return VReg_320RegClassID; 1447 case OPW352: return VReg_352RegClassID; 1448 case OPW384: return VReg_384RegClassID; 1449 case OPW512: return VReg_512RegClassID; 1450 case OPW1024: return VReg_1024RegClassID; 1451 } 1452 } 1453 1454 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1455 using namespace AMDGPU; 1456 1457 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1458 switch (Width) { 1459 default: // fall 1460 case OPW32: 1461 case OPW16: 1462 case OPWV216: 1463 return AGPR_32RegClassID; 1464 case OPW64: 1465 case OPWV232: return AReg_64RegClassID; 1466 case OPW96: return AReg_96RegClassID; 1467 case OPW128: return AReg_128RegClassID; 1468 case OPW160: return AReg_160RegClassID; 1469 case OPW256: return AReg_256RegClassID; 1470 case OPW288: return AReg_288RegClassID; 1471 case OPW320: return AReg_320RegClassID; 1472 case OPW352: return AReg_352RegClassID; 1473 case OPW384: return AReg_384RegClassID; 1474 case OPW512: return AReg_512RegClassID; 1475 case OPW1024: return AReg_1024RegClassID; 1476 } 1477 } 1478 1479 1480 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1481 using namespace AMDGPU; 1482 1483 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1484 switch (Width) { 1485 default: // fall 1486 case OPW32: 1487 case OPW16: 1488 case OPWV216: 1489 return SGPR_32RegClassID; 1490 case OPW64: 1491 case OPWV232: return SGPR_64RegClassID; 1492 case OPW96: return SGPR_96RegClassID; 1493 case OPW128: return SGPR_128RegClassID; 1494 case OPW160: return SGPR_160RegClassID; 1495 case OPW256: return SGPR_256RegClassID; 1496 case OPW288: return SGPR_288RegClassID; 1497 case OPW320: return SGPR_320RegClassID; 1498 case OPW352: return SGPR_352RegClassID; 1499 case OPW384: return SGPR_384RegClassID; 1500 case OPW512: return SGPR_512RegClassID; 1501 } 1502 } 1503 1504 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1505 using namespace AMDGPU; 1506 1507 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1508 switch (Width) { 1509 default: // fall 1510 case OPW32: 1511 case OPW16: 1512 case OPWV216: 1513 return TTMP_32RegClassID; 1514 case OPW64: 1515 case OPWV232: return TTMP_64RegClassID; 1516 case OPW128: return TTMP_128RegClassID; 1517 case OPW256: return TTMP_256RegClassID; 1518 case OPW288: return TTMP_288RegClassID; 1519 case OPW320: return TTMP_320RegClassID; 1520 case OPW352: return TTMP_352RegClassID; 1521 case OPW384: return TTMP_384RegClassID; 1522 case OPW512: return TTMP_512RegClassID; 1523 } 1524 } 1525 1526 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1527 using namespace AMDGPU::EncValues; 1528 1529 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1530 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1531 1532 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1533 } 1534 1535 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1536 bool MandatoryLiteral, 1537 unsigned ImmWidth, bool IsFP) const { 1538 using namespace AMDGPU::EncValues; 1539 1540 assert(Val < 1024); // enum10 1541 1542 bool IsAGPR = Val & 512; 1543 Val &= 511; 1544 1545 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1546 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1547 : getVgprClassId(Width), Val - VGPR_MIN); 1548 } 1549 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1550 IsFP); 1551 } 1552 1553 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1554 unsigned Val, 1555 bool MandatoryLiteral, 1556 unsigned ImmWidth, 1557 bool IsFP) const { 1558 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1559 // decoded earlier. 1560 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1561 using namespace AMDGPU::EncValues; 1562 1563 if (Val <= SGPR_MAX) { 1564 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1565 static_assert(SGPR_MIN == 0); 1566 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1567 } 1568 1569 int TTmpIdx = getTTmpIdx(Val); 1570 if (TTmpIdx >= 0) { 1571 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1572 } 1573 1574 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1575 return decodeIntImmed(Val); 1576 1577 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1578 return decodeFPImmed(ImmWidth, Val); 1579 1580 if (Val == LITERAL_CONST) { 1581 if (MandatoryLiteral) 1582 // Keep a sentinel value for deferred setting 1583 return MCOperand::createImm(LITERAL_CONST); 1584 else 1585 return decodeLiteralConstant(IsFP && ImmWidth == 64); 1586 } 1587 1588 switch (Width) { 1589 case OPW32: 1590 case OPW16: 1591 case OPWV216: 1592 return decodeSpecialReg32(Val); 1593 case OPW64: 1594 case OPWV232: 1595 return decodeSpecialReg64(Val); 1596 default: 1597 llvm_unreachable("unexpected immediate type"); 1598 } 1599 } 1600 1601 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1602 // opposite of bit 0 of DstX. 1603 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1604 unsigned Val) const { 1605 int VDstXInd = 1606 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1607 assert(VDstXInd != -1); 1608 assert(Inst.getOperand(VDstXInd).isReg()); 1609 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1610 Val |= ~XDstReg & 1; 1611 auto Width = llvm::AMDGPUDisassembler::OPW32; 1612 return createRegOperand(getVgprClassId(Width), Val); 1613 } 1614 1615 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1616 using namespace AMDGPU; 1617 1618 switch (Val) { 1619 // clang-format off 1620 case 102: return createRegOperand(FLAT_SCR_LO); 1621 case 103: return createRegOperand(FLAT_SCR_HI); 1622 case 104: return createRegOperand(XNACK_MASK_LO); 1623 case 105: return createRegOperand(XNACK_MASK_HI); 1624 case 106: return createRegOperand(VCC_LO); 1625 case 107: return createRegOperand(VCC_HI); 1626 case 108: return createRegOperand(TBA_LO); 1627 case 109: return createRegOperand(TBA_HI); 1628 case 110: return createRegOperand(TMA_LO); 1629 case 111: return createRegOperand(TMA_HI); 1630 case 124: 1631 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1632 case 125: 1633 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1634 case 126: return createRegOperand(EXEC_LO); 1635 case 127: return createRegOperand(EXEC_HI); 1636 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1637 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1638 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1639 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1640 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1641 case 251: return createRegOperand(SRC_VCCZ); 1642 case 252: return createRegOperand(SRC_EXECZ); 1643 case 253: return createRegOperand(SRC_SCC); 1644 case 254: return createRegOperand(LDS_DIRECT); 1645 default: break; 1646 // clang-format on 1647 } 1648 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1649 } 1650 1651 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1652 using namespace AMDGPU; 1653 1654 switch (Val) { 1655 case 102: return createRegOperand(FLAT_SCR); 1656 case 104: return createRegOperand(XNACK_MASK); 1657 case 106: return createRegOperand(VCC); 1658 case 108: return createRegOperand(TBA); 1659 case 110: return createRegOperand(TMA); 1660 case 124: 1661 if (isGFX11Plus()) 1662 return createRegOperand(SGPR_NULL); 1663 break; 1664 case 125: 1665 if (!isGFX11Plus()) 1666 return createRegOperand(SGPR_NULL); 1667 break; 1668 case 126: return createRegOperand(EXEC); 1669 case 235: return createRegOperand(SRC_SHARED_BASE); 1670 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1671 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1672 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1673 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1674 case 251: return createRegOperand(SRC_VCCZ); 1675 case 252: return createRegOperand(SRC_EXECZ); 1676 case 253: return createRegOperand(SRC_SCC); 1677 default: break; 1678 } 1679 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1680 } 1681 1682 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1683 const unsigned Val, 1684 unsigned ImmWidth) const { 1685 using namespace AMDGPU::SDWA; 1686 using namespace AMDGPU::EncValues; 1687 1688 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1689 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1690 // XXX: cast to int is needed to avoid stupid warning: 1691 // compare with unsigned is always true 1692 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1693 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1694 return createRegOperand(getVgprClassId(Width), 1695 Val - SDWA9EncValues::SRC_VGPR_MIN); 1696 } 1697 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1698 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1699 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1700 return createSRegOperand(getSgprClassId(Width), 1701 Val - SDWA9EncValues::SRC_SGPR_MIN); 1702 } 1703 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1704 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1705 return createSRegOperand(getTtmpClassId(Width), 1706 Val - SDWA9EncValues::SRC_TTMP_MIN); 1707 } 1708 1709 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1710 1711 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1712 return decodeIntImmed(SVal); 1713 1714 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1715 return decodeFPImmed(ImmWidth, SVal); 1716 1717 return decodeSpecialReg32(SVal); 1718 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1719 return createRegOperand(getVgprClassId(Width), Val); 1720 } 1721 llvm_unreachable("unsupported target"); 1722 } 1723 1724 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1725 return decodeSDWASrc(OPW16, Val, 16); 1726 } 1727 1728 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1729 return decodeSDWASrc(OPW32, Val, 32); 1730 } 1731 1732 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1733 using namespace AMDGPU::SDWA; 1734 1735 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1736 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1737 "SDWAVopcDst should be present only on GFX9+"); 1738 1739 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1740 1741 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1742 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1743 1744 int TTmpIdx = getTTmpIdx(Val); 1745 if (TTmpIdx >= 0) { 1746 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1747 return createSRegOperand(TTmpClsId, TTmpIdx); 1748 } else if (Val > SGPR_MAX) { 1749 return IsWave64 ? decodeSpecialReg64(Val) 1750 : decodeSpecialReg32(Val); 1751 } else { 1752 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1753 } 1754 } else { 1755 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1756 } 1757 } 1758 1759 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1760 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1761 ? decodeSrcOp(OPW64, Val) 1762 : decodeSrcOp(OPW32, Val); 1763 } 1764 1765 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1766 return decodeSrcOp(OPW32, Val); 1767 } 1768 1769 bool AMDGPUDisassembler::isVI() const { 1770 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1771 } 1772 1773 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1774 1775 bool AMDGPUDisassembler::isGFX90A() const { 1776 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1777 } 1778 1779 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1780 1781 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1782 1783 bool AMDGPUDisassembler::isGFX10Plus() const { 1784 return AMDGPU::isGFX10Plus(STI); 1785 } 1786 1787 bool AMDGPUDisassembler::isGFX11() const { 1788 return STI.hasFeature(AMDGPU::FeatureGFX11); 1789 } 1790 1791 bool AMDGPUDisassembler::isGFX11Plus() const { 1792 return AMDGPU::isGFX11Plus(STI); 1793 } 1794 1795 bool AMDGPUDisassembler::isGFX12Plus() const { 1796 return AMDGPU::isGFX12Plus(STI); 1797 } 1798 1799 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1800 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1801 } 1802 1803 bool AMDGPUDisassembler::hasKernargPreload() const { 1804 return AMDGPU::hasKernargPreload(STI); 1805 } 1806 1807 //===----------------------------------------------------------------------===// 1808 // AMDGPU specific symbol handling 1809 //===----------------------------------------------------------------------===// 1810 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1811 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1812 do { \ 1813 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1814 } while (0) 1815 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1816 do { \ 1817 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1818 << GET_FIELD(MASK) << '\n'; \ 1819 } while (0) 1820 1821 // NOLINTNEXTLINE(readability-identifier-naming) 1822 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1823 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1824 using namespace amdhsa; 1825 StringRef Indent = "\t"; 1826 1827 // We cannot accurately backward compute #VGPRs used from 1828 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1829 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1830 // simply calculate the inverse of what the assembler does. 1831 1832 uint32_t GranulatedWorkitemVGPRCount = 1833 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1834 1835 uint32_t NextFreeVGPR = 1836 (GranulatedWorkitemVGPRCount + 1) * 1837 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1838 1839 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1840 1841 // We cannot backward compute values used to calculate 1842 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1843 // directives can't be computed: 1844 // .amdhsa_reserve_vcc 1845 // .amdhsa_reserve_flat_scratch 1846 // .amdhsa_reserve_xnack_mask 1847 // They take their respective default values if not specified in the assembly. 1848 // 1849 // GRANULATED_WAVEFRONT_SGPR_COUNT 1850 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1851 // 1852 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1853 // are set to 0. So while disassembling we consider that: 1854 // 1855 // GRANULATED_WAVEFRONT_SGPR_COUNT 1856 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1857 // 1858 // The disassembler cannot recover the original values of those 3 directives. 1859 1860 uint32_t GranulatedWavefrontSGPRCount = 1861 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1862 1863 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1864 return MCDisassembler::Fail; 1865 1866 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1867 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1868 1869 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1870 if (!hasArchitectedFlatScratch()) 1871 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1872 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1873 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1874 1875 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1876 return MCDisassembler::Fail; 1877 1878 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1879 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1880 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1881 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1882 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1883 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1884 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1885 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1886 1887 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1888 return MCDisassembler::Fail; 1889 1890 if (!isGFX12Plus()) 1891 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1892 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1893 1894 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1895 return MCDisassembler::Fail; 1896 1897 if (!isGFX12Plus()) 1898 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1899 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1900 1901 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1902 return MCDisassembler::Fail; 1903 1904 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1905 return MCDisassembler::Fail; 1906 1907 if (isGFX9Plus()) 1908 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1909 1910 if (!isGFX9Plus()) 1911 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1912 return MCDisassembler::Fail; 1913 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1914 return MCDisassembler::Fail; 1915 if (!isGFX10Plus()) 1916 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1917 return MCDisassembler::Fail; 1918 1919 if (isGFX10Plus()) { 1920 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1921 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1922 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1923 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1924 } 1925 1926 if (isGFX12Plus()) 1927 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1928 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1929 1930 return MCDisassembler::Success; 1931 } 1932 1933 // NOLINTNEXTLINE(readability-identifier-naming) 1934 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1935 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1936 using namespace amdhsa; 1937 StringRef Indent = "\t"; 1938 if (hasArchitectedFlatScratch()) 1939 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1940 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1941 else 1942 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1943 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1944 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1945 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1946 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1947 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1948 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1949 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1950 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1951 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1952 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1953 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1954 1955 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1956 return MCDisassembler::Fail; 1957 1958 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1959 return MCDisassembler::Fail; 1960 1961 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1962 return MCDisassembler::Fail; 1963 1964 PRINT_DIRECTIVE( 1965 ".amdhsa_exception_fp_ieee_invalid_op", 1966 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1967 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1968 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1969 PRINT_DIRECTIVE( 1970 ".amdhsa_exception_fp_ieee_div_zero", 1971 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1972 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1973 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1974 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1975 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1976 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1977 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1978 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1979 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1980 1981 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1982 return MCDisassembler::Fail; 1983 1984 return MCDisassembler::Success; 1985 } 1986 1987 // NOLINTNEXTLINE(readability-identifier-naming) 1988 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1989 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1990 using namespace amdhsa; 1991 StringRef Indent = "\t"; 1992 if (isGFX90A()) { 1993 KdStream << Indent << ".amdhsa_accum_offset " 1994 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1995 << '\n'; 1996 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1997 return MCDisassembler::Fail; 1998 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1999 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 2000 return MCDisassembler::Fail; 2001 } else if (isGFX10Plus()) { 2002 // Bits [0-3]. 2003 if (!isGFX12Plus()) { 2004 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 2005 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 2006 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2007 } else { 2008 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2009 "SHARED_VGPR_COUNT", 2010 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2011 } 2012 } else { 2013 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0) 2014 return MCDisassembler::Fail; 2015 } 2016 2017 // Bits [4-11]. 2018 if (isGFX11()) { 2019 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2020 COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); 2021 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2022 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); 2023 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2024 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); 2025 } else if (isGFX12Plus()) { 2026 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2027 "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); 2028 } else { 2029 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1) 2030 return MCDisassembler::Fail; 2031 } 2032 2033 // Bits [12]. 2034 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2) 2035 return MCDisassembler::Fail; 2036 2037 // Bits [13]. 2038 if (isGFX12Plus()) { 2039 PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", 2040 COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); 2041 } else { 2042 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3) 2043 return MCDisassembler::Fail; 2044 } 2045 2046 // Bits [14-30]. 2047 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4) 2048 return MCDisassembler::Fail; 2049 2050 // Bits [31]. 2051 if (isGFX11Plus()) { 2052 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2053 COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); 2054 } else { 2055 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5) 2056 return MCDisassembler::Fail; 2057 } 2058 } else if (FourByteBuffer) { 2059 return MCDisassembler::Fail; 2060 } 2061 return MCDisassembler::Success; 2062 } 2063 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2064 #undef PRINT_DIRECTIVE 2065 #undef GET_FIELD 2066 2067 MCDisassembler::DecodeStatus 2068 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2069 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2070 raw_string_ostream &KdStream) const { 2071 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2072 do { \ 2073 KdStream << Indent << DIRECTIVE " " \ 2074 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2075 } while (0) 2076 2077 uint16_t TwoByteBuffer = 0; 2078 uint32_t FourByteBuffer = 0; 2079 2080 StringRef ReservedBytes; 2081 StringRef Indent = "\t"; 2082 2083 assert(Bytes.size() == 64); 2084 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2085 2086 switch (Cursor.tell()) { 2087 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2088 FourByteBuffer = DE.getU32(Cursor); 2089 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2090 << '\n'; 2091 return MCDisassembler::Success; 2092 2093 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2094 FourByteBuffer = DE.getU32(Cursor); 2095 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2096 << FourByteBuffer << '\n'; 2097 return MCDisassembler::Success; 2098 2099 case amdhsa::KERNARG_SIZE_OFFSET: 2100 FourByteBuffer = DE.getU32(Cursor); 2101 KdStream << Indent << ".amdhsa_kernarg_size " 2102 << FourByteBuffer << '\n'; 2103 return MCDisassembler::Success; 2104 2105 case amdhsa::RESERVED0_OFFSET: 2106 // 4 reserved bytes, must be 0. 2107 ReservedBytes = DE.getBytes(Cursor, 4); 2108 for (int I = 0; I < 4; ++I) { 2109 if (ReservedBytes[I] != 0) { 2110 return MCDisassembler::Fail; 2111 } 2112 } 2113 return MCDisassembler::Success; 2114 2115 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2116 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2117 // So far no directive controls this for Code Object V3, so simply skip for 2118 // disassembly. 2119 DE.skip(Cursor, 8); 2120 return MCDisassembler::Success; 2121 2122 case amdhsa::RESERVED1_OFFSET: 2123 // 20 reserved bytes, must be 0. 2124 ReservedBytes = DE.getBytes(Cursor, 20); 2125 for (int I = 0; I < 20; ++I) { 2126 if (ReservedBytes[I] != 0) { 2127 return MCDisassembler::Fail; 2128 } 2129 } 2130 return MCDisassembler::Success; 2131 2132 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2133 FourByteBuffer = DE.getU32(Cursor); 2134 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2135 2136 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2137 FourByteBuffer = DE.getU32(Cursor); 2138 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2139 2140 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2141 FourByteBuffer = DE.getU32(Cursor); 2142 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2143 2144 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2145 using namespace amdhsa; 2146 TwoByteBuffer = DE.getU16(Cursor); 2147 2148 if (!hasArchitectedFlatScratch()) 2149 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2150 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2151 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2152 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2153 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2154 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2155 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2156 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2157 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2158 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2159 if (!hasArchitectedFlatScratch()) 2160 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2161 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2162 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2163 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2164 2165 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2166 return MCDisassembler::Fail; 2167 2168 // Reserved for GFX9 2169 if (isGFX9() && 2170 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2171 return MCDisassembler::Fail; 2172 } else if (isGFX10Plus()) { 2173 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2174 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2175 } 2176 2177 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2178 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2179 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2180 2181 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2182 return MCDisassembler::Fail; 2183 2184 return MCDisassembler::Success; 2185 2186 case amdhsa::KERNARG_PRELOAD_OFFSET: 2187 using namespace amdhsa; 2188 TwoByteBuffer = DE.getU16(Cursor); 2189 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2190 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2191 KERNARG_PRELOAD_SPEC_LENGTH); 2192 } 2193 2194 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2195 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2196 KERNARG_PRELOAD_SPEC_OFFSET); 2197 } 2198 return MCDisassembler::Success; 2199 2200 case amdhsa::RESERVED3_OFFSET: 2201 // 4 bytes from here are reserved, must be 0. 2202 ReservedBytes = DE.getBytes(Cursor, 4); 2203 for (int I = 0; I < 4; ++I) { 2204 if (ReservedBytes[I] != 0) 2205 return MCDisassembler::Fail; 2206 } 2207 return MCDisassembler::Success; 2208 2209 default: 2210 llvm_unreachable("Unhandled index. Case statements cover everything."); 2211 return MCDisassembler::Fail; 2212 } 2213 #undef PRINT_DIRECTIVE 2214 } 2215 2216 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2217 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2218 // CP microcode requires the kernel descriptor to be 64 aligned. 2219 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2220 return MCDisassembler::Fail; 2221 2222 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2223 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2224 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2225 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2226 // when required. 2227 if (isGFX10Plus()) { 2228 uint16_t KernelCodeProperties = 2229 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2230 llvm::endianness::little); 2231 EnableWavefrontSize32 = 2232 AMDHSA_BITS_GET(KernelCodeProperties, 2233 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2234 } 2235 2236 std::string Kd; 2237 raw_string_ostream KdStream(Kd); 2238 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2239 2240 DataExtractor::Cursor C(0); 2241 while (C && C.tell() < Bytes.size()) { 2242 MCDisassembler::DecodeStatus Status = 2243 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2244 2245 cantFail(C.takeError()); 2246 2247 if (Status == MCDisassembler::Fail) 2248 return MCDisassembler::Fail; 2249 } 2250 KdStream << ".end_amdhsa_kernel\n"; 2251 outs() << KdStream.str(); 2252 return MCDisassembler::Success; 2253 } 2254 2255 std::optional<MCDisassembler::DecodeStatus> 2256 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2257 ArrayRef<uint8_t> Bytes, uint64_t Address, 2258 raw_ostream &CStream) const { 2259 // Right now only kernel descriptor needs to be handled. 2260 // We ignore all other symbols for target specific handling. 2261 // TODO: 2262 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2263 // Object V2 and V3 when symbols are marked protected. 2264 2265 // amd_kernel_code_t for Code Object V2. 2266 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2267 Size = 256; 2268 return MCDisassembler::Fail; 2269 } 2270 2271 // Code Object V3 kernel descriptors. 2272 StringRef Name = Symbol.Name; 2273 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2274 Size = 64; // Size = 64 regardless of success or failure. 2275 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2276 } 2277 return std::nullopt; 2278 } 2279 2280 //===----------------------------------------------------------------------===// 2281 // AMDGPUSymbolizer 2282 //===----------------------------------------------------------------------===// 2283 2284 // Try to find symbol name for specified label 2285 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2286 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2287 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2288 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2289 2290 if (!IsBranch) { 2291 return false; 2292 } 2293 2294 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2295 if (!Symbols) 2296 return false; 2297 2298 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2299 return Val.Addr == static_cast<uint64_t>(Value) && 2300 Val.Type == ELF::STT_NOTYPE; 2301 }); 2302 if (Result != Symbols->end()) { 2303 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2304 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2305 Inst.addOperand(MCOperand::createExpr(Add)); 2306 return true; 2307 } 2308 // Add to list of referenced addresses, so caller can synthesize a label. 2309 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2310 return false; 2311 } 2312 2313 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2314 int64_t Value, 2315 uint64_t Address) { 2316 llvm_unreachable("unimplemented"); 2317 } 2318 2319 //===----------------------------------------------------------------------===// 2320 // Initialization 2321 //===----------------------------------------------------------------------===// 2322 2323 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2324 LLVMOpInfoCallback /*GetOpInfo*/, 2325 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2326 void *DisInfo, 2327 MCContext *Ctx, 2328 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2329 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2330 } 2331 2332 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2333 const MCSubtargetInfo &STI, 2334 MCContext &Ctx) { 2335 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2336 } 2337 2338 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2339 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2340 createAMDGPUDisassembler); 2341 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2342 createAMDGPUSymbolizer); 2343 } 2344