xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 647cbc5de815c5651677bf8582797f716ec7b48d)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
186 // and decode using 'enum10' from decodeSrcOp.
187 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
188   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
189                Imm | 512, false, ImmWidth)
190 
191 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
192   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
193                OpWidth, Imm, true, ImmWidth)
194 
195 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
196 // when RegisterClass is used as an operand. Most often used for destination
197 // operands.
198 
199 DECODE_OPERAND_REG_8(VGPR_32)
200 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
201 DECODE_OPERAND_REG_8(VReg_64)
202 DECODE_OPERAND_REG_8(VReg_96)
203 DECODE_OPERAND_REG_8(VReg_128)
204 DECODE_OPERAND_REG_8(VReg_256)
205 DECODE_OPERAND_REG_8(VReg_288)
206 DECODE_OPERAND_REG_8(VReg_352)
207 DECODE_OPERAND_REG_8(VReg_384)
208 DECODE_OPERAND_REG_8(VReg_512)
209 DECODE_OPERAND_REG_8(VReg_1024)
210 
211 DECODE_OPERAND_REG_7(SReg_32, OPW32)
212 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
213 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
214 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
215 DECODE_OPERAND_REG_7(SReg_64, OPW64)
216 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
217 DECODE_OPERAND_REG_7(SReg_96, OPW96)
218 DECODE_OPERAND_REG_7(SReg_128, OPW128)
219 DECODE_OPERAND_REG_7(SReg_256, OPW256)
220 DECODE_OPERAND_REG_7(SReg_512, OPW512)
221 
222 DECODE_OPERAND_REG_8(AGPR_32)
223 DECODE_OPERAND_REG_8(AReg_64)
224 DECODE_OPERAND_REG_8(AReg_128)
225 DECODE_OPERAND_REG_8(AReg_256)
226 DECODE_OPERAND_REG_8(AReg_512)
227 DECODE_OPERAND_REG_8(AReg_1024)
228 
229 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
230 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
231 
232 // Decoders for register only source RegisterOperands that use use 9-bit Src
233 // encoding: 'decodeOperand_<RegClass>'.
234 
235 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
236 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
237 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
238 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
239 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
240 
241 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
242 
243 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
244 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
245 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
246 
247 // Decoders for register or immediate RegisterOperands that use 9-bit Src
248 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
249 
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
264 
265 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
266 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
267 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
268 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
270 
271 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
272 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
273 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
274 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
275 
276 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
277                                                uint64_t /*Addr*/,
278                                                const MCDisassembler *Decoder) {
279   assert(isUInt<10>(Imm) && "10-bit encoding expected");
280   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
281 
282   bool IsHi = Imm & (1 << 9);
283   unsigned RegIdx = Imm & 0xff;
284   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
285   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
286 }
287 
288 static DecodeStatus
289 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
290                                  const MCDisassembler *Decoder) {
291   assert(isUInt<8>(Imm) && "8-bit encoding expected");
292 
293   bool IsHi = Imm & (1 << 7);
294   unsigned RegIdx = Imm & 0x7f;
295   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
296   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
297 }
298 
299 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
300                                                 uint64_t /*Addr*/,
301                                                 const MCDisassembler *Decoder) {
302   assert(isUInt<9>(Imm) && "9-bit encoding expected");
303 
304   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
305   bool IsVGPR = Imm & (1 << 8);
306   if (IsVGPR) {
307     bool IsHi = Imm & (1 << 7);
308     unsigned RegIdx = Imm & 0x7f;
309     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
310   }
311   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
312                                                    Imm & 0xFF, false, 16));
313 }
314 
315 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
316                                           uint64_t /*Addr*/,
317                                           const MCDisassembler *Decoder) {
318   assert(isUInt<10>(Imm) && "10-bit encoding expected");
319 
320   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
321   bool IsVGPR = Imm & (1 << 8);
322   if (IsVGPR) {
323     bool IsHi = Imm & (1 << 9);
324     unsigned RegIdx = Imm & 0xff;
325     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
326   }
327   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
328                                                    Imm & 0xFF, false, 16));
329 }
330 
331 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
332                                          uint64_t Addr,
333                                          const MCDisassembler *Decoder) {
334   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
335   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
336 }
337 
338 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
339                                           uint64_t Addr, const void *Decoder) {
340   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
341   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
342 }
343 
344 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
345                           const MCRegisterInfo *MRI) {
346   if (OpIdx < 0)
347     return false;
348 
349   const MCOperand &Op = Inst.getOperand(OpIdx);
350   if (!Op.isReg())
351     return false;
352 
353   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
354   auto Reg = Sub ? Sub : Op.getReg();
355   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
356 }
357 
358 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
359                                              AMDGPUDisassembler::OpWidthTy Opw,
360                                              const MCDisassembler *Decoder) {
361   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
362   if (!DAsm->isGFX90A()) {
363     Imm &= 511;
364   } else {
365     // If atomic has both vdata and vdst their register classes are tied.
366     // The bit is decoded along with the vdst, first operand. We need to
367     // change register class to AGPR if vdst was AGPR.
368     // If a DS instruction has both data0 and data1 their register classes
369     // are also tied.
370     unsigned Opc = Inst.getOpcode();
371     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
372     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
373                                                         : AMDGPU::OpName::vdata;
374     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
375     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
376     if ((int)Inst.getNumOperands() == DataIdx) {
377       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
378       if (IsAGPROperand(Inst, DstIdx, MRI))
379         Imm |= 512;
380     }
381 
382     if (TSFlags & SIInstrFlags::DS) {
383       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
384       if ((int)Inst.getNumOperands() == Data2Idx &&
385           IsAGPROperand(Inst, DataIdx, MRI))
386         Imm |= 512;
387     }
388   }
389   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
390 }
391 
392 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
393                                            uint64_t Addr,
394                                            const MCDisassembler *Decoder) {
395   assert(Imm < (1 << 9) && "9-bit encoding");
396   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
397   return addOperand(
398       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
399 }
400 
401 static DecodeStatus
402 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
403                              const MCDisassembler *Decoder) {
404   return decodeOperand_AVLdSt_Any(Inst, Imm,
405                                   AMDGPUDisassembler::OPW32, Decoder);
406 }
407 
408 static DecodeStatus
409 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
410                              const MCDisassembler *Decoder) {
411   return decodeOperand_AVLdSt_Any(Inst, Imm,
412                                   AMDGPUDisassembler::OPW64, Decoder);
413 }
414 
415 static DecodeStatus
416 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
417                              const MCDisassembler *Decoder) {
418   return decodeOperand_AVLdSt_Any(Inst, Imm,
419                                   AMDGPUDisassembler::OPW96, Decoder);
420 }
421 
422 static DecodeStatus
423 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
424                               const MCDisassembler *Decoder) {
425   return decodeOperand_AVLdSt_Any(Inst, Imm,
426                                   AMDGPUDisassembler::OPW128, Decoder);
427 }
428 
429 static DecodeStatus
430 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
431                               const MCDisassembler *Decoder) {
432   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
433                                   Decoder);
434 }
435 
436 #define DECODE_SDWA(DecName) \
437 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
438 
439 DECODE_SDWA(Src32)
440 DECODE_SDWA(Src16)
441 DECODE_SDWA(VopcDst)
442 
443 #include "AMDGPUGenDisassemblerTables.inc"
444 
445 //===----------------------------------------------------------------------===//
446 //
447 //===----------------------------------------------------------------------===//
448 
449 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
450   assert(Bytes.size() >= sizeof(T));
451   const auto Res =
452       support::endian::read<T, llvm::endianness::little>(Bytes.data());
453   Bytes = Bytes.slice(sizeof(T));
454   return Res;
455 }
456 
457 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
458   assert(Bytes.size() >= 12);
459   uint64_t Lo =
460       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
461   Bytes = Bytes.slice(8);
462   uint64_t Hi =
463       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
464   Bytes = Bytes.slice(4);
465   return DecoderUInt128(Lo, Hi);
466 }
467 
468 // The disassembler is greedy, so we need to check FI operand value to
469 // not parse a dpp if the correct literal is not set. For dpp16 the
470 // autogenerated decoder checks the dpp literal
471 static bool isValidDPP8(const MCInst &MI) {
472   using namespace llvm::AMDGPU::DPP;
473   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
474   assert(FiIdx != -1);
475   if ((unsigned)FiIdx >= MI.getNumOperands())
476     return false;
477   unsigned Fi = MI.getOperand(FiIdx).getImm();
478   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
479 }
480 
481 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
482                                                 ArrayRef<uint8_t> Bytes_,
483                                                 uint64_t Address,
484                                                 raw_ostream &CS) const {
485   bool IsSDWA = false;
486 
487   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
488   Bytes = Bytes_.slice(0, MaxInstBytesNum);
489 
490   DecodeStatus Res = MCDisassembler::Fail;
491   do {
492     // ToDo: better to switch encoding length using some bit predicate
493     // but it is unknown yet, so try all we can
494 
495     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
496     // encodings
497     if (isGFX11Plus() && Bytes.size() >= 12 ) {
498       DecoderUInt128 DecW = eat12Bytes(Bytes);
499       Res =
500           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
501                         MI, DecW, Address, CS);
502       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
503         break;
504       MI = MCInst(); // clear
505       Res =
506           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
507                         MI, DecW, Address, CS);
508       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
509         break;
510       MI = MCInst(); // clear
511 
512       const auto convertVOPDPP = [&]() {
513         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
514           convertVOP3PDPPInst(MI);
515         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
516           convertVOPCDPPInst(MI); // Special VOP3 case
517         } else {
518           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
519           convertVOP3DPPInst(MI); // Regular VOP3 case
520         }
521       };
522       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
523                           MI, DecW, Address, CS);
524       if (Res) {
525         convertVOPDPP();
526         break;
527       }
528       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
529                           MI, DecW, Address, CS);
530       if (Res) {
531         convertVOPDPP();
532         break;
533       }
534       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
535       if (Res)
536         break;
537 
538       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
539       if (Res)
540         break;
541     }
542     // Reinitialize Bytes
543     Bytes = Bytes_.slice(0, MaxInstBytesNum);
544 
545     if (Bytes.size() >= 8) {
546       const uint64_t QW = eatBytes<uint64_t>(Bytes);
547 
548       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
549         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
550         if (Res) {
551           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
552               == -1)
553             break;
554           if (convertDPP8Inst(MI) == MCDisassembler::Success)
555             break;
556           MI = MCInst(); // clear
557         }
558       }
559 
560       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
561       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
562         break;
563       MI = MCInst(); // clear
564 
565       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
566                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
567       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
568         break;
569       MI = MCInst(); // clear
570 
571       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
572                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
573       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
574         break;
575       MI = MCInst(); // clear
576 
577       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
578       if (Res) break;
579 
580       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
581                           MI, QW, Address, CS);
582       if (Res) {
583         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
584           convertVOPCDPPInst(MI);
585         break;
586       }
587 
588       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
589                           MI, QW, Address, CS);
590       if (Res) {
591         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
592           convertVOPCDPPInst(MI);
593         break;
594       }
595 
596       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
597       if (Res) { IsSDWA = true;  break; }
598 
599       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
600       if (Res) { IsSDWA = true;  break; }
601 
602       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
603       if (Res) { IsSDWA = true;  break; }
604 
605       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
606         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
607         if (Res)
608           break;
609       }
610 
611       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
612       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
613       // table first so we print the correct name.
614       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
615         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
616         if (Res)
617           break;
618       }
619     }
620 
621     // Reinitialize Bytes as DPP64 could have eaten too much
622     Bytes = Bytes_.slice(0, MaxInstBytesNum);
623 
624     // Try decode 32-bit instruction
625     if (Bytes.size() < 4) break;
626     const uint32_t DW = eatBytes<uint32_t>(Bytes);
627     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
628     if (Res) break;
629 
630     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
631     if (Res) break;
632 
633     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
634     if (Res) break;
635 
636     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
637       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
638       if (Res)
639         break;
640     }
641 
642     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
643       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
644       if (Res) break;
645     }
646 
647     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
648     if (Res) break;
649 
650     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
651                         Address, CS);
652     if (Res) break;
653 
654     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
655                         Address, CS);
656     if (Res)
657       break;
658 
659     if (Bytes.size() < 4) break;
660     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
661 
662     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
663       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
664       if (Res)
665         break;
666     }
667 
668     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
669       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
670       if (Res)
671         break;
672     }
673 
674     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
675     if (Res) break;
676 
677     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
678     if (Res) break;
679 
680     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
681     if (Res) break;
682 
683     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
684     if (Res) break;
685 
686     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
687                         Address, CS);
688     if (Res)
689       break;
690 
691     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
692                         Address, CS);
693     if (Res)
694       break;
695 
696     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
697   } while (false);
698 
699   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
700     // Insert dummy unused src2_modifiers.
701     insertNamedMCOperand(MI, MCOperand::createImm(0),
702                          AMDGPU::OpName::src2_modifiers);
703   }
704 
705   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
706       !AMDGPU::hasGDS(STI)) {
707     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
708   }
709 
710   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
711           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
712     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
713                                              AMDGPU::OpName::cpol);
714     if (CPolPos != -1) {
715       unsigned CPol =
716           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
717               AMDGPU::CPol::GLC : 0;
718       if (MI.getNumOperands() <= (unsigned)CPolPos) {
719         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
720                              AMDGPU::OpName::cpol);
721       } else if (CPol) {
722         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
723       }
724     }
725   }
726 
727   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
728               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
729              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
730     // GFX90A lost TFE, its place is occupied by ACC.
731     int TFEOpIdx =
732         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
733     if (TFEOpIdx != -1) {
734       auto TFEIter = MI.begin();
735       std::advance(TFEIter, TFEOpIdx);
736       MI.insert(TFEIter, MCOperand::createImm(0));
737     }
738   }
739 
740   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
741               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
742     int SWZOpIdx =
743         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
744     if (SWZOpIdx != -1) {
745       auto SWZIter = MI.begin();
746       std::advance(SWZIter, SWZOpIdx);
747       MI.insert(SWZIter, MCOperand::createImm(0));
748     }
749   }
750 
751   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
752     int VAddr0Idx =
753         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
754     int RsrcIdx =
755         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
756     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
757     if (VAddr0Idx >= 0 && NSAArgs > 0) {
758       unsigned NSAWords = (NSAArgs + 3) / 4;
759       if (Bytes.size() < 4 * NSAWords) {
760         Res = MCDisassembler::Fail;
761       } else {
762         for (unsigned i = 0; i < NSAArgs; ++i) {
763           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
764           auto VAddrRCID =
765               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
766           MI.insert(MI.begin() + VAddrIdx,
767                     createRegOperand(VAddrRCID, Bytes[i]));
768         }
769         Bytes = Bytes.slice(4 * NSAWords);
770       }
771     }
772 
773     if (Res)
774       Res = convertMIMGInst(MI);
775   }
776 
777   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
778               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
779     Res = convertMIMGInst(MI);
780 
781   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
782     Res = convertEXPInst(MI);
783 
784   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
785     Res = convertVINTERPInst(MI);
786 
787   if (Res && IsSDWA)
788     Res = convertSDWAInst(MI);
789 
790   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
791                                               AMDGPU::OpName::vdst_in);
792   if (VDstIn_Idx != -1) {
793     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
794                            MCOI::OperandConstraint::TIED_TO);
795     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
796          !MI.getOperand(VDstIn_Idx).isReg() ||
797          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
798       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
799         MI.erase(&MI.getOperand(VDstIn_Idx));
800       insertNamedMCOperand(MI,
801         MCOperand::createReg(MI.getOperand(Tied).getReg()),
802         AMDGPU::OpName::vdst_in);
803     }
804   }
805 
806   int ImmLitIdx =
807       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
808   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
809   if (Res && ImmLitIdx != -1 && !IsSOPK)
810     Res = convertFMAanyK(MI, ImmLitIdx);
811 
812   // if the opcode was not recognized we'll assume a Size of 4 bytes
813   // (unless there are fewer bytes left)
814   Size = Res ? (MaxInstBytesNum - Bytes.size())
815              : std::min((size_t)4, Bytes_.size());
816   return Res;
817 }
818 
819 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
820   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
821     // The MCInst still has these fields even though they are no longer encoded
822     // in the GFX11 instruction.
823     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
824     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
825   }
826   return MCDisassembler::Success;
827 }
828 
829 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
830   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
831       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
832       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
833       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
834       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
835       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
836       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
837       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
838     // The MCInst has this field that is not directly encoded in the
839     // instruction.
840     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
841   }
842   return MCDisassembler::Success;
843 }
844 
845 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
846   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
847       STI.hasFeature(AMDGPU::FeatureGFX10)) {
848     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
849       // VOPC - insert clamp
850       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
851   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
852     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
853     if (SDst != -1) {
854       // VOPC - insert VCC register as sdst
855       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
856                            AMDGPU::OpName::sdst);
857     } else {
858       // VOP1/2 - insert omod if present in instruction
859       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
860     }
861   }
862   return MCDisassembler::Success;
863 }
864 
865 struct VOPModifiers {
866   unsigned OpSel = 0;
867   unsigned OpSelHi = 0;
868   unsigned NegLo = 0;
869   unsigned NegHi = 0;
870 };
871 
872 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
873 // Note that these values do not affect disassembler output,
874 // so this is only necessary for consistency with src_modifiers.
875 static VOPModifiers collectVOPModifiers(const MCInst &MI,
876                                         bool IsVOP3P = false) {
877   VOPModifiers Modifiers;
878   unsigned Opc = MI.getOpcode();
879   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
880                         AMDGPU::OpName::src1_modifiers,
881                         AMDGPU::OpName::src2_modifiers};
882   for (int J = 0; J < 3; ++J) {
883     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
884     if (OpIdx == -1)
885       continue;
886 
887     unsigned Val = MI.getOperand(OpIdx).getImm();
888 
889     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
890     if (IsVOP3P) {
891       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
892       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
893       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
894     } else if (J == 0) {
895       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
896     }
897   }
898 
899   return Modifiers;
900 }
901 
902 // MAC opcodes have special old and src2 operands.
903 // src2 is tied to dst, while old is not tied (but assumed to be).
904 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
905   constexpr int DST_IDX = 0;
906   auto Opcode = MI.getOpcode();
907   const auto &Desc = MCII->get(Opcode);
908   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
909 
910   if (OldIdx != -1 && Desc.getOperandConstraint(
911                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
912     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
913     assert(Desc.getOperandConstraint(
914                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
915                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
916     (void)DST_IDX;
917     return true;
918   }
919 
920   return false;
921 }
922 
923 // Create dummy old operand and insert dummy unused src2_modifiers
924 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
925   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
926   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
927   insertNamedMCOperand(MI, MCOperand::createImm(0),
928                        AMDGPU::OpName::src2_modifiers);
929 }
930 
931 // We must check FI == literal to reject not genuine dpp8 insts, and we must
932 // first add optional MI operands to check FI
933 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
934   unsigned Opc = MI.getOpcode();
935   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
936     convertVOP3PDPPInst(MI);
937   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
938              AMDGPU::isVOPC64DPP(Opc)) {
939     convertVOPCDPPInst(MI);
940   } else {
941     if (isMacDPP(MI))
942       convertMacDPPInst(MI);
943 
944     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
945     if (MI.getNumOperands() < DescNumOps &&
946         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
947       auto Mods = collectVOPModifiers(MI);
948       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
949                            AMDGPU::OpName::op_sel);
950     } else {
951       // Insert dummy unused src modifiers.
952       if (MI.getNumOperands() < DescNumOps &&
953           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
954         insertNamedMCOperand(MI, MCOperand::createImm(0),
955                              AMDGPU::OpName::src0_modifiers);
956 
957       if (MI.getNumOperands() < DescNumOps &&
958           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
959         insertNamedMCOperand(MI, MCOperand::createImm(0),
960                              AMDGPU::OpName::src1_modifiers);
961     }
962   }
963   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
964 }
965 
966 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
967   if (isMacDPP(MI))
968     convertMacDPPInst(MI);
969 
970   unsigned Opc = MI.getOpcode();
971   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
972   if (MI.getNumOperands() < DescNumOps &&
973       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
974     auto Mods = collectVOPModifiers(MI);
975     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
976                          AMDGPU::OpName::op_sel);
977   }
978   return MCDisassembler::Success;
979 }
980 
981 // Note that before gfx10, the MIMG encoding provided no information about
982 // VADDR size. Consequently, decoded instructions always show address as if it
983 // has 1 dword, which could be not really so.
984 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
985   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
986 
987   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
988                                            AMDGPU::OpName::vdst);
989 
990   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
991                                             AMDGPU::OpName::vdata);
992   int VAddr0Idx =
993       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
994   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
995                                                 : AMDGPU::OpName::rsrc;
996   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
997   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
998                                             AMDGPU::OpName::dmask);
999 
1000   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1001                                             AMDGPU::OpName::tfe);
1002   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1003                                             AMDGPU::OpName::d16);
1004 
1005   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1006   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1007       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1008 
1009   assert(VDataIdx != -1);
1010   if (BaseOpcode->BVH) {
1011     // Add A16 operand for intersect_ray instructions
1012     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1013     return MCDisassembler::Success;
1014   }
1015 
1016   bool IsAtomic = (VDstIdx != -1);
1017   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1018   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1019   bool IsNSA = false;
1020   bool IsPartialNSA = false;
1021   unsigned AddrSize = Info->VAddrDwords;
1022 
1023   if (isGFX10Plus()) {
1024     unsigned DimIdx =
1025         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1026     int A16Idx =
1027         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1028     const AMDGPU::MIMGDimInfo *Dim =
1029         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1030     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1031 
1032     AddrSize =
1033         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1034 
1035     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1036     // VIMAGE insts other than BVH never use vaddr4.
1037     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1038             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1039             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1040     if (!IsNSA) {
1041       if (!IsVSample && AddrSize > 12)
1042         AddrSize = 16;
1043     } else {
1044       if (AddrSize > Info->VAddrDwords) {
1045         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1046           // The NSA encoding does not contain enough operands for the
1047           // combination of base opcode / dimension. Should this be an error?
1048           return MCDisassembler::Success;
1049         }
1050         IsPartialNSA = true;
1051       }
1052     }
1053   }
1054 
1055   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1056   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1057 
1058   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1059   if (D16 && AMDGPU::hasPackedD16(STI)) {
1060     DstSize = (DstSize + 1) / 2;
1061   }
1062 
1063   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1064     DstSize += 1;
1065 
1066   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1067     return MCDisassembler::Success;
1068 
1069   int NewOpcode =
1070       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1071   if (NewOpcode == -1)
1072     return MCDisassembler::Success;
1073 
1074   // Widen the register to the correct number of enabled channels.
1075   unsigned NewVdata = AMDGPU::NoRegister;
1076   if (DstSize != Info->VDataDwords) {
1077     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1078 
1079     // Get first subregister of VData
1080     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1081     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1082     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1083 
1084     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1085                                        &MRI.getRegClass(DataRCID));
1086     if (NewVdata == AMDGPU::NoRegister) {
1087       // It's possible to encode this such that the low register + enabled
1088       // components exceeds the register count.
1089       return MCDisassembler::Success;
1090     }
1091   }
1092 
1093   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1094   // If using partial NSA on GFX11+ widen last address register.
1095   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1096   unsigned NewVAddrSA = AMDGPU::NoRegister;
1097   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1098       AddrSize != Info->VAddrDwords) {
1099     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1100     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1101     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1102 
1103     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1104     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1105                                         &MRI.getRegClass(AddrRCID));
1106     if (!NewVAddrSA)
1107       return MCDisassembler::Success;
1108   }
1109 
1110   MI.setOpcode(NewOpcode);
1111 
1112   if (NewVdata != AMDGPU::NoRegister) {
1113     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1114 
1115     if (IsAtomic) {
1116       // Atomic operations have an additional operand (a copy of data)
1117       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1118     }
1119   }
1120 
1121   if (NewVAddrSA) {
1122     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1123   } else if (IsNSA) {
1124     assert(AddrSize <= Info->VAddrDwords);
1125     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1126              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1127   }
1128 
1129   return MCDisassembler::Success;
1130 }
1131 
1132 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1133 // decoder only adds to src_modifiers, so manually add the bits to the other
1134 // operands.
1135 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1136   unsigned Opc = MI.getOpcode();
1137   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1138   auto Mods = collectVOPModifiers(MI, true);
1139 
1140   if (MI.getNumOperands() < DescNumOps &&
1141       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1142     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1143 
1144   if (MI.getNumOperands() < DescNumOps &&
1145       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1146     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1147                          AMDGPU::OpName::op_sel);
1148   if (MI.getNumOperands() < DescNumOps &&
1149       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1150     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1151                          AMDGPU::OpName::op_sel_hi);
1152   if (MI.getNumOperands() < DescNumOps &&
1153       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1154     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1155                          AMDGPU::OpName::neg_lo);
1156   if (MI.getNumOperands() < DescNumOps &&
1157       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1158     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1159                          AMDGPU::OpName::neg_hi);
1160 
1161   return MCDisassembler::Success;
1162 }
1163 
1164 // Create dummy old operand and insert optional operands
1165 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1166   unsigned Opc = MI.getOpcode();
1167   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1168 
1169   if (MI.getNumOperands() < DescNumOps &&
1170       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1171     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1172 
1173   if (MI.getNumOperands() < DescNumOps &&
1174       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1175     insertNamedMCOperand(MI, MCOperand::createImm(0),
1176                          AMDGPU::OpName::src0_modifiers);
1177 
1178   if (MI.getNumOperands() < DescNumOps &&
1179       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1180     insertNamedMCOperand(MI, MCOperand::createImm(0),
1181                          AMDGPU::OpName::src1_modifiers);
1182   return MCDisassembler::Success;
1183 }
1184 
1185 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1186                                                 int ImmLitIdx) const {
1187   assert(HasLiteral && "Should have decoded a literal");
1188   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1189   unsigned DescNumOps = Desc.getNumOperands();
1190   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1191                        AMDGPU::OpName::immDeferred);
1192   assert(DescNumOps == MI.getNumOperands());
1193   for (unsigned I = 0; I < DescNumOps; ++I) {
1194     auto &Op = MI.getOperand(I);
1195     auto OpType = Desc.operands()[I].OperandType;
1196     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1197                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1198     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1199         IsDeferredOp)
1200       Op.setImm(Literal);
1201   }
1202   return MCDisassembler::Success;
1203 }
1204 
1205 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1206   return getContext().getRegisterInfo()->
1207     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1208 }
1209 
1210 inline
1211 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1212                                          const Twine& ErrMsg) const {
1213   *CommentStream << "Error: " + ErrMsg;
1214 
1215   // ToDo: add support for error operands to MCInst.h
1216   // return MCOperand::createError(V);
1217   return MCOperand();
1218 }
1219 
1220 inline
1221 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1222   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1223 }
1224 
1225 inline
1226 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1227                                                unsigned Val) const {
1228   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1229   if (Val >= RegCl.getNumRegs())
1230     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1231                            ": unknown register " + Twine(Val));
1232   return createRegOperand(RegCl.getRegister(Val));
1233 }
1234 
1235 inline
1236 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1237                                                 unsigned Val) const {
1238   // ToDo: SI/CI have 104 SGPRs, VI - 102
1239   // Valery: here we accepting as much as we can, let assembler sort it out
1240   int shift = 0;
1241   switch (SRegClassID) {
1242   case AMDGPU::SGPR_32RegClassID:
1243   case AMDGPU::TTMP_32RegClassID:
1244     break;
1245   case AMDGPU::SGPR_64RegClassID:
1246   case AMDGPU::TTMP_64RegClassID:
1247     shift = 1;
1248     break;
1249   case AMDGPU::SGPR_96RegClassID:
1250   case AMDGPU::TTMP_96RegClassID:
1251   case AMDGPU::SGPR_128RegClassID:
1252   case AMDGPU::TTMP_128RegClassID:
1253   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1254   // this bundle?
1255   case AMDGPU::SGPR_256RegClassID:
1256   case AMDGPU::TTMP_256RegClassID:
1257     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1258   // this bundle?
1259   case AMDGPU::SGPR_288RegClassID:
1260   case AMDGPU::TTMP_288RegClassID:
1261   case AMDGPU::SGPR_320RegClassID:
1262   case AMDGPU::TTMP_320RegClassID:
1263   case AMDGPU::SGPR_352RegClassID:
1264   case AMDGPU::TTMP_352RegClassID:
1265   case AMDGPU::SGPR_384RegClassID:
1266   case AMDGPU::TTMP_384RegClassID:
1267   case AMDGPU::SGPR_512RegClassID:
1268   case AMDGPU::TTMP_512RegClassID:
1269     shift = 2;
1270     break;
1271   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1272   // this bundle?
1273   default:
1274     llvm_unreachable("unhandled register class");
1275   }
1276 
1277   if (Val % (1 << shift)) {
1278     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1279                    << ": scalar reg isn't aligned " << Val;
1280   }
1281 
1282   return createRegOperand(SRegClassID, Val >> shift);
1283 }
1284 
1285 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1286                                                   bool IsHi) const {
1287   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1288   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1289 }
1290 
1291 // Decode Literals for insts which always have a literal in the encoding
1292 MCOperand
1293 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1294   if (HasLiteral) {
1295     assert(
1296         AMDGPU::hasVOPD(STI) &&
1297         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1298     if (Literal != Val)
1299       return errOperand(Val, "More than one unique literal is illegal");
1300   }
1301   HasLiteral = true;
1302   Literal = Val;
1303   return MCOperand::createImm(Literal);
1304 }
1305 
1306 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1307   // For now all literal constants are supposed to be unsigned integer
1308   // ToDo: deal with signed/unsigned 64-bit integer constants
1309   // ToDo: deal with float/double constants
1310   if (!HasLiteral) {
1311     if (Bytes.size() < 4) {
1312       return errOperand(0, "cannot read literal, inst bytes left " +
1313                         Twine(Bytes.size()));
1314     }
1315     HasLiteral = true;
1316     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1317     if (ExtendFP64)
1318       Literal64 <<= 32;
1319   }
1320   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1321 }
1322 
1323 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1324   using namespace AMDGPU::EncValues;
1325 
1326   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1327   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1328     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1329     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1330       // Cast prevents negative overflow.
1331 }
1332 
1333 static int64_t getInlineImmVal32(unsigned Imm) {
1334   switch (Imm) {
1335   case 240:
1336     return llvm::bit_cast<uint32_t>(0.5f);
1337   case 241:
1338     return llvm::bit_cast<uint32_t>(-0.5f);
1339   case 242:
1340     return llvm::bit_cast<uint32_t>(1.0f);
1341   case 243:
1342     return llvm::bit_cast<uint32_t>(-1.0f);
1343   case 244:
1344     return llvm::bit_cast<uint32_t>(2.0f);
1345   case 245:
1346     return llvm::bit_cast<uint32_t>(-2.0f);
1347   case 246:
1348     return llvm::bit_cast<uint32_t>(4.0f);
1349   case 247:
1350     return llvm::bit_cast<uint32_t>(-4.0f);
1351   case 248: // 1 / (2 * PI)
1352     return 0x3e22f983;
1353   default:
1354     llvm_unreachable("invalid fp inline imm");
1355   }
1356 }
1357 
1358 static int64_t getInlineImmVal64(unsigned Imm) {
1359   switch (Imm) {
1360   case 240:
1361     return llvm::bit_cast<uint64_t>(0.5);
1362   case 241:
1363     return llvm::bit_cast<uint64_t>(-0.5);
1364   case 242:
1365     return llvm::bit_cast<uint64_t>(1.0);
1366   case 243:
1367     return llvm::bit_cast<uint64_t>(-1.0);
1368   case 244:
1369     return llvm::bit_cast<uint64_t>(2.0);
1370   case 245:
1371     return llvm::bit_cast<uint64_t>(-2.0);
1372   case 246:
1373     return llvm::bit_cast<uint64_t>(4.0);
1374   case 247:
1375     return llvm::bit_cast<uint64_t>(-4.0);
1376   case 248: // 1 / (2 * PI)
1377     return 0x3fc45f306dc9c882;
1378   default:
1379     llvm_unreachable("invalid fp inline imm");
1380   }
1381 }
1382 
1383 static int64_t getInlineImmVal16(unsigned Imm) {
1384   switch (Imm) {
1385   case 240:
1386     return 0x3800;
1387   case 241:
1388     return 0xB800;
1389   case 242:
1390     return 0x3C00;
1391   case 243:
1392     return 0xBC00;
1393   case 244:
1394     return 0x4000;
1395   case 245:
1396     return 0xC000;
1397   case 246:
1398     return 0x4400;
1399   case 247:
1400     return 0xC400;
1401   case 248: // 1 / (2 * PI)
1402     return 0x3118;
1403   default:
1404     llvm_unreachable("invalid fp inline imm");
1405   }
1406 }
1407 
1408 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1409   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1410       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1411 
1412   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1413   // ImmWidth 0 is a default case where operand should not allow immediates.
1414   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1415   // use it to print verbose error message.
1416   switch (ImmWidth) {
1417   case 0:
1418   case 32:
1419     return MCOperand::createImm(getInlineImmVal32(Imm));
1420   case 64:
1421     return MCOperand::createImm(getInlineImmVal64(Imm));
1422   case 16:
1423     return MCOperand::createImm(getInlineImmVal16(Imm));
1424   default:
1425     llvm_unreachable("implement me");
1426   }
1427 }
1428 
1429 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1430   using namespace AMDGPU;
1431 
1432   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1433   switch (Width) {
1434   default: // fall
1435   case OPW32:
1436   case OPW16:
1437   case OPWV216:
1438     return VGPR_32RegClassID;
1439   case OPW64:
1440   case OPWV232: return VReg_64RegClassID;
1441   case OPW96: return VReg_96RegClassID;
1442   case OPW128: return VReg_128RegClassID;
1443   case OPW160: return VReg_160RegClassID;
1444   case OPW256: return VReg_256RegClassID;
1445   case OPW288: return VReg_288RegClassID;
1446   case OPW320: return VReg_320RegClassID;
1447   case OPW352: return VReg_352RegClassID;
1448   case OPW384: return VReg_384RegClassID;
1449   case OPW512: return VReg_512RegClassID;
1450   case OPW1024: return VReg_1024RegClassID;
1451   }
1452 }
1453 
1454 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1455   using namespace AMDGPU;
1456 
1457   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1458   switch (Width) {
1459   default: // fall
1460   case OPW32:
1461   case OPW16:
1462   case OPWV216:
1463     return AGPR_32RegClassID;
1464   case OPW64:
1465   case OPWV232: return AReg_64RegClassID;
1466   case OPW96: return AReg_96RegClassID;
1467   case OPW128: return AReg_128RegClassID;
1468   case OPW160: return AReg_160RegClassID;
1469   case OPW256: return AReg_256RegClassID;
1470   case OPW288: return AReg_288RegClassID;
1471   case OPW320: return AReg_320RegClassID;
1472   case OPW352: return AReg_352RegClassID;
1473   case OPW384: return AReg_384RegClassID;
1474   case OPW512: return AReg_512RegClassID;
1475   case OPW1024: return AReg_1024RegClassID;
1476   }
1477 }
1478 
1479 
1480 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1481   using namespace AMDGPU;
1482 
1483   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1484   switch (Width) {
1485   default: // fall
1486   case OPW32:
1487   case OPW16:
1488   case OPWV216:
1489     return SGPR_32RegClassID;
1490   case OPW64:
1491   case OPWV232: return SGPR_64RegClassID;
1492   case OPW96: return SGPR_96RegClassID;
1493   case OPW128: return SGPR_128RegClassID;
1494   case OPW160: return SGPR_160RegClassID;
1495   case OPW256: return SGPR_256RegClassID;
1496   case OPW288: return SGPR_288RegClassID;
1497   case OPW320: return SGPR_320RegClassID;
1498   case OPW352: return SGPR_352RegClassID;
1499   case OPW384: return SGPR_384RegClassID;
1500   case OPW512: return SGPR_512RegClassID;
1501   }
1502 }
1503 
1504 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1505   using namespace AMDGPU;
1506 
1507   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1508   switch (Width) {
1509   default: // fall
1510   case OPW32:
1511   case OPW16:
1512   case OPWV216:
1513     return TTMP_32RegClassID;
1514   case OPW64:
1515   case OPWV232: return TTMP_64RegClassID;
1516   case OPW128: return TTMP_128RegClassID;
1517   case OPW256: return TTMP_256RegClassID;
1518   case OPW288: return TTMP_288RegClassID;
1519   case OPW320: return TTMP_320RegClassID;
1520   case OPW352: return TTMP_352RegClassID;
1521   case OPW384: return TTMP_384RegClassID;
1522   case OPW512: return TTMP_512RegClassID;
1523   }
1524 }
1525 
1526 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1527   using namespace AMDGPU::EncValues;
1528 
1529   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1530   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1531 
1532   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1533 }
1534 
1535 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1536                                           bool MandatoryLiteral,
1537                                           unsigned ImmWidth, bool IsFP) const {
1538   using namespace AMDGPU::EncValues;
1539 
1540   assert(Val < 1024); // enum10
1541 
1542   bool IsAGPR = Val & 512;
1543   Val &= 511;
1544 
1545   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1546     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1547                                    : getVgprClassId(Width), Val - VGPR_MIN);
1548   }
1549   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1550                             IsFP);
1551 }
1552 
1553 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1554                                                  unsigned Val,
1555                                                  bool MandatoryLiteral,
1556                                                  unsigned ImmWidth,
1557                                                  bool IsFP) const {
1558   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1559   // decoded earlier.
1560   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1561   using namespace AMDGPU::EncValues;
1562 
1563   if (Val <= SGPR_MAX) {
1564     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1565     static_assert(SGPR_MIN == 0);
1566     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1567   }
1568 
1569   int TTmpIdx = getTTmpIdx(Val);
1570   if (TTmpIdx >= 0) {
1571     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1572   }
1573 
1574   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1575     return decodeIntImmed(Val);
1576 
1577   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1578     return decodeFPImmed(ImmWidth, Val);
1579 
1580   if (Val == LITERAL_CONST) {
1581     if (MandatoryLiteral)
1582       // Keep a sentinel value for deferred setting
1583       return MCOperand::createImm(LITERAL_CONST);
1584     else
1585       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1586   }
1587 
1588   switch (Width) {
1589   case OPW32:
1590   case OPW16:
1591   case OPWV216:
1592     return decodeSpecialReg32(Val);
1593   case OPW64:
1594   case OPWV232:
1595     return decodeSpecialReg64(Val);
1596   default:
1597     llvm_unreachable("unexpected immediate type");
1598   }
1599 }
1600 
1601 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1602 // opposite of bit 0 of DstX.
1603 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1604                                                unsigned Val) const {
1605   int VDstXInd =
1606       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1607   assert(VDstXInd != -1);
1608   assert(Inst.getOperand(VDstXInd).isReg());
1609   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1610   Val |= ~XDstReg & 1;
1611   auto Width = llvm::AMDGPUDisassembler::OPW32;
1612   return createRegOperand(getVgprClassId(Width), Val);
1613 }
1614 
1615 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1616   using namespace AMDGPU;
1617 
1618   switch (Val) {
1619   // clang-format off
1620   case 102: return createRegOperand(FLAT_SCR_LO);
1621   case 103: return createRegOperand(FLAT_SCR_HI);
1622   case 104: return createRegOperand(XNACK_MASK_LO);
1623   case 105: return createRegOperand(XNACK_MASK_HI);
1624   case 106: return createRegOperand(VCC_LO);
1625   case 107: return createRegOperand(VCC_HI);
1626   case 108: return createRegOperand(TBA_LO);
1627   case 109: return createRegOperand(TBA_HI);
1628   case 110: return createRegOperand(TMA_LO);
1629   case 111: return createRegOperand(TMA_HI);
1630   case 124:
1631     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1632   case 125:
1633     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1634   case 126: return createRegOperand(EXEC_LO);
1635   case 127: return createRegOperand(EXEC_HI);
1636   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1637   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1638   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1639   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1640   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1641   case 251: return createRegOperand(SRC_VCCZ);
1642   case 252: return createRegOperand(SRC_EXECZ);
1643   case 253: return createRegOperand(SRC_SCC);
1644   case 254: return createRegOperand(LDS_DIRECT);
1645   default: break;
1646     // clang-format on
1647   }
1648   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1649 }
1650 
1651 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1652   using namespace AMDGPU;
1653 
1654   switch (Val) {
1655   case 102: return createRegOperand(FLAT_SCR);
1656   case 104: return createRegOperand(XNACK_MASK);
1657   case 106: return createRegOperand(VCC);
1658   case 108: return createRegOperand(TBA);
1659   case 110: return createRegOperand(TMA);
1660   case 124:
1661     if (isGFX11Plus())
1662       return createRegOperand(SGPR_NULL);
1663     break;
1664   case 125:
1665     if (!isGFX11Plus())
1666       return createRegOperand(SGPR_NULL);
1667     break;
1668   case 126: return createRegOperand(EXEC);
1669   case 235: return createRegOperand(SRC_SHARED_BASE);
1670   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1671   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1672   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1673   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1674   case 251: return createRegOperand(SRC_VCCZ);
1675   case 252: return createRegOperand(SRC_EXECZ);
1676   case 253: return createRegOperand(SRC_SCC);
1677   default: break;
1678   }
1679   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1680 }
1681 
1682 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1683                                             const unsigned Val,
1684                                             unsigned ImmWidth) const {
1685   using namespace AMDGPU::SDWA;
1686   using namespace AMDGPU::EncValues;
1687 
1688   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1689       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1690     // XXX: cast to int is needed to avoid stupid warning:
1691     // compare with unsigned is always true
1692     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1693         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1694       return createRegOperand(getVgprClassId(Width),
1695                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1696     }
1697     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1698         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1699                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1700       return createSRegOperand(getSgprClassId(Width),
1701                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1702     }
1703     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1704         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1705       return createSRegOperand(getTtmpClassId(Width),
1706                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1707     }
1708 
1709     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1710 
1711     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1712       return decodeIntImmed(SVal);
1713 
1714     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1715       return decodeFPImmed(ImmWidth, SVal);
1716 
1717     return decodeSpecialReg32(SVal);
1718   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1719     return createRegOperand(getVgprClassId(Width), Val);
1720   }
1721   llvm_unreachable("unsupported target");
1722 }
1723 
1724 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1725   return decodeSDWASrc(OPW16, Val, 16);
1726 }
1727 
1728 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1729   return decodeSDWASrc(OPW32, Val, 32);
1730 }
1731 
1732 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1733   using namespace AMDGPU::SDWA;
1734 
1735   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1736           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1737          "SDWAVopcDst should be present only on GFX9+");
1738 
1739   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1740 
1741   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1742     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1743 
1744     int TTmpIdx = getTTmpIdx(Val);
1745     if (TTmpIdx >= 0) {
1746       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1747       return createSRegOperand(TTmpClsId, TTmpIdx);
1748     } else if (Val > SGPR_MAX) {
1749       return IsWave64 ? decodeSpecialReg64(Val)
1750                       : decodeSpecialReg32(Val);
1751     } else {
1752       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1753     }
1754   } else {
1755     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1756   }
1757 }
1758 
1759 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1760   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1761              ? decodeSrcOp(OPW64, Val)
1762              : decodeSrcOp(OPW32, Val);
1763 }
1764 
1765 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1766   return decodeSrcOp(OPW32, Val);
1767 }
1768 
1769 bool AMDGPUDisassembler::isVI() const {
1770   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1771 }
1772 
1773 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1774 
1775 bool AMDGPUDisassembler::isGFX90A() const {
1776   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1777 }
1778 
1779 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1780 
1781 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1782 
1783 bool AMDGPUDisassembler::isGFX10Plus() const {
1784   return AMDGPU::isGFX10Plus(STI);
1785 }
1786 
1787 bool AMDGPUDisassembler::isGFX11() const {
1788   return STI.hasFeature(AMDGPU::FeatureGFX11);
1789 }
1790 
1791 bool AMDGPUDisassembler::isGFX11Plus() const {
1792   return AMDGPU::isGFX11Plus(STI);
1793 }
1794 
1795 bool AMDGPUDisassembler::isGFX12Plus() const {
1796   return AMDGPU::isGFX12Plus(STI);
1797 }
1798 
1799 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1800   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1801 }
1802 
1803 bool AMDGPUDisassembler::hasKernargPreload() const {
1804   return AMDGPU::hasKernargPreload(STI);
1805 }
1806 
1807 //===----------------------------------------------------------------------===//
1808 // AMDGPU specific symbol handling
1809 //===----------------------------------------------------------------------===//
1810 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1811 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1812   do {                                                                         \
1813     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1814   } while (0)
1815 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1816   do {                                                                         \
1817     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1818              << GET_FIELD(MASK) << '\n';                                       \
1819   } while (0)
1820 
1821 // NOLINTNEXTLINE(readability-identifier-naming)
1822 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1823     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1824   using namespace amdhsa;
1825   StringRef Indent = "\t";
1826 
1827   // We cannot accurately backward compute #VGPRs used from
1828   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1829   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1830   // simply calculate the inverse of what the assembler does.
1831 
1832   uint32_t GranulatedWorkitemVGPRCount =
1833       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1834 
1835   uint32_t NextFreeVGPR =
1836       (GranulatedWorkitemVGPRCount + 1) *
1837       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1838 
1839   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1840 
1841   // We cannot backward compute values used to calculate
1842   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1843   // directives can't be computed:
1844   // .amdhsa_reserve_vcc
1845   // .amdhsa_reserve_flat_scratch
1846   // .amdhsa_reserve_xnack_mask
1847   // They take their respective default values if not specified in the assembly.
1848   //
1849   // GRANULATED_WAVEFRONT_SGPR_COUNT
1850   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1851   //
1852   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1853   // are set to 0. So while disassembling we consider that:
1854   //
1855   // GRANULATED_WAVEFRONT_SGPR_COUNT
1856   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1857   //
1858   // The disassembler cannot recover the original values of those 3 directives.
1859 
1860   uint32_t GranulatedWavefrontSGPRCount =
1861       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1862 
1863   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1864     return MCDisassembler::Fail;
1865 
1866   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1867                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1868 
1869   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1870   if (!hasArchitectedFlatScratch())
1871     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1872   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1873   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1874 
1875   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1876     return MCDisassembler::Fail;
1877 
1878   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1879                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1880   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1881                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1882   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1883                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1884   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1885                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1886 
1887   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1888     return MCDisassembler::Fail;
1889 
1890   if (!isGFX12Plus())
1891     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1892                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1893 
1894   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1895     return MCDisassembler::Fail;
1896 
1897   if (!isGFX12Plus())
1898     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1899                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1900 
1901   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1902     return MCDisassembler::Fail;
1903 
1904   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1905     return MCDisassembler::Fail;
1906 
1907   if (isGFX9Plus())
1908     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1909 
1910   if (!isGFX9Plus())
1911     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1912       return MCDisassembler::Fail;
1913   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1914     return MCDisassembler::Fail;
1915   if (!isGFX10Plus())
1916     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1917       return MCDisassembler::Fail;
1918 
1919   if (isGFX10Plus()) {
1920     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1921                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1922     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1923     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1924   }
1925 
1926   if (isGFX12Plus())
1927     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1928                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1929 
1930   return MCDisassembler::Success;
1931 }
1932 
1933 // NOLINTNEXTLINE(readability-identifier-naming)
1934 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1935     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1936   using namespace amdhsa;
1937   StringRef Indent = "\t";
1938   if (hasArchitectedFlatScratch())
1939     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1940                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1941   else
1942     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1943                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1944   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1945                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1946   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1947                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1948   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1949                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1950   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1951                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1952   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1953                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1954 
1955   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1956     return MCDisassembler::Fail;
1957 
1958   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1959     return MCDisassembler::Fail;
1960 
1961   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1962     return MCDisassembler::Fail;
1963 
1964   PRINT_DIRECTIVE(
1965       ".amdhsa_exception_fp_ieee_invalid_op",
1966       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1967   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1968                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1969   PRINT_DIRECTIVE(
1970       ".amdhsa_exception_fp_ieee_div_zero",
1971       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1972   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1973                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1974   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1975                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1976   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1977                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1978   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1979                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1980 
1981   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1982     return MCDisassembler::Fail;
1983 
1984   return MCDisassembler::Success;
1985 }
1986 
1987 // NOLINTNEXTLINE(readability-identifier-naming)
1988 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1989     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1990   using namespace amdhsa;
1991   StringRef Indent = "\t";
1992   if (isGFX90A()) {
1993     KdStream << Indent << ".amdhsa_accum_offset "
1994              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1995              << '\n';
1996     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1997       return MCDisassembler::Fail;
1998     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1999     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2000       return MCDisassembler::Fail;
2001   } else if (isGFX10Plus()) {
2002     // Bits [0-3].
2003     if (!isGFX12Plus()) {
2004       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2005         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2006                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2007       } else {
2008         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2009             "SHARED_VGPR_COUNT",
2010             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2011       }
2012     } else {
2013       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2014         return MCDisassembler::Fail;
2015     }
2016 
2017     // Bits [4-11].
2018     if (isGFX11()) {
2019       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2020                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2021       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2022                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2023       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2024                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2025     } else if (isGFX12Plus()) {
2026       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2027           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2028     } else {
2029       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2030         return MCDisassembler::Fail;
2031     }
2032 
2033     // Bits [12].
2034     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2035       return MCDisassembler::Fail;
2036 
2037     // Bits [13].
2038     if (isGFX12Plus()) {
2039       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2040                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2041     } else {
2042       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2043         return MCDisassembler::Fail;
2044     }
2045 
2046     // Bits [14-30].
2047     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2048       return MCDisassembler::Fail;
2049 
2050     // Bits [31].
2051     if (isGFX11Plus()) {
2052       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2053                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2054     } else {
2055       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2056         return MCDisassembler::Fail;
2057     }
2058   } else if (FourByteBuffer) {
2059     return MCDisassembler::Fail;
2060   }
2061   return MCDisassembler::Success;
2062 }
2063 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2064 #undef PRINT_DIRECTIVE
2065 #undef GET_FIELD
2066 
2067 MCDisassembler::DecodeStatus
2068 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2069     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2070     raw_string_ostream &KdStream) const {
2071 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2072   do {                                                                         \
2073     KdStream << Indent << DIRECTIVE " "                                        \
2074              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2075   } while (0)
2076 
2077   uint16_t TwoByteBuffer = 0;
2078   uint32_t FourByteBuffer = 0;
2079 
2080   StringRef ReservedBytes;
2081   StringRef Indent = "\t";
2082 
2083   assert(Bytes.size() == 64);
2084   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2085 
2086   switch (Cursor.tell()) {
2087   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2088     FourByteBuffer = DE.getU32(Cursor);
2089     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2090              << '\n';
2091     return MCDisassembler::Success;
2092 
2093   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2094     FourByteBuffer = DE.getU32(Cursor);
2095     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2096              << FourByteBuffer << '\n';
2097     return MCDisassembler::Success;
2098 
2099   case amdhsa::KERNARG_SIZE_OFFSET:
2100     FourByteBuffer = DE.getU32(Cursor);
2101     KdStream << Indent << ".amdhsa_kernarg_size "
2102              << FourByteBuffer << '\n';
2103     return MCDisassembler::Success;
2104 
2105   case amdhsa::RESERVED0_OFFSET:
2106     // 4 reserved bytes, must be 0.
2107     ReservedBytes = DE.getBytes(Cursor, 4);
2108     for (int I = 0; I < 4; ++I) {
2109       if (ReservedBytes[I] != 0) {
2110         return MCDisassembler::Fail;
2111       }
2112     }
2113     return MCDisassembler::Success;
2114 
2115   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2116     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2117     // So far no directive controls this for Code Object V3, so simply skip for
2118     // disassembly.
2119     DE.skip(Cursor, 8);
2120     return MCDisassembler::Success;
2121 
2122   case amdhsa::RESERVED1_OFFSET:
2123     // 20 reserved bytes, must be 0.
2124     ReservedBytes = DE.getBytes(Cursor, 20);
2125     for (int I = 0; I < 20; ++I) {
2126       if (ReservedBytes[I] != 0) {
2127         return MCDisassembler::Fail;
2128       }
2129     }
2130     return MCDisassembler::Success;
2131 
2132   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2133     FourByteBuffer = DE.getU32(Cursor);
2134     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2135 
2136   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2137     FourByteBuffer = DE.getU32(Cursor);
2138     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2139 
2140   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2141     FourByteBuffer = DE.getU32(Cursor);
2142     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2143 
2144   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2145     using namespace amdhsa;
2146     TwoByteBuffer = DE.getU16(Cursor);
2147 
2148     if (!hasArchitectedFlatScratch())
2149       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2150                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2151     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2152                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2153     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2154                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2155     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2156                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2157     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2158                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2159     if (!hasArchitectedFlatScratch())
2160       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2161                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2162     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2163                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2164 
2165     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2166       return MCDisassembler::Fail;
2167 
2168     // Reserved for GFX9
2169     if (isGFX9() &&
2170         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2171       return MCDisassembler::Fail;
2172     } else if (isGFX10Plus()) {
2173       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2174                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2175     }
2176 
2177     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2178       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2179                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2180 
2181     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2182       return MCDisassembler::Fail;
2183 
2184     return MCDisassembler::Success;
2185 
2186   case amdhsa::KERNARG_PRELOAD_OFFSET:
2187     using namespace amdhsa;
2188     TwoByteBuffer = DE.getU16(Cursor);
2189     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2190       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2191                       KERNARG_PRELOAD_SPEC_LENGTH);
2192     }
2193 
2194     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2195       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2196                       KERNARG_PRELOAD_SPEC_OFFSET);
2197     }
2198     return MCDisassembler::Success;
2199 
2200   case amdhsa::RESERVED3_OFFSET:
2201     // 4 bytes from here are reserved, must be 0.
2202     ReservedBytes = DE.getBytes(Cursor, 4);
2203     for (int I = 0; I < 4; ++I) {
2204       if (ReservedBytes[I] != 0)
2205         return MCDisassembler::Fail;
2206     }
2207     return MCDisassembler::Success;
2208 
2209   default:
2210     llvm_unreachable("Unhandled index. Case statements cover everything.");
2211     return MCDisassembler::Fail;
2212   }
2213 #undef PRINT_DIRECTIVE
2214 }
2215 
2216 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2217     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2218   // CP microcode requires the kernel descriptor to be 64 aligned.
2219   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2220     return MCDisassembler::Fail;
2221 
2222   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2223   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2224   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2225   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2226   // when required.
2227   if (isGFX10Plus()) {
2228     uint16_t KernelCodeProperties =
2229         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2230                                 llvm::endianness::little);
2231     EnableWavefrontSize32 =
2232         AMDHSA_BITS_GET(KernelCodeProperties,
2233                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2234   }
2235 
2236   std::string Kd;
2237   raw_string_ostream KdStream(Kd);
2238   KdStream << ".amdhsa_kernel " << KdName << '\n';
2239 
2240   DataExtractor::Cursor C(0);
2241   while (C && C.tell() < Bytes.size()) {
2242     MCDisassembler::DecodeStatus Status =
2243         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2244 
2245     cantFail(C.takeError());
2246 
2247     if (Status == MCDisassembler::Fail)
2248       return MCDisassembler::Fail;
2249   }
2250   KdStream << ".end_amdhsa_kernel\n";
2251   outs() << KdStream.str();
2252   return MCDisassembler::Success;
2253 }
2254 
2255 std::optional<MCDisassembler::DecodeStatus>
2256 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2257                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2258                                   raw_ostream &CStream) const {
2259   // Right now only kernel descriptor needs to be handled.
2260   // We ignore all other symbols for target specific handling.
2261   // TODO:
2262   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2263   // Object V2 and V3 when symbols are marked protected.
2264 
2265   // amd_kernel_code_t for Code Object V2.
2266   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2267     Size = 256;
2268     return MCDisassembler::Fail;
2269   }
2270 
2271   // Code Object V3 kernel descriptors.
2272   StringRef Name = Symbol.Name;
2273   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2274     Size = 64; // Size = 64 regardless of success or failure.
2275     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2276   }
2277   return std::nullopt;
2278 }
2279 
2280 //===----------------------------------------------------------------------===//
2281 // AMDGPUSymbolizer
2282 //===----------------------------------------------------------------------===//
2283 
2284 // Try to find symbol name for specified label
2285 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2286     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2287     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2288     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2289 
2290   if (!IsBranch) {
2291     return false;
2292   }
2293 
2294   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2295   if (!Symbols)
2296     return false;
2297 
2298   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2299     return Val.Addr == static_cast<uint64_t>(Value) &&
2300            Val.Type == ELF::STT_NOTYPE;
2301   });
2302   if (Result != Symbols->end()) {
2303     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2304     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2305     Inst.addOperand(MCOperand::createExpr(Add));
2306     return true;
2307   }
2308   // Add to list of referenced addresses, so caller can synthesize a label.
2309   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2310   return false;
2311 }
2312 
2313 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2314                                                        int64_t Value,
2315                                                        uint64_t Address) {
2316   llvm_unreachable("unimplemented");
2317 }
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Initialization
2321 //===----------------------------------------------------------------------===//
2322 
2323 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2324                               LLVMOpInfoCallback /*GetOpInfo*/,
2325                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2326                               void *DisInfo,
2327                               MCContext *Ctx,
2328                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2329   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2330 }
2331 
2332 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2333                                                 const MCSubtargetInfo &STI,
2334                                                 MCContext &Ctx) {
2335   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2336 }
2337 
2338 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2339   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2340                                          createAMDGPUDisassembler);
2341   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2342                                        createAMDGPUSymbolizer);
2343 }
2344