xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision 647cbc5de815c5651677bf8582797f716ec7b48d)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for SI+ GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUCtorDtorLowering.h"
19 #include "AMDGPUExportClustering.h"
20 #include "AMDGPUIGroupLP.h"
21 #include "AMDGPUMacroFusion.h"
22 #include "AMDGPURegBankSelect.h"
23 #include "AMDGPUTargetObjectFile.h"
24 #include "AMDGPUTargetTransformInfo.h"
25 #include "AMDGPUUnifyDivergentExitNodes.h"
26 #include "GCNIterativeScheduler.h"
27 #include "GCNSchedStrategy.h"
28 #include "GCNVOPDUtils.h"
29 #include "R600.h"
30 #include "R600MachineFunctionInfo.h"
31 #include "R600TargetMachine.h"
32 #include "SIMachineFunctionInfo.h"
33 #include "SIMachineScheduler.h"
34 #include "TargetInfo/AMDGPUTargetInfo.h"
35 #include "Utils/AMDGPUBaseInfo.h"
36 #include "llvm/Analysis/CGSCCPassManager.h"
37 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
38 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
39 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
40 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
41 #include "llvm/CodeGen/GlobalISel/Localizer.h"
42 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
43 #include "llvm/CodeGen/MIRParser/MIParser.h"
44 #include "llvm/CodeGen/Passes.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/MC/TargetRegistry.h"
52 #include "llvm/Passes/PassBuilder.h"
53 #include "llvm/Transforms/HipStdPar/HipStdPar.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/IPO/AlwaysInliner.h"
56 #include "llvm/Transforms/IPO/GlobalDCE.h"
57 #include "llvm/Transforms/IPO/Internalize.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Scalar/GVN.h"
60 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
61 #include "llvm/Transforms/Utils.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
63 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
64 #include <optional>
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 namespace {
70 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
71 public:
72   SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
73     : RegisterRegAllocBase(N, D, C) {}
74 };
75 
76 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
77 public:
78   VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
79     : RegisterRegAllocBase(N, D, C) {}
80 };
81 
82 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
83                               const TargetRegisterClass &RC) {
84   return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
85 }
86 
87 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
88                               const TargetRegisterClass &RC) {
89   return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
90 }
91 
92 
93 /// -{sgpr|vgpr}-regalloc=... command line option.
94 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
95 
96 /// A dummy default pass factory indicates whether the register allocator is
97 /// overridden on the command line.
98 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
99 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
100 
101 static SGPRRegisterRegAlloc
102 defaultSGPRRegAlloc("default",
103                     "pick SGPR register allocator based on -O option",
104                     useDefaultRegisterAllocator);
105 
106 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
107                RegisterPassParser<SGPRRegisterRegAlloc>>
108 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
109              cl::desc("Register allocator to use for SGPRs"));
110 
111 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
112                RegisterPassParser<VGPRRegisterRegAlloc>>
113 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
114              cl::desc("Register allocator to use for VGPRs"));
115 
116 
117 static void initializeDefaultSGPRRegisterAllocatorOnce() {
118   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
119 
120   if (!Ctor) {
121     Ctor = SGPRRegAlloc;
122     SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
123   }
124 }
125 
126 static void initializeDefaultVGPRRegisterAllocatorOnce() {
127   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
128 
129   if (!Ctor) {
130     Ctor = VGPRRegAlloc;
131     VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
132   }
133 }
134 
135 static FunctionPass *createBasicSGPRRegisterAllocator() {
136   return createBasicRegisterAllocator(onlyAllocateSGPRs);
137 }
138 
139 static FunctionPass *createGreedySGPRRegisterAllocator() {
140   return createGreedyRegisterAllocator(onlyAllocateSGPRs);
141 }
142 
143 static FunctionPass *createFastSGPRRegisterAllocator() {
144   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
145 }
146 
147 static FunctionPass *createBasicVGPRRegisterAllocator() {
148   return createBasicRegisterAllocator(onlyAllocateVGPRs);
149 }
150 
151 static FunctionPass *createGreedyVGPRRegisterAllocator() {
152   return createGreedyRegisterAllocator(onlyAllocateVGPRs);
153 }
154 
155 static FunctionPass *createFastVGPRRegisterAllocator() {
156   return createFastRegisterAllocator(onlyAllocateVGPRs, true);
157 }
158 
159 static SGPRRegisterRegAlloc basicRegAllocSGPR(
160   "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
161 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
162   "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
163 
164 static SGPRRegisterRegAlloc fastRegAllocSGPR(
165   "fast", "fast register allocator", createFastSGPRRegisterAllocator);
166 
167 
168 static VGPRRegisterRegAlloc basicRegAllocVGPR(
169   "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
170 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
171   "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
172 
173 static VGPRRegisterRegAlloc fastRegAllocVGPR(
174   "fast", "fast register allocator", createFastVGPRRegisterAllocator);
175 }
176 
177 static cl::opt<bool>
178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
179                         cl::desc("Run early if-conversion"),
180                         cl::init(false));
181 
182 static cl::opt<bool>
183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
184             cl::desc("Run pre-RA exec mask optimizations"),
185             cl::init(true));
186 
187 static cl::opt<bool>
188     LowerCtorDtor("amdgpu-lower-global-ctor-dtor",
189                   cl::desc("Lower GPU ctor / dtors to globals on the device."),
190                   cl::init(true), cl::Hidden);
191 
192 // Option to disable vectorizer for tests.
193 static cl::opt<bool> EnableLoadStoreVectorizer(
194   "amdgpu-load-store-vectorizer",
195   cl::desc("Enable load store vectorizer"),
196   cl::init(true),
197   cl::Hidden);
198 
199 // Option to control global loads scalarization
200 static cl::opt<bool> ScalarizeGlobal(
201   "amdgpu-scalarize-global-loads",
202   cl::desc("Enable global load scalarization"),
203   cl::init(true),
204   cl::Hidden);
205 
206 // Option to run internalize pass.
207 static cl::opt<bool> InternalizeSymbols(
208   "amdgpu-internalize-symbols",
209   cl::desc("Enable elimination of non-kernel functions and unused globals"),
210   cl::init(false),
211   cl::Hidden);
212 
213 // Option to inline all early.
214 static cl::opt<bool> EarlyInlineAll(
215   "amdgpu-early-inline-all",
216   cl::desc("Inline all functions early"),
217   cl::init(false),
218   cl::Hidden);
219 
220 static cl::opt<bool> RemoveIncompatibleFunctions(
221     "amdgpu-enable-remove-incompatible-functions", cl::Hidden,
222     cl::desc("Enable removal of functions when they"
223              "use features not supported by the target GPU"),
224     cl::init(true));
225 
226 static cl::opt<bool> EnableSDWAPeephole(
227   "amdgpu-sdwa-peephole",
228   cl::desc("Enable SDWA peepholer"),
229   cl::init(true));
230 
231 static cl::opt<bool> EnableDPPCombine(
232   "amdgpu-dpp-combine",
233   cl::desc("Enable DPP combiner"),
234   cl::init(true));
235 
236 // Enable address space based alias analysis
237 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
238   cl::desc("Enable AMDGPU Alias Analysis"),
239   cl::init(true));
240 
241 // Option to run late CFG structurizer
242 static cl::opt<bool, true> LateCFGStructurize(
243   "amdgpu-late-structurize",
244   cl::desc("Enable late CFG structurization"),
245   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
246   cl::Hidden);
247 
248 // Enable lib calls simplifications
249 static cl::opt<bool> EnableLibCallSimplify(
250   "amdgpu-simplify-libcall",
251   cl::desc("Enable amdgpu library simplifications"),
252   cl::init(true),
253   cl::Hidden);
254 
255 static cl::opt<bool> EnableLowerKernelArguments(
256   "amdgpu-ir-lower-kernel-arguments",
257   cl::desc("Lower kernel argument loads in IR pass"),
258   cl::init(true),
259   cl::Hidden);
260 
261 static cl::opt<bool> EnableRegReassign(
262   "amdgpu-reassign-regs",
263   cl::desc("Enable register reassign optimizations on gfx10+"),
264   cl::init(true),
265   cl::Hidden);
266 
267 static cl::opt<bool> OptVGPRLiveRange(
268     "amdgpu-opt-vgpr-liverange",
269     cl::desc("Enable VGPR liverange optimizations for if-else structure"),
270     cl::init(true), cl::Hidden);
271 
272 static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy(
273     "amdgpu-atomic-optimizer-strategy",
274     cl::desc("Select DPP or Iterative strategy for scan"),
275     cl::init(ScanOptions::Iterative),
276     cl::values(
277         clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"),
278         clEnumValN(ScanOptions::Iterative, "Iterative",
279                    "Use Iterative approach for scan"),
280         clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer")));
281 
282 // Enable Mode register optimization
283 static cl::opt<bool> EnableSIModeRegisterPass(
284   "amdgpu-mode-register",
285   cl::desc("Enable mode register pass"),
286   cl::init(true),
287   cl::Hidden);
288 
289 // Enable GFX11.5+ s_singleuse_vdst insertion
290 static cl::opt<bool>
291     EnableInsertSingleUseVDST("amdgpu-enable-single-use-vdst",
292                               cl::desc("Enable s_singleuse_vdst insertion"),
293                               cl::init(false), cl::Hidden);
294 
295 // Enable GFX11+ s_delay_alu insertion
296 static cl::opt<bool>
297     EnableInsertDelayAlu("amdgpu-enable-delay-alu",
298                          cl::desc("Enable s_delay_alu insertion"),
299                          cl::init(true), cl::Hidden);
300 
301 // Enable GFX11+ VOPD
302 static cl::opt<bool>
303     EnableVOPD("amdgpu-enable-vopd",
304                cl::desc("Enable VOPD, dual issue of VALU in wave32"),
305                cl::init(true), cl::Hidden);
306 
307 // Option is used in lit tests to prevent deadcoding of patterns inspected.
308 static cl::opt<bool>
309 EnableDCEInRA("amdgpu-dce-in-ra",
310     cl::init(true), cl::Hidden,
311     cl::desc("Enable machine DCE inside regalloc"));
312 
313 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority",
314                                            cl::desc("Adjust wave priority"),
315                                            cl::init(false), cl::Hidden);
316 
317 static cl::opt<bool> EnableScalarIRPasses(
318   "amdgpu-scalar-ir-passes",
319   cl::desc("Enable scalar IR passes"),
320   cl::init(true),
321   cl::Hidden);
322 
323 static cl::opt<bool> EnableStructurizerWorkarounds(
324     "amdgpu-enable-structurizer-workarounds",
325     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
326     cl::Hidden);
327 
328 static cl::opt<bool, true> EnableLowerModuleLDS(
329     "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
330     cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
331     cl::Hidden);
332 
333 static cl::opt<bool> EnablePreRAOptimizations(
334     "amdgpu-enable-pre-ra-optimizations",
335     cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
336     cl::Hidden);
337 
338 static cl::opt<bool> EnablePromoteKernelArguments(
339     "amdgpu-enable-promote-kernel-arguments",
340     cl::desc("Enable promotion of flat kernel pointer arguments to global"),
341     cl::Hidden, cl::init(true));
342 
343 static cl::opt<bool> EnableImageIntrinsicOptimizer(
344     "amdgpu-enable-image-intrinsic-optimizer",
345     cl::desc("Enable image intrinsic optimizer pass"), cl::init(true),
346     cl::Hidden);
347 
348 static cl::opt<bool>
349     EnableLoopPrefetch("amdgpu-loop-prefetch",
350                        cl::desc("Enable loop data prefetch on AMDGPU"),
351                        cl::Hidden, cl::init(false));
352 
353 static cl::opt<bool> EnableMaxIlpSchedStrategy(
354     "amdgpu-enable-max-ilp-scheduling-strategy",
355     cl::desc("Enable scheduling strategy to maximize ILP for a single wave."),
356     cl::Hidden, cl::init(false));
357 
358 static cl::opt<bool> EnableRewritePartialRegUses(
359     "amdgpu-enable-rewrite-partial-reg-uses",
360     cl::desc("Enable rewrite partial reg uses pass"), cl::init(true),
361     cl::Hidden);
362 
363 static cl::opt<bool> EnableHipStdPar(
364   "amdgpu-enable-hipstdpar",
365   cl::desc("Enable HIP Standard Parallelism Offload support"), cl::init(false),
366   cl::Hidden);
367 
368 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
369   // Register the target
370   RegisterTargetMachine<R600TargetMachine> X(getTheR600Target());
371   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
372 
373   PassRegistry *PR = PassRegistry::getPassRegistry();
374   initializeR600ClauseMergePassPass(*PR);
375   initializeR600ControlFlowFinalizerPass(*PR);
376   initializeR600PacketizerPass(*PR);
377   initializeR600ExpandSpecialInstrsPassPass(*PR);
378   initializeR600VectorRegMergerPass(*PR);
379   initializeGlobalISel(*PR);
380   initializeAMDGPUDAGToDAGISelPass(*PR);
381   initializeGCNDPPCombinePass(*PR);
382   initializeSILowerI1CopiesPass(*PR);
383   initializeAMDGPUGlobalISelDivergenceLoweringPass(*PR);
384   initializeSILowerWWMCopiesPass(*PR);
385   initializeSILowerSGPRSpillsPass(*PR);
386   initializeSIFixSGPRCopiesPass(*PR);
387   initializeSIFixVGPRCopiesPass(*PR);
388   initializeSIFoldOperandsPass(*PR);
389   initializeSIPeepholeSDWAPass(*PR);
390   initializeSIShrinkInstructionsPass(*PR);
391   initializeSIOptimizeExecMaskingPreRAPass(*PR);
392   initializeSIOptimizeVGPRLiveRangePass(*PR);
393   initializeSILoadStoreOptimizerPass(*PR);
394   initializeAMDGPUCtorDtorLoweringLegacyPass(*PR);
395   initializeAMDGPUAlwaysInlinePass(*PR);
396   initializeAMDGPUAttributorLegacyPass(*PR);
397   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
398   initializeAMDGPUAnnotateUniformValuesPass(*PR);
399   initializeAMDGPUArgumentUsageInfoPass(*PR);
400   initializeAMDGPUAtomicOptimizerPass(*PR);
401   initializeAMDGPULowerKernelArgumentsPass(*PR);
402   initializeAMDGPUPromoteKernelArgumentsPass(*PR);
403   initializeAMDGPULowerKernelAttributesPass(*PR);
404   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
405   initializeAMDGPUPostLegalizerCombinerPass(*PR);
406   initializeAMDGPUPreLegalizerCombinerPass(*PR);
407   initializeAMDGPURegBankCombinerPass(*PR);
408   initializeAMDGPURegBankSelectPass(*PR);
409   initializeAMDGPUPromoteAllocaPass(*PR);
410   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
411   initializeAMDGPUCodeGenPreparePass(*PR);
412   initializeAMDGPULateCodeGenPreparePass(*PR);
413   initializeAMDGPURemoveIncompatibleFunctionsPass(*PR);
414   initializeAMDGPULowerModuleLDSLegacyPass(*PR);
415   initializeAMDGPURewriteOutArgumentsPass(*PR);
416   initializeAMDGPURewriteUndefForPHILegacyPass(*PR);
417   initializeAMDGPUUnifyMetadataPass(*PR);
418   initializeSIAnnotateControlFlowPass(*PR);
419   initializeAMDGPUInsertSingleUseVDSTPass(*PR);
420   initializeAMDGPUInsertDelayAluPass(*PR);
421   initializeSIInsertHardClausesPass(*PR);
422   initializeSIInsertWaitcntsPass(*PR);
423   initializeSIModeRegisterPass(*PR);
424   initializeSIWholeQuadModePass(*PR);
425   initializeSILowerControlFlowPass(*PR);
426   initializeSIPreEmitPeepholePass(*PR);
427   initializeSILateBranchLoweringPass(*PR);
428   initializeSIMemoryLegalizerPass(*PR);
429   initializeSIOptimizeExecMaskingPass(*PR);
430   initializeSIPreAllocateWWMRegsPass(*PR);
431   initializeSIFormMemoryClausesPass(*PR);
432   initializeSIPostRABundlerPass(*PR);
433   initializeGCNCreateVOPDPass(*PR);
434   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
435   initializeAMDGPUAAWrapperPassPass(*PR);
436   initializeAMDGPUExternalAAWrapperPass(*PR);
437   initializeAMDGPUImageIntrinsicOptimizerPass(*PR);
438   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
439   initializeAMDGPUResourceUsageAnalysisPass(*PR);
440   initializeGCNNSAReassignPass(*PR);
441   initializeGCNPreRAOptimizationsPass(*PR);
442   initializeGCNPreRALongBranchRegPass(*PR);
443   initializeGCNRewritePartialRegUsesPass(*PR);
444   initializeGCNRegPressurePrinterPass(*PR);
445 }
446 
447 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
448   return std::make_unique<AMDGPUTargetObjectFile>();
449 }
450 
451 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
452   return new SIScheduleDAGMI(C);
453 }
454 
455 static ScheduleDAGInstrs *
456 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
457   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
458   ScheduleDAGMILive *DAG =
459     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
460   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
461   if (ST.shouldClusterStores())
462     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
463   DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false));
464   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
465   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
466   return DAG;
467 }
468 
469 static ScheduleDAGInstrs *
470 createGCNMaxILPMachineScheduler(MachineSchedContext *C) {
471   ScheduleDAGMILive *DAG =
472       new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C));
473   DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false));
474   return DAG;
475 }
476 
477 static ScheduleDAGInstrs *
478 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
479   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
480   auto DAG = new GCNIterativeScheduler(C,
481     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
482   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
483   if (ST.shouldClusterStores())
484     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
485   return DAG;
486 }
487 
488 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
489   return new GCNIterativeScheduler(C,
490     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
491 }
492 
493 static ScheduleDAGInstrs *
494 createIterativeILPMachineScheduler(MachineSchedContext *C) {
495   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
496   auto DAG = new GCNIterativeScheduler(C,
497     GCNIterativeScheduler::SCHEDULE_ILP);
498   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
499   if (ST.shouldClusterStores())
500     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
501   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
502   return DAG;
503 }
504 
505 static MachineSchedRegistry
506 SISchedRegistry("si", "Run SI's custom scheduler",
507                 createSIMachineScheduler);
508 
509 static MachineSchedRegistry
510 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
511                              "Run GCN scheduler to maximize occupancy",
512                              createGCNMaxOccupancyMachineScheduler);
513 
514 static MachineSchedRegistry
515     GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp",
516                            createGCNMaxILPMachineScheduler);
517 
518 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry(
519     "gcn-iterative-max-occupancy-experimental",
520     "Run GCN scheduler to maximize occupancy (experimental)",
521     createIterativeGCNMaxOccupancyMachineScheduler);
522 
523 static MachineSchedRegistry GCNMinRegSchedRegistry(
524     "gcn-iterative-minreg",
525     "Run GCN iterative scheduler for minimal register usage (experimental)",
526     createMinRegScheduler);
527 
528 static MachineSchedRegistry GCNILPSchedRegistry(
529     "gcn-iterative-ilp",
530     "Run GCN iterative scheduler for ILP scheduling (experimental)",
531     createIterativeILPMachineScheduler);
532 
533 static StringRef computeDataLayout(const Triple &TT) {
534   if (TT.getArch() == Triple::r600) {
535     // 32-bit pointers.
536     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
537            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
538   }
539 
540   // 32-bit private, local, and region pointers. 64-bit global, constant and
541   // flat. 160-bit non-integral fat buffer pointers that include a 128-bit
542   // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values
543   // (address space 7), and 128-bit non-integral buffer resourcees (address
544   // space 8) which cannot be non-trivilally accessed by LLVM memory operations
545   // like getelementptr.
546   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
547          "-p7:160:256:256:32-p8:128:128-p9:192:256:256:32-i64:64-v16:16-v24:32-"
548          "v32:32-v48:64-v96:"
549          "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-"
550          "G1-ni:7:8:9";
551 }
552 
553 LLVM_READNONE
554 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
555   if (!GPU.empty())
556     return GPU;
557 
558   // Need to default to a target with flat support for HSA.
559   if (TT.getArch() == Triple::amdgcn)
560     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
561 
562   return "r600";
563 }
564 
565 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
566   // The AMDGPU toolchain only supports generating shared objects, so we
567   // must always use PIC.
568   return Reloc::PIC_;
569 }
570 
571 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
572                                          StringRef CPU, StringRef FS,
573                                          TargetOptions Options,
574                                          std::optional<Reloc::Model> RM,
575                                          std::optional<CodeModel::Model> CM,
576                                          CodeGenOptLevel OptLevel)
577     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
578                         FS, Options, getEffectiveRelocModel(RM),
579                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
580       TLOF(createTLOF(getTargetTriple())) {
581   initAsmInfo();
582   if (TT.getArch() == Triple::amdgcn) {
583     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
584       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
585     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
586       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
587   }
588 }
589 
590 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
591 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
592 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
593 
594 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
595 
596 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
597   Attribute GPUAttr = F.getFnAttribute("target-cpu");
598   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
599 }
600 
601 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
602   Attribute FSAttr = F.getFnAttribute("target-features");
603 
604   return FSAttr.isValid() ? FSAttr.getValueAsString()
605                           : getTargetFeatureString();
606 }
607 
608 /// Predicate for Internalize pass.
609 static bool mustPreserveGV(const GlobalValue &GV) {
610   if (const Function *F = dyn_cast<Function>(&GV))
611     return F->isDeclaration() || F->getName().starts_with("__asan_") ||
612            F->getName().starts_with("__sanitizer_") ||
613            AMDGPU::isEntryFunctionCC(F->getCallingConv());
614 
615   GV.removeDeadConstantUsers();
616   return !GV.use_empty();
617 }
618 
619 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
620   AAM.registerFunctionAnalysis<AMDGPUAA>();
621 }
622 
623 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
624   PB.registerPipelineParsingCallback(
625       [this](StringRef PassName, ModulePassManager &PM,
626              ArrayRef<PassBuilder::PipelineElement>) {
627         if (PassName == "amdgpu-attributor") {
628           PM.addPass(AMDGPUAttributorPass(*this));
629           return true;
630         }
631         if (PassName == "amdgpu-unify-metadata") {
632           PM.addPass(AMDGPUUnifyMetadataPass());
633           return true;
634         }
635         if (PassName == "amdgpu-printf-runtime-binding") {
636           PM.addPass(AMDGPUPrintfRuntimeBindingPass());
637           return true;
638         }
639         if (PassName == "amdgpu-always-inline") {
640           PM.addPass(AMDGPUAlwaysInlinePass());
641           return true;
642         }
643         if (PassName == "amdgpu-lower-module-lds") {
644           PM.addPass(AMDGPULowerModuleLDSPass(*this));
645           return true;
646         }
647         if (PassName == "amdgpu-lower-ctor-dtor") {
648           PM.addPass(AMDGPUCtorDtorLoweringPass());
649           return true;
650         }
651         return false;
652       });
653   PB.registerPipelineParsingCallback(
654       [this](StringRef PassName, FunctionPassManager &PM,
655              ArrayRef<PassBuilder::PipelineElement>) {
656         if (PassName == "amdgpu-simplifylib") {
657           PM.addPass(AMDGPUSimplifyLibCallsPass());
658           return true;
659         }
660         if (PassName == "amdgpu-image-intrinsic-opt") {
661           PM.addPass(AMDGPUImageIntrinsicOptimizerPass(*this));
662           return true;
663         }
664         if (PassName == "amdgpu-usenative") {
665           PM.addPass(AMDGPUUseNativeCallsPass());
666           return true;
667         }
668         if (PassName == "amdgpu-promote-alloca") {
669           PM.addPass(AMDGPUPromoteAllocaPass(*this));
670           return true;
671         }
672         if (PassName == "amdgpu-promote-alloca-to-vector") {
673           PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
674           return true;
675         }
676         if (PassName == "amdgpu-lower-kernel-attributes") {
677           PM.addPass(AMDGPULowerKernelAttributesPass());
678           return true;
679         }
680         if (PassName == "amdgpu-promote-kernel-arguments") {
681           PM.addPass(AMDGPUPromoteKernelArgumentsPass());
682           return true;
683         }
684         if (PassName == "amdgpu-unify-divergent-exit-nodes") {
685           PM.addPass(AMDGPUUnifyDivergentExitNodesPass());
686           return true;
687         }
688         if (PassName == "amdgpu-atomic-optimizer") {
689           PM.addPass(
690               AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy));
691           return true;
692         }
693         if (PassName == "amdgpu-codegenprepare") {
694           PM.addPass(AMDGPUCodeGenPreparePass(*this));
695           return true;
696         }
697         if (PassName == "amdgpu-lower-kernel-arguments") {
698           PM.addPass(AMDGPULowerKernelArgumentsPass(*this));
699           return true;
700         }
701         if (PassName == "amdgpu-rewrite-undef-for-phi") {
702           PM.addPass(AMDGPURewriteUndefForPHIPass());
703           return true;
704         }
705         return false;
706       });
707 
708   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
709     FAM.registerPass([&] { return AMDGPUAA(); });
710   });
711 
712   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
713     if (AAName == "amdgpu-aa") {
714       AAM.registerFunctionAnalysis<AMDGPUAA>();
715       return true;
716     }
717     return false;
718   });
719 
720   PB.registerPipelineStartEPCallback(
721       [](ModulePassManager &PM, OptimizationLevel Level) {
722         FunctionPassManager FPM;
723         FPM.addPass(AMDGPUUseNativeCallsPass());
724         if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
725           FPM.addPass(AMDGPUSimplifyLibCallsPass());
726         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
727         if (EnableHipStdPar)
728           PM.addPass(HipStdParAcceleratorCodeSelectionPass());
729       });
730 
731   PB.registerPipelineEarlySimplificationEPCallback(
732       [](ModulePassManager &PM, OptimizationLevel Level) {
733         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
734 
735         if (Level == OptimizationLevel::O0)
736           return;
737 
738         PM.addPass(AMDGPUUnifyMetadataPass());
739 
740         if (InternalizeSymbols) {
741           PM.addPass(InternalizePass(mustPreserveGV));
742           PM.addPass(GlobalDCEPass());
743         }
744 
745         if (EarlyInlineAll && !EnableFunctionCalls)
746           PM.addPass(AMDGPUAlwaysInlinePass());
747       });
748 
749   PB.registerCGSCCOptimizerLateEPCallback(
750       [this](CGSCCPassManager &PM, OptimizationLevel Level) {
751         if (Level == OptimizationLevel::O0)
752           return;
753 
754         FunctionPassManager FPM;
755 
756         // Add promote kernel arguments pass to the opt pipeline right before
757         // infer address spaces which is needed to do actual address space
758         // rewriting.
759         if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() &&
760             EnablePromoteKernelArguments)
761           FPM.addPass(AMDGPUPromoteKernelArgumentsPass());
762 
763         // Add infer address spaces pass to the opt pipeline after inlining
764         // but before SROA to increase SROA opportunities.
765         FPM.addPass(InferAddressSpacesPass());
766 
767         // This should run after inlining to have any chance of doing
768         // anything, and before other cleanup optimizations.
769         FPM.addPass(AMDGPULowerKernelAttributesPass());
770 
771         if (Level != OptimizationLevel::O0) {
772           // Promote alloca to vector before SROA and loop unroll. If we
773           // manage to eliminate allocas before unroll we may choose to unroll
774           // less.
775           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
776         }
777 
778         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
779       });
780 }
781 
782 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
783   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
784           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
785           AddrSpace == AMDGPUAS::REGION_ADDRESS)
786              ? -1
787              : 0;
788 }
789 
790 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
791                                               unsigned DestAS) const {
792   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
793          AMDGPU::isFlatGlobalAddrSpace(DestAS);
794 }
795 
796 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
797   const auto *LD = dyn_cast<LoadInst>(V);
798   if (!LD)
799     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
800 
801   // It must be a generic pointer loaded.
802   assert(V->getType()->isPointerTy() &&
803          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
804 
805   const auto *Ptr = LD->getPointerOperand();
806   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
807     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
808   // For a generic pointer loaded from the constant memory, it could be assumed
809   // as a global pointer since the constant memory is only populated on the
810   // host side. As implied by the offload programming model, only global
811   // pointers could be referenced on the host side.
812   return AMDGPUAS::GLOBAL_ADDRESS;
813 }
814 
815 std::pair<const Value *, unsigned>
816 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const {
817   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
818     switch (II->getIntrinsicID()) {
819     case Intrinsic::amdgcn_is_shared:
820       return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS);
821     case Intrinsic::amdgcn_is_private:
822       return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS);
823     default:
824       break;
825     }
826     return std::pair(nullptr, -1);
827   }
828   // Check the global pointer predication based on
829   // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and
830   // the order of 'is_shared' and 'is_private' is not significant.
831   Value *Ptr;
832   if (match(
833           const_cast<Value *>(V),
834           m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))),
835                   m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>(
836                       m_Deferred(Ptr))))))
837     return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS);
838 
839   return std::pair(nullptr, -1);
840 }
841 
842 unsigned
843 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
844   switch (Kind) {
845   case PseudoSourceValue::Stack:
846   case PseudoSourceValue::FixedStack:
847     return AMDGPUAS::PRIVATE_ADDRESS;
848   case PseudoSourceValue::ConstantPool:
849   case PseudoSourceValue::GOT:
850   case PseudoSourceValue::JumpTable:
851   case PseudoSourceValue::GlobalValueCallEntry:
852   case PseudoSourceValue::ExternalSymbolCallEntry:
853     return AMDGPUAS::CONSTANT_ADDRESS;
854   }
855   return AMDGPUAS::FLAT_ADDRESS;
856 }
857 
858 //===----------------------------------------------------------------------===//
859 // GCN Target Machine (SI+)
860 //===----------------------------------------------------------------------===//
861 
862 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
863                                    StringRef CPU, StringRef FS,
864                                    TargetOptions Options,
865                                    std::optional<Reloc::Model> RM,
866                                    std::optional<CodeModel::Model> CM,
867                                    CodeGenOptLevel OL, bool JIT)
868     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
869 
870 const TargetSubtargetInfo *
871 GCNTargetMachine::getSubtargetImpl(const Function &F) const {
872   StringRef GPU = getGPUName(F);
873   StringRef FS = getFeatureString(F);
874 
875   SmallString<128> SubtargetKey(GPU);
876   SubtargetKey.append(FS);
877 
878   auto &I = SubtargetMap[SubtargetKey];
879   if (!I) {
880     // This needs to be done before we create a new subtarget since any
881     // creation will depend on the TM and the code generation flags on the
882     // function that reside in TargetOptions.
883     resetTargetOptions(F);
884     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
885   }
886 
887   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
888 
889   return I.get();
890 }
891 
892 TargetTransformInfo
893 GCNTargetMachine::getTargetTransformInfo(const Function &F) const {
894   return TargetTransformInfo(GCNTTIImpl(this, F));
895 }
896 
897 //===----------------------------------------------------------------------===//
898 // AMDGPU Pass Setup
899 //===----------------------------------------------------------------------===//
900 
901 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const {
902   return getStandardCSEConfigForOpt(TM->getOptLevel());
903 }
904 
905 namespace {
906 
907 class GCNPassConfig final : public AMDGPUPassConfig {
908 public:
909   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
910     : AMDGPUPassConfig(TM, PM) {
911     // It is necessary to know the register usage of the entire call graph.  We
912     // allow calls without EnableAMDGPUFunctionCalls if they are marked
913     // noinline, so this is always required.
914     setRequiresCodeGenSCCOrder(true);
915     substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
916   }
917 
918   GCNTargetMachine &getGCNTargetMachine() const {
919     return getTM<GCNTargetMachine>();
920   }
921 
922   ScheduleDAGInstrs *
923   createMachineScheduler(MachineSchedContext *C) const override;
924 
925   ScheduleDAGInstrs *
926   createPostMachineScheduler(MachineSchedContext *C) const override {
927     ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive(
928         C, std::make_unique<PostGenericScheduler>(C),
929         /*RemoveKillFlags=*/true);
930     const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
931     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
932     if (ST.shouldClusterStores())
933       DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
934     DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII));
935     DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/true));
936     if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
937       DAG->addMutation(createVOPDPairingMutation());
938     return DAG;
939   }
940 
941   bool addPreISel() override;
942   void addMachineSSAOptimization() override;
943   bool addILPOpts() override;
944   bool addInstSelector() override;
945   bool addIRTranslator() override;
946   void addPreLegalizeMachineIR() override;
947   bool addLegalizeMachineIR() override;
948   void addPreRegBankSelect() override;
949   bool addRegBankSelect() override;
950   void addPreGlobalInstructionSelect() override;
951   bool addGlobalInstructionSelect() override;
952   void addFastRegAlloc() override;
953   void addOptimizedRegAlloc() override;
954 
955   FunctionPass *createSGPRAllocPass(bool Optimized);
956   FunctionPass *createVGPRAllocPass(bool Optimized);
957   FunctionPass *createRegAllocPass(bool Optimized) override;
958 
959   bool addRegAssignAndRewriteFast() override;
960   bool addRegAssignAndRewriteOptimized() override;
961 
962   void addPreRegAlloc() override;
963   bool addPreRewrite() override;
964   void addPostRegAlloc() override;
965   void addPreSched2() override;
966   void addPreEmitPass() override;
967 };
968 
969 } // end anonymous namespace
970 
971 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
972     : TargetPassConfig(TM, PM) {
973   // Exceptions and StackMaps are not supported, so these passes will never do
974   // anything.
975   disablePass(&StackMapLivenessID);
976   disablePass(&FuncletLayoutID);
977   // Garbage collection is not supported.
978   disablePass(&GCLoweringID);
979   disablePass(&ShadowStackGCLoweringID);
980 }
981 
982 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
983   if (getOptLevel() == CodeGenOptLevel::Aggressive)
984     addPass(createGVNPass());
985   else
986     addPass(createEarlyCSEPass());
987 }
988 
989 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
990   if (isPassEnabled(EnableLoopPrefetch, CodeGenOptLevel::Aggressive))
991     addPass(createLoopDataPrefetchPass());
992   addPass(createSeparateConstOffsetFromGEPPass());
993   // ReassociateGEPs exposes more opportunities for SLSR. See
994   // the example in reassociate-geps-and-slsr.ll.
995   addPass(createStraightLineStrengthReducePass());
996   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
997   // EarlyCSE can reuse.
998   addEarlyCSEOrGVNPass();
999   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
1000   addPass(createNaryReassociatePass());
1001   // NaryReassociate on GEPs creates redundant common expressions, so run
1002   // EarlyCSE after it.
1003   addPass(createEarlyCSEPass());
1004 }
1005 
1006 void AMDGPUPassConfig::addIRPasses() {
1007   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
1008 
1009   Triple::ArchType Arch = TM.getTargetTriple().getArch();
1010   if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn)
1011     addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM));
1012 
1013   // There is no reason to run these.
1014   disablePass(&StackMapLivenessID);
1015   disablePass(&FuncletLayoutID);
1016   disablePass(&PatchableFunctionID);
1017 
1018   addPass(createAMDGPUPrintfRuntimeBinding());
1019   if (LowerCtorDtor)
1020     addPass(createAMDGPUCtorDtorLoweringLegacyPass());
1021 
1022   if (isPassEnabled(EnableImageIntrinsicOptimizer))
1023     addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM));
1024 
1025   // Function calls are not supported, so make sure we inline everything.
1026   addPass(createAMDGPUAlwaysInlinePass());
1027   addPass(createAlwaysInlinerLegacyPass());
1028 
1029   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
1030   if (Arch == Triple::r600)
1031     addPass(createR600OpenCLImageTypeLoweringPass());
1032 
1033   // Replace OpenCL enqueued block function pointers with global variables.
1034   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
1035 
1036   // Runs before PromoteAlloca so the latter can account for function uses
1037   if (EnableLowerModuleLDS) {
1038     addPass(createAMDGPULowerModuleLDSLegacyPass(&TM));
1039   }
1040 
1041   // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run
1042   // after their introduction
1043   if (TM.getOptLevel() > CodeGenOptLevel::None)
1044     addPass(createAMDGPUAttributorLegacyPass());
1045 
1046   if (TM.getOptLevel() > CodeGenOptLevel::None)
1047     addPass(createInferAddressSpacesPass());
1048 
1049   // Run atomic optimizer before Atomic Expand
1050   if ((TM.getTargetTriple().getArch() == Triple::amdgcn) &&
1051       (TM.getOptLevel() >= CodeGenOptLevel::Less) &&
1052       (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) {
1053     addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy));
1054   }
1055 
1056   addPass(createAtomicExpandPass());
1057 
1058   if (TM.getOptLevel() > CodeGenOptLevel::None) {
1059     addPass(createAMDGPUPromoteAlloca());
1060 
1061     if (isPassEnabled(EnableScalarIRPasses))
1062       addStraightLineScalarOptimizationPasses();
1063 
1064     if (EnableAMDGPUAliasAnalysis) {
1065       addPass(createAMDGPUAAWrapperPass());
1066       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1067                                              AAResults &AAR) {
1068         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1069           AAR.addAAResult(WrapperPass->getResult());
1070         }));
1071     }
1072 
1073     if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1074       // TODO: May want to move later or split into an early and late one.
1075       addPass(createAMDGPUCodeGenPreparePass());
1076     }
1077 
1078     // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may
1079     // have expanded.
1080     if (TM.getOptLevel() > CodeGenOptLevel::Less)
1081       addPass(createLICMPass());
1082   }
1083 
1084   TargetPassConfig::addIRPasses();
1085 
1086   // EarlyCSE is not always strong enough to clean up what LSR produces. For
1087   // example, GVN can combine
1088   //
1089   //   %0 = add %a, %b
1090   //   %1 = add %b, %a
1091   //
1092   // and
1093   //
1094   //   %0 = shl nsw %a, 2
1095   //   %1 = shl %a, 2
1096   //
1097   // but EarlyCSE can do neither of them.
1098   if (isPassEnabled(EnableScalarIRPasses))
1099     addEarlyCSEOrGVNPass();
1100 }
1101 
1102 void AMDGPUPassConfig::addCodeGenPrepare() {
1103   if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
1104     // FIXME: This pass adds 2 hacky attributes that can be replaced with an
1105     // analysis, and should be removed.
1106     addPass(createAMDGPUAnnotateKernelFeaturesPass());
1107   }
1108 
1109   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1110       EnableLowerKernelArguments)
1111     addPass(createAMDGPULowerKernelArgumentsPass());
1112 
1113   TargetPassConfig::addCodeGenPrepare();
1114 
1115   if (isPassEnabled(EnableLoadStoreVectorizer))
1116     addPass(createLoadStoreVectorizerPass());
1117 
1118   // LowerSwitch pass may introduce unreachable blocks that can
1119   // cause unexpected behavior for subsequent passes. Placing it
1120   // here seems better that these blocks would get cleaned up by
1121   // UnreachableBlockElim inserted next in the pass flow.
1122   addPass(createLowerSwitchPass());
1123 }
1124 
1125 bool AMDGPUPassConfig::addPreISel() {
1126   if (TM->getOptLevel() > CodeGenOptLevel::None)
1127     addPass(createFlattenCFGPass());
1128   return false;
1129 }
1130 
1131 bool AMDGPUPassConfig::addInstSelector() {
1132   addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel()));
1133   return false;
1134 }
1135 
1136 bool AMDGPUPassConfig::addGCPasses() {
1137   // Do nothing. GC is not supported.
1138   return false;
1139 }
1140 
1141 llvm::ScheduleDAGInstrs *
1142 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const {
1143   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1144   ScheduleDAGMILive *DAG = createGenericSchedLive(C);
1145   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1146   if (ST.shouldClusterStores())
1147     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1148   return DAG;
1149 }
1150 
1151 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo(
1152     BumpPtrAllocator &Allocator, const Function &F,
1153     const TargetSubtargetInfo *STI) const {
1154   return R600MachineFunctionInfo::create<R600MachineFunctionInfo>(
1155       Allocator, F, static_cast<const R600Subtarget *>(STI));
1156 }
1157 
1158 //===----------------------------------------------------------------------===//
1159 // GCN Pass Setup
1160 //===----------------------------------------------------------------------===//
1161 
1162 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1163   MachineSchedContext *C) const {
1164   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1165   if (ST.enableSIScheduler())
1166     return createSIMachineScheduler(C);
1167 
1168   if (EnableMaxIlpSchedStrategy)
1169     return createGCNMaxILPMachineScheduler(C);
1170 
1171   return createGCNMaxOccupancyMachineScheduler(C);
1172 }
1173 
1174 bool GCNPassConfig::addPreISel() {
1175   AMDGPUPassConfig::addPreISel();
1176 
1177   if (TM->getOptLevel() > CodeGenOptLevel::None)
1178     addPass(createAMDGPULateCodeGenPreparePass());
1179 
1180   if (TM->getOptLevel() > CodeGenOptLevel::None)
1181     addPass(createSinkingPass());
1182 
1183   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1184   // regions formed by them.
1185   addPass(&AMDGPUUnifyDivergentExitNodesID);
1186   if (!LateCFGStructurize) {
1187     if (EnableStructurizerWorkarounds) {
1188       addPass(createFixIrreduciblePass());
1189       addPass(createUnifyLoopExitsPass());
1190     }
1191     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1192   }
1193   addPass(createAMDGPUAnnotateUniformValues());
1194   if (!LateCFGStructurize) {
1195     addPass(createSIAnnotateControlFlowPass());
1196     // TODO: Move this right after structurizeCFG to avoid extra divergence
1197     // analysis. This depends on stopping SIAnnotateControlFlow from making
1198     // control flow modifications.
1199     addPass(createAMDGPURewriteUndefForPHILegacyPass());
1200   }
1201   addPass(createLCSSAPass());
1202 
1203   if (TM->getOptLevel() > CodeGenOptLevel::Less)
1204     addPass(&AMDGPUPerfHintAnalysisID);
1205 
1206   return false;
1207 }
1208 
1209 void GCNPassConfig::addMachineSSAOptimization() {
1210   TargetPassConfig::addMachineSSAOptimization();
1211 
1212   // We want to fold operands after PeepholeOptimizer has run (or as part of
1213   // it), because it will eliminate extra copies making it easier to fold the
1214   // real source operand. We want to eliminate dead instructions after, so that
1215   // we see fewer uses of the copies. We then need to clean up the dead
1216   // instructions leftover after the operands are folded as well.
1217   //
1218   // XXX - Can we get away without running DeadMachineInstructionElim again?
1219   addPass(&SIFoldOperandsID);
1220   if (EnableDPPCombine)
1221     addPass(&GCNDPPCombineID);
1222   addPass(&SILoadStoreOptimizerID);
1223   if (isPassEnabled(EnableSDWAPeephole)) {
1224     addPass(&SIPeepholeSDWAID);
1225     addPass(&EarlyMachineLICMID);
1226     addPass(&MachineCSEID);
1227     addPass(&SIFoldOperandsID);
1228   }
1229   addPass(&DeadMachineInstructionElimID);
1230   addPass(createSIShrinkInstructionsPass());
1231 }
1232 
1233 bool GCNPassConfig::addILPOpts() {
1234   if (EnableEarlyIfConversion)
1235     addPass(&EarlyIfConverterID);
1236 
1237   TargetPassConfig::addILPOpts();
1238   return false;
1239 }
1240 
1241 bool GCNPassConfig::addInstSelector() {
1242   AMDGPUPassConfig::addInstSelector();
1243   addPass(&SIFixSGPRCopiesID);
1244   addPass(createSILowerI1CopiesPass());
1245   return false;
1246 }
1247 
1248 bool GCNPassConfig::addIRTranslator() {
1249   addPass(new IRTranslator(getOptLevel()));
1250   return false;
1251 }
1252 
1253 void GCNPassConfig::addPreLegalizeMachineIR() {
1254   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1255   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1256   addPass(new Localizer());
1257 }
1258 
1259 bool GCNPassConfig::addLegalizeMachineIR() {
1260   addPass(new Legalizer());
1261   return false;
1262 }
1263 
1264 void GCNPassConfig::addPreRegBankSelect() {
1265   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1266   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1267   addPass(createAMDGPUGlobalISelDivergenceLoweringPass());
1268 }
1269 
1270 bool GCNPassConfig::addRegBankSelect() {
1271   addPass(new AMDGPURegBankSelect());
1272   return false;
1273 }
1274 
1275 void GCNPassConfig::addPreGlobalInstructionSelect() {
1276   bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
1277   addPass(createAMDGPURegBankCombiner(IsOptNone));
1278 }
1279 
1280 bool GCNPassConfig::addGlobalInstructionSelect() {
1281   addPass(new InstructionSelect(getOptLevel()));
1282   return false;
1283 }
1284 
1285 void GCNPassConfig::addPreRegAlloc() {
1286   if (LateCFGStructurize) {
1287     addPass(createAMDGPUMachineCFGStructurizerPass());
1288   }
1289 }
1290 
1291 void GCNPassConfig::addFastRegAlloc() {
1292   // FIXME: We have to disable the verifier here because of PHIElimination +
1293   // TwoAddressInstructions disabling it.
1294 
1295   // This must be run immediately after phi elimination and before
1296   // TwoAddressInstructions, otherwise the processing of the tied operand of
1297   // SI_ELSE will introduce a copy of the tied operand source after the else.
1298   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1299 
1300   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1301 
1302   TargetPassConfig::addFastRegAlloc();
1303 }
1304 
1305 void GCNPassConfig::addOptimizedRegAlloc() {
1306   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1307   // instructions that cause scheduling barriers.
1308   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1309 
1310   if (OptExecMaskPreRA)
1311     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1312 
1313   if (EnableRewritePartialRegUses)
1314     insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID);
1315 
1316   if (isPassEnabled(EnablePreRAOptimizations))
1317     insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1318 
1319   // This is not an essential optimization and it has a noticeable impact on
1320   // compilation time, so we only enable it from O2.
1321   if (TM->getOptLevel() > CodeGenOptLevel::Less)
1322     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1323 
1324   // FIXME: when an instruction has a Killed operand, and the instruction is
1325   // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1326   // the register in LiveVariables, this would trigger a failure in verifier,
1327   // we should fix it and enable the verifier.
1328   if (OptVGPRLiveRange)
1329     insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID);
1330   // This must be run immediately after phi elimination and before
1331   // TwoAddressInstructions, otherwise the processing of the tied operand of
1332   // SI_ELSE will introduce a copy of the tied operand source after the else.
1333   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1334 
1335   if (EnableDCEInRA)
1336     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1337 
1338   TargetPassConfig::addOptimizedRegAlloc();
1339 }
1340 
1341 bool GCNPassConfig::addPreRewrite() {
1342   addPass(&SILowerWWMCopiesID);
1343   if (EnableRegReassign)
1344     addPass(&GCNNSAReassignID);
1345   return true;
1346 }
1347 
1348 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1349   // Initialize the global default.
1350   llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1351                   initializeDefaultSGPRRegisterAllocatorOnce);
1352 
1353   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1354   if (Ctor != useDefaultRegisterAllocator)
1355     return Ctor();
1356 
1357   if (Optimized)
1358     return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1359 
1360   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1361 }
1362 
1363 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1364   // Initialize the global default.
1365   llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1366                   initializeDefaultVGPRRegisterAllocatorOnce);
1367 
1368   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1369   if (Ctor != useDefaultRegisterAllocator)
1370     return Ctor();
1371 
1372   if (Optimized)
1373     return createGreedyVGPRRegisterAllocator();
1374 
1375   return createFastVGPRRegisterAllocator();
1376 }
1377 
1378 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1379   llvm_unreachable("should not be used");
1380 }
1381 
1382 static const char RegAllocOptNotSupportedMessage[] =
1383   "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1384 
1385 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1386   if (!usingDefaultRegAlloc())
1387     report_fatal_error(RegAllocOptNotSupportedMessage);
1388 
1389   addPass(&GCNPreRALongBranchRegID);
1390 
1391   addPass(createSGPRAllocPass(false));
1392 
1393   // Equivalent of PEI for SGPRs.
1394   addPass(&SILowerSGPRSpillsID);
1395   addPass(&SIPreAllocateWWMRegsID);
1396 
1397   addPass(createVGPRAllocPass(false));
1398 
1399   addPass(&SILowerWWMCopiesID);
1400   return true;
1401 }
1402 
1403 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1404   if (!usingDefaultRegAlloc())
1405     report_fatal_error(RegAllocOptNotSupportedMessage);
1406 
1407   addPass(&GCNPreRALongBranchRegID);
1408 
1409   addPass(createSGPRAllocPass(true));
1410 
1411   // Commit allocated register changes. This is mostly necessary because too
1412   // many things rely on the use lists of the physical registers, such as the
1413   // verifier. This is only necessary with allocators which use LiveIntervals,
1414   // since FastRegAlloc does the replacements itself.
1415   addPass(createVirtRegRewriter(false));
1416 
1417   // Equivalent of PEI for SGPRs.
1418   addPass(&SILowerSGPRSpillsID);
1419   addPass(&SIPreAllocateWWMRegsID);
1420 
1421   addPass(createVGPRAllocPass(true));
1422 
1423   addPreRewrite();
1424   addPass(&VirtRegRewriterID);
1425 
1426   return true;
1427 }
1428 
1429 void GCNPassConfig::addPostRegAlloc() {
1430   addPass(&SIFixVGPRCopiesID);
1431   if (getOptLevel() > CodeGenOptLevel::None)
1432     addPass(&SIOptimizeExecMaskingID);
1433   TargetPassConfig::addPostRegAlloc();
1434 }
1435 
1436 void GCNPassConfig::addPreSched2() {
1437   if (TM->getOptLevel() > CodeGenOptLevel::None)
1438     addPass(createSIShrinkInstructionsPass());
1439   addPass(&SIPostRABundlerID);
1440 }
1441 
1442 void GCNPassConfig::addPreEmitPass() {
1443   if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
1444     addPass(&GCNCreateVOPDID);
1445   addPass(createSIMemoryLegalizerPass());
1446   addPass(createSIInsertWaitcntsPass());
1447 
1448   addPass(createSIModeRegisterPass());
1449 
1450   if (getOptLevel() > CodeGenOptLevel::None)
1451     addPass(&SIInsertHardClausesID);
1452 
1453   addPass(&SILateBranchLoweringPassID);
1454   if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less))
1455     addPass(createAMDGPUSetWavePriorityPass());
1456   if (getOptLevel() > CodeGenOptLevel::None)
1457     addPass(&SIPreEmitPeepholeID);
1458   // The hazard recognizer that runs as part of the post-ra scheduler does not
1459   // guarantee to be able handle all hazards correctly. This is because if there
1460   // are multiple scheduling regions in a basic block, the regions are scheduled
1461   // bottom up, so when we begin to schedule a region we don't know what
1462   // instructions were emitted directly before it.
1463   //
1464   // Here we add a stand-alone hazard recognizer pass which can handle all
1465   // cases.
1466   addPass(&PostRAHazardRecognizerID);
1467 
1468   if (isPassEnabled(EnableInsertSingleUseVDST, CodeGenOptLevel::Less))
1469     addPass(&AMDGPUInsertSingleUseVDSTID);
1470 
1471   if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less))
1472     addPass(&AMDGPUInsertDelayAluID);
1473 
1474   addPass(&BranchRelaxationPassID);
1475 }
1476 
1477 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1478   return new GCNPassConfig(*this, PM);
1479 }
1480 
1481 void GCNTargetMachine::registerMachineRegisterInfoCallback(
1482     MachineFunction &MF) const {
1483   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1484   MF.getRegInfo().addDelegate(MFI);
1485 }
1486 
1487 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo(
1488     BumpPtrAllocator &Allocator, const Function &F,
1489     const TargetSubtargetInfo *STI) const {
1490   return SIMachineFunctionInfo::create<SIMachineFunctionInfo>(
1491       Allocator, F, static_cast<const GCNSubtarget *>(STI));
1492 }
1493 
1494 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1495   return new yaml::SIMachineFunctionInfo();
1496 }
1497 
1498 yaml::MachineFunctionInfo *
1499 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1500   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1501   return new yaml::SIMachineFunctionInfo(
1502       *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF);
1503 }
1504 
1505 bool GCNTargetMachine::parseMachineFunctionInfo(
1506     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1507     SMDiagnostic &Error, SMRange &SourceRange) const {
1508   const yaml::SIMachineFunctionInfo &YamlMFI =
1509       static_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1510   MachineFunction &MF = PFS.MF;
1511   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1512   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1513 
1514   if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1515     return true;
1516 
1517   if (MFI->Occupancy == 0) {
1518     // Fixup the subtarget dependent default value.
1519     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1520   }
1521 
1522   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1523     Register TempReg;
1524     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1525       SourceRange = RegName.SourceRange;
1526       return true;
1527     }
1528     RegVal = TempReg;
1529 
1530     return false;
1531   };
1532 
1533   auto parseOptionalRegister = [&](const yaml::StringValue &RegName,
1534                                    Register &RegVal) {
1535     return !RegName.Value.empty() && parseRegister(RegName, RegVal);
1536   };
1537 
1538   if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy))
1539     return true;
1540 
1541   if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy))
1542     return true;
1543 
1544   if (parseOptionalRegister(YamlMFI.LongBranchReservedReg,
1545                             MFI->LongBranchReservedReg))
1546     return true;
1547 
1548   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1549     // Create a diagnostic for a the register string literal.
1550     const MemoryBuffer &Buffer =
1551         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1552     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1553                          RegName.Value.size(), SourceMgr::DK_Error,
1554                          "incorrect register class for field", RegName.Value,
1555                          std::nullopt, std::nullopt);
1556     SourceRange = RegName.SourceRange;
1557     return true;
1558   };
1559 
1560   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1561       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1562       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1563     return true;
1564 
1565   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1566       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1567     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1568   }
1569 
1570   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1571       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1572     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1573   }
1574 
1575   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1576       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1577     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1578   }
1579 
1580   for (const auto &YamlReg : YamlMFI.WWMReservedRegs) {
1581     Register ParsedReg;
1582     if (parseRegister(YamlReg, ParsedReg))
1583       return true;
1584 
1585     MFI->reserveWWMRegister(ParsedReg);
1586   }
1587 
1588   auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A,
1589                                    const TargetRegisterClass &RC,
1590                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1591                                    unsigned SystemSGPRs) {
1592     // Skip parsing if it's not present.
1593     if (!A)
1594       return false;
1595 
1596     if (A->IsRegister) {
1597       Register Reg;
1598       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1599         SourceRange = A->RegisterName.SourceRange;
1600         return true;
1601       }
1602       if (!RC.contains(Reg))
1603         return diagnoseRegisterClass(A->RegisterName);
1604       Arg = ArgDescriptor::createRegister(Reg);
1605     } else
1606       Arg = ArgDescriptor::createStack(A->StackOffset);
1607     // Check and apply the optional mask.
1608     if (A->Mask)
1609       Arg = ArgDescriptor::createArg(Arg, *A->Mask);
1610 
1611     MFI->NumUserSGPRs += UserSGPRs;
1612     MFI->NumSystemSGPRs += SystemSGPRs;
1613     return false;
1614   };
1615 
1616   if (YamlMFI.ArgInfo &&
1617       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1618                              AMDGPU::SGPR_128RegClass,
1619                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1620        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1621                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1622                              2, 0) ||
1623        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1624                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1625        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1626                              AMDGPU::SReg_64RegClass,
1627                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1628        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1629                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1630                              2, 0) ||
1631        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1632                              AMDGPU::SReg_64RegClass,
1633                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1634        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1635                              AMDGPU::SGPR_32RegClass,
1636                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1637        parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId,
1638                              AMDGPU::SGPR_32RegClass,
1639                              MFI->ArgInfo.LDSKernelId, 0, 1) ||
1640        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1641                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1642                              0, 1) ||
1643        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1644                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1645                              0, 1) ||
1646        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1647                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1648                              0, 1) ||
1649        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1650                              AMDGPU::SGPR_32RegClass,
1651                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1652        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1653                              AMDGPU::SGPR_32RegClass,
1654                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1655        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1656                              AMDGPU::SReg_64RegClass,
1657                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1658        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1659                              AMDGPU::SReg_64RegClass,
1660                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1661        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1662                              AMDGPU::VGPR_32RegClass,
1663                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1664        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1665                              AMDGPU::VGPR_32RegClass,
1666                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1667        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1668                              AMDGPU::VGPR_32RegClass,
1669                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1670     return true;
1671 
1672   if (ST.hasIEEEMode())
1673     MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1674   if (ST.hasDX10ClampMode())
1675     MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1676 
1677   // FIXME: Move proper support for denormal-fp-math into base MachineFunction
1678   MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals
1679                                       ? DenormalMode::IEEE
1680                                       : DenormalMode::PreserveSign;
1681   MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals
1682                                        ? DenormalMode::IEEE
1683                                        : DenormalMode::PreserveSign;
1684 
1685   MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals
1686                                           ? DenormalMode::IEEE
1687                                           : DenormalMode::PreserveSign;
1688   MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals
1689                                            ? DenormalMode::IEEE
1690                                            : DenormalMode::PreserveSign;
1691 
1692   return false;
1693 }
1694