1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Scalar/GVN.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Vectorize.h" 53 #include <memory> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableR600StructurizeCFG( 58 "r600-ir-structurize", 59 cl::desc("Use StructurizeCFG IR pass"), 60 cl::init(true)); 61 62 static cl::opt<bool> EnableSROA( 63 "amdgpu-sroa", 64 cl::desc("Run SROA after promote alloca pass"), 65 cl::ReallyHidden, 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 70 cl::desc("Run early if-conversion"), 71 cl::init(false)); 72 73 static cl::opt<bool> 74 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 75 cl::desc("Run pre-RA exec mask optimizations"), 76 cl::init(true)); 77 78 static cl::opt<bool> EnableR600IfConvert( 79 "r600-if-convert", 80 cl::desc("Use if conversion pass"), 81 cl::ReallyHidden, 82 cl::init(true)); 83 84 // Option to disable vectorizer for tests. 85 static cl::opt<bool> EnableLoadStoreVectorizer( 86 "amdgpu-load-store-vectorizer", 87 cl::desc("Enable load store vectorizer"), 88 cl::init(true), 89 cl::Hidden); 90 91 // Option to control global loads scalarization 92 static cl::opt<bool> ScalarizeGlobal( 93 "amdgpu-scalarize-global-loads", 94 cl::desc("Enable global load scalarization"), 95 cl::init(true), 96 cl::Hidden); 97 98 // Option to run internalize pass. 99 static cl::opt<bool> InternalizeSymbols( 100 "amdgpu-internalize-symbols", 101 cl::desc("Enable elimination of non-kernel functions and unused globals"), 102 cl::init(false), 103 cl::Hidden); 104 105 // Option to inline all early. 106 static cl::opt<bool> EarlyInlineAll( 107 "amdgpu-early-inline-all", 108 cl::desc("Inline all functions early"), 109 cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> EnableSDWAPeephole( 113 "amdgpu-sdwa-peephole", 114 cl::desc("Enable SDWA peepholer"), 115 cl::init(true)); 116 117 static cl::opt<bool> EnableDPPCombine( 118 "amdgpu-dpp-combine", 119 cl::desc("Enable DPP combiner"), 120 cl::init(true)); 121 122 // Enable address space based alias analysis 123 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 124 cl::desc("Enable AMDGPU Alias Analysis"), 125 cl::init(true)); 126 127 // Option to run late CFG structurizer 128 static cl::opt<bool, true> LateCFGStructurize( 129 "amdgpu-late-structurize", 130 cl::desc("Enable late CFG structurization"), 131 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 132 cl::Hidden); 133 134 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 135 "amdgpu-function-calls", 136 cl::desc("Enable AMDGPU function call support"), 137 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable lib calls simplifications 142 static cl::opt<bool> EnableLibCallSimplify( 143 "amdgpu-simplify-libcall", 144 cl::desc("Enable amdgpu library simplifications"), 145 cl::init(true), 146 cl::Hidden); 147 148 static cl::opt<bool> EnableLowerKernelArguments( 149 "amdgpu-ir-lower-kernel-arguments", 150 cl::desc("Lower kernel argument loads in IR pass"), 151 cl::init(true), 152 cl::Hidden); 153 154 static cl::opt<bool> EnableRegReassign( 155 "amdgpu-reassign-regs", 156 cl::desc("Enable register reassign optimizations on gfx10+"), 157 cl::init(true), 158 cl::Hidden); 159 160 // Enable atomic optimization 161 static cl::opt<bool> EnableAtomicOptimizations( 162 "amdgpu-atomic-optimizations", 163 cl::desc("Enable atomic optimizations"), 164 cl::init(false), 165 cl::Hidden); 166 167 // Enable Mode register optimization 168 static cl::opt<bool> EnableSIModeRegisterPass( 169 "amdgpu-mode-register", 170 cl::desc("Enable mode register pass"), 171 cl::init(true), 172 cl::Hidden); 173 174 // Option is used in lit tests to prevent deadcoding of patterns inspected. 175 static cl::opt<bool> 176 EnableDCEInRA("amdgpu-dce-in-ra", 177 cl::init(true), cl::Hidden, 178 cl::desc("Enable machine DCE inside regalloc")); 179 180 static cl::opt<bool> EnableScalarIRPasses( 181 "amdgpu-scalar-ir-passes", 182 cl::desc("Enable scalar IR passes"), 183 cl::init(true), 184 cl::Hidden); 185 186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 187 // Register the target 188 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 189 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 190 191 PassRegistry *PR = PassRegistry::getPassRegistry(); 192 initializeR600ClauseMergePassPass(*PR); 193 initializeR600ControlFlowFinalizerPass(*PR); 194 initializeR600PacketizerPass(*PR); 195 initializeR600ExpandSpecialInstrsPassPass(*PR); 196 initializeR600VectorRegMergerPass(*PR); 197 initializeGlobalISel(*PR); 198 initializeAMDGPUDAGToDAGISelPass(*PR); 199 initializeGCNDPPCombinePass(*PR); 200 initializeSILowerI1CopiesPass(*PR); 201 initializeSILowerSGPRSpillsPass(*PR); 202 initializeSIFixSGPRCopiesPass(*PR); 203 initializeSIFixVGPRCopiesPass(*PR); 204 initializeSIFixupVectorISelPass(*PR); 205 initializeSIFoldOperandsPass(*PR); 206 initializeSIPeepholeSDWAPass(*PR); 207 initializeSIShrinkInstructionsPass(*PR); 208 initializeSIOptimizeExecMaskingPreRAPass(*PR); 209 initializeSILoadStoreOptimizerPass(*PR); 210 initializeAMDGPUFixFunctionBitcastsPass(*PR); 211 initializeAMDGPUAlwaysInlinePass(*PR); 212 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 213 initializeAMDGPUAnnotateUniformValuesPass(*PR); 214 initializeAMDGPUArgumentUsageInfoPass(*PR); 215 initializeAMDGPUAtomicOptimizerPass(*PR); 216 initializeAMDGPULowerKernelArgumentsPass(*PR); 217 initializeAMDGPULowerKernelAttributesPass(*PR); 218 initializeAMDGPULowerIntrinsicsPass(*PR); 219 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 220 initializeAMDGPUPromoteAllocaPass(*PR); 221 initializeAMDGPUCodeGenPreparePass(*PR); 222 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 223 initializeAMDGPUPropagateAttributesLatePass(*PR); 224 initializeAMDGPURewriteOutArgumentsPass(*PR); 225 initializeAMDGPUUnifyMetadataPass(*PR); 226 initializeSIAnnotateControlFlowPass(*PR); 227 initializeSIInsertWaitcntsPass(*PR); 228 initializeSIModeRegisterPass(*PR); 229 initializeSIWholeQuadModePass(*PR); 230 initializeSILowerControlFlowPass(*PR); 231 initializeSIRemoveShortExecBranchesPass(*PR); 232 initializeSIInsertSkipsPass(*PR); 233 initializeSIMemoryLegalizerPass(*PR); 234 initializeSIOptimizeExecMaskingPass(*PR); 235 initializeSIPreAllocateWWMRegsPass(*PR); 236 initializeSIFormMemoryClausesPass(*PR); 237 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 238 initializeAMDGPUAAWrapperPassPass(*PR); 239 initializeAMDGPUExternalAAWrapperPass(*PR); 240 initializeAMDGPUUseNativeCallsPass(*PR); 241 initializeAMDGPUSimplifyLibCallsPass(*PR); 242 initializeAMDGPUInlinerPass(*PR); 243 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 244 initializeGCNRegBankReassignPass(*PR); 245 initializeGCNNSAReassignPass(*PR); 246 } 247 248 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 249 return std::make_unique<AMDGPUTargetObjectFile>(); 250 } 251 252 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 253 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 254 } 255 256 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 257 return new SIScheduleDAGMI(C); 258 } 259 260 static ScheduleDAGInstrs * 261 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 262 ScheduleDAGMILive *DAG = 263 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 264 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 265 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 266 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 267 return DAG; 268 } 269 270 static ScheduleDAGInstrs * 271 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 272 auto DAG = new GCNIterativeScheduler(C, 273 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 274 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 275 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 276 return DAG; 277 } 278 279 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 280 return new GCNIterativeScheduler(C, 281 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 282 } 283 284 static ScheduleDAGInstrs * 285 createIterativeILPMachineScheduler(MachineSchedContext *C) { 286 auto DAG = new GCNIterativeScheduler(C, 287 GCNIterativeScheduler::SCHEDULE_ILP); 288 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 289 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 290 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 291 return DAG; 292 } 293 294 static MachineSchedRegistry 295 R600SchedRegistry("r600", "Run R600's custom scheduler", 296 createR600MachineScheduler); 297 298 static MachineSchedRegistry 299 SISchedRegistry("si", "Run SI's custom scheduler", 300 createSIMachineScheduler); 301 302 static MachineSchedRegistry 303 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 304 "Run GCN scheduler to maximize occupancy", 305 createGCNMaxOccupancyMachineScheduler); 306 307 static MachineSchedRegistry 308 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 309 "Run GCN scheduler to maximize occupancy (experimental)", 310 createIterativeGCNMaxOccupancyMachineScheduler); 311 312 static MachineSchedRegistry 313 GCNMinRegSchedRegistry("gcn-minreg", 314 "Run GCN iterative scheduler for minimal register usage (experimental)", 315 createMinRegScheduler); 316 317 static MachineSchedRegistry 318 GCNILPSchedRegistry("gcn-ilp", 319 "Run GCN iterative scheduler for ILP scheduling (experimental)", 320 createIterativeILPMachineScheduler); 321 322 static StringRef computeDataLayout(const Triple &TT) { 323 if (TT.getArch() == Triple::r600) { 324 // 32-bit pointers. 325 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 326 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 327 } 328 329 // 32-bit private, local, and region pointers. 64-bit global, constant and 330 // flat, non-integral buffer fat pointers. 331 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 332 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 333 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 334 "-ni:7"; 335 } 336 337 LLVM_READNONE 338 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 339 if (!GPU.empty()) 340 return GPU; 341 342 // Need to default to a target with flat support for HSA. 343 if (TT.getArch() == Triple::amdgcn) 344 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 345 346 return "r600"; 347 } 348 349 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 350 // The AMDGPU toolchain only supports generating shared objects, so we 351 // must always use PIC. 352 return Reloc::PIC_; 353 } 354 355 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 356 StringRef CPU, StringRef FS, 357 TargetOptions Options, 358 Optional<Reloc::Model> RM, 359 Optional<CodeModel::Model> CM, 360 CodeGenOpt::Level OptLevel) 361 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 362 FS, Options, getEffectiveRelocModel(RM), 363 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 364 TLOF(createTLOF(getTargetTriple())) { 365 initAsmInfo(); 366 } 367 368 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 369 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 370 371 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 372 373 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 374 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 375 return GPUAttr.hasAttribute(Attribute::None) ? 376 getTargetCPU() : GPUAttr.getValueAsString(); 377 } 378 379 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 380 Attribute FSAttr = F.getFnAttribute("target-features"); 381 382 return FSAttr.hasAttribute(Attribute::None) ? 383 getTargetFeatureString() : 384 FSAttr.getValueAsString(); 385 } 386 387 /// Predicate for Internalize pass. 388 static bool mustPreserveGV(const GlobalValue &GV) { 389 if (const Function *F = dyn_cast<Function>(&GV)) 390 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 391 392 return !GV.use_empty(); 393 } 394 395 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 396 Builder.DivergentTarget = true; 397 398 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 399 bool Internalize = InternalizeSymbols; 400 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 401 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 402 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 403 404 if (EnableFunctionCalls) { 405 delete Builder.Inliner; 406 Builder.Inliner = createAMDGPUFunctionInliningPass(); 407 } 408 409 Builder.addExtension( 410 PassManagerBuilder::EP_ModuleOptimizerEarly, 411 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 412 legacy::PassManagerBase &PM) { 413 if (AMDGPUAA) { 414 PM.add(createAMDGPUAAWrapperPass()); 415 PM.add(createAMDGPUExternalAAWrapperPass()); 416 } 417 PM.add(createAMDGPUUnifyMetadataPass()); 418 PM.add(createAMDGPUPrintfRuntimeBinding()); 419 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 420 if (Internalize) { 421 PM.add(createInternalizePass(mustPreserveGV)); 422 PM.add(createGlobalDCEPass()); 423 } 424 if (EarlyInline) 425 PM.add(createAMDGPUAlwaysInlinePass(false)); 426 }); 427 428 const auto &Opt = Options; 429 Builder.addExtension( 430 PassManagerBuilder::EP_EarlyAsPossible, 431 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 432 legacy::PassManagerBase &PM) { 433 if (AMDGPUAA) { 434 PM.add(createAMDGPUAAWrapperPass()); 435 PM.add(createAMDGPUExternalAAWrapperPass()); 436 } 437 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 438 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 439 if (LibCallSimplify) 440 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 441 }); 442 443 Builder.addExtension( 444 PassManagerBuilder::EP_CGSCCOptimizerLate, 445 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 446 // Add infer address spaces pass to the opt pipeline after inlining 447 // but before SROA to increase SROA opportunities. 448 PM.add(createInferAddressSpacesPass()); 449 450 // This should run after inlining to have any chance of doing anything, 451 // and before other cleanup optimizations. 452 PM.add(createAMDGPULowerKernelAttributesPass()); 453 }); 454 } 455 456 //===----------------------------------------------------------------------===// 457 // R600 Target Machine (R600 -> Cayman) 458 //===----------------------------------------------------------------------===// 459 460 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 461 StringRef CPU, StringRef FS, 462 TargetOptions Options, 463 Optional<Reloc::Model> RM, 464 Optional<CodeModel::Model> CM, 465 CodeGenOpt::Level OL, bool JIT) 466 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 467 setRequiresStructuredCFG(true); 468 469 // Override the default since calls aren't supported for r600. 470 if (EnableFunctionCalls && 471 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 472 EnableFunctionCalls = false; 473 } 474 475 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 476 const Function &F) const { 477 StringRef GPU = getGPUName(F); 478 StringRef FS = getFeatureString(F); 479 480 SmallString<128> SubtargetKey(GPU); 481 SubtargetKey.append(FS); 482 483 auto &I = SubtargetMap[SubtargetKey]; 484 if (!I) { 485 // This needs to be done before we create a new subtarget since any 486 // creation will depend on the TM and the code generation flags on the 487 // function that reside in TargetOptions. 488 resetTargetOptions(F); 489 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 490 } 491 492 return I.get(); 493 } 494 495 TargetTransformInfo 496 R600TargetMachine::getTargetTransformInfo(const Function &F) { 497 return TargetTransformInfo(R600TTIImpl(this, F)); 498 } 499 500 //===----------------------------------------------------------------------===// 501 // GCN Target Machine (SI+) 502 //===----------------------------------------------------------------------===// 503 504 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 505 StringRef CPU, StringRef FS, 506 TargetOptions Options, 507 Optional<Reloc::Model> RM, 508 Optional<CodeModel::Model> CM, 509 CodeGenOpt::Level OL, bool JIT) 510 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 511 512 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 513 StringRef GPU = getGPUName(F); 514 StringRef FS = getFeatureString(F); 515 516 SmallString<128> SubtargetKey(GPU); 517 SubtargetKey.append(FS); 518 519 auto &I = SubtargetMap[SubtargetKey]; 520 if (!I) { 521 // This needs to be done before we create a new subtarget since any 522 // creation will depend on the TM and the code generation flags on the 523 // function that reside in TargetOptions. 524 resetTargetOptions(F); 525 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 526 } 527 528 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 529 530 return I.get(); 531 } 532 533 TargetTransformInfo 534 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 535 return TargetTransformInfo(GCNTTIImpl(this, F)); 536 } 537 538 //===----------------------------------------------------------------------===// 539 // AMDGPU Pass Setup 540 //===----------------------------------------------------------------------===// 541 542 namespace { 543 544 class AMDGPUPassConfig : public TargetPassConfig { 545 public: 546 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 547 : TargetPassConfig(TM, PM) { 548 // Exceptions and StackMaps are not supported, so these passes will never do 549 // anything. 550 disablePass(&StackMapLivenessID); 551 disablePass(&FuncletLayoutID); 552 } 553 554 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 555 return getTM<AMDGPUTargetMachine>(); 556 } 557 558 ScheduleDAGInstrs * 559 createMachineScheduler(MachineSchedContext *C) const override { 560 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 561 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 562 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 563 return DAG; 564 } 565 566 void addEarlyCSEOrGVNPass(); 567 void addStraightLineScalarOptimizationPasses(); 568 void addIRPasses() override; 569 void addCodeGenPrepare() override; 570 bool addPreISel() override; 571 bool addInstSelector() override; 572 bool addGCPasses() override; 573 574 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 575 }; 576 577 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 578 return getStandardCSEConfigForOpt(TM->getOptLevel()); 579 } 580 581 class R600PassConfig final : public AMDGPUPassConfig { 582 public: 583 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 584 : AMDGPUPassConfig(TM, PM) {} 585 586 ScheduleDAGInstrs *createMachineScheduler( 587 MachineSchedContext *C) const override { 588 return createR600MachineScheduler(C); 589 } 590 591 bool addPreISel() override; 592 bool addInstSelector() override; 593 void addPreRegAlloc() override; 594 void addPreSched2() override; 595 void addPreEmitPass() override; 596 }; 597 598 class GCNPassConfig final : public AMDGPUPassConfig { 599 public: 600 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 601 : AMDGPUPassConfig(TM, PM) { 602 // It is necessary to know the register usage of the entire call graph. We 603 // allow calls without EnableAMDGPUFunctionCalls if they are marked 604 // noinline, so this is always required. 605 setRequiresCodeGenSCCOrder(true); 606 } 607 608 GCNTargetMachine &getGCNTargetMachine() const { 609 return getTM<GCNTargetMachine>(); 610 } 611 612 ScheduleDAGInstrs * 613 createMachineScheduler(MachineSchedContext *C) const override; 614 615 bool addPreISel() override; 616 void addMachineSSAOptimization() override; 617 bool addILPOpts() override; 618 bool addInstSelector() override; 619 bool addIRTranslator() override; 620 bool addLegalizeMachineIR() override; 621 bool addRegBankSelect() override; 622 bool addGlobalInstructionSelect() override; 623 void addFastRegAlloc() override; 624 void addOptimizedRegAlloc() override; 625 void addPreRegAlloc() override; 626 bool addPreRewrite() override; 627 void addPostRegAlloc() override; 628 void addPreSched2() override; 629 void addPreEmitPass() override; 630 }; 631 632 } // end anonymous namespace 633 634 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 635 if (getOptLevel() == CodeGenOpt::Aggressive) 636 addPass(createGVNPass()); 637 else 638 addPass(createEarlyCSEPass()); 639 } 640 641 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 642 addPass(createLICMPass()); 643 addPass(createSeparateConstOffsetFromGEPPass()); 644 addPass(createSpeculativeExecutionPass()); 645 // ReassociateGEPs exposes more opportunites for SLSR. See 646 // the example in reassociate-geps-and-slsr.ll. 647 addPass(createStraightLineStrengthReducePass()); 648 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 649 // EarlyCSE can reuse. 650 addEarlyCSEOrGVNPass(); 651 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 652 addPass(createNaryReassociatePass()); 653 // NaryReassociate on GEPs creates redundant common expressions, so run 654 // EarlyCSE after it. 655 addPass(createEarlyCSEPass()); 656 } 657 658 void AMDGPUPassConfig::addIRPasses() { 659 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 660 661 // There is no reason to run these. 662 disablePass(&StackMapLivenessID); 663 disablePass(&FuncletLayoutID); 664 disablePass(&PatchableFunctionID); 665 666 addPass(createAMDGPUPrintfRuntimeBinding()); 667 668 // This must occur before inlining, as the inliner will not look through 669 // bitcast calls. 670 addPass(createAMDGPUFixFunctionBitcastsPass()); 671 672 // A call to propagate attributes pass in the backend in case opt was not run. 673 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 674 675 addPass(createAtomicExpandPass()); 676 677 678 addPass(createAMDGPULowerIntrinsicsPass()); 679 680 // Function calls are not supported, so make sure we inline everything. 681 addPass(createAMDGPUAlwaysInlinePass()); 682 addPass(createAlwaysInlinerLegacyPass()); 683 // We need to add the barrier noop pass, otherwise adding the function 684 // inlining pass will cause all of the PassConfigs passes to be run 685 // one function at a time, which means if we have a nodule with two 686 // functions, then we will generate code for the first function 687 // without ever running any passes on the second. 688 addPass(createBarrierNoopPass()); 689 690 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 691 if (TM.getTargetTriple().getArch() == Triple::r600) 692 addPass(createR600OpenCLImageTypeLoweringPass()); 693 694 // Replace OpenCL enqueued block function pointers with global variables. 695 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 696 697 if (TM.getOptLevel() > CodeGenOpt::None) { 698 addPass(createInferAddressSpacesPass()); 699 addPass(createAMDGPUPromoteAlloca()); 700 701 if (EnableSROA) 702 addPass(createSROAPass()); 703 704 if (EnableScalarIRPasses) 705 addStraightLineScalarOptimizationPasses(); 706 707 if (EnableAMDGPUAliasAnalysis) { 708 addPass(createAMDGPUAAWrapperPass()); 709 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 710 AAResults &AAR) { 711 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 712 AAR.addAAResult(WrapperPass->getResult()); 713 })); 714 } 715 } 716 717 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 718 // TODO: May want to move later or split into an early and late one. 719 addPass(createAMDGPUCodeGenPreparePass()); 720 } 721 722 TargetPassConfig::addIRPasses(); 723 724 // EarlyCSE is not always strong enough to clean up what LSR produces. For 725 // example, GVN can combine 726 // 727 // %0 = add %a, %b 728 // %1 = add %b, %a 729 // 730 // and 731 // 732 // %0 = shl nsw %a, 2 733 // %1 = shl %a, 2 734 // 735 // but EarlyCSE can do neither of them. 736 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 737 addEarlyCSEOrGVNPass(); 738 } 739 740 void AMDGPUPassConfig::addCodeGenPrepare() { 741 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 742 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 743 744 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 745 EnableLowerKernelArguments) 746 addPass(createAMDGPULowerKernelArgumentsPass()); 747 748 addPass(&AMDGPUPerfHintAnalysisID); 749 750 TargetPassConfig::addCodeGenPrepare(); 751 752 if (EnableLoadStoreVectorizer) 753 addPass(createLoadStoreVectorizerPass()); 754 } 755 756 bool AMDGPUPassConfig::addPreISel() { 757 addPass(createLowerSwitchPass()); 758 addPass(createFlattenCFGPass()); 759 return false; 760 } 761 762 bool AMDGPUPassConfig::addInstSelector() { 763 // Defer the verifier until FinalizeISel. 764 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 765 return false; 766 } 767 768 bool AMDGPUPassConfig::addGCPasses() { 769 // Do nothing. GC is not supported. 770 return false; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // R600 Pass Setup 775 //===----------------------------------------------------------------------===// 776 777 bool R600PassConfig::addPreISel() { 778 AMDGPUPassConfig::addPreISel(); 779 780 if (EnableR600StructurizeCFG) 781 addPass(createStructurizeCFGPass()); 782 return false; 783 } 784 785 bool R600PassConfig::addInstSelector() { 786 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 787 return false; 788 } 789 790 void R600PassConfig::addPreRegAlloc() { 791 addPass(createR600VectorRegMerger()); 792 } 793 794 void R600PassConfig::addPreSched2() { 795 addPass(createR600EmitClauseMarkers(), false); 796 if (EnableR600IfConvert) 797 addPass(&IfConverterID, false); 798 addPass(createR600ClauseMergePass(), false); 799 } 800 801 void R600PassConfig::addPreEmitPass() { 802 addPass(createAMDGPUCFGStructurizerPass(), false); 803 addPass(createR600ExpandSpecialInstrsPass(), false); 804 addPass(&FinalizeMachineBundlesID, false); 805 addPass(createR600Packetizer(), false); 806 addPass(createR600ControlFlowFinalizer(), false); 807 } 808 809 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 810 return new R600PassConfig(*this, PM); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // GCN Pass Setup 815 //===----------------------------------------------------------------------===// 816 817 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 818 MachineSchedContext *C) const { 819 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 820 if (ST.enableSIScheduler()) 821 return createSIMachineScheduler(C); 822 return createGCNMaxOccupancyMachineScheduler(C); 823 } 824 825 bool GCNPassConfig::addPreISel() { 826 AMDGPUPassConfig::addPreISel(); 827 828 if (EnableAtomicOptimizations) { 829 addPass(createAMDGPUAtomicOptimizerPass()); 830 } 831 832 // FIXME: We need to run a pass to propagate the attributes when calls are 833 // supported. 834 835 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 836 // regions formed by them. 837 addPass(&AMDGPUUnifyDivergentExitNodesID); 838 if (!LateCFGStructurize) { 839 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 840 } 841 addPass(createSinkingPass()); 842 addPass(createAMDGPUAnnotateUniformValues()); 843 if (!LateCFGStructurize) { 844 addPass(createSIAnnotateControlFlowPass()); 845 } 846 addPass(createLCSSAPass()); 847 848 return false; 849 } 850 851 void GCNPassConfig::addMachineSSAOptimization() { 852 TargetPassConfig::addMachineSSAOptimization(); 853 854 // We want to fold operands after PeepholeOptimizer has run (or as part of 855 // it), because it will eliminate extra copies making it easier to fold the 856 // real source operand. We want to eliminate dead instructions after, so that 857 // we see fewer uses of the copies. We then need to clean up the dead 858 // instructions leftover after the operands are folded as well. 859 // 860 // XXX - Can we get away without running DeadMachineInstructionElim again? 861 addPass(&SIFoldOperandsID); 862 if (EnableDPPCombine) 863 addPass(&GCNDPPCombineID); 864 addPass(&DeadMachineInstructionElimID); 865 addPass(&SILoadStoreOptimizerID); 866 if (EnableSDWAPeephole) { 867 addPass(&SIPeepholeSDWAID); 868 addPass(&EarlyMachineLICMID); 869 addPass(&MachineCSEID); 870 addPass(&SIFoldOperandsID); 871 addPass(&DeadMachineInstructionElimID); 872 } 873 addPass(createSIShrinkInstructionsPass()); 874 } 875 876 bool GCNPassConfig::addILPOpts() { 877 if (EnableEarlyIfConversion) 878 addPass(&EarlyIfConverterID); 879 880 TargetPassConfig::addILPOpts(); 881 return false; 882 } 883 884 bool GCNPassConfig::addInstSelector() { 885 AMDGPUPassConfig::addInstSelector(); 886 addPass(&SIFixSGPRCopiesID); 887 addPass(createSILowerI1CopiesPass()); 888 addPass(createSIFixupVectorISelPass()); 889 addPass(createSIAddIMGInitPass()); 890 return false; 891 } 892 893 bool GCNPassConfig::addIRTranslator() { 894 addPass(new IRTranslator()); 895 return false; 896 } 897 898 bool GCNPassConfig::addLegalizeMachineIR() { 899 addPass(new Legalizer()); 900 return false; 901 } 902 903 bool GCNPassConfig::addRegBankSelect() { 904 addPass(new RegBankSelect()); 905 return false; 906 } 907 908 bool GCNPassConfig::addGlobalInstructionSelect() { 909 addPass(new InstructionSelect()); 910 return false; 911 } 912 913 void GCNPassConfig::addPreRegAlloc() { 914 if (LateCFGStructurize) { 915 addPass(createAMDGPUMachineCFGStructurizerPass()); 916 } 917 addPass(createSIWholeQuadModePass()); 918 } 919 920 void GCNPassConfig::addFastRegAlloc() { 921 // FIXME: We have to disable the verifier here because of PHIElimination + 922 // TwoAddressInstructions disabling it. 923 924 // This must be run immediately after phi elimination and before 925 // TwoAddressInstructions, otherwise the processing of the tied operand of 926 // SI_ELSE will introduce a copy of the tied operand source after the else. 927 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 928 929 // This must be run just after RegisterCoalescing. 930 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 931 932 TargetPassConfig::addFastRegAlloc(); 933 } 934 935 void GCNPassConfig::addOptimizedRegAlloc() { 936 if (OptExecMaskPreRA) { 937 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 938 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 939 } else { 940 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 941 } 942 943 // This must be run immediately after phi elimination and before 944 // TwoAddressInstructions, otherwise the processing of the tied operand of 945 // SI_ELSE will introduce a copy of the tied operand source after the else. 946 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 947 948 // This must be run just after RegisterCoalescing. 949 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 950 951 if (EnableDCEInRA) 952 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 953 954 TargetPassConfig::addOptimizedRegAlloc(); 955 } 956 957 bool GCNPassConfig::addPreRewrite() { 958 if (EnableRegReassign) { 959 addPass(&GCNNSAReassignID); 960 addPass(&GCNRegBankReassignID); 961 } 962 return true; 963 } 964 965 void GCNPassConfig::addPostRegAlloc() { 966 addPass(&SIFixVGPRCopiesID); 967 if (getOptLevel() > CodeGenOpt::None) 968 addPass(&SIOptimizeExecMaskingID); 969 TargetPassConfig::addPostRegAlloc(); 970 971 // Equivalent of PEI for SGPRs. 972 addPass(&SILowerSGPRSpillsID); 973 } 974 975 void GCNPassConfig::addPreSched2() { 976 } 977 978 void GCNPassConfig::addPreEmitPass() { 979 addPass(createSIMemoryLegalizerPass()); 980 addPass(createSIInsertWaitcntsPass()); 981 addPass(createSIShrinkInstructionsPass()); 982 addPass(createSIModeRegisterPass()); 983 984 // The hazard recognizer that runs as part of the post-ra scheduler does not 985 // guarantee to be able handle all hazards correctly. This is because if there 986 // are multiple scheduling regions in a basic block, the regions are scheduled 987 // bottom up, so when we begin to schedule a region we don't know what 988 // instructions were emitted directly before it. 989 // 990 // Here we add a stand-alone hazard recognizer pass which can handle all 991 // cases. 992 // 993 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 994 // be better for it to emit S_NOP <N> when possible. 995 addPass(&PostRAHazardRecognizerID); 996 997 addPass(&SIRemoveShortExecBranchesID); 998 addPass(&SIInsertSkipsPassID); 999 addPass(&BranchRelaxationPassID); 1000 } 1001 1002 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1003 return new GCNPassConfig(*this, PM); 1004 } 1005 1006 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1007 return new yaml::SIMachineFunctionInfo(); 1008 } 1009 1010 yaml::MachineFunctionInfo * 1011 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1012 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1013 return new yaml::SIMachineFunctionInfo(*MFI, 1014 *MF.getSubtarget().getRegisterInfo()); 1015 } 1016 1017 bool GCNTargetMachine::parseMachineFunctionInfo( 1018 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1019 SMDiagnostic &Error, SMRange &SourceRange) const { 1020 const yaml::SIMachineFunctionInfo &YamlMFI = 1021 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1022 MachineFunction &MF = PFS.MF; 1023 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1024 1025 MFI->initializeBaseYamlFields(YamlMFI); 1026 1027 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1028 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1029 SourceRange = RegName.SourceRange; 1030 return true; 1031 } 1032 1033 return false; 1034 }; 1035 1036 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1037 // Create a diagnostic for a the register string literal. 1038 const MemoryBuffer &Buffer = 1039 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1040 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1041 RegName.Value.size(), SourceMgr::DK_Error, 1042 "incorrect register class for field", RegName.Value, 1043 None, None); 1044 SourceRange = RegName.SourceRange; 1045 return true; 1046 }; 1047 1048 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1049 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1050 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1051 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1052 return true; 1053 1054 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1055 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1056 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1057 } 1058 1059 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1060 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1061 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1062 } 1063 1064 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1065 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1066 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1067 } 1068 1069 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1070 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1071 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1072 } 1073 1074 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1075 const TargetRegisterClass &RC, 1076 ArgDescriptor &Arg, unsigned UserSGPRs, 1077 unsigned SystemSGPRs) { 1078 // Skip parsing if it's not present. 1079 if (!A) 1080 return false; 1081 1082 if (A->IsRegister) { 1083 unsigned Reg; 1084 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1085 SourceRange = A->RegisterName.SourceRange; 1086 return true; 1087 } 1088 if (!RC.contains(Reg)) 1089 return diagnoseRegisterClass(A->RegisterName); 1090 Arg = ArgDescriptor::createRegister(Reg); 1091 } else 1092 Arg = ArgDescriptor::createStack(A->StackOffset); 1093 // Check and apply the optional mask. 1094 if (A->Mask) 1095 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1096 1097 MFI->NumUserSGPRs += UserSGPRs; 1098 MFI->NumSystemSGPRs += SystemSGPRs; 1099 return false; 1100 }; 1101 1102 if (YamlMFI.ArgInfo && 1103 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1104 AMDGPU::SGPR_128RegClass, 1105 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1106 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1107 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1108 2, 0) || 1109 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1110 MFI->ArgInfo.QueuePtr, 2, 0) || 1111 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1112 AMDGPU::SReg_64RegClass, 1113 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1114 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1115 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1116 2, 0) || 1117 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1118 AMDGPU::SReg_64RegClass, 1119 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1120 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1121 AMDGPU::SGPR_32RegClass, 1122 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1123 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1124 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1125 0, 1) || 1126 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1127 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1128 0, 1) || 1129 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1130 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1131 0, 1) || 1132 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1133 AMDGPU::SGPR_32RegClass, 1134 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1135 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1136 AMDGPU::SGPR_32RegClass, 1137 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1138 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1139 AMDGPU::SReg_64RegClass, 1140 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1141 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1142 AMDGPU::SReg_64RegClass, 1143 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1144 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1145 AMDGPU::VGPR_32RegClass, 1146 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1147 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1148 AMDGPU::VGPR_32RegClass, 1149 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1150 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1151 AMDGPU::VGPR_32RegClass, 1152 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1153 return true; 1154 1155 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1156 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1157 MFI->Mode.FP32Denormals = YamlMFI.Mode.FP32Denormals; 1158 MFI->Mode.FP64FP16Denormals = YamlMFI.Mode.FP64FP16Denormals; 1159 1160 return false; 1161 } 1162