1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "amdgpu-simplifylib" 15 16 #include "AMDGPU.h" 17 #include "AMDGPULibFunc.h" 18 #include "AMDGPUSubtarget.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/ADT/StringSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <vector> 38 #include <cmath> 39 40 using namespace llvm; 41 42 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 43 cl::desc("Enable pre-link mode optimizations"), 44 cl::init(false), 45 cl::Hidden); 46 47 static cl::list<std::string> UseNative("amdgpu-use-native", 48 cl::desc("Comma separated list of functions to replace with native, or all"), 49 cl::CommaSeparated, cl::ValueOptional, 50 cl::Hidden); 51 52 #define MATH_PI numbers::pi 53 #define MATH_E numbers::e 54 #define MATH_SQRT2 numbers::sqrt2 55 #define MATH_SQRT1_2 numbers::inv_sqrt2 56 57 namespace llvm { 58 59 class AMDGPULibCalls { 60 private: 61 62 typedef llvm::AMDGPULibFunc FuncInfo; 63 64 const TargetMachine *TM; 65 66 // -fuse-native. 67 bool AllNative = false; 68 69 bool useNativeFunc(const StringRef F) const; 70 71 // Return a pointer (pointer expr) to the function if function defintion with 72 // "FuncName" exists. It may create a new function prototype in pre-link mode. 73 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 74 75 // Replace a normal function with its native version. 76 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 77 78 bool parseFunctionName(const StringRef& FMangledName, 79 FuncInfo *FInfo=nullptr /*out*/); 80 81 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 82 83 /* Specialized optimizations */ 84 85 // recip (half or native) 86 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 87 88 // divide (half or native) 89 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 90 91 // pow/powr/pown 92 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 93 94 // rootn 95 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 96 97 // fma/mad 98 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 99 100 // -fuse-native for sincos 101 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 102 103 // evaluate calls if calls' arguments are constants. 104 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 105 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 106 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 107 108 // exp 109 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // exp2 112 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 113 114 // exp10 115 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 116 117 // log 118 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 119 120 // log2 121 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 122 123 // log10 124 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 125 126 // sqrt 127 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 128 129 // sin/cos 130 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 131 132 // __read_pipe/__write_pipe 133 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 134 135 // llvm.amdgcn.wavefrontsize 136 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 137 138 // Get insertion point at entry. 139 BasicBlock::iterator getEntryIns(CallInst * UI); 140 // Insert an Alloc instruction. 141 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 142 // Get a scalar native builtin signle argument FP function 143 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 144 145 protected: 146 CallInst *CI; 147 148 bool isUnsafeMath(const CallInst *CI) const; 149 150 void replaceCall(Value *With) { 151 CI->replaceAllUsesWith(With); 152 CI->eraseFromParent(); 153 } 154 155 public: 156 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 157 158 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 159 160 void initNativeFuncs(); 161 162 // Replace a normal math function call with that native version 163 bool useNative(CallInst *CI); 164 }; 165 166 } // end llvm namespace 167 168 namespace { 169 170 class AMDGPUSimplifyLibCalls : public FunctionPass { 171 172 const TargetOptions Options; 173 174 AMDGPULibCalls Simplifier; 175 176 public: 177 static char ID; // Pass identification 178 179 AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions(), 180 const TargetMachine *TM = nullptr) 181 : FunctionPass(ID), Options(Opt), Simplifier(TM) { 182 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 183 } 184 185 void getAnalysisUsage(AnalysisUsage &AU) const override { 186 AU.addRequired<AAResultsWrapperPass>(); 187 } 188 189 bool runOnFunction(Function &M) override; 190 }; 191 192 class AMDGPUUseNativeCalls : public FunctionPass { 193 194 AMDGPULibCalls Simplifier; 195 196 public: 197 static char ID; // Pass identification 198 199 AMDGPUUseNativeCalls() : FunctionPass(ID) { 200 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 201 Simplifier.initNativeFuncs(); 202 } 203 204 bool runOnFunction(Function &F) override; 205 }; 206 207 } // end anonymous namespace. 208 209 char AMDGPUSimplifyLibCalls::ID = 0; 210 char AMDGPUUseNativeCalls::ID = 0; 211 212 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 213 "Simplify well-known AMD library calls", false, false) 214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 215 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 216 "Simplify well-known AMD library calls", false, false) 217 218 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 219 "Replace builtin math calls with that native versions.", 220 false, false) 221 222 template <typename IRB> 223 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 224 const Twine &Name = "") { 225 CallInst *R = B.CreateCall(Callee, Arg, Name); 226 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 227 R->setCallingConv(F->getCallingConv()); 228 return R; 229 } 230 231 template <typename IRB> 232 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 233 Value *Arg2, const Twine &Name = "") { 234 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 235 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 236 R->setCallingConv(F->getCallingConv()); 237 return R; 238 } 239 240 // Data structures for table-driven optimizations. 241 // FuncTbl works for both f32 and f64 functions with 1 input argument 242 243 struct TableEntry { 244 double result; 245 double input; 246 }; 247 248 /* a list of {result, input} */ 249 static const TableEntry tbl_acos[] = { 250 {MATH_PI / 2.0, 0.0}, 251 {MATH_PI / 2.0, -0.0}, 252 {0.0, 1.0}, 253 {MATH_PI, -1.0} 254 }; 255 static const TableEntry tbl_acosh[] = { 256 {0.0, 1.0} 257 }; 258 static const TableEntry tbl_acospi[] = { 259 {0.5, 0.0}, 260 {0.5, -0.0}, 261 {0.0, 1.0}, 262 {1.0, -1.0} 263 }; 264 static const TableEntry tbl_asin[] = { 265 {0.0, 0.0}, 266 {-0.0, -0.0}, 267 {MATH_PI / 2.0, 1.0}, 268 {-MATH_PI / 2.0, -1.0} 269 }; 270 static const TableEntry tbl_asinh[] = { 271 {0.0, 0.0}, 272 {-0.0, -0.0} 273 }; 274 static const TableEntry tbl_asinpi[] = { 275 {0.0, 0.0}, 276 {-0.0, -0.0}, 277 {0.5, 1.0}, 278 {-0.5, -1.0} 279 }; 280 static const TableEntry tbl_atan[] = { 281 {0.0, 0.0}, 282 {-0.0, -0.0}, 283 {MATH_PI / 4.0, 1.0}, 284 {-MATH_PI / 4.0, -1.0} 285 }; 286 static const TableEntry tbl_atanh[] = { 287 {0.0, 0.0}, 288 {-0.0, -0.0} 289 }; 290 static const TableEntry tbl_atanpi[] = { 291 {0.0, 0.0}, 292 {-0.0, -0.0}, 293 {0.25, 1.0}, 294 {-0.25, -1.0} 295 }; 296 static const TableEntry tbl_cbrt[] = { 297 {0.0, 0.0}, 298 {-0.0, -0.0}, 299 {1.0, 1.0}, 300 {-1.0, -1.0}, 301 }; 302 static const TableEntry tbl_cos[] = { 303 {1.0, 0.0}, 304 {1.0, -0.0} 305 }; 306 static const TableEntry tbl_cosh[] = { 307 {1.0, 0.0}, 308 {1.0, -0.0} 309 }; 310 static const TableEntry tbl_cospi[] = { 311 {1.0, 0.0}, 312 {1.0, -0.0} 313 }; 314 static const TableEntry tbl_erfc[] = { 315 {1.0, 0.0}, 316 {1.0, -0.0} 317 }; 318 static const TableEntry tbl_erf[] = { 319 {0.0, 0.0}, 320 {-0.0, -0.0} 321 }; 322 static const TableEntry tbl_exp[] = { 323 {1.0, 0.0}, 324 {1.0, -0.0}, 325 {MATH_E, 1.0} 326 }; 327 static const TableEntry tbl_exp2[] = { 328 {1.0, 0.0}, 329 {1.0, -0.0}, 330 {2.0, 1.0} 331 }; 332 static const TableEntry tbl_exp10[] = { 333 {1.0, 0.0}, 334 {1.0, -0.0}, 335 {10.0, 1.0} 336 }; 337 static const TableEntry tbl_expm1[] = { 338 {0.0, 0.0}, 339 {-0.0, -0.0} 340 }; 341 static const TableEntry tbl_log[] = { 342 {0.0, 1.0}, 343 {1.0, MATH_E} 344 }; 345 static const TableEntry tbl_log2[] = { 346 {0.0, 1.0}, 347 {1.0, 2.0} 348 }; 349 static const TableEntry tbl_log10[] = { 350 {0.0, 1.0}, 351 {1.0, 10.0} 352 }; 353 static const TableEntry tbl_rsqrt[] = { 354 {1.0, 1.0}, 355 {MATH_SQRT1_2, 2.0} 356 }; 357 static const TableEntry tbl_sin[] = { 358 {0.0, 0.0}, 359 {-0.0, -0.0} 360 }; 361 static const TableEntry tbl_sinh[] = { 362 {0.0, 0.0}, 363 {-0.0, -0.0} 364 }; 365 static const TableEntry tbl_sinpi[] = { 366 {0.0, 0.0}, 367 {-0.0, -0.0} 368 }; 369 static const TableEntry tbl_sqrt[] = { 370 {0.0, 0.0}, 371 {1.0, 1.0}, 372 {MATH_SQRT2, 2.0} 373 }; 374 static const TableEntry tbl_tan[] = { 375 {0.0, 0.0}, 376 {-0.0, -0.0} 377 }; 378 static const TableEntry tbl_tanh[] = { 379 {0.0, 0.0}, 380 {-0.0, -0.0} 381 }; 382 static const TableEntry tbl_tanpi[] = { 383 {0.0, 0.0}, 384 {-0.0, -0.0} 385 }; 386 static const TableEntry tbl_tgamma[] = { 387 {1.0, 1.0}, 388 {1.0, 2.0}, 389 {2.0, 3.0}, 390 {6.0, 4.0} 391 }; 392 393 static bool HasNative(AMDGPULibFunc::EFuncId id) { 394 switch(id) { 395 case AMDGPULibFunc::EI_DIVIDE: 396 case AMDGPULibFunc::EI_COS: 397 case AMDGPULibFunc::EI_EXP: 398 case AMDGPULibFunc::EI_EXP2: 399 case AMDGPULibFunc::EI_EXP10: 400 case AMDGPULibFunc::EI_LOG: 401 case AMDGPULibFunc::EI_LOG2: 402 case AMDGPULibFunc::EI_LOG10: 403 case AMDGPULibFunc::EI_POWR: 404 case AMDGPULibFunc::EI_RECIP: 405 case AMDGPULibFunc::EI_RSQRT: 406 case AMDGPULibFunc::EI_SIN: 407 case AMDGPULibFunc::EI_SINCOS: 408 case AMDGPULibFunc::EI_SQRT: 409 case AMDGPULibFunc::EI_TAN: 410 return true; 411 default:; 412 } 413 return false; 414 } 415 416 struct TableRef { 417 size_t size; 418 const TableEntry *table; // variable size: from 0 to (size - 1) 419 420 TableRef() : size(0), table(nullptr) {} 421 422 template <size_t N> 423 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 424 }; 425 426 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 427 switch(id) { 428 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 429 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 430 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 431 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 432 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 433 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 434 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 435 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 436 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 437 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 438 case AMDGPULibFunc::EI_NCOS: 439 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 440 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 441 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 442 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 443 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 444 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 445 case AMDGPULibFunc::EI_NEXP2: 446 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 447 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 448 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 449 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 450 case AMDGPULibFunc::EI_NLOG2: 451 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 452 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 453 case AMDGPULibFunc::EI_NRSQRT: 454 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 455 case AMDGPULibFunc::EI_NSIN: 456 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 457 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 458 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 459 case AMDGPULibFunc::EI_NSQRT: 460 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 461 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 462 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 463 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 464 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 465 default:; 466 } 467 return TableRef(); 468 } 469 470 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 471 return FInfo.getLeads()[0].VectorSize; 472 } 473 474 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 475 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 476 } 477 478 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 479 // If we are doing PreLinkOpt, the function is external. So it is safe to 480 // use getOrInsertFunction() at this stage. 481 482 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 483 : AMDGPULibFunc::getFunction(M, fInfo); 484 } 485 486 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 487 FuncInfo *FInfo) { 488 return AMDGPULibFunc::parse(FMangledName, *FInfo); 489 } 490 491 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 492 if (auto Op = dyn_cast<FPMathOperator>(CI)) 493 if (Op->isFast()) 494 return true; 495 const Function *F = CI->getParent()->getParent(); 496 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 497 return Attr.getValueAsString() == "true"; 498 } 499 500 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 501 return AllNative || 502 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); 503 } 504 505 void AMDGPULibCalls::initNativeFuncs() { 506 AllNative = useNativeFunc("all") || 507 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 508 UseNative.begin()->empty()); 509 } 510 511 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 512 bool native_sin = useNativeFunc("sin"); 513 bool native_cos = useNativeFunc("cos"); 514 515 if (native_sin && native_cos) { 516 Module *M = aCI->getModule(); 517 Value *opr0 = aCI->getArgOperand(0); 518 519 AMDGPULibFunc nf; 520 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 521 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 522 523 nf.setPrefix(AMDGPULibFunc::NATIVE); 524 nf.setId(AMDGPULibFunc::EI_SIN); 525 FunctionCallee sinExpr = getFunction(M, nf); 526 527 nf.setPrefix(AMDGPULibFunc::NATIVE); 528 nf.setId(AMDGPULibFunc::EI_COS); 529 FunctionCallee cosExpr = getFunction(M, nf); 530 if (sinExpr && cosExpr) { 531 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 532 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 533 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 534 535 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 536 << " with native version of sin/cos"); 537 538 replaceCall(sinval); 539 return true; 540 } 541 } 542 return false; 543 } 544 545 bool AMDGPULibCalls::useNative(CallInst *aCI) { 546 CI = aCI; 547 Function *Callee = aCI->getCalledFunction(); 548 549 FuncInfo FInfo; 550 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 551 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 552 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 553 !(AllNative || useNativeFunc(FInfo.getName()))) { 554 return false; 555 } 556 557 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 558 return sincosUseNative(aCI, FInfo); 559 560 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 561 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 562 if (!F) 563 return false; 564 565 aCI->setCalledFunction(F); 566 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 567 << " with native version"); 568 return true; 569 } 570 571 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 572 // builtin, with appended type size and alignment arguments, where 2 or 4 573 // indicates the original number of arguments. The library has optimized version 574 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 575 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 576 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 577 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 578 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 579 FuncInfo &FInfo) { 580 auto *Callee = CI->getCalledFunction(); 581 if (!Callee->isDeclaration()) 582 return false; 583 584 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 585 auto *M = Callee->getParent(); 586 auto &Ctx = M->getContext(); 587 std::string Name = Callee->getName(); 588 auto NumArg = CI->getNumArgOperands(); 589 if (NumArg != 4 && NumArg != 6) 590 return false; 591 auto *PacketSize = CI->getArgOperand(NumArg - 2); 592 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 593 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 594 return false; 595 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 596 unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); 597 if (Size != Align || !isPowerOf2_32(Size)) 598 return false; 599 600 Type *PtrElemTy; 601 if (Size <= 8) 602 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 603 else 604 PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); 605 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 606 auto PtrArg = CI->getArgOperand(PtrArgLoc); 607 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 608 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 609 610 SmallVector<llvm::Type *, 6> ArgTys; 611 for (unsigned I = 0; I != PtrArgLoc; ++I) 612 ArgTys.push_back(CI->getArgOperand(I)->getType()); 613 ArgTys.push_back(PtrTy); 614 615 Name = Name + "_" + std::to_string(Size); 616 auto *FTy = FunctionType::get(Callee->getReturnType(), 617 ArrayRef<Type *>(ArgTys), false); 618 AMDGPULibFunc NewLibFunc(Name, FTy); 619 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 620 if (!F) 621 return false; 622 623 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 624 SmallVector<Value *, 6> Args; 625 for (unsigned I = 0; I != PtrArgLoc; ++I) 626 Args.push_back(CI->getArgOperand(I)); 627 Args.push_back(BCast); 628 629 auto *NCI = B.CreateCall(F, Args); 630 NCI->setAttributes(CI->getAttributes()); 631 CI->replaceAllUsesWith(NCI); 632 CI->dropAllReferences(); 633 CI->eraseFromParent(); 634 635 return true; 636 } 637 638 // This function returns false if no change; return true otherwise. 639 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 640 this->CI = CI; 641 Function *Callee = CI->getCalledFunction(); 642 643 // Ignore indirect calls. 644 if (Callee == 0) return false; 645 646 BasicBlock *BB = CI->getParent(); 647 LLVMContext &Context = CI->getParent()->getContext(); 648 IRBuilder<> B(Context); 649 650 // Set the builder to the instruction after the call. 651 B.SetInsertPoint(BB, CI->getIterator()); 652 653 // Copy fast flags from the original call. 654 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 655 B.setFastMathFlags(FPOp->getFastMathFlags()); 656 657 switch (Callee->getIntrinsicID()) { 658 default: 659 break; 660 case Intrinsic::amdgcn_wavefrontsize: 661 return !EnablePreLink && fold_wavefrontsize(CI, B); 662 } 663 664 FuncInfo FInfo; 665 if (!parseFunctionName(Callee->getName(), &FInfo)) 666 return false; 667 668 // Further check the number of arguments to see if they match. 669 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 670 return false; 671 672 if (TDOFold(CI, FInfo)) 673 return true; 674 675 // Under unsafe-math, evaluate calls if possible. 676 // According to Brian Sumner, we can do this for all f32 function calls 677 // using host's double function calls. 678 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 679 return true; 680 681 // Specilized optimizations for each function call 682 switch (FInfo.getId()) { 683 case AMDGPULibFunc::EI_RECIP: 684 // skip vector function 685 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 686 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 687 "recip must be an either native or half function"); 688 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 689 690 case AMDGPULibFunc::EI_DIVIDE: 691 // skip vector function 692 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 693 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 694 "divide must be an either native or half function"); 695 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 696 697 case AMDGPULibFunc::EI_POW: 698 case AMDGPULibFunc::EI_POWR: 699 case AMDGPULibFunc::EI_POWN: 700 return fold_pow(CI, B, FInfo); 701 702 case AMDGPULibFunc::EI_ROOTN: 703 // skip vector function 704 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 705 706 case AMDGPULibFunc::EI_FMA: 707 case AMDGPULibFunc::EI_MAD: 708 case AMDGPULibFunc::EI_NFMA: 709 // skip vector function 710 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 711 712 case AMDGPULibFunc::EI_SQRT: 713 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 714 case AMDGPULibFunc::EI_COS: 715 case AMDGPULibFunc::EI_SIN: 716 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 717 getArgType(FInfo) == AMDGPULibFunc::F64) 718 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 719 return fold_sincos(CI, B, AA); 720 721 break; 722 case AMDGPULibFunc::EI_READ_PIPE_2: 723 case AMDGPULibFunc::EI_READ_PIPE_4: 724 case AMDGPULibFunc::EI_WRITE_PIPE_2: 725 case AMDGPULibFunc::EI_WRITE_PIPE_4: 726 return fold_read_write_pipe(CI, B, FInfo); 727 728 default: 729 break; 730 } 731 732 return false; 733 } 734 735 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 736 // Table-Driven optimization 737 const TableRef tr = getOptTable(FInfo.getId()); 738 if (tr.size==0) 739 return false; 740 741 int const sz = (int)tr.size; 742 const TableEntry * const ftbl = tr.table; 743 Value *opr0 = CI->getArgOperand(0); 744 745 if (getVecSize(FInfo) > 1) { 746 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 747 SmallVector<double, 0> DVal; 748 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 749 ConstantFP *eltval = dyn_cast<ConstantFP>( 750 CV->getElementAsConstant((unsigned)eltNo)); 751 assert(eltval && "Non-FP arguments in math function!"); 752 bool found = false; 753 for (int i=0; i < sz; ++i) { 754 if (eltval->isExactlyValue(ftbl[i].input)) { 755 DVal.push_back(ftbl[i].result); 756 found = true; 757 break; 758 } 759 } 760 if (!found) { 761 // This vector constants not handled yet. 762 return false; 763 } 764 } 765 LLVMContext &context = CI->getParent()->getParent()->getContext(); 766 Constant *nval; 767 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 768 SmallVector<float, 0> FVal; 769 for (unsigned i = 0; i < DVal.size(); ++i) { 770 FVal.push_back((float)DVal[i]); 771 } 772 ArrayRef<float> tmp(FVal); 773 nval = ConstantDataVector::get(context, tmp); 774 } else { // F64 775 ArrayRef<double> tmp(DVal); 776 nval = ConstantDataVector::get(context, tmp); 777 } 778 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 779 replaceCall(nval); 780 return true; 781 } 782 } else { 783 // Scalar version 784 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 785 for (int i = 0; i < sz; ++i) { 786 if (CF->isExactlyValue(ftbl[i].input)) { 787 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 788 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 789 replaceCall(nval); 790 return true; 791 } 792 } 793 } 794 } 795 796 return false; 797 } 798 799 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 800 Module *M = CI->getModule(); 801 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 802 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 803 !HasNative(FInfo.getId())) 804 return false; 805 806 AMDGPULibFunc nf = FInfo; 807 nf.setPrefix(AMDGPULibFunc::NATIVE); 808 if (FunctionCallee FPExpr = getFunction(M, nf)) { 809 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 810 811 CI->setCalledFunction(FPExpr); 812 813 LLVM_DEBUG(dbgs() << *CI << '\n'); 814 815 return true; 816 } 817 return false; 818 } 819 820 // [native_]half_recip(c) ==> 1.0/c 821 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 822 const FuncInfo &FInfo) { 823 Value *opr0 = CI->getArgOperand(0); 824 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 825 // Just create a normal div. Later, InstCombine will be able 826 // to compute the divide into a constant (avoid check float infinity 827 // or subnormal at this point). 828 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 829 opr0, 830 "recip2div"); 831 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 832 replaceCall(nval); 833 return true; 834 } 835 return false; 836 } 837 838 // [native_]half_divide(x, c) ==> x/c 839 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 840 const FuncInfo &FInfo) { 841 Value *opr0 = CI->getArgOperand(0); 842 Value *opr1 = CI->getArgOperand(1); 843 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 844 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 845 846 if ((CF0 && CF1) || // both are constants 847 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 848 // CF1 is constant && f32 divide 849 { 850 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 851 opr1, "__div2recip"); 852 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 853 replaceCall(nval); 854 return true; 855 } 856 return false; 857 } 858 859 namespace llvm { 860 static double log2(double V) { 861 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 862 return ::log2(V); 863 #else 864 return log(V) / numbers::ln2; 865 #endif 866 } 867 } 868 869 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 870 const FuncInfo &FInfo) { 871 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 872 FInfo.getId() == AMDGPULibFunc::EI_POWR || 873 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 874 "fold_pow: encounter a wrong function call"); 875 876 Value *opr0, *opr1; 877 ConstantFP *CF; 878 ConstantInt *CINT; 879 ConstantAggregateZero *CZero; 880 Type *eltType; 881 882 opr0 = CI->getArgOperand(0); 883 opr1 = CI->getArgOperand(1); 884 CZero = dyn_cast<ConstantAggregateZero>(opr1); 885 if (getVecSize(FInfo) == 1) { 886 eltType = opr0->getType(); 887 CF = dyn_cast<ConstantFP>(opr1); 888 CINT = dyn_cast<ConstantInt>(opr1); 889 } else { 890 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 891 assert(VTy && "Oprand of vector function should be of vectortype"); 892 eltType = VTy->getElementType(); 893 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 894 895 // Now, only Handle vector const whose elements have the same value. 896 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 897 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 898 } 899 900 // No unsafe math , no constant argument, do nothing 901 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 902 return false; 903 904 // 0x1111111 means that we don't do anything for this call. 905 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 906 907 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 908 // pow/powr/pown(x, 0) == 1 909 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 910 Constant *cnval = ConstantFP::get(eltType, 1.0); 911 if (getVecSize(FInfo) > 1) { 912 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 913 } 914 replaceCall(cnval); 915 return true; 916 } 917 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 918 // pow/powr/pown(x, 1.0) = x 919 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 920 replaceCall(opr0); 921 return true; 922 } 923 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 924 // pow/powr/pown(x, 2.0) = x*x 925 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 926 << "\n"); 927 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 928 replaceCall(nval); 929 return true; 930 } 931 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 932 // pow/powr/pown(x, -1.0) = 1.0/x 933 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 934 Constant *cnval = ConstantFP::get(eltType, 1.0); 935 if (getVecSize(FInfo) > 1) { 936 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 937 } 938 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 939 replaceCall(nval); 940 return true; 941 } 942 943 Module *M = CI->getModule(); 944 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 945 // pow[r](x, [-]0.5) = sqrt(x) 946 bool issqrt = CF->isExactlyValue(0.5); 947 if (FunctionCallee FPExpr = 948 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 949 : AMDGPULibFunc::EI_RSQRT, 950 FInfo))) { 951 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 952 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 953 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 954 : "__pow2rsqrt"); 955 replaceCall(nval); 956 return true; 957 } 958 } 959 960 if (!isUnsafeMath(CI)) 961 return false; 962 963 // Unsafe Math optimization 964 965 // Remember that ci_opr1 is set if opr1 is integral 966 if (CF) { 967 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 968 ? (double)CF->getValueAPF().convertToFloat() 969 : CF->getValueAPF().convertToDouble(); 970 int ival = (int)dval; 971 if ((double)ival == dval) { 972 ci_opr1 = ival; 973 } else 974 ci_opr1 = 0x11111111; 975 } 976 977 // pow/powr/pown(x, c) = [1/](x*x*..x); where 978 // trunc(c) == c && the number of x == c && |c| <= 12 979 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 980 if (abs_opr1 <= 12) { 981 Constant *cnval; 982 Value *nval; 983 if (abs_opr1 == 0) { 984 cnval = ConstantFP::get(eltType, 1.0); 985 if (getVecSize(FInfo) > 1) { 986 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 987 } 988 nval = cnval; 989 } else { 990 Value *valx2 = nullptr; 991 nval = nullptr; 992 while (abs_opr1 > 0) { 993 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 994 if (abs_opr1 & 1) { 995 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 996 } 997 abs_opr1 >>= 1; 998 } 999 } 1000 1001 if (ci_opr1 < 0) { 1002 cnval = ConstantFP::get(eltType, 1.0); 1003 if (getVecSize(FInfo) > 1) { 1004 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1005 } 1006 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1007 } 1008 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1009 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1010 << ")\n"); 1011 replaceCall(nval); 1012 return true; 1013 } 1014 1015 // powr ---> exp2(y * log2(x)) 1016 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1017 FunctionCallee ExpExpr = 1018 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1019 if (!ExpExpr) 1020 return false; 1021 1022 bool needlog = false; 1023 bool needabs = false; 1024 bool needcopysign = false; 1025 Constant *cnval = nullptr; 1026 if (getVecSize(FInfo) == 1) { 1027 CF = dyn_cast<ConstantFP>(opr0); 1028 1029 if (CF) { 1030 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1031 ? (double)CF->getValueAPF().convertToFloat() 1032 : CF->getValueAPF().convertToDouble(); 1033 1034 V = log2(std::abs(V)); 1035 cnval = ConstantFP::get(eltType, V); 1036 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1037 CF->isNegative(); 1038 } else { 1039 needlog = true; 1040 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1041 (!CF || CF->isNegative()); 1042 } 1043 } else { 1044 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1045 1046 if (!CDV) { 1047 needlog = true; 1048 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1049 } else { 1050 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1051 "Wrong vector size detected"); 1052 1053 SmallVector<double, 0> DVal; 1054 for (int i=0; i < getVecSize(FInfo); ++i) { 1055 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1056 ? (double)CDV->getElementAsFloat(i) 1057 : CDV->getElementAsDouble(i); 1058 if (V < 0.0) needcopysign = true; 1059 V = log2(std::abs(V)); 1060 DVal.push_back(V); 1061 } 1062 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1063 SmallVector<float, 0> FVal; 1064 for (unsigned i=0; i < DVal.size(); ++i) { 1065 FVal.push_back((float)DVal[i]); 1066 } 1067 ArrayRef<float> tmp(FVal); 1068 cnval = ConstantDataVector::get(M->getContext(), tmp); 1069 } else { 1070 ArrayRef<double> tmp(DVal); 1071 cnval = ConstantDataVector::get(M->getContext(), tmp); 1072 } 1073 } 1074 } 1075 1076 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1077 // We cannot handle corner cases for a general pow() function, give up 1078 // unless y is a constant integral value. Then proceed as if it were pown. 1079 if (getVecSize(FInfo) == 1) { 1080 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1081 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1082 ? (double)CF->getValueAPF().convertToFloat() 1083 : CF->getValueAPF().convertToDouble(); 1084 if (y != (double)(int64_t)y) 1085 return false; 1086 } else 1087 return false; 1088 } else { 1089 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1090 for (int i=0; i < getVecSize(FInfo); ++i) { 1091 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1092 ? (double)CDV->getElementAsFloat(i) 1093 : CDV->getElementAsDouble(i); 1094 if (y != (double)(int64_t)y) 1095 return false; 1096 } 1097 } else 1098 return false; 1099 } 1100 } 1101 1102 Value *nval; 1103 if (needabs) { 1104 FunctionCallee AbsExpr = 1105 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1106 if (!AbsExpr) 1107 return false; 1108 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1109 } else { 1110 nval = cnval ? cnval : opr0; 1111 } 1112 if (needlog) { 1113 FunctionCallee LogExpr = 1114 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1115 if (!LogExpr) 1116 return false; 1117 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1118 } 1119 1120 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1121 // convert int(32) to fp(f32 or f64) 1122 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1123 } 1124 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1125 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1126 1127 if (needcopysign) { 1128 Value *opr_n; 1129 Type* rTy = opr0->getType(); 1130 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1131 Type *nTy = nTyS; 1132 if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) 1133 nTy = VectorType::get(nTyS, vTy->getNumElements()); 1134 unsigned size = nTy->getScalarSizeInBits(); 1135 opr_n = CI->getArgOperand(1); 1136 if (opr_n->getType()->isIntegerTy()) 1137 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1138 else 1139 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1140 1141 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1142 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1143 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1144 nval = B.CreateBitCast(nval, opr0->getType()); 1145 } 1146 1147 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1148 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1149 replaceCall(nval); 1150 1151 return true; 1152 } 1153 1154 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1155 const FuncInfo &FInfo) { 1156 Value *opr0 = CI->getArgOperand(0); 1157 Value *opr1 = CI->getArgOperand(1); 1158 1159 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1160 if (!CINT) { 1161 return false; 1162 } 1163 int ci_opr1 = (int)CINT->getSExtValue(); 1164 if (ci_opr1 == 1) { // rootn(x, 1) = x 1165 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1166 replaceCall(opr0); 1167 return true; 1168 } 1169 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1170 std::vector<const Type*> ParamsTys; 1171 ParamsTys.push_back(opr0->getType()); 1172 Module *M = CI->getModule(); 1173 if (FunctionCallee FPExpr = 1174 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1175 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1176 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1177 replaceCall(nval); 1178 return true; 1179 } 1180 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1181 Module *M = CI->getModule(); 1182 if (FunctionCallee FPExpr = 1183 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1184 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1185 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1186 replaceCall(nval); 1187 return true; 1188 } 1189 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1190 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1191 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1192 opr0, 1193 "__rootn2div"); 1194 replaceCall(nval); 1195 return true; 1196 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1197 std::vector<const Type*> ParamsTys; 1198 ParamsTys.push_back(opr0->getType()); 1199 Module *M = CI->getModule(); 1200 if (FunctionCallee FPExpr = 1201 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1202 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1203 << ")\n"); 1204 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1205 replaceCall(nval); 1206 return true; 1207 } 1208 } 1209 return false; 1210 } 1211 1212 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1213 const FuncInfo &FInfo) { 1214 Value *opr0 = CI->getArgOperand(0); 1215 Value *opr1 = CI->getArgOperand(1); 1216 Value *opr2 = CI->getArgOperand(2); 1217 1218 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1219 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1220 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1221 // fma/mad(a, b, c) = c if a=0 || b=0 1222 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1223 replaceCall(opr2); 1224 return true; 1225 } 1226 if (CF0 && CF0->isExactlyValue(1.0f)) { 1227 // fma/mad(a, b, c) = b+c if a=1 1228 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1229 << "\n"); 1230 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1231 replaceCall(nval); 1232 return true; 1233 } 1234 if (CF1 && CF1->isExactlyValue(1.0f)) { 1235 // fma/mad(a, b, c) = a+c if b=1 1236 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1237 << "\n"); 1238 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1239 replaceCall(nval); 1240 return true; 1241 } 1242 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1243 if (CF->isZero()) { 1244 // fma/mad(a, b, c) = a*b if c=0 1245 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1246 << *opr1 << "\n"); 1247 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1248 replaceCall(nval); 1249 return true; 1250 } 1251 } 1252 1253 return false; 1254 } 1255 1256 // Get a scalar native builtin signle argument FP function 1257 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1258 const FuncInfo &FInfo) { 1259 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1260 return nullptr; 1261 FuncInfo nf = FInfo; 1262 nf.setPrefix(AMDGPULibFunc::NATIVE); 1263 return getFunction(M, nf); 1264 } 1265 1266 // fold sqrt -> native_sqrt (x) 1267 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1268 const FuncInfo &FInfo) { 1269 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1270 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1271 if (FunctionCallee FPExpr = getNativeFunction( 1272 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1273 Value *opr0 = CI->getArgOperand(0); 1274 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1275 << "sqrt(" << *opr0 << ")\n"); 1276 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1277 replaceCall(nval); 1278 return true; 1279 } 1280 } 1281 return false; 1282 } 1283 1284 // fold sin, cos -> sincos. 1285 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1286 AliasAnalysis *AA) { 1287 AMDGPULibFunc fInfo; 1288 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1289 return false; 1290 1291 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1292 fInfo.getId() == AMDGPULibFunc::EI_COS); 1293 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1294 1295 Value *CArgVal = CI->getArgOperand(0); 1296 BasicBlock * const CBB = CI->getParent(); 1297 1298 int const MaxScan = 30; 1299 1300 { // fold in load value. 1301 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1302 if (LI && LI->getParent() == CBB) { 1303 BasicBlock::iterator BBI = LI->getIterator(); 1304 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1305 if (AvailableVal) { 1306 CArgVal->replaceAllUsesWith(AvailableVal); 1307 if (CArgVal->getNumUses() == 0) 1308 LI->eraseFromParent(); 1309 CArgVal = CI->getArgOperand(0); 1310 } 1311 } 1312 } 1313 1314 Module *M = CI->getModule(); 1315 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1316 std::string const PairName = fInfo.mangle(); 1317 1318 CallInst *UI = nullptr; 1319 for (User* U : CArgVal->users()) { 1320 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1321 if (!XI || XI == CI || XI->getParent() != CBB) 1322 continue; 1323 1324 Function *UCallee = XI->getCalledFunction(); 1325 if (!UCallee || !UCallee->getName().equals(PairName)) 1326 continue; 1327 1328 BasicBlock::iterator BBI = CI->getIterator(); 1329 if (BBI == CI->getParent()->begin()) 1330 break; 1331 --BBI; 1332 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1333 if (cast<Instruction>(BBI) == XI) { 1334 UI = XI; 1335 break; 1336 } 1337 } 1338 if (UI) break; 1339 } 1340 1341 if (!UI) return false; 1342 1343 // Merge the sin and cos. 1344 1345 // for OpenCL 2.0 we have only generic implementation of sincos 1346 // function. 1347 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1348 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1349 FunctionCallee Fsincos = getFunction(M, nf); 1350 if (!Fsincos) return false; 1351 1352 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1353 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1354 B.SetInsertPoint(UI); 1355 1356 Value *P = Alloc; 1357 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1358 // The allocaInst allocates the memory in private address space. This need 1359 // to be bitcasted to point to the address space of cos pointer type. 1360 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1361 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1362 P = B.CreateAddrSpaceCast(Alloc, PTy); 1363 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1364 1365 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1366 << *Call << "\n"); 1367 1368 if (!isSin) { // CI->cos, UI->sin 1369 B.SetInsertPoint(&*ItOld); 1370 UI->replaceAllUsesWith(&*Call); 1371 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1372 CI->replaceAllUsesWith(Reload); 1373 UI->eraseFromParent(); 1374 CI->eraseFromParent(); 1375 } else { // CI->sin, UI->cos 1376 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1377 UI->replaceAllUsesWith(Reload); 1378 CI->replaceAllUsesWith(Call); 1379 UI->eraseFromParent(); 1380 CI->eraseFromParent(); 1381 } 1382 return true; 1383 } 1384 1385 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1386 if (!TM) 1387 return false; 1388 1389 StringRef CPU = TM->getTargetCPU(); 1390 StringRef Features = TM->getTargetFeatureString(); 1391 if ((CPU.empty() || CPU.equals_lower("generic")) && 1392 (Features.empty() || 1393 Features.find_lower("wavefrontsize") == StringRef::npos)) 1394 return false; 1395 1396 Function *F = CI->getParent()->getParent(); 1397 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1398 unsigned N = ST.getWavefrontSize(); 1399 1400 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1401 << N << "\n"); 1402 1403 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1404 CI->eraseFromParent(); 1405 return true; 1406 } 1407 1408 // Get insertion point at entry. 1409 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1410 Function * Func = UI->getParent()->getParent(); 1411 BasicBlock * BB = &Func->getEntryBlock(); 1412 assert(BB && "Entry block not found!"); 1413 BasicBlock::iterator ItNew = BB->begin(); 1414 return ItNew; 1415 } 1416 1417 // Insert a AllocsInst at the beginning of function entry block. 1418 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1419 const char *prefix) { 1420 BasicBlock::iterator ItNew = getEntryIns(UI); 1421 Function *UCallee = UI->getCalledFunction(); 1422 Type *RetType = UCallee->getReturnType(); 1423 B.SetInsertPoint(&*ItNew); 1424 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1425 std::string(prefix) + UI->getName()); 1426 Alloc->setAlignment(MaybeAlign( 1427 UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1428 return Alloc; 1429 } 1430 1431 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1432 double& Res0, double& Res1, 1433 Constant *copr0, Constant *copr1, 1434 Constant *copr2) { 1435 // By default, opr0/opr1/opr3 holds values of float/double type. 1436 // If they are not float/double, each function has to its 1437 // operand separately. 1438 double opr0=0.0, opr1=0.0, opr2=0.0; 1439 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1440 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1441 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1442 if (fpopr0) { 1443 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1444 ? fpopr0->getValueAPF().convertToDouble() 1445 : (double)fpopr0->getValueAPF().convertToFloat(); 1446 } 1447 1448 if (fpopr1) { 1449 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1450 ? fpopr1->getValueAPF().convertToDouble() 1451 : (double)fpopr1->getValueAPF().convertToFloat(); 1452 } 1453 1454 if (fpopr2) { 1455 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1456 ? fpopr2->getValueAPF().convertToDouble() 1457 : (double)fpopr2->getValueAPF().convertToFloat(); 1458 } 1459 1460 switch (FInfo.getId()) { 1461 default : return false; 1462 1463 case AMDGPULibFunc::EI_ACOS: 1464 Res0 = acos(opr0); 1465 return true; 1466 1467 case AMDGPULibFunc::EI_ACOSH: 1468 // acosh(x) == log(x + sqrt(x*x - 1)) 1469 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1470 return true; 1471 1472 case AMDGPULibFunc::EI_ACOSPI: 1473 Res0 = acos(opr0) / MATH_PI; 1474 return true; 1475 1476 case AMDGPULibFunc::EI_ASIN: 1477 Res0 = asin(opr0); 1478 return true; 1479 1480 case AMDGPULibFunc::EI_ASINH: 1481 // asinh(x) == log(x + sqrt(x*x + 1)) 1482 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1483 return true; 1484 1485 case AMDGPULibFunc::EI_ASINPI: 1486 Res0 = asin(opr0) / MATH_PI; 1487 return true; 1488 1489 case AMDGPULibFunc::EI_ATAN: 1490 Res0 = atan(opr0); 1491 return true; 1492 1493 case AMDGPULibFunc::EI_ATANH: 1494 // atanh(x) == (log(x+1) - log(x-1))/2; 1495 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1496 return true; 1497 1498 case AMDGPULibFunc::EI_ATANPI: 1499 Res0 = atan(opr0) / MATH_PI; 1500 return true; 1501 1502 case AMDGPULibFunc::EI_CBRT: 1503 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1504 return true; 1505 1506 case AMDGPULibFunc::EI_COS: 1507 Res0 = cos(opr0); 1508 return true; 1509 1510 case AMDGPULibFunc::EI_COSH: 1511 Res0 = cosh(opr0); 1512 return true; 1513 1514 case AMDGPULibFunc::EI_COSPI: 1515 Res0 = cos(MATH_PI * opr0); 1516 return true; 1517 1518 case AMDGPULibFunc::EI_EXP: 1519 Res0 = exp(opr0); 1520 return true; 1521 1522 case AMDGPULibFunc::EI_EXP2: 1523 Res0 = pow(2.0, opr0); 1524 return true; 1525 1526 case AMDGPULibFunc::EI_EXP10: 1527 Res0 = pow(10.0, opr0); 1528 return true; 1529 1530 case AMDGPULibFunc::EI_EXPM1: 1531 Res0 = exp(opr0) - 1.0; 1532 return true; 1533 1534 case AMDGPULibFunc::EI_LOG: 1535 Res0 = log(opr0); 1536 return true; 1537 1538 case AMDGPULibFunc::EI_LOG2: 1539 Res0 = log(opr0) / log(2.0); 1540 return true; 1541 1542 case AMDGPULibFunc::EI_LOG10: 1543 Res0 = log(opr0) / log(10.0); 1544 return true; 1545 1546 case AMDGPULibFunc::EI_RSQRT: 1547 Res0 = 1.0 / sqrt(opr0); 1548 return true; 1549 1550 case AMDGPULibFunc::EI_SIN: 1551 Res0 = sin(opr0); 1552 return true; 1553 1554 case AMDGPULibFunc::EI_SINH: 1555 Res0 = sinh(opr0); 1556 return true; 1557 1558 case AMDGPULibFunc::EI_SINPI: 1559 Res0 = sin(MATH_PI * opr0); 1560 return true; 1561 1562 case AMDGPULibFunc::EI_SQRT: 1563 Res0 = sqrt(opr0); 1564 return true; 1565 1566 case AMDGPULibFunc::EI_TAN: 1567 Res0 = tan(opr0); 1568 return true; 1569 1570 case AMDGPULibFunc::EI_TANH: 1571 Res0 = tanh(opr0); 1572 return true; 1573 1574 case AMDGPULibFunc::EI_TANPI: 1575 Res0 = tan(MATH_PI * opr0); 1576 return true; 1577 1578 case AMDGPULibFunc::EI_RECIP: 1579 Res0 = 1.0 / opr0; 1580 return true; 1581 1582 // two-arg functions 1583 case AMDGPULibFunc::EI_DIVIDE: 1584 Res0 = opr0 / opr1; 1585 return true; 1586 1587 case AMDGPULibFunc::EI_POW: 1588 case AMDGPULibFunc::EI_POWR: 1589 Res0 = pow(opr0, opr1); 1590 return true; 1591 1592 case AMDGPULibFunc::EI_POWN: { 1593 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1594 double val = (double)iopr1->getSExtValue(); 1595 Res0 = pow(opr0, val); 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 case AMDGPULibFunc::EI_ROOTN: { 1602 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1603 double val = (double)iopr1->getSExtValue(); 1604 Res0 = pow(opr0, 1.0 / val); 1605 return true; 1606 } 1607 return false; 1608 } 1609 1610 // with ptr arg 1611 case AMDGPULibFunc::EI_SINCOS: 1612 Res0 = sin(opr0); 1613 Res1 = cos(opr0); 1614 return true; 1615 1616 // three-arg functions 1617 case AMDGPULibFunc::EI_FMA: 1618 case AMDGPULibFunc::EI_MAD: 1619 Res0 = opr0 * opr1 + opr2; 1620 return true; 1621 } 1622 1623 return false; 1624 } 1625 1626 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1627 int numArgs = (int)aCI->getNumArgOperands(); 1628 if (numArgs > 3) 1629 return false; 1630 1631 Constant *copr0 = nullptr; 1632 Constant *copr1 = nullptr; 1633 Constant *copr2 = nullptr; 1634 if (numArgs > 0) { 1635 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1636 return false; 1637 } 1638 1639 if (numArgs > 1) { 1640 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1641 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1642 return false; 1643 } 1644 } 1645 1646 if (numArgs > 2) { 1647 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1648 return false; 1649 } 1650 1651 // At this point, all arguments to aCI are constants. 1652 1653 // max vector size is 16, and sincos will generate two results. 1654 double DVal0[16], DVal1[16]; 1655 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1656 if (getVecSize(FInfo) == 1) { 1657 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1658 DVal1[0], copr0, copr1, copr2)) { 1659 return false; 1660 } 1661 } else { 1662 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1663 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1664 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1665 for (int i=0; i < getVecSize(FInfo); ++i) { 1666 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1667 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1668 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1669 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1670 DVal1[i], celt0, celt1, celt2)) { 1671 return false; 1672 } 1673 } 1674 } 1675 1676 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1677 Constant *nval0, *nval1; 1678 if (getVecSize(FInfo) == 1) { 1679 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1680 if (hasTwoResults) 1681 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1682 } else { 1683 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1684 SmallVector <float, 0> FVal0, FVal1; 1685 for (int i=0; i < getVecSize(FInfo); ++i) 1686 FVal0.push_back((float)DVal0[i]); 1687 ArrayRef<float> tmp0(FVal0); 1688 nval0 = ConstantDataVector::get(context, tmp0); 1689 if (hasTwoResults) { 1690 for (int i=0; i < getVecSize(FInfo); ++i) 1691 FVal1.push_back((float)DVal1[i]); 1692 ArrayRef<float> tmp1(FVal1); 1693 nval1 = ConstantDataVector::get(context, tmp1); 1694 } 1695 } else { 1696 ArrayRef<double> tmp0(DVal0); 1697 nval0 = ConstantDataVector::get(context, tmp0); 1698 if (hasTwoResults) { 1699 ArrayRef<double> tmp1(DVal1); 1700 nval1 = ConstantDataVector::get(context, tmp1); 1701 } 1702 } 1703 } 1704 1705 if (hasTwoResults) { 1706 // sincos 1707 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1708 "math function with ptr arg not supported yet"); 1709 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1710 } 1711 1712 replaceCall(nval0); 1713 return true; 1714 } 1715 1716 // Public interface to the Simplify LibCalls pass. 1717 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt, 1718 const TargetMachine *TM) { 1719 return new AMDGPUSimplifyLibCalls(Opt, TM); 1720 } 1721 1722 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1723 return new AMDGPUUseNativeCalls(); 1724 } 1725 1726 static bool setFastFlags(Function &F, const TargetOptions &Options) { 1727 AttrBuilder B; 1728 1729 if (Options.UnsafeFPMath || Options.NoInfsFPMath) 1730 B.addAttribute("no-infs-fp-math", "true"); 1731 if (Options.UnsafeFPMath || Options.NoNaNsFPMath) 1732 B.addAttribute("no-nans-fp-math", "true"); 1733 if (Options.UnsafeFPMath) { 1734 B.addAttribute("less-precise-fpmad", "true"); 1735 B.addAttribute("unsafe-fp-math", "true"); 1736 } 1737 1738 if (!B.hasAttributes()) 1739 return false; 1740 1741 F.addAttributes(AttributeList::FunctionIndex, B); 1742 1743 return true; 1744 } 1745 1746 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1747 if (skipFunction(F)) 1748 return false; 1749 1750 bool Changed = false; 1751 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 1753 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1754 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1755 1756 if (!EnablePreLink) 1757 Changed |= setFastFlags(F, Options); 1758 1759 for (auto &BB : F) { 1760 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1761 // Ignore non-calls. 1762 CallInst *CI = dyn_cast<CallInst>(I); 1763 ++I; 1764 if (!CI) continue; 1765 1766 // Ignore indirect calls. 1767 Function *Callee = CI->getCalledFunction(); 1768 if (Callee == 0) continue; 1769 1770 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1771 dbgs().flush()); 1772 if(Simplifier.fold(CI, AA)) 1773 Changed = true; 1774 } 1775 } 1776 return Changed; 1777 } 1778 1779 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1780 if (skipFunction(F) || UseNative.empty()) 1781 return false; 1782 1783 bool Changed = false; 1784 for (auto &BB : F) { 1785 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1786 // Ignore non-calls. 1787 CallInst *CI = dyn_cast<CallInst>(I); 1788 ++I; 1789 if (!CI) continue; 1790 1791 // Ignore indirect calls. 1792 Function *Callee = CI->getCalledFunction(); 1793 if (Callee == 0) continue; 1794 1795 if(Simplifier.useNative(CI)) 1796 Changed = true; 1797 } 1798 } 1799 return Changed; 1800 } 1801