xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AMDGPU.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPULegalizerInfo.h"
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUGlobalISelUtils.h"
18 #include "AMDGPUInstrInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "llvm/ADT/ScopeExit.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 
30 #define DEBUG_TYPE "amdgpu-legalinfo"
31 
32 using namespace llvm;
33 using namespace LegalizeActions;
34 using namespace LegalizeMutations;
35 using namespace LegalityPredicates;
36 using namespace MIPatternMatch;
37 
38 // Hack until load/store selection patterns support any tuple of legal types.
39 static cl::opt<bool> EnableNewLegality(
40   "amdgpu-global-isel-new-legality",
41   cl::desc("Use GlobalISel desired legality, rather than try to use"
42            "rules compatible with selection patterns"),
43   cl::init(false),
44   cl::ReallyHidden);
45 
46 static constexpr unsigned MaxRegisterSize = 1024;
47 
48 // Round the number of elements to the next power of two elements
49 static LLT getPow2VectorType(LLT Ty) {
50   unsigned NElts = Ty.getNumElements();
51   unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
52   return Ty.changeElementCount(ElementCount::getFixed(Pow2NElts));
53 }
54 
55 // Round the number of bits to the next power of two bits
56 static LLT getPow2ScalarType(LLT Ty) {
57   unsigned Bits = Ty.getSizeInBits();
58   unsigned Pow2Bits = 1 <<  Log2_32_Ceil(Bits);
59   return LLT::scalar(Pow2Bits);
60 }
61 
62 /// \returns true if this is an odd sized vector which should widen by adding an
63 /// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This
64 /// excludes s1 vectors, which should always be scalarized.
65 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
66   return [=](const LegalityQuery &Query) {
67     const LLT Ty = Query.Types[TypeIdx];
68     if (!Ty.isVector())
69       return false;
70 
71     const LLT EltTy = Ty.getElementType();
72     const unsigned EltSize = EltTy.getSizeInBits();
73     return Ty.getNumElements() % 2 != 0 &&
74            EltSize > 1 && EltSize < 32 &&
75            Ty.getSizeInBits() % 32 != 0;
76   };
77 }
78 
79 static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) {
80   return [=](const LegalityQuery &Query) {
81     const LLT Ty = Query.Types[TypeIdx];
82     return Ty.getSizeInBits() % 32 == 0;
83   };
84 }
85 
86 static LegalityPredicate isWideVec16(unsigned TypeIdx) {
87   return [=](const LegalityQuery &Query) {
88     const LLT Ty = Query.Types[TypeIdx];
89     const LLT EltTy = Ty.getScalarType();
90     return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
91   };
92 }
93 
94 static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
95   return [=](const LegalityQuery &Query) {
96     const LLT Ty = Query.Types[TypeIdx];
97     const LLT EltTy = Ty.getElementType();
98     return std::make_pair(TypeIdx,
99                           LLT::fixed_vector(Ty.getNumElements() + 1, EltTy));
100   };
101 }
102 
103 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
104   return [=](const LegalityQuery &Query) {
105     const LLT Ty = Query.Types[TypeIdx];
106     const LLT EltTy = Ty.getElementType();
107     unsigned Size = Ty.getSizeInBits();
108     unsigned Pieces = (Size + 63) / 64;
109     unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
110     return std::make_pair(
111         TypeIdx,
112         LLT::scalarOrVector(ElementCount::getFixed(NewNumElts), EltTy));
113   };
114 }
115 
116 // Increase the number of vector elements to reach the next multiple of 32-bit
117 // type.
118 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
119   return [=](const LegalityQuery &Query) {
120     const LLT Ty = Query.Types[TypeIdx];
121 
122     const LLT EltTy = Ty.getElementType();
123     const int Size = Ty.getSizeInBits();
124     const int EltSize = EltTy.getSizeInBits();
125     const int NextMul32 = (Size + 31) / 32;
126 
127     assert(EltSize < 32);
128 
129     const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
130     return std::make_pair(TypeIdx, LLT::fixed_vector(NewNumElts, EltTy));
131   };
132 }
133 
134 static LLT getBitcastRegisterType(const LLT Ty) {
135   const unsigned Size = Ty.getSizeInBits();
136 
137   LLT CoercedTy;
138   if (Size <= 32) {
139     // <2 x s8> -> s16
140     // <4 x s8> -> s32
141     return LLT::scalar(Size);
142   }
143 
144   return LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32);
145 }
146 
147 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
148   return [=](const LegalityQuery &Query) {
149     const LLT Ty = Query.Types[TypeIdx];
150     return std::make_pair(TypeIdx, getBitcastRegisterType(Ty));
151   };
152 }
153 
154 static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) {
155   return [=](const LegalityQuery &Query) {
156     const LLT Ty = Query.Types[TypeIdx];
157     unsigned Size = Ty.getSizeInBits();
158     assert(Size % 32 == 0);
159     return std::make_pair(
160         TypeIdx, LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32));
161   };
162 }
163 
164 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
165   return [=](const LegalityQuery &Query) {
166     const LLT QueryTy = Query.Types[TypeIdx];
167     return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
168   };
169 }
170 
171 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
172   return [=](const LegalityQuery &Query) {
173     const LLT QueryTy = Query.Types[TypeIdx];
174     return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
175   };
176 }
177 
178 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
179   return [=](const LegalityQuery &Query) {
180     const LLT QueryTy = Query.Types[TypeIdx];
181     return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
182   };
183 }
184 
185 static bool isRegisterSize(unsigned Size) {
186   return Size % 32 == 0 && Size <= MaxRegisterSize;
187 }
188 
189 static bool isRegisterVectorElementType(LLT EltTy) {
190   const int EltSize = EltTy.getSizeInBits();
191   return EltSize == 16 || EltSize % 32 == 0;
192 }
193 
194 static bool isRegisterVectorType(LLT Ty) {
195   const int EltSize = Ty.getElementType().getSizeInBits();
196   return EltSize == 32 || EltSize == 64 ||
197          (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
198          EltSize == 128 || EltSize == 256;
199 }
200 
201 static bool isRegisterType(LLT Ty) {
202   if (!isRegisterSize(Ty.getSizeInBits()))
203     return false;
204 
205   if (Ty.isVector())
206     return isRegisterVectorType(Ty);
207 
208   return true;
209 }
210 
211 // Any combination of 32 or 64-bit elements up the maximum register size, and
212 // multiples of v2s16.
213 static LegalityPredicate isRegisterType(unsigned TypeIdx) {
214   return [=](const LegalityQuery &Query) {
215     return isRegisterType(Query.Types[TypeIdx]);
216   };
217 }
218 
219 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
220   return [=](const LegalityQuery &Query) {
221     const LLT QueryTy = Query.Types[TypeIdx];
222     if (!QueryTy.isVector())
223       return false;
224     const LLT EltTy = QueryTy.getElementType();
225     return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
226   };
227 }
228 
229 // If we have a truncating store or an extending load with a data size larger
230 // than 32-bits, we need to reduce to a 32-bit type.
231 static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx) {
232   return [=](const LegalityQuery &Query) {
233     const LLT Ty = Query.Types[TypeIdx];
234     return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
235            Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
236   };
237 }
238 
239 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
240 // handle some operations by just promoting the register during
241 // selection. There are also d16 loads on GFX9+ which preserve the high bits.
242 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
243                                     bool IsLoad) {
244   switch (AS) {
245   case AMDGPUAS::PRIVATE_ADDRESS:
246     // FIXME: Private element size.
247     return ST.enableFlatScratch() ? 128 : 32;
248   case AMDGPUAS::LOCAL_ADDRESS:
249     return ST.useDS128() ? 128 : 64;
250   case AMDGPUAS::GLOBAL_ADDRESS:
251   case AMDGPUAS::CONSTANT_ADDRESS:
252   case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
253     // Treat constant and global as identical. SMRD loads are sometimes usable for
254     // global loads (ideally constant address space should be eliminated)
255     // depending on the context. Legality cannot be context dependent, but
256     // RegBankSelect can split the load as necessary depending on the pointer
257     // register bank/uniformity and if the memory is invariant or not written in a
258     // kernel.
259     return IsLoad ? 512 : 128;
260   default:
261     // Flat addresses may contextually need to be split to 32-bit parts if they
262     // may alias scratch depending on the subtarget.
263     return 128;
264   }
265 }
266 
267 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
268                                  const LegalityQuery &Query) {
269   const LLT Ty = Query.Types[0];
270 
271   // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
272   const bool IsLoad = Query.Opcode != AMDGPU::G_STORE;
273 
274   unsigned RegSize = Ty.getSizeInBits();
275   unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
276   unsigned AlignBits = Query.MMODescrs[0].AlignInBits;
277   unsigned AS = Query.Types[1].getAddressSpace();
278 
279   // All of these need to be custom lowered to cast the pointer operand.
280   if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
281     return false;
282 
283   // Do not handle extending vector loads.
284   if (Ty.isVector() && MemSize != RegSize)
285     return false;
286 
287   // TODO: We should be able to widen loads if the alignment is high enough, but
288   // we also need to modify the memory access size.
289 #if 0
290   // Accept widening loads based on alignment.
291   if (IsLoad && MemSize < Size)
292     MemSize = std::max(MemSize, Align);
293 #endif
294 
295   // Only 1-byte and 2-byte to 32-bit extloads are valid.
296   if (MemSize != RegSize && RegSize != 32)
297     return false;
298 
299   if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
300     return false;
301 
302   switch (MemSize) {
303   case 8:
304   case 16:
305   case 32:
306   case 64:
307   case 128:
308     break;
309   case 96:
310     if (!ST.hasDwordx3LoadStores())
311       return false;
312     break;
313   case 256:
314   case 512:
315     // These may contextually need to be broken down.
316     break;
317   default:
318     return false;
319   }
320 
321   assert(RegSize >= MemSize);
322 
323   if (AlignBits < MemSize) {
324     const SITargetLowering *TLI = ST.getTargetLowering();
325     if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
326                                                  Align(AlignBits / 8)))
327       return false;
328   }
329 
330   return true;
331 }
332 
333 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
334 // workaround this. Eventually it should ignore the type for loads and only care
335 // about the size. Return true in cases where we will workaround this for now by
336 // bitcasting.
337 static bool loadStoreBitcastWorkaround(const LLT Ty) {
338   if (EnableNewLegality)
339     return false;
340 
341   const unsigned Size = Ty.getSizeInBits();
342   if (Size <= 64)
343     return false;
344   if (!Ty.isVector())
345     return true;
346 
347   LLT EltTy = Ty.getElementType();
348   if (EltTy.isPointer())
349     return true;
350 
351   unsigned EltSize = EltTy.getSizeInBits();
352   return EltSize != 32 && EltSize != 64;
353 }
354 
355 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query) {
356   const LLT Ty = Query.Types[0];
357   return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query) &&
358          !loadStoreBitcastWorkaround(Ty);
359 }
360 
361 /// Return true if a load or store of the type should be lowered with a bitcast
362 /// to a different type.
363 static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty,
364                                        const LLT MemTy) {
365   const unsigned MemSizeInBits = MemTy.getSizeInBits();
366   const unsigned Size = Ty.getSizeInBits();
367   if (Size != MemSizeInBits)
368     return Size <= 32 && Ty.isVector();
369 
370   if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
371     return true;
372 
373   // Don't try to handle bitcasting vector ext loads for now.
374   return Ty.isVector() && (!MemTy.isVector() || MemTy == Ty) &&
375          (Size <= 32 || isRegisterSize(Size)) &&
376          !isRegisterVectorElementType(Ty.getElementType());
377 }
378 
379 /// Return true if we should legalize a load by widening an odd sized memory
380 /// access up to the alignment. Note this case when the memory access itself
381 /// changes, not the size of the result register.
382 static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy,
383                             unsigned AlignInBits, unsigned AddrSpace,
384                             unsigned Opcode) {
385   unsigned SizeInBits = MemoryTy.getSizeInBits();
386   // We don't want to widen cases that are naturally legal.
387   if (isPowerOf2_32(SizeInBits))
388     return false;
389 
390   // If we have 96-bit memory operations, we shouldn't touch them. Note we may
391   // end up widening these for a scalar load during RegBankSelect, since there
392   // aren't 96-bit scalar loads.
393   if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
394     return false;
395 
396   if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode))
397     return false;
398 
399   // A load is known dereferenceable up to the alignment, so it's legal to widen
400   // to it.
401   //
402   // TODO: Could check dereferenceable for less aligned cases.
403   unsigned RoundedSize = NextPowerOf2(SizeInBits);
404   if (AlignInBits < RoundedSize)
405     return false;
406 
407   // Do not widen if it would introduce a slow unaligned load.
408   const SITargetLowering *TLI = ST.getTargetLowering();
409   bool Fast = false;
410   return TLI->allowsMisalignedMemoryAccessesImpl(
411              RoundedSize, AddrSpace, Align(AlignInBits / 8),
412              MachineMemOperand::MOLoad, &Fast) &&
413          Fast;
414 }
415 
416 static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query,
417                             unsigned Opcode) {
418   if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic)
419     return false;
420 
421   return shouldWidenLoad(ST, Query.MMODescrs[0].MemoryTy,
422                          Query.MMODescrs[0].AlignInBits,
423                          Query.Types[1].getAddressSpace(), Opcode);
424 }
425 
426 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
427                                          const GCNTargetMachine &TM)
428   :  ST(ST_) {
429   using namespace TargetOpcode;
430 
431   auto GetAddrSpacePtr = [&TM](unsigned AS) {
432     return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
433   };
434 
435   const LLT S1 = LLT::scalar(1);
436   const LLT S8 = LLT::scalar(8);
437   const LLT S16 = LLT::scalar(16);
438   const LLT S32 = LLT::scalar(32);
439   const LLT S64 = LLT::scalar(64);
440   const LLT S128 = LLT::scalar(128);
441   const LLT S256 = LLT::scalar(256);
442   const LLT S512 = LLT::scalar(512);
443   const LLT MaxScalar = LLT::scalar(MaxRegisterSize);
444 
445   const LLT V2S8 = LLT::fixed_vector(2, 8);
446   const LLT V2S16 = LLT::fixed_vector(2, 16);
447   const LLT V4S16 = LLT::fixed_vector(4, 16);
448 
449   const LLT V2S32 = LLT::fixed_vector(2, 32);
450   const LLT V3S32 = LLT::fixed_vector(3, 32);
451   const LLT V4S32 = LLT::fixed_vector(4, 32);
452   const LLT V5S32 = LLT::fixed_vector(5, 32);
453   const LLT V6S32 = LLT::fixed_vector(6, 32);
454   const LLT V7S32 = LLT::fixed_vector(7, 32);
455   const LLT V8S32 = LLT::fixed_vector(8, 32);
456   const LLT V9S32 = LLT::fixed_vector(9, 32);
457   const LLT V10S32 = LLT::fixed_vector(10, 32);
458   const LLT V11S32 = LLT::fixed_vector(11, 32);
459   const LLT V12S32 = LLT::fixed_vector(12, 32);
460   const LLT V13S32 = LLT::fixed_vector(13, 32);
461   const LLT V14S32 = LLT::fixed_vector(14, 32);
462   const LLT V15S32 = LLT::fixed_vector(15, 32);
463   const LLT V16S32 = LLT::fixed_vector(16, 32);
464   const LLT V32S32 = LLT::fixed_vector(32, 32);
465 
466   const LLT V2S64 = LLT::fixed_vector(2, 64);
467   const LLT V3S64 = LLT::fixed_vector(3, 64);
468   const LLT V4S64 = LLT::fixed_vector(4, 64);
469   const LLT V5S64 = LLT::fixed_vector(5, 64);
470   const LLT V6S64 = LLT::fixed_vector(6, 64);
471   const LLT V7S64 = LLT::fixed_vector(7, 64);
472   const LLT V8S64 = LLT::fixed_vector(8, 64);
473   const LLT V16S64 = LLT::fixed_vector(16, 64);
474 
475   std::initializer_list<LLT> AllS32Vectors =
476     {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
477      V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
478   std::initializer_list<LLT> AllS64Vectors =
479     {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};
480 
481   const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
482   const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
483   const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
484   const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
485   const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
486   const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
487   const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
488 
489   const LLT CodePtr = FlatPtr;
490 
491   const std::initializer_list<LLT> AddrSpaces64 = {
492     GlobalPtr, ConstantPtr, FlatPtr
493   };
494 
495   const std::initializer_list<LLT> AddrSpaces32 = {
496     LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
497   };
498 
499   const std::initializer_list<LLT> FPTypesBase = {
500     S32, S64
501   };
502 
503   const std::initializer_list<LLT> FPTypes16 = {
504     S32, S64, S16
505   };
506 
507   const std::initializer_list<LLT> FPTypesPK16 = {
508     S32, S64, S16, V2S16
509   };
510 
511   const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;
512 
513   // s1 for VCC branches, s32 for SCC branches.
514   getActionDefinitionsBuilder(G_BRCOND).legalFor({S1, S32});
515 
516   // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
517   // elements for v3s16
518   getActionDefinitionsBuilder(G_PHI)
519     .legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256})
520     .legalFor(AllS32Vectors)
521     .legalFor(AllS64Vectors)
522     .legalFor(AddrSpaces64)
523     .legalFor(AddrSpaces32)
524     .legalIf(isPointer(0))
525     .clampScalar(0, S16, S256)
526     .widenScalarToNextPow2(0, 32)
527     .clampMaxNumElements(0, S32, 16)
528     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
529     .scalarize(0);
530 
531   if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
532     // Full set of gfx9 features.
533     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
534       .legalFor({S32, S16, V2S16})
535       .minScalar(0, S16)
536       .clampMaxNumElements(0, S16, 2)
537       .widenScalarToNextMultipleOf(0, 32)
538       .maxScalar(0, S32)
539       .scalarize(0);
540 
541     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT})
542       .legalFor({S32, S16, V2S16}) // Clamp modifier
543       .minScalarOrElt(0, S16)
544       .clampMaxNumElements(0, S16, 2)
545       .scalarize(0)
546       .widenScalarToNextPow2(0, 32)
547       .lower();
548   } else if (ST.has16BitInsts()) {
549     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
550       .legalFor({S32, S16})
551       .minScalar(0, S16)
552       .widenScalarToNextMultipleOf(0, 32)
553       .maxScalar(0, S32)
554       .scalarize(0);
555 
556     // Technically the saturating operations require clamp bit support, but this
557     // was introduced at the same time as 16-bit operations.
558     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
559       .legalFor({S32, S16}) // Clamp modifier
560       .minScalar(0, S16)
561       .scalarize(0)
562       .widenScalarToNextPow2(0, 16)
563       .lower();
564 
565     // We're just lowering this, but it helps get a better result to try to
566     // coerce to the desired type first.
567     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
568       .minScalar(0, S16)
569       .scalarize(0)
570       .lower();
571   } else {
572     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
573       .legalFor({S32})
574       .widenScalarToNextMultipleOf(0, 32)
575       .clampScalar(0, S32, S32)
576       .scalarize(0);
577 
578     if (ST.hasIntClamp()) {
579       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
580         .legalFor({S32}) // Clamp modifier.
581         .scalarize(0)
582         .minScalarOrElt(0, S32)
583         .lower();
584     } else {
585       // Clamp bit support was added in VI, along with 16-bit operations.
586       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
587         .minScalar(0, S32)
588         .scalarize(0)
589         .lower();
590     }
591 
592     // FIXME: DAG expansion gets better results. The widening uses the smaller
593     // range values and goes for the min/max lowering directly.
594     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
595       .minScalar(0, S32)
596       .scalarize(0)
597       .lower();
598   }
599 
600   getActionDefinitionsBuilder(
601       {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
602       .customFor({S32, S64})
603       .clampScalar(0, S32, S64)
604       .widenScalarToNextPow2(0, 32)
605       .scalarize(0);
606 
607   auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH})
608                    .legalFor({S32})
609                    .maxScalar(0, S32);
610 
611   if (ST.hasVOP3PInsts()) {
612     Mulh
613       .clampMaxNumElements(0, S8, 2)
614       .lowerFor({V2S8});
615   }
616 
617   Mulh
618     .scalarize(0)
619     .lower();
620 
621   // Report legal for any types we can handle anywhere. For the cases only legal
622   // on the SALU, RegBankSelect will be able to re-legalize.
623   getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
624     .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
625     .clampScalar(0, S32, S64)
626     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
627     .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
628     .widenScalarToNextPow2(0)
629     .scalarize(0);
630 
631   getActionDefinitionsBuilder({G_UADDO, G_USUBO,
632                                G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
633     .legalFor({{S32, S1}, {S32, S32}})
634     .minScalar(0, S32)
635     // TODO: .scalarize(0)
636     .lower();
637 
638   getActionDefinitionsBuilder(G_BITCAST)
639     // Don't worry about the size constraint.
640     .legalIf(all(isRegisterType(0), isRegisterType(1)))
641     .lower();
642 
643 
644   getActionDefinitionsBuilder(G_CONSTANT)
645     .legalFor({S1, S32, S64, S16, GlobalPtr,
646                LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
647     .legalIf(isPointer(0))
648     .clampScalar(0, S32, S64)
649     .widenScalarToNextPow2(0);
650 
651   getActionDefinitionsBuilder(G_FCONSTANT)
652     .legalFor({S32, S64, S16})
653     .clampScalar(0, S16, S64);
654 
655   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
656       .legalIf(isRegisterType(0))
657       // s1 and s16 are special cases because they have legal operations on
658       // them, but don't really occupy registers in the normal way.
659       .legalFor({S1, S16})
660       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
661       .clampScalarOrElt(0, S32, MaxScalar)
662       .widenScalarToNextPow2(0, 32)
663       .clampMaxNumElements(0, S32, 16);
664 
665   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({PrivatePtr});
666 
667   // If the amount is divergent, we have to do a wave reduction to get the
668   // maximum value, so this is expanded during RegBankSelect.
669   getActionDefinitionsBuilder(G_DYN_STACKALLOC)
670     .legalFor({{PrivatePtr, S32}});
671 
672   getActionDefinitionsBuilder(G_GLOBAL_VALUE)
673     .customIf(typeIsNot(0, PrivatePtr));
674 
675   getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({CodePtr});
676 
677   auto &FPOpActions = getActionDefinitionsBuilder(
678     { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
679     .legalFor({S32, S64});
680   auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
681     .customFor({S32, S64});
682   auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
683     .customFor({S32, S64});
684 
685   if (ST.has16BitInsts()) {
686     if (ST.hasVOP3PInsts())
687       FPOpActions.legalFor({S16, V2S16});
688     else
689       FPOpActions.legalFor({S16});
690 
691     TrigActions.customFor({S16});
692     FDIVActions.customFor({S16});
693   }
694 
695   auto &MinNumMaxNum = getActionDefinitionsBuilder({
696       G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
697 
698   if (ST.hasVOP3PInsts()) {
699     MinNumMaxNum.customFor(FPTypesPK16)
700       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
701       .clampMaxNumElements(0, S16, 2)
702       .clampScalar(0, S16, S64)
703       .scalarize(0);
704   } else if (ST.has16BitInsts()) {
705     MinNumMaxNum.customFor(FPTypes16)
706       .clampScalar(0, S16, S64)
707       .scalarize(0);
708   } else {
709     MinNumMaxNum.customFor(FPTypesBase)
710       .clampScalar(0, S32, S64)
711       .scalarize(0);
712   }
713 
714   if (ST.hasVOP3PInsts())
715     FPOpActions.clampMaxNumElements(0, S16, 2);
716 
717   FPOpActions
718     .scalarize(0)
719     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
720 
721   TrigActions
722     .scalarize(0)
723     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
724 
725   FDIVActions
726     .scalarize(0)
727     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
728 
729   getActionDefinitionsBuilder({G_FNEG, G_FABS})
730     .legalFor(FPTypesPK16)
731     .clampMaxNumElements(0, S16, 2)
732     .scalarize(0)
733     .clampScalar(0, S16, S64);
734 
735   if (ST.has16BitInsts()) {
736     getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
737       .legalFor({S32, S64, S16})
738       .scalarize(0)
739       .clampScalar(0, S16, S64);
740   } else {
741     getActionDefinitionsBuilder(G_FSQRT)
742       .legalFor({S32, S64})
743       .scalarize(0)
744       .clampScalar(0, S32, S64);
745 
746     if (ST.hasFractBug()) {
747       getActionDefinitionsBuilder(G_FFLOOR)
748         .customFor({S64})
749         .legalFor({S32, S64})
750         .scalarize(0)
751         .clampScalar(0, S32, S64);
752     } else {
753       getActionDefinitionsBuilder(G_FFLOOR)
754         .legalFor({S32, S64})
755         .scalarize(0)
756         .clampScalar(0, S32, S64);
757     }
758   }
759 
760   getActionDefinitionsBuilder(G_FPTRUNC)
761     .legalFor({{S32, S64}, {S16, S32}})
762     .scalarize(0)
763     .lower();
764 
765   getActionDefinitionsBuilder(G_FPEXT)
766     .legalFor({{S64, S32}, {S32, S16}})
767     .narrowScalarFor({{S64, S16}}, changeTo(0, S32))
768     .scalarize(0);
769 
770   getActionDefinitionsBuilder(G_FSUB)
771       // Use actual fsub instruction
772       .legalFor({S32})
773       // Must use fadd + fneg
774       .lowerFor({S64, S16, V2S16})
775       .scalarize(0)
776       .clampScalar(0, S32, S64);
777 
778   // Whether this is legal depends on the floating point mode for the function.
779   auto &FMad = getActionDefinitionsBuilder(G_FMAD);
780   if (ST.hasMadF16() && ST.hasMadMacF32Insts())
781     FMad.customFor({S32, S16});
782   else if (ST.hasMadMacF32Insts())
783     FMad.customFor({S32});
784   else if (ST.hasMadF16())
785     FMad.customFor({S16});
786   FMad.scalarize(0)
787       .lower();
788 
789   auto &FRem = getActionDefinitionsBuilder(G_FREM);
790   if (ST.has16BitInsts()) {
791     FRem.customFor({S16, S32, S64});
792   } else {
793     FRem.minScalar(0, S32)
794         .customFor({S32, S64});
795   }
796   FRem.scalarize(0);
797 
798   // TODO: Do we need to clamp maximum bitwidth?
799   getActionDefinitionsBuilder(G_TRUNC)
800     .legalIf(isScalar(0))
801     .legalFor({{V2S16, V2S32}})
802     .clampMaxNumElements(0, S16, 2)
803     // Avoid scalarizing in cases that should be truly illegal. In unresolvable
804     // situations (like an invalid implicit use), we don't want to infinite loop
805     // in the legalizer.
806     .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
807     .alwaysLegal();
808 
809   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
810     .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
811                {S32, S1}, {S64, S1}, {S16, S1}})
812     .scalarize(0)
813     .clampScalar(0, S32, S64)
814     .widenScalarToNextPow2(1, 32);
815 
816   // TODO: Split s1->s64 during regbankselect for VALU.
817   auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
818                     .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
819                     .lowerIf(typeIs(1, S1))
820                     .customFor({{S32, S64}, {S64, S64}});
821   if (ST.has16BitInsts())
822     IToFP.legalFor({{S16, S16}});
823   IToFP.clampScalar(1, S32, S64)
824        .minScalar(0, S32)
825        .scalarize(0)
826        .widenScalarToNextPow2(1);
827 
828   auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
829     .legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
830     .customFor({{S64, S32}, {S64, S64}})
831     .narrowScalarFor({{S64, S16}}, changeTo(0, S32));
832   if (ST.has16BitInsts())
833     FPToI.legalFor({{S16, S16}});
834   else
835     FPToI.minScalar(1, S32);
836 
837   FPToI.minScalar(0, S32)
838        .widenScalarToNextPow2(0, 32)
839        .scalarize(0)
840        .lower();
841 
842   // Lower roundeven into G_FRINT
843   getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
844     .scalarize(0)
845     .lower();
846 
847   if (ST.has16BitInsts()) {
848     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
849       .legalFor({S16, S32, S64})
850       .clampScalar(0, S16, S64)
851       .scalarize(0);
852   } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
853     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
854       .legalFor({S32, S64})
855       .clampScalar(0, S32, S64)
856       .scalarize(0);
857   } else {
858     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
859       .legalFor({S32})
860       .customFor({S64})
861       .clampScalar(0, S32, S64)
862       .scalarize(0);
863   }
864 
865   getActionDefinitionsBuilder(G_PTR_ADD)
866     .legalIf(all(isPointer(0), sameSize(0, 1)))
867     .scalarize(0)
868     .scalarSameSizeAs(1, 0);
869 
870   getActionDefinitionsBuilder(G_PTRMASK)
871     .legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32})))
872     .scalarSameSizeAs(1, 0)
873     .scalarize(0);
874 
875   auto &CmpBuilder =
876     getActionDefinitionsBuilder(G_ICMP)
877     // The compare output type differs based on the register bank of the output,
878     // so make both s1 and s32 legal.
879     //
880     // Scalar compares producing output in scc will be promoted to s32, as that
881     // is the allocatable register type that will be needed for the copy from
882     // scc. This will be promoted during RegBankSelect, and we assume something
883     // before that won't try to use s32 result types.
884     //
885     // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
886     // bank.
887     .legalForCartesianProduct(
888       {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
889     .legalForCartesianProduct(
890       {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
891   if (ST.has16BitInsts()) {
892     CmpBuilder.legalFor({{S1, S16}});
893   }
894 
895   CmpBuilder
896     .widenScalarToNextPow2(1)
897     .clampScalar(1, S32, S64)
898     .scalarize(0)
899     .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));
900 
901   getActionDefinitionsBuilder(G_FCMP)
902     .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
903     .widenScalarToNextPow2(1)
904     .clampScalar(1, S32, S64)
905     .scalarize(0);
906 
907   // FIXME: fpow has a selection pattern that should move to custom lowering.
908   auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
909   if (ST.has16BitInsts())
910     Exp2Ops.legalFor({S32, S16});
911   else
912     Exp2Ops.legalFor({S32});
913   Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
914   Exp2Ops.scalarize(0);
915 
916   auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
917   if (ST.has16BitInsts())
918     ExpOps.customFor({{S32}, {S16}});
919   else
920     ExpOps.customFor({S32});
921   ExpOps.clampScalar(0, MinScalarFPTy, S32)
922         .scalarize(0);
923 
924   getActionDefinitionsBuilder(G_FPOWI)
925     .clampScalar(0, MinScalarFPTy, S32)
926     .lower();
927 
928   // The 64-bit versions produce 32-bit results, but only on the SALU.
929   getActionDefinitionsBuilder(G_CTPOP)
930     .legalFor({{S32, S32}, {S32, S64}})
931     .clampScalar(0, S32, S32)
932     .clampScalar(1, S32, S64)
933     .scalarize(0)
934     .widenScalarToNextPow2(0, 32)
935     .widenScalarToNextPow2(1, 32);
936 
937   // The hardware instructions return a different result on 0 than the generic
938   // instructions expect. The hardware produces -1, but these produce the
939   // bitwidth.
940   getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
941     .scalarize(0)
942     .clampScalar(0, S32, S32)
943     .clampScalar(1, S32, S64)
944     .widenScalarToNextPow2(0, 32)
945     .widenScalarToNextPow2(1, 32)
946     .custom();
947 
948   // The 64-bit versions produce 32-bit results, but only on the SALU.
949   getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
950     .legalFor({{S32, S32}, {S32, S64}})
951     .clampScalar(0, S32, S32)
952     .clampScalar(1, S32, S64)
953     .scalarize(0)
954     .widenScalarToNextPow2(0, 32)
955     .widenScalarToNextPow2(1, 32);
956 
957   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
958   // RegBankSelect.
959   getActionDefinitionsBuilder(G_BITREVERSE)
960     .legalFor({S32, S64})
961     .clampScalar(0, S32, S64)
962     .scalarize(0)
963     .widenScalarToNextPow2(0);
964 
965   if (ST.has16BitInsts()) {
966     getActionDefinitionsBuilder(G_BSWAP)
967       .legalFor({S16, S32, V2S16})
968       .clampMaxNumElements(0, S16, 2)
969       // FIXME: Fixing non-power-of-2 before clamp is workaround for
970       // narrowScalar limitation.
971       .widenScalarToNextPow2(0)
972       .clampScalar(0, S16, S32)
973       .scalarize(0);
974 
975     if (ST.hasVOP3PInsts()) {
976       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
977         .legalFor({S32, S16, V2S16})
978         .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
979         .clampMaxNumElements(0, S16, 2)
980         .minScalar(0, S16)
981         .widenScalarToNextPow2(0)
982         .scalarize(0)
983         .lower();
984     } else {
985       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
986         .legalFor({S32, S16})
987         .widenScalarToNextPow2(0)
988         .minScalar(0, S16)
989         .scalarize(0)
990         .lower();
991     }
992   } else {
993     // TODO: Should have same legality without v_perm_b32
994     getActionDefinitionsBuilder(G_BSWAP)
995       .legalFor({S32})
996       .lowerIf(scalarNarrowerThan(0, 32))
997       // FIXME: Fixing non-power-of-2 before clamp is workaround for
998       // narrowScalar limitation.
999       .widenScalarToNextPow2(0)
1000       .maxScalar(0, S32)
1001       .scalarize(0)
1002       .lower();
1003 
1004     getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
1005       .legalFor({S32})
1006       .minScalar(0, S32)
1007       .widenScalarToNextPow2(0)
1008       .scalarize(0)
1009       .lower();
1010   }
1011 
1012   getActionDefinitionsBuilder(G_INTTOPTR)
1013     // List the common cases
1014     .legalForCartesianProduct(AddrSpaces64, {S64})
1015     .legalForCartesianProduct(AddrSpaces32, {S32})
1016     .scalarize(0)
1017     // Accept any address space as long as the size matches
1018     .legalIf(sameSize(0, 1))
1019     .widenScalarIf(smallerThan(1, 0),
1020       [](const LegalityQuery &Query) {
1021         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1022       })
1023     .narrowScalarIf(largerThan(1, 0),
1024       [](const LegalityQuery &Query) {
1025         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1026       });
1027 
1028   getActionDefinitionsBuilder(G_PTRTOINT)
1029     // List the common cases
1030     .legalForCartesianProduct(AddrSpaces64, {S64})
1031     .legalForCartesianProduct(AddrSpaces32, {S32})
1032     .scalarize(0)
1033     // Accept any address space as long as the size matches
1034     .legalIf(sameSize(0, 1))
1035     .widenScalarIf(smallerThan(0, 1),
1036       [](const LegalityQuery &Query) {
1037         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1038       })
1039     .narrowScalarIf(
1040       largerThan(0, 1),
1041       [](const LegalityQuery &Query) {
1042         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1043       });
1044 
1045   getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
1046     .scalarize(0)
1047     .custom();
1048 
1049   const auto needToSplitMemOp = [=](const LegalityQuery &Query,
1050                                     bool IsLoad) -> bool {
1051     const LLT DstTy = Query.Types[0];
1052 
1053     // Split vector extloads.
1054     unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1055     unsigned AlignBits = Query.MMODescrs[0].AlignInBits;
1056 
1057     if (MemSize < DstTy.getSizeInBits())
1058       MemSize = std::max(MemSize, AlignBits);
1059 
1060     if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
1061       return true;
1062 
1063     const LLT PtrTy = Query.Types[1];
1064     unsigned AS = PtrTy.getAddressSpace();
1065     if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
1066       return true;
1067 
1068     // Catch weird sized loads that don't evenly divide into the access sizes
1069     // TODO: May be able to widen depending on alignment etc.
1070     unsigned NumRegs = (MemSize + 31) / 32;
1071     if (NumRegs == 3) {
1072       if (!ST.hasDwordx3LoadStores())
1073         return true;
1074     } else {
1075       // If the alignment allows, these should have been widened.
1076       if (!isPowerOf2_32(NumRegs))
1077         return true;
1078     }
1079 
1080     if (AlignBits < MemSize) {
1081       const SITargetLowering *TLI = ST.getTargetLowering();
1082       return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
1083                                                       Align(AlignBits / 8));
1084     }
1085 
1086     return false;
1087   };
1088 
1089   unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1090   unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1091   unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1092 
1093   // TODO: Refine based on subtargets which support unaligned access or 128-bit
1094   // LDS
1095   // TODO: Unsupported flat for SI.
1096 
1097   for (unsigned Op : {G_LOAD, G_STORE}) {
1098     const bool IsStore = Op == G_STORE;
1099 
1100     auto &Actions = getActionDefinitionsBuilder(Op);
1101     // Explicitly list some common cases.
1102     // TODO: Does this help compile time at all?
1103     Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, S32, GlobalAlign32},
1104                                       {V2S32, GlobalPtr, V2S32, GlobalAlign32},
1105                                       {V4S32, GlobalPtr, V4S32, GlobalAlign32},
1106                                       {S64, GlobalPtr, S64, GlobalAlign32},
1107                                       {V2S64, GlobalPtr, V2S64, GlobalAlign32},
1108                                       {V2S16, GlobalPtr, V2S16, GlobalAlign32},
1109                                       {S32, GlobalPtr, S8, GlobalAlign8},
1110                                       {S32, GlobalPtr, S16, GlobalAlign16},
1111 
1112                                       {S32, LocalPtr, S32, 32},
1113                                       {S64, LocalPtr, S64, 32},
1114                                       {V2S32, LocalPtr, V2S32, 32},
1115                                       {S32, LocalPtr, S8, 8},
1116                                       {S32, LocalPtr, S16, 16},
1117                                       {V2S16, LocalPtr, S32, 32},
1118 
1119                                       {S32, PrivatePtr, S32, 32},
1120                                       {S32, PrivatePtr, S8, 8},
1121                                       {S32, PrivatePtr, S16, 16},
1122                                       {V2S16, PrivatePtr, S32, 32},
1123 
1124                                       {S32, ConstantPtr, S32, GlobalAlign32},
1125                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32},
1126                                       {V4S32, ConstantPtr, V4S32, GlobalAlign32},
1127                                       {S64, ConstantPtr, S64, GlobalAlign32},
1128                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32}});
1129     Actions.legalIf(
1130       [=](const LegalityQuery &Query) -> bool {
1131         return isLoadStoreLegal(ST, Query);
1132       });
1133 
1134     // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1135     // 64-bits.
1136     //
1137     // TODO: Should generalize bitcast action into coerce, which will also cover
1138     // inserting addrspacecasts.
1139     Actions.customIf(typeIs(1, Constant32Ptr));
1140 
1141     // Turn any illegal element vectors into something easier to deal
1142     // with. These will ultimately produce 32-bit scalar shifts to extract the
1143     // parts anyway.
1144     //
1145     // For odd 16-bit element vectors, prefer to split those into pieces with
1146     // 16-bit vector parts.
1147     Actions.bitcastIf(
1148       [=](const LegalityQuery &Query) -> bool {
1149         return shouldBitcastLoadStoreType(ST, Query.Types[0],
1150                                           Query.MMODescrs[0].MemoryTy);
1151       }, bitcastToRegisterType(0));
1152 
1153     if (!IsStore) {
1154       // Widen suitably aligned loads by loading extra bytes. The standard
1155       // legalization actions can't properly express widening memory operands.
1156       Actions.customIf([=](const LegalityQuery &Query) -> bool {
1157         return shouldWidenLoad(ST, Query, G_LOAD);
1158       });
1159     }
1160 
1161     // FIXME: load/store narrowing should be moved to lower action
1162     Actions
1163         .narrowScalarIf(
1164             [=](const LegalityQuery &Query) -> bool {
1165               return !Query.Types[0].isVector() &&
1166                      needToSplitMemOp(Query, Op == G_LOAD);
1167             },
1168             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1169               const LLT DstTy = Query.Types[0];
1170               const LLT PtrTy = Query.Types[1];
1171 
1172               const unsigned DstSize = DstTy.getSizeInBits();
1173               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1174 
1175               // Split extloads.
1176               if (DstSize > MemSize)
1177                 return std::make_pair(0, LLT::scalar(MemSize));
1178 
1179               if (!isPowerOf2_32(DstSize)) {
1180                 // We're probably decomposing an odd sized store. Try to split
1181                 // to the widest type. TODO: Account for alignment. As-is it
1182                 // should be OK, since the new parts will be further legalized.
1183                 unsigned FloorSize = PowerOf2Floor(DstSize);
1184                 return std::make_pair(0, LLT::scalar(FloorSize));
1185               }
1186 
1187               if (DstSize > 32 && (DstSize % 32 != 0)) {
1188                 // FIXME: Need a way to specify non-extload of larger size if
1189                 // suitably aligned.
1190                 return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
1191               }
1192 
1193               unsigned MaxSize = maxSizeForAddrSpace(ST,
1194                                                      PtrTy.getAddressSpace(),
1195                                                      Op == G_LOAD);
1196               if (MemSize > MaxSize)
1197                 return std::make_pair(0, LLT::scalar(MaxSize));
1198 
1199               unsigned Align = Query.MMODescrs[0].AlignInBits;
1200               return std::make_pair(0, LLT::scalar(Align));
1201             })
1202         .fewerElementsIf(
1203             [=](const LegalityQuery &Query) -> bool {
1204               return Query.Types[0].isVector() &&
1205                      needToSplitMemOp(Query, Op == G_LOAD);
1206             },
1207             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1208               const LLT DstTy = Query.Types[0];
1209               const LLT PtrTy = Query.Types[1];
1210 
1211               LLT EltTy = DstTy.getElementType();
1212               unsigned MaxSize = maxSizeForAddrSpace(ST,
1213                                                      PtrTy.getAddressSpace(),
1214                                                      Op == G_LOAD);
1215 
1216               // FIXME: Handle widened to power of 2 results better. This ends
1217               // up scalarizing.
1218               // FIXME: 3 element stores scalarized on SI
1219 
1220               // Split if it's too large for the address space.
1221               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1222               if (MemSize > MaxSize) {
1223                 unsigned NumElts = DstTy.getNumElements();
1224                 unsigned EltSize = EltTy.getSizeInBits();
1225 
1226                 if (MaxSize % EltSize == 0) {
1227                   return std::make_pair(
1228                       0, LLT::scalarOrVector(
1229                              ElementCount::getFixed(MaxSize / EltSize), EltTy));
1230                 }
1231 
1232                 unsigned NumPieces = MemSize / MaxSize;
1233 
1234                 // FIXME: Refine when odd breakdowns handled
1235                 // The scalars will need to be re-legalized.
1236                 if (NumPieces == 1 || NumPieces >= NumElts ||
1237                     NumElts % NumPieces != 0)
1238                   return std::make_pair(0, EltTy);
1239 
1240                 return std::make_pair(
1241                     0, LLT::fixed_vector(NumElts / NumPieces, EltTy));
1242               }
1243 
1244               // FIXME: We could probably handle weird extending loads better.
1245               if (DstTy.getSizeInBits() > MemSize)
1246                 return std::make_pair(0, EltTy);
1247 
1248               unsigned EltSize = EltTy.getSizeInBits();
1249               unsigned DstSize = DstTy.getSizeInBits();
1250               if (!isPowerOf2_32(DstSize)) {
1251                 // We're probably decomposing an odd sized store. Try to split
1252                 // to the widest type. TODO: Account for alignment. As-is it
1253                 // should be OK, since the new parts will be further legalized.
1254                 unsigned FloorSize = PowerOf2Floor(DstSize);
1255                 return std::make_pair(
1256                     0, LLT::scalarOrVector(
1257                            ElementCount::getFixed(FloorSize / EltSize), EltTy));
1258               }
1259 
1260               // Need to split because of alignment.
1261               unsigned Align = Query.MMODescrs[0].AlignInBits;
1262               if (EltSize > Align &&
1263                   (EltSize / Align < DstTy.getNumElements())) {
1264                 return std::make_pair(
1265                     0, LLT::fixed_vector(EltSize / Align, EltTy));
1266               }
1267 
1268               // May need relegalization for the scalars.
1269               return std::make_pair(0, EltTy);
1270             })
1271     .minScalar(0, S32)
1272     .narrowScalarIf(isWideScalarExtLoadTruncStore(0), changeTo(0, S32))
1273     .widenScalarToNextPow2(0)
1274     .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0))
1275     .lower();
1276   }
1277 
1278   // FIXME: Unaligned accesses not lowered.
1279   auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
1280                        .legalForTypesWithMemDesc({{S32, GlobalPtr, S8, 8},
1281                                                   {S32, GlobalPtr, S16, 2 * 8},
1282                                                   {S32, LocalPtr, S8, 8},
1283                                                   {S32, LocalPtr, S16, 16},
1284                                                   {S32, PrivatePtr, S8, 8},
1285                                                   {S32, PrivatePtr, S16, 16},
1286                                                   {S32, ConstantPtr, S8, 8},
1287                                                   {S32, ConstantPtr, S16, 2 * 8}})
1288                        .legalIf(
1289                          [=](const LegalityQuery &Query) -> bool {
1290                            return isLoadStoreLegal(ST, Query);
1291                          });
1292 
1293   if (ST.hasFlatAddressSpace()) {
1294     ExtLoads.legalForTypesWithMemDesc(
1295         {{S32, FlatPtr, S8, 8}, {S32, FlatPtr, S16, 16}});
1296   }
1297 
1298   // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1299   // 64-bits.
1300   //
1301   // TODO: Should generalize bitcast action into coerce, which will also cover
1302   // inserting addrspacecasts.
1303   ExtLoads.customIf(typeIs(1, Constant32Ptr));
1304 
1305   ExtLoads.clampScalar(0, S32, S32)
1306           .widenScalarToNextPow2(0)
1307           .lower();
1308 
1309   auto &Atomics = getActionDefinitionsBuilder(
1310     {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1311      G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1312      G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1313      G_ATOMICRMW_UMIN})
1314     .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
1315                {S64, GlobalPtr}, {S64, LocalPtr},
1316                {S32, RegionPtr}, {S64, RegionPtr}});
1317   if (ST.hasFlatAddressSpace()) {
1318     Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
1319   }
1320 
1321   auto &Atomic = getActionDefinitionsBuilder(G_ATOMICRMW_FADD);
1322   if (ST.hasLDSFPAtomicAdd()) {
1323     Atomic.legalFor({{S32, LocalPtr}, {S32, RegionPtr}});
1324     if (ST.hasGFX90AInsts())
1325       Atomic.legalFor({{S64, LocalPtr}});
1326   }
1327   if (ST.hasAtomicFaddInsts())
1328     Atomic.legalFor({{S32, GlobalPtr}});
1329 
1330   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
1331   // demarshalling
1332   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
1333     .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
1334                 {S32, FlatPtr}, {S64, FlatPtr}})
1335     .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
1336                {S32, RegionPtr}, {S64, RegionPtr}});
1337   // TODO: Pointer types, any 32-bit or 64-bit vector
1338 
1339   // Condition should be s32 for scalar, s1 for vector.
1340   getActionDefinitionsBuilder(G_SELECT)
1341       .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr,
1342                                  LocalPtr, FlatPtr, PrivatePtr,
1343                                  LLT::fixed_vector(2, LocalPtr),
1344                                  LLT::fixed_vector(2, PrivatePtr)},
1345                                 {S1, S32})
1346       .clampScalar(0, S16, S64)
1347       .scalarize(1)
1348       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
1349       .fewerElementsIf(numElementsNotEven(0), scalarize(0))
1350       .clampMaxNumElements(0, S32, 2)
1351       .clampMaxNumElements(0, LocalPtr, 2)
1352       .clampMaxNumElements(0, PrivatePtr, 2)
1353       .scalarize(0)
1354       .widenScalarToNextPow2(0)
1355       .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));
1356 
1357   // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
1358   // be more flexible with the shift amount type.
1359   auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
1360     .legalFor({{S32, S32}, {S64, S32}});
1361   if (ST.has16BitInsts()) {
1362     if (ST.hasVOP3PInsts()) {
1363       Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
1364             .clampMaxNumElements(0, S16, 2);
1365     } else
1366       Shifts.legalFor({{S16, S16}});
1367 
1368     // TODO: Support 16-bit shift amounts for all types
1369     Shifts.widenScalarIf(
1370       [=](const LegalityQuery &Query) {
1371         // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
1372         // 32-bit amount.
1373         const LLT ValTy = Query.Types[0];
1374         const LLT AmountTy = Query.Types[1];
1375         return ValTy.getSizeInBits() <= 16 &&
1376                AmountTy.getSizeInBits() < 16;
1377       }, changeTo(1, S16));
1378     Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
1379     Shifts.clampScalar(1, S32, S32);
1380     Shifts.clampScalar(0, S16, S64);
1381     Shifts.widenScalarToNextPow2(0, 16);
1382 
1383     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1384       .minScalar(0, S16)
1385       .scalarize(0)
1386       .lower();
1387   } else {
1388     // Make sure we legalize the shift amount type first, as the general
1389     // expansion for the shifted type will produce much worse code if it hasn't
1390     // been truncated already.
1391     Shifts.clampScalar(1, S32, S32);
1392     Shifts.clampScalar(0, S32, S64);
1393     Shifts.widenScalarToNextPow2(0, 32);
1394 
1395     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1396       .minScalar(0, S32)
1397       .scalarize(0)
1398       .lower();
1399   }
1400   Shifts.scalarize(0);
1401 
1402   for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1403     unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1404     unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1405     unsigned IdxTypeIdx = 2;
1406 
1407     getActionDefinitionsBuilder(Op)
1408       .customIf([=](const LegalityQuery &Query) {
1409           const LLT EltTy = Query.Types[EltTypeIdx];
1410           const LLT VecTy = Query.Types[VecTypeIdx];
1411           const LLT IdxTy = Query.Types[IdxTypeIdx];
1412           const unsigned EltSize = EltTy.getSizeInBits();
1413           return (EltSize == 32 || EltSize == 64) &&
1414                   VecTy.getSizeInBits() % 32 == 0 &&
1415                   VecTy.getSizeInBits() <= MaxRegisterSize &&
1416                   IdxTy.getSizeInBits() == 32;
1417         })
1418       .bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)),
1419                  bitcastToVectorElement32(VecTypeIdx))
1420       //.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1))
1421       .bitcastIf(
1422         all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)),
1423         [=](const LegalityQuery &Query) {
1424           // For > 64-bit element types, try to turn this into a 64-bit
1425           // element vector since we may be able to do better indexing
1426           // if this is scalar. If not, fall back to 32.
1427           const LLT EltTy = Query.Types[EltTypeIdx];
1428           const LLT VecTy = Query.Types[VecTypeIdx];
1429           const unsigned DstEltSize = EltTy.getSizeInBits();
1430           const unsigned VecSize = VecTy.getSizeInBits();
1431 
1432           const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32;
1433           return std::make_pair(
1434               VecTypeIdx,
1435               LLT::fixed_vector(VecSize / TargetEltSize, TargetEltSize));
1436         })
1437       .clampScalar(EltTypeIdx, S32, S64)
1438       .clampScalar(VecTypeIdx, S32, S64)
1439       .clampScalar(IdxTypeIdx, S32, S32)
1440       .clampMaxNumElements(VecTypeIdx, S32, 32)
1441       // TODO: Clamp elements for 64-bit vectors?
1442       // It should only be necessary with variable indexes.
1443       // As a last resort, lower to the stack
1444       .lower();
1445   }
1446 
1447   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
1448     .unsupportedIf([=](const LegalityQuery &Query) {
1449         const LLT &EltTy = Query.Types[1].getElementType();
1450         return Query.Types[0] != EltTy;
1451       });
1452 
1453   for (unsigned Op : {G_EXTRACT, G_INSERT}) {
1454     unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
1455     unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
1456 
1457     // FIXME: Doesn't handle extract of illegal sizes.
1458     getActionDefinitionsBuilder(Op)
1459       .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
1460       // FIXME: Multiples of 16 should not be legal.
1461       .legalIf([=](const LegalityQuery &Query) {
1462           const LLT BigTy = Query.Types[BigTyIdx];
1463           const LLT LitTy = Query.Types[LitTyIdx];
1464           return (BigTy.getSizeInBits() % 32 == 0) &&
1465                  (LitTy.getSizeInBits() % 16 == 0);
1466         })
1467       .widenScalarIf(
1468         [=](const LegalityQuery &Query) {
1469           const LLT BigTy = Query.Types[BigTyIdx];
1470           return (BigTy.getScalarSizeInBits() < 16);
1471         },
1472         LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
1473       .widenScalarIf(
1474         [=](const LegalityQuery &Query) {
1475           const LLT LitTy = Query.Types[LitTyIdx];
1476           return (LitTy.getScalarSizeInBits() < 16);
1477         },
1478         LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
1479       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1480       .widenScalarToNextPow2(BigTyIdx, 32);
1481 
1482   }
1483 
1484   auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
1485     .legalForCartesianProduct(AllS32Vectors, {S32})
1486     .legalForCartesianProduct(AllS64Vectors, {S64})
1487     .clampNumElements(0, V16S32, V32S32)
1488     .clampNumElements(0, V2S64, V16S64)
1489     .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));
1490 
1491   if (ST.hasScalarPackInsts()) {
1492     BuildVector
1493       // FIXME: Should probably widen s1 vectors straight to s32
1494       .minScalarOrElt(0, S16)
1495       // Widen source elements and produce a G_BUILD_VECTOR_TRUNC
1496       .minScalar(1, S32);
1497 
1498     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1499       .legalFor({V2S16, S32})
1500       .lower();
1501     BuildVector.minScalarOrElt(0, S32);
1502   } else {
1503     BuildVector.customFor({V2S16, S16});
1504     BuildVector.minScalarOrElt(0, S32);
1505 
1506     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1507       .customFor({V2S16, S32})
1508       .lower();
1509   }
1510 
1511   BuildVector.legalIf(isRegisterType(0));
1512 
1513   // FIXME: Clamp maximum size
1514   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
1515     .legalIf(all(isRegisterType(0), isRegisterType(1)))
1516     .clampMaxNumElements(0, S32, 32)
1517     .clampMaxNumElements(1, S16, 2) // TODO: Make 4?
1518     .clampMaxNumElements(0, S16, 64);
1519 
1520   // TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse
1521   // pre-legalize.
1522   if (ST.hasVOP3PInsts()) {
1523     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
1524       .customFor({V2S16, V2S16})
1525       .lower();
1526   } else
1527     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
1528 
1529   // Merge/Unmerge
1530   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1531     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
1532     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
1533 
1534     auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
1535       const LLT Ty = Query.Types[TypeIdx];
1536       if (Ty.isVector()) {
1537         const LLT &EltTy = Ty.getElementType();
1538         if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
1539           return true;
1540         if (!isPowerOf2_32(EltTy.getSizeInBits()))
1541           return true;
1542       }
1543       return false;
1544     };
1545 
1546     auto &Builder = getActionDefinitionsBuilder(Op)
1547       .legalIf(all(isRegisterType(0), isRegisterType(1)))
1548       .lowerFor({{S16, V2S16}})
1549       .lowerIf([=](const LegalityQuery &Query) {
1550           const LLT BigTy = Query.Types[BigTyIdx];
1551           return BigTy.getSizeInBits() == 32;
1552         })
1553       // Try to widen to s16 first for small types.
1554       // TODO: Only do this on targets with legal s16 shifts
1555       .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
1556       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
1557       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1558       .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
1559                            elementTypeIs(1, S16)),
1560                        changeTo(1, V2S16))
1561       // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
1562       // worth considering the multiples of 64 since 2*192 and 2*384 are not
1563       // valid.
1564       .clampScalar(LitTyIdx, S32, S512)
1565       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
1566       // Break up vectors with weird elements into scalars
1567       .fewerElementsIf(
1568         [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
1569         scalarize(0))
1570       .fewerElementsIf(
1571         [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
1572         scalarize(1))
1573       .clampScalar(BigTyIdx, S32, MaxScalar);
1574 
1575     if (Op == G_MERGE_VALUES) {
1576       Builder.widenScalarIf(
1577         // TODO: Use 16-bit shifts if legal for 8-bit values?
1578         [=](const LegalityQuery &Query) {
1579           const LLT Ty = Query.Types[LitTyIdx];
1580           return Ty.getSizeInBits() < 32;
1581         },
1582         changeTo(LitTyIdx, S32));
1583     }
1584 
1585     Builder.widenScalarIf(
1586       [=](const LegalityQuery &Query) {
1587         const LLT Ty = Query.Types[BigTyIdx];
1588         return !isPowerOf2_32(Ty.getSizeInBits()) &&
1589           Ty.getSizeInBits() % 16 != 0;
1590       },
1591       [=](const LegalityQuery &Query) {
1592         // Pick the next power of 2, or a multiple of 64 over 128.
1593         // Whichever is smaller.
1594         const LLT &Ty = Query.Types[BigTyIdx];
1595         unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
1596         if (NewSizeInBits >= 256) {
1597           unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
1598           if (RoundedTo < NewSizeInBits)
1599             NewSizeInBits = RoundedTo;
1600         }
1601         return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
1602       })
1603       // Any vectors left are the wrong size. Scalarize them.
1604       .scalarize(0)
1605       .scalarize(1);
1606   }
1607 
1608   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
1609   // RegBankSelect.
1610   auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
1611     .legalFor({{S32}, {S64}});
1612 
1613   if (ST.hasVOP3PInsts()) {
1614     SextInReg.lowerFor({{V2S16}})
1615       // Prefer to reduce vector widths for 16-bit vectors before lowering, to
1616       // get more vector shift opportunities, since we'll get those when
1617       // expanded.
1618       .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16));
1619   } else if (ST.has16BitInsts()) {
1620     SextInReg.lowerFor({{S32}, {S64}, {S16}});
1621   } else {
1622     // Prefer to promote to s32 before lowering if we don't have 16-bit
1623     // shifts. This avoid a lot of intermediate truncate and extend operations.
1624     SextInReg.lowerFor({{S32}, {S64}});
1625   }
1626 
1627   SextInReg
1628     .scalarize(0)
1629     .clampScalar(0, S32, S64)
1630     .lower();
1631 
1632   getActionDefinitionsBuilder({G_ROTR, G_ROTL})
1633     .scalarize(0)
1634     .lower();
1635 
1636   // TODO: Only Try to form v2s16 with legal packed instructions.
1637   getActionDefinitionsBuilder(G_FSHR)
1638     .legalFor({{S32, S32}})
1639     .lowerFor({{V2S16, V2S16}})
1640     .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16))
1641     .scalarize(0)
1642     .lower();
1643 
1644   if (ST.hasVOP3PInsts()) {
1645     getActionDefinitionsBuilder(G_FSHL)
1646       .lowerFor({{V2S16, V2S16}})
1647       .fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16))
1648       .scalarize(0)
1649       .lower();
1650   } else {
1651     getActionDefinitionsBuilder(G_FSHL)
1652       .scalarize(0)
1653       .lower();
1654   }
1655 
1656   getActionDefinitionsBuilder(G_READCYCLECOUNTER)
1657     .legalFor({S64});
1658 
1659   getActionDefinitionsBuilder(G_FENCE)
1660     .alwaysLegal();
1661 
1662   getActionDefinitionsBuilder({G_SMULO, G_UMULO})
1663       .scalarize(0)
1664       .minScalar(0, S32)
1665       .lower();
1666 
1667   getActionDefinitionsBuilder({G_SBFX, G_UBFX})
1668       .legalFor({{S32, S32}, {S64, S32}})
1669       .clampScalar(1, S32, S32)
1670       .clampScalar(0, S32, S64)
1671       .widenScalarToNextPow2(0)
1672       .scalarize(0);
1673 
1674   getActionDefinitionsBuilder({
1675       // TODO: Verify V_BFI_B32 is generated from expanded bit ops
1676       G_FCOPYSIGN,
1677 
1678       G_ATOMIC_CMPXCHG_WITH_SUCCESS,
1679       G_ATOMICRMW_NAND,
1680       G_ATOMICRMW_FSUB,
1681       G_READ_REGISTER,
1682       G_WRITE_REGISTER,
1683 
1684       G_SADDO, G_SSUBO,
1685 
1686        // TODO: Implement
1687       G_FMINIMUM, G_FMAXIMUM}).lower();
1688 
1689   getActionDefinitionsBuilder({G_MEMCPY, G_MEMCPY_INLINE, G_MEMMOVE, G_MEMSET})
1690       .lower();
1691 
1692   getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
1693         G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
1694         G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
1695     .unsupported();
1696 
1697   getLegacyLegalizerInfo().computeTables();
1698   verify(*ST.getInstrInfo());
1699 }
1700 
1701 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
1702                                          MachineInstr &MI) const {
1703   MachineIRBuilder &B = Helper.MIRBuilder;
1704   MachineRegisterInfo &MRI = *B.getMRI();
1705 
1706   switch (MI.getOpcode()) {
1707   case TargetOpcode::G_ADDRSPACE_CAST:
1708     return legalizeAddrSpaceCast(MI, MRI, B);
1709   case TargetOpcode::G_FRINT:
1710     return legalizeFrint(MI, MRI, B);
1711   case TargetOpcode::G_FCEIL:
1712     return legalizeFceil(MI, MRI, B);
1713   case TargetOpcode::G_FREM:
1714     return legalizeFrem(MI, MRI, B);
1715   case TargetOpcode::G_INTRINSIC_TRUNC:
1716     return legalizeIntrinsicTrunc(MI, MRI, B);
1717   case TargetOpcode::G_SITOFP:
1718     return legalizeITOFP(MI, MRI, B, true);
1719   case TargetOpcode::G_UITOFP:
1720     return legalizeITOFP(MI, MRI, B, false);
1721   case TargetOpcode::G_FPTOSI:
1722     return legalizeFPTOI(MI, MRI, B, true);
1723   case TargetOpcode::G_FPTOUI:
1724     return legalizeFPTOI(MI, MRI, B, false);
1725   case TargetOpcode::G_FMINNUM:
1726   case TargetOpcode::G_FMAXNUM:
1727   case TargetOpcode::G_FMINNUM_IEEE:
1728   case TargetOpcode::G_FMAXNUM_IEEE:
1729     return legalizeMinNumMaxNum(Helper, MI);
1730   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1731     return legalizeExtractVectorElt(MI, MRI, B);
1732   case TargetOpcode::G_INSERT_VECTOR_ELT:
1733     return legalizeInsertVectorElt(MI, MRI, B);
1734   case TargetOpcode::G_SHUFFLE_VECTOR:
1735     return legalizeShuffleVector(MI, MRI, B);
1736   case TargetOpcode::G_FSIN:
1737   case TargetOpcode::G_FCOS:
1738     return legalizeSinCos(MI, MRI, B);
1739   case TargetOpcode::G_GLOBAL_VALUE:
1740     return legalizeGlobalValue(MI, MRI, B);
1741   case TargetOpcode::G_LOAD:
1742   case TargetOpcode::G_SEXTLOAD:
1743   case TargetOpcode::G_ZEXTLOAD:
1744     return legalizeLoad(Helper, MI);
1745   case TargetOpcode::G_FMAD:
1746     return legalizeFMad(MI, MRI, B);
1747   case TargetOpcode::G_FDIV:
1748     return legalizeFDIV(MI, MRI, B);
1749   case TargetOpcode::G_UDIV:
1750   case TargetOpcode::G_UREM:
1751   case TargetOpcode::G_UDIVREM:
1752     return legalizeUnsignedDIV_REM(MI, MRI, B);
1753   case TargetOpcode::G_SDIV:
1754   case TargetOpcode::G_SREM:
1755   case TargetOpcode::G_SDIVREM:
1756     return legalizeSignedDIV_REM(MI, MRI, B);
1757   case TargetOpcode::G_ATOMIC_CMPXCHG:
1758     return legalizeAtomicCmpXChg(MI, MRI, B);
1759   case TargetOpcode::G_FLOG:
1760     return legalizeFlog(MI, B, numbers::ln2f);
1761   case TargetOpcode::G_FLOG10:
1762     return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
1763   case TargetOpcode::G_FEXP:
1764     return legalizeFExp(MI, B);
1765   case TargetOpcode::G_FPOW:
1766     return legalizeFPow(MI, B);
1767   case TargetOpcode::G_FFLOOR:
1768     return legalizeFFloor(MI, MRI, B);
1769   case TargetOpcode::G_BUILD_VECTOR:
1770     return legalizeBuildVector(MI, MRI, B);
1771   case TargetOpcode::G_CTLZ:
1772   case TargetOpcode::G_CTTZ:
1773     return legalizeCTLZ_CTTZ(MI, MRI, B);
1774   default:
1775     return false;
1776   }
1777 
1778   llvm_unreachable("expected switch to return");
1779 }
1780 
1781 Register AMDGPULegalizerInfo::getSegmentAperture(
1782   unsigned AS,
1783   MachineRegisterInfo &MRI,
1784   MachineIRBuilder &B) const {
1785   MachineFunction &MF = B.getMF();
1786   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1787   const LLT S32 = LLT::scalar(32);
1788 
1789   assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);
1790 
1791   if (ST.hasApertureRegs()) {
1792     // FIXME: Use inline constants (src_{shared, private}_base) instead of
1793     // getreg.
1794     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
1795         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
1796         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
1797     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
1798         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
1799         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
1800     unsigned Encoding =
1801         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
1802         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
1803         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
1804 
1805     Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
1806 
1807     B.buildInstr(AMDGPU::S_GETREG_B32)
1808       .addDef(GetReg)
1809       .addImm(Encoding);
1810     MRI.setType(GetReg, S32);
1811 
1812     auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
1813     return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
1814   }
1815 
1816   Register QueuePtr = MRI.createGenericVirtualRegister(
1817     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1818 
1819   if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
1820     return Register();
1821 
1822   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1823   // private_segment_aperture_base_hi.
1824   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1825 
1826   // TODO: can we be smarter about machine pointer info?
1827   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1828   MachineMemOperand *MMO = MF.getMachineMemOperand(
1829       PtrInfo,
1830       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1831           MachineMemOperand::MOInvariant,
1832       LLT::scalar(32), commonAlignment(Align(64), StructOffset));
1833 
1834   Register LoadAddr;
1835 
1836   B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
1837   return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1838 }
1839 
1840 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
1841   MachineInstr &MI, MachineRegisterInfo &MRI,
1842   MachineIRBuilder &B) const {
1843   MachineFunction &MF = B.getMF();
1844 
1845   const LLT S32 = LLT::scalar(32);
1846   Register Dst = MI.getOperand(0).getReg();
1847   Register Src = MI.getOperand(1).getReg();
1848 
1849   LLT DstTy = MRI.getType(Dst);
1850   LLT SrcTy = MRI.getType(Src);
1851   unsigned DestAS = DstTy.getAddressSpace();
1852   unsigned SrcAS = SrcTy.getAddressSpace();
1853 
1854   // TODO: Avoid reloading from the queue ptr for each cast, or at least each
1855   // vector element.
1856   assert(!DstTy.isVector());
1857 
1858   const AMDGPUTargetMachine &TM
1859     = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
1860 
1861   if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
1862     MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
1863     return true;
1864   }
1865 
1866   if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
1867     // Truncate.
1868     B.buildExtract(Dst, Src, 0);
1869     MI.eraseFromParent();
1870     return true;
1871   }
1872 
1873   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
1874     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1875     uint32_t AddrHiVal = Info->get32BitAddressHighBits();
1876 
1877     // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
1878     // another. Merge operands are required to be the same type, but creating an
1879     // extra ptrtoint would be kind of pointless.
1880     auto HighAddr = B.buildConstant(
1881       LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
1882     B.buildMerge(Dst, {Src, HighAddr});
1883     MI.eraseFromParent();
1884     return true;
1885   }
1886 
1887   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
1888     assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
1889            DestAS == AMDGPUAS::PRIVATE_ADDRESS);
1890     unsigned NullVal = TM.getNullPointerValue(DestAS);
1891 
1892     auto SegmentNull = B.buildConstant(DstTy, NullVal);
1893     auto FlatNull = B.buildConstant(SrcTy, 0);
1894 
1895     // Extract low 32-bits of the pointer.
1896     auto PtrLo32 = B.buildExtract(DstTy, Src, 0);
1897 
1898     auto CmpRes =
1899         B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
1900     B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
1901 
1902     MI.eraseFromParent();
1903     return true;
1904   }
1905 
1906   if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
1907     return false;
1908 
1909   if (!ST.hasFlatAddressSpace())
1910     return false;
1911 
1912   auto SegmentNull =
1913       B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
1914   auto FlatNull =
1915       B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
1916 
1917   Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
1918   if (!ApertureReg.isValid())
1919     return false;
1920 
1921   auto CmpRes =
1922       B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0));
1923 
1924   // Coerce the type of the low half of the result so we can use merge_values.
1925   Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);
1926 
1927   // TODO: Should we allow mismatched types but matching sizes in merges to
1928   // avoid the ptrtoint?
1929   auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
1930   B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
1931 
1932   MI.eraseFromParent();
1933   return true;
1934 }
1935 
1936 bool AMDGPULegalizerInfo::legalizeFrint(
1937   MachineInstr &MI, MachineRegisterInfo &MRI,
1938   MachineIRBuilder &B) const {
1939   Register Src = MI.getOperand(1).getReg();
1940   LLT Ty = MRI.getType(Src);
1941   assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
1942 
1943   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
1944   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
1945 
1946   auto C1 = B.buildFConstant(Ty, C1Val);
1947   auto CopySign = B.buildFCopysign(Ty, C1, Src);
1948 
1949   // TODO: Should this propagate fast-math-flags?
1950   auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
1951   auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);
1952 
1953   auto C2 = B.buildFConstant(Ty, C2Val);
1954   auto Fabs = B.buildFAbs(Ty, Src);
1955 
1956   auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
1957   B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
1958   MI.eraseFromParent();
1959   return true;
1960 }
1961 
1962 bool AMDGPULegalizerInfo::legalizeFceil(
1963   MachineInstr &MI, MachineRegisterInfo &MRI,
1964   MachineIRBuilder &B) const {
1965 
1966   const LLT S1 = LLT::scalar(1);
1967   const LLT S64 = LLT::scalar(64);
1968 
1969   Register Src = MI.getOperand(1).getReg();
1970   assert(MRI.getType(Src) == S64);
1971 
1972   // result = trunc(src)
1973   // if (src > 0.0 && src != result)
1974   //   result += 1.0
1975 
1976   auto Trunc = B.buildIntrinsicTrunc(S64, Src);
1977 
1978   const auto Zero = B.buildFConstant(S64, 0.0);
1979   const auto One = B.buildFConstant(S64, 1.0);
1980   auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
1981   auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
1982   auto And = B.buildAnd(S1, Lt0, NeTrunc);
1983   auto Add = B.buildSelect(S64, And, One, Zero);
1984 
1985   // TODO: Should this propagate fast-math-flags?
1986   B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
1987   return true;
1988 }
1989 
1990 bool AMDGPULegalizerInfo::legalizeFrem(
1991   MachineInstr &MI, MachineRegisterInfo &MRI,
1992   MachineIRBuilder &B) const {
1993     Register DstReg = MI.getOperand(0).getReg();
1994     Register Src0Reg = MI.getOperand(1).getReg();
1995     Register Src1Reg = MI.getOperand(2).getReg();
1996     auto Flags = MI.getFlags();
1997     LLT Ty = MRI.getType(DstReg);
1998 
1999     auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2000     auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags);
2001     auto Neg = B.buildFNeg(Ty, Trunc, Flags);
2002     B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2003     MI.eraseFromParent();
2004     return true;
2005 }
2006 
2007 static MachineInstrBuilder extractF64Exponent(Register Hi,
2008                                               MachineIRBuilder &B) {
2009   const unsigned FractBits = 52;
2010   const unsigned ExpBits = 11;
2011   LLT S32 = LLT::scalar(32);
2012 
2013   auto Const0 = B.buildConstant(S32, FractBits - 32);
2014   auto Const1 = B.buildConstant(S32, ExpBits);
2015 
2016   auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
2017     .addUse(Hi)
2018     .addUse(Const0.getReg(0))
2019     .addUse(Const1.getReg(0));
2020 
2021   return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
2022 }
2023 
2024 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
2025   MachineInstr &MI, MachineRegisterInfo &MRI,
2026   MachineIRBuilder &B) const {
2027   const LLT S1 = LLT::scalar(1);
2028   const LLT S32 = LLT::scalar(32);
2029   const LLT S64 = LLT::scalar(64);
2030 
2031   Register Src = MI.getOperand(1).getReg();
2032   assert(MRI.getType(Src) == S64);
2033 
2034   // TODO: Should this use extract since the low half is unused?
2035   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2036   Register Hi = Unmerge.getReg(1);
2037 
2038   // Extract the upper half, since this is where we will find the sign and
2039   // exponent.
2040   auto Exp = extractF64Exponent(Hi, B);
2041 
2042   const unsigned FractBits = 52;
2043 
2044   // Extract the sign bit.
2045   const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
2046   auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
2047 
2048   const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
2049 
2050   const auto Zero32 = B.buildConstant(S32, 0);
2051 
2052   // Extend back to 64-bits.
2053   auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});
2054 
2055   auto Shr = B.buildAShr(S64, FractMask, Exp);
2056   auto Not = B.buildNot(S64, Shr);
2057   auto Tmp0 = B.buildAnd(S64, Src, Not);
2058   auto FiftyOne = B.buildConstant(S32, FractBits - 1);
2059 
2060   auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
2061   auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
2062 
2063   auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
2064   B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2065   MI.eraseFromParent();
2066   return true;
2067 }
2068 
2069 bool AMDGPULegalizerInfo::legalizeITOFP(
2070   MachineInstr &MI, MachineRegisterInfo &MRI,
2071   MachineIRBuilder &B, bool Signed) const {
2072 
2073   Register Dst = MI.getOperand(0).getReg();
2074   Register Src = MI.getOperand(1).getReg();
2075 
2076   const LLT S64 = LLT::scalar(64);
2077   const LLT S32 = LLT::scalar(32);
2078 
2079   assert(MRI.getType(Src) == S64);
2080 
2081   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2082   auto ThirtyTwo = B.buildConstant(S32, 32);
2083 
2084   if (MRI.getType(Dst) == S64) {
2085     auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1))
2086                         : B.buildUITOFP(S64, Unmerge.getReg(1));
2087 
2088     auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
2089     auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
2090                      .addUse(CvtHi.getReg(0))
2091                      .addUse(ThirtyTwo.getReg(0));
2092 
2093     // TODO: Should this propagate fast-math-flags?
2094     B.buildFAdd(Dst, LdExp, CvtLo);
2095     MI.eraseFromParent();
2096     return true;
2097   }
2098 
2099   assert(MRI.getType(Dst) == S32);
2100 
2101   auto One = B.buildConstant(S32, 1);
2102 
2103   MachineInstrBuilder ShAmt;
2104   if (Signed) {
2105     auto ThirtyOne = B.buildConstant(S32, 31);
2106     auto X = B.buildXor(S32, Unmerge.getReg(0), Unmerge.getReg(1));
2107     auto OppositeSign = B.buildAShr(S32, X, ThirtyOne);
2108     auto MaxShAmt = B.buildAdd(S32, ThirtyTwo, OppositeSign);
2109     auto LS = B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {S32},
2110                                /*HasSideEffects=*/false)
2111                   .addUse(Unmerge.getReg(1));
2112     auto LS2 = B.buildSub(S32, LS, One);
2113     ShAmt = B.buildUMin(S32, LS2, MaxShAmt);
2114   } else
2115     ShAmt = B.buildCTLZ(S32, Unmerge.getReg(1));
2116   auto Norm = B.buildShl(S64, Src, ShAmt);
2117   auto Unmerge2 = B.buildUnmerge({S32, S32}, Norm);
2118   auto Adjust = B.buildUMin(S32, One, Unmerge2.getReg(0));
2119   auto Norm2 = B.buildOr(S32, Unmerge2.getReg(1), Adjust);
2120   auto FVal = Signed ? B.buildSITOFP(S32, Norm2) : B.buildUITOFP(S32, Norm2);
2121   auto Scale = B.buildSub(S32, ThirtyTwo, ShAmt);
2122   B.buildIntrinsic(Intrinsic::amdgcn_ldexp, ArrayRef<Register>{Dst},
2123                    /*HasSideEffects=*/false)
2124       .addUse(FVal.getReg(0))
2125       .addUse(Scale.getReg(0));
2126   MI.eraseFromParent();
2127   return true;
2128 }
2129 
2130 // TODO: Copied from DAG implementation. Verify logic and document how this
2131 // actually works.
2132 bool AMDGPULegalizerInfo::legalizeFPTOI(MachineInstr &MI,
2133                                         MachineRegisterInfo &MRI,
2134                                         MachineIRBuilder &B,
2135                                         bool Signed) const {
2136 
2137   Register Dst = MI.getOperand(0).getReg();
2138   Register Src = MI.getOperand(1).getReg();
2139 
2140   const LLT S64 = LLT::scalar(64);
2141   const LLT S32 = LLT::scalar(32);
2142 
2143   const LLT SrcLT = MRI.getType(Src);
2144   assert((SrcLT == S32 || SrcLT == S64) && MRI.getType(Dst) == S64);
2145 
2146   unsigned Flags = MI.getFlags();
2147 
2148   // The basic idea of converting a floating point number into a pair of 32-bit
2149   // integers is illustrated as follows:
2150   //
2151   //     tf := trunc(val);
2152   //    hif := floor(tf * 2^-32);
2153   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2154   //     hi := fptoi(hif);
2155   //     lo := fptoi(lof);
2156   //
2157   auto Trunc = B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2158   MachineInstrBuilder Sign;
2159   if (Signed && SrcLT == S32) {
2160     // However, a 32-bit floating point number has only 23 bits mantissa and
2161     // it's not enough to hold all the significant bits of `lof` if val is
2162     // negative. To avoid the loss of precision, We need to take the absolute
2163     // value after truncating and flip the result back based on the original
2164     // signedness.
2165     Sign = B.buildAShr(S32, Src, B.buildConstant(S32, 31));
2166     Trunc = B.buildFAbs(S32, Trunc, Flags);
2167   }
2168   MachineInstrBuilder K0, K1;
2169   if (SrcLT == S64) {
2170     K0 = B.buildFConstant(S64,
2171                           BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)));
2172     K1 = B.buildFConstant(S64,
2173                           BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)));
2174   } else {
2175     K0 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)));
2176     K1 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)));
2177   }
2178 
2179   auto Mul = B.buildFMul(SrcLT, Trunc, K0, Flags);
2180   auto FloorMul = B.buildFFloor(SrcLT, Mul, Flags);
2181   auto Fma = B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2182 
2183   auto Hi = (Signed && SrcLT == S64) ? B.buildFPTOSI(S32, FloorMul)
2184                                      : B.buildFPTOUI(S32, FloorMul);
2185   auto Lo = B.buildFPTOUI(S32, Fma);
2186 
2187   if (Signed && SrcLT == S32) {
2188     // Flip the result based on the signedness, which is either all 0s or 1s.
2189     Sign = B.buildMerge(S64, {Sign, Sign});
2190     // r := xor({lo, hi}, sign) - sign;
2191     B.buildSub(Dst, B.buildXor(S64, B.buildMerge(S64, {Lo, Hi}), Sign), Sign);
2192   } else
2193     B.buildMerge(Dst, {Lo, Hi});
2194   MI.eraseFromParent();
2195 
2196   return true;
2197 }
2198 
2199 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
2200                                                MachineInstr &MI) const {
2201   MachineFunction &MF = Helper.MIRBuilder.getMF();
2202   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2203 
2204   const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
2205                         MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
2206 
2207   // With ieee_mode disabled, the instructions have the correct behavior
2208   // already for G_FMINNUM/G_FMAXNUM
2209   if (!MFI->getMode().IEEE)
2210     return !IsIEEEOp;
2211 
2212   if (IsIEEEOp)
2213     return true;
2214 
2215   return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
2216 }
2217 
2218 bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
2219   MachineInstr &MI, MachineRegisterInfo &MRI,
2220   MachineIRBuilder &B) const {
2221   // TODO: Should move some of this into LegalizerHelper.
2222 
2223   // TODO: Promote dynamic indexing of s16 to s32
2224 
2225   // FIXME: Artifact combiner probably should have replaced the truncated
2226   // constant before this, so we shouldn't need
2227   // getIConstantVRegValWithLookThrough.
2228   Optional<ValueAndVReg> MaybeIdxVal =
2229       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2230   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2231     return true;
2232   const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2233 
2234   Register Dst = MI.getOperand(0).getReg();
2235   Register Vec = MI.getOperand(1).getReg();
2236 
2237   LLT VecTy = MRI.getType(Vec);
2238   LLT EltTy = VecTy.getElementType();
2239   assert(EltTy == MRI.getType(Dst));
2240 
2241   if (IdxVal < VecTy.getNumElements())
2242     B.buildExtract(Dst, Vec, IdxVal * EltTy.getSizeInBits());
2243   else
2244     B.buildUndef(Dst);
2245 
2246   MI.eraseFromParent();
2247   return true;
2248 }
2249 
2250 bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
2251   MachineInstr &MI, MachineRegisterInfo &MRI,
2252   MachineIRBuilder &B) const {
2253   // TODO: Should move some of this into LegalizerHelper.
2254 
2255   // TODO: Promote dynamic indexing of s16 to s32
2256 
2257   // FIXME: Artifact combiner probably should have replaced the truncated
2258   // constant before this, so we shouldn't need
2259   // getIConstantVRegValWithLookThrough.
2260   Optional<ValueAndVReg> MaybeIdxVal =
2261       getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
2262   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2263     return true;
2264 
2265   int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2266   Register Dst = MI.getOperand(0).getReg();
2267   Register Vec = MI.getOperand(1).getReg();
2268   Register Ins = MI.getOperand(2).getReg();
2269 
2270   LLT VecTy = MRI.getType(Vec);
2271   LLT EltTy = VecTy.getElementType();
2272   assert(EltTy == MRI.getType(Ins));
2273 
2274   if (IdxVal < VecTy.getNumElements())
2275     B.buildInsert(Dst, Vec, Ins, IdxVal * EltTy.getSizeInBits());
2276   else
2277     B.buildUndef(Dst);
2278 
2279   MI.eraseFromParent();
2280   return true;
2281 }
2282 
2283 bool AMDGPULegalizerInfo::legalizeShuffleVector(
2284   MachineInstr &MI, MachineRegisterInfo &MRI,
2285   MachineIRBuilder &B) const {
2286   const LLT V2S16 = LLT::fixed_vector(2, 16);
2287 
2288   Register Dst = MI.getOperand(0).getReg();
2289   Register Src0 = MI.getOperand(1).getReg();
2290   LLT DstTy = MRI.getType(Dst);
2291   LLT SrcTy = MRI.getType(Src0);
2292 
2293   if (SrcTy == V2S16 && DstTy == V2S16 &&
2294       AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
2295     return true;
2296 
2297   MachineIRBuilder HelperBuilder(MI);
2298   GISelObserverWrapper DummyObserver;
2299   LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
2300   return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
2301 }
2302 
2303 bool AMDGPULegalizerInfo::legalizeSinCos(
2304   MachineInstr &MI, MachineRegisterInfo &MRI,
2305   MachineIRBuilder &B) const {
2306 
2307   Register DstReg = MI.getOperand(0).getReg();
2308   Register SrcReg = MI.getOperand(1).getReg();
2309   LLT Ty = MRI.getType(DstReg);
2310   unsigned Flags = MI.getFlags();
2311 
2312   Register TrigVal;
2313   auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
2314   if (ST.hasTrigReducedRange()) {
2315     auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2316     TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
2317       .addUse(MulVal.getReg(0))
2318       .setMIFlags(Flags).getReg(0);
2319   } else
2320     TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2321 
2322   Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
2323     Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
2324   B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
2325     .addUse(TrigVal)
2326     .setMIFlags(Flags);
2327   MI.eraseFromParent();
2328   return true;
2329 }
2330 
2331 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
2332                                                   MachineIRBuilder &B,
2333                                                   const GlobalValue *GV,
2334                                                   int64_t Offset,
2335                                                   unsigned GAFlags) const {
2336   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
2337   // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
2338   // to the following code sequence:
2339   //
2340   // For constant address space:
2341   //   s_getpc_b64 s[0:1]
2342   //   s_add_u32 s0, s0, $symbol
2343   //   s_addc_u32 s1, s1, 0
2344   //
2345   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2346   //   a fixup or relocation is emitted to replace $symbol with a literal
2347   //   constant, which is a pc-relative offset from the encoding of the $symbol
2348   //   operand to the global variable.
2349   //
2350   // For global address space:
2351   //   s_getpc_b64 s[0:1]
2352   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2353   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2354   //
2355   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2356   //   fixups or relocations are emitted to replace $symbol@*@lo and
2357   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2358   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2359   //   operand to the global variable.
2360   //
2361   // What we want here is an offset from the value returned by s_getpc
2362   // (which is the address of the s_add_u32 instruction) to the global
2363   // variable, but since the encoding of $symbol starts 4 bytes after the start
2364   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2365   // small. This requires us to add 4 to the global variable offset in order to
2366   // compute the correct address. Similarly for the s_addc_u32 instruction, the
2367   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
2368   // instruction.
2369 
2370   LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2371 
2372   Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
2373     B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
2374 
2375   MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
2376     .addDef(PCReg);
2377 
2378   MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
2379   if (GAFlags == SIInstrInfo::MO_NONE)
2380     MIB.addImm(0);
2381   else
2382     MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1);
2383 
2384   B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
2385 
2386   if (PtrTy.getSizeInBits() == 32)
2387     B.buildExtract(DstReg, PCReg, 0);
2388   return true;
2389  }
2390 
2391 bool AMDGPULegalizerInfo::legalizeGlobalValue(
2392   MachineInstr &MI, MachineRegisterInfo &MRI,
2393   MachineIRBuilder &B) const {
2394   Register DstReg = MI.getOperand(0).getReg();
2395   LLT Ty = MRI.getType(DstReg);
2396   unsigned AS = Ty.getAddressSpace();
2397 
2398   const GlobalValue *GV = MI.getOperand(1).getGlobal();
2399   MachineFunction &MF = B.getMF();
2400   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2401 
2402   if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
2403     if (!MFI->isModuleEntryFunction() &&
2404         !GV->getName().equals("llvm.amdgcn.module.lds")) {
2405       const Function &Fn = MF.getFunction();
2406       DiagnosticInfoUnsupported BadLDSDecl(
2407         Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
2408         DS_Warning);
2409       Fn.getContext().diagnose(BadLDSDecl);
2410 
2411       // We currently don't have a way to correctly allocate LDS objects that
2412       // aren't directly associated with a kernel. We do force inlining of
2413       // functions that use local objects. However, if these dead functions are
2414       // not eliminated, we don't want a compile time error. Just emit a warning
2415       // and a trap, since there should be no callable path here.
2416       B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2417       B.buildUndef(DstReg);
2418       MI.eraseFromParent();
2419       return true;
2420     }
2421 
2422     // TODO: We could emit code to handle the initialization somewhere.
2423     // We ignore the initializer for now and legalize it to allow selection.
2424     // The initializer will anyway get errored out during assembly emission.
2425     const SITargetLowering *TLI = ST.getTargetLowering();
2426     if (!TLI->shouldUseLDSConstAddress(GV)) {
2427       MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
2428       return true; // Leave in place;
2429     }
2430 
2431     if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) {
2432       Type *Ty = GV->getValueType();
2433       // HIP uses an unsized array `extern __shared__ T s[]` or similar
2434       // zero-sized type in other languages to declare the dynamic shared
2435       // memory which size is not known at the compile time. They will be
2436       // allocated by the runtime and placed directly after the static
2437       // allocated ones. They all share the same offset.
2438       if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
2439         // Adjust alignment for that dynamic shared memory array.
2440         MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV));
2441         LLT S32 = LLT::scalar(32);
2442         auto Sz =
2443             B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false);
2444         B.buildIntToPtr(DstReg, Sz);
2445         MI.eraseFromParent();
2446         return true;
2447       }
2448     }
2449 
2450     B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(),
2451                                                    *cast<GlobalVariable>(GV)));
2452     MI.eraseFromParent();
2453     return true;
2454   }
2455 
2456   const SITargetLowering *TLI = ST.getTargetLowering();
2457 
2458   if (TLI->shouldEmitFixup(GV)) {
2459     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
2460     MI.eraseFromParent();
2461     return true;
2462   }
2463 
2464   if (TLI->shouldEmitPCReloc(GV)) {
2465     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
2466     MI.eraseFromParent();
2467     return true;
2468   }
2469 
2470   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2471   Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);
2472 
2473   LLT LoadTy = Ty.getSizeInBits() == 32 ? PtrTy : Ty;
2474   MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
2475       MachinePointerInfo::getGOT(MF),
2476       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2477           MachineMemOperand::MOInvariant,
2478       LoadTy, Align(8));
2479 
2480   buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);
2481 
2482   if (Ty.getSizeInBits() == 32) {
2483     // Truncate if this is a 32-bit constant address.
2484     auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
2485     B.buildExtract(DstReg, Load, 0);
2486   } else
2487     B.buildLoad(DstReg, GOTAddr, *GOTMMO);
2488 
2489   MI.eraseFromParent();
2490   return true;
2491 }
2492 
2493 static LLT widenToNextPowerOf2(LLT Ty) {
2494   if (Ty.isVector())
2495     return Ty.changeElementCount(
2496         ElementCount::getFixed(PowerOf2Ceil(Ty.getNumElements())));
2497   return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits()));
2498 }
2499 
2500 bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper,
2501                                        MachineInstr &MI) const {
2502   MachineIRBuilder &B = Helper.MIRBuilder;
2503   MachineRegisterInfo &MRI = *B.getMRI();
2504   GISelChangeObserver &Observer = Helper.Observer;
2505 
2506   Register PtrReg = MI.getOperand(1).getReg();
2507   LLT PtrTy = MRI.getType(PtrReg);
2508   unsigned AddrSpace = PtrTy.getAddressSpace();
2509 
2510   if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
2511     LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2512     auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg);
2513     Observer.changingInstr(MI);
2514     MI.getOperand(1).setReg(Cast.getReg(0));
2515     Observer.changedInstr(MI);
2516     return true;
2517   }
2518 
2519   if (MI.getOpcode() != AMDGPU::G_LOAD)
2520     return false;
2521 
2522   Register ValReg = MI.getOperand(0).getReg();
2523   LLT ValTy = MRI.getType(ValReg);
2524 
2525   MachineMemOperand *MMO = *MI.memoperands_begin();
2526   const unsigned ValSize = ValTy.getSizeInBits();
2527   const LLT MemTy = MMO->getMemoryType();
2528   const Align MemAlign = MMO->getAlign();
2529   const unsigned MemSize = MemTy.getSizeInBits();
2530   const unsigned AlignInBits = 8 * MemAlign.value();
2531 
2532   // Widen non-power-of-2 loads to the alignment if needed
2533   if (shouldWidenLoad(ST, MemTy, AlignInBits, AddrSpace, MI.getOpcode())) {
2534     const unsigned WideMemSize = PowerOf2Ceil(MemSize);
2535 
2536     // This was already the correct extending load result type, so just adjust
2537     // the memory type.
2538     if (WideMemSize == ValSize) {
2539       MachineFunction &MF = B.getMF();
2540 
2541       MachineMemOperand *WideMMO =
2542           MF.getMachineMemOperand(MMO, 0, WideMemSize / 8);
2543       Observer.changingInstr(MI);
2544       MI.setMemRefs(MF, {WideMMO});
2545       Observer.changedInstr(MI);
2546       return true;
2547     }
2548 
2549     // Don't bother handling edge case that should probably never be produced.
2550     if (ValSize > WideMemSize)
2551       return false;
2552 
2553     LLT WideTy = widenToNextPowerOf2(ValTy);
2554 
2555     Register WideLoad;
2556     if (!WideTy.isVector()) {
2557       WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2558       B.buildTrunc(ValReg, WideLoad).getReg(0);
2559     } else {
2560       // Extract the subvector.
2561 
2562       if (isRegisterType(ValTy)) {
2563         // If this a case where G_EXTRACT is legal, use it.
2564         // (e.g. <3 x s32> -> <4 x s32>)
2565         WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2566         B.buildExtract(ValReg, WideLoad, 0);
2567       } else {
2568         // For cases where the widened type isn't a nice register value, unmerge
2569         // from a widened register (e.g. <3 x s16> -> <4 x s16>)
2570         B.setInsertPt(B.getMBB(), ++B.getInsertPt());
2571         WideLoad = Helper.widenWithUnmerge(WideTy, ValReg);
2572         B.setInsertPt(B.getMBB(), MI.getIterator());
2573         B.buildLoadFromOffset(WideLoad, PtrReg, *MMO, 0);
2574       }
2575     }
2576 
2577     MI.eraseFromParent();
2578     return true;
2579   }
2580 
2581   return false;
2582 }
2583 
2584 bool AMDGPULegalizerInfo::legalizeFMad(
2585   MachineInstr &MI, MachineRegisterInfo &MRI,
2586   MachineIRBuilder &B) const {
2587   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2588   assert(Ty.isScalar());
2589 
2590   MachineFunction &MF = B.getMF();
2591   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2592 
2593   // TODO: Always legal with future ftz flag.
2594   // FIXME: Do we need just output?
2595   if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
2596     return true;
2597   if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
2598     return true;
2599 
2600   MachineIRBuilder HelperBuilder(MI);
2601   GISelObserverWrapper DummyObserver;
2602   LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
2603   return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
2604 }
2605 
2606 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
2607   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2608   Register DstReg = MI.getOperand(0).getReg();
2609   Register PtrReg = MI.getOperand(1).getReg();
2610   Register CmpVal = MI.getOperand(2).getReg();
2611   Register NewVal = MI.getOperand(3).getReg();
2612 
2613   assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) &&
2614          "this should not have been custom lowered");
2615 
2616   LLT ValTy = MRI.getType(CmpVal);
2617   LLT VecTy = LLT::fixed_vector(2, ValTy);
2618 
2619   Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);
2620 
2621   B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
2622     .addDef(DstReg)
2623     .addUse(PtrReg)
2624     .addUse(PackedVal)
2625     .setMemRefs(MI.memoperands());
2626 
2627   MI.eraseFromParent();
2628   return true;
2629 }
2630 
2631 bool AMDGPULegalizerInfo::legalizeFlog(
2632   MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
2633   Register Dst = MI.getOperand(0).getReg();
2634   Register Src = MI.getOperand(1).getReg();
2635   LLT Ty = B.getMRI()->getType(Dst);
2636   unsigned Flags = MI.getFlags();
2637 
2638   auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
2639   auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);
2640 
2641   B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
2642   MI.eraseFromParent();
2643   return true;
2644 }
2645 
2646 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
2647                                        MachineIRBuilder &B) const {
2648   Register Dst = MI.getOperand(0).getReg();
2649   Register Src = MI.getOperand(1).getReg();
2650   unsigned Flags = MI.getFlags();
2651   LLT Ty = B.getMRI()->getType(Dst);
2652 
2653   auto K = B.buildFConstant(Ty, numbers::log2e);
2654   auto Mul = B.buildFMul(Ty, Src, K, Flags);
2655   B.buildFExp2(Dst, Mul, Flags);
2656   MI.eraseFromParent();
2657   return true;
2658 }
2659 
2660 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
2661                                        MachineIRBuilder &B) const {
2662   Register Dst = MI.getOperand(0).getReg();
2663   Register Src0 = MI.getOperand(1).getReg();
2664   Register Src1 = MI.getOperand(2).getReg();
2665   unsigned Flags = MI.getFlags();
2666   LLT Ty = B.getMRI()->getType(Dst);
2667   const LLT S16 = LLT::scalar(16);
2668   const LLT S32 = LLT::scalar(32);
2669 
2670   if (Ty == S32) {
2671     auto Log = B.buildFLog2(S32, Src0, Flags);
2672     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2673       .addUse(Log.getReg(0))
2674       .addUse(Src1)
2675       .setMIFlags(Flags);
2676     B.buildFExp2(Dst, Mul, Flags);
2677   } else if (Ty == S16) {
2678     // There's no f16 fmul_legacy, so we need to convert for it.
2679     auto Log = B.buildFLog2(S16, Src0, Flags);
2680     auto Ext0 = B.buildFPExt(S32, Log, Flags);
2681     auto Ext1 = B.buildFPExt(S32, Src1, Flags);
2682     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2683       .addUse(Ext0.getReg(0))
2684       .addUse(Ext1.getReg(0))
2685       .setMIFlags(Flags);
2686 
2687     B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
2688   } else
2689     return false;
2690 
2691   MI.eraseFromParent();
2692   return true;
2693 }
2694 
2695 // Find a source register, ignoring any possible source modifiers.
2696 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
2697   Register ModSrc = OrigSrc;
2698   if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
2699     ModSrc = SrcFNeg->getOperand(1).getReg();
2700     if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2701       ModSrc = SrcFAbs->getOperand(1).getReg();
2702   } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2703     ModSrc = SrcFAbs->getOperand(1).getReg();
2704   return ModSrc;
2705 }
2706 
2707 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
2708                                          MachineRegisterInfo &MRI,
2709                                          MachineIRBuilder &B) const {
2710 
2711   const LLT S1 = LLT::scalar(1);
2712   const LLT S64 = LLT::scalar(64);
2713   Register Dst = MI.getOperand(0).getReg();
2714   Register OrigSrc = MI.getOperand(1).getReg();
2715   unsigned Flags = MI.getFlags();
2716   assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
2717          "this should not have been custom lowered");
2718 
2719   // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
2720   // is used instead. However, SI doesn't have V_FLOOR_F64, so the most
2721   // efficient way to implement it is using V_FRACT_F64. The workaround for the
2722   // V_FRACT bug is:
2723   //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2724   //
2725   // Convert floor(x) to (x - fract(x))
2726 
2727   auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
2728     .addUse(OrigSrc)
2729     .setMIFlags(Flags);
2730 
2731   // Give source modifier matching some assistance before obscuring a foldable
2732   // pattern.
2733 
2734   // TODO: We can avoid the neg on the fract? The input sign to fract
2735   // shouldn't matter?
2736   Register ModSrc = stripAnySourceMods(OrigSrc, MRI);
2737 
2738   auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));
2739 
2740   Register Min = MRI.createGenericVirtualRegister(S64);
2741 
2742   // We don't need to concern ourselves with the snan handling difference, so
2743   // use the one which will directly select.
2744   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2745   if (MFI->getMode().IEEE)
2746     B.buildFMinNumIEEE(Min, Fract, Const, Flags);
2747   else
2748     B.buildFMinNum(Min, Fract, Const, Flags);
2749 
2750   Register CorrectedFract = Min;
2751   if (!MI.getFlag(MachineInstr::FmNoNans)) {
2752     auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
2753     CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
2754   }
2755 
2756   auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
2757   B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
2758 
2759   MI.eraseFromParent();
2760   return true;
2761 }
2762 
2763 // Turn an illegal packed v2s16 build vector into bit operations.
2764 // TODO: This should probably be a bitcast action in LegalizerHelper.
2765 bool AMDGPULegalizerInfo::legalizeBuildVector(
2766   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2767   Register Dst = MI.getOperand(0).getReg();
2768   const LLT S32 = LLT::scalar(32);
2769   assert(MRI.getType(Dst) == LLT::fixed_vector(2, 16));
2770 
2771   Register Src0 = MI.getOperand(1).getReg();
2772   Register Src1 = MI.getOperand(2).getReg();
2773   assert(MRI.getType(Src0) == LLT::scalar(16));
2774 
2775   auto Merge = B.buildMerge(S32, {Src0, Src1});
2776   B.buildBitcast(Dst, Merge);
2777 
2778   MI.eraseFromParent();
2779   return true;
2780 }
2781 
2782 // Legalize ctlz/cttz to ffbh/ffbl instead of the default legalization to
2783 // ctlz/cttz_zero_undef. This allows us to fix up the result for the zero input
2784 // case with a single min instruction instead of a compare+select.
2785 bool AMDGPULegalizerInfo::legalizeCTLZ_CTTZ(MachineInstr &MI,
2786                                             MachineRegisterInfo &MRI,
2787                                             MachineIRBuilder &B) const {
2788   Register Dst = MI.getOperand(0).getReg();
2789   Register Src = MI.getOperand(1).getReg();
2790   LLT DstTy = MRI.getType(Dst);
2791   LLT SrcTy = MRI.getType(Src);
2792 
2793   unsigned NewOpc = MI.getOpcode() == AMDGPU::G_CTLZ
2794                         ? AMDGPU::G_AMDGPU_FFBH_U32
2795                         : AMDGPU::G_AMDGPU_FFBL_B32;
2796   auto Tmp = B.buildInstr(NewOpc, {DstTy}, {Src});
2797   B.buildUMin(Dst, Tmp, B.buildConstant(DstTy, SrcTy.getSizeInBits()));
2798 
2799   MI.eraseFromParent();
2800   return true;
2801 }
2802 
2803 // Check that this is a G_XOR x, -1
2804 static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) {
2805   if (MI.getOpcode() != TargetOpcode::G_XOR)
2806     return false;
2807   auto ConstVal = getIConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI);
2808   return ConstVal && *ConstVal == -1;
2809 }
2810 
2811 // Return the use branch instruction, otherwise null if the usage is invalid.
2812 static MachineInstr *
2813 verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br,
2814                   MachineBasicBlock *&UncondBrTarget, bool &Negated) {
2815   Register CondDef = MI.getOperand(0).getReg();
2816   if (!MRI.hasOneNonDBGUse(CondDef))
2817     return nullptr;
2818 
2819   MachineBasicBlock *Parent = MI.getParent();
2820   MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef);
2821 
2822   if (isNot(MRI, *UseMI)) {
2823     Register NegatedCond = UseMI->getOperand(0).getReg();
2824     if (!MRI.hasOneNonDBGUse(NegatedCond))
2825       return nullptr;
2826 
2827     // We're deleting the def of this value, so we need to remove it.
2828     eraseInstr(*UseMI, MRI);
2829 
2830     UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond);
2831     Negated = true;
2832   }
2833 
2834   if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND)
2835     return nullptr;
2836 
2837   // Make sure the cond br is followed by a G_BR, or is the last instruction.
2838   MachineBasicBlock::iterator Next = std::next(UseMI->getIterator());
2839   if (Next == Parent->end()) {
2840     MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
2841     if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
2842       return nullptr;
2843     UncondBrTarget = &*NextMBB;
2844   } else {
2845     if (Next->getOpcode() != AMDGPU::G_BR)
2846       return nullptr;
2847     Br = &*Next;
2848     UncondBrTarget = Br->getOperand(0).getMBB();
2849   }
2850 
2851   return UseMI;
2852 }
2853 
2854 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
2855                                          const ArgDescriptor *Arg,
2856                                          const TargetRegisterClass *ArgRC,
2857                                          LLT ArgTy) const {
2858   MCRegister SrcReg = Arg->getRegister();
2859   assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected");
2860   assert(DstReg.isVirtual() && "Virtual register expected");
2861 
2862   Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg, *ArgRC,
2863                                              ArgTy);
2864   if (Arg->isMasked()) {
2865     // TODO: Should we try to emit this once in the entry block?
2866     const LLT S32 = LLT::scalar(32);
2867     const unsigned Mask = Arg->getMask();
2868     const unsigned Shift = countTrailingZeros<unsigned>(Mask);
2869 
2870     Register AndMaskSrc = LiveIn;
2871 
2872     if (Shift != 0) {
2873       auto ShiftAmt = B.buildConstant(S32, Shift);
2874       AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
2875     }
2876 
2877     B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
2878   } else {
2879     B.buildCopy(DstReg, LiveIn);
2880   }
2881 
2882   return true;
2883 }
2884 
2885 bool AMDGPULegalizerInfo::loadInputValue(
2886     Register DstReg, MachineIRBuilder &B,
2887     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2888   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2889   const ArgDescriptor *Arg;
2890   const TargetRegisterClass *ArgRC;
2891   LLT ArgTy;
2892   std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType);
2893 
2894   if (!Arg) {
2895     if (ArgType == AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR) {
2896       // The intrinsic may appear when we have a 0 sized kernarg segment, in which
2897       // case the pointer argument may be missing and we use null.
2898       B.buildConstant(DstReg, 0);
2899       return true;
2900     }
2901 
2902     // It's undefined behavior if a function marked with the amdgpu-no-*
2903     // attributes uses the corresponding intrinsic.
2904     B.buildUndef(DstReg);
2905     return true;
2906   }
2907 
2908   if (!Arg->isRegister() || !Arg->getRegister().isValid())
2909     return false; // TODO: Handle these
2910   return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy);
2911 }
2912 
2913 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
2914     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
2915     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2916   if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType))
2917     return false;
2918 
2919   MI.eraseFromParent();
2920   return true;
2921 }
2922 
2923 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
2924                                        MachineRegisterInfo &MRI,
2925                                        MachineIRBuilder &B) const {
2926   Register Dst = MI.getOperand(0).getReg();
2927   LLT DstTy = MRI.getType(Dst);
2928   LLT S16 = LLT::scalar(16);
2929   LLT S32 = LLT::scalar(32);
2930   LLT S64 = LLT::scalar(64);
2931 
2932   if (DstTy == S16)
2933     return legalizeFDIV16(MI, MRI, B);
2934   if (DstTy == S32)
2935     return legalizeFDIV32(MI, MRI, B);
2936   if (DstTy == S64)
2937     return legalizeFDIV64(MI, MRI, B);
2938 
2939   return false;
2940 }
2941 
2942 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B,
2943                                                         Register DstDivReg,
2944                                                         Register DstRemReg,
2945                                                         Register X,
2946                                                         Register Y) const {
2947   const LLT S1 = LLT::scalar(1);
2948   const LLT S32 = LLT::scalar(32);
2949 
2950   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2951   // algorithm used here.
2952 
2953   // Initial estimate of inv(y).
2954   auto FloatY = B.buildUITOFP(S32, Y);
2955   auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY});
2956   auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe));
2957   auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale);
2958   auto Z = B.buildFPTOUI(S32, ScaledY);
2959 
2960   // One round of UNR.
2961   auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y);
2962   auto NegYZ = B.buildMul(S32, NegY, Z);
2963   Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ));
2964 
2965   // Quotient/remainder estimate.
2966   auto Q = B.buildUMulH(S32, X, Z);
2967   auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y));
2968 
2969   // First quotient/remainder refinement.
2970   auto One = B.buildConstant(S32, 1);
2971   auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
2972   if (DstDivReg)
2973     Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q);
2974   R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R);
2975 
2976   // Second quotient/remainder refinement.
2977   Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
2978   if (DstDivReg)
2979     B.buildSelect(DstDivReg, Cond, B.buildAdd(S32, Q, One), Q);
2980 
2981   if (DstRemReg)
2982     B.buildSelect(DstRemReg, Cond, B.buildSub(S32, R, Y), R);
2983 }
2984 
2985 // Build integer reciprocal sequence around V_RCP_IFLAG_F32
2986 //
2987 // Return lo, hi of result
2988 //
2989 // %cvt.lo = G_UITOFP Val.lo
2990 // %cvt.hi = G_UITOFP Val.hi
2991 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
2992 // %rcp = G_AMDGPU_RCP_IFLAG %mad
2993 // %mul1 = G_FMUL %rcp, 0x5f7ffffc
2994 // %mul2 = G_FMUL %mul1, 2**(-32)
2995 // %trunc = G_INTRINSIC_TRUNC %mul2
2996 // %mad2 = G_FMAD %trunc, -(2**32), %mul1
2997 // return {G_FPTOUI %mad2, G_FPTOUI %trunc}
2998 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
2999                                                        Register Val) {
3000   const LLT S32 = LLT::scalar(32);
3001   auto Unmerge = B.buildUnmerge(S32, Val);
3002 
3003   auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
3004   auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));
3005 
3006   auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
3007                          B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);
3008 
3009   auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
3010   auto Mul1 =
3011       B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));
3012 
3013   // 2**(-32)
3014   auto Mul2 =
3015       B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
3016   auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);
3017 
3018   // -(2**32)
3019   auto Mad2 = B.buildFMAD(S32, Trunc,
3020                           B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);
3021 
3022   auto ResultLo = B.buildFPTOUI(S32, Mad2);
3023   auto ResultHi = B.buildFPTOUI(S32, Trunc);
3024 
3025   return {ResultLo.getReg(0), ResultHi.getReg(0)};
3026 }
3027 
3028 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B,
3029                                                         Register DstDivReg,
3030                                                         Register DstRemReg,
3031                                                         Register Numer,
3032                                                         Register Denom) const {
3033   const LLT S32 = LLT::scalar(32);
3034   const LLT S64 = LLT::scalar(64);
3035   const LLT S1 = LLT::scalar(1);
3036   Register RcpLo, RcpHi;
3037 
3038   std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);
3039 
3040   auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});
3041 
3042   auto Zero64 = B.buildConstant(S64, 0);
3043   auto NegDenom = B.buildSub(S64, Zero64, Denom);
3044 
3045   auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
3046   auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);
3047 
3048   auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
3049   Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
3050   Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
3051 
3052   auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
3053   auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
3054   auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});
3055 
3056   auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
3057   auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
3058   auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
3059   Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
3060   Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
3061 
3062   auto Zero32 = B.buildConstant(S32, 0);
3063   auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
3064   auto Add2_Hi = B.buildUAdde(S32, S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
3065   auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});
3066 
3067   auto UnmergeNumer = B.buildUnmerge(S32, Numer);
3068   Register NumerLo = UnmergeNumer.getReg(0);
3069   Register NumerHi = UnmergeNumer.getReg(1);
3070 
3071   auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
3072   auto Mul3 = B.buildMul(S64, Denom, MulHi3);
3073   auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
3074   Register Mul3_Lo = UnmergeMul3.getReg(0);
3075   Register Mul3_Hi = UnmergeMul3.getReg(1);
3076   auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
3077   auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
3078   auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
3079   auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});
3080 
3081   auto UnmergeDenom = B.buildUnmerge(S32, Denom);
3082   Register DenomLo = UnmergeDenom.getReg(0);
3083   Register DenomHi = UnmergeDenom.getReg(1);
3084 
3085   auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
3086   auto C1 = B.buildSExt(S32, CmpHi);
3087 
3088   auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
3089   auto C2 = B.buildSExt(S32, CmpLo);
3090 
3091   auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
3092   auto C3 = B.buildSelect(S32, CmpEq, C2, C1);
3093 
3094   // TODO: Here and below portions of the code can be enclosed into if/endif.
3095   // Currently control flow is unconditional and we have 4 selects after
3096   // potential endif to substitute PHIs.
3097 
3098   // if C3 != 0 ...
3099   auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
3100   auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
3101   auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
3102   auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});
3103 
3104   auto One64 = B.buildConstant(S64, 1);
3105   auto Add3 = B.buildAdd(S64, MulHi3, One64);
3106 
3107   auto C4 =
3108       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
3109   auto C5 =
3110       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
3111   auto C6 = B.buildSelect(
3112       S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);
3113 
3114   // if (C6 != 0)
3115   auto Add4 = B.buildAdd(S64, Add3, One64);
3116   auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);
3117 
3118   auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
3119   auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
3120   auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});
3121 
3122   // endif C6
3123   // endif C3
3124 
3125   if (DstDivReg) {
3126     auto Sel1 = B.buildSelect(
3127         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
3128     B.buildSelect(DstDivReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3129                   Sel1, MulHi3);
3130   }
3131 
3132   if (DstRemReg) {
3133     auto Sel2 = B.buildSelect(
3134         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
3135     B.buildSelect(DstRemReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3136                   Sel2, Sub1);
3137   }
3138 }
3139 
3140 bool AMDGPULegalizerInfo::legalizeUnsignedDIV_REM(MachineInstr &MI,
3141                                                   MachineRegisterInfo &MRI,
3142                                                   MachineIRBuilder &B) const {
3143   Register DstDivReg, DstRemReg;
3144   switch (MI.getOpcode()) {
3145   default:
3146     llvm_unreachable("Unexpected opcode!");
3147   case AMDGPU::G_UDIV: {
3148     DstDivReg = MI.getOperand(0).getReg();
3149     break;
3150   }
3151   case AMDGPU::G_UREM: {
3152     DstRemReg = MI.getOperand(0).getReg();
3153     break;
3154   }
3155   case AMDGPU::G_UDIVREM: {
3156     DstDivReg = MI.getOperand(0).getReg();
3157     DstRemReg = MI.getOperand(1).getReg();
3158     break;
3159   }
3160   }
3161 
3162   const LLT S64 = LLT::scalar(64);
3163   const LLT S32 = LLT::scalar(32);
3164   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3165   Register Num = MI.getOperand(FirstSrcOpIdx).getReg();
3166   Register Den = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3167   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3168 
3169   if (Ty == S32)
3170     legalizeUnsignedDIV_REM32Impl(B, DstDivReg, DstRemReg, Num, Den);
3171   else if (Ty == S64)
3172     legalizeUnsignedDIV_REM64Impl(B, DstDivReg, DstRemReg, Num, Den);
3173   else
3174     return false;
3175 
3176   MI.eraseFromParent();
3177   return true;
3178 }
3179 
3180 bool AMDGPULegalizerInfo::legalizeSignedDIV_REM(MachineInstr &MI,
3181                                                 MachineRegisterInfo &MRI,
3182                                                 MachineIRBuilder &B) const {
3183   const LLT S64 = LLT::scalar(64);
3184   const LLT S32 = LLT::scalar(32);
3185 
3186   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3187   if (Ty != S32 && Ty != S64)
3188     return false;
3189 
3190   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3191   Register LHS = MI.getOperand(FirstSrcOpIdx).getReg();
3192   Register RHS = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3193 
3194   auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1);
3195   auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset);
3196   auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset);
3197 
3198   LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0);
3199   RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0);
3200 
3201   LHS = B.buildXor(Ty, LHS, LHSign).getReg(0);
3202   RHS = B.buildXor(Ty, RHS, RHSign).getReg(0);
3203 
3204   Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
3205   switch (MI.getOpcode()) {
3206   default:
3207     llvm_unreachable("Unexpected opcode!");
3208   case AMDGPU::G_SDIV: {
3209     DstDivReg = MI.getOperand(0).getReg();
3210     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3211     break;
3212   }
3213   case AMDGPU::G_SREM: {
3214     DstRemReg = MI.getOperand(0).getReg();
3215     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3216     break;
3217   }
3218   case AMDGPU::G_SDIVREM: {
3219     DstDivReg = MI.getOperand(0).getReg();
3220     DstRemReg = MI.getOperand(1).getReg();
3221     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3222     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3223     break;
3224   }
3225   }
3226 
3227   if (Ty == S32)
3228     legalizeUnsignedDIV_REM32Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3229   else
3230     legalizeUnsignedDIV_REM64Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3231 
3232   if (DstDivReg) {
3233     auto Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0);
3234     auto SignXor = B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
3235     B.buildSub(DstDivReg, SignXor, Sign);
3236   }
3237 
3238   if (DstRemReg) {
3239     auto Sign = LHSign.getReg(0); // Remainder sign is the same as LHS
3240     auto SignXor = B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
3241     B.buildSub(DstRemReg, SignXor, Sign);
3242   }
3243 
3244   MI.eraseFromParent();
3245   return true;
3246 }
3247 
3248 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
3249                                                  MachineRegisterInfo &MRI,
3250                                                  MachineIRBuilder &B) const {
3251   Register Res = MI.getOperand(0).getReg();
3252   Register LHS = MI.getOperand(1).getReg();
3253   Register RHS = MI.getOperand(2).getReg();
3254   uint16_t Flags = MI.getFlags();
3255   LLT ResTy = MRI.getType(Res);
3256 
3257   const MachineFunction &MF = B.getMF();
3258   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3259                             MI.getFlag(MachineInstr::FmAfn);
3260 
3261   if (!AllowInaccurateRcp)
3262     return false;
3263 
3264   if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
3265     // 1 / x -> RCP(x)
3266     if (CLHS->isExactlyValue(1.0)) {
3267       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3268         .addUse(RHS)
3269         .setMIFlags(Flags);
3270 
3271       MI.eraseFromParent();
3272       return true;
3273     }
3274 
3275     // -1 / x -> RCP( FNEG(x) )
3276     if (CLHS->isExactlyValue(-1.0)) {
3277       auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
3278       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3279         .addUse(FNeg.getReg(0))
3280         .setMIFlags(Flags);
3281 
3282       MI.eraseFromParent();
3283       return true;
3284     }
3285   }
3286 
3287   // x / y -> x * (1.0 / y)
3288   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3289     .addUse(RHS)
3290     .setMIFlags(Flags);
3291   B.buildFMul(Res, LHS, RCP, Flags);
3292 
3293   MI.eraseFromParent();
3294   return true;
3295 }
3296 
3297 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI,
3298                                                    MachineRegisterInfo &MRI,
3299                                                    MachineIRBuilder &B) const {
3300   Register Res = MI.getOperand(0).getReg();
3301   Register X = MI.getOperand(1).getReg();
3302   Register Y = MI.getOperand(2).getReg();
3303   uint16_t Flags = MI.getFlags();
3304   LLT ResTy = MRI.getType(Res);
3305 
3306   const MachineFunction &MF = B.getMF();
3307   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3308                             MI.getFlag(MachineInstr::FmAfn);
3309 
3310   if (!AllowInaccurateRcp)
3311     return false;
3312 
3313   auto NegY = B.buildFNeg(ResTy, Y);
3314   auto One = B.buildFConstant(ResTy, 1.0);
3315 
3316   auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3317     .addUse(Y)
3318     .setMIFlags(Flags);
3319 
3320   auto Tmp0 = B.buildFMA(ResTy, NegY, R, One);
3321   R = B.buildFMA(ResTy, Tmp0, R, R);
3322 
3323   auto Tmp1 = B.buildFMA(ResTy, NegY, R, One);
3324   R = B.buildFMA(ResTy, Tmp1, R, R);
3325 
3326   auto Ret = B.buildFMul(ResTy, X, R);
3327   auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X);
3328 
3329   B.buildFMA(Res, Tmp2, R, Ret);
3330   MI.eraseFromParent();
3331   return true;
3332 }
3333 
3334 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
3335                                          MachineRegisterInfo &MRI,
3336                                          MachineIRBuilder &B) const {
3337   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3338     return true;
3339 
3340   Register Res = MI.getOperand(0).getReg();
3341   Register LHS = MI.getOperand(1).getReg();
3342   Register RHS = MI.getOperand(2).getReg();
3343 
3344   uint16_t Flags = MI.getFlags();
3345 
3346   LLT S16 = LLT::scalar(16);
3347   LLT S32 = LLT::scalar(32);
3348 
3349   auto LHSExt = B.buildFPExt(S32, LHS, Flags);
3350   auto RHSExt = B.buildFPExt(S32, RHS, Flags);
3351 
3352   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3353     .addUse(RHSExt.getReg(0))
3354     .setMIFlags(Flags);
3355 
3356   auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
3357   auto RDst = B.buildFPTrunc(S16, QUOT, Flags);
3358 
3359   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3360     .addUse(RDst.getReg(0))
3361     .addUse(RHS)
3362     .addUse(LHS)
3363     .setMIFlags(Flags);
3364 
3365   MI.eraseFromParent();
3366   return true;
3367 }
3368 
3369 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
3370 // to enable denorm mode. When 'Enable' is false, disable denorm mode.
3371 static void toggleSPDenormMode(bool Enable,
3372                                MachineIRBuilder &B,
3373                                const GCNSubtarget &ST,
3374                                AMDGPU::SIModeRegisterDefaults Mode) {
3375   // Set SP denorm mode to this value.
3376   unsigned SPDenormMode =
3377     Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();
3378 
3379   if (ST.hasDenormModeInst()) {
3380     // Preserve default FP64FP16 denorm mode while updating FP32 mode.
3381     uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();
3382 
3383     uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
3384     B.buildInstr(AMDGPU::S_DENORM_MODE)
3385       .addImm(NewDenormModeValue);
3386 
3387   } else {
3388     // Select FP32 bit field in mode register.
3389     unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
3390                                     (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
3391                                     (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
3392 
3393     B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
3394       .addImm(SPDenormMode)
3395       .addImm(SPDenormModeBitField);
3396   }
3397 }
3398 
3399 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
3400                                          MachineRegisterInfo &MRI,
3401                                          MachineIRBuilder &B) const {
3402   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3403     return true;
3404 
3405   Register Res = MI.getOperand(0).getReg();
3406   Register LHS = MI.getOperand(1).getReg();
3407   Register RHS = MI.getOperand(2).getReg();
3408   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3409   AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();
3410 
3411   uint16_t Flags = MI.getFlags();
3412 
3413   LLT S32 = LLT::scalar(32);
3414   LLT S1 = LLT::scalar(1);
3415 
3416   auto One = B.buildFConstant(S32, 1.0f);
3417 
3418   auto DenominatorScaled =
3419     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3420       .addUse(LHS)
3421       .addUse(RHS)
3422       .addImm(0)
3423       .setMIFlags(Flags);
3424   auto NumeratorScaled =
3425     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3426       .addUse(LHS)
3427       .addUse(RHS)
3428       .addImm(1)
3429       .setMIFlags(Flags);
3430 
3431   auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3432     .addUse(DenominatorScaled.getReg(0))
3433     .setMIFlags(Flags);
3434   auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);
3435 
3436   // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
3437   // aren't modeled as reading it.
3438   if (!Mode.allFP32Denormals())
3439     toggleSPDenormMode(true, B, ST, Mode);
3440 
3441   auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
3442   auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
3443   auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
3444   auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
3445   auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
3446   auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
3447 
3448   if (!Mode.allFP32Denormals())
3449     toggleSPDenormMode(false, B, ST, Mode);
3450 
3451   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
3452     .addUse(Fma4.getReg(0))
3453     .addUse(Fma1.getReg(0))
3454     .addUse(Fma3.getReg(0))
3455     .addUse(NumeratorScaled.getReg(1))
3456     .setMIFlags(Flags);
3457 
3458   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3459     .addUse(Fmas.getReg(0))
3460     .addUse(RHS)
3461     .addUse(LHS)
3462     .setMIFlags(Flags);
3463 
3464   MI.eraseFromParent();
3465   return true;
3466 }
3467 
3468 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
3469                                          MachineRegisterInfo &MRI,
3470                                          MachineIRBuilder &B) const {
3471   if (legalizeFastUnsafeFDIV64(MI, MRI, B))
3472     return true;
3473 
3474   Register Res = MI.getOperand(0).getReg();
3475   Register LHS = MI.getOperand(1).getReg();
3476   Register RHS = MI.getOperand(2).getReg();
3477 
3478   uint16_t Flags = MI.getFlags();
3479 
3480   LLT S64 = LLT::scalar(64);
3481   LLT S1 = LLT::scalar(1);
3482 
3483   auto One = B.buildFConstant(S64, 1.0);
3484 
3485   auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3486     .addUse(LHS)
3487     .addUse(RHS)
3488     .addImm(0)
3489     .setMIFlags(Flags);
3490 
3491   auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);
3492 
3493   auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
3494     .addUse(DivScale0.getReg(0))
3495     .setMIFlags(Flags);
3496 
3497   auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
3498   auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
3499   auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);
3500 
3501   auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3502     .addUse(LHS)
3503     .addUse(RHS)
3504     .addImm(1)
3505     .setMIFlags(Flags);
3506 
3507   auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
3508   auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
3509   auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);
3510 
3511   Register Scale;
3512   if (!ST.hasUsableDivScaleConditionOutput()) {
3513     // Workaround a hardware bug on SI where the condition output from div_scale
3514     // is not usable.
3515 
3516     LLT S32 = LLT::scalar(32);
3517 
3518     auto NumUnmerge = B.buildUnmerge(S32, LHS);
3519     auto DenUnmerge = B.buildUnmerge(S32, RHS);
3520     auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
3521     auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);
3522 
3523     auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
3524                               Scale1Unmerge.getReg(1));
3525     auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
3526                               Scale0Unmerge.getReg(1));
3527     Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
3528   } else {
3529     Scale = DivScale1.getReg(1);
3530   }
3531 
3532   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
3533     .addUse(Fma4.getReg(0))
3534     .addUse(Fma3.getReg(0))
3535     .addUse(Mul.getReg(0))
3536     .addUse(Scale)
3537     .setMIFlags(Flags);
3538 
3539   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
3540     .addUse(Fmas.getReg(0))
3541     .addUse(RHS)
3542     .addUse(LHS)
3543     .setMIFlags(Flags);
3544 
3545   MI.eraseFromParent();
3546   return true;
3547 }
3548 
3549 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
3550                                                  MachineRegisterInfo &MRI,
3551                                                  MachineIRBuilder &B) const {
3552   Register Res = MI.getOperand(0).getReg();
3553   Register LHS = MI.getOperand(2).getReg();
3554   Register RHS = MI.getOperand(3).getReg();
3555   uint16_t Flags = MI.getFlags();
3556 
3557   LLT S32 = LLT::scalar(32);
3558   LLT S1 = LLT::scalar(1);
3559 
3560   auto Abs = B.buildFAbs(S32, RHS, Flags);
3561   const APFloat C0Val(1.0f);
3562 
3563   auto C0 = B.buildConstant(S32, 0x6f800000);
3564   auto C1 = B.buildConstant(S32, 0x2f800000);
3565   auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
3566 
3567   auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
3568   auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
3569 
3570   auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
3571 
3572   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3573     .addUse(Mul0.getReg(0))
3574     .setMIFlags(Flags);
3575 
3576   auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
3577 
3578   B.buildFMul(Res, Sel, Mul1, Flags);
3579 
3580   MI.eraseFromParent();
3581   return true;
3582 }
3583 
3584 // Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction.
3585 // FIXME: Why do we handle this one but not other removed instructions?
3586 //
3587 // Reciprocal square root.  The clamp prevents infinite results, clamping
3588 // infinities to max_float.  D.f = 1.0 / sqrt(S0.f), result clamped to
3589 // +-max_float.
3590 bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI,
3591                                                     MachineRegisterInfo &MRI,
3592                                                     MachineIRBuilder &B) const {
3593   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
3594     return true;
3595 
3596   Register Dst = MI.getOperand(0).getReg();
3597   Register Src = MI.getOperand(2).getReg();
3598   auto Flags = MI.getFlags();
3599 
3600   LLT Ty = MRI.getType(Dst);
3601 
3602   const fltSemantics *FltSemantics;
3603   if (Ty == LLT::scalar(32))
3604     FltSemantics = &APFloat::IEEEsingle();
3605   else if (Ty == LLT::scalar(64))
3606     FltSemantics = &APFloat::IEEEdouble();
3607   else
3608     return false;
3609 
3610   auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false)
3611     .addUse(Src)
3612     .setMIFlags(Flags);
3613 
3614   // We don't need to concern ourselves with the snan handling difference, since
3615   // the rsq quieted (or not) so use the one which will directly select.
3616   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3617   const bool UseIEEE = MFI->getMode().IEEE;
3618 
3619   auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics));
3620   auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
3621                             B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
3622 
3623   auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true));
3624 
3625   if (UseIEEE)
3626     B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
3627   else
3628     B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
3629   MI.eraseFromParent();
3630   return true;
3631 }
3632 
3633 static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) {
3634   switch (IID) {
3635   case Intrinsic::amdgcn_ds_fadd:
3636     return AMDGPU::G_ATOMICRMW_FADD;
3637   case Intrinsic::amdgcn_ds_fmin:
3638     return AMDGPU::G_AMDGPU_ATOMIC_FMIN;
3639   case Intrinsic::amdgcn_ds_fmax:
3640     return AMDGPU::G_AMDGPU_ATOMIC_FMAX;
3641   default:
3642     llvm_unreachable("not a DS FP intrinsic");
3643   }
3644 }
3645 
3646 bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper,
3647                                                       MachineInstr &MI,
3648                                                       Intrinsic::ID IID) const {
3649   GISelChangeObserver &Observer = Helper.Observer;
3650   Observer.changingInstr(MI);
3651 
3652   MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID)));
3653 
3654   // The remaining operands were used to set fields in the MemOperand on
3655   // construction.
3656   for (int I = 6; I > 3; --I)
3657     MI.RemoveOperand(I);
3658 
3659   MI.RemoveOperand(1); // Remove the intrinsic ID.
3660   Observer.changedInstr(MI);
3661   return true;
3662 }
3663 
3664 bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg,
3665                                             MachineRegisterInfo &MRI,
3666                                             MachineIRBuilder &B) const {
3667   uint64_t Offset =
3668     ST.getTargetLowering()->getImplicitParameterOffset(
3669       B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
3670   LLT DstTy = MRI.getType(DstReg);
3671   LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
3672 
3673   Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
3674   if (!loadInputValue(KernargPtrReg, B,
3675                       AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
3676     return false;
3677 
3678   // FIXME: This should be nuw
3679   B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
3680   return true;
3681 }
3682 
3683 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
3684                                                  MachineRegisterInfo &MRI,
3685                                                  MachineIRBuilder &B) const {
3686   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3687   if (!MFI->isEntryFunction()) {
3688     return legalizePreloadedArgIntrin(MI, MRI, B,
3689                                       AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
3690   }
3691 
3692   Register DstReg = MI.getOperand(0).getReg();
3693   if (!getImplicitArgPtr(DstReg, MRI, B))
3694     return false;
3695 
3696   MI.eraseFromParent();
3697   return true;
3698 }
3699 
3700 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
3701                                               MachineRegisterInfo &MRI,
3702                                               MachineIRBuilder &B,
3703                                               unsigned AddrSpace) const {
3704   Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
3705   auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg());
3706   Register Hi32 = Unmerge.getReg(1);
3707 
3708   B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
3709   MI.eraseFromParent();
3710   return true;
3711 }
3712 
3713 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
3714 // offset (the offset that is included in bounds checking and swizzling, to be
3715 // split between the instruction's voffset and immoffset fields) and soffset
3716 // (the offset that is excluded from bounds checking and swizzling, to go in
3717 // the instruction's soffset field).  This function takes the first kind of
3718 // offset and figures out how to split it between voffset and immoffset.
3719 std::pair<Register, unsigned>
3720 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
3721                                         Register OrigOffset) const {
3722   const unsigned MaxImm = 4095;
3723   Register BaseReg;
3724   unsigned ImmOffset;
3725   const LLT S32 = LLT::scalar(32);
3726   MachineRegisterInfo &MRI = *B.getMRI();
3727 
3728   std::tie(BaseReg, ImmOffset) =
3729       AMDGPU::getBaseWithConstantOffset(MRI, OrigOffset);
3730 
3731   // If BaseReg is a pointer, convert it to int.
3732   if (MRI.getType(BaseReg).isPointer())
3733     BaseReg = B.buildPtrToInt(MRI.getType(OrigOffset), BaseReg).getReg(0);
3734 
3735   // If the immediate value is too big for the immoffset field, put the value
3736   // and -4096 into the immoffset field so that the value that is copied/added
3737   // for the voffset field is a multiple of 4096, and it stands more chance
3738   // of being CSEd with the copy/add for another similar load/store.
3739   // However, do not do that rounding down to a multiple of 4096 if that is a
3740   // negative number, as it appears to be illegal to have a negative offset
3741   // in the vgpr, even if adding the immediate offset makes it positive.
3742   unsigned Overflow = ImmOffset & ~MaxImm;
3743   ImmOffset -= Overflow;
3744   if ((int32_t)Overflow < 0) {
3745     Overflow += ImmOffset;
3746     ImmOffset = 0;
3747   }
3748 
3749   if (Overflow != 0) {
3750     if (!BaseReg) {
3751       BaseReg = B.buildConstant(S32, Overflow).getReg(0);
3752     } else {
3753       auto OverflowVal = B.buildConstant(S32, Overflow);
3754       BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
3755     }
3756   }
3757 
3758   if (!BaseReg)
3759     BaseReg = B.buildConstant(S32, 0).getReg(0);
3760 
3761   return std::make_pair(BaseReg, ImmOffset);
3762 }
3763 
3764 /// Update \p MMO based on the offset inputs to a raw/struct buffer intrinsic.
3765 void AMDGPULegalizerInfo::updateBufferMMO(MachineMemOperand *MMO,
3766                                           Register VOffset, Register SOffset,
3767                                           unsigned ImmOffset, Register VIndex,
3768                                           MachineRegisterInfo &MRI) const {
3769   Optional<ValueAndVReg> MaybeVOffsetVal =
3770       getIConstantVRegValWithLookThrough(VOffset, MRI);
3771   Optional<ValueAndVReg> MaybeSOffsetVal =
3772       getIConstantVRegValWithLookThrough(SOffset, MRI);
3773   Optional<ValueAndVReg> MaybeVIndexVal =
3774       getIConstantVRegValWithLookThrough(VIndex, MRI);
3775   // If the combined VOffset + SOffset + ImmOffset + strided VIndex is constant,
3776   // update the MMO with that offset. The stride is unknown so we can only do
3777   // this if VIndex is constant 0.
3778   if (MaybeVOffsetVal && MaybeSOffsetVal && MaybeVIndexVal &&
3779       MaybeVIndexVal->Value == 0) {
3780     uint64_t TotalOffset = MaybeVOffsetVal->Value.getZExtValue() +
3781                            MaybeSOffsetVal->Value.getZExtValue() + ImmOffset;
3782     MMO->setOffset(TotalOffset);
3783   } else {
3784     // We don't have a constant combined offset to use in the MMO. Give up.
3785     MMO->setValue((Value *)nullptr);
3786   }
3787 }
3788 
3789 /// Handle register layout difference for f16 images for some subtargets.
3790 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
3791                                              MachineRegisterInfo &MRI,
3792                                              Register Reg,
3793                                              bool ImageStore) const {
3794   const LLT S16 = LLT::scalar(16);
3795   const LLT S32 = LLT::scalar(32);
3796   LLT StoreVT = MRI.getType(Reg);
3797   assert(StoreVT.isVector() && StoreVT.getElementType() == S16);
3798 
3799   if (ST.hasUnpackedD16VMem()) {
3800     auto Unmerge = B.buildUnmerge(S16, Reg);
3801 
3802     SmallVector<Register, 4> WideRegs;
3803     for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3804       WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));
3805 
3806     int NumElts = StoreVT.getNumElements();
3807 
3808     return B.buildBuildVector(LLT::fixed_vector(NumElts, S32), WideRegs)
3809         .getReg(0);
3810   }
3811 
3812   if (ImageStore && ST.hasImageStoreD16Bug()) {
3813     if (StoreVT.getNumElements() == 2) {
3814       SmallVector<Register, 4> PackedRegs;
3815       Reg = B.buildBitcast(S32, Reg).getReg(0);
3816       PackedRegs.push_back(Reg);
3817       PackedRegs.resize(2, B.buildUndef(S32).getReg(0));
3818       return B.buildBuildVector(LLT::fixed_vector(2, S32), PackedRegs)
3819           .getReg(0);
3820     }
3821 
3822     if (StoreVT.getNumElements() == 3) {
3823       SmallVector<Register, 4> PackedRegs;
3824       auto Unmerge = B.buildUnmerge(S16, Reg);
3825       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3826         PackedRegs.push_back(Unmerge.getReg(I));
3827       PackedRegs.resize(6, B.buildUndef(S16).getReg(0));
3828       Reg = B.buildBuildVector(LLT::fixed_vector(6, S16), PackedRegs).getReg(0);
3829       return B.buildBitcast(LLT::fixed_vector(3, S32), Reg).getReg(0);
3830     }
3831 
3832     if (StoreVT.getNumElements() == 4) {
3833       SmallVector<Register, 4> PackedRegs;
3834       Reg = B.buildBitcast(LLT::fixed_vector(2, S32), Reg).getReg(0);
3835       auto Unmerge = B.buildUnmerge(S32, Reg);
3836       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3837         PackedRegs.push_back(Unmerge.getReg(I));
3838       PackedRegs.resize(4, B.buildUndef(S32).getReg(0));
3839       return B.buildBuildVector(LLT::fixed_vector(4, S32), PackedRegs)
3840           .getReg(0);
3841     }
3842 
3843     llvm_unreachable("invalid data type");
3844   }
3845 
3846   return Reg;
3847 }
3848 
3849 Register AMDGPULegalizerInfo::fixStoreSourceType(
3850   MachineIRBuilder &B, Register VData, bool IsFormat) const {
3851   MachineRegisterInfo *MRI = B.getMRI();
3852   LLT Ty = MRI->getType(VData);
3853 
3854   const LLT S16 = LLT::scalar(16);
3855 
3856   // Fixup illegal register types for i8 stores.
3857   if (Ty == LLT::scalar(8) || Ty == S16) {
3858     Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
3859     return AnyExt;
3860   }
3861 
3862   if (Ty.isVector()) {
3863     if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
3864       if (IsFormat)
3865         return handleD16VData(B, *MRI, VData);
3866     }
3867   }
3868 
3869   return VData;
3870 }
3871 
3872 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
3873                                               MachineRegisterInfo &MRI,
3874                                               MachineIRBuilder &B,
3875                                               bool IsTyped,
3876                                               bool IsFormat) const {
3877   Register VData = MI.getOperand(1).getReg();
3878   LLT Ty = MRI.getType(VData);
3879   LLT EltTy = Ty.getScalarType();
3880   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
3881   const LLT S32 = LLT::scalar(32);
3882 
3883   VData = fixStoreSourceType(B, VData, IsFormat);
3884   Register RSrc = MI.getOperand(2).getReg();
3885 
3886   MachineMemOperand *MMO = *MI.memoperands_begin();
3887   const int MemSize = MMO->getSize();
3888 
3889   unsigned ImmOffset;
3890 
3891   // The typed intrinsics add an immediate after the registers.
3892   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
3893 
3894   // The struct intrinsic variants add one additional operand over raw.
3895   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
3896   Register VIndex;
3897   int OpOffset = 0;
3898   if (HasVIndex) {
3899     VIndex = MI.getOperand(3).getReg();
3900     OpOffset = 1;
3901   } else {
3902     VIndex = B.buildConstant(S32, 0).getReg(0);
3903   }
3904 
3905   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
3906   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
3907 
3908   unsigned Format = 0;
3909   if (IsTyped) {
3910     Format = MI.getOperand(5 + OpOffset).getImm();
3911     ++OpOffset;
3912   }
3913 
3914   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
3915 
3916   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
3917   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
3918 
3919   unsigned Opc;
3920   if (IsTyped) {
3921     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
3922                   AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
3923   } else if (IsFormat) {
3924     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
3925                   AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
3926   } else {
3927     switch (MemSize) {
3928     case 1:
3929       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
3930       break;
3931     case 2:
3932       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
3933       break;
3934     default:
3935       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
3936       break;
3937     }
3938   }
3939 
3940   auto MIB = B.buildInstr(Opc)
3941     .addUse(VData)              // vdata
3942     .addUse(RSrc)               // rsrc
3943     .addUse(VIndex)             // vindex
3944     .addUse(VOffset)            // voffset
3945     .addUse(SOffset)            // soffset
3946     .addImm(ImmOffset);         // offset(imm)
3947 
3948   if (IsTyped)
3949     MIB.addImm(Format);
3950 
3951   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
3952      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
3953      .addMemOperand(MMO);
3954 
3955   MI.eraseFromParent();
3956   return true;
3957 }
3958 
3959 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
3960                                              MachineRegisterInfo &MRI,
3961                                              MachineIRBuilder &B,
3962                                              bool IsFormat,
3963                                              bool IsTyped) const {
3964   // FIXME: Verifier should enforce 1 MMO for these intrinsics.
3965   MachineMemOperand *MMO = *MI.memoperands_begin();
3966   const LLT MemTy = MMO->getMemoryType();
3967   const LLT S32 = LLT::scalar(32);
3968 
3969   Register Dst = MI.getOperand(0).getReg();
3970   Register RSrc = MI.getOperand(2).getReg();
3971 
3972   // The typed intrinsics add an immediate after the registers.
3973   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
3974 
3975   // The struct intrinsic variants add one additional operand over raw.
3976   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
3977   Register VIndex;
3978   int OpOffset = 0;
3979   if (HasVIndex) {
3980     VIndex = MI.getOperand(3).getReg();
3981     OpOffset = 1;
3982   } else {
3983     VIndex = B.buildConstant(S32, 0).getReg(0);
3984   }
3985 
3986   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
3987   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
3988 
3989   unsigned Format = 0;
3990   if (IsTyped) {
3991     Format = MI.getOperand(5 + OpOffset).getImm();
3992     ++OpOffset;
3993   }
3994 
3995   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
3996   unsigned ImmOffset;
3997 
3998   LLT Ty = MRI.getType(Dst);
3999   LLT EltTy = Ty.getScalarType();
4000   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
4001   const bool Unpacked = ST.hasUnpackedD16VMem();
4002 
4003   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4004   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
4005 
4006   unsigned Opc;
4007 
4008   if (IsTyped) {
4009     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
4010                   AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
4011   } else if (IsFormat) {
4012     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
4013                   AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
4014   } else {
4015     switch (MemTy.getSizeInBits()) {
4016     case 8:
4017       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
4018       break;
4019     case 16:
4020       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
4021       break;
4022     default:
4023       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
4024       break;
4025     }
4026   }
4027 
4028   Register LoadDstReg;
4029 
4030   bool IsExtLoad =
4031       (!IsD16 && MemTy.getSizeInBits() < 32) || (IsD16 && !Ty.isVector());
4032   LLT UnpackedTy = Ty.changeElementSize(32);
4033 
4034   if (IsExtLoad)
4035     LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
4036   else if (Unpacked && IsD16 && Ty.isVector())
4037     LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
4038   else
4039     LoadDstReg = Dst;
4040 
4041   auto MIB = B.buildInstr(Opc)
4042     .addDef(LoadDstReg)         // vdata
4043     .addUse(RSrc)               // rsrc
4044     .addUse(VIndex)             // vindex
4045     .addUse(VOffset)            // voffset
4046     .addUse(SOffset)            // soffset
4047     .addImm(ImmOffset);         // offset(imm)
4048 
4049   if (IsTyped)
4050     MIB.addImm(Format);
4051 
4052   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4053      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4054      .addMemOperand(MMO);
4055 
4056   if (LoadDstReg != Dst) {
4057     B.setInsertPt(B.getMBB(), ++B.getInsertPt());
4058 
4059     // Widen result for extending loads was widened.
4060     if (IsExtLoad)
4061       B.buildTrunc(Dst, LoadDstReg);
4062     else {
4063       // Repack to original 16-bit vector result
4064       // FIXME: G_TRUNC should work, but legalization currently fails
4065       auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
4066       SmallVector<Register, 4> Repack;
4067       for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
4068         Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
4069       B.buildMerge(Dst, Repack);
4070     }
4071   }
4072 
4073   MI.eraseFromParent();
4074   return true;
4075 }
4076 
4077 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
4078                                                MachineIRBuilder &B,
4079                                                bool IsInc) const {
4080   unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
4081                          AMDGPU::G_AMDGPU_ATOMIC_DEC;
4082   B.buildInstr(Opc)
4083     .addDef(MI.getOperand(0).getReg())
4084     .addUse(MI.getOperand(2).getReg())
4085     .addUse(MI.getOperand(3).getReg())
4086     .cloneMemRefs(MI);
4087   MI.eraseFromParent();
4088   return true;
4089 }
4090 
4091 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
4092   switch (IntrID) {
4093   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
4094   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
4095     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
4096   case Intrinsic::amdgcn_raw_buffer_atomic_add:
4097   case Intrinsic::amdgcn_struct_buffer_atomic_add:
4098     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
4099   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
4100   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
4101     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
4102   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
4103   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
4104     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
4105   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
4106   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
4107     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
4108   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
4109   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
4110     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
4111   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
4112   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
4113     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
4114   case Intrinsic::amdgcn_raw_buffer_atomic_and:
4115   case Intrinsic::amdgcn_struct_buffer_atomic_and:
4116     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
4117   case Intrinsic::amdgcn_raw_buffer_atomic_or:
4118   case Intrinsic::amdgcn_struct_buffer_atomic_or:
4119     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
4120   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
4121   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
4122     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
4123   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
4124   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
4125     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
4126   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
4127   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
4128     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
4129   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
4130   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
4131     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
4132   case Intrinsic::amdgcn_buffer_atomic_fadd:
4133   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
4134   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
4135     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
4136   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
4137   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
4138     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
4139   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
4140   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
4141     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
4142   default:
4143     llvm_unreachable("unhandled atomic opcode");
4144   }
4145 }
4146 
4147 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
4148                                                MachineIRBuilder &B,
4149                                                Intrinsic::ID IID) const {
4150   const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
4151                          IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
4152   const bool HasReturn = MI.getNumExplicitDefs() != 0;
4153 
4154   Register Dst;
4155 
4156   int OpOffset = 0;
4157   if (HasReturn) {
4158     // A few FP atomics do not support return values.
4159     Dst = MI.getOperand(0).getReg();
4160   } else {
4161     OpOffset = -1;
4162   }
4163 
4164   Register VData = MI.getOperand(2 + OpOffset).getReg();
4165   Register CmpVal;
4166 
4167   if (IsCmpSwap) {
4168     CmpVal = MI.getOperand(3 + OpOffset).getReg();
4169     ++OpOffset;
4170   }
4171 
4172   Register RSrc = MI.getOperand(3 + OpOffset).getReg();
4173   const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn;
4174 
4175   // The struct intrinsic variants add one additional operand over raw.
4176   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4177   Register VIndex;
4178   if (HasVIndex) {
4179     VIndex = MI.getOperand(4 + OpOffset).getReg();
4180     ++OpOffset;
4181   } else {
4182     VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);
4183   }
4184 
4185   Register VOffset = MI.getOperand(4 + OpOffset).getReg();
4186   Register SOffset = MI.getOperand(5 + OpOffset).getReg();
4187   unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();
4188 
4189   MachineMemOperand *MMO = *MI.memoperands_begin();
4190 
4191   unsigned ImmOffset;
4192   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4193   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, *B.getMRI());
4194 
4195   auto MIB = B.buildInstr(getBufferAtomicPseudo(IID));
4196 
4197   if (HasReturn)
4198     MIB.addDef(Dst);
4199 
4200   MIB.addUse(VData); // vdata
4201 
4202   if (IsCmpSwap)
4203     MIB.addReg(CmpVal);
4204 
4205   MIB.addUse(RSrc)               // rsrc
4206      .addUse(VIndex)             // vindex
4207      .addUse(VOffset)            // voffset
4208      .addUse(SOffset)            // soffset
4209      .addImm(ImmOffset)          // offset(imm)
4210      .addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4211      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4212      .addMemOperand(MMO);
4213 
4214   MI.eraseFromParent();
4215   return true;
4216 }
4217 
4218 /// Turn a set of s16 typed registers in \p AddrRegs into a dword sized
4219 /// vector with s16 typed elements.
4220 static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI,
4221                                       SmallVectorImpl<Register> &PackedAddrs,
4222                                       unsigned ArgOffset,
4223                                       const AMDGPU::ImageDimIntrinsicInfo *Intr,
4224                                       bool IsA16, bool IsG16) {
4225   const LLT S16 = LLT::scalar(16);
4226   const LLT V2S16 = LLT::fixed_vector(2, 16);
4227   auto EndIdx = Intr->VAddrEnd;
4228 
4229   for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) {
4230     MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4231     if (!SrcOp.isReg())
4232       continue; // _L to _LZ may have eliminated this.
4233 
4234     Register AddrReg = SrcOp.getReg();
4235 
4236     if ((I < Intr->GradientStart) ||
4237         (I >= Intr->GradientStart && I < Intr->CoordStart && !IsG16) ||
4238         (I >= Intr->CoordStart && !IsA16)) {
4239       // Handle any gradient or coordinate operands that should not be packed
4240       AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
4241       PackedAddrs.push_back(AddrReg);
4242     } else {
4243       // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
4244       // derivatives dx/dh and dx/dv are packed with undef.
4245       if (((I + 1) >= EndIdx) ||
4246           ((Intr->NumGradients / 2) % 2 == 1 &&
4247            (I == static_cast<unsigned>(Intr->GradientStart +
4248                                        (Intr->NumGradients / 2) - 1) ||
4249             I == static_cast<unsigned>(Intr->GradientStart +
4250                                        Intr->NumGradients - 1))) ||
4251           // Check for _L to _LZ optimization
4252           !MI.getOperand(ArgOffset + I + 1).isReg()) {
4253         PackedAddrs.push_back(
4254             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
4255                 .getReg(0));
4256       } else {
4257         PackedAddrs.push_back(
4258             B.buildBuildVector(
4259                  V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
4260                 .getReg(0));
4261         ++I;
4262       }
4263     }
4264   }
4265 }
4266 
4267 /// Convert from separate vaddr components to a single vector address register,
4268 /// and replace the remaining operands with $noreg.
4269 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
4270                                      int DimIdx, int NumVAddrs) {
4271   const LLT S32 = LLT::scalar(32);
4272 
4273   SmallVector<Register, 8> AddrRegs;
4274   for (int I = 0; I != NumVAddrs; ++I) {
4275     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4276     if (SrcOp.isReg()) {
4277       AddrRegs.push_back(SrcOp.getReg());
4278       assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
4279     }
4280   }
4281 
4282   int NumAddrRegs = AddrRegs.size();
4283   if (NumAddrRegs != 1) {
4284     // Above 8 elements round up to next power of 2 (i.e. 16).
4285     if (NumAddrRegs > 8 && !isPowerOf2_32(NumAddrRegs)) {
4286       const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
4287       auto Undef = B.buildUndef(S32);
4288       AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
4289       NumAddrRegs = RoundedNumRegs;
4290     }
4291 
4292     auto VAddr =
4293         B.buildBuildVector(LLT::fixed_vector(NumAddrRegs, 32), AddrRegs);
4294     MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
4295   }
4296 
4297   for (int I = 1; I != NumVAddrs; ++I) {
4298     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4299     if (SrcOp.isReg())
4300       MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
4301   }
4302 }
4303 
4304 /// Rewrite image intrinsics to use register layouts expected by the subtarget.
4305 ///
4306 /// Depending on the subtarget, load/store with 16-bit element data need to be
4307 /// rewritten to use the low half of 32-bit registers, or directly use a packed
4308 /// layout. 16-bit addresses should also sometimes be packed into 32-bit
4309 /// registers.
4310 ///
4311 /// We don't want to directly select image instructions just yet, but also want
4312 /// to exposes all register repacking to the legalizer/combiners. We also don't
4313 /// want a selected instrution entering RegBankSelect. In order to avoid
4314 /// defining a multitude of intermediate image instructions, directly hack on
4315 /// the intrinsic's arguments. In cases like a16 addresses, this requires
4316 /// padding now unnecessary arguments with $noreg.
4317 bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
4318     MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer,
4319     const AMDGPU::ImageDimIntrinsicInfo *Intr) const {
4320 
4321   const unsigned NumDefs = MI.getNumExplicitDefs();
4322   const unsigned ArgOffset = NumDefs + 1;
4323   bool IsTFE = NumDefs == 2;
4324   // We are only processing the operands of d16 image operations on subtargets
4325   // that use the unpacked register layout, or need to repack the TFE result.
4326 
4327   // TODO: Do we need to guard against already legalized intrinsics?
4328   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
4329       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
4330 
4331   MachineRegisterInfo *MRI = B.getMRI();
4332   const LLT S32 = LLT::scalar(32);
4333   const LLT S16 = LLT::scalar(16);
4334   const LLT V2S16 = LLT::fixed_vector(2, 16);
4335 
4336   unsigned DMask = 0;
4337 
4338   // Check for 16 bit addresses and pack if true.
4339   LLT GradTy =
4340       MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg());
4341   LLT AddrTy =
4342       MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg());
4343   const bool IsG16 = GradTy == S16;
4344   const bool IsA16 = AddrTy == S16;
4345 
4346   int DMaskLanes = 0;
4347   if (!BaseOpcode->Atomic) {
4348     DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm();
4349     if (BaseOpcode->Gather4) {
4350       DMaskLanes = 4;
4351     } else if (DMask != 0) {
4352       DMaskLanes = countPopulation(DMask);
4353     } else if (!IsTFE && !BaseOpcode->Store) {
4354       // If dmask is 0, this is a no-op load. This can be eliminated.
4355       B.buildUndef(MI.getOperand(0));
4356       MI.eraseFromParent();
4357       return true;
4358     }
4359   }
4360 
4361   Observer.changingInstr(MI);
4362   auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });
4363 
4364   unsigned NewOpcode = NumDefs == 0 ?
4365     AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
4366 
4367   // Track that we legalized this
4368   MI.setDesc(B.getTII().get(NewOpcode));
4369 
4370   // Expecting to get an error flag since TFC is on - and dmask is 0 Force
4371   // dmask to be at least 1 otherwise the instruction will fail
4372   if (IsTFE && DMask == 0) {
4373     DMask = 0x1;
4374     DMaskLanes = 1;
4375     MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask);
4376   }
4377 
4378   if (BaseOpcode->Atomic) {
4379     Register VData0 = MI.getOperand(2).getReg();
4380     LLT Ty = MRI->getType(VData0);
4381 
4382     // TODO: Allow atomic swap and bit ops for v2s16/v4s16
4383     if (Ty.isVector())
4384       return false;
4385 
4386     if (BaseOpcode->AtomicX2) {
4387       Register VData1 = MI.getOperand(3).getReg();
4388       // The two values are packed in one register.
4389       LLT PackedTy = LLT::fixed_vector(2, Ty);
4390       auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
4391       MI.getOperand(2).setReg(Concat.getReg(0));
4392       MI.getOperand(3).setReg(AMDGPU::NoRegister);
4393     }
4394   }
4395 
4396   unsigned CorrectedNumVAddrs = Intr->NumVAddrs;
4397 
4398   // Optimize _L to _LZ when _L is zero
4399   if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
4400           AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode)) {
4401     const ConstantFP *ConstantLod;
4402 
4403     if (mi_match(MI.getOperand(ArgOffset + Intr->LodIndex).getReg(), *MRI,
4404                  m_GFCst(ConstantLod))) {
4405       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
4406         // Set new opcode to _lz variant of _l, and change the intrinsic ID.
4407         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
4408             AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ,
4409                                                      Intr->Dim);
4410 
4411         // The starting indexes should remain in the same place.
4412         --CorrectedNumVAddrs;
4413 
4414         MI.getOperand(MI.getNumExplicitDefs())
4415             .setIntrinsicID(static_cast<Intrinsic::ID>(NewImageDimIntr->Intr));
4416         MI.RemoveOperand(ArgOffset + Intr->LodIndex);
4417         Intr = NewImageDimIntr;
4418       }
4419     }
4420   }
4421 
4422   // Optimize _mip away, when 'lod' is zero
4423   if (AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode)) {
4424     int64_t ConstantLod;
4425     if (mi_match(MI.getOperand(ArgOffset + Intr->MipIndex).getReg(), *MRI,
4426                  m_ICst(ConstantLod))) {
4427       if (ConstantLod == 0) {
4428         // TODO: Change intrinsic opcode and remove operand instead or replacing
4429         // it with 0, as the _L to _LZ handling is done above.
4430         MI.getOperand(ArgOffset + Intr->MipIndex).ChangeToImmediate(0);
4431         --CorrectedNumVAddrs;
4432       }
4433     }
4434   }
4435 
4436   // Rewrite the addressing register layout before doing anything else.
4437   if (BaseOpcode->Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
4438     // 16 bit gradients are supported, but are tied to the A16 control
4439     // so both gradients and addresses must be 16 bit
4440     return false;
4441   }
4442 
4443   if (IsA16 && !ST.hasA16()) {
4444     // A16 not supported
4445     return false;
4446   }
4447 
4448   if (IsA16 || IsG16) {
4449     if (Intr->NumVAddrs > 1) {
4450       SmallVector<Register, 4> PackedRegs;
4451 
4452       packImage16bitOpsToDwords(B, MI, PackedRegs, ArgOffset, Intr, IsA16,
4453                                 IsG16);
4454 
4455       // See also below in the non-a16 branch
4456       const bool UseNSA = ST.hasNSAEncoding() && PackedRegs.size() >= 3 &&
4457                           PackedRegs.size() <= ST.getNSAMaxSize();
4458 
4459       if (!UseNSA && PackedRegs.size() > 1) {
4460         LLT PackedAddrTy = LLT::fixed_vector(2 * PackedRegs.size(), 16);
4461         auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
4462         PackedRegs[0] = Concat.getReg(0);
4463         PackedRegs.resize(1);
4464       }
4465 
4466       const unsigned NumPacked = PackedRegs.size();
4467       for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) {
4468         MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4469         if (!SrcOp.isReg()) {
4470           assert(SrcOp.isImm() && SrcOp.getImm() == 0);
4471           continue;
4472         }
4473 
4474         assert(SrcOp.getReg() != AMDGPU::NoRegister);
4475 
4476         if (I - Intr->VAddrStart < NumPacked)
4477           SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]);
4478         else
4479           SrcOp.setReg(AMDGPU::NoRegister);
4480       }
4481     }
4482   } else {
4483     // If the register allocator cannot place the address registers contiguously
4484     // without introducing moves, then using the non-sequential address encoding
4485     // is always preferable, since it saves VALU instructions and is usually a
4486     // wash in terms of code size or even better.
4487     //
4488     // However, we currently have no way of hinting to the register allocator
4489     // that MIMG addresses should be placed contiguously when it is possible to
4490     // do so, so force non-NSA for the common 2-address case as a heuristic.
4491     //
4492     // SIShrinkInstructions will convert NSA encodings to non-NSA after register
4493     // allocation when possible.
4494     const bool UseNSA = ST.hasNSAEncoding() && CorrectedNumVAddrs >= 3 &&
4495                         CorrectedNumVAddrs <= ST.getNSAMaxSize();
4496 
4497     if (!UseNSA && Intr->NumVAddrs > 1)
4498       convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart,
4499                                Intr->NumVAddrs);
4500   }
4501 
4502   int Flags = 0;
4503   if (IsA16)
4504     Flags |= 1;
4505   if (IsG16)
4506     Flags |= 2;
4507   MI.addOperand(MachineOperand::CreateImm(Flags));
4508 
4509   if (BaseOpcode->Store) { // No TFE for stores?
4510     // TODO: Handle dmask trim
4511     Register VData = MI.getOperand(1).getReg();
4512     LLT Ty = MRI->getType(VData);
4513     if (!Ty.isVector() || Ty.getElementType() != S16)
4514       return true;
4515 
4516     Register RepackedReg = handleD16VData(B, *MRI, VData, true);
4517     if (RepackedReg != VData) {
4518       MI.getOperand(1).setReg(RepackedReg);
4519     }
4520 
4521     return true;
4522   }
4523 
4524   Register DstReg = MI.getOperand(0).getReg();
4525   LLT Ty = MRI->getType(DstReg);
4526   const LLT EltTy = Ty.getScalarType();
4527   const bool IsD16 = Ty.getScalarType() == S16;
4528   const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;
4529 
4530   // Confirm that the return type is large enough for the dmask specified
4531   if (NumElts < DMaskLanes)
4532     return false;
4533 
4534   if (NumElts > 4 || DMaskLanes > 4)
4535     return false;
4536 
4537   const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
4538   const LLT AdjustedTy =
4539       Ty.changeElementCount(ElementCount::getFixed(AdjustedNumElts));
4540 
4541   // The raw dword aligned data component of the load. The only legal cases
4542   // where this matters should be when using the packed D16 format, for
4543   // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
4544   LLT RoundedTy;
4545 
4546   // S32 vector to to cover all data, plus TFE result element.
4547   LLT TFETy;
4548 
4549   // Register type to use for each loaded component. Will be S32 or V2S16.
4550   LLT RegTy;
4551 
4552   if (IsD16 && ST.hasUnpackedD16VMem()) {
4553     RoundedTy =
4554         LLT::scalarOrVector(ElementCount::getFixed(AdjustedNumElts), 32);
4555     TFETy = LLT::fixed_vector(AdjustedNumElts + 1, 32);
4556     RegTy = S32;
4557   } else {
4558     unsigned EltSize = EltTy.getSizeInBits();
4559     unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
4560     unsigned RoundedSize = 32 * RoundedElts;
4561     RoundedTy = LLT::scalarOrVector(
4562         ElementCount::getFixed(RoundedSize / EltSize), EltSize);
4563     TFETy = LLT::fixed_vector(RoundedSize / 32 + 1, S32);
4564     RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
4565   }
4566 
4567   // The return type does not need adjustment.
4568   // TODO: Should we change s16 case to s32 or <2 x s16>?
4569   if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
4570     return true;
4571 
4572   Register Dst1Reg;
4573 
4574   // Insert after the instruction.
4575   B.setInsertPt(*MI.getParent(), ++MI.getIterator());
4576 
4577   // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
4578   // s16> instead of s32, we would only need 1 bitcast instead of multiple.
4579   const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
4580   const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;
4581 
4582   Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);
4583 
4584   MI.getOperand(0).setReg(NewResultReg);
4585 
4586   // In the IR, TFE is supposed to be used with a 2 element struct return
4587   // type. The instruction really returns these two values in one contiguous
4588   // register, with one additional dword beyond the loaded data. Rewrite the
4589   // return type to use a single register result.
4590 
4591   if (IsTFE) {
4592     Dst1Reg = MI.getOperand(1).getReg();
4593     if (MRI->getType(Dst1Reg) != S32)
4594       return false;
4595 
4596     // TODO: Make sure the TFE operand bit is set.
4597     MI.RemoveOperand(1);
4598 
4599     // Handle the easy case that requires no repack instructions.
4600     if (Ty == S32) {
4601       B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
4602       return true;
4603     }
4604   }
4605 
4606   // Now figure out how to copy the new result register back into the old
4607   // result.
4608   SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);
4609 
4610   const int NumDataRegs = IsTFE ? ResultNumRegs - 1  : ResultNumRegs;
4611 
4612   if (ResultNumRegs == 1) {
4613     assert(!IsTFE);
4614     ResultRegs[0] = NewResultReg;
4615   } else {
4616     // We have to repack into a new vector of some kind.
4617     for (int I = 0; I != NumDataRegs; ++I)
4618       ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
4619     B.buildUnmerge(ResultRegs, NewResultReg);
4620 
4621     // Drop the final TFE element to get the data part. The TFE result is
4622     // directly written to the right place already.
4623     if (IsTFE)
4624       ResultRegs.resize(NumDataRegs);
4625   }
4626 
4627   // For an s16 scalar result, we form an s32 result with a truncate regardless
4628   // of packed vs. unpacked.
4629   if (IsD16 && !Ty.isVector()) {
4630     B.buildTrunc(DstReg, ResultRegs[0]);
4631     return true;
4632   }
4633 
4634   // Avoid a build/concat_vector of 1 entry.
4635   if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
4636     B.buildBitcast(DstReg, ResultRegs[0]);
4637     return true;
4638   }
4639 
4640   assert(Ty.isVector());
4641 
4642   if (IsD16) {
4643     // For packed D16 results with TFE enabled, all the data components are
4644     // S32. Cast back to the expected type.
4645     //
4646     // TODO: We don't really need to use load s32 elements. We would only need one
4647     // cast for the TFE result if a multiple of v2s16 was used.
4648     if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
4649       for (Register &Reg : ResultRegs)
4650         Reg = B.buildBitcast(V2S16, Reg).getReg(0);
4651     } else if (ST.hasUnpackedD16VMem()) {
4652       for (Register &Reg : ResultRegs)
4653         Reg = B.buildTrunc(S16, Reg).getReg(0);
4654     }
4655   }
4656 
4657   auto padWithUndef = [&](LLT Ty, int NumElts) {
4658     if (NumElts == 0)
4659       return;
4660     Register Undef = B.buildUndef(Ty).getReg(0);
4661     for (int I = 0; I != NumElts; ++I)
4662       ResultRegs.push_back(Undef);
4663   };
4664 
4665   // Pad out any elements eliminated due to the dmask.
4666   LLT ResTy = MRI->getType(ResultRegs[0]);
4667   if (!ResTy.isVector()) {
4668     padWithUndef(ResTy, NumElts - ResultRegs.size());
4669     B.buildBuildVector(DstReg, ResultRegs);
4670     return true;
4671   }
4672 
4673   assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
4674   const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
4675 
4676   // Deal with the one annoying legal case.
4677   const LLT V3S16 = LLT::fixed_vector(3, 16);
4678   if (Ty == V3S16) {
4679     padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1);
4680     auto Concat = B.buildConcatVectors(LLT::fixed_vector(6, 16), ResultRegs);
4681     B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat);
4682     return true;
4683   }
4684 
4685   padWithUndef(ResTy, RegsToCover - ResultRegs.size());
4686   B.buildConcatVectors(DstReg, ResultRegs);
4687   return true;
4688 }
4689 
4690 bool AMDGPULegalizerInfo::legalizeSBufferLoad(
4691   LegalizerHelper &Helper, MachineInstr &MI) const {
4692   MachineIRBuilder &B = Helper.MIRBuilder;
4693   GISelChangeObserver &Observer = Helper.Observer;
4694 
4695   Register Dst = MI.getOperand(0).getReg();
4696   LLT Ty = B.getMRI()->getType(Dst);
4697   unsigned Size = Ty.getSizeInBits();
4698   MachineFunction &MF = B.getMF();
4699 
4700   Observer.changingInstr(MI);
4701 
4702   if (shouldBitcastLoadStoreType(ST, Ty, LLT::scalar(Size))) {
4703     Ty = getBitcastRegisterType(Ty);
4704     Helper.bitcastDst(MI, Ty, 0);
4705     Dst = MI.getOperand(0).getReg();
4706     B.setInsertPt(B.getMBB(), MI);
4707   }
4708 
4709   // FIXME: We don't really need this intermediate instruction. The intrinsic
4710   // should be fixed to have a memory operand. Since it's readnone, we're not
4711   // allowed to add one.
4712   MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
4713   MI.RemoveOperand(1); // Remove intrinsic ID
4714 
4715   // FIXME: When intrinsic definition is fixed, this should have an MMO already.
4716   // TODO: Should this use datalayout alignment?
4717   const unsigned MemSize = (Size + 7) / 8;
4718   const Align MemAlign(4);
4719   MachineMemOperand *MMO = MF.getMachineMemOperand(
4720       MachinePointerInfo(),
4721       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4722           MachineMemOperand::MOInvariant,
4723       MemSize, MemAlign);
4724   MI.addMemOperand(MF, MMO);
4725 
4726   // There are no 96-bit result scalar loads, but widening to 128-bit should
4727   // always be legal. We may need to restore this to a 96-bit result if it turns
4728   // out this needs to be converted to a vector load during RegBankSelect.
4729   if (!isPowerOf2_32(Size)) {
4730     if (Ty.isVector())
4731       Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
4732     else
4733       Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
4734   }
4735 
4736   Observer.changedInstr(MI);
4737   return true;
4738 }
4739 
4740 // TODO: Move to selection
4741 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
4742                                                 MachineRegisterInfo &MRI,
4743                                                 MachineIRBuilder &B) const {
4744   if (!ST.isTrapHandlerEnabled() ||
4745       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
4746     return legalizeTrapEndpgm(MI, MRI, B);
4747 
4748   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(&ST)) {
4749     switch (*HsaAbiVer) {
4750     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
4751     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
4752       return legalizeTrapHsaQueuePtr(MI, MRI, B);
4753     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
4754       return ST.supportsGetDoorbellID() ?
4755           legalizeTrapHsa(MI, MRI, B) :
4756           legalizeTrapHsaQueuePtr(MI, MRI, B);
4757     }
4758   }
4759 
4760   llvm_unreachable("Unknown trap handler");
4761 }
4762 
4763 bool AMDGPULegalizerInfo::legalizeTrapEndpgm(
4764     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4765   B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
4766   MI.eraseFromParent();
4767   return true;
4768 }
4769 
4770 bool AMDGPULegalizerInfo::legalizeTrapHsaQueuePtr(
4771     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4772   // Pass queue pointer to trap handler as input, and insert trap instruction
4773   // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
4774   Register LiveIn =
4775     MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4776   if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
4777     return false;
4778 
4779   Register SGPR01(AMDGPU::SGPR0_SGPR1);
4780   B.buildCopy(SGPR01, LiveIn);
4781   B.buildInstr(AMDGPU::S_TRAP)
4782       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
4783       .addReg(SGPR01, RegState::Implicit);
4784 
4785   MI.eraseFromParent();
4786   return true;
4787 }
4788 
4789 bool AMDGPULegalizerInfo::legalizeTrapHsa(
4790     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4791   B.buildInstr(AMDGPU::S_TRAP)
4792       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap));
4793   MI.eraseFromParent();
4794   return true;
4795 }
4796 
4797 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
4798     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4799   // Is non-HSA path or trap-handler disabled? Then, report a warning
4800   // accordingly
4801   if (!ST.isTrapHandlerEnabled() ||
4802       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
4803     DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
4804                                      "debugtrap handler not supported",
4805                                      MI.getDebugLoc(), DS_Warning);
4806     LLVMContext &Ctx = B.getMF().getFunction().getContext();
4807     Ctx.diagnose(NoTrap);
4808   } else {
4809     // Insert debug-trap instruction
4810     B.buildInstr(AMDGPU::S_TRAP)
4811         .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap));
4812   }
4813 
4814   MI.eraseFromParent();
4815   return true;
4816 }
4817 
4818 bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI,
4819                                                MachineIRBuilder &B) const {
4820   MachineRegisterInfo &MRI = *B.getMRI();
4821   const LLT S16 = LLT::scalar(16);
4822   const LLT S32 = LLT::scalar(32);
4823 
4824   Register DstReg = MI.getOperand(0).getReg();
4825   Register NodePtr = MI.getOperand(2).getReg();
4826   Register RayExtent = MI.getOperand(3).getReg();
4827   Register RayOrigin = MI.getOperand(4).getReg();
4828   Register RayDir = MI.getOperand(5).getReg();
4829   Register RayInvDir = MI.getOperand(6).getReg();
4830   Register TDescr = MI.getOperand(7).getReg();
4831 
4832   if (!ST.hasGFX10_AEncoding()) {
4833     DiagnosticInfoUnsupported BadIntrin(B.getMF().getFunction(),
4834                                         "intrinsic not supported on subtarget",
4835                                         MI.getDebugLoc());
4836     B.getMF().getFunction().getContext().diagnose(BadIntrin);
4837     return false;
4838   }
4839 
4840   const bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
4841   const bool Is64 = MRI.getType(NodePtr).getSizeInBits() == 64;
4842   const unsigned NumVDataDwords = 4;
4843   const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
4844   const bool UseNSA =
4845       ST.hasNSAEncoding() && NumVAddrDwords <= ST.getNSAMaxSize();
4846   const unsigned BaseOpcodes[2][2] = {
4847       {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
4848       {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
4849        AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
4850   int Opcode;
4851   if (UseNSA) {
4852     Opcode =
4853         AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10NSA,
4854                               NumVDataDwords, NumVAddrDwords);
4855   } else {
4856     Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
4857                                    AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
4858                                    PowerOf2Ceil(NumVAddrDwords));
4859   }
4860   assert(Opcode != -1);
4861 
4862   SmallVector<Register, 12> Ops;
4863   if (Is64) {
4864     auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr);
4865     Ops.push_back(Unmerge.getReg(0));
4866     Ops.push_back(Unmerge.getReg(1));
4867   } else {
4868     Ops.push_back(NodePtr);
4869   }
4870   Ops.push_back(RayExtent);
4871 
4872   auto packLanes = [&Ops, &S32, &B] (Register Src) {
4873     auto Unmerge = B.buildUnmerge({S32, S32, S32, S32}, Src);
4874     Ops.push_back(Unmerge.getReg(0));
4875     Ops.push_back(Unmerge.getReg(1));
4876     Ops.push_back(Unmerge.getReg(2));
4877   };
4878 
4879   packLanes(RayOrigin);
4880   if (IsA16) {
4881     auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16, S16}, RayDir);
4882     auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16, S16}, RayInvDir);
4883     Register R1 = MRI.createGenericVirtualRegister(S32);
4884     Register R2 = MRI.createGenericVirtualRegister(S32);
4885     Register R3 = MRI.createGenericVirtualRegister(S32);
4886     B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
4887     B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
4888     B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
4889     Ops.push_back(R1);
4890     Ops.push_back(R2);
4891     Ops.push_back(R3);
4892   } else {
4893     packLanes(RayDir);
4894     packLanes(RayInvDir);
4895   }
4896 
4897   if (!UseNSA) {
4898     // Build a single vector containing all the operands so far prepared.
4899     LLT OpTy = LLT::fixed_vector(Ops.size(), 32);
4900     Register MergedOps = B.buildMerge(OpTy, Ops).getReg(0);
4901     Ops.clear();
4902     Ops.push_back(MergedOps);
4903   }
4904 
4905   auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY)
4906     .addDef(DstReg)
4907     .addImm(Opcode);
4908 
4909   for (Register R : Ops) {
4910     MIB.addUse(R);
4911   }
4912 
4913   MIB.addUse(TDescr)
4914      .addImm(IsA16 ? 1 : 0)
4915      .cloneMemRefs(MI);
4916 
4917   MI.eraseFromParent();
4918   return true;
4919 }
4920 
4921 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
4922                                             MachineInstr &MI) const {
4923   MachineIRBuilder &B = Helper.MIRBuilder;
4924   MachineRegisterInfo &MRI = *B.getMRI();
4925 
4926   // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
4927   auto IntrID = MI.getIntrinsicID();
4928   switch (IntrID) {
4929   case Intrinsic::amdgcn_if:
4930   case Intrinsic::amdgcn_else: {
4931     MachineInstr *Br = nullptr;
4932     MachineBasicBlock *UncondBrTarget = nullptr;
4933     bool Negated = false;
4934     if (MachineInstr *BrCond =
4935             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
4936       const SIRegisterInfo *TRI
4937         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
4938 
4939       Register Def = MI.getOperand(1).getReg();
4940       Register Use = MI.getOperand(3).getReg();
4941 
4942       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
4943 
4944       if (Negated)
4945         std::swap(CondBrTarget, UncondBrTarget);
4946 
4947       B.setInsertPt(B.getMBB(), BrCond->getIterator());
4948       if (IntrID == Intrinsic::amdgcn_if) {
4949         B.buildInstr(AMDGPU::SI_IF)
4950           .addDef(Def)
4951           .addUse(Use)
4952           .addMBB(UncondBrTarget);
4953       } else {
4954         B.buildInstr(AMDGPU::SI_ELSE)
4955             .addDef(Def)
4956             .addUse(Use)
4957             .addMBB(UncondBrTarget);
4958       }
4959 
4960       if (Br) {
4961         Br->getOperand(0).setMBB(CondBrTarget);
4962       } else {
4963         // The IRTranslator skips inserting the G_BR for fallthrough cases, but
4964         // since we're swapping branch targets it needs to be reinserted.
4965         // FIXME: IRTranslator should probably not do this
4966         B.buildBr(*CondBrTarget);
4967       }
4968 
4969       MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
4970       MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
4971       MI.eraseFromParent();
4972       BrCond->eraseFromParent();
4973       return true;
4974     }
4975 
4976     return false;
4977   }
4978   case Intrinsic::amdgcn_loop: {
4979     MachineInstr *Br = nullptr;
4980     MachineBasicBlock *UncondBrTarget = nullptr;
4981     bool Negated = false;
4982     if (MachineInstr *BrCond =
4983             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
4984       const SIRegisterInfo *TRI
4985         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
4986 
4987       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
4988       Register Reg = MI.getOperand(2).getReg();
4989 
4990       if (Negated)
4991         std::swap(CondBrTarget, UncondBrTarget);
4992 
4993       B.setInsertPt(B.getMBB(), BrCond->getIterator());
4994       B.buildInstr(AMDGPU::SI_LOOP)
4995         .addUse(Reg)
4996         .addMBB(UncondBrTarget);
4997 
4998       if (Br)
4999         Br->getOperand(0).setMBB(CondBrTarget);
5000       else
5001         B.buildBr(*CondBrTarget);
5002 
5003       MI.eraseFromParent();
5004       BrCond->eraseFromParent();
5005       MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
5006       return true;
5007     }
5008 
5009     return false;
5010   }
5011   case Intrinsic::amdgcn_kernarg_segment_ptr:
5012     if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
5013       // This only makes sense to call in a kernel, so just lower to null.
5014       B.buildConstant(MI.getOperand(0).getReg(), 0);
5015       MI.eraseFromParent();
5016       return true;
5017     }
5018 
5019     return legalizePreloadedArgIntrin(
5020       MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5021   case Intrinsic::amdgcn_implicitarg_ptr:
5022     return legalizeImplicitArgPtr(MI, MRI, B);
5023   case Intrinsic::amdgcn_workitem_id_x:
5024     return legalizePreloadedArgIntrin(MI, MRI, B,
5025                                       AMDGPUFunctionArgInfo::WORKITEM_ID_X);
5026   case Intrinsic::amdgcn_workitem_id_y:
5027     return legalizePreloadedArgIntrin(MI, MRI, B,
5028                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
5029   case Intrinsic::amdgcn_workitem_id_z:
5030     return legalizePreloadedArgIntrin(MI, MRI, B,
5031                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
5032   case Intrinsic::amdgcn_workgroup_id_x:
5033     return legalizePreloadedArgIntrin(MI, MRI, B,
5034                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5035   case Intrinsic::amdgcn_workgroup_id_y:
5036     return legalizePreloadedArgIntrin(MI, MRI, B,
5037                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5038   case Intrinsic::amdgcn_workgroup_id_z:
5039     return legalizePreloadedArgIntrin(MI, MRI, B,
5040                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5041   case Intrinsic::amdgcn_dispatch_ptr:
5042     return legalizePreloadedArgIntrin(MI, MRI, B,
5043                                       AMDGPUFunctionArgInfo::DISPATCH_PTR);
5044   case Intrinsic::amdgcn_queue_ptr:
5045     return legalizePreloadedArgIntrin(MI, MRI, B,
5046                                       AMDGPUFunctionArgInfo::QUEUE_PTR);
5047   case Intrinsic::amdgcn_implicit_buffer_ptr:
5048     return legalizePreloadedArgIntrin(
5049       MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5050   case Intrinsic::amdgcn_dispatch_id:
5051     return legalizePreloadedArgIntrin(MI, MRI, B,
5052                                       AMDGPUFunctionArgInfo::DISPATCH_ID);
5053   case Intrinsic::amdgcn_fdiv_fast:
5054     return legalizeFDIVFastIntrin(MI, MRI, B);
5055   case Intrinsic::amdgcn_is_shared:
5056     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
5057   case Intrinsic::amdgcn_is_private:
5058     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
5059   case Intrinsic::amdgcn_wavefrontsize: {
5060     B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
5061     MI.eraseFromParent();
5062     return true;
5063   }
5064   case Intrinsic::amdgcn_s_buffer_load:
5065     return legalizeSBufferLoad(Helper, MI);
5066   case Intrinsic::amdgcn_raw_buffer_store:
5067   case Intrinsic::amdgcn_struct_buffer_store:
5068     return legalizeBufferStore(MI, MRI, B, false, false);
5069   case Intrinsic::amdgcn_raw_buffer_store_format:
5070   case Intrinsic::amdgcn_struct_buffer_store_format:
5071     return legalizeBufferStore(MI, MRI, B, false, true);
5072   case Intrinsic::amdgcn_raw_tbuffer_store:
5073   case Intrinsic::amdgcn_struct_tbuffer_store:
5074     return legalizeBufferStore(MI, MRI, B, true, true);
5075   case Intrinsic::amdgcn_raw_buffer_load:
5076   case Intrinsic::amdgcn_struct_buffer_load:
5077     return legalizeBufferLoad(MI, MRI, B, false, false);
5078   case Intrinsic::amdgcn_raw_buffer_load_format:
5079   case Intrinsic::amdgcn_struct_buffer_load_format:
5080     return legalizeBufferLoad(MI, MRI, B, true, false);
5081   case Intrinsic::amdgcn_raw_tbuffer_load:
5082   case Intrinsic::amdgcn_struct_tbuffer_load:
5083     return legalizeBufferLoad(MI, MRI, B, true, true);
5084   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
5085   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
5086   case Intrinsic::amdgcn_raw_buffer_atomic_add:
5087   case Intrinsic::amdgcn_struct_buffer_atomic_add:
5088   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
5089   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
5090   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
5091   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
5092   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
5093   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
5094   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
5095   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
5096   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
5097   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
5098   case Intrinsic::amdgcn_raw_buffer_atomic_and:
5099   case Intrinsic::amdgcn_struct_buffer_atomic_and:
5100   case Intrinsic::amdgcn_raw_buffer_atomic_or:
5101   case Intrinsic::amdgcn_struct_buffer_atomic_or:
5102   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
5103   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
5104   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
5105   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
5106   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
5107   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
5108   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
5109   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
5110   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
5111   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
5112   case Intrinsic::amdgcn_buffer_atomic_fadd:
5113   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
5114   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
5115   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
5116   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
5117     return legalizeBufferAtomic(MI, B, IntrID);
5118   case Intrinsic::amdgcn_atomic_inc:
5119     return legalizeAtomicIncDec(MI, B, true);
5120   case Intrinsic::amdgcn_atomic_dec:
5121     return legalizeAtomicIncDec(MI, B, false);
5122   case Intrinsic::trap:
5123     return legalizeTrapIntrinsic(MI, MRI, B);
5124   case Intrinsic::debugtrap:
5125     return legalizeDebugTrapIntrinsic(MI, MRI, B);
5126   case Intrinsic::amdgcn_rsq_clamp:
5127     return legalizeRsqClampIntrinsic(MI, MRI, B);
5128   case Intrinsic::amdgcn_ds_fadd:
5129   case Intrinsic::amdgcn_ds_fmin:
5130   case Intrinsic::amdgcn_ds_fmax:
5131     return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID);
5132   case Intrinsic::amdgcn_image_bvh_intersect_ray:
5133     return legalizeBVHIntrinsic(MI, B);
5134   default: {
5135     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5136             AMDGPU::getImageDimIntrinsicInfo(IntrID))
5137       return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
5138     return true;
5139   }
5140   }
5141 
5142   return true;
5143 }
5144