1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // \file 10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the 11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide 12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target 13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest. 14e8d8bef9SDimitry Andric // 15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 16e8d8bef9SDimitry Andric 17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h" 18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h" 19e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 20bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 23bdd1243dSDimitry Andric #include <optional> 24e8d8bef9SDimitry Andric 25e8d8bef9SDimitry Andric using namespace llvm; 2606c3fb27SDimitry Andric using namespace llvm::PatternMatch; 27e8d8bef9SDimitry Andric 28e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti" 29e8d8bef9SDimitry Andric 30e8d8bef9SDimitry Andric namespace { 31e8d8bef9SDimitry Andric 32e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic { 33e8d8bef9SDimitry Andric unsigned Intr; 34e8d8bef9SDimitry Andric }; 35e8d8bef9SDimitry Andric 36e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37e8d8bef9SDimitry Andric #include "InstCombineTables.inc" 38e8d8bef9SDimitry Andric 39e8d8bef9SDimitry Andric } // end anonymous namespace 40e8d8bef9SDimitry Andric 41e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42e8d8bef9SDimitry Andric // 43e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for 44e8d8bef9SDimitry Andric // handling NaNs. 45e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46e8d8bef9SDimitry Andric const APFloat &Src2) { 47e8d8bef9SDimitry Andric APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48e8d8bef9SDimitry Andric 49e8d8bef9SDimitry Andric APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50e8d8bef9SDimitry Andric assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51e8d8bef9SDimitry Andric if (Cmp0 == APFloat::cmpEqual) 52e8d8bef9SDimitry Andric return maxnum(Src1, Src2); 53e8d8bef9SDimitry Andric 54e8d8bef9SDimitry Andric APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55e8d8bef9SDimitry Andric assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56e8d8bef9SDimitry Andric if (Cmp1 == APFloat::cmpEqual) 57e8d8bef9SDimitry Andric return maxnum(Src0, Src2); 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric return maxnum(Src0, Src1); 60e8d8bef9SDimitry Andric } 61e8d8bef9SDimitry Andric 62e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing 63e8d8bef9SDimitry Andric // precision. 6404eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned 6504eeddc0SDimitry Andric // integer (IsFloat = false). 6604eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67e8d8bef9SDimitry Andric Type *VTy = V.getType(); 68e8d8bef9SDimitry Andric if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69e8d8bef9SDimitry Andric // The value is already 16-bit, so we don't want to convert to 16-bit again! 70e8d8bef9SDimitry Andric return false; 71e8d8bef9SDimitry Andric } 7204eeddc0SDimitry Andric if (IsFloat) { 73e8d8bef9SDimitry Andric if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 7404eeddc0SDimitry Andric // We need to check that if we cast the index down to a half, we do not 7504eeddc0SDimitry Andric // lose precision. 76e8d8bef9SDimitry Andric APFloat FloatValue(ConstFloat->getValueAPF()); 77e8d8bef9SDimitry Andric bool LosesInfo = true; 7804eeddc0SDimitry Andric FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 7904eeddc0SDimitry Andric &LosesInfo); 80e8d8bef9SDimitry Andric return !LosesInfo; 81e8d8bef9SDimitry Andric } 8204eeddc0SDimitry Andric } else { 8304eeddc0SDimitry Andric if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 8404eeddc0SDimitry Andric // We need to check that if we cast the index down to an i16, we do not 8504eeddc0SDimitry Andric // lose precision. 8604eeddc0SDimitry Andric APInt IntValue(ConstInt->getValue()); 8704eeddc0SDimitry Andric return IntValue.getActiveBits() <= 16; 8804eeddc0SDimitry Andric } 8904eeddc0SDimitry Andric } 9004eeddc0SDimitry Andric 91e8d8bef9SDimitry Andric Value *CastSrc; 9204eeddc0SDimitry Andric bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 9304eeddc0SDimitry Andric : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 9404eeddc0SDimitry Andric if (IsExt) { 95e8d8bef9SDimitry Andric Type *CastSrcTy = CastSrc->getType(); 96e8d8bef9SDimitry Andric if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97e8d8bef9SDimitry Andric return true; 98e8d8bef9SDimitry Andric } 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric return false; 101e8d8bef9SDimitry Andric } 102e8d8bef9SDimitry Andric 103e8d8bef9SDimitry Andric // Convert a value to 16-bit. 104e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105e8d8bef9SDimitry Andric Type *VTy = V.getType(); 106e8d8bef9SDimitry Andric if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107e8d8bef9SDimitry Andric return cast<Instruction>(&V)->getOperand(0); 108e8d8bef9SDimitry Andric if (VTy->isIntegerTy()) 109e8d8bef9SDimitry Andric return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110e8d8bef9SDimitry Andric if (VTy->isFloatingPointTy()) 111e8d8bef9SDimitry Andric return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112e8d8bef9SDimitry Andric 113e8d8bef9SDimitry Andric llvm_unreachable("Should never be called!"); 114e8d8bef9SDimitry Andric } 115e8d8bef9SDimitry Andric 11681ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 11781ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with 11881ad6265SDimitry Andric /// this newly created intrinsic call. 119bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall( 12081ad6265SDimitry Andric IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 12181ad6265SDimitry Andric InstCombiner &IC, 12204eeddc0SDimitry Andric std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 12304eeddc0SDimitry Andric Func) { 12404eeddc0SDimitry Andric SmallVector<Type *, 4> ArgTys; 12581ad6265SDimitry Andric if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126bdd1243dSDimitry Andric return std::nullopt; 12704eeddc0SDimitry Andric 12881ad6265SDimitry Andric SmallVector<Value *, 8> Args(OldIntr.args()); 12904eeddc0SDimitry Andric 13004eeddc0SDimitry Andric // Modify arguments and types 13104eeddc0SDimitry Andric Func(Args, ArgTys); 13204eeddc0SDimitry Andric 13381ad6265SDimitry Andric Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 13404eeddc0SDimitry Andric 13504eeddc0SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(I, Args); 13681ad6265SDimitry Andric NewCall->takeName(&OldIntr); 13781ad6265SDimitry Andric NewCall->copyMetadata(OldIntr); 13804eeddc0SDimitry Andric if (isa<FPMathOperator>(NewCall)) 13981ad6265SDimitry Andric NewCall->copyFastMathFlags(&OldIntr); 14004eeddc0SDimitry Andric 14104eeddc0SDimitry Andric // Erase and replace uses 14281ad6265SDimitry Andric if (!InstToReplace.getType()->isVoidTy()) 14381ad6265SDimitry Andric IC.replaceInstUsesWith(InstToReplace, NewCall); 14481ad6265SDimitry Andric 14581ad6265SDimitry Andric bool RemoveOldIntr = &OldIntr != &InstToReplace; 14681ad6265SDimitry Andric 14781ad6265SDimitry Andric auto RetValue = IC.eraseInstFromFunction(InstToReplace); 14881ad6265SDimitry Andric if (RemoveOldIntr) 14981ad6265SDimitry Andric IC.eraseInstFromFunction(OldIntr); 15081ad6265SDimitry Andric 15181ad6265SDimitry Andric return RetValue; 15204eeddc0SDimitry Andric } 15304eeddc0SDimitry Andric 154bdd1243dSDimitry Andric static std::optional<Instruction *> 155e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156e8d8bef9SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157e8d8bef9SDimitry Andric IntrinsicInst &II, InstCombiner &IC) { 15804eeddc0SDimitry Andric // Optimize _L to _LZ when _L is zero 15904eeddc0SDimitry Andric if (const auto *LZMappingInfo = 16004eeddc0SDimitry Andric AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 16104eeddc0SDimitry Andric if (auto *ConstantLod = 16204eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 16304eeddc0SDimitry Andric if (ConstantLod->isZero() || ConstantLod->isNegative()) { 16404eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 16504eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 16604eeddc0SDimitry Andric ImageDimIntr->Dim); 16704eeddc0SDimitry Andric return modifyIntrinsicCall( 16881ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 16904eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->LodIndex); 17004eeddc0SDimitry Andric }); 17104eeddc0SDimitry Andric } 17204eeddc0SDimitry Andric } 17304eeddc0SDimitry Andric } 17404eeddc0SDimitry Andric 17504eeddc0SDimitry Andric // Optimize _mip away, when 'lod' is zero 17604eeddc0SDimitry Andric if (const auto *MIPMappingInfo = 17704eeddc0SDimitry Andric AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 17804eeddc0SDimitry Andric if (auto *ConstantMip = 17904eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 18004eeddc0SDimitry Andric if (ConstantMip->isZero()) { 18104eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 18204eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 18304eeddc0SDimitry Andric ImageDimIntr->Dim); 18404eeddc0SDimitry Andric return modifyIntrinsicCall( 18581ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 18604eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->MipIndex); 18704eeddc0SDimitry Andric }); 18804eeddc0SDimitry Andric } 18904eeddc0SDimitry Andric } 19004eeddc0SDimitry Andric } 19104eeddc0SDimitry Andric 19204eeddc0SDimitry Andric // Optimize _bias away when 'bias' is zero 19304eeddc0SDimitry Andric if (const auto *BiasMappingInfo = 19404eeddc0SDimitry Andric AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 19504eeddc0SDimitry Andric if (auto *ConstantBias = 19604eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 19704eeddc0SDimitry Andric if (ConstantBias->isZero()) { 19804eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 19904eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 20004eeddc0SDimitry Andric ImageDimIntr->Dim); 20104eeddc0SDimitry Andric return modifyIntrinsicCall( 20281ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 20304eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 20404eeddc0SDimitry Andric ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 20504eeddc0SDimitry Andric }); 20604eeddc0SDimitry Andric } 20704eeddc0SDimitry Andric } 20804eeddc0SDimitry Andric } 20904eeddc0SDimitry Andric 21004eeddc0SDimitry Andric // Optimize _offset away when 'offset' is zero 21104eeddc0SDimitry Andric if (const auto *OffsetMappingInfo = 21204eeddc0SDimitry Andric AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 21304eeddc0SDimitry Andric if (auto *ConstantOffset = 21404eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 21504eeddc0SDimitry Andric if (ConstantOffset->isZero()) { 21604eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 21704eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode( 21804eeddc0SDimitry Andric OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 21904eeddc0SDimitry Andric return modifyIntrinsicCall( 22081ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 22104eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 22204eeddc0SDimitry Andric }); 22304eeddc0SDimitry Andric } 22404eeddc0SDimitry Andric } 22504eeddc0SDimitry Andric } 22604eeddc0SDimitry Andric 22781ad6265SDimitry Andric // Try to use D16 22881ad6265SDimitry Andric if (ST->hasD16Images()) { 22981ad6265SDimitry Andric 23081ad6265SDimitry Andric const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 23181ad6265SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 23281ad6265SDimitry Andric 23381ad6265SDimitry Andric if (BaseOpcode->HasD16) { 23481ad6265SDimitry Andric 23581ad6265SDimitry Andric // If the only use of image intrinsic is a fptrunc (with conversion to 23681ad6265SDimitry Andric // half) then both fptrunc and image intrinsic will be replaced with image 23781ad6265SDimitry Andric // intrinsic with D16 flag. 23881ad6265SDimitry Andric if (II.hasOneUse()) { 23981ad6265SDimitry Andric Instruction *User = II.user_back(); 24081ad6265SDimitry Andric 24181ad6265SDimitry Andric if (User->getOpcode() == Instruction::FPTrunc && 24281ad6265SDimitry Andric User->getType()->getScalarType()->isHalfTy()) { 24381ad6265SDimitry Andric 24481ad6265SDimitry Andric return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 24581ad6265SDimitry Andric [&](auto &Args, auto &ArgTys) { 24681ad6265SDimitry Andric // Change return type of image intrinsic. 24781ad6265SDimitry Andric // Set it to return type of fptrunc. 24881ad6265SDimitry Andric ArgTys[0] = User->getType(); 24981ad6265SDimitry Andric }); 25081ad6265SDimitry Andric } 25181ad6265SDimitry Andric } 25281ad6265SDimitry Andric } 25381ad6265SDimitry Andric } 25481ad6265SDimitry Andric 25504eeddc0SDimitry Andric // Try to use A16 or G16 256e8d8bef9SDimitry Andric if (!ST->hasA16() && !ST->hasG16()) 257bdd1243dSDimitry Andric return std::nullopt; 258e8d8bef9SDimitry Andric 25904eeddc0SDimitry Andric // Address is interpreted as float if the instruction has a sampler or as 26004eeddc0SDimitry Andric // unsigned int if there is no sampler. 26104eeddc0SDimitry Andric bool HasSampler = 26204eeddc0SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263e8d8bef9SDimitry Andric bool FloatCoord = false; 264e8d8bef9SDimitry Andric // true means derivatives can be converted to 16 bit, coordinates not 265e8d8bef9SDimitry Andric bool OnlyDerivatives = false; 266e8d8bef9SDimitry Andric 267e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268e8d8bef9SDimitry Andric OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269e8d8bef9SDimitry Andric Value *Coord = II.getOperand(OperandIndex); 270e8d8bef9SDimitry Andric // If the values are not derived from 16-bit values, we cannot optimize. 27104eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272e8d8bef9SDimitry Andric if (OperandIndex < ImageDimIntr->CoordStart || 273e8d8bef9SDimitry Andric ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274bdd1243dSDimitry Andric return std::nullopt; 275e8d8bef9SDimitry Andric } 276e8d8bef9SDimitry Andric // All gradients can be converted, so convert only them 277e8d8bef9SDimitry Andric OnlyDerivatives = true; 278e8d8bef9SDimitry Andric break; 279e8d8bef9SDimitry Andric } 280e8d8bef9SDimitry Andric 281e8d8bef9SDimitry Andric assert(OperandIndex == ImageDimIntr->GradientStart || 282e8d8bef9SDimitry Andric FloatCoord == Coord->getType()->isFloatingPointTy()); 283e8d8bef9SDimitry Andric FloatCoord = Coord->getType()->isFloatingPointTy(); 284e8d8bef9SDimitry Andric } 285e8d8bef9SDimitry Andric 28604eeddc0SDimitry Andric if (!OnlyDerivatives && !ST->hasA16()) 287e8d8bef9SDimitry Andric OnlyDerivatives = true; // Only supports G16 28804eeddc0SDimitry Andric 28904eeddc0SDimitry Andric // Check if there is a bias parameter and if it can be converted to f16 29004eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 29104eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 29204eeddc0SDimitry Andric assert(HasSampler && 29304eeddc0SDimitry Andric "Only image instructions with a sampler can have a bias"); 29404eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 29504eeddc0SDimitry Andric OnlyDerivatives = true; 296e8d8bef9SDimitry Andric } 297e8d8bef9SDimitry Andric 29804eeddc0SDimitry Andric if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 29904eeddc0SDimitry Andric ImageDimIntr->CoordStart)) 300bdd1243dSDimitry Andric return std::nullopt; 30104eeddc0SDimitry Andric 302e8d8bef9SDimitry Andric Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303e8d8bef9SDimitry Andric : Type::getInt16Ty(II.getContext()); 304e8d8bef9SDimitry Andric 30504eeddc0SDimitry Andric return modifyIntrinsicCall( 30681ad6265SDimitry Andric II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 30804eeddc0SDimitry Andric if (!OnlyDerivatives) { 309e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310e8d8bef9SDimitry Andric 31104eeddc0SDimitry Andric // Change the bias type 31204eeddc0SDimitry Andric if (ImageDimIntr->NumBiasArgs != 0) 31304eeddc0SDimitry Andric ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 31404eeddc0SDimitry Andric } 315e8d8bef9SDimitry Andric 316e8d8bef9SDimitry Andric unsigned EndIndex = 317e8d8bef9SDimitry Andric OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319e8d8bef9SDimitry Andric OperandIndex < EndIndex; OperandIndex++) { 320e8d8bef9SDimitry Andric Args[OperandIndex] = 321e8d8bef9SDimitry Andric convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322e8d8bef9SDimitry Andric } 323e8d8bef9SDimitry Andric 32404eeddc0SDimitry Andric // Convert the bias 32504eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 32604eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 32704eeddc0SDimitry Andric Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 32804eeddc0SDimitry Andric } 32904eeddc0SDimitry Andric }); 330e8d8bef9SDimitry Andric } 331e8d8bef9SDimitry Andric 33206c3fb27SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 33306c3fb27SDimitry Andric const Value *Op0, const Value *Op1, 334e8d8bef9SDimitry Andric InstCombiner &IC) const { 335e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336e8d8bef9SDimitry Andric // infinity, gives +0.0. If we can prove we don't have one of the special 337e8d8bef9SDimitry Andric // cases then we can use a normal multiply instead. 338e8d8bef9SDimitry Andric // TODO: Create and use isKnownFiniteNonZero instead of just matching 339e8d8bef9SDimitry Andric // constants here. 340e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_FiniteNonZero())) { 342e8d8bef9SDimitry Andric // One operand is not zero or infinity or NaN. 343e8d8bef9SDimitry Andric return true; 344e8d8bef9SDimitry Andric } 34506c3fb27SDimitry Andric 346e8d8bef9SDimitry Andric auto *TLI = &IC.getTargetLibraryInfo(); 34706c3fb27SDimitry Andric if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 34806c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 34906c3fb27SDimitry Andric &IC.getDominatorTree()) && 35006c3fb27SDimitry Andric isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 35106c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 35206c3fb27SDimitry Andric &IC.getDominatorTree())) { 353e8d8bef9SDimitry Andric // Neither operand is infinity or NaN. 354e8d8bef9SDimitry Andric return true; 355e8d8bef9SDimitry Andric } 356e8d8bef9SDimitry Andric return false; 357e8d8bef9SDimitry Andric } 358e8d8bef9SDimitry Andric 35906c3fb27SDimitry Andric /// Match an fpext from half to float, or a constant we can convert. 36006c3fb27SDimitry Andric static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 36106c3fb27SDimitry Andric if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 36206c3fb27SDimitry Andric return FPExtSrc->getType()->isHalfTy(); 36306c3fb27SDimitry Andric 36406c3fb27SDimitry Andric ConstantFP *CFP; 36506c3fb27SDimitry Andric if (match(Arg, m_ConstantFP(CFP))) { 36606c3fb27SDimitry Andric bool LosesInfo; 36706c3fb27SDimitry Andric APFloat Val(CFP->getValueAPF()); 36806c3fb27SDimitry Andric Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 36906c3fb27SDimitry Andric if (LosesInfo) 37006c3fb27SDimitry Andric return false; 37106c3fb27SDimitry Andric 37206c3fb27SDimitry Andric FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 37306c3fb27SDimitry Andric return true; 37406c3fb27SDimitry Andric } 37506c3fb27SDimitry Andric 37606c3fb27SDimitry Andric return false; 37706c3fb27SDimitry Andric } 37806c3fb27SDimitry Andric 37906c3fb27SDimitry Andric // Trim all zero components from the end of the vector \p UseV and return 38006c3fb27SDimitry Andric // an appropriate bitset with known elements. 38106c3fb27SDimitry Andric static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 38206c3fb27SDimitry Andric Instruction *I) { 38306c3fb27SDimitry Andric auto *VTy = cast<FixedVectorType>(UseV->getType()); 38406c3fb27SDimitry Andric unsigned VWidth = VTy->getNumElements(); 38506c3fb27SDimitry Andric APInt DemandedElts = APInt::getAllOnes(VWidth); 38606c3fb27SDimitry Andric 38706c3fb27SDimitry Andric for (int i = VWidth - 1; i > 0; --i) { 38806c3fb27SDimitry Andric auto *Elt = findScalarElement(UseV, i); 38906c3fb27SDimitry Andric if (!Elt) 39006c3fb27SDimitry Andric break; 39106c3fb27SDimitry Andric 39206c3fb27SDimitry Andric if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 39306c3fb27SDimitry Andric if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 39406c3fb27SDimitry Andric break; 39506c3fb27SDimitry Andric } else { 39606c3fb27SDimitry Andric break; 39706c3fb27SDimitry Andric } 39806c3fb27SDimitry Andric 39906c3fb27SDimitry Andric DemandedElts.clearBit(i); 40006c3fb27SDimitry Andric } 40106c3fb27SDimitry Andric 40206c3fb27SDimitry Andric return DemandedElts; 40306c3fb27SDimitry Andric } 40406c3fb27SDimitry Andric 40506c3fb27SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 40606c3fb27SDimitry Andric IntrinsicInst &II, 40706c3fb27SDimitry Andric APInt DemandedElts, 40806c3fb27SDimitry Andric int DMaskIdx = -1, 40906c3fb27SDimitry Andric bool IsLoad = true); 41006c3fb27SDimitry Andric 4115f757f3fSDimitry Andric /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) 4125f757f3fSDimitry Andric static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { 4135f757f3fSDimitry Andric return (SqrtOp->getType()->isFloatTy() && 4145f757f3fSDimitry Andric (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || 4155f757f3fSDimitry Andric SqrtOp->getType()->isHalfTy(); 4165f757f3fSDimitry Andric } 4175f757f3fSDimitry Andric 418bdd1243dSDimitry Andric std::optional<Instruction *> 419e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 420e8d8bef9SDimitry Andric Intrinsic::ID IID = II.getIntrinsicID(); 421e8d8bef9SDimitry Andric switch (IID) { 422e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rcp: { 423e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 424e8d8bef9SDimitry Andric 425e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 426e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 427e8d8bef9SDimitry Andric Type *Ty = II.getType(); 428e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 429e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 430e8d8bef9SDimitry Andric } 431e8d8bef9SDimitry Andric 432e8d8bef9SDimitry Andric if (II.isStrictFP()) 433e8d8bef9SDimitry Andric break; 434e8d8bef9SDimitry Andric 435e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 436e8d8bef9SDimitry Andric const APFloat &ArgVal = C->getValueAPF(); 437e8d8bef9SDimitry Andric APFloat Val(ArgVal.getSemantics(), 1); 438e8d8bef9SDimitry Andric Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 439e8d8bef9SDimitry Andric 440e8d8bef9SDimitry Andric // This is more precise than the instruction may give. 441e8d8bef9SDimitry Andric // 442e8d8bef9SDimitry Andric // TODO: The instruction always flushes denormal results (except for f16), 443e8d8bef9SDimitry Andric // should this also? 444e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 445e8d8bef9SDimitry Andric } 446e8d8bef9SDimitry Andric 4475f757f3fSDimitry Andric FastMathFlags FMF = cast<FPMathOperator>(II).getFastMathFlags(); 4485f757f3fSDimitry Andric if (!FMF.allowContract()) 4495f757f3fSDimitry Andric break; 4505f757f3fSDimitry Andric auto *SrcCI = dyn_cast<IntrinsicInst>(Src); 4515f757f3fSDimitry Andric if (!SrcCI) 4525f757f3fSDimitry Andric break; 4535f757f3fSDimitry Andric 4545f757f3fSDimitry Andric auto IID = SrcCI->getIntrinsicID(); 4555f757f3fSDimitry Andric // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable 4565f757f3fSDimitry Andric // 4575f757f3fSDimitry Andric // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and 4585f757f3fSDimitry Andric // relaxed. 4595f757f3fSDimitry Andric if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { 4605f757f3fSDimitry Andric const FPMathOperator *SqrtOp = cast<FPMathOperator>(SrcCI); 4615f757f3fSDimitry Andric FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); 4625f757f3fSDimitry Andric if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) 4635f757f3fSDimitry Andric break; 4645f757f3fSDimitry Andric 4655f757f3fSDimitry Andric if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) 4665f757f3fSDimitry Andric break; 4675f757f3fSDimitry Andric 4685f757f3fSDimitry Andric Function *NewDecl = Intrinsic::getDeclaration( 4695f757f3fSDimitry Andric SrcCI->getModule(), Intrinsic::amdgcn_rsq, {SrcCI->getType()}); 4705f757f3fSDimitry Andric 4715f757f3fSDimitry Andric InnerFMF |= FMF; 4725f757f3fSDimitry Andric II.setFastMathFlags(InnerFMF); 4735f757f3fSDimitry Andric 4745f757f3fSDimitry Andric II.setCalledFunction(NewDecl); 4755f757f3fSDimitry Andric return IC.replaceOperand(II, 0, SrcCI->getArgOperand(0)); 4765f757f3fSDimitry Andric } 4775f757f3fSDimitry Andric 478e8d8bef9SDimitry Andric break; 479e8d8bef9SDimitry Andric } 480bdd1243dSDimitry Andric case Intrinsic::amdgcn_sqrt: 481e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rsq: { 482e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 483e8d8bef9SDimitry Andric 484e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 485e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 486e8d8bef9SDimitry Andric Type *Ty = II.getType(); 487e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 488e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 489e8d8bef9SDimitry Andric } 490e8d8bef9SDimitry Andric 4915f757f3fSDimitry Andric // f16 amdgcn.sqrt is identical to regular sqrt. 4925f757f3fSDimitry Andric if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { 4935f757f3fSDimitry Andric Function *NewDecl = Intrinsic::getDeclaration( 4945f757f3fSDimitry Andric II.getModule(), Intrinsic::sqrt, {II.getType()}); 4955f757f3fSDimitry Andric II.setCalledFunction(NewDecl); 4965f757f3fSDimitry Andric return &II; 4975f757f3fSDimitry Andric } 4985f757f3fSDimitry Andric 499e8d8bef9SDimitry Andric break; 500e8d8bef9SDimitry Andric } 50106c3fb27SDimitry Andric case Intrinsic::amdgcn_log: 50206c3fb27SDimitry Andric case Intrinsic::amdgcn_exp2: { 50306c3fb27SDimitry Andric const bool IsLog = IID == Intrinsic::amdgcn_log; 50406c3fb27SDimitry Andric const bool IsExp = IID == Intrinsic::amdgcn_exp2; 50506c3fb27SDimitry Andric Value *Src = II.getArgOperand(0); 50606c3fb27SDimitry Andric Type *Ty = II.getType(); 50706c3fb27SDimitry Andric 50806c3fb27SDimitry Andric if (isa<PoisonValue>(Src)) 50906c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Src); 51006c3fb27SDimitry Andric 51106c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src)) 51206c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 51306c3fb27SDimitry Andric 51406c3fb27SDimitry Andric if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 51506c3fb27SDimitry Andric if (C->isInfinity()) { 51606c3fb27SDimitry Andric // exp2(+inf) -> +inf 51706c3fb27SDimitry Andric // log2(+inf) -> +inf 51806c3fb27SDimitry Andric if (!C->isNegative()) 51906c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, C); 52006c3fb27SDimitry Andric 52106c3fb27SDimitry Andric // exp2(-inf) -> 0 52206c3fb27SDimitry Andric if (IsExp && C->isNegative()) 52306c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 52406c3fb27SDimitry Andric } 52506c3fb27SDimitry Andric 52606c3fb27SDimitry Andric if (II.isStrictFP()) 52706c3fb27SDimitry Andric break; 52806c3fb27SDimitry Andric 52906c3fb27SDimitry Andric if (C->isNaN()) { 53006c3fb27SDimitry Andric Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 53106c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Quieted); 53206c3fb27SDimitry Andric } 53306c3fb27SDimitry Andric 53406c3fb27SDimitry Andric // f32 instruction doesn't handle denormals, f16 does. 53506c3fb27SDimitry Andric if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 53606c3fb27SDimitry Andric Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 53706c3fb27SDimitry Andric : ConstantFP::get(Ty, 1.0); 53806c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, FoldedValue); 53906c3fb27SDimitry Andric } 54006c3fb27SDimitry Andric 54106c3fb27SDimitry Andric if (IsLog && C->isNegative()) 54206c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 54306c3fb27SDimitry Andric 54406c3fb27SDimitry Andric // TODO: Full constant folding matching hardware behavior. 54506c3fb27SDimitry Andric } 54606c3fb27SDimitry Andric 54706c3fb27SDimitry Andric break; 54806c3fb27SDimitry Andric } 549e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_mant: 550e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_exp: { 551e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 552e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 553e8d8bef9SDimitry Andric int Exp; 554e8d8bef9SDimitry Andric APFloat Significand = 555e8d8bef9SDimitry Andric frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 556e8d8bef9SDimitry Andric 557e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_frexp_mant) { 558e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 559e8d8bef9SDimitry Andric II, ConstantFP::get(II.getContext(), Significand)); 560e8d8bef9SDimitry Andric } 561e8d8bef9SDimitry Andric 562e8d8bef9SDimitry Andric // Match instruction special case behavior. 563e8d8bef9SDimitry Andric if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 564e8d8bef9SDimitry Andric Exp = 0; 565e8d8bef9SDimitry Andric 566e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 567e8d8bef9SDimitry Andric } 568e8d8bef9SDimitry Andric 569e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 570e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 571e8d8bef9SDimitry Andric } 572e8d8bef9SDimitry Andric 573e8d8bef9SDimitry Andric break; 574e8d8bef9SDimitry Andric } 575e8d8bef9SDimitry Andric case Intrinsic::amdgcn_class: { 576e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 577e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 578e8d8bef9SDimitry Andric const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 57906c3fb27SDimitry Andric if (CMask) { 58006c3fb27SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 58106c3fb27SDimitry Andric II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 58206c3fb27SDimitry Andric 58306c3fb27SDimitry Andric // Clamp any excess bits, as they're illegal for the generic intrinsic. 58406c3fb27SDimitry Andric II.setArgOperand(1, ConstantInt::get(Src1->getType(), 58506c3fb27SDimitry Andric CMask->getZExtValue() & fcAllFlags)); 58606c3fb27SDimitry Andric return &II; 587e8d8bef9SDimitry Andric } 588e8d8bef9SDimitry Andric 58906c3fb27SDimitry Andric // Propagate poison. 59006c3fb27SDimitry Andric if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 59106c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 592e8d8bef9SDimitry Andric 59306c3fb27SDimitry Andric // llvm.amdgcn.class(_, undef) -> false 59406c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src1)) 595e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 59606c3fb27SDimitry Andric 59706c3fb27SDimitry Andric // llvm.amdgcn.class(undef, mask) -> mask != 0 59806c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src0)) { 59906c3fb27SDimitry Andric Value *CmpMask = IC.Builder.CreateICmpNE( 60006c3fb27SDimitry Andric Src1, ConstantInt::getNullValue(Src1->getType())); 60106c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, CmpMask); 602e8d8bef9SDimitry Andric } 603e8d8bef9SDimitry Andric break; 604e8d8bef9SDimitry Andric } 605e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pkrtz: { 606e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 607e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 608e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 609e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 610e8d8bef9SDimitry Andric const fltSemantics &HalfSem = 611e8d8bef9SDimitry Andric II.getType()->getScalarType()->getFltSemantics(); 612e8d8bef9SDimitry Andric bool LosesInfo; 613e8d8bef9SDimitry Andric APFloat Val0 = C0->getValueAPF(); 614e8d8bef9SDimitry Andric APFloat Val1 = C1->getValueAPF(); 615e8d8bef9SDimitry Andric Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 616e8d8bef9SDimitry Andric Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 617e8d8bef9SDimitry Andric 618e8d8bef9SDimitry Andric Constant *Folded = 619e8d8bef9SDimitry Andric ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 620e8d8bef9SDimitry Andric ConstantFP::get(II.getContext(), Val1)}); 621e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Folded); 622e8d8bef9SDimitry Andric } 623e8d8bef9SDimitry Andric } 624e8d8bef9SDimitry Andric 625e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 626e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 627e8d8bef9SDimitry Andric } 628e8d8bef9SDimitry Andric 629e8d8bef9SDimitry Andric break; 630e8d8bef9SDimitry Andric } 631e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_i16: 632e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_u16: 633e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_i16: 634e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_u16: { 635e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 636e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 637e8d8bef9SDimitry Andric 638e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 639e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 640e8d8bef9SDimitry Andric } 641e8d8bef9SDimitry Andric 642e8d8bef9SDimitry Andric break; 643e8d8bef9SDimitry Andric } 644e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ubfe: 645e8d8bef9SDimitry Andric case Intrinsic::amdgcn_sbfe: { 646e8d8bef9SDimitry Andric // Decompose simple cases into standard shifts. 647e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 648e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 649e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 650e8d8bef9SDimitry Andric } 651e8d8bef9SDimitry Andric 652e8d8bef9SDimitry Andric unsigned Width; 653e8d8bef9SDimitry Andric Type *Ty = II.getType(); 654e8d8bef9SDimitry Andric unsigned IntSize = Ty->getIntegerBitWidth(); 655e8d8bef9SDimitry Andric 656e8d8bef9SDimitry Andric ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 657e8d8bef9SDimitry Andric if (CWidth) { 658e8d8bef9SDimitry Andric Width = CWidth->getZExtValue(); 659e8d8bef9SDimitry Andric if ((Width & (IntSize - 1)) == 0) { 660e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 661e8d8bef9SDimitry Andric } 662e8d8bef9SDimitry Andric 663e8d8bef9SDimitry Andric // Hardware ignores high bits, so remove those. 664e8d8bef9SDimitry Andric if (Width >= IntSize) { 665e8d8bef9SDimitry Andric return IC.replaceOperand( 666e8d8bef9SDimitry Andric II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 667e8d8bef9SDimitry Andric } 668e8d8bef9SDimitry Andric } 669e8d8bef9SDimitry Andric 670e8d8bef9SDimitry Andric unsigned Offset; 671e8d8bef9SDimitry Andric ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 672e8d8bef9SDimitry Andric if (COffset) { 673e8d8bef9SDimitry Andric Offset = COffset->getZExtValue(); 674e8d8bef9SDimitry Andric if (Offset >= IntSize) { 675e8d8bef9SDimitry Andric return IC.replaceOperand( 676e8d8bef9SDimitry Andric II, 1, 677e8d8bef9SDimitry Andric ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 678e8d8bef9SDimitry Andric } 679e8d8bef9SDimitry Andric } 680e8d8bef9SDimitry Andric 681e8d8bef9SDimitry Andric bool Signed = IID == Intrinsic::amdgcn_sbfe; 682e8d8bef9SDimitry Andric 683e8d8bef9SDimitry Andric if (!CWidth || !COffset) 684e8d8bef9SDimitry Andric break; 685e8d8bef9SDimitry Andric 686349cc55cSDimitry Andric // The case of Width == 0 is handled above, which makes this transformation 687e8d8bef9SDimitry Andric // safe. If Width == 0, then the ashr and lshr instructions become poison 688e8d8bef9SDimitry Andric // value since the shift amount would be equal to the bit size. 689e8d8bef9SDimitry Andric assert(Width != 0); 690e8d8bef9SDimitry Andric 691e8d8bef9SDimitry Andric // TODO: This allows folding to undef when the hardware has specific 692e8d8bef9SDimitry Andric // behavior? 693e8d8bef9SDimitry Andric if (Offset + Width < IntSize) { 694e8d8bef9SDimitry Andric Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 695e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 696e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Shl, IntSize - Width); 697e8d8bef9SDimitry Andric RightShift->takeName(&II); 698e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 699e8d8bef9SDimitry Andric } 700e8d8bef9SDimitry Andric 701e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 702e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Src, Offset); 703e8d8bef9SDimitry Andric 704e8d8bef9SDimitry Andric RightShift->takeName(&II); 705e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 706e8d8bef9SDimitry Andric } 707e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp: 70881ad6265SDimitry Andric case Intrinsic::amdgcn_exp_row: 709e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp_compr: { 710e8d8bef9SDimitry Andric ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 711e8d8bef9SDimitry Andric unsigned EnBits = En->getZExtValue(); 712e8d8bef9SDimitry Andric if (EnBits == 0xf) 713e8d8bef9SDimitry Andric break; // All inputs enabled. 714e8d8bef9SDimitry Andric 715e8d8bef9SDimitry Andric bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 716e8d8bef9SDimitry Andric bool Changed = false; 717e8d8bef9SDimitry Andric for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 718e8d8bef9SDimitry Andric if ((!IsCompr && (EnBits & (1 << I)) == 0) || 719e8d8bef9SDimitry Andric (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 720e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(I + 2); 721e8d8bef9SDimitry Andric if (!isa<UndefValue>(Src)) { 722e8d8bef9SDimitry Andric IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 723e8d8bef9SDimitry Andric Changed = true; 724e8d8bef9SDimitry Andric } 725e8d8bef9SDimitry Andric } 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric 728e8d8bef9SDimitry Andric if (Changed) { 729e8d8bef9SDimitry Andric return &II; 730e8d8bef9SDimitry Andric } 731e8d8bef9SDimitry Andric 732e8d8bef9SDimitry Andric break; 733e8d8bef9SDimitry Andric } 734e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmed3: { 735e8d8bef9SDimitry Andric // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 736e8d8bef9SDimitry Andric // for the shader. 737e8d8bef9SDimitry Andric 738e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 739e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 740e8d8bef9SDimitry Andric Value *Src2 = II.getArgOperand(2); 741e8d8bef9SDimitry Andric 742e8d8bef9SDimitry Andric // Checking for NaN before canonicalization provides better fidelity when 743e8d8bef9SDimitry Andric // mapping other operations onto fmed3 since the order of operands is 744e8d8bef9SDimitry Andric // unchanged. 745e8d8bef9SDimitry Andric CallInst *NewCall = nullptr; 746e8d8bef9SDimitry Andric if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 747e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src1, Src2); 748e8d8bef9SDimitry Andric } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 749e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src0, Src2); 750e8d8bef9SDimitry Andric } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 751e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 752e8d8bef9SDimitry Andric } 753e8d8bef9SDimitry Andric 754e8d8bef9SDimitry Andric if (NewCall) { 755e8d8bef9SDimitry Andric NewCall->copyFastMathFlags(&II); 756e8d8bef9SDimitry Andric NewCall->takeName(&II); 757e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 758e8d8bef9SDimitry Andric } 759e8d8bef9SDimitry Andric 760e8d8bef9SDimitry Andric bool Swap = false; 761e8d8bef9SDimitry Andric // Canonicalize constants to RHS operands. 762e8d8bef9SDimitry Andric // 763e8d8bef9SDimitry Andric // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 764e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 765e8d8bef9SDimitry Andric std::swap(Src0, Src1); 766e8d8bef9SDimitry Andric Swap = true; 767e8d8bef9SDimitry Andric } 768e8d8bef9SDimitry Andric 769e8d8bef9SDimitry Andric if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 770e8d8bef9SDimitry Andric std::swap(Src1, Src2); 771e8d8bef9SDimitry Andric Swap = true; 772e8d8bef9SDimitry Andric } 773e8d8bef9SDimitry Andric 774e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 775e8d8bef9SDimitry Andric std::swap(Src0, Src1); 776e8d8bef9SDimitry Andric Swap = true; 777e8d8bef9SDimitry Andric } 778e8d8bef9SDimitry Andric 779e8d8bef9SDimitry Andric if (Swap) { 780e8d8bef9SDimitry Andric II.setArgOperand(0, Src0); 781e8d8bef9SDimitry Andric II.setArgOperand(1, Src1); 782e8d8bef9SDimitry Andric II.setArgOperand(2, Src2); 783e8d8bef9SDimitry Andric return &II; 784e8d8bef9SDimitry Andric } 785e8d8bef9SDimitry Andric 786e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 787e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 788e8d8bef9SDimitry Andric if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 789e8d8bef9SDimitry Andric APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 790e8d8bef9SDimitry Andric C2->getValueAPF()); 791e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 792e8d8bef9SDimitry Andric II, ConstantFP::get(IC.Builder.getContext(), Result)); 793e8d8bef9SDimitry Andric } 794e8d8bef9SDimitry Andric } 795e8d8bef9SDimitry Andric } 796e8d8bef9SDimitry Andric 79706c3fb27SDimitry Andric if (!ST->hasMed3_16()) 79806c3fb27SDimitry Andric break; 79906c3fb27SDimitry Andric 80006c3fb27SDimitry Andric Value *X, *Y, *Z; 80106c3fb27SDimitry Andric 80206c3fb27SDimitry Andric // Repeat floating-point width reduction done for minnum/maxnum. 80306c3fb27SDimitry Andric // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 80406c3fb27SDimitry Andric if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 80506c3fb27SDimitry Andric matchFPExtFromF16(Src2, Z)) { 80606c3fb27SDimitry Andric Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 80706c3fb27SDimitry Andric {X, Y, Z}, &II, II.getName()); 80806c3fb27SDimitry Andric return new FPExtInst(NewCall, II.getType()); 80906c3fb27SDimitry Andric } 81006c3fb27SDimitry Andric 811e8d8bef9SDimitry Andric break; 812e8d8bef9SDimitry Andric } 813e8d8bef9SDimitry Andric case Intrinsic::amdgcn_icmp: 814e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fcmp: { 815e8d8bef9SDimitry Andric const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 816e8d8bef9SDimitry Andric // Guard against invalid arguments. 817e8d8bef9SDimitry Andric int64_t CCVal = CC->getZExtValue(); 818e8d8bef9SDimitry Andric bool IsInteger = IID == Intrinsic::amdgcn_icmp; 819e8d8bef9SDimitry Andric if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 820e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 821e8d8bef9SDimitry Andric (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 822e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_FCMP_PREDICATE))) 823e8d8bef9SDimitry Andric break; 824e8d8bef9SDimitry Andric 825e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 826e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 827e8d8bef9SDimitry Andric 828e8d8bef9SDimitry Andric if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 829e8d8bef9SDimitry Andric if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 830e8d8bef9SDimitry Andric Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 831e8d8bef9SDimitry Andric if (CCmp->isNullValue()) { 832e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 8335f757f3fSDimitry Andric II, IC.Builder.CreateSExt(CCmp, II.getType())); 834e8d8bef9SDimitry Andric } 835e8d8bef9SDimitry Andric 836e8d8bef9SDimitry Andric // The result of V_ICMP/V_FCMP assembly instructions (which this 837e8d8bef9SDimitry Andric // intrinsic exposes) is one bit per thread, masked with the EXEC 838e8d8bef9SDimitry Andric // register (which contains the bitmask of live threads). So a 839e8d8bef9SDimitry Andric // comparison that always returns true is the same as a read of the 840e8d8bef9SDimitry Andric // EXEC register. 841e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 842e8d8bef9SDimitry Andric II.getModule(), Intrinsic::read_register, II.getType()); 843e8d8bef9SDimitry Andric Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 844e8d8bef9SDimitry Andric MDNode *MD = MDNode::get(II.getContext(), MDArgs); 845e8d8bef9SDimitry Andric Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 846e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 847349cc55cSDimitry Andric NewCall->addFnAttr(Attribute::Convergent); 848e8d8bef9SDimitry Andric NewCall->takeName(&II); 849e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 850e8d8bef9SDimitry Andric } 851e8d8bef9SDimitry Andric 852e8d8bef9SDimitry Andric // Canonicalize constants to RHS. 853e8d8bef9SDimitry Andric CmpInst::Predicate SwapPred = 854e8d8bef9SDimitry Andric CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 855e8d8bef9SDimitry Andric II.setArgOperand(0, Src1); 856e8d8bef9SDimitry Andric II.setArgOperand(1, Src0); 857e8d8bef9SDimitry Andric II.setArgOperand( 858e8d8bef9SDimitry Andric 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 859e8d8bef9SDimitry Andric return &II; 860e8d8bef9SDimitry Andric } 861e8d8bef9SDimitry Andric 862e8d8bef9SDimitry Andric if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 863e8d8bef9SDimitry Andric break; 864e8d8bef9SDimitry Andric 865e8d8bef9SDimitry Andric // Canonicalize compare eq with true value to compare != 0 866e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 867e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 868e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 869e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 870e8d8bef9SDimitry Andric Value *ExtSrc; 871e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ && 872e8d8bef9SDimitry Andric ((match(Src1, PatternMatch::m_One()) && 873e8d8bef9SDimitry Andric match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 874e8d8bef9SDimitry Andric (match(Src1, PatternMatch::m_AllOnes()) && 875e8d8bef9SDimitry Andric match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 876e8d8bef9SDimitry Andric ExtSrc->getType()->isIntegerTy(1)) { 877e8d8bef9SDimitry Andric IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 878e8d8bef9SDimitry Andric IC.replaceOperand(II, 2, 879e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 880e8d8bef9SDimitry Andric return &II; 881e8d8bef9SDimitry Andric } 882e8d8bef9SDimitry Andric 883e8d8bef9SDimitry Andric CmpInst::Predicate SrcPred; 884e8d8bef9SDimitry Andric Value *SrcLHS; 885e8d8bef9SDimitry Andric Value *SrcRHS; 886e8d8bef9SDimitry Andric 887e8d8bef9SDimitry Andric // Fold compare eq/ne with 0 from a compare result as the predicate to the 888e8d8bef9SDimitry Andric // intrinsic. The typical use is a wave vote function in the library, which 889e8d8bef9SDimitry Andric // will be fed from a user code condition compared with 0. Fold in the 890e8d8bef9SDimitry Andric // redundant compare. 891e8d8bef9SDimitry Andric 892e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 893e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, pred) 894e8d8bef9SDimitry Andric // 895e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 896e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 897e8d8bef9SDimitry Andric if (match(Src1, PatternMatch::m_Zero()) && 898e8d8bef9SDimitry Andric match(Src0, PatternMatch::m_ZExtOrSExt( 899e8d8bef9SDimitry Andric m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 900e8d8bef9SDimitry Andric PatternMatch::m_Value(SrcRHS))))) { 901e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ) 902e8d8bef9SDimitry Andric SrcPred = CmpInst::getInversePredicate(SrcPred); 903e8d8bef9SDimitry Andric 904e8d8bef9SDimitry Andric Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 905e8d8bef9SDimitry Andric ? Intrinsic::amdgcn_fcmp 906e8d8bef9SDimitry Andric : Intrinsic::amdgcn_icmp; 907e8d8bef9SDimitry Andric 908e8d8bef9SDimitry Andric Type *Ty = SrcLHS->getType(); 909e8d8bef9SDimitry Andric if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 910e8d8bef9SDimitry Andric // Promote to next legal integer type. 911e8d8bef9SDimitry Andric unsigned Width = CmpType->getBitWidth(); 912e8d8bef9SDimitry Andric unsigned NewWidth = Width; 913e8d8bef9SDimitry Andric 914e8d8bef9SDimitry Andric // Don't do anything for i1 comparisons. 915e8d8bef9SDimitry Andric if (Width == 1) 916e8d8bef9SDimitry Andric break; 917e8d8bef9SDimitry Andric 918e8d8bef9SDimitry Andric if (Width <= 16) 919e8d8bef9SDimitry Andric NewWidth = 16; 920e8d8bef9SDimitry Andric else if (Width <= 32) 921e8d8bef9SDimitry Andric NewWidth = 32; 922e8d8bef9SDimitry Andric else if (Width <= 64) 923e8d8bef9SDimitry Andric NewWidth = 64; 924e8d8bef9SDimitry Andric else if (Width > 64) 925e8d8bef9SDimitry Andric break; // Can't handle this. 926e8d8bef9SDimitry Andric 927e8d8bef9SDimitry Andric if (Width != NewWidth) { 928e8d8bef9SDimitry Andric IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 929e8d8bef9SDimitry Andric if (CmpInst::isSigned(SrcPred)) { 930e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 931e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 932e8d8bef9SDimitry Andric } else { 933e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 934e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 935e8d8bef9SDimitry Andric } 936e8d8bef9SDimitry Andric } 937e8d8bef9SDimitry Andric } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 938e8d8bef9SDimitry Andric break; 939e8d8bef9SDimitry Andric 940e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 941e8d8bef9SDimitry Andric II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 942e8d8bef9SDimitry Andric Value *Args[] = {SrcLHS, SrcRHS, 943e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), SrcPred)}; 944e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 945e8d8bef9SDimitry Andric NewCall->takeName(&II); 946e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 947e8d8bef9SDimitry Andric } 948e8d8bef9SDimitry Andric 949e8d8bef9SDimitry Andric break; 950e8d8bef9SDimitry Andric } 95106c3fb27SDimitry Andric case Intrinsic::amdgcn_mbcnt_hi: { 95206c3fb27SDimitry Andric // exec_hi is all 0, so this is just a copy. 95306c3fb27SDimitry Andric if (ST->isWave32()) 95406c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 95506c3fb27SDimitry Andric break; 95606c3fb27SDimitry Andric } 957e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ballot: { 958e8d8bef9SDimitry Andric if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 959e8d8bef9SDimitry Andric if (Src->isZero()) { 960e8d8bef9SDimitry Andric // amdgcn.ballot(i1 0) is zero. 961e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 962e8d8bef9SDimitry Andric } 963e8d8bef9SDimitry Andric } 964e8d8bef9SDimitry Andric break; 965e8d8bef9SDimitry Andric } 966e8d8bef9SDimitry Andric case Intrinsic::amdgcn_wqm_vote: { 967e8d8bef9SDimitry Andric // wqm_vote is identity when the argument is constant. 968e8d8bef9SDimitry Andric if (!isa<Constant>(II.getArgOperand(0))) 969e8d8bef9SDimitry Andric break; 970e8d8bef9SDimitry Andric 971e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 972e8d8bef9SDimitry Andric } 973e8d8bef9SDimitry Andric case Intrinsic::amdgcn_kill: { 974e8d8bef9SDimitry Andric const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 975e8d8bef9SDimitry Andric if (!C || !C->getZExtValue()) 976e8d8bef9SDimitry Andric break; 977e8d8bef9SDimitry Andric 978e8d8bef9SDimitry Andric // amdgcn.kill(i1 1) is a no-op 979e8d8bef9SDimitry Andric return IC.eraseInstFromFunction(II); 980e8d8bef9SDimitry Andric } 981e8d8bef9SDimitry Andric case Intrinsic::amdgcn_update_dpp: { 982e8d8bef9SDimitry Andric Value *Old = II.getArgOperand(0); 983e8d8bef9SDimitry Andric 984e8d8bef9SDimitry Andric auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 985e8d8bef9SDimitry Andric auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 986e8d8bef9SDimitry Andric auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 987e8d8bef9SDimitry Andric if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 988e8d8bef9SDimitry Andric BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 989e8d8bef9SDimitry Andric break; 990e8d8bef9SDimitry Andric 991e8d8bef9SDimitry Andric // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 992e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 993e8d8bef9SDimitry Andric } 994e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlane16: 9955f757f3fSDimitry Andric case Intrinsic::amdgcn_permlane16_var: 9965f757f3fSDimitry Andric case Intrinsic::amdgcn_permlanex16: 9975f757f3fSDimitry Andric case Intrinsic::amdgcn_permlanex16_var: { 998e8d8bef9SDimitry Andric // Discard vdst_in if it's not going to be read. 999e8d8bef9SDimitry Andric Value *VDstIn = II.getArgOperand(0); 1000e8d8bef9SDimitry Andric if (isa<UndefValue>(VDstIn)) 1001e8d8bef9SDimitry Andric break; 1002e8d8bef9SDimitry Andric 10035f757f3fSDimitry Andric // FetchInvalid operand idx. 10045f757f3fSDimitry Andric unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || 10055f757f3fSDimitry Andric IID == Intrinsic::amdgcn_permlanex16) 10065f757f3fSDimitry Andric ? 4 /* for permlane16 and permlanex16 */ 10075f757f3fSDimitry Andric : 3; /* for permlane16_var and permlanex16_var */ 10085f757f3fSDimitry Andric 10095f757f3fSDimitry Andric // BoundCtrl operand idx. 10105f757f3fSDimitry Andric // For permlane16 and permlanex16 it should be 5 10115f757f3fSDimitry Andric // For Permlane16_var and permlanex16_var it should be 4 10125f757f3fSDimitry Andric unsigned int BcIdx = FiIdx + 1; 10135f757f3fSDimitry Andric 10145f757f3fSDimitry Andric ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(FiIdx)); 10155f757f3fSDimitry Andric ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(BcIdx)); 1016e8d8bef9SDimitry Andric if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 1017e8d8bef9SDimitry Andric break; 1018e8d8bef9SDimitry Andric 1019e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 1020e8d8bef9SDimitry Andric } 102181ad6265SDimitry Andric case Intrinsic::amdgcn_permlane64: 102281ad6265SDimitry Andric // A constant value is trivially uniform. 102381ad6265SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 102481ad6265SDimitry Andric return IC.replaceInstUsesWith(II, C); 102581ad6265SDimitry Andric } 102681ad6265SDimitry Andric break; 1027e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readfirstlane: 1028e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readlane: { 1029e8d8bef9SDimitry Andric // A constant value is trivially uniform. 1030e8d8bef9SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1031e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, C); 1032e8d8bef9SDimitry Andric } 1033e8d8bef9SDimitry Andric 1034e8d8bef9SDimitry Andric // The rest of these may not be safe if the exec may not be the same between 1035e8d8bef9SDimitry Andric // the def and use. 1036e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 1037e8d8bef9SDimitry Andric Instruction *SrcInst = dyn_cast<Instruction>(Src); 1038e8d8bef9SDimitry Andric if (SrcInst && SrcInst->getParent() != II.getParent()) 1039e8d8bef9SDimitry Andric break; 1040e8d8bef9SDimitry Andric 1041e8d8bef9SDimitry Andric // readfirstlane (readfirstlane x) -> readfirstlane x 1042e8d8bef9SDimitry Andric // readlane (readfirstlane x), y -> readfirstlane x 1043e8d8bef9SDimitry Andric if (match(Src, 1044e8d8bef9SDimitry Andric PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 1045e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1046e8d8bef9SDimitry Andric } 1047e8d8bef9SDimitry Andric 1048e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_readfirstlane) { 1049e8d8bef9SDimitry Andric // readfirstlane (readlane x, y) -> readlane x, y 1050e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 1051e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1052e8d8bef9SDimitry Andric } 1053e8d8bef9SDimitry Andric } else { 1054e8d8bef9SDimitry Andric // readlane (readlane x, y), y -> readlane x, y 1055e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 1056e8d8bef9SDimitry Andric PatternMatch::m_Value(), 1057e8d8bef9SDimitry Andric PatternMatch::m_Specific(II.getArgOperand(1))))) { 1058e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1059e8d8bef9SDimitry Andric } 1060e8d8bef9SDimitry Andric } 1061e8d8bef9SDimitry Andric 1062e8d8bef9SDimitry Andric break; 1063e8d8bef9SDimitry Andric } 1064e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmul_legacy: { 1065e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1066e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1067e8d8bef9SDimitry Andric 1068e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1069e8d8bef9SDimitry Andric // infinity, gives +0.0. 1070e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1071e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1072e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) 107306c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1074e8d8bef9SDimitry Andric 1075e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1076e8d8bef9SDimitry Andric // normal fmul instruction instead. 107706c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1078e8d8bef9SDimitry Andric auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1079e8d8bef9SDimitry Andric FMul->takeName(&II); 1080e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FMul); 1081e8d8bef9SDimitry Andric } 1082e8d8bef9SDimitry Andric break; 1083e8d8bef9SDimitry Andric } 1084e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fma_legacy: { 1085e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1086e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1087e8d8bef9SDimitry Andric Value *Op2 = II.getArgOperand(2); 1088e8d8bef9SDimitry Andric 1089e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1090e8d8bef9SDimitry Andric // infinity, gives +0.0. 1091e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1092e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1093e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) { 1094e8d8bef9SDimitry Andric // It's tempting to just return Op2 here, but that would give the wrong 1095e8d8bef9SDimitry Andric // result if Op2 was -0.0. 109606c3fb27SDimitry Andric auto *Zero = ConstantFP::getZero(II.getType()); 1097e8d8bef9SDimitry Andric auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1098e8d8bef9SDimitry Andric FAdd->takeName(&II); 1099e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FAdd); 1100e8d8bef9SDimitry Andric } 1101e8d8bef9SDimitry Andric 1102e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1103e8d8bef9SDimitry Andric // normal fma instead. 110406c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1105e8d8bef9SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 1106e8d8bef9SDimitry Andric II.getModule(), Intrinsic::fma, II.getType())); 1107e8d8bef9SDimitry Andric return &II; 1108e8d8bef9SDimitry Andric } 1109e8d8bef9SDimitry Andric break; 1110e8d8bef9SDimitry Andric } 11110eae32dcSDimitry Andric case Intrinsic::amdgcn_is_shared: 11120eae32dcSDimitry Andric case Intrinsic::amdgcn_is_private: { 11130eae32dcSDimitry Andric if (isa<UndefValue>(II.getArgOperand(0))) 11140eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 11150eae32dcSDimitry Andric 11160eae32dcSDimitry Andric if (isa<ConstantPointerNull>(II.getArgOperand(0))) 11170eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 11180eae32dcSDimitry Andric break; 11190eae32dcSDimitry Andric } 112006c3fb27SDimitry Andric case Intrinsic::amdgcn_buffer_store_format: 112106c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_buffer_store_format: 112206c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_buffer_store_format: 112306c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_store: 112406c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_store: 112506c3fb27SDimitry Andric case Intrinsic::amdgcn_tbuffer_store: 112606c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1d: 112706c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1darray: 112806c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2d: 112906c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darray: 113006c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darraymsaa: 113106c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2dmsaa: 113206c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_3d: 113306c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_cube: 113406c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1d: 113506c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1darray: 113606c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2d: 113706c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2darray: 113806c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_3d: 113906c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_cube: { 114006c3fb27SDimitry Andric if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 114106c3fb27SDimitry Andric break; 114206c3fb27SDimitry Andric 114306c3fb27SDimitry Andric APInt DemandedElts = 114406c3fb27SDimitry Andric trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 114506c3fb27SDimitry Andric 114606c3fb27SDimitry Andric int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 114706c3fb27SDimitry Andric if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 114806c3fb27SDimitry Andric false)) { 114906c3fb27SDimitry Andric return IC.eraseInstFromFunction(II); 115006c3fb27SDimitry Andric } 115106c3fb27SDimitry Andric 115206c3fb27SDimitry Andric break; 115306c3fb27SDimitry Andric } 115406c3fb27SDimitry Andric } 1155e8d8bef9SDimitry Andric if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1156e8d8bef9SDimitry Andric AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1157e8d8bef9SDimitry Andric return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1158e8d8bef9SDimitry Andric } 1159bdd1243dSDimitry Andric return std::nullopt; 1160e8d8bef9SDimitry Andric } 1161e8d8bef9SDimitry Andric 1162e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1163e8d8bef9SDimitry Andric /// 116406c3fb27SDimitry Andric /// The result of simplifying amdgcn image and buffer store intrinsics is updating 116506c3fb27SDimitry Andric /// definitions of the intrinsics vector argument, not Uses of the result like 116606c3fb27SDimitry Andric /// image and buffer loads. 1167e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1168e8d8bef9SDimitry Andric /// struct returns. 1169e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1170e8d8bef9SDimitry Andric IntrinsicInst &II, 1171e8d8bef9SDimitry Andric APInt DemandedElts, 117206c3fb27SDimitry Andric int DMaskIdx, bool IsLoad) { 1173e8d8bef9SDimitry Andric 117406c3fb27SDimitry Andric auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 117506c3fb27SDimitry Andric : II.getOperand(0)->getType()); 1176e8d8bef9SDimitry Andric unsigned VWidth = IIVTy->getNumElements(); 1177e8d8bef9SDimitry Andric if (VWidth == 1) 1178e8d8bef9SDimitry Andric return nullptr; 1179bdd1243dSDimitry Andric Type *EltTy = IIVTy->getElementType(); 1180e8d8bef9SDimitry Andric 1181e8d8bef9SDimitry Andric IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1182e8d8bef9SDimitry Andric IC.Builder.SetInsertPoint(&II); 1183e8d8bef9SDimitry Andric 1184e8d8bef9SDimitry Andric // Assume the arguments are unchanged and later override them, if needed. 1185e8d8bef9SDimitry Andric SmallVector<Value *, 16> Args(II.args()); 1186e8d8bef9SDimitry Andric 1187e8d8bef9SDimitry Andric if (DMaskIdx < 0) { 1188e8d8bef9SDimitry Andric // Buffer case. 1189e8d8bef9SDimitry Andric 1190e8d8bef9SDimitry Andric const unsigned ActiveBits = DemandedElts.getActiveBits(); 119106c3fb27SDimitry Andric const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1192e8d8bef9SDimitry Andric 1193e8d8bef9SDimitry Andric // Start assuming the prefix of elements is demanded, but possibly clear 1194e8d8bef9SDimitry Andric // some other bits if there are trailing zeros (unused components at front) 1195e8d8bef9SDimitry Andric // and update offset. 1196e8d8bef9SDimitry Andric DemandedElts = (1 << ActiveBits) - 1; 1197e8d8bef9SDimitry Andric 1198e8d8bef9SDimitry Andric if (UnusedComponentsAtFront > 0) { 1199e8d8bef9SDimitry Andric static const unsigned InvalidOffsetIdx = 0xf; 1200e8d8bef9SDimitry Andric 1201e8d8bef9SDimitry Andric unsigned OffsetIdx; 1202e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1203e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 120406c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1205e8d8bef9SDimitry Andric OffsetIdx = 1; 1206e8d8bef9SDimitry Andric break; 1207e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1208e8d8bef9SDimitry Andric // If resulting type is vec3, there is no point in trimming the 1209e8d8bef9SDimitry Andric // load with updated offset, as the vec3 would most likely be widened to 1210e8d8bef9SDimitry Andric // vec4 anyway during lowering. 1211e8d8bef9SDimitry Andric if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1212e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1213e8d8bef9SDimitry Andric else 1214e8d8bef9SDimitry Andric OffsetIdx = 1; 1215e8d8bef9SDimitry Andric break; 1216e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 121706c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1218e8d8bef9SDimitry Andric OffsetIdx = 2; 1219e8d8bef9SDimitry Andric break; 1220e8d8bef9SDimitry Andric default: 1221e8d8bef9SDimitry Andric // TODO: handle tbuffer* intrinsics. 1222e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1223e8d8bef9SDimitry Andric break; 1224e8d8bef9SDimitry Andric } 1225e8d8bef9SDimitry Andric 1226e8d8bef9SDimitry Andric if (OffsetIdx != InvalidOffsetIdx) { 1227e8d8bef9SDimitry Andric // Clear demanded bits and update the offset. 1228e8d8bef9SDimitry Andric DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1229bdd1243dSDimitry Andric auto *Offset = Args[OffsetIdx]; 1230e8d8bef9SDimitry Andric unsigned SingleComponentSizeInBits = 1231bdd1243dSDimitry Andric IC.getDataLayout().getTypeSizeInBits(EltTy); 1232e8d8bef9SDimitry Andric unsigned OffsetAdd = 1233e8d8bef9SDimitry Andric UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1234e8d8bef9SDimitry Andric auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1235e8d8bef9SDimitry Andric Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1236e8d8bef9SDimitry Andric } 1237e8d8bef9SDimitry Andric } 1238e8d8bef9SDimitry Andric } else { 1239e8d8bef9SDimitry Andric // Image case. 1240e8d8bef9SDimitry Andric 1241bdd1243dSDimitry Andric ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1242e8d8bef9SDimitry Andric unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1243e8d8bef9SDimitry Andric 1244*cb14a3feSDimitry Andric // dmask 0 has special semantics, do not simplify. 1245*cb14a3feSDimitry Andric if (DMaskVal == 0) 1246*cb14a3feSDimitry Andric return nullptr; 1247*cb14a3feSDimitry Andric 1248e8d8bef9SDimitry Andric // Mask off values that are undefined because the dmask doesn't cover them 1249bdd1243dSDimitry Andric DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1250e8d8bef9SDimitry Andric 1251e8d8bef9SDimitry Andric unsigned NewDMaskVal = 0; 125206c3fb27SDimitry Andric unsigned OrigLdStIdx = 0; 1253e8d8bef9SDimitry Andric for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1254e8d8bef9SDimitry Andric const unsigned Bit = 1 << SrcIdx; 1255e8d8bef9SDimitry Andric if (!!(DMaskVal & Bit)) { 125606c3fb27SDimitry Andric if (!!DemandedElts[OrigLdStIdx]) 1257e8d8bef9SDimitry Andric NewDMaskVal |= Bit; 125806c3fb27SDimitry Andric OrigLdStIdx++; 1259e8d8bef9SDimitry Andric } 1260e8d8bef9SDimitry Andric } 1261e8d8bef9SDimitry Andric 1262e8d8bef9SDimitry Andric if (DMaskVal != NewDMaskVal) 1263e8d8bef9SDimitry Andric Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1264e8d8bef9SDimitry Andric } 1265e8d8bef9SDimitry Andric 126606c3fb27SDimitry Andric unsigned NewNumElts = DemandedElts.popcount(); 1267e8d8bef9SDimitry Andric if (!NewNumElts) 1268*cb14a3feSDimitry Andric return PoisonValue::get(IIVTy); 1269e8d8bef9SDimitry Andric 1270e8d8bef9SDimitry Andric if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1271e8d8bef9SDimitry Andric if (DMaskIdx >= 0) 1272e8d8bef9SDimitry Andric II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1273e8d8bef9SDimitry Andric return nullptr; 1274e8d8bef9SDimitry Andric } 1275e8d8bef9SDimitry Andric 1276e8d8bef9SDimitry Andric // Validate function argument and return types, extracting overloaded types 1277e8d8bef9SDimitry Andric // along the way. 1278e8d8bef9SDimitry Andric SmallVector<Type *, 6> OverloadTys; 1279e8d8bef9SDimitry Andric if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1280e8d8bef9SDimitry Andric return nullptr; 1281e8d8bef9SDimitry Andric 1282e8d8bef9SDimitry Andric Type *NewTy = 1283e8d8bef9SDimitry Andric (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1284e8d8bef9SDimitry Andric OverloadTys[0] = NewTy; 1285e8d8bef9SDimitry Andric 128606c3fb27SDimitry Andric if (!IsLoad) { 128706c3fb27SDimitry Andric SmallVector<int, 8> EltMask; 128806c3fb27SDimitry Andric for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 128906c3fb27SDimitry Andric if (DemandedElts[OrigStoreIdx]) 129006c3fb27SDimitry Andric EltMask.push_back(OrigStoreIdx); 129106c3fb27SDimitry Andric 129206c3fb27SDimitry Andric if (NewNumElts == 1) 129306c3fb27SDimitry Andric Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 129406c3fb27SDimitry Andric else 129506c3fb27SDimitry Andric Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 129606c3fb27SDimitry Andric } 129706c3fb27SDimitry Andric 1298bdd1243dSDimitry Andric Function *NewIntrin = Intrinsic::getDeclaration( 1299bdd1243dSDimitry Andric II.getModule(), II.getIntrinsicID(), OverloadTys); 1300e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1301e8d8bef9SDimitry Andric NewCall->takeName(&II); 1302e8d8bef9SDimitry Andric NewCall->copyMetadata(II); 1303e8d8bef9SDimitry Andric 130406c3fb27SDimitry Andric if (IsLoad) { 1305e8d8bef9SDimitry Andric if (NewNumElts == 1) { 1306*cb14a3feSDimitry Andric return IC.Builder.CreateInsertElement(PoisonValue::get(IIVTy), NewCall, 130706c3fb27SDimitry Andric DemandedElts.countr_zero()); 1308e8d8bef9SDimitry Andric } 1309e8d8bef9SDimitry Andric 1310e8d8bef9SDimitry Andric SmallVector<int, 8> EltMask; 1311e8d8bef9SDimitry Andric unsigned NewLoadIdx = 0; 1312e8d8bef9SDimitry Andric for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1313e8d8bef9SDimitry Andric if (!!DemandedElts[OrigLoadIdx]) 1314e8d8bef9SDimitry Andric EltMask.push_back(NewLoadIdx++); 1315e8d8bef9SDimitry Andric else 1316e8d8bef9SDimitry Andric EltMask.push_back(NewNumElts); 1317e8d8bef9SDimitry Andric } 1318e8d8bef9SDimitry Andric 131906c3fb27SDimitry Andric auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1320e8d8bef9SDimitry Andric 1321e8d8bef9SDimitry Andric return Shuffle; 1322e8d8bef9SDimitry Andric } 1323e8d8bef9SDimitry Andric 132406c3fb27SDimitry Andric return NewCall; 132506c3fb27SDimitry Andric } 132606c3fb27SDimitry Andric 1327bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1328e8d8bef9SDimitry Andric InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1329e8d8bef9SDimitry Andric APInt &UndefElts2, APInt &UndefElts3, 1330e8d8bef9SDimitry Andric std::function<void(Instruction *, unsigned, APInt, APInt &)> 1331e8d8bef9SDimitry Andric SimplifyAndSetOp) const { 1332e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1333e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load: 1334e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load_format: 1335e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 133606c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1337e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load_format: 133806c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1339e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_load: 134006c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1341e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1342e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 134306c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1344e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load_format: 134506c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1346e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_load: 134706c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1348e8d8bef9SDimitry Andric case Intrinsic::amdgcn_tbuffer_load: 1349e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1350e8d8bef9SDimitry Andric default: { 1351e8d8bef9SDimitry Andric if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1352e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1353e8d8bef9SDimitry Andric } 1354e8d8bef9SDimitry Andric break; 1355e8d8bef9SDimitry Andric } 1356e8d8bef9SDimitry Andric } 1357bdd1243dSDimitry Andric return std::nullopt; 1358e8d8bef9SDimitry Andric } 1359