1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // \file 10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the 11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide 12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target 13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest. 14e8d8bef9SDimitry Andric // 15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 16e8d8bef9SDimitry Andric 17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h" 18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h" 19e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 20e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 21e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 22e8d8bef9SDimitry Andric 23e8d8bef9SDimitry Andric using namespace llvm; 24e8d8bef9SDimitry Andric 25e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti" 26e8d8bef9SDimitry Andric 27e8d8bef9SDimitry Andric namespace { 28e8d8bef9SDimitry Andric 29e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic { 30e8d8bef9SDimitry Andric unsigned Intr; 31e8d8bef9SDimitry Andric }; 32e8d8bef9SDimitry Andric 33e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34e8d8bef9SDimitry Andric #include "InstCombineTables.inc" 35e8d8bef9SDimitry Andric 36e8d8bef9SDimitry Andric } // end anonymous namespace 37e8d8bef9SDimitry Andric 38e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 39e8d8bef9SDimitry Andric // 40e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for 41e8d8bef9SDimitry Andric // handling NaNs. 42e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 43e8d8bef9SDimitry Andric const APFloat &Src2) { 44e8d8bef9SDimitry Andric APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 45e8d8bef9SDimitry Andric 46e8d8bef9SDimitry Andric APFloat::cmpResult Cmp0 = Max3.compare(Src0); 47e8d8bef9SDimitry Andric assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 48e8d8bef9SDimitry Andric if (Cmp0 == APFloat::cmpEqual) 49e8d8bef9SDimitry Andric return maxnum(Src1, Src2); 50e8d8bef9SDimitry Andric 51e8d8bef9SDimitry Andric APFloat::cmpResult Cmp1 = Max3.compare(Src1); 52e8d8bef9SDimitry Andric assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 53e8d8bef9SDimitry Andric if (Cmp1 == APFloat::cmpEqual) 54e8d8bef9SDimitry Andric return maxnum(Src0, Src2); 55e8d8bef9SDimitry Andric 56e8d8bef9SDimitry Andric return maxnum(Src0, Src1); 57e8d8bef9SDimitry Andric } 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing 60e8d8bef9SDimitry Andric // precision. 61e8d8bef9SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V) { 62e8d8bef9SDimitry Andric Type *VTy = V.getType(); 63e8d8bef9SDimitry Andric if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 64e8d8bef9SDimitry Andric // The value is already 16-bit, so we don't want to convert to 16-bit again! 65e8d8bef9SDimitry Andric return false; 66e8d8bef9SDimitry Andric } 67e8d8bef9SDimitry Andric if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 68e8d8bef9SDimitry Andric // We need to check that if we cast the index down to a half, we do not lose 69e8d8bef9SDimitry Andric // precision. 70e8d8bef9SDimitry Andric APFloat FloatValue(ConstFloat->getValueAPF()); 71e8d8bef9SDimitry Andric bool LosesInfo = true; 72e8d8bef9SDimitry Andric FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, &LosesInfo); 73e8d8bef9SDimitry Andric return !LosesInfo; 74e8d8bef9SDimitry Andric } 75e8d8bef9SDimitry Andric Value *CastSrc; 76e8d8bef9SDimitry Andric if (match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) || 77e8d8bef9SDimitry Andric match(&V, m_SExt(PatternMatch::m_Value(CastSrc))) || 78e8d8bef9SDimitry Andric match(&V, m_ZExt(PatternMatch::m_Value(CastSrc)))) { 79e8d8bef9SDimitry Andric Type *CastSrcTy = CastSrc->getType(); 80e8d8bef9SDimitry Andric if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 81e8d8bef9SDimitry Andric return true; 82e8d8bef9SDimitry Andric } 83e8d8bef9SDimitry Andric 84e8d8bef9SDimitry Andric return false; 85e8d8bef9SDimitry Andric } 86e8d8bef9SDimitry Andric 87e8d8bef9SDimitry Andric // Convert a value to 16-bit. 88e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 89e8d8bef9SDimitry Andric Type *VTy = V.getType(); 90e8d8bef9SDimitry Andric if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 91e8d8bef9SDimitry Andric return cast<Instruction>(&V)->getOperand(0); 92e8d8bef9SDimitry Andric if (VTy->isIntegerTy()) 93e8d8bef9SDimitry Andric return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 94e8d8bef9SDimitry Andric if (VTy->isFloatingPointTy()) 95e8d8bef9SDimitry Andric return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 96e8d8bef9SDimitry Andric 97e8d8bef9SDimitry Andric llvm_unreachable("Should never be called!"); 98e8d8bef9SDimitry Andric } 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric static Optional<Instruction *> 101e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 102e8d8bef9SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 103e8d8bef9SDimitry Andric IntrinsicInst &II, InstCombiner &IC) { 104e8d8bef9SDimitry Andric if (!ST->hasA16() && !ST->hasG16()) 105e8d8bef9SDimitry Andric return None; 106e8d8bef9SDimitry Andric 107e8d8bef9SDimitry Andric bool FloatCoord = false; 108e8d8bef9SDimitry Andric // true means derivatives can be converted to 16 bit, coordinates not 109e8d8bef9SDimitry Andric bool OnlyDerivatives = false; 110e8d8bef9SDimitry Andric 111e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 112e8d8bef9SDimitry Andric OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 113e8d8bef9SDimitry Andric Value *Coord = II.getOperand(OperandIndex); 114e8d8bef9SDimitry Andric // If the values are not derived from 16-bit values, we cannot optimize. 115e8d8bef9SDimitry Andric if (!canSafelyConvertTo16Bit(*Coord)) { 116e8d8bef9SDimitry Andric if (OperandIndex < ImageDimIntr->CoordStart || 117e8d8bef9SDimitry Andric ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 118e8d8bef9SDimitry Andric return None; 119e8d8bef9SDimitry Andric } 120e8d8bef9SDimitry Andric // All gradients can be converted, so convert only them 121e8d8bef9SDimitry Andric OnlyDerivatives = true; 122e8d8bef9SDimitry Andric break; 123e8d8bef9SDimitry Andric } 124e8d8bef9SDimitry Andric 125e8d8bef9SDimitry Andric assert(OperandIndex == ImageDimIntr->GradientStart || 126e8d8bef9SDimitry Andric FloatCoord == Coord->getType()->isFloatingPointTy()); 127e8d8bef9SDimitry Andric FloatCoord = Coord->getType()->isFloatingPointTy(); 128e8d8bef9SDimitry Andric } 129e8d8bef9SDimitry Andric 130e8d8bef9SDimitry Andric if (OnlyDerivatives) { 131e8d8bef9SDimitry Andric if (!ST->hasG16()) 132e8d8bef9SDimitry Andric return None; 133e8d8bef9SDimitry Andric } else { 134e8d8bef9SDimitry Andric if (!ST->hasA16()) 135e8d8bef9SDimitry Andric OnlyDerivatives = true; // Only supports G16 136e8d8bef9SDimitry Andric } 137e8d8bef9SDimitry Andric 138e8d8bef9SDimitry Andric Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 139e8d8bef9SDimitry Andric : Type::getInt16Ty(II.getContext()); 140e8d8bef9SDimitry Andric 141e8d8bef9SDimitry Andric SmallVector<Type *, 4> ArgTys; 142e8d8bef9SDimitry Andric if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), ArgTys)) 143e8d8bef9SDimitry Andric return None; 144e8d8bef9SDimitry Andric 145e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 146e8d8bef9SDimitry Andric if (!OnlyDerivatives) 147e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 148e8d8bef9SDimitry Andric Function *I = 149e8d8bef9SDimitry Andric Intrinsic::getDeclaration(II.getModule(), II.getIntrinsicID(), ArgTys); 150e8d8bef9SDimitry Andric 151349cc55cSDimitry Andric SmallVector<Value *, 8> Args(II.args()); 152e8d8bef9SDimitry Andric 153e8d8bef9SDimitry Andric unsigned EndIndex = 154e8d8bef9SDimitry Andric OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 155e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 156e8d8bef9SDimitry Andric OperandIndex < EndIndex; OperandIndex++) { 157e8d8bef9SDimitry Andric Args[OperandIndex] = 158e8d8bef9SDimitry Andric convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 159e8d8bef9SDimitry Andric } 160e8d8bef9SDimitry Andric 161e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(I, Args); 162e8d8bef9SDimitry Andric NewCall->takeName(&II); 163e8d8bef9SDimitry Andric NewCall->copyMetadata(II); 164e8d8bef9SDimitry Andric if (isa<FPMathOperator>(NewCall)) 165e8d8bef9SDimitry Andric NewCall->copyFastMathFlags(&II); 166e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 167e8d8bef9SDimitry Andric } 168e8d8bef9SDimitry Andric 169e8d8bef9SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Value *Op0, const Value *Op1, 170e8d8bef9SDimitry Andric InstCombiner &IC) const { 171e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 172e8d8bef9SDimitry Andric // infinity, gives +0.0. If we can prove we don't have one of the special 173e8d8bef9SDimitry Andric // cases then we can use a normal multiply instead. 174e8d8bef9SDimitry Andric // TODO: Create and use isKnownFiniteNonZero instead of just matching 175e8d8bef9SDimitry Andric // constants here. 176e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_FiniteNonZero()) || 177e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_FiniteNonZero())) { 178e8d8bef9SDimitry Andric // One operand is not zero or infinity or NaN. 179e8d8bef9SDimitry Andric return true; 180e8d8bef9SDimitry Andric } 181e8d8bef9SDimitry Andric auto *TLI = &IC.getTargetLibraryInfo(); 182e8d8bef9SDimitry Andric if (isKnownNeverInfinity(Op0, TLI) && isKnownNeverNaN(Op0, TLI) && 183e8d8bef9SDimitry Andric isKnownNeverInfinity(Op1, TLI) && isKnownNeverNaN(Op1, TLI)) { 184e8d8bef9SDimitry Andric // Neither operand is infinity or NaN. 185e8d8bef9SDimitry Andric return true; 186e8d8bef9SDimitry Andric } 187e8d8bef9SDimitry Andric return false; 188e8d8bef9SDimitry Andric } 189e8d8bef9SDimitry Andric 190e8d8bef9SDimitry Andric Optional<Instruction *> 191e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 192e8d8bef9SDimitry Andric Intrinsic::ID IID = II.getIntrinsicID(); 193e8d8bef9SDimitry Andric switch (IID) { 194e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rcp: { 195e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 196e8d8bef9SDimitry Andric 197e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 198e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 199e8d8bef9SDimitry Andric Type *Ty = II.getType(); 200e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 201e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 202e8d8bef9SDimitry Andric } 203e8d8bef9SDimitry Andric 204e8d8bef9SDimitry Andric if (II.isStrictFP()) 205e8d8bef9SDimitry Andric break; 206e8d8bef9SDimitry Andric 207e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 208e8d8bef9SDimitry Andric const APFloat &ArgVal = C->getValueAPF(); 209e8d8bef9SDimitry Andric APFloat Val(ArgVal.getSemantics(), 1); 210e8d8bef9SDimitry Andric Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 211e8d8bef9SDimitry Andric 212e8d8bef9SDimitry Andric // This is more precise than the instruction may give. 213e8d8bef9SDimitry Andric // 214e8d8bef9SDimitry Andric // TODO: The instruction always flushes denormal results (except for f16), 215e8d8bef9SDimitry Andric // should this also? 216e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 217e8d8bef9SDimitry Andric } 218e8d8bef9SDimitry Andric 219e8d8bef9SDimitry Andric break; 220e8d8bef9SDimitry Andric } 221e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rsq: { 222e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 223e8d8bef9SDimitry Andric 224e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 225e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 226e8d8bef9SDimitry Andric Type *Ty = II.getType(); 227e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 228e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 229e8d8bef9SDimitry Andric } 230e8d8bef9SDimitry Andric 231e8d8bef9SDimitry Andric break; 232e8d8bef9SDimitry Andric } 233e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_mant: 234e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_exp: { 235e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 236e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 237e8d8bef9SDimitry Andric int Exp; 238e8d8bef9SDimitry Andric APFloat Significand = 239e8d8bef9SDimitry Andric frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 240e8d8bef9SDimitry Andric 241e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_frexp_mant) { 242e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 243e8d8bef9SDimitry Andric II, ConstantFP::get(II.getContext(), Significand)); 244e8d8bef9SDimitry Andric } 245e8d8bef9SDimitry Andric 246e8d8bef9SDimitry Andric // Match instruction special case behavior. 247e8d8bef9SDimitry Andric if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 248e8d8bef9SDimitry Andric Exp = 0; 249e8d8bef9SDimitry Andric 250e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 251e8d8bef9SDimitry Andric } 252e8d8bef9SDimitry Andric 253e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 254e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 255e8d8bef9SDimitry Andric } 256e8d8bef9SDimitry Andric 257e8d8bef9SDimitry Andric break; 258e8d8bef9SDimitry Andric } 259e8d8bef9SDimitry Andric case Intrinsic::amdgcn_class: { 260e8d8bef9SDimitry Andric enum { 261e8d8bef9SDimitry Andric S_NAN = 1 << 0, // Signaling NaN 262e8d8bef9SDimitry Andric Q_NAN = 1 << 1, // Quiet NaN 263e8d8bef9SDimitry Andric N_INFINITY = 1 << 2, // Negative infinity 264e8d8bef9SDimitry Andric N_NORMAL = 1 << 3, // Negative normal 265e8d8bef9SDimitry Andric N_SUBNORMAL = 1 << 4, // Negative subnormal 266e8d8bef9SDimitry Andric N_ZERO = 1 << 5, // Negative zero 267e8d8bef9SDimitry Andric P_ZERO = 1 << 6, // Positive zero 268e8d8bef9SDimitry Andric P_SUBNORMAL = 1 << 7, // Positive subnormal 269e8d8bef9SDimitry Andric P_NORMAL = 1 << 8, // Positive normal 270e8d8bef9SDimitry Andric P_INFINITY = 1 << 9 // Positive infinity 271e8d8bef9SDimitry Andric }; 272e8d8bef9SDimitry Andric 273e8d8bef9SDimitry Andric const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | 274e8d8bef9SDimitry Andric N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | 275e8d8bef9SDimitry Andric P_NORMAL | P_INFINITY; 276e8d8bef9SDimitry Andric 277e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 278e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 279e8d8bef9SDimitry Andric const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 280e8d8bef9SDimitry Andric if (!CMask) { 281e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0)) { 282e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 283e8d8bef9SDimitry Andric } 284e8d8bef9SDimitry Andric 285e8d8bef9SDimitry Andric if (isa<UndefValue>(Src1)) { 286e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, 287e8d8bef9SDimitry Andric ConstantInt::get(II.getType(), false)); 288e8d8bef9SDimitry Andric } 289e8d8bef9SDimitry Andric break; 290e8d8bef9SDimitry Andric } 291e8d8bef9SDimitry Andric 292e8d8bef9SDimitry Andric uint32_t Mask = CMask->getZExtValue(); 293e8d8bef9SDimitry Andric 294e8d8bef9SDimitry Andric // If all tests are made, it doesn't matter what the value is. 295e8d8bef9SDimitry Andric if ((Mask & FullMask) == FullMask) { 296e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), true)); 297e8d8bef9SDimitry Andric } 298e8d8bef9SDimitry Andric 299e8d8bef9SDimitry Andric if ((Mask & FullMask) == 0) { 300e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 301e8d8bef9SDimitry Andric } 302e8d8bef9SDimitry Andric 303e8d8bef9SDimitry Andric if (Mask == (S_NAN | Q_NAN)) { 304e8d8bef9SDimitry Andric // Equivalent of isnan. Replace with standard fcmp. 305e8d8bef9SDimitry Andric Value *FCmp = IC.Builder.CreateFCmpUNO(Src0, Src0); 306e8d8bef9SDimitry Andric FCmp->takeName(&II); 307e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FCmp); 308e8d8bef9SDimitry Andric } 309e8d8bef9SDimitry Andric 310e8d8bef9SDimitry Andric if (Mask == (N_ZERO | P_ZERO)) { 311e8d8bef9SDimitry Andric // Equivalent of == 0. 312e8d8bef9SDimitry Andric Value *FCmp = 313e8d8bef9SDimitry Andric IC.Builder.CreateFCmpOEQ(Src0, ConstantFP::get(Src0->getType(), 0.0)); 314e8d8bef9SDimitry Andric 315e8d8bef9SDimitry Andric FCmp->takeName(&II); 316e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FCmp); 317e8d8bef9SDimitry Andric } 318e8d8bef9SDimitry Andric 319e8d8bef9SDimitry Andric // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other 320e8d8bef9SDimitry Andric if (((Mask & S_NAN) || (Mask & Q_NAN)) && 321e8d8bef9SDimitry Andric isKnownNeverNaN(Src0, &IC.getTargetLibraryInfo())) { 322e8d8bef9SDimitry Andric return IC.replaceOperand( 323e8d8bef9SDimitry Andric II, 1, ConstantInt::get(Src1->getType(), Mask & ~(S_NAN | Q_NAN))); 324e8d8bef9SDimitry Andric } 325e8d8bef9SDimitry Andric 326e8d8bef9SDimitry Andric const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0); 327e8d8bef9SDimitry Andric if (!CVal) { 328e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0)) { 329e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 330e8d8bef9SDimitry Andric } 331e8d8bef9SDimitry Andric 332e8d8bef9SDimitry Andric // Clamp mask to used bits 333e8d8bef9SDimitry Andric if ((Mask & FullMask) != Mask) { 334e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall( 335e8d8bef9SDimitry Andric II.getCalledFunction(), 336e8d8bef9SDimitry Andric {Src0, ConstantInt::get(Src1->getType(), Mask & FullMask)}); 337e8d8bef9SDimitry Andric 338e8d8bef9SDimitry Andric NewCall->takeName(&II); 339e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 340e8d8bef9SDimitry Andric } 341e8d8bef9SDimitry Andric 342e8d8bef9SDimitry Andric break; 343e8d8bef9SDimitry Andric } 344e8d8bef9SDimitry Andric 345e8d8bef9SDimitry Andric const APFloat &Val = CVal->getValueAPF(); 346e8d8bef9SDimitry Andric 347e8d8bef9SDimitry Andric bool Result = 348e8d8bef9SDimitry Andric ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || 349e8d8bef9SDimitry Andric ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || 350e8d8bef9SDimitry Andric ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || 351e8d8bef9SDimitry Andric ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || 352e8d8bef9SDimitry Andric ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || 353e8d8bef9SDimitry Andric ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || 354e8d8bef9SDimitry Andric ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || 355e8d8bef9SDimitry Andric ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || 356e8d8bef9SDimitry Andric ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || 357e8d8bef9SDimitry Andric ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); 358e8d8bef9SDimitry Andric 359e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Result)); 360e8d8bef9SDimitry Andric } 361e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pkrtz: { 362e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 363e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 364e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 365e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 366e8d8bef9SDimitry Andric const fltSemantics &HalfSem = 367e8d8bef9SDimitry Andric II.getType()->getScalarType()->getFltSemantics(); 368e8d8bef9SDimitry Andric bool LosesInfo; 369e8d8bef9SDimitry Andric APFloat Val0 = C0->getValueAPF(); 370e8d8bef9SDimitry Andric APFloat Val1 = C1->getValueAPF(); 371e8d8bef9SDimitry Andric Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 372e8d8bef9SDimitry Andric Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 373e8d8bef9SDimitry Andric 374e8d8bef9SDimitry Andric Constant *Folded = 375e8d8bef9SDimitry Andric ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 376e8d8bef9SDimitry Andric ConstantFP::get(II.getContext(), Val1)}); 377e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Folded); 378e8d8bef9SDimitry Andric } 379e8d8bef9SDimitry Andric } 380e8d8bef9SDimitry Andric 381e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 382e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 383e8d8bef9SDimitry Andric } 384e8d8bef9SDimitry Andric 385e8d8bef9SDimitry Andric break; 386e8d8bef9SDimitry Andric } 387e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_i16: 388e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_u16: 389e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_i16: 390e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_u16: { 391e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 392e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 393e8d8bef9SDimitry Andric 394e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 395e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 396e8d8bef9SDimitry Andric } 397e8d8bef9SDimitry Andric 398e8d8bef9SDimitry Andric break; 399e8d8bef9SDimitry Andric } 400e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ubfe: 401e8d8bef9SDimitry Andric case Intrinsic::amdgcn_sbfe: { 402e8d8bef9SDimitry Andric // Decompose simple cases into standard shifts. 403e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 404e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 405e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 406e8d8bef9SDimitry Andric } 407e8d8bef9SDimitry Andric 408e8d8bef9SDimitry Andric unsigned Width; 409e8d8bef9SDimitry Andric Type *Ty = II.getType(); 410e8d8bef9SDimitry Andric unsigned IntSize = Ty->getIntegerBitWidth(); 411e8d8bef9SDimitry Andric 412e8d8bef9SDimitry Andric ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 413e8d8bef9SDimitry Andric if (CWidth) { 414e8d8bef9SDimitry Andric Width = CWidth->getZExtValue(); 415e8d8bef9SDimitry Andric if ((Width & (IntSize - 1)) == 0) { 416e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 417e8d8bef9SDimitry Andric } 418e8d8bef9SDimitry Andric 419e8d8bef9SDimitry Andric // Hardware ignores high bits, so remove those. 420e8d8bef9SDimitry Andric if (Width >= IntSize) { 421e8d8bef9SDimitry Andric return IC.replaceOperand( 422e8d8bef9SDimitry Andric II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 423e8d8bef9SDimitry Andric } 424e8d8bef9SDimitry Andric } 425e8d8bef9SDimitry Andric 426e8d8bef9SDimitry Andric unsigned Offset; 427e8d8bef9SDimitry Andric ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 428e8d8bef9SDimitry Andric if (COffset) { 429e8d8bef9SDimitry Andric Offset = COffset->getZExtValue(); 430e8d8bef9SDimitry Andric if (Offset >= IntSize) { 431e8d8bef9SDimitry Andric return IC.replaceOperand( 432e8d8bef9SDimitry Andric II, 1, 433e8d8bef9SDimitry Andric ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 434e8d8bef9SDimitry Andric } 435e8d8bef9SDimitry Andric } 436e8d8bef9SDimitry Andric 437e8d8bef9SDimitry Andric bool Signed = IID == Intrinsic::amdgcn_sbfe; 438e8d8bef9SDimitry Andric 439e8d8bef9SDimitry Andric if (!CWidth || !COffset) 440e8d8bef9SDimitry Andric break; 441e8d8bef9SDimitry Andric 442349cc55cSDimitry Andric // The case of Width == 0 is handled above, which makes this transformation 443e8d8bef9SDimitry Andric // safe. If Width == 0, then the ashr and lshr instructions become poison 444e8d8bef9SDimitry Andric // value since the shift amount would be equal to the bit size. 445e8d8bef9SDimitry Andric assert(Width != 0); 446e8d8bef9SDimitry Andric 447e8d8bef9SDimitry Andric // TODO: This allows folding to undef when the hardware has specific 448e8d8bef9SDimitry Andric // behavior? 449e8d8bef9SDimitry Andric if (Offset + Width < IntSize) { 450e8d8bef9SDimitry Andric Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 451e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 452e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Shl, IntSize - Width); 453e8d8bef9SDimitry Andric RightShift->takeName(&II); 454e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 455e8d8bef9SDimitry Andric } 456e8d8bef9SDimitry Andric 457e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 458e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Src, Offset); 459e8d8bef9SDimitry Andric 460e8d8bef9SDimitry Andric RightShift->takeName(&II); 461e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 462e8d8bef9SDimitry Andric } 463e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp: 464e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp_compr: { 465e8d8bef9SDimitry Andric ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 466e8d8bef9SDimitry Andric unsigned EnBits = En->getZExtValue(); 467e8d8bef9SDimitry Andric if (EnBits == 0xf) 468e8d8bef9SDimitry Andric break; // All inputs enabled. 469e8d8bef9SDimitry Andric 470e8d8bef9SDimitry Andric bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 471e8d8bef9SDimitry Andric bool Changed = false; 472e8d8bef9SDimitry Andric for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 473e8d8bef9SDimitry Andric if ((!IsCompr && (EnBits & (1 << I)) == 0) || 474e8d8bef9SDimitry Andric (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 475e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(I + 2); 476e8d8bef9SDimitry Andric if (!isa<UndefValue>(Src)) { 477e8d8bef9SDimitry Andric IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 478e8d8bef9SDimitry Andric Changed = true; 479e8d8bef9SDimitry Andric } 480e8d8bef9SDimitry Andric } 481e8d8bef9SDimitry Andric } 482e8d8bef9SDimitry Andric 483e8d8bef9SDimitry Andric if (Changed) { 484e8d8bef9SDimitry Andric return &II; 485e8d8bef9SDimitry Andric } 486e8d8bef9SDimitry Andric 487e8d8bef9SDimitry Andric break; 488e8d8bef9SDimitry Andric } 489e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmed3: { 490e8d8bef9SDimitry Andric // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 491e8d8bef9SDimitry Andric // for the shader. 492e8d8bef9SDimitry Andric 493e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 494e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 495e8d8bef9SDimitry Andric Value *Src2 = II.getArgOperand(2); 496e8d8bef9SDimitry Andric 497e8d8bef9SDimitry Andric // Checking for NaN before canonicalization provides better fidelity when 498e8d8bef9SDimitry Andric // mapping other operations onto fmed3 since the order of operands is 499e8d8bef9SDimitry Andric // unchanged. 500e8d8bef9SDimitry Andric CallInst *NewCall = nullptr; 501e8d8bef9SDimitry Andric if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 502e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src1, Src2); 503e8d8bef9SDimitry Andric } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 504e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src0, Src2); 505e8d8bef9SDimitry Andric } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 506e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 507e8d8bef9SDimitry Andric } 508e8d8bef9SDimitry Andric 509e8d8bef9SDimitry Andric if (NewCall) { 510e8d8bef9SDimitry Andric NewCall->copyFastMathFlags(&II); 511e8d8bef9SDimitry Andric NewCall->takeName(&II); 512e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 513e8d8bef9SDimitry Andric } 514e8d8bef9SDimitry Andric 515e8d8bef9SDimitry Andric bool Swap = false; 516e8d8bef9SDimitry Andric // Canonicalize constants to RHS operands. 517e8d8bef9SDimitry Andric // 518e8d8bef9SDimitry Andric // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 519e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 520e8d8bef9SDimitry Andric std::swap(Src0, Src1); 521e8d8bef9SDimitry Andric Swap = true; 522e8d8bef9SDimitry Andric } 523e8d8bef9SDimitry Andric 524e8d8bef9SDimitry Andric if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 525e8d8bef9SDimitry Andric std::swap(Src1, Src2); 526e8d8bef9SDimitry Andric Swap = true; 527e8d8bef9SDimitry Andric } 528e8d8bef9SDimitry Andric 529e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 530e8d8bef9SDimitry Andric std::swap(Src0, Src1); 531e8d8bef9SDimitry Andric Swap = true; 532e8d8bef9SDimitry Andric } 533e8d8bef9SDimitry Andric 534e8d8bef9SDimitry Andric if (Swap) { 535e8d8bef9SDimitry Andric II.setArgOperand(0, Src0); 536e8d8bef9SDimitry Andric II.setArgOperand(1, Src1); 537e8d8bef9SDimitry Andric II.setArgOperand(2, Src2); 538e8d8bef9SDimitry Andric return &II; 539e8d8bef9SDimitry Andric } 540e8d8bef9SDimitry Andric 541e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 542e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 543e8d8bef9SDimitry Andric if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 544e8d8bef9SDimitry Andric APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 545e8d8bef9SDimitry Andric C2->getValueAPF()); 546e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 547e8d8bef9SDimitry Andric II, ConstantFP::get(IC.Builder.getContext(), Result)); 548e8d8bef9SDimitry Andric } 549e8d8bef9SDimitry Andric } 550e8d8bef9SDimitry Andric } 551e8d8bef9SDimitry Andric 552e8d8bef9SDimitry Andric break; 553e8d8bef9SDimitry Andric } 554e8d8bef9SDimitry Andric case Intrinsic::amdgcn_icmp: 555e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fcmp: { 556e8d8bef9SDimitry Andric const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 557e8d8bef9SDimitry Andric // Guard against invalid arguments. 558e8d8bef9SDimitry Andric int64_t CCVal = CC->getZExtValue(); 559e8d8bef9SDimitry Andric bool IsInteger = IID == Intrinsic::amdgcn_icmp; 560e8d8bef9SDimitry Andric if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 561e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 562e8d8bef9SDimitry Andric (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 563e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_FCMP_PREDICATE))) 564e8d8bef9SDimitry Andric break; 565e8d8bef9SDimitry Andric 566e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 567e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 568e8d8bef9SDimitry Andric 569e8d8bef9SDimitry Andric if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 570e8d8bef9SDimitry Andric if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 571e8d8bef9SDimitry Andric Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 572e8d8bef9SDimitry Andric if (CCmp->isNullValue()) { 573e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 574e8d8bef9SDimitry Andric II, ConstantExpr::getSExt(CCmp, II.getType())); 575e8d8bef9SDimitry Andric } 576e8d8bef9SDimitry Andric 577e8d8bef9SDimitry Andric // The result of V_ICMP/V_FCMP assembly instructions (which this 578e8d8bef9SDimitry Andric // intrinsic exposes) is one bit per thread, masked with the EXEC 579e8d8bef9SDimitry Andric // register (which contains the bitmask of live threads). So a 580e8d8bef9SDimitry Andric // comparison that always returns true is the same as a read of the 581e8d8bef9SDimitry Andric // EXEC register. 582e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 583e8d8bef9SDimitry Andric II.getModule(), Intrinsic::read_register, II.getType()); 584e8d8bef9SDimitry Andric Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 585e8d8bef9SDimitry Andric MDNode *MD = MDNode::get(II.getContext(), MDArgs); 586e8d8bef9SDimitry Andric Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 587e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 588349cc55cSDimitry Andric NewCall->addFnAttr(Attribute::Convergent); 589e8d8bef9SDimitry Andric NewCall->takeName(&II); 590e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 591e8d8bef9SDimitry Andric } 592e8d8bef9SDimitry Andric 593e8d8bef9SDimitry Andric // Canonicalize constants to RHS. 594e8d8bef9SDimitry Andric CmpInst::Predicate SwapPred = 595e8d8bef9SDimitry Andric CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 596e8d8bef9SDimitry Andric II.setArgOperand(0, Src1); 597e8d8bef9SDimitry Andric II.setArgOperand(1, Src0); 598e8d8bef9SDimitry Andric II.setArgOperand( 599e8d8bef9SDimitry Andric 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 600e8d8bef9SDimitry Andric return &II; 601e8d8bef9SDimitry Andric } 602e8d8bef9SDimitry Andric 603e8d8bef9SDimitry Andric if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 604e8d8bef9SDimitry Andric break; 605e8d8bef9SDimitry Andric 606e8d8bef9SDimitry Andric // Canonicalize compare eq with true value to compare != 0 607e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 608e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 609e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 610e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 611e8d8bef9SDimitry Andric Value *ExtSrc; 612e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ && 613e8d8bef9SDimitry Andric ((match(Src1, PatternMatch::m_One()) && 614e8d8bef9SDimitry Andric match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 615e8d8bef9SDimitry Andric (match(Src1, PatternMatch::m_AllOnes()) && 616e8d8bef9SDimitry Andric match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 617e8d8bef9SDimitry Andric ExtSrc->getType()->isIntegerTy(1)) { 618e8d8bef9SDimitry Andric IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 619e8d8bef9SDimitry Andric IC.replaceOperand(II, 2, 620e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 621e8d8bef9SDimitry Andric return &II; 622e8d8bef9SDimitry Andric } 623e8d8bef9SDimitry Andric 624e8d8bef9SDimitry Andric CmpInst::Predicate SrcPred; 625e8d8bef9SDimitry Andric Value *SrcLHS; 626e8d8bef9SDimitry Andric Value *SrcRHS; 627e8d8bef9SDimitry Andric 628e8d8bef9SDimitry Andric // Fold compare eq/ne with 0 from a compare result as the predicate to the 629e8d8bef9SDimitry Andric // intrinsic. The typical use is a wave vote function in the library, which 630e8d8bef9SDimitry Andric // will be fed from a user code condition compared with 0. Fold in the 631e8d8bef9SDimitry Andric // redundant compare. 632e8d8bef9SDimitry Andric 633e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 634e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, pred) 635e8d8bef9SDimitry Andric // 636e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 637e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 638e8d8bef9SDimitry Andric if (match(Src1, PatternMatch::m_Zero()) && 639e8d8bef9SDimitry Andric match(Src0, PatternMatch::m_ZExtOrSExt( 640e8d8bef9SDimitry Andric m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 641e8d8bef9SDimitry Andric PatternMatch::m_Value(SrcRHS))))) { 642e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ) 643e8d8bef9SDimitry Andric SrcPred = CmpInst::getInversePredicate(SrcPred); 644e8d8bef9SDimitry Andric 645e8d8bef9SDimitry Andric Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 646e8d8bef9SDimitry Andric ? Intrinsic::amdgcn_fcmp 647e8d8bef9SDimitry Andric : Intrinsic::amdgcn_icmp; 648e8d8bef9SDimitry Andric 649e8d8bef9SDimitry Andric Type *Ty = SrcLHS->getType(); 650e8d8bef9SDimitry Andric if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 651e8d8bef9SDimitry Andric // Promote to next legal integer type. 652e8d8bef9SDimitry Andric unsigned Width = CmpType->getBitWidth(); 653e8d8bef9SDimitry Andric unsigned NewWidth = Width; 654e8d8bef9SDimitry Andric 655e8d8bef9SDimitry Andric // Don't do anything for i1 comparisons. 656e8d8bef9SDimitry Andric if (Width == 1) 657e8d8bef9SDimitry Andric break; 658e8d8bef9SDimitry Andric 659e8d8bef9SDimitry Andric if (Width <= 16) 660e8d8bef9SDimitry Andric NewWidth = 16; 661e8d8bef9SDimitry Andric else if (Width <= 32) 662e8d8bef9SDimitry Andric NewWidth = 32; 663e8d8bef9SDimitry Andric else if (Width <= 64) 664e8d8bef9SDimitry Andric NewWidth = 64; 665e8d8bef9SDimitry Andric else if (Width > 64) 666e8d8bef9SDimitry Andric break; // Can't handle this. 667e8d8bef9SDimitry Andric 668e8d8bef9SDimitry Andric if (Width != NewWidth) { 669e8d8bef9SDimitry Andric IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 670e8d8bef9SDimitry Andric if (CmpInst::isSigned(SrcPred)) { 671e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 672e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 673e8d8bef9SDimitry Andric } else { 674e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 675e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 676e8d8bef9SDimitry Andric } 677e8d8bef9SDimitry Andric } 678e8d8bef9SDimitry Andric } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 679e8d8bef9SDimitry Andric break; 680e8d8bef9SDimitry Andric 681e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 682e8d8bef9SDimitry Andric II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 683e8d8bef9SDimitry Andric Value *Args[] = {SrcLHS, SrcRHS, 684e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), SrcPred)}; 685e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 686e8d8bef9SDimitry Andric NewCall->takeName(&II); 687e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 688e8d8bef9SDimitry Andric } 689e8d8bef9SDimitry Andric 690e8d8bef9SDimitry Andric break; 691e8d8bef9SDimitry Andric } 692e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ballot: { 693e8d8bef9SDimitry Andric if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 694e8d8bef9SDimitry Andric if (Src->isZero()) { 695e8d8bef9SDimitry Andric // amdgcn.ballot(i1 0) is zero. 696e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 697e8d8bef9SDimitry Andric } 698e8d8bef9SDimitry Andric 699e8d8bef9SDimitry Andric if (Src->isOne()) { 700e8d8bef9SDimitry Andric // amdgcn.ballot(i1 1) is exec. 701e8d8bef9SDimitry Andric const char *RegName = "exec"; 702e8d8bef9SDimitry Andric if (II.getType()->isIntegerTy(32)) 703e8d8bef9SDimitry Andric RegName = "exec_lo"; 704e8d8bef9SDimitry Andric else if (!II.getType()->isIntegerTy(64)) 705e8d8bef9SDimitry Andric break; 706e8d8bef9SDimitry Andric 707e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 708e8d8bef9SDimitry Andric II.getModule(), Intrinsic::read_register, II.getType()); 709e8d8bef9SDimitry Andric Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)}; 710e8d8bef9SDimitry Andric MDNode *MD = MDNode::get(II.getContext(), MDArgs); 711e8d8bef9SDimitry Andric Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 712e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 713349cc55cSDimitry Andric NewCall->addFnAttr(Attribute::Convergent); 714e8d8bef9SDimitry Andric NewCall->takeName(&II); 715e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 716e8d8bef9SDimitry Andric } 717e8d8bef9SDimitry Andric } 718e8d8bef9SDimitry Andric break; 719e8d8bef9SDimitry Andric } 720e8d8bef9SDimitry Andric case Intrinsic::amdgcn_wqm_vote: { 721e8d8bef9SDimitry Andric // wqm_vote is identity when the argument is constant. 722e8d8bef9SDimitry Andric if (!isa<Constant>(II.getArgOperand(0))) 723e8d8bef9SDimitry Andric break; 724e8d8bef9SDimitry Andric 725e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric case Intrinsic::amdgcn_kill: { 728e8d8bef9SDimitry Andric const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 729e8d8bef9SDimitry Andric if (!C || !C->getZExtValue()) 730e8d8bef9SDimitry Andric break; 731e8d8bef9SDimitry Andric 732e8d8bef9SDimitry Andric // amdgcn.kill(i1 1) is a no-op 733e8d8bef9SDimitry Andric return IC.eraseInstFromFunction(II); 734e8d8bef9SDimitry Andric } 735e8d8bef9SDimitry Andric case Intrinsic::amdgcn_update_dpp: { 736e8d8bef9SDimitry Andric Value *Old = II.getArgOperand(0); 737e8d8bef9SDimitry Andric 738e8d8bef9SDimitry Andric auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 739e8d8bef9SDimitry Andric auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 740e8d8bef9SDimitry Andric auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 741e8d8bef9SDimitry Andric if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 742e8d8bef9SDimitry Andric BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 743e8d8bef9SDimitry Andric break; 744e8d8bef9SDimitry Andric 745e8d8bef9SDimitry Andric // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 746e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 747e8d8bef9SDimitry Andric } 748e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlane16: 749e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlanex16: { 750e8d8bef9SDimitry Andric // Discard vdst_in if it's not going to be read. 751e8d8bef9SDimitry Andric Value *VDstIn = II.getArgOperand(0); 752e8d8bef9SDimitry Andric if (isa<UndefValue>(VDstIn)) 753e8d8bef9SDimitry Andric break; 754e8d8bef9SDimitry Andric 755e8d8bef9SDimitry Andric ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4)); 756e8d8bef9SDimitry Andric ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5)); 757e8d8bef9SDimitry Andric if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 758e8d8bef9SDimitry Andric break; 759e8d8bef9SDimitry Andric 760e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 761e8d8bef9SDimitry Andric } 762e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readfirstlane: 763e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readlane: { 764e8d8bef9SDimitry Andric // A constant value is trivially uniform. 765e8d8bef9SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 766e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, C); 767e8d8bef9SDimitry Andric } 768e8d8bef9SDimitry Andric 769e8d8bef9SDimitry Andric // The rest of these may not be safe if the exec may not be the same between 770e8d8bef9SDimitry Andric // the def and use. 771e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 772e8d8bef9SDimitry Andric Instruction *SrcInst = dyn_cast<Instruction>(Src); 773e8d8bef9SDimitry Andric if (SrcInst && SrcInst->getParent() != II.getParent()) 774e8d8bef9SDimitry Andric break; 775e8d8bef9SDimitry Andric 776e8d8bef9SDimitry Andric // readfirstlane (readfirstlane x) -> readfirstlane x 777e8d8bef9SDimitry Andric // readlane (readfirstlane x), y -> readfirstlane x 778e8d8bef9SDimitry Andric if (match(Src, 779e8d8bef9SDimitry Andric PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 780e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 781e8d8bef9SDimitry Andric } 782e8d8bef9SDimitry Andric 783e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_readfirstlane) { 784e8d8bef9SDimitry Andric // readfirstlane (readlane x, y) -> readlane x, y 785e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 786e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 787e8d8bef9SDimitry Andric } 788e8d8bef9SDimitry Andric } else { 789e8d8bef9SDimitry Andric // readlane (readlane x, y), y -> readlane x, y 790e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 791e8d8bef9SDimitry Andric PatternMatch::m_Value(), 792e8d8bef9SDimitry Andric PatternMatch::m_Specific(II.getArgOperand(1))))) { 793e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 794e8d8bef9SDimitry Andric } 795e8d8bef9SDimitry Andric } 796e8d8bef9SDimitry Andric 797e8d8bef9SDimitry Andric break; 798e8d8bef9SDimitry Andric } 799e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ldexp: { 800e8d8bef9SDimitry Andric // FIXME: This doesn't introduce new instructions and belongs in 801e8d8bef9SDimitry Andric // InstructionSimplify. 802e8d8bef9SDimitry Andric Type *Ty = II.getType(); 803e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 804e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 805e8d8bef9SDimitry Andric 806e8d8bef9SDimitry Andric // Folding undef to qnan is safe regardless of the FP mode. 807e8d8bef9SDimitry Andric if (isa<UndefValue>(Op0)) { 808e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 809e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 810e8d8bef9SDimitry Andric } 811e8d8bef9SDimitry Andric 812e8d8bef9SDimitry Andric const APFloat *C = nullptr; 813e8d8bef9SDimitry Andric match(Op0, PatternMatch::m_APFloat(C)); 814e8d8bef9SDimitry Andric 815e8d8bef9SDimitry Andric // FIXME: Should flush denorms depending on FP mode, but that's ignored 816e8d8bef9SDimitry Andric // everywhere else. 817e8d8bef9SDimitry Andric // 818e8d8bef9SDimitry Andric // These cases should be safe, even with strictfp. 819e8d8bef9SDimitry Andric // ldexp(0.0, x) -> 0.0 820e8d8bef9SDimitry Andric // ldexp(-0.0, x) -> -0.0 821e8d8bef9SDimitry Andric // ldexp(inf, x) -> inf 822e8d8bef9SDimitry Andric // ldexp(-inf, x) -> -inf 823e8d8bef9SDimitry Andric if (C && (C->isZero() || C->isInfinity())) { 824e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Op0); 825e8d8bef9SDimitry Andric } 826e8d8bef9SDimitry Andric 827e8d8bef9SDimitry Andric // With strictfp, be more careful about possibly needing to flush denormals 828e8d8bef9SDimitry Andric // or not, and snan behavior depends on ieee_mode. 829e8d8bef9SDimitry Andric if (II.isStrictFP()) 830e8d8bef9SDimitry Andric break; 831e8d8bef9SDimitry Andric 832e8d8bef9SDimitry Andric if (C && C->isNaN()) { 833e8d8bef9SDimitry Andric // FIXME: We just need to make the nan quiet here, but that's unavailable 834e8d8bef9SDimitry Andric // on APFloat, only IEEEfloat 835e8d8bef9SDimitry Andric auto *Quieted = 836e8d8bef9SDimitry Andric ConstantFP::get(Ty, scalbn(*C, 0, APFloat::rmNearestTiesToEven)); 837e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Quieted); 838e8d8bef9SDimitry Andric } 839e8d8bef9SDimitry Andric 840e8d8bef9SDimitry Andric // ldexp(x, 0) -> x 841e8d8bef9SDimitry Andric // ldexp(x, undef) -> x 842e8d8bef9SDimitry Andric if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { 843e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Op0); 844e8d8bef9SDimitry Andric } 845e8d8bef9SDimitry Andric 846e8d8bef9SDimitry Andric break; 847e8d8bef9SDimitry Andric } 848e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmul_legacy: { 849e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 850e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 851e8d8bef9SDimitry Andric 852e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 853e8d8bef9SDimitry Andric // infinity, gives +0.0. 854e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 855e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 856e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) 857e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNullValue(II.getType())); 858e8d8bef9SDimitry Andric 859e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 860e8d8bef9SDimitry Andric // normal fmul instruction instead. 861e8d8bef9SDimitry Andric if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) { 862e8d8bef9SDimitry Andric auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 863e8d8bef9SDimitry Andric FMul->takeName(&II); 864e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FMul); 865e8d8bef9SDimitry Andric } 866e8d8bef9SDimitry Andric break; 867e8d8bef9SDimitry Andric } 868e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fma_legacy: { 869e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 870e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 871e8d8bef9SDimitry Andric Value *Op2 = II.getArgOperand(2); 872e8d8bef9SDimitry Andric 873e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 874e8d8bef9SDimitry Andric // infinity, gives +0.0. 875e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 876e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 877e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) { 878e8d8bef9SDimitry Andric // It's tempting to just return Op2 here, but that would give the wrong 879e8d8bef9SDimitry Andric // result if Op2 was -0.0. 880e8d8bef9SDimitry Andric auto *Zero = ConstantFP::getNullValue(II.getType()); 881e8d8bef9SDimitry Andric auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 882e8d8bef9SDimitry Andric FAdd->takeName(&II); 883e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FAdd); 884e8d8bef9SDimitry Andric } 885e8d8bef9SDimitry Andric 886e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 887e8d8bef9SDimitry Andric // normal fma instead. 888e8d8bef9SDimitry Andric if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) { 889e8d8bef9SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 890e8d8bef9SDimitry Andric II.getModule(), Intrinsic::fma, II.getType())); 891e8d8bef9SDimitry Andric return &II; 892e8d8bef9SDimitry Andric } 893e8d8bef9SDimitry Andric break; 894e8d8bef9SDimitry Andric } 895*0eae32dcSDimitry Andric case Intrinsic::amdgcn_is_shared: 896*0eae32dcSDimitry Andric case Intrinsic::amdgcn_is_private: { 897*0eae32dcSDimitry Andric if (isa<UndefValue>(II.getArgOperand(0))) 898*0eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 899*0eae32dcSDimitry Andric 900*0eae32dcSDimitry Andric if (isa<ConstantPointerNull>(II.getArgOperand(0))) 901*0eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 902*0eae32dcSDimitry Andric break; 903*0eae32dcSDimitry Andric } 904e8d8bef9SDimitry Andric default: { 905e8d8bef9SDimitry Andric if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 906e8d8bef9SDimitry Andric AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 907e8d8bef9SDimitry Andric return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 908e8d8bef9SDimitry Andric } 909e8d8bef9SDimitry Andric } 910e8d8bef9SDimitry Andric } 911e8d8bef9SDimitry Andric return None; 912e8d8bef9SDimitry Andric } 913e8d8bef9SDimitry Andric 914e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 915e8d8bef9SDimitry Andric /// 916e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 917e8d8bef9SDimitry Andric /// struct returns. 918e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 919e8d8bef9SDimitry Andric IntrinsicInst &II, 920e8d8bef9SDimitry Andric APInt DemandedElts, 921e8d8bef9SDimitry Andric int DMaskIdx = -1) { 922e8d8bef9SDimitry Andric 923e8d8bef9SDimitry Andric auto *IIVTy = cast<FixedVectorType>(II.getType()); 924e8d8bef9SDimitry Andric unsigned VWidth = IIVTy->getNumElements(); 925e8d8bef9SDimitry Andric if (VWidth == 1) 926e8d8bef9SDimitry Andric return nullptr; 927e8d8bef9SDimitry Andric 928e8d8bef9SDimitry Andric IRBuilderBase::InsertPointGuard Guard(IC.Builder); 929e8d8bef9SDimitry Andric IC.Builder.SetInsertPoint(&II); 930e8d8bef9SDimitry Andric 931e8d8bef9SDimitry Andric // Assume the arguments are unchanged and later override them, if needed. 932e8d8bef9SDimitry Andric SmallVector<Value *, 16> Args(II.args()); 933e8d8bef9SDimitry Andric 934e8d8bef9SDimitry Andric if (DMaskIdx < 0) { 935e8d8bef9SDimitry Andric // Buffer case. 936e8d8bef9SDimitry Andric 937e8d8bef9SDimitry Andric const unsigned ActiveBits = DemandedElts.getActiveBits(); 938e8d8bef9SDimitry Andric const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 939e8d8bef9SDimitry Andric 940e8d8bef9SDimitry Andric // Start assuming the prefix of elements is demanded, but possibly clear 941e8d8bef9SDimitry Andric // some other bits if there are trailing zeros (unused components at front) 942e8d8bef9SDimitry Andric // and update offset. 943e8d8bef9SDimitry Andric DemandedElts = (1 << ActiveBits) - 1; 944e8d8bef9SDimitry Andric 945e8d8bef9SDimitry Andric if (UnusedComponentsAtFront > 0) { 946e8d8bef9SDimitry Andric static const unsigned InvalidOffsetIdx = 0xf; 947e8d8bef9SDimitry Andric 948e8d8bef9SDimitry Andric unsigned OffsetIdx; 949e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 950e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 951e8d8bef9SDimitry Andric OffsetIdx = 1; 952e8d8bef9SDimitry Andric break; 953e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 954e8d8bef9SDimitry Andric // If resulting type is vec3, there is no point in trimming the 955e8d8bef9SDimitry Andric // load with updated offset, as the vec3 would most likely be widened to 956e8d8bef9SDimitry Andric // vec4 anyway during lowering. 957e8d8bef9SDimitry Andric if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 958e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 959e8d8bef9SDimitry Andric else 960e8d8bef9SDimitry Andric OffsetIdx = 1; 961e8d8bef9SDimitry Andric break; 962e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 963e8d8bef9SDimitry Andric OffsetIdx = 2; 964e8d8bef9SDimitry Andric break; 965e8d8bef9SDimitry Andric default: 966e8d8bef9SDimitry Andric // TODO: handle tbuffer* intrinsics. 967e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 968e8d8bef9SDimitry Andric break; 969e8d8bef9SDimitry Andric } 970e8d8bef9SDimitry Andric 971e8d8bef9SDimitry Andric if (OffsetIdx != InvalidOffsetIdx) { 972e8d8bef9SDimitry Andric // Clear demanded bits and update the offset. 973e8d8bef9SDimitry Andric DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 974e8d8bef9SDimitry Andric auto *Offset = II.getArgOperand(OffsetIdx); 975e8d8bef9SDimitry Andric unsigned SingleComponentSizeInBits = 976e8d8bef9SDimitry Andric IC.getDataLayout().getTypeSizeInBits(II.getType()->getScalarType()); 977e8d8bef9SDimitry Andric unsigned OffsetAdd = 978e8d8bef9SDimitry Andric UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 979e8d8bef9SDimitry Andric auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 980e8d8bef9SDimitry Andric Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 981e8d8bef9SDimitry Andric } 982e8d8bef9SDimitry Andric } 983e8d8bef9SDimitry Andric } else { 984e8d8bef9SDimitry Andric // Image case. 985e8d8bef9SDimitry Andric 986e8d8bef9SDimitry Andric ConstantInt *DMask = cast<ConstantInt>(II.getArgOperand(DMaskIdx)); 987e8d8bef9SDimitry Andric unsigned DMaskVal = DMask->getZExtValue() & 0xf; 988e8d8bef9SDimitry Andric 989e8d8bef9SDimitry Andric // Mask off values that are undefined because the dmask doesn't cover them 990e8d8bef9SDimitry Andric DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 991e8d8bef9SDimitry Andric 992e8d8bef9SDimitry Andric unsigned NewDMaskVal = 0; 993e8d8bef9SDimitry Andric unsigned OrigLoadIdx = 0; 994e8d8bef9SDimitry Andric for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 995e8d8bef9SDimitry Andric const unsigned Bit = 1 << SrcIdx; 996e8d8bef9SDimitry Andric if (!!(DMaskVal & Bit)) { 997e8d8bef9SDimitry Andric if (!!DemandedElts[OrigLoadIdx]) 998e8d8bef9SDimitry Andric NewDMaskVal |= Bit; 999e8d8bef9SDimitry Andric OrigLoadIdx++; 1000e8d8bef9SDimitry Andric } 1001e8d8bef9SDimitry Andric } 1002e8d8bef9SDimitry Andric 1003e8d8bef9SDimitry Andric if (DMaskVal != NewDMaskVal) 1004e8d8bef9SDimitry Andric Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1005e8d8bef9SDimitry Andric } 1006e8d8bef9SDimitry Andric 1007e8d8bef9SDimitry Andric unsigned NewNumElts = DemandedElts.countPopulation(); 1008e8d8bef9SDimitry Andric if (!NewNumElts) 1009e8d8bef9SDimitry Andric return UndefValue::get(II.getType()); 1010e8d8bef9SDimitry Andric 1011e8d8bef9SDimitry Andric if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1012e8d8bef9SDimitry Andric if (DMaskIdx >= 0) 1013e8d8bef9SDimitry Andric II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1014e8d8bef9SDimitry Andric return nullptr; 1015e8d8bef9SDimitry Andric } 1016e8d8bef9SDimitry Andric 1017e8d8bef9SDimitry Andric // Validate function argument and return types, extracting overloaded types 1018e8d8bef9SDimitry Andric // along the way. 1019e8d8bef9SDimitry Andric SmallVector<Type *, 6> OverloadTys; 1020e8d8bef9SDimitry Andric if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1021e8d8bef9SDimitry Andric return nullptr; 1022e8d8bef9SDimitry Andric 1023e8d8bef9SDimitry Andric Module *M = II.getParent()->getParent()->getParent(); 1024e8d8bef9SDimitry Andric Type *EltTy = IIVTy->getElementType(); 1025e8d8bef9SDimitry Andric Type *NewTy = 1026e8d8bef9SDimitry Andric (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1027e8d8bef9SDimitry Andric 1028e8d8bef9SDimitry Andric OverloadTys[0] = NewTy; 1029e8d8bef9SDimitry Andric Function *NewIntrin = 1030e8d8bef9SDimitry Andric Intrinsic::getDeclaration(M, II.getIntrinsicID(), OverloadTys); 1031e8d8bef9SDimitry Andric 1032e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1033e8d8bef9SDimitry Andric NewCall->takeName(&II); 1034e8d8bef9SDimitry Andric NewCall->copyMetadata(II); 1035e8d8bef9SDimitry Andric 1036e8d8bef9SDimitry Andric if (NewNumElts == 1) { 1037e8d8bef9SDimitry Andric return IC.Builder.CreateInsertElement(UndefValue::get(II.getType()), 1038e8d8bef9SDimitry Andric NewCall, 1039e8d8bef9SDimitry Andric DemandedElts.countTrailingZeros()); 1040e8d8bef9SDimitry Andric } 1041e8d8bef9SDimitry Andric 1042e8d8bef9SDimitry Andric SmallVector<int, 8> EltMask; 1043e8d8bef9SDimitry Andric unsigned NewLoadIdx = 0; 1044e8d8bef9SDimitry Andric for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1045e8d8bef9SDimitry Andric if (!!DemandedElts[OrigLoadIdx]) 1046e8d8bef9SDimitry Andric EltMask.push_back(NewLoadIdx++); 1047e8d8bef9SDimitry Andric else 1048e8d8bef9SDimitry Andric EltMask.push_back(NewNumElts); 1049e8d8bef9SDimitry Andric } 1050e8d8bef9SDimitry Andric 1051e8d8bef9SDimitry Andric Value *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1052e8d8bef9SDimitry Andric 1053e8d8bef9SDimitry Andric return Shuffle; 1054e8d8bef9SDimitry Andric } 1055e8d8bef9SDimitry Andric 1056e8d8bef9SDimitry Andric Optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1057e8d8bef9SDimitry Andric InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1058e8d8bef9SDimitry Andric APInt &UndefElts2, APInt &UndefElts3, 1059e8d8bef9SDimitry Andric std::function<void(Instruction *, unsigned, APInt, APInt &)> 1060e8d8bef9SDimitry Andric SimplifyAndSetOp) const { 1061e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1062e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load: 1063e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load_format: 1064e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 1065e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load_format: 1066e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_load: 1067e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1068e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 1069e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load_format: 1070e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_load: 1071e8d8bef9SDimitry Andric case Intrinsic::amdgcn_tbuffer_load: 1072e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1073e8d8bef9SDimitry Andric default: { 1074e8d8bef9SDimitry Andric if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1075e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1076e8d8bef9SDimitry Andric } 1077e8d8bef9SDimitry Andric break; 1078e8d8bef9SDimitry Andric } 1079e8d8bef9SDimitry Andric } 1080e8d8bef9SDimitry Andric return None; 1081e8d8bef9SDimitry Andric } 1082