xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUInstCombineIntrinsic.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // \file
10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the
11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide
12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target
13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest.
14e8d8bef9SDimitry Andric //
15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
16e8d8bef9SDimitry Andric 
17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h"
18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h"
19e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
20bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h"
21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h"
23bdd1243dSDimitry Andric #include <optional>
24e8d8bef9SDimitry Andric 
25e8d8bef9SDimitry Andric using namespace llvm;
26*06c3fb27SDimitry Andric using namespace llvm::PatternMatch;
27e8d8bef9SDimitry Andric 
28e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti"
29e8d8bef9SDimitry Andric 
30e8d8bef9SDimitry Andric namespace {
31e8d8bef9SDimitry Andric 
32e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic {
33e8d8bef9SDimitry Andric   unsigned Intr;
34e8d8bef9SDimitry Andric };
35e8d8bef9SDimitry Andric 
36e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
37e8d8bef9SDimitry Andric #include "InstCombineTables.inc"
38e8d8bef9SDimitry Andric 
39e8d8bef9SDimitry Andric } // end anonymous namespace
40e8d8bef9SDimitry Andric 
41e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
42e8d8bef9SDimitry Andric //
43e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for
44e8d8bef9SDimitry Andric // handling NaNs.
45e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
46e8d8bef9SDimitry Andric                            const APFloat &Src2) {
47e8d8bef9SDimitry Andric   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
48e8d8bef9SDimitry Andric 
49e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
50e8d8bef9SDimitry Andric   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
51e8d8bef9SDimitry Andric   if (Cmp0 == APFloat::cmpEqual)
52e8d8bef9SDimitry Andric     return maxnum(Src1, Src2);
53e8d8bef9SDimitry Andric 
54e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
55e8d8bef9SDimitry Andric   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
56e8d8bef9SDimitry Andric   if (Cmp1 == APFloat::cmpEqual)
57e8d8bef9SDimitry Andric     return maxnum(Src0, Src2);
58e8d8bef9SDimitry Andric 
59e8d8bef9SDimitry Andric   return maxnum(Src0, Src1);
60e8d8bef9SDimitry Andric }
61e8d8bef9SDimitry Andric 
62e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing
63e8d8bef9SDimitry Andric // precision.
6404eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned
6504eeddc0SDimitry Andric // integer (IsFloat = false).
6604eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) {
67e8d8bef9SDimitry Andric   Type *VTy = V.getType();
68e8d8bef9SDimitry Andric   if (VTy->isHalfTy() || VTy->isIntegerTy(16)) {
69e8d8bef9SDimitry Andric     // The value is already 16-bit, so we don't want to convert to 16-bit again!
70e8d8bef9SDimitry Andric     return false;
71e8d8bef9SDimitry Andric   }
7204eeddc0SDimitry Andric   if (IsFloat) {
73e8d8bef9SDimitry Andric     if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) {
7404eeddc0SDimitry Andric       // We need to check that if we cast the index down to a half, we do not
7504eeddc0SDimitry Andric       // lose precision.
76e8d8bef9SDimitry Andric       APFloat FloatValue(ConstFloat->getValueAPF());
77e8d8bef9SDimitry Andric       bool LosesInfo = true;
7804eeddc0SDimitry Andric       FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero,
7904eeddc0SDimitry Andric                          &LosesInfo);
80e8d8bef9SDimitry Andric       return !LosesInfo;
81e8d8bef9SDimitry Andric     }
8204eeddc0SDimitry Andric   } else {
8304eeddc0SDimitry Andric     if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) {
8404eeddc0SDimitry Andric       // We need to check that if we cast the index down to an i16, we do not
8504eeddc0SDimitry Andric       // lose precision.
8604eeddc0SDimitry Andric       APInt IntValue(ConstInt->getValue());
8704eeddc0SDimitry Andric       return IntValue.getActiveBits() <= 16;
8804eeddc0SDimitry Andric     }
8904eeddc0SDimitry Andric   }
9004eeddc0SDimitry Andric 
91e8d8bef9SDimitry Andric   Value *CastSrc;
9204eeddc0SDimitry Andric   bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc)))
9304eeddc0SDimitry Andric                        : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc)));
9404eeddc0SDimitry Andric   if (IsExt) {
95e8d8bef9SDimitry Andric     Type *CastSrcTy = CastSrc->getType();
96e8d8bef9SDimitry Andric     if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16))
97e8d8bef9SDimitry Andric       return true;
98e8d8bef9SDimitry Andric   }
99e8d8bef9SDimitry Andric 
100e8d8bef9SDimitry Andric   return false;
101e8d8bef9SDimitry Andric }
102e8d8bef9SDimitry Andric 
103e8d8bef9SDimitry Andric // Convert a value to 16-bit.
104e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) {
105e8d8bef9SDimitry Andric   Type *VTy = V.getType();
106e8d8bef9SDimitry Andric   if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V))
107e8d8bef9SDimitry Andric     return cast<Instruction>(&V)->getOperand(0);
108e8d8bef9SDimitry Andric   if (VTy->isIntegerTy())
109e8d8bef9SDimitry Andric     return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false);
110e8d8bef9SDimitry Andric   if (VTy->isFloatingPointTy())
111e8d8bef9SDimitry Andric     return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext()));
112e8d8bef9SDimitry Andric 
113e8d8bef9SDimitry Andric   llvm_unreachable("Should never be called!");
114e8d8bef9SDimitry Andric }
115e8d8bef9SDimitry Andric 
11681ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with
11781ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with
11881ad6265SDimitry Andric /// this newly created intrinsic call.
119bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall(
12081ad6265SDimitry Andric     IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr,
12181ad6265SDimitry Andric     InstCombiner &IC,
12204eeddc0SDimitry Andric     std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)>
12304eeddc0SDimitry Andric         Func) {
12404eeddc0SDimitry Andric   SmallVector<Type *, 4> ArgTys;
12581ad6265SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys))
126bdd1243dSDimitry Andric     return std::nullopt;
12704eeddc0SDimitry Andric 
12881ad6265SDimitry Andric   SmallVector<Value *, 8> Args(OldIntr.args());
12904eeddc0SDimitry Andric 
13004eeddc0SDimitry Andric   // Modify arguments and types
13104eeddc0SDimitry Andric   Func(Args, ArgTys);
13204eeddc0SDimitry Andric 
13381ad6265SDimitry Andric   Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys);
13404eeddc0SDimitry Andric 
13504eeddc0SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(I, Args);
13681ad6265SDimitry Andric   NewCall->takeName(&OldIntr);
13781ad6265SDimitry Andric   NewCall->copyMetadata(OldIntr);
13804eeddc0SDimitry Andric   if (isa<FPMathOperator>(NewCall))
13981ad6265SDimitry Andric     NewCall->copyFastMathFlags(&OldIntr);
14004eeddc0SDimitry Andric 
14104eeddc0SDimitry Andric   // Erase and replace uses
14281ad6265SDimitry Andric   if (!InstToReplace.getType()->isVoidTy())
14381ad6265SDimitry Andric     IC.replaceInstUsesWith(InstToReplace, NewCall);
14481ad6265SDimitry Andric 
14581ad6265SDimitry Andric   bool RemoveOldIntr = &OldIntr != &InstToReplace;
14681ad6265SDimitry Andric 
14781ad6265SDimitry Andric   auto RetValue = IC.eraseInstFromFunction(InstToReplace);
14881ad6265SDimitry Andric   if (RemoveOldIntr)
14981ad6265SDimitry Andric     IC.eraseInstFromFunction(OldIntr);
15081ad6265SDimitry Andric 
15181ad6265SDimitry Andric   return RetValue;
15204eeddc0SDimitry Andric }
15304eeddc0SDimitry Andric 
154bdd1243dSDimitry Andric static std::optional<Instruction *>
155e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST,
156e8d8bef9SDimitry Andric                              const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr,
157e8d8bef9SDimitry Andric                              IntrinsicInst &II, InstCombiner &IC) {
15804eeddc0SDimitry Andric   // Optimize _L to _LZ when _L is zero
15904eeddc0SDimitry Andric   if (const auto *LZMappingInfo =
16004eeddc0SDimitry Andric           AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) {
16104eeddc0SDimitry Andric     if (auto *ConstantLod =
16204eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) {
16304eeddc0SDimitry Andric       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
16404eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
16504eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ,
16604eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
16704eeddc0SDimitry Andric         return modifyIntrinsicCall(
16881ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
16904eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->LodIndex);
17004eeddc0SDimitry Andric             });
17104eeddc0SDimitry Andric       }
17204eeddc0SDimitry Andric     }
17304eeddc0SDimitry Andric   }
17404eeddc0SDimitry Andric 
17504eeddc0SDimitry Andric   // Optimize _mip away, when 'lod' is zero
17604eeddc0SDimitry Andric   if (const auto *MIPMappingInfo =
17704eeddc0SDimitry Andric           AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) {
17804eeddc0SDimitry Andric     if (auto *ConstantMip =
17904eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) {
18004eeddc0SDimitry Andric       if (ConstantMip->isZero()) {
18104eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
18204eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP,
18304eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
18404eeddc0SDimitry Andric         return modifyIntrinsicCall(
18581ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
18604eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->MipIndex);
18704eeddc0SDimitry Andric             });
18804eeddc0SDimitry Andric       }
18904eeddc0SDimitry Andric     }
19004eeddc0SDimitry Andric   }
19104eeddc0SDimitry Andric 
19204eeddc0SDimitry Andric   // Optimize _bias away when 'bias' is zero
19304eeddc0SDimitry Andric   if (const auto *BiasMappingInfo =
19404eeddc0SDimitry Andric           AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) {
19504eeddc0SDimitry Andric     if (auto *ConstantBias =
19604eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) {
19704eeddc0SDimitry Andric       if (ConstantBias->isZero()) {
19804eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
19904eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias,
20004eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
20104eeddc0SDimitry Andric         return modifyIntrinsicCall(
20281ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
20304eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->BiasIndex);
20404eeddc0SDimitry Andric               ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg);
20504eeddc0SDimitry Andric             });
20604eeddc0SDimitry Andric       }
20704eeddc0SDimitry Andric     }
20804eeddc0SDimitry Andric   }
20904eeddc0SDimitry Andric 
21004eeddc0SDimitry Andric   // Optimize _offset away when 'offset' is zero
21104eeddc0SDimitry Andric   if (const auto *OffsetMappingInfo =
21204eeddc0SDimitry Andric           AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) {
21304eeddc0SDimitry Andric     if (auto *ConstantOffset =
21404eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) {
21504eeddc0SDimitry Andric       if (ConstantOffset->isZero()) {
21604eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
21704eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(
21804eeddc0SDimitry Andric                 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim);
21904eeddc0SDimitry Andric         return modifyIntrinsicCall(
22081ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
22104eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->OffsetIndex);
22204eeddc0SDimitry Andric             });
22304eeddc0SDimitry Andric       }
22404eeddc0SDimitry Andric     }
22504eeddc0SDimitry Andric   }
22604eeddc0SDimitry Andric 
22781ad6265SDimitry Andric   // Try to use D16
22881ad6265SDimitry Andric   if (ST->hasD16Images()) {
22981ad6265SDimitry Andric 
23081ad6265SDimitry Andric     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
23181ad6265SDimitry Andric         AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode);
23281ad6265SDimitry Andric 
23381ad6265SDimitry Andric     if (BaseOpcode->HasD16) {
23481ad6265SDimitry Andric 
23581ad6265SDimitry Andric       // If the only use of image intrinsic is a fptrunc (with conversion to
23681ad6265SDimitry Andric       // half) then both fptrunc and image intrinsic will be replaced with image
23781ad6265SDimitry Andric       // intrinsic with D16 flag.
23881ad6265SDimitry Andric       if (II.hasOneUse()) {
23981ad6265SDimitry Andric         Instruction *User = II.user_back();
24081ad6265SDimitry Andric 
24181ad6265SDimitry Andric         if (User->getOpcode() == Instruction::FPTrunc &&
24281ad6265SDimitry Andric             User->getType()->getScalarType()->isHalfTy()) {
24381ad6265SDimitry Andric 
24481ad6265SDimitry Andric           return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC,
24581ad6265SDimitry Andric                                      [&](auto &Args, auto &ArgTys) {
24681ad6265SDimitry Andric                                        // Change return type of image intrinsic.
24781ad6265SDimitry Andric                                        // Set it to return type of fptrunc.
24881ad6265SDimitry Andric                                        ArgTys[0] = User->getType();
24981ad6265SDimitry Andric                                      });
25081ad6265SDimitry Andric         }
25181ad6265SDimitry Andric       }
25281ad6265SDimitry Andric     }
25381ad6265SDimitry Andric   }
25481ad6265SDimitry Andric 
25504eeddc0SDimitry Andric   // Try to use A16 or G16
256e8d8bef9SDimitry Andric   if (!ST->hasA16() && !ST->hasG16())
257bdd1243dSDimitry Andric     return std::nullopt;
258e8d8bef9SDimitry Andric 
25904eeddc0SDimitry Andric   // Address is interpreted as float if the instruction has a sampler or as
26004eeddc0SDimitry Andric   // unsigned int if there is no sampler.
26104eeddc0SDimitry Andric   bool HasSampler =
26204eeddc0SDimitry Andric       AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler;
263e8d8bef9SDimitry Andric   bool FloatCoord = false;
264e8d8bef9SDimitry Andric   // true means derivatives can be converted to 16 bit, coordinates not
265e8d8bef9SDimitry Andric   bool OnlyDerivatives = false;
266e8d8bef9SDimitry Andric 
267e8d8bef9SDimitry Andric   for (unsigned OperandIndex = ImageDimIntr->GradientStart;
268e8d8bef9SDimitry Andric        OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) {
269e8d8bef9SDimitry Andric     Value *Coord = II.getOperand(OperandIndex);
270e8d8bef9SDimitry Andric     // If the values are not derived from 16-bit values, we cannot optimize.
27104eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) {
272e8d8bef9SDimitry Andric       if (OperandIndex < ImageDimIntr->CoordStart ||
273e8d8bef9SDimitry Andric           ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) {
274bdd1243dSDimitry Andric         return std::nullopt;
275e8d8bef9SDimitry Andric       }
276e8d8bef9SDimitry Andric       // All gradients can be converted, so convert only them
277e8d8bef9SDimitry Andric       OnlyDerivatives = true;
278e8d8bef9SDimitry Andric       break;
279e8d8bef9SDimitry Andric     }
280e8d8bef9SDimitry Andric 
281e8d8bef9SDimitry Andric     assert(OperandIndex == ImageDimIntr->GradientStart ||
282e8d8bef9SDimitry Andric            FloatCoord == Coord->getType()->isFloatingPointTy());
283e8d8bef9SDimitry Andric     FloatCoord = Coord->getType()->isFloatingPointTy();
284e8d8bef9SDimitry Andric   }
285e8d8bef9SDimitry Andric 
28604eeddc0SDimitry Andric   if (!OnlyDerivatives && !ST->hasA16())
287e8d8bef9SDimitry Andric     OnlyDerivatives = true; // Only supports G16
28804eeddc0SDimitry Andric 
28904eeddc0SDimitry Andric   // Check if there is a bias parameter and if it can be converted to f16
29004eeddc0SDimitry Andric   if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
29104eeddc0SDimitry Andric     Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
29204eeddc0SDimitry Andric     assert(HasSampler &&
29304eeddc0SDimitry Andric            "Only image instructions with a sampler can have a bias");
29404eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Bias, HasSampler))
29504eeddc0SDimitry Andric       OnlyDerivatives = true;
296e8d8bef9SDimitry Andric   }
297e8d8bef9SDimitry Andric 
29804eeddc0SDimitry Andric   if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart ==
29904eeddc0SDimitry Andric                                                ImageDimIntr->CoordStart))
300bdd1243dSDimitry Andric     return std::nullopt;
30104eeddc0SDimitry Andric 
302e8d8bef9SDimitry Andric   Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext())
303e8d8bef9SDimitry Andric                                : Type::getInt16Ty(II.getContext());
304e8d8bef9SDimitry Andric 
30504eeddc0SDimitry Andric   return modifyIntrinsicCall(
30681ad6265SDimitry Andric       II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) {
307e8d8bef9SDimitry Andric         ArgTys[ImageDimIntr->GradientTyArg] = CoordType;
30804eeddc0SDimitry Andric         if (!OnlyDerivatives) {
309e8d8bef9SDimitry Andric           ArgTys[ImageDimIntr->CoordTyArg] = CoordType;
310e8d8bef9SDimitry Andric 
31104eeddc0SDimitry Andric           // Change the bias type
31204eeddc0SDimitry Andric           if (ImageDimIntr->NumBiasArgs != 0)
31304eeddc0SDimitry Andric             ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext());
31404eeddc0SDimitry Andric         }
315e8d8bef9SDimitry Andric 
316e8d8bef9SDimitry Andric         unsigned EndIndex =
317e8d8bef9SDimitry Andric             OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd;
318e8d8bef9SDimitry Andric         for (unsigned OperandIndex = ImageDimIntr->GradientStart;
319e8d8bef9SDimitry Andric              OperandIndex < EndIndex; OperandIndex++) {
320e8d8bef9SDimitry Andric           Args[OperandIndex] =
321e8d8bef9SDimitry Andric               convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder);
322e8d8bef9SDimitry Andric         }
323e8d8bef9SDimitry Andric 
32404eeddc0SDimitry Andric         // Convert the bias
32504eeddc0SDimitry Andric         if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
32604eeddc0SDimitry Andric           Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
32704eeddc0SDimitry Andric           Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder);
32804eeddc0SDimitry Andric         }
32904eeddc0SDimitry Andric       });
330e8d8bef9SDimitry Andric }
331e8d8bef9SDimitry Andric 
332*06c3fb27SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I,
333*06c3fb27SDimitry Andric                                            const Value *Op0, const Value *Op1,
334e8d8bef9SDimitry Andric                                            InstCombiner &IC) const {
335e8d8bef9SDimitry Andric   // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
336e8d8bef9SDimitry Andric   // infinity, gives +0.0. If we can prove we don't have one of the special
337e8d8bef9SDimitry Andric   // cases then we can use a normal multiply instead.
338e8d8bef9SDimitry Andric   // TODO: Create and use isKnownFiniteNonZero instead of just matching
339e8d8bef9SDimitry Andric   // constants here.
340e8d8bef9SDimitry Andric   if (match(Op0, PatternMatch::m_FiniteNonZero()) ||
341e8d8bef9SDimitry Andric       match(Op1, PatternMatch::m_FiniteNonZero())) {
342e8d8bef9SDimitry Andric     // One operand is not zero or infinity or NaN.
343e8d8bef9SDimitry Andric     return true;
344e8d8bef9SDimitry Andric   }
345*06c3fb27SDimitry Andric 
346e8d8bef9SDimitry Andric   auto *TLI = &IC.getTargetLibraryInfo();
347*06c3fb27SDimitry Andric   if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0,
348*06c3fb27SDimitry Andric                            &IC.getAssumptionCache(), &I,
349*06c3fb27SDimitry Andric                            &IC.getDominatorTree()) &&
350*06c3fb27SDimitry Andric       isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0,
351*06c3fb27SDimitry Andric                            &IC.getAssumptionCache(), &I,
352*06c3fb27SDimitry Andric                            &IC.getDominatorTree())) {
353e8d8bef9SDimitry Andric     // Neither operand is infinity or NaN.
354e8d8bef9SDimitry Andric     return true;
355e8d8bef9SDimitry Andric   }
356e8d8bef9SDimitry Andric   return false;
357e8d8bef9SDimitry Andric }
358e8d8bef9SDimitry Andric 
359*06c3fb27SDimitry Andric /// Match an fpext from half to float, or a constant we can convert.
360*06c3fb27SDimitry Andric static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) {
361*06c3fb27SDimitry Andric   if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc)))))
362*06c3fb27SDimitry Andric     return FPExtSrc->getType()->isHalfTy();
363*06c3fb27SDimitry Andric 
364*06c3fb27SDimitry Andric   ConstantFP *CFP;
365*06c3fb27SDimitry Andric   if (match(Arg, m_ConstantFP(CFP))) {
366*06c3fb27SDimitry Andric     bool LosesInfo;
367*06c3fb27SDimitry Andric     APFloat Val(CFP->getValueAPF());
368*06c3fb27SDimitry Andric     Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
369*06c3fb27SDimitry Andric     if (LosesInfo)
370*06c3fb27SDimitry Andric       return false;
371*06c3fb27SDimitry Andric 
372*06c3fb27SDimitry Andric     FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val);
373*06c3fb27SDimitry Andric     return true;
374*06c3fb27SDimitry Andric   }
375*06c3fb27SDimitry Andric 
376*06c3fb27SDimitry Andric   return false;
377*06c3fb27SDimitry Andric }
378*06c3fb27SDimitry Andric 
379*06c3fb27SDimitry Andric // Trim all zero components from the end of the vector \p UseV and return
380*06c3fb27SDimitry Andric // an appropriate bitset with known elements.
381*06c3fb27SDimitry Andric static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV,
382*06c3fb27SDimitry Andric                                        Instruction *I) {
383*06c3fb27SDimitry Andric   auto *VTy = cast<FixedVectorType>(UseV->getType());
384*06c3fb27SDimitry Andric   unsigned VWidth = VTy->getNumElements();
385*06c3fb27SDimitry Andric   APInt DemandedElts = APInt::getAllOnes(VWidth);
386*06c3fb27SDimitry Andric 
387*06c3fb27SDimitry Andric   for (int i = VWidth - 1; i > 0; --i) {
388*06c3fb27SDimitry Andric     auto *Elt = findScalarElement(UseV, i);
389*06c3fb27SDimitry Andric     if (!Elt)
390*06c3fb27SDimitry Andric       break;
391*06c3fb27SDimitry Andric 
392*06c3fb27SDimitry Andric     if (auto *ConstElt = dyn_cast<Constant>(Elt)) {
393*06c3fb27SDimitry Andric       if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt))
394*06c3fb27SDimitry Andric         break;
395*06c3fb27SDimitry Andric     } else {
396*06c3fb27SDimitry Andric       break;
397*06c3fb27SDimitry Andric     }
398*06c3fb27SDimitry Andric 
399*06c3fb27SDimitry Andric     DemandedElts.clearBit(i);
400*06c3fb27SDimitry Andric   }
401*06c3fb27SDimitry Andric 
402*06c3fb27SDimitry Andric   return DemandedElts;
403*06c3fb27SDimitry Andric }
404*06c3fb27SDimitry Andric 
405*06c3fb27SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
406*06c3fb27SDimitry Andric                                                     IntrinsicInst &II,
407*06c3fb27SDimitry Andric                                                     APInt DemandedElts,
408*06c3fb27SDimitry Andric                                                     int DMaskIdx = -1,
409*06c3fb27SDimitry Andric                                                     bool IsLoad = true);
410*06c3fb27SDimitry Andric 
411bdd1243dSDimitry Andric std::optional<Instruction *>
412e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
413e8d8bef9SDimitry Andric   Intrinsic::ID IID = II.getIntrinsicID();
414e8d8bef9SDimitry Andric   switch (IID) {
415e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rcp: {
416e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
417e8d8bef9SDimitry Andric 
418e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
419e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
420e8d8bef9SDimitry Andric       Type *Ty = II.getType();
421e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
422e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
423e8d8bef9SDimitry Andric     }
424e8d8bef9SDimitry Andric 
425e8d8bef9SDimitry Andric     if (II.isStrictFP())
426e8d8bef9SDimitry Andric       break;
427e8d8bef9SDimitry Andric 
428e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
429e8d8bef9SDimitry Andric       const APFloat &ArgVal = C->getValueAPF();
430e8d8bef9SDimitry Andric       APFloat Val(ArgVal.getSemantics(), 1);
431e8d8bef9SDimitry Andric       Val.divide(ArgVal, APFloat::rmNearestTiesToEven);
432e8d8bef9SDimitry Andric 
433e8d8bef9SDimitry Andric       // This is more precise than the instruction may give.
434e8d8bef9SDimitry Andric       //
435e8d8bef9SDimitry Andric       // TODO: The instruction always flushes denormal results (except for f16),
436e8d8bef9SDimitry Andric       // should this also?
437e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val));
438e8d8bef9SDimitry Andric     }
439e8d8bef9SDimitry Andric 
440e8d8bef9SDimitry Andric     break;
441e8d8bef9SDimitry Andric   }
442bdd1243dSDimitry Andric   case Intrinsic::amdgcn_sqrt:
443e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rsq: {
444e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
445e8d8bef9SDimitry Andric 
446e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
447e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
448e8d8bef9SDimitry Andric       Type *Ty = II.getType();
449e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
450e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
451e8d8bef9SDimitry Andric     }
452e8d8bef9SDimitry Andric 
453e8d8bef9SDimitry Andric     break;
454e8d8bef9SDimitry Andric   }
455*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_log:
456*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_exp2: {
457*06c3fb27SDimitry Andric     const bool IsLog = IID == Intrinsic::amdgcn_log;
458*06c3fb27SDimitry Andric     const bool IsExp = IID == Intrinsic::amdgcn_exp2;
459*06c3fb27SDimitry Andric     Value *Src = II.getArgOperand(0);
460*06c3fb27SDimitry Andric     Type *Ty = II.getType();
461*06c3fb27SDimitry Andric 
462*06c3fb27SDimitry Andric     if (isa<PoisonValue>(Src))
463*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
464*06c3fb27SDimitry Andric 
465*06c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src))
466*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty));
467*06c3fb27SDimitry Andric 
468*06c3fb27SDimitry Andric     if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
469*06c3fb27SDimitry Andric       if (C->isInfinity()) {
470*06c3fb27SDimitry Andric         // exp2(+inf) -> +inf
471*06c3fb27SDimitry Andric         // log2(+inf) -> +inf
472*06c3fb27SDimitry Andric         if (!C->isNegative())
473*06c3fb27SDimitry Andric           return IC.replaceInstUsesWith(II, C);
474*06c3fb27SDimitry Andric 
475*06c3fb27SDimitry Andric         // exp2(-inf) -> 0
476*06c3fb27SDimitry Andric         if (IsExp && C->isNegative())
477*06c3fb27SDimitry Andric           return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty));
478*06c3fb27SDimitry Andric       }
479*06c3fb27SDimitry Andric 
480*06c3fb27SDimitry Andric       if (II.isStrictFP())
481*06c3fb27SDimitry Andric         break;
482*06c3fb27SDimitry Andric 
483*06c3fb27SDimitry Andric       if (C->isNaN()) {
484*06c3fb27SDimitry Andric         Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet());
485*06c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, Quieted);
486*06c3fb27SDimitry Andric       }
487*06c3fb27SDimitry Andric 
488*06c3fb27SDimitry Andric       // f32 instruction doesn't handle denormals, f16 does.
489*06c3fb27SDimitry Andric       if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) {
490*06c3fb27SDimitry Andric         Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true)
491*06c3fb27SDimitry Andric                                       : ConstantFP::get(Ty, 1.0);
492*06c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, FoldedValue);
493*06c3fb27SDimitry Andric       }
494*06c3fb27SDimitry Andric 
495*06c3fb27SDimitry Andric       if (IsLog && C->isNegative())
496*06c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty));
497*06c3fb27SDimitry Andric 
498*06c3fb27SDimitry Andric       // TODO: Full constant folding matching hardware behavior.
499*06c3fb27SDimitry Andric     }
500*06c3fb27SDimitry Andric 
501*06c3fb27SDimitry Andric     break;
502*06c3fb27SDimitry Andric   }
503e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_mant:
504e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_exp: {
505e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
506e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
507e8d8bef9SDimitry Andric       int Exp;
508e8d8bef9SDimitry Andric       APFloat Significand =
509e8d8bef9SDimitry Andric           frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven);
510e8d8bef9SDimitry Andric 
511e8d8bef9SDimitry Andric       if (IID == Intrinsic::amdgcn_frexp_mant) {
512e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(
513e8d8bef9SDimitry Andric             II, ConstantFP::get(II.getContext(), Significand));
514e8d8bef9SDimitry Andric       }
515e8d8bef9SDimitry Andric 
516e8d8bef9SDimitry Andric       // Match instruction special case behavior.
517e8d8bef9SDimitry Andric       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
518e8d8bef9SDimitry Andric         Exp = 0;
519e8d8bef9SDimitry Andric 
520e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp));
521e8d8bef9SDimitry Andric     }
522e8d8bef9SDimitry Andric 
523e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
524e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
525e8d8bef9SDimitry Andric     }
526e8d8bef9SDimitry Andric 
527e8d8bef9SDimitry Andric     break;
528e8d8bef9SDimitry Andric   }
529e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_class: {
530e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
531e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
532e8d8bef9SDimitry Andric     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
533*06c3fb27SDimitry Andric     if (CMask) {
534*06c3fb27SDimitry Andric       II.setCalledOperand(Intrinsic::getDeclaration(
535*06c3fb27SDimitry Andric           II.getModule(), Intrinsic::is_fpclass, Src0->getType()));
536*06c3fb27SDimitry Andric 
537*06c3fb27SDimitry Andric       // Clamp any excess bits, as they're illegal for the generic intrinsic.
538*06c3fb27SDimitry Andric       II.setArgOperand(1, ConstantInt::get(Src1->getType(),
539*06c3fb27SDimitry Andric                                            CMask->getZExtValue() & fcAllFlags));
540*06c3fb27SDimitry Andric       return &II;
541e8d8bef9SDimitry Andric     }
542e8d8bef9SDimitry Andric 
543*06c3fb27SDimitry Andric     // Propagate poison.
544*06c3fb27SDimitry Andric     if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1))
545*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType()));
546e8d8bef9SDimitry Andric 
547*06c3fb27SDimitry Andric     // llvm.amdgcn.class(_, undef) -> false
548*06c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src1))
549e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false));
550*06c3fb27SDimitry Andric 
551*06c3fb27SDimitry Andric     // llvm.amdgcn.class(undef, mask) -> mask != 0
552*06c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src0)) {
553*06c3fb27SDimitry Andric       Value *CmpMask = IC.Builder.CreateICmpNE(
554*06c3fb27SDimitry Andric           Src1, ConstantInt::getNullValue(Src1->getType()));
555*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, CmpMask);
556e8d8bef9SDimitry Andric     }
557e8d8bef9SDimitry Andric     break;
558e8d8bef9SDimitry Andric   }
559e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pkrtz: {
560e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
561e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
562e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
563e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
564e8d8bef9SDimitry Andric         const fltSemantics &HalfSem =
565e8d8bef9SDimitry Andric             II.getType()->getScalarType()->getFltSemantics();
566e8d8bef9SDimitry Andric         bool LosesInfo;
567e8d8bef9SDimitry Andric         APFloat Val0 = C0->getValueAPF();
568e8d8bef9SDimitry Andric         APFloat Val1 = C1->getValueAPF();
569e8d8bef9SDimitry Andric         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
570e8d8bef9SDimitry Andric         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
571e8d8bef9SDimitry Andric 
572e8d8bef9SDimitry Andric         Constant *Folded =
573e8d8bef9SDimitry Andric             ConstantVector::get({ConstantFP::get(II.getContext(), Val0),
574e8d8bef9SDimitry Andric                                  ConstantFP::get(II.getContext(), Val1)});
575e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Folded);
576e8d8bef9SDimitry Andric       }
577e8d8bef9SDimitry Andric     }
578e8d8bef9SDimitry Andric 
579e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
580e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
581e8d8bef9SDimitry Andric     }
582e8d8bef9SDimitry Andric 
583e8d8bef9SDimitry Andric     break;
584e8d8bef9SDimitry Andric   }
585e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_i16:
586e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_u16:
587e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_i16:
588e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_u16: {
589e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
590e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
591e8d8bef9SDimitry Andric 
592e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
593e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
594e8d8bef9SDimitry Andric     }
595e8d8bef9SDimitry Andric 
596e8d8bef9SDimitry Andric     break;
597e8d8bef9SDimitry Andric   }
598e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ubfe:
599e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_sbfe: {
600e8d8bef9SDimitry Andric     // Decompose simple cases into standard shifts.
601e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
602e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
603e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
604e8d8bef9SDimitry Andric     }
605e8d8bef9SDimitry Andric 
606e8d8bef9SDimitry Andric     unsigned Width;
607e8d8bef9SDimitry Andric     Type *Ty = II.getType();
608e8d8bef9SDimitry Andric     unsigned IntSize = Ty->getIntegerBitWidth();
609e8d8bef9SDimitry Andric 
610e8d8bef9SDimitry Andric     ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2));
611e8d8bef9SDimitry Andric     if (CWidth) {
612e8d8bef9SDimitry Andric       Width = CWidth->getZExtValue();
613e8d8bef9SDimitry Andric       if ((Width & (IntSize - 1)) == 0) {
614e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty));
615e8d8bef9SDimitry Andric       }
616e8d8bef9SDimitry Andric 
617e8d8bef9SDimitry Andric       // Hardware ignores high bits, so remove those.
618e8d8bef9SDimitry Andric       if (Width >= IntSize) {
619e8d8bef9SDimitry Andric         return IC.replaceOperand(
620e8d8bef9SDimitry Andric             II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1)));
621e8d8bef9SDimitry Andric       }
622e8d8bef9SDimitry Andric     }
623e8d8bef9SDimitry Andric 
624e8d8bef9SDimitry Andric     unsigned Offset;
625e8d8bef9SDimitry Andric     ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1));
626e8d8bef9SDimitry Andric     if (COffset) {
627e8d8bef9SDimitry Andric       Offset = COffset->getZExtValue();
628e8d8bef9SDimitry Andric       if (Offset >= IntSize) {
629e8d8bef9SDimitry Andric         return IC.replaceOperand(
630e8d8bef9SDimitry Andric             II, 1,
631e8d8bef9SDimitry Andric             ConstantInt::get(COffset->getType(), Offset & (IntSize - 1)));
632e8d8bef9SDimitry Andric       }
633e8d8bef9SDimitry Andric     }
634e8d8bef9SDimitry Andric 
635e8d8bef9SDimitry Andric     bool Signed = IID == Intrinsic::amdgcn_sbfe;
636e8d8bef9SDimitry Andric 
637e8d8bef9SDimitry Andric     if (!CWidth || !COffset)
638e8d8bef9SDimitry Andric       break;
639e8d8bef9SDimitry Andric 
640349cc55cSDimitry Andric     // The case of Width == 0 is handled above, which makes this transformation
641e8d8bef9SDimitry Andric     // safe.  If Width == 0, then the ashr and lshr instructions become poison
642e8d8bef9SDimitry Andric     // value since the shift amount would be equal to the bit size.
643e8d8bef9SDimitry Andric     assert(Width != 0);
644e8d8bef9SDimitry Andric 
645e8d8bef9SDimitry Andric     // TODO: This allows folding to undef when the hardware has specific
646e8d8bef9SDimitry Andric     // behavior?
647e8d8bef9SDimitry Andric     if (Offset + Width < IntSize) {
648e8d8bef9SDimitry Andric       Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width);
649e8d8bef9SDimitry Andric       Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width)
650e8d8bef9SDimitry Andric                                  : IC.Builder.CreateLShr(Shl, IntSize - Width);
651e8d8bef9SDimitry Andric       RightShift->takeName(&II);
652e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, RightShift);
653e8d8bef9SDimitry Andric     }
654e8d8bef9SDimitry Andric 
655e8d8bef9SDimitry Andric     Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset)
656e8d8bef9SDimitry Andric                                : IC.Builder.CreateLShr(Src, Offset);
657e8d8bef9SDimitry Andric 
658e8d8bef9SDimitry Andric     RightShift->takeName(&II);
659e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, RightShift);
660e8d8bef9SDimitry Andric   }
661e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp:
66281ad6265SDimitry Andric   case Intrinsic::amdgcn_exp_row:
663e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp_compr: {
664e8d8bef9SDimitry Andric     ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1));
665e8d8bef9SDimitry Andric     unsigned EnBits = En->getZExtValue();
666e8d8bef9SDimitry Andric     if (EnBits == 0xf)
667e8d8bef9SDimitry Andric       break; // All inputs enabled.
668e8d8bef9SDimitry Andric 
669e8d8bef9SDimitry Andric     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
670e8d8bef9SDimitry Andric     bool Changed = false;
671e8d8bef9SDimitry Andric     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
672e8d8bef9SDimitry Andric       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
673e8d8bef9SDimitry Andric           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
674e8d8bef9SDimitry Andric         Value *Src = II.getArgOperand(I + 2);
675e8d8bef9SDimitry Andric         if (!isa<UndefValue>(Src)) {
676e8d8bef9SDimitry Andric           IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType()));
677e8d8bef9SDimitry Andric           Changed = true;
678e8d8bef9SDimitry Andric         }
679e8d8bef9SDimitry Andric       }
680e8d8bef9SDimitry Andric     }
681e8d8bef9SDimitry Andric 
682e8d8bef9SDimitry Andric     if (Changed) {
683e8d8bef9SDimitry Andric       return &II;
684e8d8bef9SDimitry Andric     }
685e8d8bef9SDimitry Andric 
686e8d8bef9SDimitry Andric     break;
687e8d8bef9SDimitry Andric   }
688e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmed3: {
689e8d8bef9SDimitry Andric     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
690e8d8bef9SDimitry Andric     // for the shader.
691e8d8bef9SDimitry Andric 
692e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
693e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
694e8d8bef9SDimitry Andric     Value *Src2 = II.getArgOperand(2);
695e8d8bef9SDimitry Andric 
696e8d8bef9SDimitry Andric     // Checking for NaN before canonicalization provides better fidelity when
697e8d8bef9SDimitry Andric     // mapping other operations onto fmed3 since the order of operands is
698e8d8bef9SDimitry Andric     // unchanged.
699e8d8bef9SDimitry Andric     CallInst *NewCall = nullptr;
700e8d8bef9SDimitry Andric     if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) {
701e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src1, Src2);
702e8d8bef9SDimitry Andric     } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) {
703e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src0, Src2);
704e8d8bef9SDimitry Andric     } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) {
705e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMaxNum(Src0, Src1);
706e8d8bef9SDimitry Andric     }
707e8d8bef9SDimitry Andric 
708e8d8bef9SDimitry Andric     if (NewCall) {
709e8d8bef9SDimitry Andric       NewCall->copyFastMathFlags(&II);
710e8d8bef9SDimitry Andric       NewCall->takeName(&II);
711e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
712e8d8bef9SDimitry Andric     }
713e8d8bef9SDimitry Andric 
714e8d8bef9SDimitry Andric     bool Swap = false;
715e8d8bef9SDimitry Andric     // Canonicalize constants to RHS operands.
716e8d8bef9SDimitry Andric     //
717e8d8bef9SDimitry Andric     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
718e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
719e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
720e8d8bef9SDimitry Andric       Swap = true;
721e8d8bef9SDimitry Andric     }
722e8d8bef9SDimitry Andric 
723e8d8bef9SDimitry Andric     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
724e8d8bef9SDimitry Andric       std::swap(Src1, Src2);
725e8d8bef9SDimitry Andric       Swap = true;
726e8d8bef9SDimitry Andric     }
727e8d8bef9SDimitry Andric 
728e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
729e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
730e8d8bef9SDimitry Andric       Swap = true;
731e8d8bef9SDimitry Andric     }
732e8d8bef9SDimitry Andric 
733e8d8bef9SDimitry Andric     if (Swap) {
734e8d8bef9SDimitry Andric       II.setArgOperand(0, Src0);
735e8d8bef9SDimitry Andric       II.setArgOperand(1, Src1);
736e8d8bef9SDimitry Andric       II.setArgOperand(2, Src2);
737e8d8bef9SDimitry Andric       return &II;
738e8d8bef9SDimitry Andric     }
739e8d8bef9SDimitry Andric 
740e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
741e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
742e8d8bef9SDimitry Andric         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
743e8d8bef9SDimitry Andric           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
744e8d8bef9SDimitry Andric                                        C2->getValueAPF());
745e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
746e8d8bef9SDimitry Andric               II, ConstantFP::get(IC.Builder.getContext(), Result));
747e8d8bef9SDimitry Andric         }
748e8d8bef9SDimitry Andric       }
749e8d8bef9SDimitry Andric     }
750e8d8bef9SDimitry Andric 
751*06c3fb27SDimitry Andric     if (!ST->hasMed3_16())
752*06c3fb27SDimitry Andric       break;
753*06c3fb27SDimitry Andric 
754*06c3fb27SDimitry Andric     Value *X, *Y, *Z;
755*06c3fb27SDimitry Andric 
756*06c3fb27SDimitry Andric     // Repeat floating-point width reduction done for minnum/maxnum.
757*06c3fb27SDimitry Andric     // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z))
758*06c3fb27SDimitry Andric     if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) &&
759*06c3fb27SDimitry Andric         matchFPExtFromF16(Src2, Z)) {
760*06c3fb27SDimitry Andric       Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()},
761*06c3fb27SDimitry Andric                                                   {X, Y, Z}, &II, II.getName());
762*06c3fb27SDimitry Andric       return new FPExtInst(NewCall, II.getType());
763*06c3fb27SDimitry Andric     }
764*06c3fb27SDimitry Andric 
765e8d8bef9SDimitry Andric     break;
766e8d8bef9SDimitry Andric   }
767e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_icmp:
768e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fcmp: {
769e8d8bef9SDimitry Andric     const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2));
770e8d8bef9SDimitry Andric     // Guard against invalid arguments.
771e8d8bef9SDimitry Andric     int64_t CCVal = CC->getZExtValue();
772e8d8bef9SDimitry Andric     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
773e8d8bef9SDimitry Andric     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
774e8d8bef9SDimitry Andric                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
775e8d8bef9SDimitry Andric         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
776e8d8bef9SDimitry Andric                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
777e8d8bef9SDimitry Andric       break;
778e8d8bef9SDimitry Andric 
779e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
780e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
781e8d8bef9SDimitry Andric 
782e8d8bef9SDimitry Andric     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
783e8d8bef9SDimitry Andric       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
784e8d8bef9SDimitry Andric         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
785e8d8bef9SDimitry Andric         if (CCmp->isNullValue()) {
786e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
787e8d8bef9SDimitry Andric               II, ConstantExpr::getSExt(CCmp, II.getType()));
788e8d8bef9SDimitry Andric         }
789e8d8bef9SDimitry Andric 
790e8d8bef9SDimitry Andric         // The result of V_ICMP/V_FCMP assembly instructions (which this
791e8d8bef9SDimitry Andric         // intrinsic exposes) is one bit per thread, masked with the EXEC
792e8d8bef9SDimitry Andric         // register (which contains the bitmask of live threads). So a
793e8d8bef9SDimitry Andric         // comparison that always returns true is the same as a read of the
794e8d8bef9SDimitry Andric         // EXEC register.
795e8d8bef9SDimitry Andric         Function *NewF = Intrinsic::getDeclaration(
796e8d8bef9SDimitry Andric             II.getModule(), Intrinsic::read_register, II.getType());
797e8d8bef9SDimitry Andric         Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")};
798e8d8bef9SDimitry Andric         MDNode *MD = MDNode::get(II.getContext(), MDArgs);
799e8d8bef9SDimitry Andric         Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
800e8d8bef9SDimitry Andric         CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
801349cc55cSDimitry Andric         NewCall->addFnAttr(Attribute::Convergent);
802e8d8bef9SDimitry Andric         NewCall->takeName(&II);
803e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, NewCall);
804e8d8bef9SDimitry Andric       }
805e8d8bef9SDimitry Andric 
806e8d8bef9SDimitry Andric       // Canonicalize constants to RHS.
807e8d8bef9SDimitry Andric       CmpInst::Predicate SwapPred =
808e8d8bef9SDimitry Andric           CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
809e8d8bef9SDimitry Andric       II.setArgOperand(0, Src1);
810e8d8bef9SDimitry Andric       II.setArgOperand(1, Src0);
811e8d8bef9SDimitry Andric       II.setArgOperand(
812e8d8bef9SDimitry Andric           2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred)));
813e8d8bef9SDimitry Andric       return &II;
814e8d8bef9SDimitry Andric     }
815e8d8bef9SDimitry Andric 
816e8d8bef9SDimitry Andric     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
817e8d8bef9SDimitry Andric       break;
818e8d8bef9SDimitry Andric 
819e8d8bef9SDimitry Andric     // Canonicalize compare eq with true value to compare != 0
820e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
821e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
822e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
823e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
824e8d8bef9SDimitry Andric     Value *ExtSrc;
825e8d8bef9SDimitry Andric     if (CCVal == CmpInst::ICMP_EQ &&
826e8d8bef9SDimitry Andric         ((match(Src1, PatternMatch::m_One()) &&
827e8d8bef9SDimitry Andric           match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) ||
828e8d8bef9SDimitry Andric          (match(Src1, PatternMatch::m_AllOnes()) &&
829e8d8bef9SDimitry Andric           match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) &&
830e8d8bef9SDimitry Andric         ExtSrc->getType()->isIntegerTy(1)) {
831e8d8bef9SDimitry Andric       IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType()));
832e8d8bef9SDimitry Andric       IC.replaceOperand(II, 2,
833e8d8bef9SDimitry Andric                         ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
834e8d8bef9SDimitry Andric       return &II;
835e8d8bef9SDimitry Andric     }
836e8d8bef9SDimitry Andric 
837e8d8bef9SDimitry Andric     CmpInst::Predicate SrcPred;
838e8d8bef9SDimitry Andric     Value *SrcLHS;
839e8d8bef9SDimitry Andric     Value *SrcRHS;
840e8d8bef9SDimitry Andric 
841e8d8bef9SDimitry Andric     // Fold compare eq/ne with 0 from a compare result as the predicate to the
842e8d8bef9SDimitry Andric     // intrinsic. The typical use is a wave vote function in the library, which
843e8d8bef9SDimitry Andric     // will be fed from a user code condition compared with 0. Fold in the
844e8d8bef9SDimitry Andric     // redundant compare.
845e8d8bef9SDimitry Andric 
846e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
847e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
848e8d8bef9SDimitry Andric     //
849e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
850e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
851e8d8bef9SDimitry Andric     if (match(Src1, PatternMatch::m_Zero()) &&
852e8d8bef9SDimitry Andric         match(Src0, PatternMatch::m_ZExtOrSExt(
853e8d8bef9SDimitry Andric                         m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS),
854e8d8bef9SDimitry Andric                               PatternMatch::m_Value(SrcRHS))))) {
855e8d8bef9SDimitry Andric       if (CCVal == CmpInst::ICMP_EQ)
856e8d8bef9SDimitry Andric         SrcPred = CmpInst::getInversePredicate(SrcPred);
857e8d8bef9SDimitry Andric 
858e8d8bef9SDimitry Andric       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred)
859e8d8bef9SDimitry Andric                                  ? Intrinsic::amdgcn_fcmp
860e8d8bef9SDimitry Andric                                  : Intrinsic::amdgcn_icmp;
861e8d8bef9SDimitry Andric 
862e8d8bef9SDimitry Andric       Type *Ty = SrcLHS->getType();
863e8d8bef9SDimitry Andric       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
864e8d8bef9SDimitry Andric         // Promote to next legal integer type.
865e8d8bef9SDimitry Andric         unsigned Width = CmpType->getBitWidth();
866e8d8bef9SDimitry Andric         unsigned NewWidth = Width;
867e8d8bef9SDimitry Andric 
868e8d8bef9SDimitry Andric         // Don't do anything for i1 comparisons.
869e8d8bef9SDimitry Andric         if (Width == 1)
870e8d8bef9SDimitry Andric           break;
871e8d8bef9SDimitry Andric 
872e8d8bef9SDimitry Andric         if (Width <= 16)
873e8d8bef9SDimitry Andric           NewWidth = 16;
874e8d8bef9SDimitry Andric         else if (Width <= 32)
875e8d8bef9SDimitry Andric           NewWidth = 32;
876e8d8bef9SDimitry Andric         else if (Width <= 64)
877e8d8bef9SDimitry Andric           NewWidth = 64;
878e8d8bef9SDimitry Andric         else if (Width > 64)
879e8d8bef9SDimitry Andric           break; // Can't handle this.
880e8d8bef9SDimitry Andric 
881e8d8bef9SDimitry Andric         if (Width != NewWidth) {
882e8d8bef9SDimitry Andric           IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth);
883e8d8bef9SDimitry Andric           if (CmpInst::isSigned(SrcPred)) {
884e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy);
885e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy);
886e8d8bef9SDimitry Andric           } else {
887e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy);
888e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy);
889e8d8bef9SDimitry Andric           }
890e8d8bef9SDimitry Andric         }
891e8d8bef9SDimitry Andric       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
892e8d8bef9SDimitry Andric         break;
893e8d8bef9SDimitry Andric 
894e8d8bef9SDimitry Andric       Function *NewF = Intrinsic::getDeclaration(
895e8d8bef9SDimitry Andric           II.getModule(), NewIID, {II.getType(), SrcLHS->getType()});
896e8d8bef9SDimitry Andric       Value *Args[] = {SrcLHS, SrcRHS,
897e8d8bef9SDimitry Andric                        ConstantInt::get(CC->getType(), SrcPred)};
898e8d8bef9SDimitry Andric       CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
899e8d8bef9SDimitry Andric       NewCall->takeName(&II);
900e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
901e8d8bef9SDimitry Andric     }
902e8d8bef9SDimitry Andric 
903e8d8bef9SDimitry Andric     break;
904e8d8bef9SDimitry Andric   }
905*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_mbcnt_hi: {
906*06c3fb27SDimitry Andric     // exec_hi is all 0, so this is just a copy.
907*06c3fb27SDimitry Andric     if (ST->isWave32())
908*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, II.getArgOperand(1));
909*06c3fb27SDimitry Andric     break;
910*06c3fb27SDimitry Andric   }
911e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ballot: {
912e8d8bef9SDimitry Andric     if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
913e8d8bef9SDimitry Andric       if (Src->isZero()) {
914e8d8bef9SDimitry Andric         // amdgcn.ballot(i1 0) is zero.
915e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType()));
916e8d8bef9SDimitry Andric       }
917e8d8bef9SDimitry Andric     }
918e8d8bef9SDimitry Andric     break;
919e8d8bef9SDimitry Andric   }
920e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_wqm_vote: {
921e8d8bef9SDimitry Andric     // wqm_vote is identity when the argument is constant.
922e8d8bef9SDimitry Andric     if (!isa<Constant>(II.getArgOperand(0)))
923e8d8bef9SDimitry Andric       break;
924e8d8bef9SDimitry Andric 
925e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, II.getArgOperand(0));
926e8d8bef9SDimitry Andric   }
927e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_kill: {
928e8d8bef9SDimitry Andric     const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0));
929e8d8bef9SDimitry Andric     if (!C || !C->getZExtValue())
930e8d8bef9SDimitry Andric       break;
931e8d8bef9SDimitry Andric 
932e8d8bef9SDimitry Andric     // amdgcn.kill(i1 1) is a no-op
933e8d8bef9SDimitry Andric     return IC.eraseInstFromFunction(II);
934e8d8bef9SDimitry Andric   }
935e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_update_dpp: {
936e8d8bef9SDimitry Andric     Value *Old = II.getArgOperand(0);
937e8d8bef9SDimitry Andric 
938e8d8bef9SDimitry Andric     auto *BC = cast<ConstantInt>(II.getArgOperand(5));
939e8d8bef9SDimitry Andric     auto *RM = cast<ConstantInt>(II.getArgOperand(3));
940e8d8bef9SDimitry Andric     auto *BM = cast<ConstantInt>(II.getArgOperand(4));
941e8d8bef9SDimitry Andric     if (BC->isZeroValue() || RM->getZExtValue() != 0xF ||
942e8d8bef9SDimitry Andric         BM->getZExtValue() != 0xF || isa<UndefValue>(Old))
943e8d8bef9SDimitry Andric       break;
944e8d8bef9SDimitry Andric 
945e8d8bef9SDimitry Andric     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
946e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(Old->getType()));
947e8d8bef9SDimitry Andric   }
948e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_permlane16:
949e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_permlanex16: {
950e8d8bef9SDimitry Andric     // Discard vdst_in if it's not going to be read.
951e8d8bef9SDimitry Andric     Value *VDstIn = II.getArgOperand(0);
952e8d8bef9SDimitry Andric     if (isa<UndefValue>(VDstIn))
953e8d8bef9SDimitry Andric       break;
954e8d8bef9SDimitry Andric 
955e8d8bef9SDimitry Andric     ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4));
956e8d8bef9SDimitry Andric     ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5));
957e8d8bef9SDimitry Andric     if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue())
958e8d8bef9SDimitry Andric       break;
959e8d8bef9SDimitry Andric 
960e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType()));
961e8d8bef9SDimitry Andric   }
96281ad6265SDimitry Andric   case Intrinsic::amdgcn_permlane64:
96381ad6265SDimitry Andric     // A constant value is trivially uniform.
96481ad6265SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
96581ad6265SDimitry Andric       return IC.replaceInstUsesWith(II, C);
96681ad6265SDimitry Andric     }
96781ad6265SDimitry Andric     break;
968e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readfirstlane:
969e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readlane: {
970e8d8bef9SDimitry Andric     // A constant value is trivially uniform.
971e8d8bef9SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
972e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, C);
973e8d8bef9SDimitry Andric     }
974e8d8bef9SDimitry Andric 
975e8d8bef9SDimitry Andric     // The rest of these may not be safe if the exec may not be the same between
976e8d8bef9SDimitry Andric     // the def and use.
977e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
978e8d8bef9SDimitry Andric     Instruction *SrcInst = dyn_cast<Instruction>(Src);
979e8d8bef9SDimitry Andric     if (SrcInst && SrcInst->getParent() != II.getParent())
980e8d8bef9SDimitry Andric       break;
981e8d8bef9SDimitry Andric 
982e8d8bef9SDimitry Andric     // readfirstlane (readfirstlane x) -> readfirstlane x
983e8d8bef9SDimitry Andric     // readlane (readfirstlane x), y -> readfirstlane x
984e8d8bef9SDimitry Andric     if (match(Src,
985e8d8bef9SDimitry Andric               PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) {
986e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
987e8d8bef9SDimitry Andric     }
988e8d8bef9SDimitry Andric 
989e8d8bef9SDimitry Andric     if (IID == Intrinsic::amdgcn_readfirstlane) {
990e8d8bef9SDimitry Andric       // readfirstlane (readlane x, y) -> readlane x, y
991e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) {
992e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
993e8d8bef9SDimitry Andric       }
994e8d8bef9SDimitry Andric     } else {
995e8d8bef9SDimitry Andric       // readlane (readlane x, y), y -> readlane x, y
996e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>(
997e8d8bef9SDimitry Andric                          PatternMatch::m_Value(),
998e8d8bef9SDimitry Andric                          PatternMatch::m_Specific(II.getArgOperand(1))))) {
999e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
1000e8d8bef9SDimitry Andric       }
1001e8d8bef9SDimitry Andric     }
1002e8d8bef9SDimitry Andric 
1003e8d8bef9SDimitry Andric     break;
1004e8d8bef9SDimitry Andric   }
1005e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ldexp: {
1006e8d8bef9SDimitry Andric     // FIXME: This doesn't introduce new instructions and belongs in
1007e8d8bef9SDimitry Andric     // InstructionSimplify.
1008e8d8bef9SDimitry Andric     Type *Ty = II.getType();
1009e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1010e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1011e8d8bef9SDimitry Andric 
1012e8d8bef9SDimitry Andric     // Folding undef to qnan is safe regardless of the FP mode.
1013e8d8bef9SDimitry Andric     if (isa<UndefValue>(Op0)) {
1014e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
1015e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
1016e8d8bef9SDimitry Andric     }
1017e8d8bef9SDimitry Andric 
1018e8d8bef9SDimitry Andric     const APFloat *C = nullptr;
1019e8d8bef9SDimitry Andric     match(Op0, PatternMatch::m_APFloat(C));
1020e8d8bef9SDimitry Andric 
1021e8d8bef9SDimitry Andric     // FIXME: Should flush denorms depending on FP mode, but that's ignored
1022e8d8bef9SDimitry Andric     // everywhere else.
1023e8d8bef9SDimitry Andric     //
1024e8d8bef9SDimitry Andric     // These cases should be safe, even with strictfp.
1025e8d8bef9SDimitry Andric     // ldexp(0.0, x) -> 0.0
1026e8d8bef9SDimitry Andric     // ldexp(-0.0, x) -> -0.0
1027e8d8bef9SDimitry Andric     // ldexp(inf, x) -> inf
1028e8d8bef9SDimitry Andric     // ldexp(-inf, x) -> -inf
1029e8d8bef9SDimitry Andric     if (C && (C->isZero() || C->isInfinity())) {
1030e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Op0);
1031e8d8bef9SDimitry Andric     }
1032e8d8bef9SDimitry Andric 
1033e8d8bef9SDimitry Andric     // With strictfp, be more careful about possibly needing to flush denormals
1034e8d8bef9SDimitry Andric     // or not, and snan behavior depends on ieee_mode.
1035e8d8bef9SDimitry Andric     if (II.isStrictFP())
1036e8d8bef9SDimitry Andric       break;
1037e8d8bef9SDimitry Andric 
1038*06c3fb27SDimitry Andric     if (C && C->isNaN())
1039*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::get(Ty, C->makeQuiet()));
1040e8d8bef9SDimitry Andric 
1041e8d8bef9SDimitry Andric     // ldexp(x, 0) -> x
1042e8d8bef9SDimitry Andric     // ldexp(x, undef) -> x
1043e8d8bef9SDimitry Andric     if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) {
1044e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Op0);
1045e8d8bef9SDimitry Andric     }
1046e8d8bef9SDimitry Andric 
1047e8d8bef9SDimitry Andric     break;
1048e8d8bef9SDimitry Andric   }
1049e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmul_legacy: {
1050e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1051e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1052e8d8bef9SDimitry Andric 
1053e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1054e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1055e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1056e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1057e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP()))
1058*06c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType()));
1059e8d8bef9SDimitry Andric 
1060e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1061e8d8bef9SDimitry Andric     // normal fmul instruction instead.
1062*06c3fb27SDimitry Andric     if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) {
1063e8d8bef9SDimitry Andric       auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II);
1064e8d8bef9SDimitry Andric       FMul->takeName(&II);
1065e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FMul);
1066e8d8bef9SDimitry Andric     }
1067e8d8bef9SDimitry Andric     break;
1068e8d8bef9SDimitry Andric   }
1069e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fma_legacy: {
1070e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1071e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1072e8d8bef9SDimitry Andric     Value *Op2 = II.getArgOperand(2);
1073e8d8bef9SDimitry Andric 
1074e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1075e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1076e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1077e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1078e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP())) {
1079e8d8bef9SDimitry Andric       // It's tempting to just return Op2 here, but that would give the wrong
1080e8d8bef9SDimitry Andric       // result if Op2 was -0.0.
1081*06c3fb27SDimitry Andric       auto *Zero = ConstantFP::getZero(II.getType());
1082e8d8bef9SDimitry Andric       auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II);
1083e8d8bef9SDimitry Andric       FAdd->takeName(&II);
1084e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FAdd);
1085e8d8bef9SDimitry Andric     }
1086e8d8bef9SDimitry Andric 
1087e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1088e8d8bef9SDimitry Andric     // normal fma instead.
1089*06c3fb27SDimitry Andric     if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) {
1090e8d8bef9SDimitry Andric       II.setCalledOperand(Intrinsic::getDeclaration(
1091e8d8bef9SDimitry Andric           II.getModule(), Intrinsic::fma, II.getType()));
1092e8d8bef9SDimitry Andric       return &II;
1093e8d8bef9SDimitry Andric     }
1094e8d8bef9SDimitry Andric     break;
1095e8d8bef9SDimitry Andric   }
10960eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_shared:
10970eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_private: {
10980eae32dcSDimitry Andric     if (isa<UndefValue>(II.getArgOperand(0)))
10990eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
11000eae32dcSDimitry Andric 
11010eae32dcSDimitry Andric     if (isa<ConstantPointerNull>(II.getArgOperand(0)))
11020eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType()));
11030eae32dcSDimitry Andric     break;
11040eae32dcSDimitry Andric   }
1105*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_buffer_store_format:
1106*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_store_format:
1107*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_store_format:
1108*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_tbuffer_store:
1109*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_tbuffer_store:
1110*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_tbuffer_store:
1111*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_1d:
1112*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_1darray:
1113*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2d:
1114*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2darray:
1115*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2darraymsaa:
1116*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2dmsaa:
1117*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_3d:
1118*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_cube:
1119*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_1d:
1120*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_1darray:
1121*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_2d:
1122*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_2darray:
1123*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_3d:
1124*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_cube: {
1125*06c3fb27SDimitry Andric     if (!isa<FixedVectorType>(II.getArgOperand(0)->getType()))
1126*06c3fb27SDimitry Andric       break;
1127*06c3fb27SDimitry Andric 
1128*06c3fb27SDimitry Andric     APInt DemandedElts =
1129*06c3fb27SDimitry Andric         trimTrailingZerosInVector(IC, II.getArgOperand(0), &II);
1130*06c3fb27SDimitry Andric 
1131*06c3fb27SDimitry Andric     int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1;
1132*06c3fb27SDimitry Andric     if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx,
1133*06c3fb27SDimitry Andric                                               false)) {
1134*06c3fb27SDimitry Andric       return IC.eraseInstFromFunction(II);
1135*06c3fb27SDimitry Andric     }
1136*06c3fb27SDimitry Andric 
1137*06c3fb27SDimitry Andric     break;
1138*06c3fb27SDimitry Andric   }
1139*06c3fb27SDimitry Andric   }
1140e8d8bef9SDimitry Andric   if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
1141e8d8bef9SDimitry Andric             AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) {
1142e8d8bef9SDimitry Andric     return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC);
1143e8d8bef9SDimitry Andric   }
1144bdd1243dSDimitry Andric   return std::nullopt;
1145e8d8bef9SDimitry Andric }
1146e8d8bef9SDimitry Andric 
1147e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
1148e8d8bef9SDimitry Andric ///
1149*06c3fb27SDimitry Andric /// The result of simplifying amdgcn image and buffer store intrinsics is updating
1150*06c3fb27SDimitry Andric /// definitions of the intrinsics vector argument, not Uses of the result like
1151*06c3fb27SDimitry Andric /// image and buffer loads.
1152e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
1153e8d8bef9SDimitry Andric ///       struct returns.
1154e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
1155e8d8bef9SDimitry Andric                                                     IntrinsicInst &II,
1156e8d8bef9SDimitry Andric                                                     APInt DemandedElts,
1157*06c3fb27SDimitry Andric                                                     int DMaskIdx, bool IsLoad) {
1158e8d8bef9SDimitry Andric 
1159*06c3fb27SDimitry Andric   auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType()
1160*06c3fb27SDimitry Andric                                              : II.getOperand(0)->getType());
1161e8d8bef9SDimitry Andric   unsigned VWidth = IIVTy->getNumElements();
1162e8d8bef9SDimitry Andric   if (VWidth == 1)
1163e8d8bef9SDimitry Andric     return nullptr;
1164bdd1243dSDimitry Andric   Type *EltTy = IIVTy->getElementType();
1165e8d8bef9SDimitry Andric 
1166e8d8bef9SDimitry Andric   IRBuilderBase::InsertPointGuard Guard(IC.Builder);
1167e8d8bef9SDimitry Andric   IC.Builder.SetInsertPoint(&II);
1168e8d8bef9SDimitry Andric 
1169e8d8bef9SDimitry Andric   // Assume the arguments are unchanged and later override them, if needed.
1170e8d8bef9SDimitry Andric   SmallVector<Value *, 16> Args(II.args());
1171e8d8bef9SDimitry Andric 
1172e8d8bef9SDimitry Andric   if (DMaskIdx < 0) {
1173e8d8bef9SDimitry Andric     // Buffer case.
1174e8d8bef9SDimitry Andric 
1175e8d8bef9SDimitry Andric     const unsigned ActiveBits = DemandedElts.getActiveBits();
1176*06c3fb27SDimitry Andric     const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero();
1177e8d8bef9SDimitry Andric 
1178e8d8bef9SDimitry Andric     // Start assuming the prefix of elements is demanded, but possibly clear
1179e8d8bef9SDimitry Andric     // some other bits if there are trailing zeros (unused components at front)
1180e8d8bef9SDimitry Andric     // and update offset.
1181e8d8bef9SDimitry Andric     DemandedElts = (1 << ActiveBits) - 1;
1182e8d8bef9SDimitry Andric 
1183e8d8bef9SDimitry Andric     if (UnusedComponentsAtFront > 0) {
1184e8d8bef9SDimitry Andric       static const unsigned InvalidOffsetIdx = 0xf;
1185e8d8bef9SDimitry Andric 
1186e8d8bef9SDimitry Andric       unsigned OffsetIdx;
1187e8d8bef9SDimitry Andric       switch (II.getIntrinsicID()) {
1188e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_raw_buffer_load:
1189*06c3fb27SDimitry Andric       case Intrinsic::amdgcn_raw_ptr_buffer_load:
1190e8d8bef9SDimitry Andric         OffsetIdx = 1;
1191e8d8bef9SDimitry Andric         break;
1192e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_s_buffer_load:
1193e8d8bef9SDimitry Andric         // If resulting type is vec3, there is no point in trimming the
1194e8d8bef9SDimitry Andric         // load with updated offset, as the vec3 would most likely be widened to
1195e8d8bef9SDimitry Andric         // vec4 anyway during lowering.
1196e8d8bef9SDimitry Andric         if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
1197e8d8bef9SDimitry Andric           OffsetIdx = InvalidOffsetIdx;
1198e8d8bef9SDimitry Andric         else
1199e8d8bef9SDimitry Andric           OffsetIdx = 1;
1200e8d8bef9SDimitry Andric         break;
1201e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_struct_buffer_load:
1202*06c3fb27SDimitry Andric       case Intrinsic::amdgcn_struct_ptr_buffer_load:
1203e8d8bef9SDimitry Andric         OffsetIdx = 2;
1204e8d8bef9SDimitry Andric         break;
1205e8d8bef9SDimitry Andric       default:
1206e8d8bef9SDimitry Andric         // TODO: handle tbuffer* intrinsics.
1207e8d8bef9SDimitry Andric         OffsetIdx = InvalidOffsetIdx;
1208e8d8bef9SDimitry Andric         break;
1209e8d8bef9SDimitry Andric       }
1210e8d8bef9SDimitry Andric 
1211e8d8bef9SDimitry Andric       if (OffsetIdx != InvalidOffsetIdx) {
1212e8d8bef9SDimitry Andric         // Clear demanded bits and update the offset.
1213e8d8bef9SDimitry Andric         DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
1214bdd1243dSDimitry Andric         auto *Offset = Args[OffsetIdx];
1215e8d8bef9SDimitry Andric         unsigned SingleComponentSizeInBits =
1216bdd1243dSDimitry Andric             IC.getDataLayout().getTypeSizeInBits(EltTy);
1217e8d8bef9SDimitry Andric         unsigned OffsetAdd =
1218e8d8bef9SDimitry Andric             UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
1219e8d8bef9SDimitry Andric         auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
1220e8d8bef9SDimitry Andric         Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal);
1221e8d8bef9SDimitry Andric       }
1222e8d8bef9SDimitry Andric     }
1223e8d8bef9SDimitry Andric   } else {
1224e8d8bef9SDimitry Andric     // Image case.
1225e8d8bef9SDimitry Andric 
1226bdd1243dSDimitry Andric     ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]);
1227e8d8bef9SDimitry Andric     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1228e8d8bef9SDimitry Andric 
1229e8d8bef9SDimitry Andric     // Mask off values that are undefined because the dmask doesn't cover them
1230bdd1243dSDimitry Andric     DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1;
1231e8d8bef9SDimitry Andric 
1232e8d8bef9SDimitry Andric     unsigned NewDMaskVal = 0;
1233*06c3fb27SDimitry Andric     unsigned OrigLdStIdx = 0;
1234e8d8bef9SDimitry Andric     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1235e8d8bef9SDimitry Andric       const unsigned Bit = 1 << SrcIdx;
1236e8d8bef9SDimitry Andric       if (!!(DMaskVal & Bit)) {
1237*06c3fb27SDimitry Andric         if (!!DemandedElts[OrigLdStIdx])
1238e8d8bef9SDimitry Andric           NewDMaskVal |= Bit;
1239*06c3fb27SDimitry Andric         OrigLdStIdx++;
1240e8d8bef9SDimitry Andric       }
1241e8d8bef9SDimitry Andric     }
1242e8d8bef9SDimitry Andric 
1243e8d8bef9SDimitry Andric     if (DMaskVal != NewDMaskVal)
1244e8d8bef9SDimitry Andric       Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
1245e8d8bef9SDimitry Andric   }
1246e8d8bef9SDimitry Andric 
1247*06c3fb27SDimitry Andric   unsigned NewNumElts = DemandedElts.popcount();
1248e8d8bef9SDimitry Andric   if (!NewNumElts)
1249bdd1243dSDimitry Andric     return UndefValue::get(IIVTy);
1250e8d8bef9SDimitry Andric 
1251e8d8bef9SDimitry Andric   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1252e8d8bef9SDimitry Andric     if (DMaskIdx >= 0)
1253e8d8bef9SDimitry Andric       II.setArgOperand(DMaskIdx, Args[DMaskIdx]);
1254e8d8bef9SDimitry Andric     return nullptr;
1255e8d8bef9SDimitry Andric   }
1256e8d8bef9SDimitry Andric 
1257e8d8bef9SDimitry Andric   // Validate function argument and return types, extracting overloaded types
1258e8d8bef9SDimitry Andric   // along the way.
1259e8d8bef9SDimitry Andric   SmallVector<Type *, 6> OverloadTys;
1260e8d8bef9SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys))
1261e8d8bef9SDimitry Andric     return nullptr;
1262e8d8bef9SDimitry Andric 
1263e8d8bef9SDimitry Andric   Type *NewTy =
1264e8d8bef9SDimitry Andric       (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts);
1265e8d8bef9SDimitry Andric   OverloadTys[0] = NewTy;
1266e8d8bef9SDimitry Andric 
1267*06c3fb27SDimitry Andric   if (!IsLoad) {
1268*06c3fb27SDimitry Andric     SmallVector<int, 8> EltMask;
1269*06c3fb27SDimitry Andric     for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx)
1270*06c3fb27SDimitry Andric       if (DemandedElts[OrigStoreIdx])
1271*06c3fb27SDimitry Andric         EltMask.push_back(OrigStoreIdx);
1272*06c3fb27SDimitry Andric 
1273*06c3fb27SDimitry Andric     if (NewNumElts == 1)
1274*06c3fb27SDimitry Andric       Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]);
1275*06c3fb27SDimitry Andric     else
1276*06c3fb27SDimitry Andric       Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask);
1277*06c3fb27SDimitry Andric   }
1278*06c3fb27SDimitry Andric 
1279bdd1243dSDimitry Andric   Function *NewIntrin = Intrinsic::getDeclaration(
1280bdd1243dSDimitry Andric       II.getModule(), II.getIntrinsicID(), OverloadTys);
1281e8d8bef9SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args);
1282e8d8bef9SDimitry Andric   NewCall->takeName(&II);
1283e8d8bef9SDimitry Andric   NewCall->copyMetadata(II);
1284e8d8bef9SDimitry Andric 
1285*06c3fb27SDimitry Andric   if (IsLoad) {
1286e8d8bef9SDimitry Andric     if (NewNumElts == 1) {
1287bdd1243dSDimitry Andric       return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall,
1288*06c3fb27SDimitry Andric                                             DemandedElts.countr_zero());
1289e8d8bef9SDimitry Andric     }
1290e8d8bef9SDimitry Andric 
1291e8d8bef9SDimitry Andric     SmallVector<int, 8> EltMask;
1292e8d8bef9SDimitry Andric     unsigned NewLoadIdx = 0;
1293e8d8bef9SDimitry Andric     for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1294e8d8bef9SDimitry Andric       if (!!DemandedElts[OrigLoadIdx])
1295e8d8bef9SDimitry Andric         EltMask.push_back(NewLoadIdx++);
1296e8d8bef9SDimitry Andric       else
1297e8d8bef9SDimitry Andric         EltMask.push_back(NewNumElts);
1298e8d8bef9SDimitry Andric     }
1299e8d8bef9SDimitry Andric 
1300*06c3fb27SDimitry Andric     auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask);
1301e8d8bef9SDimitry Andric 
1302e8d8bef9SDimitry Andric     return Shuffle;
1303e8d8bef9SDimitry Andric   }
1304e8d8bef9SDimitry Andric 
1305*06c3fb27SDimitry Andric   return NewCall;
1306*06c3fb27SDimitry Andric }
1307*06c3fb27SDimitry Andric 
1308bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic(
1309e8d8bef9SDimitry Andric     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1310e8d8bef9SDimitry Andric     APInt &UndefElts2, APInt &UndefElts3,
1311e8d8bef9SDimitry Andric     std::function<void(Instruction *, unsigned, APInt, APInt &)>
1312e8d8bef9SDimitry Andric         SimplifyAndSetOp) const {
1313e8d8bef9SDimitry Andric   switch (II.getIntrinsicID()) {
1314e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load:
1315e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load_format:
1316e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load:
1317*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_buffer_load:
1318e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load_format:
1319*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
1320e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_tbuffer_load:
1321*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
1322e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_s_buffer_load:
1323e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load:
1324*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_buffer_load:
1325e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load_format:
1326*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
1327e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_tbuffer_load:
1328*06c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
1329e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_tbuffer_load:
1330e8d8bef9SDimitry Andric     return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts);
1331e8d8bef9SDimitry Andric   default: {
1332e8d8bef9SDimitry Andric     if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) {
1333e8d8bef9SDimitry Andric       return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0);
1334e8d8bef9SDimitry Andric     }
1335e8d8bef9SDimitry Andric     break;
1336e8d8bef9SDimitry Andric   }
1337e8d8bef9SDimitry Andric   }
1338bdd1243dSDimitry Andric   return std::nullopt;
1339e8d8bef9SDimitry Andric }
1340