1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // \file 10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the 11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide 12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target 13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest. 14e8d8bef9SDimitry Andric // 15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 16e8d8bef9SDimitry Andric 17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h" 18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h" 19e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 20bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 23bdd1243dSDimitry Andric #include <optional> 24e8d8bef9SDimitry Andric 25e8d8bef9SDimitry Andric using namespace llvm; 26*06c3fb27SDimitry Andric using namespace llvm::PatternMatch; 27e8d8bef9SDimitry Andric 28e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti" 29e8d8bef9SDimitry Andric 30e8d8bef9SDimitry Andric namespace { 31e8d8bef9SDimitry Andric 32e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic { 33e8d8bef9SDimitry Andric unsigned Intr; 34e8d8bef9SDimitry Andric }; 35e8d8bef9SDimitry Andric 36e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37e8d8bef9SDimitry Andric #include "InstCombineTables.inc" 38e8d8bef9SDimitry Andric 39e8d8bef9SDimitry Andric } // end anonymous namespace 40e8d8bef9SDimitry Andric 41e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42e8d8bef9SDimitry Andric // 43e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for 44e8d8bef9SDimitry Andric // handling NaNs. 45e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46e8d8bef9SDimitry Andric const APFloat &Src2) { 47e8d8bef9SDimitry Andric APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48e8d8bef9SDimitry Andric 49e8d8bef9SDimitry Andric APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50e8d8bef9SDimitry Andric assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51e8d8bef9SDimitry Andric if (Cmp0 == APFloat::cmpEqual) 52e8d8bef9SDimitry Andric return maxnum(Src1, Src2); 53e8d8bef9SDimitry Andric 54e8d8bef9SDimitry Andric APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55e8d8bef9SDimitry Andric assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56e8d8bef9SDimitry Andric if (Cmp1 == APFloat::cmpEqual) 57e8d8bef9SDimitry Andric return maxnum(Src0, Src2); 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric return maxnum(Src0, Src1); 60e8d8bef9SDimitry Andric } 61e8d8bef9SDimitry Andric 62e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing 63e8d8bef9SDimitry Andric // precision. 6404eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned 6504eeddc0SDimitry Andric // integer (IsFloat = false). 6604eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67e8d8bef9SDimitry Andric Type *VTy = V.getType(); 68e8d8bef9SDimitry Andric if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69e8d8bef9SDimitry Andric // The value is already 16-bit, so we don't want to convert to 16-bit again! 70e8d8bef9SDimitry Andric return false; 71e8d8bef9SDimitry Andric } 7204eeddc0SDimitry Andric if (IsFloat) { 73e8d8bef9SDimitry Andric if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 7404eeddc0SDimitry Andric // We need to check that if we cast the index down to a half, we do not 7504eeddc0SDimitry Andric // lose precision. 76e8d8bef9SDimitry Andric APFloat FloatValue(ConstFloat->getValueAPF()); 77e8d8bef9SDimitry Andric bool LosesInfo = true; 7804eeddc0SDimitry Andric FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 7904eeddc0SDimitry Andric &LosesInfo); 80e8d8bef9SDimitry Andric return !LosesInfo; 81e8d8bef9SDimitry Andric } 8204eeddc0SDimitry Andric } else { 8304eeddc0SDimitry Andric if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 8404eeddc0SDimitry Andric // We need to check that if we cast the index down to an i16, we do not 8504eeddc0SDimitry Andric // lose precision. 8604eeddc0SDimitry Andric APInt IntValue(ConstInt->getValue()); 8704eeddc0SDimitry Andric return IntValue.getActiveBits() <= 16; 8804eeddc0SDimitry Andric } 8904eeddc0SDimitry Andric } 9004eeddc0SDimitry Andric 91e8d8bef9SDimitry Andric Value *CastSrc; 9204eeddc0SDimitry Andric bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 9304eeddc0SDimitry Andric : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 9404eeddc0SDimitry Andric if (IsExt) { 95e8d8bef9SDimitry Andric Type *CastSrcTy = CastSrc->getType(); 96e8d8bef9SDimitry Andric if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97e8d8bef9SDimitry Andric return true; 98e8d8bef9SDimitry Andric } 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric return false; 101e8d8bef9SDimitry Andric } 102e8d8bef9SDimitry Andric 103e8d8bef9SDimitry Andric // Convert a value to 16-bit. 104e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105e8d8bef9SDimitry Andric Type *VTy = V.getType(); 106e8d8bef9SDimitry Andric if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107e8d8bef9SDimitry Andric return cast<Instruction>(&V)->getOperand(0); 108e8d8bef9SDimitry Andric if (VTy->isIntegerTy()) 109e8d8bef9SDimitry Andric return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110e8d8bef9SDimitry Andric if (VTy->isFloatingPointTy()) 111e8d8bef9SDimitry Andric return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112e8d8bef9SDimitry Andric 113e8d8bef9SDimitry Andric llvm_unreachable("Should never be called!"); 114e8d8bef9SDimitry Andric } 115e8d8bef9SDimitry Andric 11681ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 11781ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with 11881ad6265SDimitry Andric /// this newly created intrinsic call. 119bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall( 12081ad6265SDimitry Andric IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 12181ad6265SDimitry Andric InstCombiner &IC, 12204eeddc0SDimitry Andric std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 12304eeddc0SDimitry Andric Func) { 12404eeddc0SDimitry Andric SmallVector<Type *, 4> ArgTys; 12581ad6265SDimitry Andric if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126bdd1243dSDimitry Andric return std::nullopt; 12704eeddc0SDimitry Andric 12881ad6265SDimitry Andric SmallVector<Value *, 8> Args(OldIntr.args()); 12904eeddc0SDimitry Andric 13004eeddc0SDimitry Andric // Modify arguments and types 13104eeddc0SDimitry Andric Func(Args, ArgTys); 13204eeddc0SDimitry Andric 13381ad6265SDimitry Andric Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 13404eeddc0SDimitry Andric 13504eeddc0SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(I, Args); 13681ad6265SDimitry Andric NewCall->takeName(&OldIntr); 13781ad6265SDimitry Andric NewCall->copyMetadata(OldIntr); 13804eeddc0SDimitry Andric if (isa<FPMathOperator>(NewCall)) 13981ad6265SDimitry Andric NewCall->copyFastMathFlags(&OldIntr); 14004eeddc0SDimitry Andric 14104eeddc0SDimitry Andric // Erase and replace uses 14281ad6265SDimitry Andric if (!InstToReplace.getType()->isVoidTy()) 14381ad6265SDimitry Andric IC.replaceInstUsesWith(InstToReplace, NewCall); 14481ad6265SDimitry Andric 14581ad6265SDimitry Andric bool RemoveOldIntr = &OldIntr != &InstToReplace; 14681ad6265SDimitry Andric 14781ad6265SDimitry Andric auto RetValue = IC.eraseInstFromFunction(InstToReplace); 14881ad6265SDimitry Andric if (RemoveOldIntr) 14981ad6265SDimitry Andric IC.eraseInstFromFunction(OldIntr); 15081ad6265SDimitry Andric 15181ad6265SDimitry Andric return RetValue; 15204eeddc0SDimitry Andric } 15304eeddc0SDimitry Andric 154bdd1243dSDimitry Andric static std::optional<Instruction *> 155e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156e8d8bef9SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157e8d8bef9SDimitry Andric IntrinsicInst &II, InstCombiner &IC) { 15804eeddc0SDimitry Andric // Optimize _L to _LZ when _L is zero 15904eeddc0SDimitry Andric if (const auto *LZMappingInfo = 16004eeddc0SDimitry Andric AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 16104eeddc0SDimitry Andric if (auto *ConstantLod = 16204eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 16304eeddc0SDimitry Andric if (ConstantLod->isZero() || ConstantLod->isNegative()) { 16404eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 16504eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 16604eeddc0SDimitry Andric ImageDimIntr->Dim); 16704eeddc0SDimitry Andric return modifyIntrinsicCall( 16881ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 16904eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->LodIndex); 17004eeddc0SDimitry Andric }); 17104eeddc0SDimitry Andric } 17204eeddc0SDimitry Andric } 17304eeddc0SDimitry Andric } 17404eeddc0SDimitry Andric 17504eeddc0SDimitry Andric // Optimize _mip away, when 'lod' is zero 17604eeddc0SDimitry Andric if (const auto *MIPMappingInfo = 17704eeddc0SDimitry Andric AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 17804eeddc0SDimitry Andric if (auto *ConstantMip = 17904eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 18004eeddc0SDimitry Andric if (ConstantMip->isZero()) { 18104eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 18204eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 18304eeddc0SDimitry Andric ImageDimIntr->Dim); 18404eeddc0SDimitry Andric return modifyIntrinsicCall( 18581ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 18604eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->MipIndex); 18704eeddc0SDimitry Andric }); 18804eeddc0SDimitry Andric } 18904eeddc0SDimitry Andric } 19004eeddc0SDimitry Andric } 19104eeddc0SDimitry Andric 19204eeddc0SDimitry Andric // Optimize _bias away when 'bias' is zero 19304eeddc0SDimitry Andric if (const auto *BiasMappingInfo = 19404eeddc0SDimitry Andric AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 19504eeddc0SDimitry Andric if (auto *ConstantBias = 19604eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 19704eeddc0SDimitry Andric if (ConstantBias->isZero()) { 19804eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 19904eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 20004eeddc0SDimitry Andric ImageDimIntr->Dim); 20104eeddc0SDimitry Andric return modifyIntrinsicCall( 20281ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 20304eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 20404eeddc0SDimitry Andric ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 20504eeddc0SDimitry Andric }); 20604eeddc0SDimitry Andric } 20704eeddc0SDimitry Andric } 20804eeddc0SDimitry Andric } 20904eeddc0SDimitry Andric 21004eeddc0SDimitry Andric // Optimize _offset away when 'offset' is zero 21104eeddc0SDimitry Andric if (const auto *OffsetMappingInfo = 21204eeddc0SDimitry Andric AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 21304eeddc0SDimitry Andric if (auto *ConstantOffset = 21404eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 21504eeddc0SDimitry Andric if (ConstantOffset->isZero()) { 21604eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 21704eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode( 21804eeddc0SDimitry Andric OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 21904eeddc0SDimitry Andric return modifyIntrinsicCall( 22081ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 22104eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 22204eeddc0SDimitry Andric }); 22304eeddc0SDimitry Andric } 22404eeddc0SDimitry Andric } 22504eeddc0SDimitry Andric } 22604eeddc0SDimitry Andric 22781ad6265SDimitry Andric // Try to use D16 22881ad6265SDimitry Andric if (ST->hasD16Images()) { 22981ad6265SDimitry Andric 23081ad6265SDimitry Andric const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 23181ad6265SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 23281ad6265SDimitry Andric 23381ad6265SDimitry Andric if (BaseOpcode->HasD16) { 23481ad6265SDimitry Andric 23581ad6265SDimitry Andric // If the only use of image intrinsic is a fptrunc (with conversion to 23681ad6265SDimitry Andric // half) then both fptrunc and image intrinsic will be replaced with image 23781ad6265SDimitry Andric // intrinsic with D16 flag. 23881ad6265SDimitry Andric if (II.hasOneUse()) { 23981ad6265SDimitry Andric Instruction *User = II.user_back(); 24081ad6265SDimitry Andric 24181ad6265SDimitry Andric if (User->getOpcode() == Instruction::FPTrunc && 24281ad6265SDimitry Andric User->getType()->getScalarType()->isHalfTy()) { 24381ad6265SDimitry Andric 24481ad6265SDimitry Andric return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 24581ad6265SDimitry Andric [&](auto &Args, auto &ArgTys) { 24681ad6265SDimitry Andric // Change return type of image intrinsic. 24781ad6265SDimitry Andric // Set it to return type of fptrunc. 24881ad6265SDimitry Andric ArgTys[0] = User->getType(); 24981ad6265SDimitry Andric }); 25081ad6265SDimitry Andric } 25181ad6265SDimitry Andric } 25281ad6265SDimitry Andric } 25381ad6265SDimitry Andric } 25481ad6265SDimitry Andric 25504eeddc0SDimitry Andric // Try to use A16 or G16 256e8d8bef9SDimitry Andric if (!ST->hasA16() && !ST->hasG16()) 257bdd1243dSDimitry Andric return std::nullopt; 258e8d8bef9SDimitry Andric 25904eeddc0SDimitry Andric // Address is interpreted as float if the instruction has a sampler or as 26004eeddc0SDimitry Andric // unsigned int if there is no sampler. 26104eeddc0SDimitry Andric bool HasSampler = 26204eeddc0SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263e8d8bef9SDimitry Andric bool FloatCoord = false; 264e8d8bef9SDimitry Andric // true means derivatives can be converted to 16 bit, coordinates not 265e8d8bef9SDimitry Andric bool OnlyDerivatives = false; 266e8d8bef9SDimitry Andric 267e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268e8d8bef9SDimitry Andric OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269e8d8bef9SDimitry Andric Value *Coord = II.getOperand(OperandIndex); 270e8d8bef9SDimitry Andric // If the values are not derived from 16-bit values, we cannot optimize. 27104eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272e8d8bef9SDimitry Andric if (OperandIndex < ImageDimIntr->CoordStart || 273e8d8bef9SDimitry Andric ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274bdd1243dSDimitry Andric return std::nullopt; 275e8d8bef9SDimitry Andric } 276e8d8bef9SDimitry Andric // All gradients can be converted, so convert only them 277e8d8bef9SDimitry Andric OnlyDerivatives = true; 278e8d8bef9SDimitry Andric break; 279e8d8bef9SDimitry Andric } 280e8d8bef9SDimitry Andric 281e8d8bef9SDimitry Andric assert(OperandIndex == ImageDimIntr->GradientStart || 282e8d8bef9SDimitry Andric FloatCoord == Coord->getType()->isFloatingPointTy()); 283e8d8bef9SDimitry Andric FloatCoord = Coord->getType()->isFloatingPointTy(); 284e8d8bef9SDimitry Andric } 285e8d8bef9SDimitry Andric 28604eeddc0SDimitry Andric if (!OnlyDerivatives && !ST->hasA16()) 287e8d8bef9SDimitry Andric OnlyDerivatives = true; // Only supports G16 28804eeddc0SDimitry Andric 28904eeddc0SDimitry Andric // Check if there is a bias parameter and if it can be converted to f16 29004eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 29104eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 29204eeddc0SDimitry Andric assert(HasSampler && 29304eeddc0SDimitry Andric "Only image instructions with a sampler can have a bias"); 29404eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 29504eeddc0SDimitry Andric OnlyDerivatives = true; 296e8d8bef9SDimitry Andric } 297e8d8bef9SDimitry Andric 29804eeddc0SDimitry Andric if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 29904eeddc0SDimitry Andric ImageDimIntr->CoordStart)) 300bdd1243dSDimitry Andric return std::nullopt; 30104eeddc0SDimitry Andric 302e8d8bef9SDimitry Andric Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303e8d8bef9SDimitry Andric : Type::getInt16Ty(II.getContext()); 304e8d8bef9SDimitry Andric 30504eeddc0SDimitry Andric return modifyIntrinsicCall( 30681ad6265SDimitry Andric II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 30804eeddc0SDimitry Andric if (!OnlyDerivatives) { 309e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310e8d8bef9SDimitry Andric 31104eeddc0SDimitry Andric // Change the bias type 31204eeddc0SDimitry Andric if (ImageDimIntr->NumBiasArgs != 0) 31304eeddc0SDimitry Andric ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 31404eeddc0SDimitry Andric } 315e8d8bef9SDimitry Andric 316e8d8bef9SDimitry Andric unsigned EndIndex = 317e8d8bef9SDimitry Andric OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319e8d8bef9SDimitry Andric OperandIndex < EndIndex; OperandIndex++) { 320e8d8bef9SDimitry Andric Args[OperandIndex] = 321e8d8bef9SDimitry Andric convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322e8d8bef9SDimitry Andric } 323e8d8bef9SDimitry Andric 32404eeddc0SDimitry Andric // Convert the bias 32504eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 32604eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 32704eeddc0SDimitry Andric Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 32804eeddc0SDimitry Andric } 32904eeddc0SDimitry Andric }); 330e8d8bef9SDimitry Andric } 331e8d8bef9SDimitry Andric 332*06c3fb27SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333*06c3fb27SDimitry Andric const Value *Op0, const Value *Op1, 334e8d8bef9SDimitry Andric InstCombiner &IC) const { 335e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336e8d8bef9SDimitry Andric // infinity, gives +0.0. If we can prove we don't have one of the special 337e8d8bef9SDimitry Andric // cases then we can use a normal multiply instead. 338e8d8bef9SDimitry Andric // TODO: Create and use isKnownFiniteNonZero instead of just matching 339e8d8bef9SDimitry Andric // constants here. 340e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_FiniteNonZero())) { 342e8d8bef9SDimitry Andric // One operand is not zero or infinity or NaN. 343e8d8bef9SDimitry Andric return true; 344e8d8bef9SDimitry Andric } 345*06c3fb27SDimitry Andric 346e8d8bef9SDimitry Andric auto *TLI = &IC.getTargetLibraryInfo(); 347*06c3fb27SDimitry Andric if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 348*06c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 349*06c3fb27SDimitry Andric &IC.getDominatorTree()) && 350*06c3fb27SDimitry Andric isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 351*06c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 352*06c3fb27SDimitry Andric &IC.getDominatorTree())) { 353e8d8bef9SDimitry Andric // Neither operand is infinity or NaN. 354e8d8bef9SDimitry Andric return true; 355e8d8bef9SDimitry Andric } 356e8d8bef9SDimitry Andric return false; 357e8d8bef9SDimitry Andric } 358e8d8bef9SDimitry Andric 359*06c3fb27SDimitry Andric /// Match an fpext from half to float, or a constant we can convert. 360*06c3fb27SDimitry Andric static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 361*06c3fb27SDimitry Andric if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 362*06c3fb27SDimitry Andric return FPExtSrc->getType()->isHalfTy(); 363*06c3fb27SDimitry Andric 364*06c3fb27SDimitry Andric ConstantFP *CFP; 365*06c3fb27SDimitry Andric if (match(Arg, m_ConstantFP(CFP))) { 366*06c3fb27SDimitry Andric bool LosesInfo; 367*06c3fb27SDimitry Andric APFloat Val(CFP->getValueAPF()); 368*06c3fb27SDimitry Andric Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 369*06c3fb27SDimitry Andric if (LosesInfo) 370*06c3fb27SDimitry Andric return false; 371*06c3fb27SDimitry Andric 372*06c3fb27SDimitry Andric FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 373*06c3fb27SDimitry Andric return true; 374*06c3fb27SDimitry Andric } 375*06c3fb27SDimitry Andric 376*06c3fb27SDimitry Andric return false; 377*06c3fb27SDimitry Andric } 378*06c3fb27SDimitry Andric 379*06c3fb27SDimitry Andric // Trim all zero components from the end of the vector \p UseV and return 380*06c3fb27SDimitry Andric // an appropriate bitset with known elements. 381*06c3fb27SDimitry Andric static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 382*06c3fb27SDimitry Andric Instruction *I) { 383*06c3fb27SDimitry Andric auto *VTy = cast<FixedVectorType>(UseV->getType()); 384*06c3fb27SDimitry Andric unsigned VWidth = VTy->getNumElements(); 385*06c3fb27SDimitry Andric APInt DemandedElts = APInt::getAllOnes(VWidth); 386*06c3fb27SDimitry Andric 387*06c3fb27SDimitry Andric for (int i = VWidth - 1; i > 0; --i) { 388*06c3fb27SDimitry Andric auto *Elt = findScalarElement(UseV, i); 389*06c3fb27SDimitry Andric if (!Elt) 390*06c3fb27SDimitry Andric break; 391*06c3fb27SDimitry Andric 392*06c3fb27SDimitry Andric if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 393*06c3fb27SDimitry Andric if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 394*06c3fb27SDimitry Andric break; 395*06c3fb27SDimitry Andric } else { 396*06c3fb27SDimitry Andric break; 397*06c3fb27SDimitry Andric } 398*06c3fb27SDimitry Andric 399*06c3fb27SDimitry Andric DemandedElts.clearBit(i); 400*06c3fb27SDimitry Andric } 401*06c3fb27SDimitry Andric 402*06c3fb27SDimitry Andric return DemandedElts; 403*06c3fb27SDimitry Andric } 404*06c3fb27SDimitry Andric 405*06c3fb27SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 406*06c3fb27SDimitry Andric IntrinsicInst &II, 407*06c3fb27SDimitry Andric APInt DemandedElts, 408*06c3fb27SDimitry Andric int DMaskIdx = -1, 409*06c3fb27SDimitry Andric bool IsLoad = true); 410*06c3fb27SDimitry Andric 411bdd1243dSDimitry Andric std::optional<Instruction *> 412e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 413e8d8bef9SDimitry Andric Intrinsic::ID IID = II.getIntrinsicID(); 414e8d8bef9SDimitry Andric switch (IID) { 415e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rcp: { 416e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 417e8d8bef9SDimitry Andric 418e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 419e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 420e8d8bef9SDimitry Andric Type *Ty = II.getType(); 421e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 422e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 423e8d8bef9SDimitry Andric } 424e8d8bef9SDimitry Andric 425e8d8bef9SDimitry Andric if (II.isStrictFP()) 426e8d8bef9SDimitry Andric break; 427e8d8bef9SDimitry Andric 428e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 429e8d8bef9SDimitry Andric const APFloat &ArgVal = C->getValueAPF(); 430e8d8bef9SDimitry Andric APFloat Val(ArgVal.getSemantics(), 1); 431e8d8bef9SDimitry Andric Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 432e8d8bef9SDimitry Andric 433e8d8bef9SDimitry Andric // This is more precise than the instruction may give. 434e8d8bef9SDimitry Andric // 435e8d8bef9SDimitry Andric // TODO: The instruction always flushes denormal results (except for f16), 436e8d8bef9SDimitry Andric // should this also? 437e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 438e8d8bef9SDimitry Andric } 439e8d8bef9SDimitry Andric 440e8d8bef9SDimitry Andric break; 441e8d8bef9SDimitry Andric } 442bdd1243dSDimitry Andric case Intrinsic::amdgcn_sqrt: 443e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rsq: { 444e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 445e8d8bef9SDimitry Andric 446e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 447e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 448e8d8bef9SDimitry Andric Type *Ty = II.getType(); 449e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 450e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 451e8d8bef9SDimitry Andric } 452e8d8bef9SDimitry Andric 453e8d8bef9SDimitry Andric break; 454e8d8bef9SDimitry Andric } 455*06c3fb27SDimitry Andric case Intrinsic::amdgcn_log: 456*06c3fb27SDimitry Andric case Intrinsic::amdgcn_exp2: { 457*06c3fb27SDimitry Andric const bool IsLog = IID == Intrinsic::amdgcn_log; 458*06c3fb27SDimitry Andric const bool IsExp = IID == Intrinsic::amdgcn_exp2; 459*06c3fb27SDimitry Andric Value *Src = II.getArgOperand(0); 460*06c3fb27SDimitry Andric Type *Ty = II.getType(); 461*06c3fb27SDimitry Andric 462*06c3fb27SDimitry Andric if (isa<PoisonValue>(Src)) 463*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Src); 464*06c3fb27SDimitry Andric 465*06c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src)) 466*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 467*06c3fb27SDimitry Andric 468*06c3fb27SDimitry Andric if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 469*06c3fb27SDimitry Andric if (C->isInfinity()) { 470*06c3fb27SDimitry Andric // exp2(+inf) -> +inf 471*06c3fb27SDimitry Andric // log2(+inf) -> +inf 472*06c3fb27SDimitry Andric if (!C->isNegative()) 473*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, C); 474*06c3fb27SDimitry Andric 475*06c3fb27SDimitry Andric // exp2(-inf) -> 0 476*06c3fb27SDimitry Andric if (IsExp && C->isNegative()) 477*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 478*06c3fb27SDimitry Andric } 479*06c3fb27SDimitry Andric 480*06c3fb27SDimitry Andric if (II.isStrictFP()) 481*06c3fb27SDimitry Andric break; 482*06c3fb27SDimitry Andric 483*06c3fb27SDimitry Andric if (C->isNaN()) { 484*06c3fb27SDimitry Andric Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 485*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Quieted); 486*06c3fb27SDimitry Andric } 487*06c3fb27SDimitry Andric 488*06c3fb27SDimitry Andric // f32 instruction doesn't handle denormals, f16 does. 489*06c3fb27SDimitry Andric if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 490*06c3fb27SDimitry Andric Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 491*06c3fb27SDimitry Andric : ConstantFP::get(Ty, 1.0); 492*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, FoldedValue); 493*06c3fb27SDimitry Andric } 494*06c3fb27SDimitry Andric 495*06c3fb27SDimitry Andric if (IsLog && C->isNegative()) 496*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 497*06c3fb27SDimitry Andric 498*06c3fb27SDimitry Andric // TODO: Full constant folding matching hardware behavior. 499*06c3fb27SDimitry Andric } 500*06c3fb27SDimitry Andric 501*06c3fb27SDimitry Andric break; 502*06c3fb27SDimitry Andric } 503e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_mant: 504e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_exp: { 505e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 506e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 507e8d8bef9SDimitry Andric int Exp; 508e8d8bef9SDimitry Andric APFloat Significand = 509e8d8bef9SDimitry Andric frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 510e8d8bef9SDimitry Andric 511e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_frexp_mant) { 512e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 513e8d8bef9SDimitry Andric II, ConstantFP::get(II.getContext(), Significand)); 514e8d8bef9SDimitry Andric } 515e8d8bef9SDimitry Andric 516e8d8bef9SDimitry Andric // Match instruction special case behavior. 517e8d8bef9SDimitry Andric if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 518e8d8bef9SDimitry Andric Exp = 0; 519e8d8bef9SDimitry Andric 520e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 521e8d8bef9SDimitry Andric } 522e8d8bef9SDimitry Andric 523e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 524e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 525e8d8bef9SDimitry Andric } 526e8d8bef9SDimitry Andric 527e8d8bef9SDimitry Andric break; 528e8d8bef9SDimitry Andric } 529e8d8bef9SDimitry Andric case Intrinsic::amdgcn_class: { 530e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 531e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 532e8d8bef9SDimitry Andric const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 533*06c3fb27SDimitry Andric if (CMask) { 534*06c3fb27SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 535*06c3fb27SDimitry Andric II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 536*06c3fb27SDimitry Andric 537*06c3fb27SDimitry Andric // Clamp any excess bits, as they're illegal for the generic intrinsic. 538*06c3fb27SDimitry Andric II.setArgOperand(1, ConstantInt::get(Src1->getType(), 539*06c3fb27SDimitry Andric CMask->getZExtValue() & fcAllFlags)); 540*06c3fb27SDimitry Andric return &II; 541e8d8bef9SDimitry Andric } 542e8d8bef9SDimitry Andric 543*06c3fb27SDimitry Andric // Propagate poison. 544*06c3fb27SDimitry Andric if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 545*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 546e8d8bef9SDimitry Andric 547*06c3fb27SDimitry Andric // llvm.amdgcn.class(_, undef) -> false 548*06c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src1)) 549e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 550*06c3fb27SDimitry Andric 551*06c3fb27SDimitry Andric // llvm.amdgcn.class(undef, mask) -> mask != 0 552*06c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src0)) { 553*06c3fb27SDimitry Andric Value *CmpMask = IC.Builder.CreateICmpNE( 554*06c3fb27SDimitry Andric Src1, ConstantInt::getNullValue(Src1->getType())); 555*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, CmpMask); 556e8d8bef9SDimitry Andric } 557e8d8bef9SDimitry Andric break; 558e8d8bef9SDimitry Andric } 559e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pkrtz: { 560e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 561e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 562e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 563e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 564e8d8bef9SDimitry Andric const fltSemantics &HalfSem = 565e8d8bef9SDimitry Andric II.getType()->getScalarType()->getFltSemantics(); 566e8d8bef9SDimitry Andric bool LosesInfo; 567e8d8bef9SDimitry Andric APFloat Val0 = C0->getValueAPF(); 568e8d8bef9SDimitry Andric APFloat Val1 = C1->getValueAPF(); 569e8d8bef9SDimitry Andric Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 570e8d8bef9SDimitry Andric Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 571e8d8bef9SDimitry Andric 572e8d8bef9SDimitry Andric Constant *Folded = 573e8d8bef9SDimitry Andric ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 574e8d8bef9SDimitry Andric ConstantFP::get(II.getContext(), Val1)}); 575e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Folded); 576e8d8bef9SDimitry Andric } 577e8d8bef9SDimitry Andric } 578e8d8bef9SDimitry Andric 579e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 580e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 581e8d8bef9SDimitry Andric } 582e8d8bef9SDimitry Andric 583e8d8bef9SDimitry Andric break; 584e8d8bef9SDimitry Andric } 585e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_i16: 586e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_u16: 587e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_i16: 588e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_u16: { 589e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 590e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 591e8d8bef9SDimitry Andric 592e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 593e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 594e8d8bef9SDimitry Andric } 595e8d8bef9SDimitry Andric 596e8d8bef9SDimitry Andric break; 597e8d8bef9SDimitry Andric } 598e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ubfe: 599e8d8bef9SDimitry Andric case Intrinsic::amdgcn_sbfe: { 600e8d8bef9SDimitry Andric // Decompose simple cases into standard shifts. 601e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 602e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 603e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 604e8d8bef9SDimitry Andric } 605e8d8bef9SDimitry Andric 606e8d8bef9SDimitry Andric unsigned Width; 607e8d8bef9SDimitry Andric Type *Ty = II.getType(); 608e8d8bef9SDimitry Andric unsigned IntSize = Ty->getIntegerBitWidth(); 609e8d8bef9SDimitry Andric 610e8d8bef9SDimitry Andric ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 611e8d8bef9SDimitry Andric if (CWidth) { 612e8d8bef9SDimitry Andric Width = CWidth->getZExtValue(); 613e8d8bef9SDimitry Andric if ((Width & (IntSize - 1)) == 0) { 614e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 615e8d8bef9SDimitry Andric } 616e8d8bef9SDimitry Andric 617e8d8bef9SDimitry Andric // Hardware ignores high bits, so remove those. 618e8d8bef9SDimitry Andric if (Width >= IntSize) { 619e8d8bef9SDimitry Andric return IC.replaceOperand( 620e8d8bef9SDimitry Andric II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 621e8d8bef9SDimitry Andric } 622e8d8bef9SDimitry Andric } 623e8d8bef9SDimitry Andric 624e8d8bef9SDimitry Andric unsigned Offset; 625e8d8bef9SDimitry Andric ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 626e8d8bef9SDimitry Andric if (COffset) { 627e8d8bef9SDimitry Andric Offset = COffset->getZExtValue(); 628e8d8bef9SDimitry Andric if (Offset >= IntSize) { 629e8d8bef9SDimitry Andric return IC.replaceOperand( 630e8d8bef9SDimitry Andric II, 1, 631e8d8bef9SDimitry Andric ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 632e8d8bef9SDimitry Andric } 633e8d8bef9SDimitry Andric } 634e8d8bef9SDimitry Andric 635e8d8bef9SDimitry Andric bool Signed = IID == Intrinsic::amdgcn_sbfe; 636e8d8bef9SDimitry Andric 637e8d8bef9SDimitry Andric if (!CWidth || !COffset) 638e8d8bef9SDimitry Andric break; 639e8d8bef9SDimitry Andric 640349cc55cSDimitry Andric // The case of Width == 0 is handled above, which makes this transformation 641e8d8bef9SDimitry Andric // safe. If Width == 0, then the ashr and lshr instructions become poison 642e8d8bef9SDimitry Andric // value since the shift amount would be equal to the bit size. 643e8d8bef9SDimitry Andric assert(Width != 0); 644e8d8bef9SDimitry Andric 645e8d8bef9SDimitry Andric // TODO: This allows folding to undef when the hardware has specific 646e8d8bef9SDimitry Andric // behavior? 647e8d8bef9SDimitry Andric if (Offset + Width < IntSize) { 648e8d8bef9SDimitry Andric Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 649e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 650e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Shl, IntSize - Width); 651e8d8bef9SDimitry Andric RightShift->takeName(&II); 652e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 653e8d8bef9SDimitry Andric } 654e8d8bef9SDimitry Andric 655e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 656e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Src, Offset); 657e8d8bef9SDimitry Andric 658e8d8bef9SDimitry Andric RightShift->takeName(&II); 659e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 660e8d8bef9SDimitry Andric } 661e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp: 66281ad6265SDimitry Andric case Intrinsic::amdgcn_exp_row: 663e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp_compr: { 664e8d8bef9SDimitry Andric ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 665e8d8bef9SDimitry Andric unsigned EnBits = En->getZExtValue(); 666e8d8bef9SDimitry Andric if (EnBits == 0xf) 667e8d8bef9SDimitry Andric break; // All inputs enabled. 668e8d8bef9SDimitry Andric 669e8d8bef9SDimitry Andric bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 670e8d8bef9SDimitry Andric bool Changed = false; 671e8d8bef9SDimitry Andric for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 672e8d8bef9SDimitry Andric if ((!IsCompr && (EnBits & (1 << I)) == 0) || 673e8d8bef9SDimitry Andric (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 674e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(I + 2); 675e8d8bef9SDimitry Andric if (!isa<UndefValue>(Src)) { 676e8d8bef9SDimitry Andric IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 677e8d8bef9SDimitry Andric Changed = true; 678e8d8bef9SDimitry Andric } 679e8d8bef9SDimitry Andric } 680e8d8bef9SDimitry Andric } 681e8d8bef9SDimitry Andric 682e8d8bef9SDimitry Andric if (Changed) { 683e8d8bef9SDimitry Andric return &II; 684e8d8bef9SDimitry Andric } 685e8d8bef9SDimitry Andric 686e8d8bef9SDimitry Andric break; 687e8d8bef9SDimitry Andric } 688e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmed3: { 689e8d8bef9SDimitry Andric // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 690e8d8bef9SDimitry Andric // for the shader. 691e8d8bef9SDimitry Andric 692e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 693e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 694e8d8bef9SDimitry Andric Value *Src2 = II.getArgOperand(2); 695e8d8bef9SDimitry Andric 696e8d8bef9SDimitry Andric // Checking for NaN before canonicalization provides better fidelity when 697e8d8bef9SDimitry Andric // mapping other operations onto fmed3 since the order of operands is 698e8d8bef9SDimitry Andric // unchanged. 699e8d8bef9SDimitry Andric CallInst *NewCall = nullptr; 700e8d8bef9SDimitry Andric if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 701e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src1, Src2); 702e8d8bef9SDimitry Andric } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 703e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src0, Src2); 704e8d8bef9SDimitry Andric } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 705e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 706e8d8bef9SDimitry Andric } 707e8d8bef9SDimitry Andric 708e8d8bef9SDimitry Andric if (NewCall) { 709e8d8bef9SDimitry Andric NewCall->copyFastMathFlags(&II); 710e8d8bef9SDimitry Andric NewCall->takeName(&II); 711e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 712e8d8bef9SDimitry Andric } 713e8d8bef9SDimitry Andric 714e8d8bef9SDimitry Andric bool Swap = false; 715e8d8bef9SDimitry Andric // Canonicalize constants to RHS operands. 716e8d8bef9SDimitry Andric // 717e8d8bef9SDimitry Andric // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 718e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 719e8d8bef9SDimitry Andric std::swap(Src0, Src1); 720e8d8bef9SDimitry Andric Swap = true; 721e8d8bef9SDimitry Andric } 722e8d8bef9SDimitry Andric 723e8d8bef9SDimitry Andric if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 724e8d8bef9SDimitry Andric std::swap(Src1, Src2); 725e8d8bef9SDimitry Andric Swap = true; 726e8d8bef9SDimitry Andric } 727e8d8bef9SDimitry Andric 728e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 729e8d8bef9SDimitry Andric std::swap(Src0, Src1); 730e8d8bef9SDimitry Andric Swap = true; 731e8d8bef9SDimitry Andric } 732e8d8bef9SDimitry Andric 733e8d8bef9SDimitry Andric if (Swap) { 734e8d8bef9SDimitry Andric II.setArgOperand(0, Src0); 735e8d8bef9SDimitry Andric II.setArgOperand(1, Src1); 736e8d8bef9SDimitry Andric II.setArgOperand(2, Src2); 737e8d8bef9SDimitry Andric return &II; 738e8d8bef9SDimitry Andric } 739e8d8bef9SDimitry Andric 740e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 741e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 742e8d8bef9SDimitry Andric if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 743e8d8bef9SDimitry Andric APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 744e8d8bef9SDimitry Andric C2->getValueAPF()); 745e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 746e8d8bef9SDimitry Andric II, ConstantFP::get(IC.Builder.getContext(), Result)); 747e8d8bef9SDimitry Andric } 748e8d8bef9SDimitry Andric } 749e8d8bef9SDimitry Andric } 750e8d8bef9SDimitry Andric 751*06c3fb27SDimitry Andric if (!ST->hasMed3_16()) 752*06c3fb27SDimitry Andric break; 753*06c3fb27SDimitry Andric 754*06c3fb27SDimitry Andric Value *X, *Y, *Z; 755*06c3fb27SDimitry Andric 756*06c3fb27SDimitry Andric // Repeat floating-point width reduction done for minnum/maxnum. 757*06c3fb27SDimitry Andric // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 758*06c3fb27SDimitry Andric if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 759*06c3fb27SDimitry Andric matchFPExtFromF16(Src2, Z)) { 760*06c3fb27SDimitry Andric Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 761*06c3fb27SDimitry Andric {X, Y, Z}, &II, II.getName()); 762*06c3fb27SDimitry Andric return new FPExtInst(NewCall, II.getType()); 763*06c3fb27SDimitry Andric } 764*06c3fb27SDimitry Andric 765e8d8bef9SDimitry Andric break; 766e8d8bef9SDimitry Andric } 767e8d8bef9SDimitry Andric case Intrinsic::amdgcn_icmp: 768e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fcmp: { 769e8d8bef9SDimitry Andric const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 770e8d8bef9SDimitry Andric // Guard against invalid arguments. 771e8d8bef9SDimitry Andric int64_t CCVal = CC->getZExtValue(); 772e8d8bef9SDimitry Andric bool IsInteger = IID == Intrinsic::amdgcn_icmp; 773e8d8bef9SDimitry Andric if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 774e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 775e8d8bef9SDimitry Andric (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 776e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_FCMP_PREDICATE))) 777e8d8bef9SDimitry Andric break; 778e8d8bef9SDimitry Andric 779e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 780e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 781e8d8bef9SDimitry Andric 782e8d8bef9SDimitry Andric if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 783e8d8bef9SDimitry Andric if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 784e8d8bef9SDimitry Andric Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 785e8d8bef9SDimitry Andric if (CCmp->isNullValue()) { 786e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 787e8d8bef9SDimitry Andric II, ConstantExpr::getSExt(CCmp, II.getType())); 788e8d8bef9SDimitry Andric } 789e8d8bef9SDimitry Andric 790e8d8bef9SDimitry Andric // The result of V_ICMP/V_FCMP assembly instructions (which this 791e8d8bef9SDimitry Andric // intrinsic exposes) is one bit per thread, masked with the EXEC 792e8d8bef9SDimitry Andric // register (which contains the bitmask of live threads). So a 793e8d8bef9SDimitry Andric // comparison that always returns true is the same as a read of the 794e8d8bef9SDimitry Andric // EXEC register. 795e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 796e8d8bef9SDimitry Andric II.getModule(), Intrinsic::read_register, II.getType()); 797e8d8bef9SDimitry Andric Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 798e8d8bef9SDimitry Andric MDNode *MD = MDNode::get(II.getContext(), MDArgs); 799e8d8bef9SDimitry Andric Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 800e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 801349cc55cSDimitry Andric NewCall->addFnAttr(Attribute::Convergent); 802e8d8bef9SDimitry Andric NewCall->takeName(&II); 803e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 804e8d8bef9SDimitry Andric } 805e8d8bef9SDimitry Andric 806e8d8bef9SDimitry Andric // Canonicalize constants to RHS. 807e8d8bef9SDimitry Andric CmpInst::Predicate SwapPred = 808e8d8bef9SDimitry Andric CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 809e8d8bef9SDimitry Andric II.setArgOperand(0, Src1); 810e8d8bef9SDimitry Andric II.setArgOperand(1, Src0); 811e8d8bef9SDimitry Andric II.setArgOperand( 812e8d8bef9SDimitry Andric 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 813e8d8bef9SDimitry Andric return &II; 814e8d8bef9SDimitry Andric } 815e8d8bef9SDimitry Andric 816e8d8bef9SDimitry Andric if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 817e8d8bef9SDimitry Andric break; 818e8d8bef9SDimitry Andric 819e8d8bef9SDimitry Andric // Canonicalize compare eq with true value to compare != 0 820e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 821e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 822e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 823e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 824e8d8bef9SDimitry Andric Value *ExtSrc; 825e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ && 826e8d8bef9SDimitry Andric ((match(Src1, PatternMatch::m_One()) && 827e8d8bef9SDimitry Andric match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 828e8d8bef9SDimitry Andric (match(Src1, PatternMatch::m_AllOnes()) && 829e8d8bef9SDimitry Andric match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 830e8d8bef9SDimitry Andric ExtSrc->getType()->isIntegerTy(1)) { 831e8d8bef9SDimitry Andric IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 832e8d8bef9SDimitry Andric IC.replaceOperand(II, 2, 833e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 834e8d8bef9SDimitry Andric return &II; 835e8d8bef9SDimitry Andric } 836e8d8bef9SDimitry Andric 837e8d8bef9SDimitry Andric CmpInst::Predicate SrcPred; 838e8d8bef9SDimitry Andric Value *SrcLHS; 839e8d8bef9SDimitry Andric Value *SrcRHS; 840e8d8bef9SDimitry Andric 841e8d8bef9SDimitry Andric // Fold compare eq/ne with 0 from a compare result as the predicate to the 842e8d8bef9SDimitry Andric // intrinsic. The typical use is a wave vote function in the library, which 843e8d8bef9SDimitry Andric // will be fed from a user code condition compared with 0. Fold in the 844e8d8bef9SDimitry Andric // redundant compare. 845e8d8bef9SDimitry Andric 846e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 847e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, pred) 848e8d8bef9SDimitry Andric // 849e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 850e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 851e8d8bef9SDimitry Andric if (match(Src1, PatternMatch::m_Zero()) && 852e8d8bef9SDimitry Andric match(Src0, PatternMatch::m_ZExtOrSExt( 853e8d8bef9SDimitry Andric m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 854e8d8bef9SDimitry Andric PatternMatch::m_Value(SrcRHS))))) { 855e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ) 856e8d8bef9SDimitry Andric SrcPred = CmpInst::getInversePredicate(SrcPred); 857e8d8bef9SDimitry Andric 858e8d8bef9SDimitry Andric Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 859e8d8bef9SDimitry Andric ? Intrinsic::amdgcn_fcmp 860e8d8bef9SDimitry Andric : Intrinsic::amdgcn_icmp; 861e8d8bef9SDimitry Andric 862e8d8bef9SDimitry Andric Type *Ty = SrcLHS->getType(); 863e8d8bef9SDimitry Andric if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 864e8d8bef9SDimitry Andric // Promote to next legal integer type. 865e8d8bef9SDimitry Andric unsigned Width = CmpType->getBitWidth(); 866e8d8bef9SDimitry Andric unsigned NewWidth = Width; 867e8d8bef9SDimitry Andric 868e8d8bef9SDimitry Andric // Don't do anything for i1 comparisons. 869e8d8bef9SDimitry Andric if (Width == 1) 870e8d8bef9SDimitry Andric break; 871e8d8bef9SDimitry Andric 872e8d8bef9SDimitry Andric if (Width <= 16) 873e8d8bef9SDimitry Andric NewWidth = 16; 874e8d8bef9SDimitry Andric else if (Width <= 32) 875e8d8bef9SDimitry Andric NewWidth = 32; 876e8d8bef9SDimitry Andric else if (Width <= 64) 877e8d8bef9SDimitry Andric NewWidth = 64; 878e8d8bef9SDimitry Andric else if (Width > 64) 879e8d8bef9SDimitry Andric break; // Can't handle this. 880e8d8bef9SDimitry Andric 881e8d8bef9SDimitry Andric if (Width != NewWidth) { 882e8d8bef9SDimitry Andric IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 883e8d8bef9SDimitry Andric if (CmpInst::isSigned(SrcPred)) { 884e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 885e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 886e8d8bef9SDimitry Andric } else { 887e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 888e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 889e8d8bef9SDimitry Andric } 890e8d8bef9SDimitry Andric } 891e8d8bef9SDimitry Andric } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 892e8d8bef9SDimitry Andric break; 893e8d8bef9SDimitry Andric 894e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 895e8d8bef9SDimitry Andric II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 896e8d8bef9SDimitry Andric Value *Args[] = {SrcLHS, SrcRHS, 897e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), SrcPred)}; 898e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 899e8d8bef9SDimitry Andric NewCall->takeName(&II); 900e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 901e8d8bef9SDimitry Andric } 902e8d8bef9SDimitry Andric 903e8d8bef9SDimitry Andric break; 904e8d8bef9SDimitry Andric } 905*06c3fb27SDimitry Andric case Intrinsic::amdgcn_mbcnt_hi: { 906*06c3fb27SDimitry Andric // exec_hi is all 0, so this is just a copy. 907*06c3fb27SDimitry Andric if (ST->isWave32()) 908*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 909*06c3fb27SDimitry Andric break; 910*06c3fb27SDimitry Andric } 911e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ballot: { 912e8d8bef9SDimitry Andric if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 913e8d8bef9SDimitry Andric if (Src->isZero()) { 914e8d8bef9SDimitry Andric // amdgcn.ballot(i1 0) is zero. 915e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 916e8d8bef9SDimitry Andric } 917e8d8bef9SDimitry Andric } 918e8d8bef9SDimitry Andric break; 919e8d8bef9SDimitry Andric } 920e8d8bef9SDimitry Andric case Intrinsic::amdgcn_wqm_vote: { 921e8d8bef9SDimitry Andric // wqm_vote is identity when the argument is constant. 922e8d8bef9SDimitry Andric if (!isa<Constant>(II.getArgOperand(0))) 923e8d8bef9SDimitry Andric break; 924e8d8bef9SDimitry Andric 925e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 926e8d8bef9SDimitry Andric } 927e8d8bef9SDimitry Andric case Intrinsic::amdgcn_kill: { 928e8d8bef9SDimitry Andric const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 929e8d8bef9SDimitry Andric if (!C || !C->getZExtValue()) 930e8d8bef9SDimitry Andric break; 931e8d8bef9SDimitry Andric 932e8d8bef9SDimitry Andric // amdgcn.kill(i1 1) is a no-op 933e8d8bef9SDimitry Andric return IC.eraseInstFromFunction(II); 934e8d8bef9SDimitry Andric } 935e8d8bef9SDimitry Andric case Intrinsic::amdgcn_update_dpp: { 936e8d8bef9SDimitry Andric Value *Old = II.getArgOperand(0); 937e8d8bef9SDimitry Andric 938e8d8bef9SDimitry Andric auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 939e8d8bef9SDimitry Andric auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 940e8d8bef9SDimitry Andric auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 941e8d8bef9SDimitry Andric if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 942e8d8bef9SDimitry Andric BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 943e8d8bef9SDimitry Andric break; 944e8d8bef9SDimitry Andric 945e8d8bef9SDimitry Andric // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 946e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 947e8d8bef9SDimitry Andric } 948e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlane16: 949e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlanex16: { 950e8d8bef9SDimitry Andric // Discard vdst_in if it's not going to be read. 951e8d8bef9SDimitry Andric Value *VDstIn = II.getArgOperand(0); 952e8d8bef9SDimitry Andric if (isa<UndefValue>(VDstIn)) 953e8d8bef9SDimitry Andric break; 954e8d8bef9SDimitry Andric 955e8d8bef9SDimitry Andric ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4)); 956e8d8bef9SDimitry Andric ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5)); 957e8d8bef9SDimitry Andric if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 958e8d8bef9SDimitry Andric break; 959e8d8bef9SDimitry Andric 960e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 961e8d8bef9SDimitry Andric } 96281ad6265SDimitry Andric case Intrinsic::amdgcn_permlane64: 96381ad6265SDimitry Andric // A constant value is trivially uniform. 96481ad6265SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 96581ad6265SDimitry Andric return IC.replaceInstUsesWith(II, C); 96681ad6265SDimitry Andric } 96781ad6265SDimitry Andric break; 968e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readfirstlane: 969e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readlane: { 970e8d8bef9SDimitry Andric // A constant value is trivially uniform. 971e8d8bef9SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 972e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, C); 973e8d8bef9SDimitry Andric } 974e8d8bef9SDimitry Andric 975e8d8bef9SDimitry Andric // The rest of these may not be safe if the exec may not be the same between 976e8d8bef9SDimitry Andric // the def and use. 977e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 978e8d8bef9SDimitry Andric Instruction *SrcInst = dyn_cast<Instruction>(Src); 979e8d8bef9SDimitry Andric if (SrcInst && SrcInst->getParent() != II.getParent()) 980e8d8bef9SDimitry Andric break; 981e8d8bef9SDimitry Andric 982e8d8bef9SDimitry Andric // readfirstlane (readfirstlane x) -> readfirstlane x 983e8d8bef9SDimitry Andric // readlane (readfirstlane x), y -> readfirstlane x 984e8d8bef9SDimitry Andric if (match(Src, 985e8d8bef9SDimitry Andric PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 986e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 987e8d8bef9SDimitry Andric } 988e8d8bef9SDimitry Andric 989e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_readfirstlane) { 990e8d8bef9SDimitry Andric // readfirstlane (readlane x, y) -> readlane x, y 991e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 992e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 993e8d8bef9SDimitry Andric } 994e8d8bef9SDimitry Andric } else { 995e8d8bef9SDimitry Andric // readlane (readlane x, y), y -> readlane x, y 996e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 997e8d8bef9SDimitry Andric PatternMatch::m_Value(), 998e8d8bef9SDimitry Andric PatternMatch::m_Specific(II.getArgOperand(1))))) { 999e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1000e8d8bef9SDimitry Andric } 1001e8d8bef9SDimitry Andric } 1002e8d8bef9SDimitry Andric 1003e8d8bef9SDimitry Andric break; 1004e8d8bef9SDimitry Andric } 1005e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ldexp: { 1006e8d8bef9SDimitry Andric // FIXME: This doesn't introduce new instructions and belongs in 1007e8d8bef9SDimitry Andric // InstructionSimplify. 1008e8d8bef9SDimitry Andric Type *Ty = II.getType(); 1009e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1010e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1011e8d8bef9SDimitry Andric 1012e8d8bef9SDimitry Andric // Folding undef to qnan is safe regardless of the FP mode. 1013e8d8bef9SDimitry Andric if (isa<UndefValue>(Op0)) { 1014e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 1015e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 1016e8d8bef9SDimitry Andric } 1017e8d8bef9SDimitry Andric 1018e8d8bef9SDimitry Andric const APFloat *C = nullptr; 1019e8d8bef9SDimitry Andric match(Op0, PatternMatch::m_APFloat(C)); 1020e8d8bef9SDimitry Andric 1021e8d8bef9SDimitry Andric // FIXME: Should flush denorms depending on FP mode, but that's ignored 1022e8d8bef9SDimitry Andric // everywhere else. 1023e8d8bef9SDimitry Andric // 1024e8d8bef9SDimitry Andric // These cases should be safe, even with strictfp. 1025e8d8bef9SDimitry Andric // ldexp(0.0, x) -> 0.0 1026e8d8bef9SDimitry Andric // ldexp(-0.0, x) -> -0.0 1027e8d8bef9SDimitry Andric // ldexp(inf, x) -> inf 1028e8d8bef9SDimitry Andric // ldexp(-inf, x) -> -inf 1029e8d8bef9SDimitry Andric if (C && (C->isZero() || C->isInfinity())) { 1030e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Op0); 1031e8d8bef9SDimitry Andric } 1032e8d8bef9SDimitry Andric 1033e8d8bef9SDimitry Andric // With strictfp, be more careful about possibly needing to flush denormals 1034e8d8bef9SDimitry Andric // or not, and snan behavior depends on ieee_mode. 1035e8d8bef9SDimitry Andric if (II.isStrictFP()) 1036e8d8bef9SDimitry Andric break; 1037e8d8bef9SDimitry Andric 1038*06c3fb27SDimitry Andric if (C && C->isNaN()) 1039*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::get(Ty, C->makeQuiet())); 1040e8d8bef9SDimitry Andric 1041e8d8bef9SDimitry Andric // ldexp(x, 0) -> x 1042e8d8bef9SDimitry Andric // ldexp(x, undef) -> x 1043e8d8bef9SDimitry Andric if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { 1044e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Op0); 1045e8d8bef9SDimitry Andric } 1046e8d8bef9SDimitry Andric 1047e8d8bef9SDimitry Andric break; 1048e8d8bef9SDimitry Andric } 1049e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmul_legacy: { 1050e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1051e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1052e8d8bef9SDimitry Andric 1053e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1054e8d8bef9SDimitry Andric // infinity, gives +0.0. 1055e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1056e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1057e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) 1058*06c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1059e8d8bef9SDimitry Andric 1060e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1061e8d8bef9SDimitry Andric // normal fmul instruction instead. 1062*06c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1063e8d8bef9SDimitry Andric auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1064e8d8bef9SDimitry Andric FMul->takeName(&II); 1065e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FMul); 1066e8d8bef9SDimitry Andric } 1067e8d8bef9SDimitry Andric break; 1068e8d8bef9SDimitry Andric } 1069e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fma_legacy: { 1070e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1071e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1072e8d8bef9SDimitry Andric Value *Op2 = II.getArgOperand(2); 1073e8d8bef9SDimitry Andric 1074e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1075e8d8bef9SDimitry Andric // infinity, gives +0.0. 1076e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1077e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1078e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) { 1079e8d8bef9SDimitry Andric // It's tempting to just return Op2 here, but that would give the wrong 1080e8d8bef9SDimitry Andric // result if Op2 was -0.0. 1081*06c3fb27SDimitry Andric auto *Zero = ConstantFP::getZero(II.getType()); 1082e8d8bef9SDimitry Andric auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1083e8d8bef9SDimitry Andric FAdd->takeName(&II); 1084e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FAdd); 1085e8d8bef9SDimitry Andric } 1086e8d8bef9SDimitry Andric 1087e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1088e8d8bef9SDimitry Andric // normal fma instead. 1089*06c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1090e8d8bef9SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 1091e8d8bef9SDimitry Andric II.getModule(), Intrinsic::fma, II.getType())); 1092e8d8bef9SDimitry Andric return &II; 1093e8d8bef9SDimitry Andric } 1094e8d8bef9SDimitry Andric break; 1095e8d8bef9SDimitry Andric } 10960eae32dcSDimitry Andric case Intrinsic::amdgcn_is_shared: 10970eae32dcSDimitry Andric case Intrinsic::amdgcn_is_private: { 10980eae32dcSDimitry Andric if (isa<UndefValue>(II.getArgOperand(0))) 10990eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 11000eae32dcSDimitry Andric 11010eae32dcSDimitry Andric if (isa<ConstantPointerNull>(II.getArgOperand(0))) 11020eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 11030eae32dcSDimitry Andric break; 11040eae32dcSDimitry Andric } 1105*06c3fb27SDimitry Andric case Intrinsic::amdgcn_buffer_store_format: 1106*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_buffer_store_format: 1107*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_buffer_store_format: 1108*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_store: 1109*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_store: 1110*06c3fb27SDimitry Andric case Intrinsic::amdgcn_tbuffer_store: 1111*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1d: 1112*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1darray: 1113*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2d: 1114*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darray: 1115*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darraymsaa: 1116*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2dmsaa: 1117*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_3d: 1118*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_cube: 1119*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1d: 1120*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1darray: 1121*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2d: 1122*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2darray: 1123*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_3d: 1124*06c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_cube: { 1125*06c3fb27SDimitry Andric if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 1126*06c3fb27SDimitry Andric break; 1127*06c3fb27SDimitry Andric 1128*06c3fb27SDimitry Andric APInt DemandedElts = 1129*06c3fb27SDimitry Andric trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1130*06c3fb27SDimitry Andric 1131*06c3fb27SDimitry Andric int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 1132*06c3fb27SDimitry Andric if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 1133*06c3fb27SDimitry Andric false)) { 1134*06c3fb27SDimitry Andric return IC.eraseInstFromFunction(II); 1135*06c3fb27SDimitry Andric } 1136*06c3fb27SDimitry Andric 1137*06c3fb27SDimitry Andric break; 1138*06c3fb27SDimitry Andric } 1139*06c3fb27SDimitry Andric } 1140e8d8bef9SDimitry Andric if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1141e8d8bef9SDimitry Andric AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1142e8d8bef9SDimitry Andric return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1143e8d8bef9SDimitry Andric } 1144bdd1243dSDimitry Andric return std::nullopt; 1145e8d8bef9SDimitry Andric } 1146e8d8bef9SDimitry Andric 1147e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1148e8d8bef9SDimitry Andric /// 1149*06c3fb27SDimitry Andric /// The result of simplifying amdgcn image and buffer store intrinsics is updating 1150*06c3fb27SDimitry Andric /// definitions of the intrinsics vector argument, not Uses of the result like 1151*06c3fb27SDimitry Andric /// image and buffer loads. 1152e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1153e8d8bef9SDimitry Andric /// struct returns. 1154e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1155e8d8bef9SDimitry Andric IntrinsicInst &II, 1156e8d8bef9SDimitry Andric APInt DemandedElts, 1157*06c3fb27SDimitry Andric int DMaskIdx, bool IsLoad) { 1158e8d8bef9SDimitry Andric 1159*06c3fb27SDimitry Andric auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 1160*06c3fb27SDimitry Andric : II.getOperand(0)->getType()); 1161e8d8bef9SDimitry Andric unsigned VWidth = IIVTy->getNumElements(); 1162e8d8bef9SDimitry Andric if (VWidth == 1) 1163e8d8bef9SDimitry Andric return nullptr; 1164bdd1243dSDimitry Andric Type *EltTy = IIVTy->getElementType(); 1165e8d8bef9SDimitry Andric 1166e8d8bef9SDimitry Andric IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1167e8d8bef9SDimitry Andric IC.Builder.SetInsertPoint(&II); 1168e8d8bef9SDimitry Andric 1169e8d8bef9SDimitry Andric // Assume the arguments are unchanged and later override them, if needed. 1170e8d8bef9SDimitry Andric SmallVector<Value *, 16> Args(II.args()); 1171e8d8bef9SDimitry Andric 1172e8d8bef9SDimitry Andric if (DMaskIdx < 0) { 1173e8d8bef9SDimitry Andric // Buffer case. 1174e8d8bef9SDimitry Andric 1175e8d8bef9SDimitry Andric const unsigned ActiveBits = DemandedElts.getActiveBits(); 1176*06c3fb27SDimitry Andric const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1177e8d8bef9SDimitry Andric 1178e8d8bef9SDimitry Andric // Start assuming the prefix of elements is demanded, but possibly clear 1179e8d8bef9SDimitry Andric // some other bits if there are trailing zeros (unused components at front) 1180e8d8bef9SDimitry Andric // and update offset. 1181e8d8bef9SDimitry Andric DemandedElts = (1 << ActiveBits) - 1; 1182e8d8bef9SDimitry Andric 1183e8d8bef9SDimitry Andric if (UnusedComponentsAtFront > 0) { 1184e8d8bef9SDimitry Andric static const unsigned InvalidOffsetIdx = 0xf; 1185e8d8bef9SDimitry Andric 1186e8d8bef9SDimitry Andric unsigned OffsetIdx; 1187e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1188e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 1189*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1190e8d8bef9SDimitry Andric OffsetIdx = 1; 1191e8d8bef9SDimitry Andric break; 1192e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1193e8d8bef9SDimitry Andric // If resulting type is vec3, there is no point in trimming the 1194e8d8bef9SDimitry Andric // load with updated offset, as the vec3 would most likely be widened to 1195e8d8bef9SDimitry Andric // vec4 anyway during lowering. 1196e8d8bef9SDimitry Andric if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1197e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1198e8d8bef9SDimitry Andric else 1199e8d8bef9SDimitry Andric OffsetIdx = 1; 1200e8d8bef9SDimitry Andric break; 1201e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 1202*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1203e8d8bef9SDimitry Andric OffsetIdx = 2; 1204e8d8bef9SDimitry Andric break; 1205e8d8bef9SDimitry Andric default: 1206e8d8bef9SDimitry Andric // TODO: handle tbuffer* intrinsics. 1207e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1208e8d8bef9SDimitry Andric break; 1209e8d8bef9SDimitry Andric } 1210e8d8bef9SDimitry Andric 1211e8d8bef9SDimitry Andric if (OffsetIdx != InvalidOffsetIdx) { 1212e8d8bef9SDimitry Andric // Clear demanded bits and update the offset. 1213e8d8bef9SDimitry Andric DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1214bdd1243dSDimitry Andric auto *Offset = Args[OffsetIdx]; 1215e8d8bef9SDimitry Andric unsigned SingleComponentSizeInBits = 1216bdd1243dSDimitry Andric IC.getDataLayout().getTypeSizeInBits(EltTy); 1217e8d8bef9SDimitry Andric unsigned OffsetAdd = 1218e8d8bef9SDimitry Andric UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1219e8d8bef9SDimitry Andric auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1220e8d8bef9SDimitry Andric Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1221e8d8bef9SDimitry Andric } 1222e8d8bef9SDimitry Andric } 1223e8d8bef9SDimitry Andric } else { 1224e8d8bef9SDimitry Andric // Image case. 1225e8d8bef9SDimitry Andric 1226bdd1243dSDimitry Andric ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1227e8d8bef9SDimitry Andric unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1228e8d8bef9SDimitry Andric 1229e8d8bef9SDimitry Andric // Mask off values that are undefined because the dmask doesn't cover them 1230bdd1243dSDimitry Andric DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1231e8d8bef9SDimitry Andric 1232e8d8bef9SDimitry Andric unsigned NewDMaskVal = 0; 1233*06c3fb27SDimitry Andric unsigned OrigLdStIdx = 0; 1234e8d8bef9SDimitry Andric for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1235e8d8bef9SDimitry Andric const unsigned Bit = 1 << SrcIdx; 1236e8d8bef9SDimitry Andric if (!!(DMaskVal & Bit)) { 1237*06c3fb27SDimitry Andric if (!!DemandedElts[OrigLdStIdx]) 1238e8d8bef9SDimitry Andric NewDMaskVal |= Bit; 1239*06c3fb27SDimitry Andric OrigLdStIdx++; 1240e8d8bef9SDimitry Andric } 1241e8d8bef9SDimitry Andric } 1242e8d8bef9SDimitry Andric 1243e8d8bef9SDimitry Andric if (DMaskVal != NewDMaskVal) 1244e8d8bef9SDimitry Andric Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1245e8d8bef9SDimitry Andric } 1246e8d8bef9SDimitry Andric 1247*06c3fb27SDimitry Andric unsigned NewNumElts = DemandedElts.popcount(); 1248e8d8bef9SDimitry Andric if (!NewNumElts) 1249bdd1243dSDimitry Andric return UndefValue::get(IIVTy); 1250e8d8bef9SDimitry Andric 1251e8d8bef9SDimitry Andric if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1252e8d8bef9SDimitry Andric if (DMaskIdx >= 0) 1253e8d8bef9SDimitry Andric II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1254e8d8bef9SDimitry Andric return nullptr; 1255e8d8bef9SDimitry Andric } 1256e8d8bef9SDimitry Andric 1257e8d8bef9SDimitry Andric // Validate function argument and return types, extracting overloaded types 1258e8d8bef9SDimitry Andric // along the way. 1259e8d8bef9SDimitry Andric SmallVector<Type *, 6> OverloadTys; 1260e8d8bef9SDimitry Andric if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1261e8d8bef9SDimitry Andric return nullptr; 1262e8d8bef9SDimitry Andric 1263e8d8bef9SDimitry Andric Type *NewTy = 1264e8d8bef9SDimitry Andric (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1265e8d8bef9SDimitry Andric OverloadTys[0] = NewTy; 1266e8d8bef9SDimitry Andric 1267*06c3fb27SDimitry Andric if (!IsLoad) { 1268*06c3fb27SDimitry Andric SmallVector<int, 8> EltMask; 1269*06c3fb27SDimitry Andric for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 1270*06c3fb27SDimitry Andric if (DemandedElts[OrigStoreIdx]) 1271*06c3fb27SDimitry Andric EltMask.push_back(OrigStoreIdx); 1272*06c3fb27SDimitry Andric 1273*06c3fb27SDimitry Andric if (NewNumElts == 1) 1274*06c3fb27SDimitry Andric Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 1275*06c3fb27SDimitry Andric else 1276*06c3fb27SDimitry Andric Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 1277*06c3fb27SDimitry Andric } 1278*06c3fb27SDimitry Andric 1279bdd1243dSDimitry Andric Function *NewIntrin = Intrinsic::getDeclaration( 1280bdd1243dSDimitry Andric II.getModule(), II.getIntrinsicID(), OverloadTys); 1281e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1282e8d8bef9SDimitry Andric NewCall->takeName(&II); 1283e8d8bef9SDimitry Andric NewCall->copyMetadata(II); 1284e8d8bef9SDimitry Andric 1285*06c3fb27SDimitry Andric if (IsLoad) { 1286e8d8bef9SDimitry Andric if (NewNumElts == 1) { 1287bdd1243dSDimitry Andric return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall, 1288*06c3fb27SDimitry Andric DemandedElts.countr_zero()); 1289e8d8bef9SDimitry Andric } 1290e8d8bef9SDimitry Andric 1291e8d8bef9SDimitry Andric SmallVector<int, 8> EltMask; 1292e8d8bef9SDimitry Andric unsigned NewLoadIdx = 0; 1293e8d8bef9SDimitry Andric for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1294e8d8bef9SDimitry Andric if (!!DemandedElts[OrigLoadIdx]) 1295e8d8bef9SDimitry Andric EltMask.push_back(NewLoadIdx++); 1296e8d8bef9SDimitry Andric else 1297e8d8bef9SDimitry Andric EltMask.push_back(NewNumElts); 1298e8d8bef9SDimitry Andric } 1299e8d8bef9SDimitry Andric 1300*06c3fb27SDimitry Andric auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1301e8d8bef9SDimitry Andric 1302e8d8bef9SDimitry Andric return Shuffle; 1303e8d8bef9SDimitry Andric } 1304e8d8bef9SDimitry Andric 1305*06c3fb27SDimitry Andric return NewCall; 1306*06c3fb27SDimitry Andric } 1307*06c3fb27SDimitry Andric 1308bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1309e8d8bef9SDimitry Andric InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1310e8d8bef9SDimitry Andric APInt &UndefElts2, APInt &UndefElts3, 1311e8d8bef9SDimitry Andric std::function<void(Instruction *, unsigned, APInt, APInt &)> 1312e8d8bef9SDimitry Andric SimplifyAndSetOp) const { 1313e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1314e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load: 1315e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load_format: 1316e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 1317*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1318e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load_format: 1319*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1320e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_load: 1321*06c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1322e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1323e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 1324*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1325e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load_format: 1326*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1327e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_load: 1328*06c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1329e8d8bef9SDimitry Andric case Intrinsic::amdgcn_tbuffer_load: 1330e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1331e8d8bef9SDimitry Andric default: { 1332e8d8bef9SDimitry Andric if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1333e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1334e8d8bef9SDimitry Andric } 1335e8d8bef9SDimitry Andric break; 1336e8d8bef9SDimitry Andric } 1337e8d8bef9SDimitry Andric } 1338bdd1243dSDimitry Andric return std::nullopt; 1339e8d8bef9SDimitry Andric } 1340