1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 return DAG.computeKnownBits(Op).countMaxActiveBits(); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 52 // In order for this to be a signed 24-bit value, bit 23, must 53 // be a sign bit. 54 return DAG.ComputeMinSignedBits(Op); 55 } 56 57 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 58 const AMDGPUSubtarget &STI) 59 : TargetLowering(TM), Subtarget(&STI) { 60 // Lower floating point store/load to integer store/load to reduce the number 61 // of patterns in tablegen. 62 setOperationAction(ISD::LOAD, MVT::f32, Promote); 63 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 64 65 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 66 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 67 68 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 69 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 70 71 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 72 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 73 74 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 76 77 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 79 80 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 82 83 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 85 86 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 88 89 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 91 92 setOperationAction(ISD::LOAD, MVT::i64, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 94 95 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 97 98 setOperationAction(ISD::LOAD, MVT::f64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 106 107 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 109 110 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 188 189 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 193 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 195 196 setOperationAction(ISD::STORE, MVT::f32, Promote); 197 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 198 199 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 200 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 201 202 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 203 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 204 205 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 206 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 207 208 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 209 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 210 211 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 212 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 213 214 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 215 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 216 217 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 218 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 219 220 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 221 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 222 223 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 224 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 225 226 setOperationAction(ISD::STORE, MVT::i64, Promote); 227 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 228 229 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 230 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 231 232 setOperationAction(ISD::STORE, MVT::f64, Promote); 233 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 234 235 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 236 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 237 238 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 239 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 240 241 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 242 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 243 244 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 245 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 246 247 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 248 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 249 250 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 251 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 252 253 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 254 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 255 256 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 257 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 258 259 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 260 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 261 262 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 263 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 264 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 265 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 266 267 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 268 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 269 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 270 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 271 272 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 273 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 274 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 275 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 276 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 277 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 278 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 279 280 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 283 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 284 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 285 286 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 287 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 288 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 289 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 290 291 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 292 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 293 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 294 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 295 296 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 297 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 298 299 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 300 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 301 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 302 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 303 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 304 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 306 307 setOperationAction(ISD::Constant, MVT::i32, Legal); 308 setOperationAction(ISD::Constant, MVT::i64, Legal); 309 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 310 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 311 312 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 313 setOperationAction(ISD::BRIND, MVT::Other, Expand); 314 315 // This is totally unsupported, just custom lower to produce an error. 316 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 317 318 // Library functions. These default to Expand, but we have instructions 319 // for them. 320 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 321 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 322 setOperationAction(ISD::FPOW, MVT::f32, Legal); 323 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 324 setOperationAction(ISD::FABS, MVT::f32, Legal); 325 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 326 setOperationAction(ISD::FRINT, MVT::f32, Legal); 327 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 328 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 330 331 setOperationAction(ISD::FROUND, MVT::f32, Custom); 332 setOperationAction(ISD::FROUND, MVT::f64, Custom); 333 334 setOperationAction(ISD::FLOG, MVT::f32, Custom); 335 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 336 setOperationAction(ISD::FEXP, MVT::f32, Custom); 337 338 339 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 340 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 341 342 setOperationAction(ISD::FREM, MVT::f16, Custom); 343 setOperationAction(ISD::FREM, MVT::f32, Custom); 344 setOperationAction(ISD::FREM, MVT::f64, Custom); 345 346 // Expand to fneg + fadd. 347 setOperationAction(ISD::FSUB, MVT::f64, Expand); 348 349 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 350 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 351 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 352 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 361 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 362 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 363 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 364 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 391 392 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 393 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 394 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 395 396 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 397 for (MVT VT : ScalarIntVTs) { 398 // These should use [SU]DIVREM, so set them to expand 399 setOperationAction(ISD::SDIV, VT, Expand); 400 setOperationAction(ISD::UDIV, VT, Expand); 401 setOperationAction(ISD::SREM, VT, Expand); 402 setOperationAction(ISD::UREM, VT, Expand); 403 404 // GPU does not have divrem function for signed or unsigned. 405 setOperationAction(ISD::SDIVREM, VT, Custom); 406 setOperationAction(ISD::UDIVREM, VT, Custom); 407 408 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 409 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 410 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 411 412 setOperationAction(ISD::BSWAP, VT, Expand); 413 setOperationAction(ISD::CTTZ, VT, Expand); 414 setOperationAction(ISD::CTLZ, VT, Expand); 415 416 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 417 setOperationAction(ISD::ADDC, VT, Legal); 418 setOperationAction(ISD::SUBC, VT, Legal); 419 setOperationAction(ISD::ADDE, VT, Legal); 420 setOperationAction(ISD::SUBE, VT, Legal); 421 } 422 423 // The hardware supports 32-bit FSHR, but not FSHL. 424 setOperationAction(ISD::FSHR, MVT::i32, Legal); 425 426 // The hardware supports 32-bit ROTR, but not ROTL. 427 setOperationAction(ISD::ROTL, MVT::i32, Expand); 428 setOperationAction(ISD::ROTL, MVT::i64, Expand); 429 setOperationAction(ISD::ROTR, MVT::i64, Expand); 430 431 setOperationAction(ISD::MULHU, MVT::i16, Expand); 432 setOperationAction(ISD::MULHS, MVT::i16, Expand); 433 434 setOperationAction(ISD::MUL, MVT::i64, Expand); 435 setOperationAction(ISD::MULHU, MVT::i64, Expand); 436 setOperationAction(ISD::MULHS, MVT::i64, Expand); 437 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 438 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 439 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 440 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 441 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 442 443 setOperationAction(ISD::SMIN, MVT::i32, Legal); 444 setOperationAction(ISD::UMIN, MVT::i32, Legal); 445 setOperationAction(ISD::SMAX, MVT::i32, Legal); 446 setOperationAction(ISD::UMAX, MVT::i32, Legal); 447 448 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 449 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 450 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 451 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 452 453 static const MVT::SimpleValueType VectorIntTypes[] = { 454 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 455 456 for (MVT VT : VectorIntTypes) { 457 // Expand the following operations for the current type by default. 458 setOperationAction(ISD::ADD, VT, Expand); 459 setOperationAction(ISD::AND, VT, Expand); 460 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 461 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 462 setOperationAction(ISD::MUL, VT, Expand); 463 setOperationAction(ISD::MULHU, VT, Expand); 464 setOperationAction(ISD::MULHS, VT, Expand); 465 setOperationAction(ISD::OR, VT, Expand); 466 setOperationAction(ISD::SHL, VT, Expand); 467 setOperationAction(ISD::SRA, VT, Expand); 468 setOperationAction(ISD::SRL, VT, Expand); 469 setOperationAction(ISD::ROTL, VT, Expand); 470 setOperationAction(ISD::ROTR, VT, Expand); 471 setOperationAction(ISD::SUB, VT, Expand); 472 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 473 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 474 setOperationAction(ISD::SDIV, VT, Expand); 475 setOperationAction(ISD::UDIV, VT, Expand); 476 setOperationAction(ISD::SREM, VT, Expand); 477 setOperationAction(ISD::UREM, VT, Expand); 478 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 479 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 480 setOperationAction(ISD::SDIVREM, VT, Expand); 481 setOperationAction(ISD::UDIVREM, VT, Expand); 482 setOperationAction(ISD::SELECT, VT, Expand); 483 setOperationAction(ISD::VSELECT, VT, Expand); 484 setOperationAction(ISD::SELECT_CC, VT, Expand); 485 setOperationAction(ISD::XOR, VT, Expand); 486 setOperationAction(ISD::BSWAP, VT, Expand); 487 setOperationAction(ISD::CTPOP, VT, Expand); 488 setOperationAction(ISD::CTTZ, VT, Expand); 489 setOperationAction(ISD::CTLZ, VT, Expand); 490 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 491 setOperationAction(ISD::SETCC, VT, Expand); 492 } 493 494 static const MVT::SimpleValueType FloatVectorTypes[] = { 495 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 496 497 for (MVT VT : FloatVectorTypes) { 498 setOperationAction(ISD::FABS, VT, Expand); 499 setOperationAction(ISD::FMINNUM, VT, Expand); 500 setOperationAction(ISD::FMAXNUM, VT, Expand); 501 setOperationAction(ISD::FADD, VT, Expand); 502 setOperationAction(ISD::FCEIL, VT, Expand); 503 setOperationAction(ISD::FCOS, VT, Expand); 504 setOperationAction(ISD::FDIV, VT, Expand); 505 setOperationAction(ISD::FEXP2, VT, Expand); 506 setOperationAction(ISD::FEXP, VT, Expand); 507 setOperationAction(ISD::FLOG2, VT, Expand); 508 setOperationAction(ISD::FREM, VT, Expand); 509 setOperationAction(ISD::FLOG, VT, Expand); 510 setOperationAction(ISD::FLOG10, VT, Expand); 511 setOperationAction(ISD::FPOW, VT, Expand); 512 setOperationAction(ISD::FFLOOR, VT, Expand); 513 setOperationAction(ISD::FTRUNC, VT, Expand); 514 setOperationAction(ISD::FMUL, VT, Expand); 515 setOperationAction(ISD::FMA, VT, Expand); 516 setOperationAction(ISD::FRINT, VT, Expand); 517 setOperationAction(ISD::FNEARBYINT, VT, Expand); 518 setOperationAction(ISD::FSQRT, VT, Expand); 519 setOperationAction(ISD::FSIN, VT, Expand); 520 setOperationAction(ISD::FSUB, VT, Expand); 521 setOperationAction(ISD::FNEG, VT, Expand); 522 setOperationAction(ISD::VSELECT, VT, Expand); 523 setOperationAction(ISD::SELECT_CC, VT, Expand); 524 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 525 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 526 setOperationAction(ISD::SETCC, VT, Expand); 527 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 528 } 529 530 // This causes using an unrolled select operation rather than expansion with 531 // bit operations. This is in general better, but the alternative using BFI 532 // instructions may be better if the select sources are SGPRs. 533 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 534 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 535 536 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 537 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 538 539 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 540 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 541 542 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 543 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 544 545 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 546 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 547 548 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 549 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 550 551 // There are no libcalls of any kind. 552 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 553 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 554 555 setSchedulingPreference(Sched::RegPressure); 556 setJumpIsExpensive(true); 557 558 // FIXME: This is only partially true. If we have to do vector compares, any 559 // SGPR pair can be a condition register. If we have a uniform condition, we 560 // are better off doing SALU operations, where there is only one SCC. For now, 561 // we don't have a way of knowing during instruction selection if a condition 562 // will be uniform and we always use vector compares. Assume we are using 563 // vector compares until that is fixed. 564 setHasMultipleConditionRegisters(true); 565 566 setMinCmpXchgSizeInBits(32); 567 setSupportsUnalignedAtomics(false); 568 569 PredictableSelectIsExpensive = false; 570 571 // We want to find all load dependencies for long chains of stores to enable 572 // merging into very wide vectors. The problem is with vectors with > 4 573 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 574 // vectors are a legal type, even though we have to split the loads 575 // usually. When we can more precisely specify load legality per address 576 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 577 // smarter so that they can figure out what to do in 2 iterations without all 578 // N > 4 stores on the same chain. 579 GatherAllAliasesMaxDepth = 16; 580 581 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 582 // about these during lowering. 583 MaxStoresPerMemcpy = 0xffffffff; 584 MaxStoresPerMemmove = 0xffffffff; 585 MaxStoresPerMemset = 0xffffffff; 586 587 // The expansion for 64-bit division is enormous. 588 if (AMDGPUBypassSlowDiv) 589 addBypassSlowDiv(64, 32); 590 591 setTargetDAGCombine(ISD::BITCAST); 592 setTargetDAGCombine(ISD::SHL); 593 setTargetDAGCombine(ISD::SRA); 594 setTargetDAGCombine(ISD::SRL); 595 setTargetDAGCombine(ISD::TRUNCATE); 596 setTargetDAGCombine(ISD::MUL); 597 setTargetDAGCombine(ISD::MULHU); 598 setTargetDAGCombine(ISD::MULHS); 599 setTargetDAGCombine(ISD::SELECT); 600 setTargetDAGCombine(ISD::SELECT_CC); 601 setTargetDAGCombine(ISD::STORE); 602 setTargetDAGCombine(ISD::FADD); 603 setTargetDAGCombine(ISD::FSUB); 604 setTargetDAGCombine(ISD::FNEG); 605 setTargetDAGCombine(ISD::FABS); 606 setTargetDAGCombine(ISD::AssertZext); 607 setTargetDAGCombine(ISD::AssertSext); 608 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 609 } 610 611 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 612 if (getTargetMachine().Options.NoSignedZerosFPMath) 613 return true; 614 615 const auto Flags = Op.getNode()->getFlags(); 616 if (Flags.hasNoSignedZeros()) 617 return true; 618 619 return false; 620 } 621 622 //===----------------------------------------------------------------------===// 623 // Target Information 624 //===----------------------------------------------------------------------===// 625 626 LLVM_READNONE 627 static bool fnegFoldsIntoOp(unsigned Opc) { 628 switch (Opc) { 629 case ISD::FADD: 630 case ISD::FSUB: 631 case ISD::FMUL: 632 case ISD::FMA: 633 case ISD::FMAD: 634 case ISD::FMINNUM: 635 case ISD::FMAXNUM: 636 case ISD::FMINNUM_IEEE: 637 case ISD::FMAXNUM_IEEE: 638 case ISD::FSIN: 639 case ISD::FTRUNC: 640 case ISD::FRINT: 641 case ISD::FNEARBYINT: 642 case ISD::FCANONICALIZE: 643 case AMDGPUISD::RCP: 644 case AMDGPUISD::RCP_LEGACY: 645 case AMDGPUISD::RCP_IFLAG: 646 case AMDGPUISD::SIN_HW: 647 case AMDGPUISD::FMUL_LEGACY: 648 case AMDGPUISD::FMIN_LEGACY: 649 case AMDGPUISD::FMAX_LEGACY: 650 case AMDGPUISD::FMED3: 651 // TODO: handle llvm.amdgcn.fma.legacy 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 /// \p returns true if the operation will definitely need to use a 64-bit 659 /// encoding, and thus will use a VOP3 encoding regardless of the source 660 /// modifiers. 661 LLVM_READONLY 662 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 663 return N->getNumOperands() > 2 || VT == MVT::f64; 664 } 665 666 // Most FP instructions support source modifiers, but this could be refined 667 // slightly. 668 LLVM_READONLY 669 static bool hasSourceMods(const SDNode *N) { 670 if (isa<MemSDNode>(N)) 671 return false; 672 673 switch (N->getOpcode()) { 674 case ISD::CopyToReg: 675 case ISD::SELECT: 676 case ISD::FDIV: 677 case ISD::FREM: 678 case ISD::INLINEASM: 679 case ISD::INLINEASM_BR: 680 case AMDGPUISD::DIV_SCALE: 681 case ISD::INTRINSIC_W_CHAIN: 682 683 // TODO: Should really be looking at the users of the bitcast. These are 684 // problematic because bitcasts are used to legalize all stores to integer 685 // types. 686 case ISD::BITCAST: 687 return false; 688 case ISD::INTRINSIC_WO_CHAIN: { 689 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 690 case Intrinsic::amdgcn_interp_p1: 691 case Intrinsic::amdgcn_interp_p2: 692 case Intrinsic::amdgcn_interp_mov: 693 case Intrinsic::amdgcn_interp_p1_f16: 694 case Intrinsic::amdgcn_interp_p2_f16: 695 return false; 696 default: 697 return true; 698 } 699 } 700 default: 701 return true; 702 } 703 } 704 705 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 706 unsigned CostThreshold) { 707 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 708 // it is truly free to use a source modifier in all cases. If there are 709 // multiple users but for each one will necessitate using VOP3, there will be 710 // a code size increase. Try to avoid increasing code size unless we know it 711 // will save on the instruction count. 712 unsigned NumMayIncreaseSize = 0; 713 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 714 715 // XXX - Should this limit number of uses to check? 716 for (const SDNode *U : N->uses()) { 717 if (!hasSourceMods(U)) 718 return false; 719 720 if (!opMustUseVOP3Encoding(U, VT)) { 721 if (++NumMayIncreaseSize > CostThreshold) 722 return false; 723 } 724 } 725 726 return true; 727 } 728 729 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 730 ISD::NodeType ExtendKind) const { 731 assert(!VT.isVector() && "only scalar expected"); 732 733 // Round to the next multiple of 32-bits. 734 unsigned Size = VT.getSizeInBits(); 735 if (Size <= 32) 736 return MVT::i32; 737 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 738 } 739 740 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 741 return MVT::i32; 742 } 743 744 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 745 return true; 746 } 747 748 // The backend supports 32 and 64 bit floating point immediates. 749 // FIXME: Why are we reporting vectors of FP immediates as legal? 750 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 751 bool ForCodeSize) const { 752 EVT ScalarVT = VT.getScalarType(); 753 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 754 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 755 } 756 757 // We don't want to shrink f64 / f32 constants. 758 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 759 EVT ScalarVT = VT.getScalarType(); 760 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 761 } 762 763 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 764 ISD::LoadExtType ExtTy, 765 EVT NewVT) const { 766 // TODO: This may be worth removing. Check regression tests for diffs. 767 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 768 return false; 769 770 unsigned NewSize = NewVT.getStoreSizeInBits(); 771 772 // If we are reducing to a 32-bit load or a smaller multi-dword load, 773 // this is always better. 774 if (NewSize >= 32) 775 return true; 776 777 EVT OldVT = N->getValueType(0); 778 unsigned OldSize = OldVT.getStoreSizeInBits(); 779 780 MemSDNode *MN = cast<MemSDNode>(N); 781 unsigned AS = MN->getAddressSpace(); 782 // Do not shrink an aligned scalar load to sub-dword. 783 // Scalar engine cannot do sub-dword loads. 784 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 785 (AS == AMDGPUAS::CONSTANT_ADDRESS || 786 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 787 (isa<LoadSDNode>(N) && 788 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 789 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 790 return false; 791 792 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 793 // extloads, so doing one requires using a buffer_load. In cases where we 794 // still couldn't use a scalar load, using the wider load shouldn't really 795 // hurt anything. 796 797 // If the old size already had to be an extload, there's no harm in continuing 798 // to reduce the width. 799 return (OldSize < 32); 800 } 801 802 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 803 const SelectionDAG &DAG, 804 const MachineMemOperand &MMO) const { 805 806 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 807 808 if (LoadTy.getScalarType() == MVT::i32) 809 return false; 810 811 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 812 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 813 814 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 815 return false; 816 817 bool Fast = false; 818 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 819 CastTy, MMO, &Fast) && 820 Fast; 821 } 822 823 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 824 // profitable with the expansion for 64-bit since it's generally good to 825 // speculate things. 826 // FIXME: These should really have the size as a parameter. 827 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 828 return true; 829 } 830 831 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 832 return true; 833 } 834 835 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 836 switch (N->getOpcode()) { 837 case ISD::EntryToken: 838 case ISD::TokenFactor: 839 return true; 840 case ISD::INTRINSIC_WO_CHAIN: { 841 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 842 switch (IntrID) { 843 case Intrinsic::amdgcn_readfirstlane: 844 case Intrinsic::amdgcn_readlane: 845 return true; 846 } 847 return false; 848 } 849 case ISD::LOAD: 850 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 851 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 852 return true; 853 return false; 854 } 855 return false; 856 } 857 858 SDValue AMDGPUTargetLowering::getNegatedExpression( 859 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 860 NegatibleCost &Cost, unsigned Depth) const { 861 862 switch (Op.getOpcode()) { 863 case ISD::FMA: 864 case ISD::FMAD: { 865 // Negating a fma is not free if it has users without source mods. 866 if (!allUsesHaveSourceMods(Op.getNode())) 867 return SDValue(); 868 break; 869 } 870 default: 871 break; 872 } 873 874 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 875 ForCodeSize, Cost, Depth); 876 } 877 878 //===---------------------------------------------------------------------===// 879 // Target Properties 880 //===---------------------------------------------------------------------===// 881 882 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 883 assert(VT.isFloatingPoint()); 884 885 // Packed operations do not have a fabs modifier. 886 return VT == MVT::f32 || VT == MVT::f64 || 887 (Subtarget->has16BitInsts() && VT == MVT::f16); 888 } 889 890 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 891 assert(VT.isFloatingPoint()); 892 // Report this based on the end legalized type. 893 VT = VT.getScalarType(); 894 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 895 } 896 897 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 898 unsigned NumElem, 899 unsigned AS) const { 900 return true; 901 } 902 903 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 904 // There are few operations which truly have vector input operands. Any vector 905 // operation is going to involve operations on each component, and a 906 // build_vector will be a copy per element, so it always makes sense to use a 907 // build_vector input in place of the extracted element to avoid a copy into a 908 // super register. 909 // 910 // We should probably only do this if all users are extracts only, but this 911 // should be the common case. 912 return true; 913 } 914 915 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 916 // Truncate is just accessing a subregister. 917 918 unsigned SrcSize = Source.getSizeInBits(); 919 unsigned DestSize = Dest.getSizeInBits(); 920 921 return DestSize < SrcSize && DestSize % 32 == 0 ; 922 } 923 924 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 925 // Truncate is just accessing a subregister. 926 927 unsigned SrcSize = Source->getScalarSizeInBits(); 928 unsigned DestSize = Dest->getScalarSizeInBits(); 929 930 if (DestSize== 16 && Subtarget->has16BitInsts()) 931 return SrcSize >= 32; 932 933 return DestSize < SrcSize && DestSize % 32 == 0; 934 } 935 936 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 937 unsigned SrcSize = Src->getScalarSizeInBits(); 938 unsigned DestSize = Dest->getScalarSizeInBits(); 939 940 if (SrcSize == 16 && Subtarget->has16BitInsts()) 941 return DestSize >= 32; 942 943 return SrcSize == 32 && DestSize == 64; 944 } 945 946 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 947 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 948 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 949 // this will enable reducing 64-bit operations the 32-bit, which is always 950 // good. 951 952 if (Src == MVT::i16) 953 return Dest == MVT::i32 ||Dest == MVT::i64 ; 954 955 return Src == MVT::i32 && Dest == MVT::i64; 956 } 957 958 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 959 return isZExtFree(Val.getValueType(), VT2); 960 } 961 962 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 963 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 964 // limited number of native 64-bit operations. Shrinking an operation to fit 965 // in a single 32-bit register should always be helpful. As currently used, 966 // this is much less general than the name suggests, and is only used in 967 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 968 // not profitable, and may actually be harmful. 969 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 970 } 971 972 //===---------------------------------------------------------------------===// 973 // TargetLowering Callbacks 974 //===---------------------------------------------------------------------===// 975 976 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 977 bool IsVarArg) { 978 switch (CC) { 979 case CallingConv::AMDGPU_VS: 980 case CallingConv::AMDGPU_GS: 981 case CallingConv::AMDGPU_PS: 982 case CallingConv::AMDGPU_CS: 983 case CallingConv::AMDGPU_HS: 984 case CallingConv::AMDGPU_ES: 985 case CallingConv::AMDGPU_LS: 986 return CC_AMDGPU; 987 case CallingConv::C: 988 case CallingConv::Fast: 989 case CallingConv::Cold: 990 return CC_AMDGPU_Func; 991 case CallingConv::AMDGPU_Gfx: 992 return CC_SI_Gfx; 993 case CallingConv::AMDGPU_KERNEL: 994 case CallingConv::SPIR_KERNEL: 995 default: 996 report_fatal_error("Unsupported calling convention for call"); 997 } 998 } 999 1000 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1001 bool IsVarArg) { 1002 switch (CC) { 1003 case CallingConv::AMDGPU_KERNEL: 1004 case CallingConv::SPIR_KERNEL: 1005 llvm_unreachable("kernels should not be handled here"); 1006 case CallingConv::AMDGPU_VS: 1007 case CallingConv::AMDGPU_GS: 1008 case CallingConv::AMDGPU_PS: 1009 case CallingConv::AMDGPU_CS: 1010 case CallingConv::AMDGPU_HS: 1011 case CallingConv::AMDGPU_ES: 1012 case CallingConv::AMDGPU_LS: 1013 return RetCC_SI_Shader; 1014 case CallingConv::AMDGPU_Gfx: 1015 return RetCC_SI_Gfx; 1016 case CallingConv::C: 1017 case CallingConv::Fast: 1018 case CallingConv::Cold: 1019 return RetCC_AMDGPU_Func; 1020 default: 1021 report_fatal_error("Unsupported calling convention."); 1022 } 1023 } 1024 1025 /// The SelectionDAGBuilder will automatically promote function arguments 1026 /// with illegal types. However, this does not work for the AMDGPU targets 1027 /// since the function arguments are stored in memory as these illegal types. 1028 /// In order to handle this properly we need to get the original types sizes 1029 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1030 /// passing them to AnalyzeFormalArguments() 1031 1032 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1033 /// input values across multiple registers. Each item in the Ins array 1034 /// represents a single value that will be stored in registers. Ins[x].VT is 1035 /// the value type of the value that will be stored in the register, so 1036 /// whatever SDNode we lower the argument to needs to be this type. 1037 /// 1038 /// In order to correctly lower the arguments we need to know the size of each 1039 /// argument. Since Ins[x].VT gives us the size of the register that will 1040 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1041 /// for the original function argument so that we can deduce the correct memory 1042 /// type to use for Ins[x]. In most cases the correct memory type will be 1043 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1044 /// we have a kernel argument of type v8i8, this argument will be split into 1045 /// 8 parts and each part will be represented by its own item in the Ins array. 1046 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1047 /// the argument before it was split. From this, we deduce that the memory type 1048 /// for each individual part is i8. We pass the memory type as LocVT to the 1049 /// calling convention analysis function and the register type (Ins[x].VT) as 1050 /// the ValVT. 1051 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1052 CCState &State, 1053 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1054 const MachineFunction &MF = State.getMachineFunction(); 1055 const Function &Fn = MF.getFunction(); 1056 LLVMContext &Ctx = Fn.getParent()->getContext(); 1057 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1058 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1059 CallingConv::ID CC = Fn.getCallingConv(); 1060 1061 Align MaxAlign = Align(1); 1062 uint64_t ExplicitArgOffset = 0; 1063 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1064 1065 unsigned InIndex = 0; 1066 1067 for (const Argument &Arg : Fn.args()) { 1068 const bool IsByRef = Arg.hasByRefAttr(); 1069 Type *BaseArgTy = Arg.getType(); 1070 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1071 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1072 if (!Alignment) 1073 Alignment = DL.getABITypeAlign(MemArgTy); 1074 MaxAlign = max(Alignment, MaxAlign); 1075 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1076 1077 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1078 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1079 1080 // We're basically throwing away everything passed into us and starting over 1081 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1082 // to us as computed in Ins. 1083 // 1084 // We also need to figure out what type legalization is trying to do to get 1085 // the correct memory offsets. 1086 1087 SmallVector<EVT, 16> ValueVTs; 1088 SmallVector<uint64_t, 16> Offsets; 1089 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1090 1091 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1092 Value != NumValues; ++Value) { 1093 uint64_t BasePartOffset = Offsets[Value]; 1094 1095 EVT ArgVT = ValueVTs[Value]; 1096 EVT MemVT = ArgVT; 1097 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1098 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1099 1100 if (NumRegs == 1) { 1101 // This argument is not split, so the IR type is the memory type. 1102 if (ArgVT.isExtended()) { 1103 // We have an extended type, like i24, so we should just use the 1104 // register type. 1105 MemVT = RegisterVT; 1106 } else { 1107 MemVT = ArgVT; 1108 } 1109 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1110 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1111 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1112 // We have a vector value which has been split into a vector with 1113 // the same scalar type, but fewer elements. This should handle 1114 // all the floating-point vector types. 1115 MemVT = RegisterVT; 1116 } else if (ArgVT.isVector() && 1117 ArgVT.getVectorNumElements() == NumRegs) { 1118 // This arg has been split so that each element is stored in a separate 1119 // register. 1120 MemVT = ArgVT.getScalarType(); 1121 } else if (ArgVT.isExtended()) { 1122 // We have an extended type, like i65. 1123 MemVT = RegisterVT; 1124 } else { 1125 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1126 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1127 if (RegisterVT.isInteger()) { 1128 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1129 } else if (RegisterVT.isVector()) { 1130 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1131 unsigned NumElements = RegisterVT.getVectorNumElements(); 1132 assert(MemoryBits % NumElements == 0); 1133 // This vector type has been split into another vector type with 1134 // a different elements size. 1135 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1136 MemoryBits / NumElements); 1137 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1138 } else { 1139 llvm_unreachable("cannot deduce memory type."); 1140 } 1141 } 1142 1143 // Convert one element vectors to scalar. 1144 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1145 MemVT = MemVT.getScalarType(); 1146 1147 // Round up vec3/vec5 argument. 1148 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1149 assert(MemVT.getVectorNumElements() == 3 || 1150 MemVT.getVectorNumElements() == 5); 1151 MemVT = MemVT.getPow2VectorType(State.getContext()); 1152 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1153 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1154 } 1155 1156 unsigned PartOffset = 0; 1157 for (unsigned i = 0; i != NumRegs; ++i) { 1158 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1159 BasePartOffset + PartOffset, 1160 MemVT.getSimpleVT(), 1161 CCValAssign::Full)); 1162 PartOffset += MemVT.getStoreSize(); 1163 } 1164 } 1165 } 1166 } 1167 1168 SDValue AMDGPUTargetLowering::LowerReturn( 1169 SDValue Chain, CallingConv::ID CallConv, 1170 bool isVarArg, 1171 const SmallVectorImpl<ISD::OutputArg> &Outs, 1172 const SmallVectorImpl<SDValue> &OutVals, 1173 const SDLoc &DL, SelectionDAG &DAG) const { 1174 // FIXME: Fails for r600 tests 1175 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1176 // "wave terminate should not have return values"); 1177 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1178 } 1179 1180 //===---------------------------------------------------------------------===// 1181 // Target specific lowering 1182 //===---------------------------------------------------------------------===// 1183 1184 /// Selects the correct CCAssignFn for a given CallingConvention value. 1185 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1186 bool IsVarArg) { 1187 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1188 } 1189 1190 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1191 bool IsVarArg) { 1192 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1193 } 1194 1195 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1196 SelectionDAG &DAG, 1197 MachineFrameInfo &MFI, 1198 int ClobberedFI) const { 1199 SmallVector<SDValue, 8> ArgChains; 1200 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1201 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1202 1203 // Include the original chain at the beginning of the list. When this is 1204 // used by target LowerCall hooks, this helps legalize find the 1205 // CALLSEQ_BEGIN node. 1206 ArgChains.push_back(Chain); 1207 1208 // Add a chain value for each stack argument corresponding 1209 for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { 1210 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { 1211 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1212 if (FI->getIndex() < 0) { 1213 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1214 int64_t InLastByte = InFirstByte; 1215 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1216 1217 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1218 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1219 ArgChains.push_back(SDValue(L, 1)); 1220 } 1221 } 1222 } 1223 } 1224 1225 // Build a tokenfactor for all the chains. 1226 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1227 } 1228 1229 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1230 SmallVectorImpl<SDValue> &InVals, 1231 StringRef Reason) const { 1232 SDValue Callee = CLI.Callee; 1233 SelectionDAG &DAG = CLI.DAG; 1234 1235 const Function &Fn = DAG.getMachineFunction().getFunction(); 1236 1237 StringRef FuncName("<unknown>"); 1238 1239 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1240 FuncName = G->getSymbol(); 1241 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1242 FuncName = G->getGlobal()->getName(); 1243 1244 DiagnosticInfoUnsupported NoCalls( 1245 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1246 DAG.getContext()->diagnose(NoCalls); 1247 1248 if (!CLI.IsTailCall) { 1249 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1250 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1251 } 1252 1253 return DAG.getEntryNode(); 1254 } 1255 1256 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1257 SmallVectorImpl<SDValue> &InVals) const { 1258 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1259 } 1260 1261 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1262 SelectionDAG &DAG) const { 1263 const Function &Fn = DAG.getMachineFunction().getFunction(); 1264 1265 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1266 SDLoc(Op).getDebugLoc()); 1267 DAG.getContext()->diagnose(NoDynamicAlloca); 1268 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1269 return DAG.getMergeValues(Ops, SDLoc()); 1270 } 1271 1272 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 switch (Op.getOpcode()) { 1275 default: 1276 Op->print(errs(), &DAG); 1277 llvm_unreachable("Custom lowering code for this " 1278 "instruction is not implemented yet!"); 1279 break; 1280 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1281 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1282 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1283 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1284 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1285 case ISD::FREM: return LowerFREM(Op, DAG); 1286 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1287 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1288 case ISD::FRINT: return LowerFRINT(Op, DAG); 1289 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1290 case ISD::FROUND: return LowerFROUND(Op, DAG); 1291 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1292 case ISD::FLOG: 1293 return LowerFLOG(Op, DAG, numbers::ln2f); 1294 case ISD::FLOG10: 1295 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1296 case ISD::FEXP: 1297 return lowerFEXP(Op, DAG); 1298 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1299 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1300 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1301 case ISD::FP_TO_SINT: 1302 case ISD::FP_TO_UINT: 1303 return LowerFP_TO_INT(Op, DAG); 1304 case ISD::CTTZ: 1305 case ISD::CTTZ_ZERO_UNDEF: 1306 case ISD::CTLZ: 1307 case ISD::CTLZ_ZERO_UNDEF: 1308 return LowerCTLZ_CTTZ(Op, DAG); 1309 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1310 } 1311 return Op; 1312 } 1313 1314 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1315 SmallVectorImpl<SDValue> &Results, 1316 SelectionDAG &DAG) const { 1317 switch (N->getOpcode()) { 1318 case ISD::SIGN_EXTEND_INREG: 1319 // Different parts of legalization seem to interpret which type of 1320 // sign_extend_inreg is the one to check for custom lowering. The extended 1321 // from type is what really matters, but some places check for custom 1322 // lowering of the result type. This results in trying to use 1323 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1324 // nothing here and let the illegal result integer be handled normally. 1325 return; 1326 default: 1327 return; 1328 } 1329 } 1330 1331 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1332 SDValue Op, 1333 SelectionDAG &DAG) const { 1334 1335 const DataLayout &DL = DAG.getDataLayout(); 1336 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1337 const GlobalValue *GV = G->getGlobal(); 1338 1339 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1340 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1341 if (!MFI->isModuleEntryFunction() && 1342 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1343 SDLoc DL(Op); 1344 const Function &Fn = DAG.getMachineFunction().getFunction(); 1345 DiagnosticInfoUnsupported BadLDSDecl( 1346 Fn, "local memory global used by non-kernel function", 1347 DL.getDebugLoc(), DS_Warning); 1348 DAG.getContext()->diagnose(BadLDSDecl); 1349 1350 // We currently don't have a way to correctly allocate LDS objects that 1351 // aren't directly associated with a kernel. We do force inlining of 1352 // functions that use local objects. However, if these dead functions are 1353 // not eliminated, we don't want a compile time error. Just emit a warning 1354 // and a trap, since there should be no callable path here. 1355 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1356 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1357 Trap, DAG.getRoot()); 1358 DAG.setRoot(OutputChain); 1359 return DAG.getUNDEF(Op.getValueType()); 1360 } 1361 1362 // XXX: What does the value of G->getOffset() mean? 1363 assert(G->getOffset() == 0 && 1364 "Do not know what to do with an non-zero offset"); 1365 1366 // TODO: We could emit code to handle the initialization somewhere. 1367 // We ignore the initializer for now and legalize it to allow selection. 1368 // The initializer will anyway get errored out during assembly emission. 1369 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1370 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1371 } 1372 return SDValue(); 1373 } 1374 1375 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1376 SelectionDAG &DAG) const { 1377 SmallVector<SDValue, 8> Args; 1378 1379 EVT VT = Op.getValueType(); 1380 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1381 SDLoc SL(Op); 1382 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1383 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1384 1385 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1386 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1387 } 1388 1389 for (const SDUse &U : Op->ops()) 1390 DAG.ExtractVectorElements(U.get(), Args); 1391 1392 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1393 } 1394 1395 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1396 SelectionDAG &DAG) const { 1397 1398 SmallVector<SDValue, 8> Args; 1399 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1400 EVT VT = Op.getValueType(); 1401 EVT SrcVT = Op.getOperand(0).getValueType(); 1402 1403 // For these types, we have some TableGen patterns except if the index is 1 1404 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1405 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1406 Start != 1) 1407 return Op; 1408 1409 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1410 VT.getVectorNumElements()); 1411 1412 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1413 } 1414 1415 /// Generate Min/Max node 1416 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1417 SDValue LHS, SDValue RHS, 1418 SDValue True, SDValue False, 1419 SDValue CC, 1420 DAGCombinerInfo &DCI) const { 1421 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1422 return SDValue(); 1423 1424 SelectionDAG &DAG = DCI.DAG; 1425 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1426 switch (CCOpcode) { 1427 case ISD::SETOEQ: 1428 case ISD::SETONE: 1429 case ISD::SETUNE: 1430 case ISD::SETNE: 1431 case ISD::SETUEQ: 1432 case ISD::SETEQ: 1433 case ISD::SETFALSE: 1434 case ISD::SETFALSE2: 1435 case ISD::SETTRUE: 1436 case ISD::SETTRUE2: 1437 case ISD::SETUO: 1438 case ISD::SETO: 1439 break; 1440 case ISD::SETULE: 1441 case ISD::SETULT: { 1442 if (LHS == True) 1443 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1444 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1445 } 1446 case ISD::SETOLE: 1447 case ISD::SETOLT: 1448 case ISD::SETLE: 1449 case ISD::SETLT: { 1450 // Ordered. Assume ordered for undefined. 1451 1452 // Only do this after legalization to avoid interfering with other combines 1453 // which might occur. 1454 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1455 !DCI.isCalledByLegalizer()) 1456 return SDValue(); 1457 1458 // We need to permute the operands to get the correct NaN behavior. The 1459 // selected operand is the second one based on the failing compare with NaN, 1460 // so permute it based on the compare type the hardware uses. 1461 if (LHS == True) 1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1464 } 1465 case ISD::SETUGE: 1466 case ISD::SETUGT: { 1467 if (LHS == True) 1468 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1469 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1470 } 1471 case ISD::SETGT: 1472 case ISD::SETGE: 1473 case ISD::SETOGE: 1474 case ISD::SETOGT: { 1475 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1476 !DCI.isCalledByLegalizer()) 1477 return SDValue(); 1478 1479 if (LHS == True) 1480 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1482 } 1483 case ISD::SETCC_INVALID: 1484 llvm_unreachable("Invalid setcc condcode!"); 1485 } 1486 return SDValue(); 1487 } 1488 1489 std::pair<SDValue, SDValue> 1490 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1491 SDLoc SL(Op); 1492 1493 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1494 1495 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1496 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1497 1498 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1499 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1500 1501 return std::make_pair(Lo, Hi); 1502 } 1503 1504 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1505 SDLoc SL(Op); 1506 1507 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1508 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1509 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1510 } 1511 1512 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1513 SDLoc SL(Op); 1514 1515 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1516 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1517 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1518 } 1519 1520 // Split a vector type into two parts. The first part is a power of two vector. 1521 // The second part is whatever is left over, and is a scalar if it would 1522 // otherwise be a 1-vector. 1523 std::pair<EVT, EVT> 1524 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1525 EVT LoVT, HiVT; 1526 EVT EltVT = VT.getVectorElementType(); 1527 unsigned NumElts = VT.getVectorNumElements(); 1528 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1529 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1530 HiVT = NumElts - LoNumElts == 1 1531 ? EltVT 1532 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1533 return std::make_pair(LoVT, HiVT); 1534 } 1535 1536 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1537 // scalar. 1538 std::pair<SDValue, SDValue> 1539 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1540 const EVT &LoVT, const EVT &HiVT, 1541 SelectionDAG &DAG) const { 1542 assert(LoVT.getVectorNumElements() + 1543 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1544 N.getValueType().getVectorNumElements() && 1545 "More vector elements requested than available!"); 1546 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1547 DAG.getVectorIdxConstant(0, DL)); 1548 SDValue Hi = DAG.getNode( 1549 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1550 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1551 return std::make_pair(Lo, Hi); 1552 } 1553 1554 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1555 SelectionDAG &DAG) const { 1556 LoadSDNode *Load = cast<LoadSDNode>(Op); 1557 EVT VT = Op.getValueType(); 1558 SDLoc SL(Op); 1559 1560 1561 // If this is a 2 element vector, we really want to scalarize and not create 1562 // weird 1 element vectors. 1563 if (VT.getVectorNumElements() == 2) { 1564 SDValue Ops[2]; 1565 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1566 return DAG.getMergeValues(Ops, SL); 1567 } 1568 1569 SDValue BasePtr = Load->getBasePtr(); 1570 EVT MemVT = Load->getMemoryVT(); 1571 1572 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1573 1574 EVT LoVT, HiVT; 1575 EVT LoMemVT, HiMemVT; 1576 SDValue Lo, Hi; 1577 1578 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1579 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1580 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1581 1582 unsigned Size = LoMemVT.getStoreSize(); 1583 unsigned BaseAlign = Load->getAlignment(); 1584 unsigned HiAlign = MinAlign(BaseAlign, Size); 1585 1586 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1587 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1588 BaseAlign, Load->getMemOperand()->getFlags()); 1589 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1590 SDValue HiLoad = 1591 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1592 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1593 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1594 1595 SDValue Join; 1596 if (LoVT == HiVT) { 1597 // This is the case that the vector is power of two so was evenly split. 1598 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1599 } else { 1600 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1601 DAG.getVectorIdxConstant(0, SL)); 1602 Join = DAG.getNode( 1603 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1604 VT, Join, HiLoad, 1605 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1606 } 1607 1608 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1609 LoLoad.getValue(1), HiLoad.getValue(1))}; 1610 1611 return DAG.getMergeValues(Ops, SL); 1612 } 1613 1614 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1615 SelectionDAG &DAG) const { 1616 LoadSDNode *Load = cast<LoadSDNode>(Op); 1617 EVT VT = Op.getValueType(); 1618 SDValue BasePtr = Load->getBasePtr(); 1619 EVT MemVT = Load->getMemoryVT(); 1620 SDLoc SL(Op); 1621 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1622 unsigned BaseAlign = Load->getAlignment(); 1623 unsigned NumElements = MemVT.getVectorNumElements(); 1624 1625 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1626 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1627 if (NumElements != 3 || 1628 (BaseAlign < 8 && 1629 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1630 return SplitVectorLoad(Op, DAG); 1631 1632 assert(NumElements == 3); 1633 1634 EVT WideVT = 1635 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1636 EVT WideMemVT = 1637 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1638 SDValue WideLoad = DAG.getExtLoad( 1639 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1640 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1641 return DAG.getMergeValues( 1642 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1643 DAG.getVectorIdxConstant(0, SL)), 1644 WideLoad.getValue(1)}, 1645 SL); 1646 } 1647 1648 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1649 SelectionDAG &DAG) const { 1650 StoreSDNode *Store = cast<StoreSDNode>(Op); 1651 SDValue Val = Store->getValue(); 1652 EVT VT = Val.getValueType(); 1653 1654 // If this is a 2 element vector, we really want to scalarize and not create 1655 // weird 1 element vectors. 1656 if (VT.getVectorNumElements() == 2) 1657 return scalarizeVectorStore(Store, DAG); 1658 1659 EVT MemVT = Store->getMemoryVT(); 1660 SDValue Chain = Store->getChain(); 1661 SDValue BasePtr = Store->getBasePtr(); 1662 SDLoc SL(Op); 1663 1664 EVT LoVT, HiVT; 1665 EVT LoMemVT, HiMemVT; 1666 SDValue Lo, Hi; 1667 1668 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1669 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1670 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1671 1672 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1673 1674 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1675 unsigned BaseAlign = Store->getAlignment(); 1676 unsigned Size = LoMemVT.getStoreSize(); 1677 unsigned HiAlign = MinAlign(BaseAlign, Size); 1678 1679 SDValue LoStore = 1680 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1681 Store->getMemOperand()->getFlags()); 1682 SDValue HiStore = 1683 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1684 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1685 1686 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1687 } 1688 1689 // This is a shortcut for integer division because we have fast i32<->f32 1690 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1691 // float is enough to accurately represent up to a 24-bit signed integer. 1692 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1693 bool Sign) const { 1694 SDLoc DL(Op); 1695 EVT VT = Op.getValueType(); 1696 SDValue LHS = Op.getOperand(0); 1697 SDValue RHS = Op.getOperand(1); 1698 MVT IntVT = MVT::i32; 1699 MVT FltVT = MVT::f32; 1700 1701 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1702 if (LHSSignBits < 9) 1703 return SDValue(); 1704 1705 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1706 if (RHSSignBits < 9) 1707 return SDValue(); 1708 1709 unsigned BitSize = VT.getSizeInBits(); 1710 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1711 unsigned DivBits = BitSize - SignBits; 1712 if (Sign) 1713 ++DivBits; 1714 1715 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1716 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1717 1718 SDValue jq = DAG.getConstant(1, DL, IntVT); 1719 1720 if (Sign) { 1721 // char|short jq = ia ^ ib; 1722 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1723 1724 // jq = jq >> (bitsize - 2) 1725 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1726 DAG.getConstant(BitSize - 2, DL, VT)); 1727 1728 // jq = jq | 0x1 1729 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1730 } 1731 1732 // int ia = (int)LHS; 1733 SDValue ia = LHS; 1734 1735 // int ib, (int)RHS; 1736 SDValue ib = RHS; 1737 1738 // float fa = (float)ia; 1739 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1740 1741 // float fb = (float)ib; 1742 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1743 1744 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1745 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1746 1747 // fq = trunc(fq); 1748 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1749 1750 // float fqneg = -fq; 1751 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1752 1753 MachineFunction &MF = DAG.getMachineFunction(); 1754 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1755 1756 // float fr = mad(fqneg, fb, fa); 1757 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1758 (unsigned)ISD::FMA : 1759 !MFI->getMode().allFP32Denormals() ? 1760 (unsigned)ISD::FMAD : 1761 (unsigned)AMDGPUISD::FMAD_FTZ; 1762 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1763 1764 // int iq = (int)fq; 1765 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1766 1767 // fr = fabs(fr); 1768 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1769 1770 // fb = fabs(fb); 1771 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1772 1773 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1774 1775 // int cv = fr >= fb; 1776 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1777 1778 // jq = (cv ? jq : 0); 1779 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1780 1781 // dst = iq + jq; 1782 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1783 1784 // Rem needs compensation, it's easier to recompute it 1785 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1786 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1787 1788 // Truncate to number of bits this divide really is. 1789 if (Sign) { 1790 SDValue InRegSize 1791 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1792 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1793 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1794 } else { 1795 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1796 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1797 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1798 } 1799 1800 return DAG.getMergeValues({ Div, Rem }, DL); 1801 } 1802 1803 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1804 SelectionDAG &DAG, 1805 SmallVectorImpl<SDValue> &Results) const { 1806 SDLoc DL(Op); 1807 EVT VT = Op.getValueType(); 1808 1809 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1810 1811 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1812 1813 SDValue One = DAG.getConstant(1, DL, HalfVT); 1814 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1815 1816 //HiLo split 1817 SDValue LHS = Op.getOperand(0); 1818 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1819 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1820 1821 SDValue RHS = Op.getOperand(1); 1822 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1823 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1824 1825 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1826 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1827 1828 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1829 LHS_Lo, RHS_Lo); 1830 1831 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1832 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1833 1834 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1835 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1836 return; 1837 } 1838 1839 if (isTypeLegal(MVT::i64)) { 1840 // The algorithm here is based on ideas from "Software Integer Division", 1841 // Tom Rodeheffer, August 2008. 1842 1843 MachineFunction &MF = DAG.getMachineFunction(); 1844 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1845 1846 // Compute denominator reciprocal. 1847 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1848 (unsigned)ISD::FMA : 1849 !MFI->getMode().allFP32Denormals() ? 1850 (unsigned)ISD::FMAD : 1851 (unsigned)AMDGPUISD::FMAD_FTZ; 1852 1853 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1854 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1855 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1856 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1857 Cvt_Lo); 1858 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1859 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1860 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1861 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1862 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1863 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1864 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1865 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1866 Mul1); 1867 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1868 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1869 SDValue Rcp64 = DAG.getBitcast(VT, 1870 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1871 1872 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1873 SDValue One64 = DAG.getConstant(1, DL, VT); 1874 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1875 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1876 1877 // First round of UNR (Unsigned integer Newton-Raphson). 1878 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1879 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1880 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1881 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1882 Zero); 1883 SDValue Mulhi1_Hi = 1884 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); 1885 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1886 Mulhi1_Lo, Zero1); 1887 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1888 Mulhi1_Hi, Add1_Lo.getValue(1)); 1889 SDValue Add1 = DAG.getBitcast(VT, 1890 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1891 1892 // Second round of UNR. 1893 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1894 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1895 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1896 Zero); 1897 SDValue Mulhi2_Hi = 1898 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); 1899 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1900 Mulhi2_Lo, Zero1); 1901 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi, 1902 Mulhi2_Hi, Add2_Lo.getValue(1)); 1903 SDValue Add2 = DAG.getBitcast(VT, 1904 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1905 1906 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1907 1908 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1909 1910 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1911 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1912 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1913 Mul3_Lo, Zero1); 1914 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1915 Mul3_Hi, Sub1_Lo.getValue(1)); 1916 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1917 SDValue Sub1 = DAG.getBitcast(VT, 1918 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1919 1920 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1921 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1922 ISD::SETUGE); 1923 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1924 ISD::SETUGE); 1925 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1926 1927 // TODO: Here and below portions of the code can be enclosed into if/endif. 1928 // Currently control flow is unconditional and we have 4 selects after 1929 // potential endif to substitute PHIs. 1930 1931 // if C3 != 0 ... 1932 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1933 RHS_Lo, Zero1); 1934 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1935 RHS_Hi, Sub1_Lo.getValue(1)); 1936 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1937 Zero, Sub2_Lo.getValue(1)); 1938 SDValue Sub2 = DAG.getBitcast(VT, 1939 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1940 1941 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1942 1943 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1944 ISD::SETUGE); 1945 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1946 ISD::SETUGE); 1947 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1948 1949 // if (C6 != 0) 1950 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1951 1952 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1953 RHS_Lo, Zero1); 1954 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1955 RHS_Hi, Sub2_Lo.getValue(1)); 1956 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1957 Zero, Sub3_Lo.getValue(1)); 1958 SDValue Sub3 = DAG.getBitcast(VT, 1959 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1960 1961 // endif C6 1962 // endif C3 1963 1964 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1965 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1966 1967 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1968 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1969 1970 Results.push_back(Div); 1971 Results.push_back(Rem); 1972 1973 return; 1974 } 1975 1976 // r600 expandion. 1977 // Get Speculative values 1978 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1979 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1980 1981 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1982 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1983 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1984 1985 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1986 SDValue DIV_Lo = Zero; 1987 1988 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1989 1990 for (unsigned i = 0; i < halfBitWidth; ++i) { 1991 const unsigned bitPos = halfBitWidth - i - 1; 1992 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1993 // Get value of high bit 1994 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1995 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1996 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1997 1998 // Shift 1999 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2000 // Add LHS high bit 2001 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2002 2003 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2004 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2005 2006 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2007 2008 // Update REM 2009 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2010 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2011 } 2012 2013 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2014 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2015 Results.push_back(DIV); 2016 Results.push_back(REM); 2017 } 2018 2019 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2020 SelectionDAG &DAG) const { 2021 SDLoc DL(Op); 2022 EVT VT = Op.getValueType(); 2023 2024 if (VT == MVT::i64) { 2025 SmallVector<SDValue, 2> Results; 2026 LowerUDIVREM64(Op, DAG, Results); 2027 return DAG.getMergeValues(Results, DL); 2028 } 2029 2030 if (VT == MVT::i32) { 2031 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2032 return Res; 2033 } 2034 2035 SDValue X = Op.getOperand(0); 2036 SDValue Y = Op.getOperand(1); 2037 2038 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2039 // algorithm used here. 2040 2041 // Initial estimate of inv(y). 2042 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2043 2044 // One round of UNR. 2045 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2046 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2047 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2048 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2049 2050 // Quotient/remainder estimate. 2051 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2052 SDValue R = 2053 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2054 2055 // First quotient/remainder refinement. 2056 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2057 SDValue One = DAG.getConstant(1, DL, VT); 2058 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2059 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2060 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2061 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2062 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2063 2064 // Second quotient/remainder refinement. 2065 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2066 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2067 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2068 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2069 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2070 2071 return DAG.getMergeValues({Q, R}, DL); 2072 } 2073 2074 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2075 SelectionDAG &DAG) const { 2076 SDLoc DL(Op); 2077 EVT VT = Op.getValueType(); 2078 2079 SDValue LHS = Op.getOperand(0); 2080 SDValue RHS = Op.getOperand(1); 2081 2082 SDValue Zero = DAG.getConstant(0, DL, VT); 2083 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2084 2085 if (VT == MVT::i32) { 2086 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2087 return Res; 2088 } 2089 2090 if (VT == MVT::i64 && 2091 DAG.ComputeNumSignBits(LHS) > 32 && 2092 DAG.ComputeNumSignBits(RHS) > 32) { 2093 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2094 2095 //HiLo split 2096 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2097 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2098 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2099 LHS_Lo, RHS_Lo); 2100 SDValue Res[2] = { 2101 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2102 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2103 }; 2104 return DAG.getMergeValues(Res, DL); 2105 } 2106 2107 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2108 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2109 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2110 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2111 2112 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2113 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2114 2115 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2116 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2117 2118 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2119 SDValue Rem = Div.getValue(1); 2120 2121 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2122 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2123 2124 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2125 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2126 2127 SDValue Res[2] = { 2128 Div, 2129 Rem 2130 }; 2131 return DAG.getMergeValues(Res, DL); 2132 } 2133 2134 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2135 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2136 SDLoc SL(Op); 2137 EVT VT = Op.getValueType(); 2138 auto Flags = Op->getFlags(); 2139 SDValue X = Op.getOperand(0); 2140 SDValue Y = Op.getOperand(1); 2141 2142 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2143 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2144 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2145 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2146 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2147 } 2148 2149 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2150 SDLoc SL(Op); 2151 SDValue Src = Op.getOperand(0); 2152 2153 // result = trunc(src) 2154 // if (src > 0.0 && src != result) 2155 // result += 1.0 2156 2157 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2158 2159 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2160 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2161 2162 EVT SetCCVT = 2163 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2164 2165 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2166 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2167 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2168 2169 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2170 // TODO: Should this propagate fast-math-flags? 2171 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2172 } 2173 2174 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2175 SelectionDAG &DAG) { 2176 const unsigned FractBits = 52; 2177 const unsigned ExpBits = 11; 2178 2179 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2180 Hi, 2181 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2182 DAG.getConstant(ExpBits, SL, MVT::i32)); 2183 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2184 DAG.getConstant(1023, SL, MVT::i32)); 2185 2186 return Exp; 2187 } 2188 2189 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2190 SDLoc SL(Op); 2191 SDValue Src = Op.getOperand(0); 2192 2193 assert(Op.getValueType() == MVT::f64); 2194 2195 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2196 2197 // Extract the upper half, since this is where we will find the sign and 2198 // exponent. 2199 SDValue Hi = getHiHalf64(Src, DAG); 2200 2201 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2202 2203 const unsigned FractBits = 52; 2204 2205 // Extract the sign bit. 2206 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2207 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2208 2209 // Extend back to 64-bits. 2210 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2211 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2212 2213 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2214 const SDValue FractMask 2215 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2216 2217 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2218 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2219 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2220 2221 EVT SetCCVT = 2222 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2223 2224 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2225 2226 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2227 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2228 2229 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2230 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2231 2232 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2233 } 2234 2235 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2236 SDLoc SL(Op); 2237 SDValue Src = Op.getOperand(0); 2238 2239 assert(Op.getValueType() == MVT::f64); 2240 2241 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2242 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2243 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2244 2245 // TODO: Should this propagate fast-math-flags? 2246 2247 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2248 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2249 2250 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2251 2252 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2253 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2254 2255 EVT SetCCVT = 2256 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2257 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2258 2259 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2260 } 2261 2262 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2263 // FNEARBYINT and FRINT are the same, except in their handling of FP 2264 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2265 // rint, so just treat them as equivalent. 2266 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2267 } 2268 2269 // XXX - May require not supporting f32 denormals? 2270 2271 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2272 // compare and vselect end up producing worse code than scalarizing the whole 2273 // operation. 2274 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2275 SDLoc SL(Op); 2276 SDValue X = Op.getOperand(0); 2277 EVT VT = Op.getValueType(); 2278 2279 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2280 2281 // TODO: Should this propagate fast-math-flags? 2282 2283 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2284 2285 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2286 2287 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2288 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2289 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2290 2291 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2292 2293 EVT SetCCVT = 2294 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2295 2296 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2297 2298 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2299 2300 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2301 } 2302 2303 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2304 SDLoc SL(Op); 2305 SDValue Src = Op.getOperand(0); 2306 2307 // result = trunc(src); 2308 // if (src < 0.0 && src != result) 2309 // result += -1.0. 2310 2311 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2312 2313 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2314 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2315 2316 EVT SetCCVT = 2317 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2318 2319 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2320 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2321 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2322 2323 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2324 // TODO: Should this propagate fast-math-flags? 2325 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2326 } 2327 2328 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2329 double Log2BaseInverted) const { 2330 EVT VT = Op.getValueType(); 2331 2332 SDLoc SL(Op); 2333 SDValue Operand = Op.getOperand(0); 2334 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2335 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2336 2337 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2338 } 2339 2340 // exp2(M_LOG2E_F * f); 2341 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2342 EVT VT = Op.getValueType(); 2343 SDLoc SL(Op); 2344 SDValue Src = Op.getOperand(0); 2345 2346 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2347 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2348 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2349 } 2350 2351 static bool isCtlzOpc(unsigned Opc) { 2352 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2353 } 2354 2355 static bool isCttzOpc(unsigned Opc) { 2356 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2357 } 2358 2359 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2360 SDLoc SL(Op); 2361 SDValue Src = Op.getOperand(0); 2362 2363 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); 2364 bool Ctlz = isCtlzOpc(Op.getOpcode()); 2365 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; 2366 2367 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || 2368 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; 2369 2370 if (Src.getValueType() == MVT::i32) { 2371 // (ctlz hi:lo) -> (umin (ffbh src), 32) 2372 // (cttz hi:lo) -> (umin (ffbl src), 32) 2373 // (ctlz_zero_undef src) -> (ffbh src) 2374 // (cttz_zero_undef src) -> (ffbl src) 2375 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); 2376 if (!ZeroUndef) { 2377 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2378 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); 2379 } 2380 return NewOpr; 2381 } 2382 2383 SDValue Lo, Hi; 2384 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2385 2386 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); 2387 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); 2388 2389 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) 2390 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) 2391 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) 2392 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) 2393 2394 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; 2395 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); 2396 if (Ctlz) 2397 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); 2398 else 2399 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); 2400 2401 SDValue NewOpr; 2402 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); 2403 if (!ZeroUndef) { 2404 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); 2405 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); 2406 } 2407 2408 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2409 } 2410 2411 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2412 bool Signed) const { 2413 // The regular method converting a 64-bit integer to float roughly consists of 2414 // 2 steps: normalization and rounding. In fact, after normalization, the 2415 // conversion from a 64-bit integer to a float is essentially the same as the 2416 // one from a 32-bit integer. The only difference is that it has more 2417 // trailing bits to be rounded. To leverage the native 32-bit conversion, a 2418 // 64-bit integer could be preprocessed and fit into a 32-bit integer then 2419 // converted into the correct float number. The basic steps for the unsigned 2420 // conversion are illustrated in the following pseudo code: 2421 // 2422 // f32 uitofp(i64 u) { 2423 // i32 hi, lo = split(u); 2424 // // Only count the leading zeros in hi as we have native support of the 2425 // // conversion from i32 to f32. If hi is all 0s, the conversion is 2426 // // reduced to a 32-bit one automatically. 2427 // i32 shamt = clz(hi); // Return 32 if hi is all 0s. 2428 // u <<= shamt; 2429 // hi, lo = split(u); 2430 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. 2431 // // convert it as a 32-bit integer and scale the result back. 2432 // return uitofp(hi) * 2^(32 - shamt); 2433 // } 2434 // 2435 // The signed one follows the same principle but uses 'ffbh_i32' to count its 2436 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is 2437 // converted instead followed by negation based its sign bit. 2438 2439 SDLoc SL(Op); 2440 SDValue Src = Op.getOperand(0); 2441 2442 SDValue Lo, Hi; 2443 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2444 SDValue Sign; 2445 SDValue ShAmt; 2446 if (Signed && Subtarget->isGCN()) { 2447 // We also need to consider the sign bit in Lo if Hi has just sign bits, 2448 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into 2449 // account. That is, the maximal shift is 2450 // - 32 if Lo and Hi have opposite signs; 2451 // - 33 if Lo and Hi have the same sign. 2452 // 2453 // Or, MaxShAmt = 33 + OppositeSign, where 2454 // 2455 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is 2456 // - -1 if Lo and Hi have opposite signs; and 2457 // - 0 otherwise. 2458 // 2459 // All in all, ShAmt is calculated as 2460 // 2461 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. 2462 // 2463 // or 2464 // 2465 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). 2466 // 2467 // to reduce the critical path. 2468 SDValue OppositeSign = DAG.getNode( 2469 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), 2470 DAG.getConstant(31, SL, MVT::i32)); 2471 SDValue MaxShAmt = 2472 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2473 OppositeSign); 2474 // Count the leading sign bits. 2475 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); 2476 // Different from unsigned conversion, the shift should be one bit less to 2477 // preserve the sign bit. 2478 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, 2479 DAG.getConstant(1, SL, MVT::i32)); 2480 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); 2481 } else { 2482 if (Signed) { 2483 // Without 'ffbh_i32', only leading zeros could be counted. Take the 2484 // absolute value first. 2485 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, 2486 DAG.getConstant(63, SL, MVT::i64)); 2487 SDValue Abs = 2488 DAG.getNode(ISD::XOR, SL, MVT::i64, 2489 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); 2490 std::tie(Lo, Hi) = split64BitValue(Abs, DAG); 2491 } 2492 // Count the leading zeros. 2493 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); 2494 // The shift amount for signed integers is [0, 32]. 2495 } 2496 // Normalize the given 64-bit integer. 2497 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); 2498 // Split it again. 2499 std::tie(Lo, Hi) = split64BitValue(Norm, DAG); 2500 // Calculate the adjust bit for rounding. 2501 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) 2502 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, 2503 DAG.getConstant(1, SL, MVT::i32), Lo); 2504 // Get the 32-bit normalized integer. 2505 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); 2506 // Convert the normalized 32-bit integer into f32. 2507 unsigned Opc = 2508 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 2509 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); 2510 2511 // Finally, need to scale back the converted floating number as the original 2512 // 64-bit integer is converted as a 32-bit one. 2513 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), 2514 ShAmt); 2515 // On GCN, use LDEXP directly. 2516 if (Subtarget->isGCN()) 2517 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); 2518 2519 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent 2520 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit 2521 // exponent is enough to avoid overflowing into the sign bit. 2522 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, 2523 DAG.getConstant(23, SL, MVT::i32)); 2524 SDValue IVal = 2525 DAG.getNode(ISD::ADD, SL, MVT::i32, 2526 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); 2527 if (Signed) { 2528 // Set the sign bit. 2529 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, 2530 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), 2531 DAG.getConstant(31, SL, MVT::i32)); 2532 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); 2533 } 2534 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); 2535 } 2536 2537 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2538 bool Signed) const { 2539 SDLoc SL(Op); 2540 SDValue Src = Op.getOperand(0); 2541 2542 SDValue Lo, Hi; 2543 std::tie(Lo, Hi) = split64BitValue(Src, DAG); 2544 2545 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2546 SL, MVT::f64, Hi); 2547 2548 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2549 2550 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2551 DAG.getConstant(32, SL, MVT::i32)); 2552 // TODO: Should this propagate fast-math-flags? 2553 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2554 } 2555 2556 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2557 SelectionDAG &DAG) const { 2558 // TODO: Factor out code common with LowerSINT_TO_FP. 2559 EVT DestVT = Op.getValueType(); 2560 SDValue Src = Op.getOperand(0); 2561 EVT SrcVT = Src.getValueType(); 2562 2563 if (SrcVT == MVT::i16) { 2564 if (DestVT == MVT::f16) 2565 return Op; 2566 SDLoc DL(Op); 2567 2568 // Promote src to i32 2569 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2570 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2571 } 2572 2573 assert(SrcVT == MVT::i64 && "operation should be legal"); 2574 2575 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2576 SDLoc DL(Op); 2577 2578 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2579 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2580 SDValue FPRound = 2581 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2582 2583 return FPRound; 2584 } 2585 2586 if (DestVT == MVT::f32) 2587 return LowerINT_TO_FP32(Op, DAG, false); 2588 2589 assert(DestVT == MVT::f64); 2590 return LowerINT_TO_FP64(Op, DAG, false); 2591 } 2592 2593 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2594 SelectionDAG &DAG) const { 2595 EVT DestVT = Op.getValueType(); 2596 2597 SDValue Src = Op.getOperand(0); 2598 EVT SrcVT = Src.getValueType(); 2599 2600 if (SrcVT == MVT::i16) { 2601 if (DestVT == MVT::f16) 2602 return Op; 2603 2604 SDLoc DL(Op); 2605 // Promote src to i32 2606 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2607 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2608 } 2609 2610 assert(SrcVT == MVT::i64 && "operation should be legal"); 2611 2612 // TODO: Factor out code common with LowerUINT_TO_FP. 2613 2614 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2615 SDLoc DL(Op); 2616 SDValue Src = Op.getOperand(0); 2617 2618 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2619 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2620 SDValue FPRound = 2621 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2622 2623 return FPRound; 2624 } 2625 2626 if (DestVT == MVT::f32) 2627 return LowerINT_TO_FP32(Op, DAG, true); 2628 2629 assert(DestVT == MVT::f64); 2630 return LowerINT_TO_FP64(Op, DAG, true); 2631 } 2632 2633 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2634 bool Signed) const { 2635 SDLoc SL(Op); 2636 2637 SDValue Src = Op.getOperand(0); 2638 EVT SrcVT = Src.getValueType(); 2639 2640 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2641 2642 // The basic idea of converting a floating point number into a pair of 32-bit 2643 // integers is illustrated as follows: 2644 // 2645 // tf := trunc(val); 2646 // hif := floor(tf * 2^-32); 2647 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2648 // hi := fptoi(hif); 2649 // lo := fptoi(lof); 2650 // 2651 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2652 SDValue Sign; 2653 if (Signed && SrcVT == MVT::f32) { 2654 // However, a 32-bit floating point number has only 23 bits mantissa and 2655 // it's not enough to hold all the significant bits of `lof` if val is 2656 // negative. To avoid the loss of precision, We need to take the absolute 2657 // value after truncating and flip the result back based on the original 2658 // signedness. 2659 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2660 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2661 DAG.getConstant(31, SL, MVT::i32)); 2662 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2663 } 2664 2665 SDValue K0, K1; 2666 if (SrcVT == MVT::f64) { 2667 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2668 SL, SrcVT); 2669 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2670 SL, SrcVT); 2671 } else { 2672 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2673 SrcVT); 2674 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2675 SrcVT); 2676 } 2677 // TODO: Should this propagate fast-math-flags? 2678 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2679 2680 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2681 2682 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2683 2684 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2685 : ISD::FP_TO_UINT, 2686 SL, MVT::i32, FloorMul); 2687 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2688 2689 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2690 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2691 2692 if (Signed && SrcVT == MVT::f32) { 2693 assert(Sign); 2694 // Flip the result based on the signedness, which is either all 0s or 1s. 2695 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2696 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2697 // r := xor(r, sign) - sign; 2698 Result = 2699 DAG.getNode(ISD::SUB, SL, MVT::i64, 2700 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2701 } 2702 2703 return Result; 2704 } 2705 2706 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2707 SDLoc DL(Op); 2708 SDValue N0 = Op.getOperand(0); 2709 2710 // Convert to target node to get known bits 2711 if (N0.getValueType() == MVT::f32) 2712 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2713 2714 if (getTargetMachine().Options.UnsafeFPMath) { 2715 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2716 return SDValue(); 2717 } 2718 2719 assert(N0.getSimpleValueType() == MVT::f64); 2720 2721 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2722 const unsigned ExpMask = 0x7ff; 2723 const unsigned ExpBiasf64 = 1023; 2724 const unsigned ExpBiasf16 = 15; 2725 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2726 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2727 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2728 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2729 DAG.getConstant(32, DL, MVT::i64)); 2730 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2731 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2732 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2733 DAG.getConstant(20, DL, MVT::i64)); 2734 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2735 DAG.getConstant(ExpMask, DL, MVT::i32)); 2736 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2737 // add the f16 bias (15) to get the biased exponent for the f16 format. 2738 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2739 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2740 2741 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2742 DAG.getConstant(8, DL, MVT::i32)); 2743 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2744 DAG.getConstant(0xffe, DL, MVT::i32)); 2745 2746 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2747 DAG.getConstant(0x1ff, DL, MVT::i32)); 2748 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2749 2750 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2751 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2752 2753 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2754 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2755 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2756 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2757 2758 // N = M | (E << 12); 2759 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2760 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2761 DAG.getConstant(12, DL, MVT::i32))); 2762 2763 // B = clamp(1-E, 0, 13); 2764 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2765 One, E); 2766 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2767 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2768 DAG.getConstant(13, DL, MVT::i32)); 2769 2770 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2771 DAG.getConstant(0x1000, DL, MVT::i32)); 2772 2773 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2774 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2775 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2776 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2777 2778 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2779 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2780 DAG.getConstant(0x7, DL, MVT::i32)); 2781 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2782 DAG.getConstant(2, DL, MVT::i32)); 2783 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2784 One, Zero, ISD::SETEQ); 2785 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2786 One, Zero, ISD::SETGT); 2787 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2788 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2789 2790 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2791 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2792 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2793 I, V, ISD::SETEQ); 2794 2795 // Extract the sign bit. 2796 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2797 DAG.getConstant(16, DL, MVT::i32)); 2798 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2799 DAG.getConstant(0x8000, DL, MVT::i32)); 2800 2801 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2802 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2803 } 2804 2805 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2806 SelectionDAG &DAG) const { 2807 SDValue Src = Op.getOperand(0); 2808 unsigned OpOpcode = Op.getOpcode(); 2809 EVT SrcVT = Src.getValueType(); 2810 EVT DestVT = Op.getValueType(); 2811 2812 // Will be selected natively 2813 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2814 return Op; 2815 2816 // Promote i16 to i32 2817 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2818 SDLoc DL(Op); 2819 2820 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2821 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2822 } 2823 2824 if (SrcVT == MVT::f16 || 2825 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2826 SDLoc DL(Op); 2827 2828 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2829 unsigned Ext = 2830 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2831 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2832 } 2833 2834 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2835 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2836 2837 return SDValue(); 2838 } 2839 2840 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2841 SelectionDAG &DAG) const { 2842 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2843 MVT VT = Op.getSimpleValueType(); 2844 MVT ScalarVT = VT.getScalarType(); 2845 2846 assert(VT.isVector()); 2847 2848 SDValue Src = Op.getOperand(0); 2849 SDLoc DL(Op); 2850 2851 // TODO: Don't scalarize on Evergreen? 2852 unsigned NElts = VT.getVectorNumElements(); 2853 SmallVector<SDValue, 8> Args; 2854 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2855 2856 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2857 for (unsigned I = 0; I < NElts; ++I) 2858 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2859 2860 return DAG.getBuildVector(VT, DL, Args); 2861 } 2862 2863 //===----------------------------------------------------------------------===// 2864 // Custom DAG optimizations 2865 //===----------------------------------------------------------------------===// 2866 2867 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2868 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2869 } 2870 2871 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2872 EVT VT = Op.getValueType(); 2873 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2874 // as unsigned 24-bit values. 2875 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; 2876 } 2877 2878 static SDValue simplifyMul24(SDNode *Node24, 2879 TargetLowering::DAGCombinerInfo &DCI) { 2880 SelectionDAG &DAG = DCI.DAG; 2881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2882 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2883 2884 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2885 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2886 unsigned NewOpcode = Node24->getOpcode(); 2887 if (IsIntrin) { 2888 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2889 switch (IID) { 2890 case Intrinsic::amdgcn_mul_i24: 2891 NewOpcode = AMDGPUISD::MUL_I24; 2892 break; 2893 case Intrinsic::amdgcn_mul_u24: 2894 NewOpcode = AMDGPUISD::MUL_U24; 2895 break; 2896 case Intrinsic::amdgcn_mulhi_i24: 2897 NewOpcode = AMDGPUISD::MULHI_I24; 2898 break; 2899 case Intrinsic::amdgcn_mulhi_u24: 2900 NewOpcode = AMDGPUISD::MULHI_U24; 2901 break; 2902 default: 2903 llvm_unreachable("Expected 24-bit mul intrinsic"); 2904 } 2905 } 2906 2907 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2908 2909 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2910 // the operands to have other uses, but will only perform simplifications that 2911 // involve bypassing some nodes for this user. 2912 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2913 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2914 if (DemandedLHS || DemandedRHS) 2915 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2916 DemandedLHS ? DemandedLHS : LHS, 2917 DemandedRHS ? DemandedRHS : RHS); 2918 2919 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2920 // operands if this node is the only user. 2921 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2922 return SDValue(Node24, 0); 2923 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2924 return SDValue(Node24, 0); 2925 2926 return SDValue(); 2927 } 2928 2929 template <typename IntTy> 2930 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2931 uint32_t Width, const SDLoc &DL) { 2932 if (Width + Offset < 32) { 2933 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2934 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2935 return DAG.getConstant(Result, DL, MVT::i32); 2936 } 2937 2938 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2939 } 2940 2941 static bool hasVolatileUser(SDNode *Val) { 2942 for (SDNode *U : Val->uses()) { 2943 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2944 if (M->isVolatile()) 2945 return true; 2946 } 2947 } 2948 2949 return false; 2950 } 2951 2952 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2953 // i32 vectors are the canonical memory type. 2954 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2955 return false; 2956 2957 if (!VT.isByteSized()) 2958 return false; 2959 2960 unsigned Size = VT.getStoreSize(); 2961 2962 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2963 return false; 2964 2965 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2966 return false; 2967 2968 return true; 2969 } 2970 2971 // Replace load of an illegal type with a store of a bitcast to a friendlier 2972 // type. 2973 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2974 DAGCombinerInfo &DCI) const { 2975 if (!DCI.isBeforeLegalize()) 2976 return SDValue(); 2977 2978 LoadSDNode *LN = cast<LoadSDNode>(N); 2979 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2980 return SDValue(); 2981 2982 SDLoc SL(N); 2983 SelectionDAG &DAG = DCI.DAG; 2984 EVT VT = LN->getMemoryVT(); 2985 2986 unsigned Size = VT.getStoreSize(); 2987 Align Alignment = LN->getAlign(); 2988 if (Alignment < Size && isTypeLegal(VT)) { 2989 bool IsFast; 2990 unsigned AS = LN->getAddressSpace(); 2991 2992 // Expand unaligned loads earlier than legalization. Due to visitation order 2993 // problems during legalization, the emitted instructions to pack and unpack 2994 // the bytes again are not eliminated in the case of an unaligned copy. 2995 if (!allowsMisalignedMemoryAccesses( 2996 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2997 SDValue Ops[2]; 2998 2999 if (VT.isVector()) 3000 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 3001 else 3002 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 3003 3004 return DAG.getMergeValues(Ops, SDLoc(N)); 3005 } 3006 3007 if (!IsFast) 3008 return SDValue(); 3009 } 3010 3011 if (!shouldCombineMemoryType(VT)) 3012 return SDValue(); 3013 3014 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3015 3016 SDValue NewLoad 3017 = DAG.getLoad(NewVT, SL, LN->getChain(), 3018 LN->getBasePtr(), LN->getMemOperand()); 3019 3020 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3021 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3022 return SDValue(N, 0); 3023 } 3024 3025 // Replace store of an illegal type with a store of a bitcast to a friendlier 3026 // type. 3027 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3028 DAGCombinerInfo &DCI) const { 3029 if (!DCI.isBeforeLegalize()) 3030 return SDValue(); 3031 3032 StoreSDNode *SN = cast<StoreSDNode>(N); 3033 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3034 return SDValue(); 3035 3036 EVT VT = SN->getMemoryVT(); 3037 unsigned Size = VT.getStoreSize(); 3038 3039 SDLoc SL(N); 3040 SelectionDAG &DAG = DCI.DAG; 3041 Align Alignment = SN->getAlign(); 3042 if (Alignment < Size && isTypeLegal(VT)) { 3043 bool IsFast; 3044 unsigned AS = SN->getAddressSpace(); 3045 3046 // Expand unaligned stores earlier than legalization. Due to visitation 3047 // order problems during legalization, the emitted instructions to pack and 3048 // unpack the bytes again are not eliminated in the case of an unaligned 3049 // copy. 3050 if (!allowsMisalignedMemoryAccesses( 3051 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3052 if (VT.isVector()) 3053 return scalarizeVectorStore(SN, DAG); 3054 3055 return expandUnalignedStore(SN, DAG); 3056 } 3057 3058 if (!IsFast) 3059 return SDValue(); 3060 } 3061 3062 if (!shouldCombineMemoryType(VT)) 3063 return SDValue(); 3064 3065 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3066 SDValue Val = SN->getValue(); 3067 3068 //DCI.AddToWorklist(Val.getNode()); 3069 3070 bool OtherUses = !Val.hasOneUse(); 3071 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3072 if (OtherUses) { 3073 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3074 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3075 } 3076 3077 return DAG.getStore(SN->getChain(), SL, CastVal, 3078 SN->getBasePtr(), SN->getMemOperand()); 3079 } 3080 3081 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3082 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3083 // issues. 3084 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3085 DAGCombinerInfo &DCI) const { 3086 SelectionDAG &DAG = DCI.DAG; 3087 SDValue N0 = N->getOperand(0); 3088 3089 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3090 // (vt2 (truncate (assertzext vt0:x, vt1))) 3091 if (N0.getOpcode() == ISD::TRUNCATE) { 3092 SDValue N1 = N->getOperand(1); 3093 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3094 SDLoc SL(N); 3095 3096 SDValue Src = N0.getOperand(0); 3097 EVT SrcVT = Src.getValueType(); 3098 if (SrcVT.bitsGE(ExtVT)) { 3099 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3100 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3101 } 3102 } 3103 3104 return SDValue(); 3105 } 3106 3107 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3108 SDNode *N, DAGCombinerInfo &DCI) const { 3109 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3110 switch (IID) { 3111 case Intrinsic::amdgcn_mul_i24: 3112 case Intrinsic::amdgcn_mul_u24: 3113 case Intrinsic::amdgcn_mulhi_i24: 3114 case Intrinsic::amdgcn_mulhi_u24: 3115 return simplifyMul24(N, DCI); 3116 case Intrinsic::amdgcn_fract: 3117 case Intrinsic::amdgcn_rsq: 3118 case Intrinsic::amdgcn_rcp_legacy: 3119 case Intrinsic::amdgcn_rsq_legacy: 3120 case Intrinsic::amdgcn_rsq_clamp: 3121 case Intrinsic::amdgcn_ldexp: { 3122 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3123 SDValue Src = N->getOperand(1); 3124 return Src.isUndef() ? Src : SDValue(); 3125 } 3126 default: 3127 return SDValue(); 3128 } 3129 } 3130 3131 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3132 /// binary operation \p Opc to it with the corresponding constant operands. 3133 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3134 DAGCombinerInfo &DCI, const SDLoc &SL, 3135 unsigned Opc, SDValue LHS, 3136 uint32_t ValLo, uint32_t ValHi) const { 3137 SelectionDAG &DAG = DCI.DAG; 3138 SDValue Lo, Hi; 3139 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3140 3141 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3142 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3143 3144 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3145 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3146 3147 // Re-visit the ands. It's possible we eliminated one of them and it could 3148 // simplify the vector. 3149 DCI.AddToWorklist(Lo.getNode()); 3150 DCI.AddToWorklist(Hi.getNode()); 3151 3152 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3153 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3154 } 3155 3156 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3157 DAGCombinerInfo &DCI) const { 3158 EVT VT = N->getValueType(0); 3159 3160 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3161 if (!RHS) 3162 return SDValue(); 3163 3164 SDValue LHS = N->getOperand(0); 3165 unsigned RHSVal = RHS->getZExtValue(); 3166 if (!RHSVal) 3167 return LHS; 3168 3169 SDLoc SL(N); 3170 SelectionDAG &DAG = DCI.DAG; 3171 3172 switch (LHS->getOpcode()) { 3173 default: 3174 break; 3175 case ISD::ZERO_EXTEND: 3176 case ISD::SIGN_EXTEND: 3177 case ISD::ANY_EXTEND: { 3178 SDValue X = LHS->getOperand(0); 3179 3180 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3181 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3182 // Prefer build_vector as the canonical form if packed types are legal. 3183 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3184 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3185 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3186 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3187 } 3188 3189 // shl (ext x) => zext (shl x), if shift does not overflow int 3190 if (VT != MVT::i64) 3191 break; 3192 KnownBits Known = DAG.computeKnownBits(X); 3193 unsigned LZ = Known.countMinLeadingZeros(); 3194 if (LZ < RHSVal) 3195 break; 3196 EVT XVT = X.getValueType(); 3197 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3198 return DAG.getZExtOrTrunc(Shl, SL, VT); 3199 } 3200 } 3201 3202 if (VT != MVT::i64) 3203 return SDValue(); 3204 3205 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3206 3207 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3208 // common case, splitting this into a move and a 32-bit shift is faster and 3209 // the same code size. 3210 if (RHSVal < 32) 3211 return SDValue(); 3212 3213 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3214 3215 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3216 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3217 3218 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3219 3220 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3221 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3222 } 3223 3224 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3225 DAGCombinerInfo &DCI) const { 3226 if (N->getValueType(0) != MVT::i64) 3227 return SDValue(); 3228 3229 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3230 if (!RHS) 3231 return SDValue(); 3232 3233 SelectionDAG &DAG = DCI.DAG; 3234 SDLoc SL(N); 3235 unsigned RHSVal = RHS->getZExtValue(); 3236 3237 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3238 if (RHSVal == 32) { 3239 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3240 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3241 DAG.getConstant(31, SL, MVT::i32)); 3242 3243 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3244 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3245 } 3246 3247 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3248 if (RHSVal == 63) { 3249 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3250 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3251 DAG.getConstant(31, SL, MVT::i32)); 3252 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3253 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3254 } 3255 3256 return SDValue(); 3257 } 3258 3259 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3260 DAGCombinerInfo &DCI) const { 3261 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3262 if (!RHS) 3263 return SDValue(); 3264 3265 EVT VT = N->getValueType(0); 3266 SDValue LHS = N->getOperand(0); 3267 unsigned ShiftAmt = RHS->getZExtValue(); 3268 SelectionDAG &DAG = DCI.DAG; 3269 SDLoc SL(N); 3270 3271 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3272 // this improves the ability to match BFE patterns in isel. 3273 if (LHS.getOpcode() == ISD::AND) { 3274 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3275 if (Mask->getAPIntValue().isShiftedMask() && 3276 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3277 return DAG.getNode( 3278 ISD::AND, SL, VT, 3279 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3280 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3281 } 3282 } 3283 } 3284 3285 if (VT != MVT::i64) 3286 return SDValue(); 3287 3288 if (ShiftAmt < 32) 3289 return SDValue(); 3290 3291 // srl i64:x, C for C >= 32 3292 // => 3293 // build_pair (srl hi_32(x), C - 32), 0 3294 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3295 3296 SDValue Hi = getHiHalf64(LHS, DAG); 3297 3298 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3299 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3300 3301 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3302 3303 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3304 } 3305 3306 SDValue AMDGPUTargetLowering::performTruncateCombine( 3307 SDNode *N, DAGCombinerInfo &DCI) const { 3308 SDLoc SL(N); 3309 SelectionDAG &DAG = DCI.DAG; 3310 EVT VT = N->getValueType(0); 3311 SDValue Src = N->getOperand(0); 3312 3313 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3314 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3315 SDValue Vec = Src.getOperand(0); 3316 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3317 SDValue Elt0 = Vec.getOperand(0); 3318 EVT EltVT = Elt0.getValueType(); 3319 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3320 if (EltVT.isFloatingPoint()) { 3321 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3322 EltVT.changeTypeToInteger(), Elt0); 3323 } 3324 3325 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3326 } 3327 } 3328 } 3329 3330 // Equivalent of above for accessing the high element of a vector as an 3331 // integer operation. 3332 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3333 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3334 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3335 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3336 SDValue BV = stripBitcast(Src.getOperand(0)); 3337 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3338 BV.getValueType().getVectorNumElements() == 2) { 3339 SDValue SrcElt = BV.getOperand(1); 3340 EVT SrcEltVT = SrcElt.getValueType(); 3341 if (SrcEltVT.isFloatingPoint()) { 3342 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3343 SrcEltVT.changeTypeToInteger(), SrcElt); 3344 } 3345 3346 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3347 } 3348 } 3349 } 3350 } 3351 3352 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3353 // 3354 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3355 // i16 (trunc (srl (i32 (trunc x), K))) 3356 if (VT.getScalarSizeInBits() < 32) { 3357 EVT SrcVT = Src.getValueType(); 3358 if (SrcVT.getScalarSizeInBits() > 32 && 3359 (Src.getOpcode() == ISD::SRL || 3360 Src.getOpcode() == ISD::SRA || 3361 Src.getOpcode() == ISD::SHL)) { 3362 SDValue Amt = Src.getOperand(1); 3363 KnownBits Known = DAG.computeKnownBits(Amt); 3364 unsigned Size = VT.getScalarSizeInBits(); 3365 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3366 (Known.countMaxActiveBits() <= Log2_32(Size))) { 3367 EVT MidVT = VT.isVector() ? 3368 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3369 VT.getVectorNumElements()) : MVT::i32; 3370 3371 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3372 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3373 Src.getOperand(0)); 3374 DCI.AddToWorklist(Trunc.getNode()); 3375 3376 if (Amt.getValueType() != NewShiftVT) { 3377 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3378 DCI.AddToWorklist(Amt.getNode()); 3379 } 3380 3381 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3382 Trunc, Amt); 3383 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3384 } 3385 } 3386 } 3387 3388 return SDValue(); 3389 } 3390 3391 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3392 // instructions. If we only match on the legalized i64 mul expansion, 3393 // SimplifyDemandedBits will be unable to remove them because there will be 3394 // multiple uses due to the separate mul + mulh[su]. 3395 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3396 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3397 if (Size <= 32) { 3398 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3399 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3400 } 3401 3402 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3403 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3404 3405 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3406 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3407 3408 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3409 } 3410 3411 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3412 DAGCombinerInfo &DCI) const { 3413 EVT VT = N->getValueType(0); 3414 3415 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3416 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3417 // unnecessarily). isDivergent() is used as an approximation of whether the 3418 // value is in an SGPR. 3419 if (!N->isDivergent()) 3420 return SDValue(); 3421 3422 unsigned Size = VT.getSizeInBits(); 3423 if (VT.isVector() || Size > 64) 3424 return SDValue(); 3425 3426 // There are i16 integer mul/mad. 3427 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3428 return SDValue(); 3429 3430 SelectionDAG &DAG = DCI.DAG; 3431 SDLoc DL(N); 3432 3433 SDValue N0 = N->getOperand(0); 3434 SDValue N1 = N->getOperand(1); 3435 3436 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3437 // in the source into any_extends if the result of the mul is truncated. Since 3438 // we can assume the high bits are whatever we want, use the underlying value 3439 // to avoid the unknown high bits from interfering. 3440 if (N0.getOpcode() == ISD::ANY_EXTEND) 3441 N0 = N0.getOperand(0); 3442 3443 if (N1.getOpcode() == ISD::ANY_EXTEND) 3444 N1 = N1.getOperand(0); 3445 3446 SDValue Mul; 3447 3448 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3449 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3450 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3451 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3452 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3453 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3454 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3455 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3456 } else { 3457 return SDValue(); 3458 } 3459 3460 // We need to use sext even for MUL_U24, because MUL_U24 is used 3461 // for signed multiply of 8 and 16-bit types. 3462 return DAG.getSExtOrTrunc(Mul, DL, VT); 3463 } 3464 3465 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3466 DAGCombinerInfo &DCI) const { 3467 EVT VT = N->getValueType(0); 3468 3469 if (!Subtarget->hasMulI24() || VT.isVector()) 3470 return SDValue(); 3471 3472 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3473 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3474 // unnecessarily). isDivergent() is used as an approximation of whether the 3475 // value is in an SGPR. 3476 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3477 // valu op anyway) 3478 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3479 return SDValue(); 3480 3481 SelectionDAG &DAG = DCI.DAG; 3482 SDLoc DL(N); 3483 3484 SDValue N0 = N->getOperand(0); 3485 SDValue N1 = N->getOperand(1); 3486 3487 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3488 return SDValue(); 3489 3490 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3491 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3492 3493 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3494 DCI.AddToWorklist(Mulhi.getNode()); 3495 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3496 } 3497 3498 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3499 DAGCombinerInfo &DCI) const { 3500 EVT VT = N->getValueType(0); 3501 3502 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3503 return SDValue(); 3504 3505 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3506 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3507 // unnecessarily). isDivergent() is used as an approximation of whether the 3508 // value is in an SGPR. 3509 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3510 // valu op anyway) 3511 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3512 return SDValue(); 3513 3514 SelectionDAG &DAG = DCI.DAG; 3515 SDLoc DL(N); 3516 3517 SDValue N0 = N->getOperand(0); 3518 SDValue N1 = N->getOperand(1); 3519 3520 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3521 return SDValue(); 3522 3523 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3524 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3525 3526 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3527 DCI.AddToWorklist(Mulhi.getNode()); 3528 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3529 } 3530 3531 static bool isNegativeOne(SDValue Val) { 3532 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3533 return C->isAllOnes(); 3534 return false; 3535 } 3536 3537 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3538 SDValue Op, 3539 const SDLoc &DL, 3540 unsigned Opc) const { 3541 EVT VT = Op.getValueType(); 3542 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3543 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3544 LegalVT != MVT::i16)) 3545 return SDValue(); 3546 3547 if (VT != MVT::i32) 3548 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3549 3550 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3551 if (VT != MVT::i32) 3552 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3553 3554 return FFBX; 3555 } 3556 3557 // The native instructions return -1 on 0 input. Optimize out a select that 3558 // produces -1 on 0. 3559 // 3560 // TODO: If zero is not undef, we could also do this if the output is compared 3561 // against the bitwidth. 3562 // 3563 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3564 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3565 SDValue LHS, SDValue RHS, 3566 DAGCombinerInfo &DCI) const { 3567 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3568 if (!CmpRhs || !CmpRhs->isZero()) 3569 return SDValue(); 3570 3571 SelectionDAG &DAG = DCI.DAG; 3572 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3573 SDValue CmpLHS = Cond.getOperand(0); 3574 3575 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3576 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3577 if (CCOpcode == ISD::SETEQ && 3578 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3579 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3580 unsigned Opc = 3581 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3582 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3583 } 3584 3585 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3586 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3587 if (CCOpcode == ISD::SETNE && 3588 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3589 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3590 unsigned Opc = 3591 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3592 3593 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3594 } 3595 3596 return SDValue(); 3597 } 3598 3599 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3600 unsigned Op, 3601 const SDLoc &SL, 3602 SDValue Cond, 3603 SDValue N1, 3604 SDValue N2) { 3605 SelectionDAG &DAG = DCI.DAG; 3606 EVT VT = N1.getValueType(); 3607 3608 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3609 N1.getOperand(0), N2.getOperand(0)); 3610 DCI.AddToWorklist(NewSelect.getNode()); 3611 return DAG.getNode(Op, SL, VT, NewSelect); 3612 } 3613 3614 // Pull a free FP operation out of a select so it may fold into uses. 3615 // 3616 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3617 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3618 // 3619 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3620 // select c, (fabs x), +k -> fabs (select c, x, k) 3621 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3622 SDValue N) { 3623 SelectionDAG &DAG = DCI.DAG; 3624 SDValue Cond = N.getOperand(0); 3625 SDValue LHS = N.getOperand(1); 3626 SDValue RHS = N.getOperand(2); 3627 3628 EVT VT = N.getValueType(); 3629 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3630 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3631 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3632 SDLoc(N), Cond, LHS, RHS); 3633 } 3634 3635 bool Inv = false; 3636 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3637 std::swap(LHS, RHS); 3638 Inv = true; 3639 } 3640 3641 // TODO: Support vector constants. 3642 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3643 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3644 SDLoc SL(N); 3645 // If one side is an fneg/fabs and the other is a constant, we can push the 3646 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3647 SDValue NewLHS = LHS.getOperand(0); 3648 SDValue NewRHS = RHS; 3649 3650 // Careful: if the neg can be folded up, don't try to pull it back down. 3651 bool ShouldFoldNeg = true; 3652 3653 if (NewLHS.hasOneUse()) { 3654 unsigned Opc = NewLHS.getOpcode(); 3655 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3656 ShouldFoldNeg = false; 3657 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3658 ShouldFoldNeg = false; 3659 } 3660 3661 if (ShouldFoldNeg) { 3662 if (LHS.getOpcode() == ISD::FNEG) 3663 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3664 else if (CRHS->isNegative()) 3665 return SDValue(); 3666 3667 if (Inv) 3668 std::swap(NewLHS, NewRHS); 3669 3670 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3671 Cond, NewLHS, NewRHS); 3672 DCI.AddToWorklist(NewSelect.getNode()); 3673 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3674 } 3675 } 3676 3677 return SDValue(); 3678 } 3679 3680 3681 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3682 DAGCombinerInfo &DCI) const { 3683 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3684 return Folded; 3685 3686 SDValue Cond = N->getOperand(0); 3687 if (Cond.getOpcode() != ISD::SETCC) 3688 return SDValue(); 3689 3690 EVT VT = N->getValueType(0); 3691 SDValue LHS = Cond.getOperand(0); 3692 SDValue RHS = Cond.getOperand(1); 3693 SDValue CC = Cond.getOperand(2); 3694 3695 SDValue True = N->getOperand(1); 3696 SDValue False = N->getOperand(2); 3697 3698 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3699 SelectionDAG &DAG = DCI.DAG; 3700 if (DAG.isConstantValueOfAnyType(True) && 3701 !DAG.isConstantValueOfAnyType(False)) { 3702 // Swap cmp + select pair to move constant to false input. 3703 // This will allow using VOPC cndmasks more often. 3704 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3705 3706 SDLoc SL(N); 3707 ISD::CondCode NewCC = 3708 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3709 3710 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3711 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3712 } 3713 3714 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3715 SDValue MinMax 3716 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3717 // Revisit this node so we can catch min3/max3/med3 patterns. 3718 //DCI.AddToWorklist(MinMax.getNode()); 3719 return MinMax; 3720 } 3721 } 3722 3723 // There's no reason to not do this if the condition has other uses. 3724 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3725 } 3726 3727 static bool isInv2Pi(const APFloat &APF) { 3728 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3729 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3730 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3731 3732 return APF.bitwiseIsEqual(KF16) || 3733 APF.bitwiseIsEqual(KF32) || 3734 APF.bitwiseIsEqual(KF64); 3735 } 3736 3737 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3738 // additional cost to negate them. 3739 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3740 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3741 if (C->isZero() && !C->isNegative()) 3742 return true; 3743 3744 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3745 return true; 3746 } 3747 3748 return false; 3749 } 3750 3751 static unsigned inverseMinMax(unsigned Opc) { 3752 switch (Opc) { 3753 case ISD::FMAXNUM: 3754 return ISD::FMINNUM; 3755 case ISD::FMINNUM: 3756 return ISD::FMAXNUM; 3757 case ISD::FMAXNUM_IEEE: 3758 return ISD::FMINNUM_IEEE; 3759 case ISD::FMINNUM_IEEE: 3760 return ISD::FMAXNUM_IEEE; 3761 case AMDGPUISD::FMAX_LEGACY: 3762 return AMDGPUISD::FMIN_LEGACY; 3763 case AMDGPUISD::FMIN_LEGACY: 3764 return AMDGPUISD::FMAX_LEGACY; 3765 default: 3766 llvm_unreachable("invalid min/max opcode"); 3767 } 3768 } 3769 3770 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3771 DAGCombinerInfo &DCI) const { 3772 SelectionDAG &DAG = DCI.DAG; 3773 SDValue N0 = N->getOperand(0); 3774 EVT VT = N->getValueType(0); 3775 3776 unsigned Opc = N0.getOpcode(); 3777 3778 // If the input has multiple uses and we can either fold the negate down, or 3779 // the other uses cannot, give up. This both prevents unprofitable 3780 // transformations and infinite loops: we won't repeatedly try to fold around 3781 // a negate that has no 'good' form. 3782 if (N0.hasOneUse()) { 3783 // This may be able to fold into the source, but at a code size cost. Don't 3784 // fold if the fold into the user is free. 3785 if (allUsesHaveSourceMods(N, 0)) 3786 return SDValue(); 3787 } else { 3788 if (fnegFoldsIntoOp(Opc) && 3789 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3790 return SDValue(); 3791 } 3792 3793 SDLoc SL(N); 3794 switch (Opc) { 3795 case ISD::FADD: { 3796 if (!mayIgnoreSignedZero(N0)) 3797 return SDValue(); 3798 3799 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3800 SDValue LHS = N0.getOperand(0); 3801 SDValue RHS = N0.getOperand(1); 3802 3803 if (LHS.getOpcode() != ISD::FNEG) 3804 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3805 else 3806 LHS = LHS.getOperand(0); 3807 3808 if (RHS.getOpcode() != ISD::FNEG) 3809 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3810 else 3811 RHS = RHS.getOperand(0); 3812 3813 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3814 if (Res.getOpcode() != ISD::FADD) 3815 return SDValue(); // Op got folded away. 3816 if (!N0.hasOneUse()) 3817 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3818 return Res; 3819 } 3820 case ISD::FMUL: 3821 case AMDGPUISD::FMUL_LEGACY: { 3822 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3823 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3824 SDValue LHS = N0.getOperand(0); 3825 SDValue RHS = N0.getOperand(1); 3826 3827 if (LHS.getOpcode() == ISD::FNEG) 3828 LHS = LHS.getOperand(0); 3829 else if (RHS.getOpcode() == ISD::FNEG) 3830 RHS = RHS.getOperand(0); 3831 else 3832 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3833 3834 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3835 if (Res.getOpcode() != Opc) 3836 return SDValue(); // Op got folded away. 3837 if (!N0.hasOneUse()) 3838 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3839 return Res; 3840 } 3841 case ISD::FMA: 3842 case ISD::FMAD: { 3843 // TODO: handle llvm.amdgcn.fma.legacy 3844 if (!mayIgnoreSignedZero(N0)) 3845 return SDValue(); 3846 3847 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3848 SDValue LHS = N0.getOperand(0); 3849 SDValue MHS = N0.getOperand(1); 3850 SDValue RHS = N0.getOperand(2); 3851 3852 if (LHS.getOpcode() == ISD::FNEG) 3853 LHS = LHS.getOperand(0); 3854 else if (MHS.getOpcode() == ISD::FNEG) 3855 MHS = MHS.getOperand(0); 3856 else 3857 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3858 3859 if (RHS.getOpcode() != ISD::FNEG) 3860 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3861 else 3862 RHS = RHS.getOperand(0); 3863 3864 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3865 if (Res.getOpcode() != Opc) 3866 return SDValue(); // Op got folded away. 3867 if (!N0.hasOneUse()) 3868 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3869 return Res; 3870 } 3871 case ISD::FMAXNUM: 3872 case ISD::FMINNUM: 3873 case ISD::FMAXNUM_IEEE: 3874 case ISD::FMINNUM_IEEE: 3875 case AMDGPUISD::FMAX_LEGACY: 3876 case AMDGPUISD::FMIN_LEGACY: { 3877 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3878 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3879 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3880 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3881 3882 SDValue LHS = N0.getOperand(0); 3883 SDValue RHS = N0.getOperand(1); 3884 3885 // 0 doesn't have a negated inline immediate. 3886 // TODO: This constant check should be generalized to other operations. 3887 if (isConstantCostlierToNegate(RHS)) 3888 return SDValue(); 3889 3890 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3891 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3892 unsigned Opposite = inverseMinMax(Opc); 3893 3894 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3895 if (Res.getOpcode() != Opposite) 3896 return SDValue(); // Op got folded away. 3897 if (!N0.hasOneUse()) 3898 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3899 return Res; 3900 } 3901 case AMDGPUISD::FMED3: { 3902 SDValue Ops[3]; 3903 for (unsigned I = 0; I < 3; ++I) 3904 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3905 3906 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3907 if (Res.getOpcode() != AMDGPUISD::FMED3) 3908 return SDValue(); // Op got folded away. 3909 3910 if (!N0.hasOneUse()) { 3911 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3912 DAG.ReplaceAllUsesWith(N0, Neg); 3913 3914 for (SDNode *U : Neg->uses()) 3915 DCI.AddToWorklist(U); 3916 } 3917 3918 return Res; 3919 } 3920 case ISD::FP_EXTEND: 3921 case ISD::FTRUNC: 3922 case ISD::FRINT: 3923 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3924 case ISD::FSIN: 3925 case ISD::FCANONICALIZE: 3926 case AMDGPUISD::RCP: 3927 case AMDGPUISD::RCP_LEGACY: 3928 case AMDGPUISD::RCP_IFLAG: 3929 case AMDGPUISD::SIN_HW: { 3930 SDValue CvtSrc = N0.getOperand(0); 3931 if (CvtSrc.getOpcode() == ISD::FNEG) { 3932 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3933 // (fneg (rcp (fneg x))) -> (rcp x) 3934 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3935 } 3936 3937 if (!N0.hasOneUse()) 3938 return SDValue(); 3939 3940 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3941 // (fneg (rcp x)) -> (rcp (fneg x)) 3942 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3943 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3944 } 3945 case ISD::FP_ROUND: { 3946 SDValue CvtSrc = N0.getOperand(0); 3947 3948 if (CvtSrc.getOpcode() == ISD::FNEG) { 3949 // (fneg (fp_round (fneg x))) -> (fp_round x) 3950 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3951 CvtSrc.getOperand(0), N0.getOperand(1)); 3952 } 3953 3954 if (!N0.hasOneUse()) 3955 return SDValue(); 3956 3957 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3958 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3959 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3960 } 3961 case ISD::FP16_TO_FP: { 3962 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3963 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3964 // Put the fneg back as a legal source operation that can be matched later. 3965 SDLoc SL(N); 3966 3967 SDValue Src = N0.getOperand(0); 3968 EVT SrcVT = Src.getValueType(); 3969 3970 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3971 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3972 DAG.getConstant(0x8000, SL, SrcVT)); 3973 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3974 } 3975 default: 3976 return SDValue(); 3977 } 3978 } 3979 3980 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3981 DAGCombinerInfo &DCI) const { 3982 SelectionDAG &DAG = DCI.DAG; 3983 SDValue N0 = N->getOperand(0); 3984 3985 if (!N0.hasOneUse()) 3986 return SDValue(); 3987 3988 switch (N0.getOpcode()) { 3989 case ISD::FP16_TO_FP: { 3990 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3991 SDLoc SL(N); 3992 SDValue Src = N0.getOperand(0); 3993 EVT SrcVT = Src.getValueType(); 3994 3995 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3996 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3997 DAG.getConstant(0x7fff, SL, SrcVT)); 3998 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3999 } 4000 default: 4001 return SDValue(); 4002 } 4003 } 4004 4005 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 4006 DAGCombinerInfo &DCI) const { 4007 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4008 if (!CFP) 4009 return SDValue(); 4010 4011 // XXX - Should this flush denormals? 4012 const APFloat &Val = CFP->getValueAPF(); 4013 APFloat One(Val.getSemantics(), "1.0"); 4014 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4015 } 4016 4017 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4018 DAGCombinerInfo &DCI) const { 4019 SelectionDAG &DAG = DCI.DAG; 4020 SDLoc DL(N); 4021 4022 switch(N->getOpcode()) { 4023 default: 4024 break; 4025 case ISD::BITCAST: { 4026 EVT DestVT = N->getValueType(0); 4027 4028 // Push casts through vector builds. This helps avoid emitting a large 4029 // number of copies when materializing floating point vector constants. 4030 // 4031 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4032 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4033 if (DestVT.isVector()) { 4034 SDValue Src = N->getOperand(0); 4035 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4036 EVT SrcVT = Src.getValueType(); 4037 unsigned NElts = DestVT.getVectorNumElements(); 4038 4039 if (SrcVT.getVectorNumElements() == NElts) { 4040 EVT DestEltVT = DestVT.getVectorElementType(); 4041 4042 SmallVector<SDValue, 8> CastedElts; 4043 SDLoc SL(N); 4044 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4045 SDValue Elt = Src.getOperand(I); 4046 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4047 } 4048 4049 return DAG.getBuildVector(DestVT, SL, CastedElts); 4050 } 4051 } 4052 } 4053 4054 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4055 break; 4056 4057 // Fold bitcasts of constants. 4058 // 4059 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4060 // TODO: Generalize and move to DAGCombiner 4061 SDValue Src = N->getOperand(0); 4062 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4063 SDLoc SL(N); 4064 uint64_t CVal = C->getZExtValue(); 4065 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4066 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4067 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4068 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4069 } 4070 4071 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4072 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4073 SDLoc SL(N); 4074 uint64_t CVal = Val.getZExtValue(); 4075 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4076 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4077 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4078 4079 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4080 } 4081 4082 break; 4083 } 4084 case ISD::SHL: { 4085 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4086 break; 4087 4088 return performShlCombine(N, DCI); 4089 } 4090 case ISD::SRL: { 4091 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4092 break; 4093 4094 return performSrlCombine(N, DCI); 4095 } 4096 case ISD::SRA: { 4097 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4098 break; 4099 4100 return performSraCombine(N, DCI); 4101 } 4102 case ISD::TRUNCATE: 4103 return performTruncateCombine(N, DCI); 4104 case ISD::MUL: 4105 return performMulCombine(N, DCI); 4106 case ISD::MULHS: 4107 return performMulhsCombine(N, DCI); 4108 case ISD::MULHU: 4109 return performMulhuCombine(N, DCI); 4110 case AMDGPUISD::MUL_I24: 4111 case AMDGPUISD::MUL_U24: 4112 case AMDGPUISD::MULHI_I24: 4113 case AMDGPUISD::MULHI_U24: 4114 return simplifyMul24(N, DCI); 4115 case ISD::SELECT: 4116 return performSelectCombine(N, DCI); 4117 case ISD::FNEG: 4118 return performFNegCombine(N, DCI); 4119 case ISD::FABS: 4120 return performFAbsCombine(N, DCI); 4121 case AMDGPUISD::BFE_I32: 4122 case AMDGPUISD::BFE_U32: { 4123 assert(!N->getValueType(0).isVector() && 4124 "Vector handling of BFE not implemented"); 4125 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4126 if (!Width) 4127 break; 4128 4129 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4130 if (WidthVal == 0) 4131 return DAG.getConstant(0, DL, MVT::i32); 4132 4133 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4134 if (!Offset) 4135 break; 4136 4137 SDValue BitsFrom = N->getOperand(0); 4138 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4139 4140 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4141 4142 if (OffsetVal == 0) { 4143 // This is already sign / zero extended, so try to fold away extra BFEs. 4144 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4145 4146 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4147 if (OpSignBits >= SignBits) 4148 return BitsFrom; 4149 4150 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4151 if (Signed) { 4152 // This is a sign_extend_inreg. Replace it to take advantage of existing 4153 // DAG Combines. If not eliminated, we will match back to BFE during 4154 // selection. 4155 4156 // TODO: The sext_inreg of extended types ends, although we can could 4157 // handle them in a single BFE. 4158 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4159 DAG.getValueType(SmallVT)); 4160 } 4161 4162 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4163 } 4164 4165 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4166 if (Signed) { 4167 return constantFoldBFE<int32_t>(DAG, 4168 CVal->getSExtValue(), 4169 OffsetVal, 4170 WidthVal, 4171 DL); 4172 } 4173 4174 return constantFoldBFE<uint32_t>(DAG, 4175 CVal->getZExtValue(), 4176 OffsetVal, 4177 WidthVal, 4178 DL); 4179 } 4180 4181 if ((OffsetVal + WidthVal) >= 32 && 4182 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4183 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4184 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4185 BitsFrom, ShiftVal); 4186 } 4187 4188 if (BitsFrom.hasOneUse()) { 4189 APInt Demanded = APInt::getBitsSet(32, 4190 OffsetVal, 4191 OffsetVal + WidthVal); 4192 4193 KnownBits Known; 4194 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4195 !DCI.isBeforeLegalizeOps()); 4196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4197 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4198 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4199 DCI.CommitTargetLoweringOpt(TLO); 4200 } 4201 } 4202 4203 break; 4204 } 4205 case ISD::LOAD: 4206 return performLoadCombine(N, DCI); 4207 case ISD::STORE: 4208 return performStoreCombine(N, DCI); 4209 case AMDGPUISD::RCP: 4210 case AMDGPUISD::RCP_IFLAG: 4211 return performRcpCombine(N, DCI); 4212 case ISD::AssertZext: 4213 case ISD::AssertSext: 4214 return performAssertSZExtCombine(N, DCI); 4215 case ISD::INTRINSIC_WO_CHAIN: 4216 return performIntrinsicWOChainCombine(N, DCI); 4217 } 4218 return SDValue(); 4219 } 4220 4221 //===----------------------------------------------------------------------===// 4222 // Helper functions 4223 //===----------------------------------------------------------------------===// 4224 4225 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4226 const TargetRegisterClass *RC, 4227 Register Reg, EVT VT, 4228 const SDLoc &SL, 4229 bool RawReg) const { 4230 MachineFunction &MF = DAG.getMachineFunction(); 4231 MachineRegisterInfo &MRI = MF.getRegInfo(); 4232 Register VReg; 4233 4234 if (!MRI.isLiveIn(Reg)) { 4235 VReg = MRI.createVirtualRegister(RC); 4236 MRI.addLiveIn(Reg, VReg); 4237 } else { 4238 VReg = MRI.getLiveInVirtReg(Reg); 4239 } 4240 4241 if (RawReg) 4242 return DAG.getRegister(VReg, VT); 4243 4244 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4245 } 4246 4247 // This may be called multiple times, and nothing prevents creating multiple 4248 // objects at the same offset. See if we already defined this object. 4249 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4250 int64_t Offset) { 4251 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4252 if (MFI.getObjectOffset(I) == Offset) { 4253 assert(MFI.getObjectSize(I) == Size); 4254 return I; 4255 } 4256 } 4257 4258 return MFI.CreateFixedObject(Size, Offset, true); 4259 } 4260 4261 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4262 EVT VT, 4263 const SDLoc &SL, 4264 int64_t Offset) const { 4265 MachineFunction &MF = DAG.getMachineFunction(); 4266 MachineFrameInfo &MFI = MF.getFrameInfo(); 4267 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4268 4269 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4270 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4271 4272 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4273 MachineMemOperand::MODereferenceable | 4274 MachineMemOperand::MOInvariant); 4275 } 4276 4277 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4278 const SDLoc &SL, 4279 SDValue Chain, 4280 SDValue ArgVal, 4281 int64_t Offset) const { 4282 MachineFunction &MF = DAG.getMachineFunction(); 4283 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4284 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4285 4286 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4287 // Stores to the argument stack area are relative to the stack pointer. 4288 SDValue SP = 4289 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4290 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4291 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4292 MachineMemOperand::MODereferenceable); 4293 return Store; 4294 } 4295 4296 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4297 const TargetRegisterClass *RC, 4298 EVT VT, const SDLoc &SL, 4299 const ArgDescriptor &Arg) const { 4300 assert(Arg && "Attempting to load missing argument"); 4301 4302 SDValue V = Arg.isRegister() ? 4303 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4304 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4305 4306 if (!Arg.isMasked()) 4307 return V; 4308 4309 unsigned Mask = Arg.getMask(); 4310 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4311 V = DAG.getNode(ISD::SRL, SL, VT, V, 4312 DAG.getShiftAmountConstant(Shift, VT, SL)); 4313 return DAG.getNode(ISD::AND, SL, VT, V, 4314 DAG.getConstant(Mask >> Shift, SL, VT)); 4315 } 4316 4317 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4318 const MachineFunction &MF, const ImplicitParameter Param) const { 4319 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4320 const AMDGPUSubtarget &ST = 4321 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4322 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4323 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4324 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4325 ExplicitArgOffset; 4326 switch (Param) { 4327 case GRID_DIM: 4328 return ArgOffset; 4329 case GRID_OFFSET: 4330 return ArgOffset + 4; 4331 } 4332 llvm_unreachable("unexpected implicit parameter type"); 4333 } 4334 4335 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4336 4337 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4338 switch ((AMDGPUISD::NodeType)Opcode) { 4339 case AMDGPUISD::FIRST_NUMBER: break; 4340 // AMDIL DAG nodes 4341 NODE_NAME_CASE(UMUL); 4342 NODE_NAME_CASE(BRANCH_COND); 4343 4344 // AMDGPU DAG nodes 4345 NODE_NAME_CASE(IF) 4346 NODE_NAME_CASE(ELSE) 4347 NODE_NAME_CASE(LOOP) 4348 NODE_NAME_CASE(CALL) 4349 NODE_NAME_CASE(TC_RETURN) 4350 NODE_NAME_CASE(TRAP) 4351 NODE_NAME_CASE(RET_FLAG) 4352 NODE_NAME_CASE(RET_GFX_FLAG) 4353 NODE_NAME_CASE(RETURN_TO_EPILOG) 4354 NODE_NAME_CASE(ENDPGM) 4355 NODE_NAME_CASE(DWORDADDR) 4356 NODE_NAME_CASE(FRACT) 4357 NODE_NAME_CASE(SETCC) 4358 NODE_NAME_CASE(SETREG) 4359 NODE_NAME_CASE(DENORM_MODE) 4360 NODE_NAME_CASE(FMA_W_CHAIN) 4361 NODE_NAME_CASE(FMUL_W_CHAIN) 4362 NODE_NAME_CASE(CLAMP) 4363 NODE_NAME_CASE(COS_HW) 4364 NODE_NAME_CASE(SIN_HW) 4365 NODE_NAME_CASE(FMAX_LEGACY) 4366 NODE_NAME_CASE(FMIN_LEGACY) 4367 NODE_NAME_CASE(FMAX3) 4368 NODE_NAME_CASE(SMAX3) 4369 NODE_NAME_CASE(UMAX3) 4370 NODE_NAME_CASE(FMIN3) 4371 NODE_NAME_CASE(SMIN3) 4372 NODE_NAME_CASE(UMIN3) 4373 NODE_NAME_CASE(FMED3) 4374 NODE_NAME_CASE(SMED3) 4375 NODE_NAME_CASE(UMED3) 4376 NODE_NAME_CASE(FDOT2) 4377 NODE_NAME_CASE(URECIP) 4378 NODE_NAME_CASE(DIV_SCALE) 4379 NODE_NAME_CASE(DIV_FMAS) 4380 NODE_NAME_CASE(DIV_FIXUP) 4381 NODE_NAME_CASE(FMAD_FTZ) 4382 NODE_NAME_CASE(RCP) 4383 NODE_NAME_CASE(RSQ) 4384 NODE_NAME_CASE(RCP_LEGACY) 4385 NODE_NAME_CASE(RCP_IFLAG) 4386 NODE_NAME_CASE(FMUL_LEGACY) 4387 NODE_NAME_CASE(RSQ_CLAMP) 4388 NODE_NAME_CASE(LDEXP) 4389 NODE_NAME_CASE(FP_CLASS) 4390 NODE_NAME_CASE(DOT4) 4391 NODE_NAME_CASE(CARRY) 4392 NODE_NAME_CASE(BORROW) 4393 NODE_NAME_CASE(BFE_U32) 4394 NODE_NAME_CASE(BFE_I32) 4395 NODE_NAME_CASE(BFI) 4396 NODE_NAME_CASE(BFM) 4397 NODE_NAME_CASE(FFBH_U32) 4398 NODE_NAME_CASE(FFBH_I32) 4399 NODE_NAME_CASE(FFBL_B32) 4400 NODE_NAME_CASE(MUL_U24) 4401 NODE_NAME_CASE(MUL_I24) 4402 NODE_NAME_CASE(MULHI_U24) 4403 NODE_NAME_CASE(MULHI_I24) 4404 NODE_NAME_CASE(MAD_U24) 4405 NODE_NAME_CASE(MAD_I24) 4406 NODE_NAME_CASE(MAD_I64_I32) 4407 NODE_NAME_CASE(MAD_U64_U32) 4408 NODE_NAME_CASE(PERM) 4409 NODE_NAME_CASE(TEXTURE_FETCH) 4410 NODE_NAME_CASE(R600_EXPORT) 4411 NODE_NAME_CASE(CONST_ADDRESS) 4412 NODE_NAME_CASE(REGISTER_LOAD) 4413 NODE_NAME_CASE(REGISTER_STORE) 4414 NODE_NAME_CASE(SAMPLE) 4415 NODE_NAME_CASE(SAMPLEB) 4416 NODE_NAME_CASE(SAMPLED) 4417 NODE_NAME_CASE(SAMPLEL) 4418 NODE_NAME_CASE(CVT_F32_UBYTE0) 4419 NODE_NAME_CASE(CVT_F32_UBYTE1) 4420 NODE_NAME_CASE(CVT_F32_UBYTE2) 4421 NODE_NAME_CASE(CVT_F32_UBYTE3) 4422 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4423 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4424 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4425 NODE_NAME_CASE(CVT_PK_I16_I32) 4426 NODE_NAME_CASE(CVT_PK_U16_U32) 4427 NODE_NAME_CASE(FP_TO_FP16) 4428 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4429 NODE_NAME_CASE(CONST_DATA_PTR) 4430 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4431 NODE_NAME_CASE(LDS) 4432 NODE_NAME_CASE(DUMMY_CHAIN) 4433 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4434 NODE_NAME_CASE(LOAD_D16_HI) 4435 NODE_NAME_CASE(LOAD_D16_LO) 4436 NODE_NAME_CASE(LOAD_D16_HI_I8) 4437 NODE_NAME_CASE(LOAD_D16_HI_U8) 4438 NODE_NAME_CASE(LOAD_D16_LO_I8) 4439 NODE_NAME_CASE(LOAD_D16_LO_U8) 4440 NODE_NAME_CASE(STORE_MSKOR) 4441 NODE_NAME_CASE(LOAD_CONSTANT) 4442 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4443 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4444 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4445 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4446 NODE_NAME_CASE(DS_ORDERED_COUNT) 4447 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4448 NODE_NAME_CASE(ATOMIC_INC) 4449 NODE_NAME_CASE(ATOMIC_DEC) 4450 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4451 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4452 NODE_NAME_CASE(BUFFER_LOAD) 4453 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4454 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4455 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4456 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4457 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4458 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4459 NODE_NAME_CASE(SBUFFER_LOAD) 4460 NODE_NAME_CASE(BUFFER_STORE) 4461 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4462 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4463 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4464 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4465 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4466 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4473 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4474 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4475 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4476 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4477 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4478 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4479 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4480 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4481 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4482 4483 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4484 } 4485 return nullptr; 4486 } 4487 4488 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4489 SelectionDAG &DAG, int Enabled, 4490 int &RefinementSteps, 4491 bool &UseOneConstNR, 4492 bool Reciprocal) const { 4493 EVT VT = Operand.getValueType(); 4494 4495 if (VT == MVT::f32) { 4496 RefinementSteps = 0; 4497 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4498 } 4499 4500 // TODO: There is also f64 rsq instruction, but the documentation is less 4501 // clear on its precision. 4502 4503 return SDValue(); 4504 } 4505 4506 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4507 SelectionDAG &DAG, int Enabled, 4508 int &RefinementSteps) const { 4509 EVT VT = Operand.getValueType(); 4510 4511 if (VT == MVT::f32) { 4512 // Reciprocal, < 1 ulp error. 4513 // 4514 // This reciprocal approximation converges to < 0.5 ulp error with one 4515 // newton rhapson performed with two fused multiple adds (FMAs). 4516 4517 RefinementSteps = 0; 4518 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4519 } 4520 4521 // TODO: There is also f64 rcp instruction, but the documentation is less 4522 // clear on its precision. 4523 4524 return SDValue(); 4525 } 4526 4527 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4528 const SDValue Op, KnownBits &Known, 4529 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4530 4531 Known.resetAll(); // Don't know anything. 4532 4533 unsigned Opc = Op.getOpcode(); 4534 4535 switch (Opc) { 4536 default: 4537 break; 4538 case AMDGPUISD::CARRY: 4539 case AMDGPUISD::BORROW: { 4540 Known.Zero = APInt::getHighBitsSet(32, 31); 4541 break; 4542 } 4543 4544 case AMDGPUISD::BFE_I32: 4545 case AMDGPUISD::BFE_U32: { 4546 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4547 if (!CWidth) 4548 return; 4549 4550 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4551 4552 if (Opc == AMDGPUISD::BFE_U32) 4553 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4554 4555 break; 4556 } 4557 case AMDGPUISD::FP_TO_FP16: { 4558 unsigned BitWidth = Known.getBitWidth(); 4559 4560 // High bits are zero. 4561 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4562 break; 4563 } 4564 case AMDGPUISD::MUL_U24: 4565 case AMDGPUISD::MUL_I24: { 4566 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4567 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4568 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4569 RHSKnown.countMinTrailingZeros(); 4570 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4571 // Skip extra check if all bits are known zeros. 4572 if (TrailZ >= 32) 4573 break; 4574 4575 // Truncate to 24 bits. 4576 LHSKnown = LHSKnown.trunc(24); 4577 RHSKnown = RHSKnown.trunc(24); 4578 4579 if (Opc == AMDGPUISD::MUL_I24) { 4580 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4581 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4582 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4583 if (MaxValBits >= 32) 4584 break; 4585 bool LHSNegative = LHSKnown.isNegative(); 4586 bool LHSNonNegative = LHSKnown.isNonNegative(); 4587 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4588 bool RHSNegative = RHSKnown.isNegative(); 4589 bool RHSNonNegative = RHSKnown.isNonNegative(); 4590 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4591 4592 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4593 Known.Zero.setHighBits(32 - MaxValBits); 4594 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4595 Known.One.setHighBits(32 - MaxValBits); 4596 } else { 4597 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4598 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4599 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4600 if (MaxValBits >= 32) 4601 break; 4602 Known.Zero.setHighBits(32 - MaxValBits); 4603 } 4604 break; 4605 } 4606 case AMDGPUISD::PERM: { 4607 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4608 if (!CMask) 4609 return; 4610 4611 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4612 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4613 unsigned Sel = CMask->getZExtValue(); 4614 4615 for (unsigned I = 0; I < 32; I += 8) { 4616 unsigned SelBits = Sel & 0xff; 4617 if (SelBits < 4) { 4618 SelBits *= 8; 4619 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4620 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4621 } else if (SelBits < 7) { 4622 SelBits = (SelBits & 3) * 8; 4623 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4624 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4625 } else if (SelBits == 0x0c) { 4626 Known.Zero |= 0xFFull << I; 4627 } else if (SelBits > 0x0c) { 4628 Known.One |= 0xFFull << I; 4629 } 4630 Sel >>= 8; 4631 } 4632 break; 4633 } 4634 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4635 Known.Zero.setHighBits(24); 4636 break; 4637 } 4638 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4639 Known.Zero.setHighBits(16); 4640 break; 4641 } 4642 case AMDGPUISD::LDS: { 4643 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4644 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4645 4646 Known.Zero.setHighBits(16); 4647 Known.Zero.setLowBits(Log2(Alignment)); 4648 break; 4649 } 4650 case ISD::INTRINSIC_WO_CHAIN: { 4651 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4652 switch (IID) { 4653 case Intrinsic::amdgcn_mbcnt_lo: 4654 case Intrinsic::amdgcn_mbcnt_hi: { 4655 const GCNSubtarget &ST = 4656 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4657 // These return at most the wavefront size - 1. 4658 unsigned Size = Op.getValueType().getSizeInBits(); 4659 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4660 break; 4661 } 4662 default: 4663 break; 4664 } 4665 } 4666 } 4667 } 4668 4669 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4670 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4671 unsigned Depth) const { 4672 switch (Op.getOpcode()) { 4673 case AMDGPUISD::BFE_I32: { 4674 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4675 if (!Width) 4676 return 1; 4677 4678 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4679 if (!isNullConstant(Op.getOperand(1))) 4680 return SignBits; 4681 4682 // TODO: Could probably figure something out with non-0 offsets. 4683 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4684 return std::max(SignBits, Op0SignBits); 4685 } 4686 4687 case AMDGPUISD::BFE_U32: { 4688 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4689 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4690 } 4691 4692 case AMDGPUISD::CARRY: 4693 case AMDGPUISD::BORROW: 4694 return 31; 4695 case AMDGPUISD::BUFFER_LOAD_BYTE: 4696 return 25; 4697 case AMDGPUISD::BUFFER_LOAD_SHORT: 4698 return 17; 4699 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4700 return 24; 4701 case AMDGPUISD::BUFFER_LOAD_USHORT: 4702 return 16; 4703 case AMDGPUISD::FP_TO_FP16: 4704 return 16; 4705 default: 4706 return 1; 4707 } 4708 } 4709 4710 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4711 GISelKnownBits &Analysis, Register R, 4712 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4713 unsigned Depth) const { 4714 const MachineInstr *MI = MRI.getVRegDef(R); 4715 if (!MI) 4716 return 1; 4717 4718 // TODO: Check range metadata on MMO. 4719 switch (MI->getOpcode()) { 4720 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4721 return 25; 4722 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4723 return 17; 4724 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4725 return 24; 4726 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4727 return 16; 4728 default: 4729 return 1; 4730 } 4731 } 4732 4733 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4734 const SelectionDAG &DAG, 4735 bool SNaN, 4736 unsigned Depth) const { 4737 unsigned Opcode = Op.getOpcode(); 4738 switch (Opcode) { 4739 case AMDGPUISD::FMIN_LEGACY: 4740 case AMDGPUISD::FMAX_LEGACY: { 4741 if (SNaN) 4742 return true; 4743 4744 // TODO: Can check no nans on one of the operands for each one, but which 4745 // one? 4746 return false; 4747 } 4748 case AMDGPUISD::FMUL_LEGACY: 4749 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4750 if (SNaN) 4751 return true; 4752 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4753 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4754 } 4755 case AMDGPUISD::FMED3: 4756 case AMDGPUISD::FMIN3: 4757 case AMDGPUISD::FMAX3: 4758 case AMDGPUISD::FMAD_FTZ: { 4759 if (SNaN) 4760 return true; 4761 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4762 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4763 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4764 } 4765 case AMDGPUISD::CVT_F32_UBYTE0: 4766 case AMDGPUISD::CVT_F32_UBYTE1: 4767 case AMDGPUISD::CVT_F32_UBYTE2: 4768 case AMDGPUISD::CVT_F32_UBYTE3: 4769 return true; 4770 4771 case AMDGPUISD::RCP: 4772 case AMDGPUISD::RSQ: 4773 case AMDGPUISD::RCP_LEGACY: 4774 case AMDGPUISD::RSQ_CLAMP: { 4775 if (SNaN) 4776 return true; 4777 4778 // TODO: Need is known positive check. 4779 return false; 4780 } 4781 case AMDGPUISD::LDEXP: 4782 case AMDGPUISD::FRACT: { 4783 if (SNaN) 4784 return true; 4785 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4786 } 4787 case AMDGPUISD::DIV_SCALE: 4788 case AMDGPUISD::DIV_FMAS: 4789 case AMDGPUISD::DIV_FIXUP: 4790 // TODO: Refine on operands. 4791 return SNaN; 4792 case AMDGPUISD::SIN_HW: 4793 case AMDGPUISD::COS_HW: { 4794 // TODO: Need check for infinity 4795 return SNaN; 4796 } 4797 case ISD::INTRINSIC_WO_CHAIN: { 4798 unsigned IntrinsicID 4799 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4800 // TODO: Handle more intrinsics 4801 switch (IntrinsicID) { 4802 case Intrinsic::amdgcn_cubeid: 4803 return true; 4804 4805 case Intrinsic::amdgcn_frexp_mant: { 4806 if (SNaN) 4807 return true; 4808 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4809 } 4810 case Intrinsic::amdgcn_cvt_pkrtz: { 4811 if (SNaN) 4812 return true; 4813 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4814 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4815 } 4816 case Intrinsic::amdgcn_rcp: 4817 case Intrinsic::amdgcn_rsq: 4818 case Intrinsic::amdgcn_rcp_legacy: 4819 case Intrinsic::amdgcn_rsq_legacy: 4820 case Intrinsic::amdgcn_rsq_clamp: { 4821 if (SNaN) 4822 return true; 4823 4824 // TODO: Need is known positive check. 4825 return false; 4826 } 4827 case Intrinsic::amdgcn_trig_preop: 4828 case Intrinsic::amdgcn_fdot2: 4829 // TODO: Refine on operand 4830 return SNaN; 4831 case Intrinsic::amdgcn_fma_legacy: 4832 if (SNaN) 4833 return true; 4834 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4835 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4836 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4837 default: 4838 return false; 4839 } 4840 } 4841 default: 4842 return false; 4843 } 4844 } 4845 4846 TargetLowering::AtomicExpansionKind 4847 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4848 switch (RMW->getOperation()) { 4849 case AtomicRMWInst::Nand: 4850 case AtomicRMWInst::FAdd: 4851 case AtomicRMWInst::FSub: 4852 return AtomicExpansionKind::CmpXChg; 4853 default: 4854 return AtomicExpansionKind::None; 4855 } 4856 } 4857 4858 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4859 unsigned Opc, LLT Ty1, LLT Ty2) const { 4860 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4861 } 4862