xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 using namespace llvm;
29 
30 #include "AMDGPUGenCallingConv.inc"
31 
32 static cl::opt<bool> AMDGPUBypassSlowDiv(
33   "amdgpu-bypass-slow-div",
34   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35   cl::init(true));
36 
37 // Find a larger type to do a load / store of a vector with.
38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39   unsigned StoreSize = VT.getStoreSizeInBits();
40   if (StoreSize <= 32)
41     return EVT::getIntegerVT(Ctx, StoreSize);
42 
43   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
44   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
45 }
46 
47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48   return DAG.computeKnownBits(Op).countMaxActiveBits();
49 }
50 
51 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
52   // In order for this to be a signed 24-bit value, bit 23, must
53   // be a sign bit.
54   return DAG.ComputeMinSignedBits(Op);
55 }
56 
57 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
58                                            const AMDGPUSubtarget &STI)
59     : TargetLowering(TM), Subtarget(&STI) {
60   // Lower floating point store/load to integer store/load to reduce the number
61   // of patterns in tablegen.
62   setOperationAction(ISD::LOAD, MVT::f32, Promote);
63   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
64 
65   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
66   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
67 
68   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
69   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
70 
71   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
72   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
73 
74   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
91 
92   setOperationAction(ISD::LOAD, MVT::i64, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
97 
98   setOperationAction(ISD::LOAD, MVT::f64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
109 
110   setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
111   AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
112 
113   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
114   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
115 
116   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
117   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
118 
119   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
120   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
121 
122   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
123   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
124 
125   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
126   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
127 
128   // There are no 64-bit extloads. These should be done as a 32-bit extload and
129   // an extension to 64-bit.
130   for (MVT VT : MVT::integer_valuetypes()) {
131     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
132     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
133     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
134   }
135 
136   for (MVT VT : MVT::integer_valuetypes()) {
137     if (VT == MVT::i64)
138       continue;
139 
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
144 
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
148     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
149 
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
153     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
154   }
155 
156   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
159     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
160     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
161     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
162     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
163     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
165     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
166     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
168     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
169     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
171     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
172   }
173 
174   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
175   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
176   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
180   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
181 
182   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
185   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
186   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
187   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
188 
189   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
190   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
191   setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
192   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
193   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
194   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
195 
196   setOperationAction(ISD::STORE, MVT::f32, Promote);
197   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
198 
199   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
200   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
201 
202   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
203   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
204 
205   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
206   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
207 
208   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
209   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
210 
211   setOperationAction(ISD::STORE, MVT::v6f32, Promote);
212   AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
213 
214   setOperationAction(ISD::STORE, MVT::v7f32, Promote);
215   AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
216 
217   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
218   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
219 
220   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
221   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
222 
223   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
224   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
225 
226   setOperationAction(ISD::STORE, MVT::i64, Promote);
227   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
228 
229   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
230   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
231 
232   setOperationAction(ISD::STORE, MVT::f64, Promote);
233   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
234 
235   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
236   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
237 
238   setOperationAction(ISD::STORE, MVT::v3i64, Promote);
239   AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
240 
241   setOperationAction(ISD::STORE, MVT::v3f64, Promote);
242   AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
243 
244   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
245   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
246 
247   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
248   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
249 
250   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
251   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
252 
253   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
254   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
255 
256   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
257   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
258 
259   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
260   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
261 
262   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
263   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
264   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
265   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
266 
267   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
268   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
269   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
270   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
271 
272   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
273   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
274   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
275   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
276   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
277   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
278   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
279 
280   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
281   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 
283   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
284   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
285 
286   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
287   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
288   setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
289   setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
290 
291   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
292   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
293   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
294   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
295 
296   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
297   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
298 
299   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
300   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
301   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
302   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
303   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
304   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
305   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
306 
307   setOperationAction(ISD::Constant, MVT::i32, Legal);
308   setOperationAction(ISD::Constant, MVT::i64, Legal);
309   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
310   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
311 
312   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
313   setOperationAction(ISD::BRIND, MVT::Other, Expand);
314 
315   // This is totally unsupported, just custom lower to produce an error.
316   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
317 
318   // Library functions.  These default to Expand, but we have instructions
319   // for them.
320   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
321   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
322   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
323   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
324   setOperationAction(ISD::FABS,   MVT::f32, Legal);
325   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
326   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
327   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
328   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
329   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
330 
331   setOperationAction(ISD::FROUND, MVT::f32, Custom);
332   setOperationAction(ISD::FROUND, MVT::f64, Custom);
333 
334   setOperationAction(ISD::FLOG, MVT::f32, Custom);
335   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
336   setOperationAction(ISD::FEXP, MVT::f32, Custom);
337 
338 
339   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
340   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
341 
342   setOperationAction(ISD::FREM, MVT::f16, Custom);
343   setOperationAction(ISD::FREM, MVT::f32, Custom);
344   setOperationAction(ISD::FREM, MVT::f64, Custom);
345 
346   // Expand to fneg + fadd.
347   setOperationAction(ISD::FSUB, MVT::f64, Expand);
348 
349   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
350   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
351   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
352   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
353   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
354   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
355   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom);
356   setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom);
357   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom);
358   setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom);
359   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
360   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
361   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
362   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
363   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
364   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
365   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
366   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
367   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
368   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
369   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
370   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
371   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom);
372   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom);
373   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom);
374   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom);
375   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
376   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
377   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
378   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
379   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
380   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
381   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
382   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
383   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom);
384   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom);
385   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
386   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
387   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
388   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
389   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
390   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
391 
392   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
393   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
394   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
395 
396   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
397   for (MVT VT : ScalarIntVTs) {
398     // These should use [SU]DIVREM, so set them to expand
399     setOperationAction(ISD::SDIV, VT, Expand);
400     setOperationAction(ISD::UDIV, VT, Expand);
401     setOperationAction(ISD::SREM, VT, Expand);
402     setOperationAction(ISD::UREM, VT, Expand);
403 
404     // GPU does not have divrem function for signed or unsigned.
405     setOperationAction(ISD::SDIVREM, VT, Custom);
406     setOperationAction(ISD::UDIVREM, VT, Custom);
407 
408     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
409     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
410     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
411 
412     setOperationAction(ISD::BSWAP, VT, Expand);
413     setOperationAction(ISD::CTTZ, VT, Expand);
414     setOperationAction(ISD::CTLZ, VT, Expand);
415 
416     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
417     setOperationAction(ISD::ADDC, VT, Legal);
418     setOperationAction(ISD::SUBC, VT, Legal);
419     setOperationAction(ISD::ADDE, VT, Legal);
420     setOperationAction(ISD::SUBE, VT, Legal);
421   }
422 
423   // The hardware supports 32-bit FSHR, but not FSHL.
424   setOperationAction(ISD::FSHR, MVT::i32, Legal);
425 
426   // The hardware supports 32-bit ROTR, but not ROTL.
427   setOperationAction(ISD::ROTL, MVT::i32, Expand);
428   setOperationAction(ISD::ROTL, MVT::i64, Expand);
429   setOperationAction(ISD::ROTR, MVT::i64, Expand);
430 
431   setOperationAction(ISD::MULHU, MVT::i16, Expand);
432   setOperationAction(ISD::MULHS, MVT::i16, Expand);
433 
434   setOperationAction(ISD::MUL, MVT::i64, Expand);
435   setOperationAction(ISD::MULHU, MVT::i64, Expand);
436   setOperationAction(ISD::MULHS, MVT::i64, Expand);
437   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
438   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
439   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
440   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
441   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
442 
443   setOperationAction(ISD::SMIN, MVT::i32, Legal);
444   setOperationAction(ISD::UMIN, MVT::i32, Legal);
445   setOperationAction(ISD::SMAX, MVT::i32, Legal);
446   setOperationAction(ISD::UMAX, MVT::i32, Legal);
447 
448   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
449   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
450   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
451   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
452 
453   static const MVT::SimpleValueType VectorIntTypes[] = {
454       MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32};
455 
456   for (MVT VT : VectorIntTypes) {
457     // Expand the following operations for the current type by default.
458     setOperationAction(ISD::ADD,  VT, Expand);
459     setOperationAction(ISD::AND,  VT, Expand);
460     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
461     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
462     setOperationAction(ISD::MUL,  VT, Expand);
463     setOperationAction(ISD::MULHU, VT, Expand);
464     setOperationAction(ISD::MULHS, VT, Expand);
465     setOperationAction(ISD::OR,   VT, Expand);
466     setOperationAction(ISD::SHL,  VT, Expand);
467     setOperationAction(ISD::SRA,  VT, Expand);
468     setOperationAction(ISD::SRL,  VT, Expand);
469     setOperationAction(ISD::ROTL, VT, Expand);
470     setOperationAction(ISD::ROTR, VT, Expand);
471     setOperationAction(ISD::SUB,  VT, Expand);
472     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
473     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
474     setOperationAction(ISD::SDIV, VT, Expand);
475     setOperationAction(ISD::UDIV, VT, Expand);
476     setOperationAction(ISD::SREM, VT, Expand);
477     setOperationAction(ISD::UREM, VT, Expand);
478     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
479     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
480     setOperationAction(ISD::SDIVREM, VT, Expand);
481     setOperationAction(ISD::UDIVREM, VT, Expand);
482     setOperationAction(ISD::SELECT, VT, Expand);
483     setOperationAction(ISD::VSELECT, VT, Expand);
484     setOperationAction(ISD::SELECT_CC, VT, Expand);
485     setOperationAction(ISD::XOR,  VT, Expand);
486     setOperationAction(ISD::BSWAP, VT, Expand);
487     setOperationAction(ISD::CTPOP, VT, Expand);
488     setOperationAction(ISD::CTTZ, VT, Expand);
489     setOperationAction(ISD::CTLZ, VT, Expand);
490     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
491     setOperationAction(ISD::SETCC, VT, Expand);
492   }
493 
494   static const MVT::SimpleValueType FloatVectorTypes[] = {
495       MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32};
496 
497   for (MVT VT : FloatVectorTypes) {
498     setOperationAction(ISD::FABS, VT, Expand);
499     setOperationAction(ISD::FMINNUM, VT, Expand);
500     setOperationAction(ISD::FMAXNUM, VT, Expand);
501     setOperationAction(ISD::FADD, VT, Expand);
502     setOperationAction(ISD::FCEIL, VT, Expand);
503     setOperationAction(ISD::FCOS, VT, Expand);
504     setOperationAction(ISD::FDIV, VT, Expand);
505     setOperationAction(ISD::FEXP2, VT, Expand);
506     setOperationAction(ISD::FEXP, VT, Expand);
507     setOperationAction(ISD::FLOG2, VT, Expand);
508     setOperationAction(ISD::FREM, VT, Expand);
509     setOperationAction(ISD::FLOG, VT, Expand);
510     setOperationAction(ISD::FLOG10, VT, Expand);
511     setOperationAction(ISD::FPOW, VT, Expand);
512     setOperationAction(ISD::FFLOOR, VT, Expand);
513     setOperationAction(ISD::FTRUNC, VT, Expand);
514     setOperationAction(ISD::FMUL, VT, Expand);
515     setOperationAction(ISD::FMA, VT, Expand);
516     setOperationAction(ISD::FRINT, VT, Expand);
517     setOperationAction(ISD::FNEARBYINT, VT, Expand);
518     setOperationAction(ISD::FSQRT, VT, Expand);
519     setOperationAction(ISD::FSIN, VT, Expand);
520     setOperationAction(ISD::FSUB, VT, Expand);
521     setOperationAction(ISD::FNEG, VT, Expand);
522     setOperationAction(ISD::VSELECT, VT, Expand);
523     setOperationAction(ISD::SELECT_CC, VT, Expand);
524     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
525     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
526     setOperationAction(ISD::SETCC, VT, Expand);
527     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
528   }
529 
530   // This causes using an unrolled select operation rather than expansion with
531   // bit operations. This is in general better, but the alternative using BFI
532   // instructions may be better if the select sources are SGPRs.
533   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
534   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
535 
536   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
537   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
538 
539   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
540   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
541 
542   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
543   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
544 
545   setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
546   AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
547 
548   setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
549   AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
550 
551   // There are no libcalls of any kind.
552   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
553     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
554 
555   setSchedulingPreference(Sched::RegPressure);
556   setJumpIsExpensive(true);
557 
558   // FIXME: This is only partially true. If we have to do vector compares, any
559   // SGPR pair can be a condition register. If we have a uniform condition, we
560   // are better off doing SALU operations, where there is only one SCC. For now,
561   // we don't have a way of knowing during instruction selection if a condition
562   // will be uniform and we always use vector compares. Assume we are using
563   // vector compares until that is fixed.
564   setHasMultipleConditionRegisters(true);
565 
566   setMinCmpXchgSizeInBits(32);
567   setSupportsUnalignedAtomics(false);
568 
569   PredictableSelectIsExpensive = false;
570 
571   // We want to find all load dependencies for long chains of stores to enable
572   // merging into very wide vectors. The problem is with vectors with > 4
573   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
574   // vectors are a legal type, even though we have to split the loads
575   // usually. When we can more precisely specify load legality per address
576   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
577   // smarter so that they can figure out what to do in 2 iterations without all
578   // N > 4 stores on the same chain.
579   GatherAllAliasesMaxDepth = 16;
580 
581   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
582   // about these during lowering.
583   MaxStoresPerMemcpy  = 0xffffffff;
584   MaxStoresPerMemmove = 0xffffffff;
585   MaxStoresPerMemset  = 0xffffffff;
586 
587   // The expansion for 64-bit division is enormous.
588   if (AMDGPUBypassSlowDiv)
589     addBypassSlowDiv(64, 32);
590 
591   setTargetDAGCombine(ISD::BITCAST);
592   setTargetDAGCombine(ISD::SHL);
593   setTargetDAGCombine(ISD::SRA);
594   setTargetDAGCombine(ISD::SRL);
595   setTargetDAGCombine(ISD::TRUNCATE);
596   setTargetDAGCombine(ISD::MUL);
597   setTargetDAGCombine(ISD::MULHU);
598   setTargetDAGCombine(ISD::MULHS);
599   setTargetDAGCombine(ISD::SELECT);
600   setTargetDAGCombine(ISD::SELECT_CC);
601   setTargetDAGCombine(ISD::STORE);
602   setTargetDAGCombine(ISD::FADD);
603   setTargetDAGCombine(ISD::FSUB);
604   setTargetDAGCombine(ISD::FNEG);
605   setTargetDAGCombine(ISD::FABS);
606   setTargetDAGCombine(ISD::AssertZext);
607   setTargetDAGCombine(ISD::AssertSext);
608   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
609 }
610 
611 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
612   if (getTargetMachine().Options.NoSignedZerosFPMath)
613     return true;
614 
615   const auto Flags = Op.getNode()->getFlags();
616   if (Flags.hasNoSignedZeros())
617     return true;
618 
619   return false;
620 }
621 
622 //===----------------------------------------------------------------------===//
623 // Target Information
624 //===----------------------------------------------------------------------===//
625 
626 LLVM_READNONE
627 static bool fnegFoldsIntoOp(unsigned Opc) {
628   switch (Opc) {
629   case ISD::FADD:
630   case ISD::FSUB:
631   case ISD::FMUL:
632   case ISD::FMA:
633   case ISD::FMAD:
634   case ISD::FMINNUM:
635   case ISD::FMAXNUM:
636   case ISD::FMINNUM_IEEE:
637   case ISD::FMAXNUM_IEEE:
638   case ISD::FSIN:
639   case ISD::FTRUNC:
640   case ISD::FRINT:
641   case ISD::FNEARBYINT:
642   case ISD::FCANONICALIZE:
643   case AMDGPUISD::RCP:
644   case AMDGPUISD::RCP_LEGACY:
645   case AMDGPUISD::RCP_IFLAG:
646   case AMDGPUISD::SIN_HW:
647   case AMDGPUISD::FMUL_LEGACY:
648   case AMDGPUISD::FMIN_LEGACY:
649   case AMDGPUISD::FMAX_LEGACY:
650   case AMDGPUISD::FMED3:
651     // TODO: handle llvm.amdgcn.fma.legacy
652     return true;
653   default:
654     return false;
655   }
656 }
657 
658 /// \p returns true if the operation will definitely need to use a 64-bit
659 /// encoding, and thus will use a VOP3 encoding regardless of the source
660 /// modifiers.
661 LLVM_READONLY
662 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
663   return N->getNumOperands() > 2 || VT == MVT::f64;
664 }
665 
666 // Most FP instructions support source modifiers, but this could be refined
667 // slightly.
668 LLVM_READONLY
669 static bool hasSourceMods(const SDNode *N) {
670   if (isa<MemSDNode>(N))
671     return false;
672 
673   switch (N->getOpcode()) {
674   case ISD::CopyToReg:
675   case ISD::SELECT:
676   case ISD::FDIV:
677   case ISD::FREM:
678   case ISD::INLINEASM:
679   case ISD::INLINEASM_BR:
680   case AMDGPUISD::DIV_SCALE:
681   case ISD::INTRINSIC_W_CHAIN:
682 
683   // TODO: Should really be looking at the users of the bitcast. These are
684   // problematic because bitcasts are used to legalize all stores to integer
685   // types.
686   case ISD::BITCAST:
687     return false;
688   case ISD::INTRINSIC_WO_CHAIN: {
689     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
690     case Intrinsic::amdgcn_interp_p1:
691     case Intrinsic::amdgcn_interp_p2:
692     case Intrinsic::amdgcn_interp_mov:
693     case Intrinsic::amdgcn_interp_p1_f16:
694     case Intrinsic::amdgcn_interp_p2_f16:
695       return false;
696     default:
697       return true;
698     }
699   }
700   default:
701     return true;
702   }
703 }
704 
705 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
706                                                  unsigned CostThreshold) {
707   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
708   // it is truly free to use a source modifier in all cases. If there are
709   // multiple users but for each one will necessitate using VOP3, there will be
710   // a code size increase. Try to avoid increasing code size unless we know it
711   // will save on the instruction count.
712   unsigned NumMayIncreaseSize = 0;
713   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
714 
715   // XXX - Should this limit number of uses to check?
716   for (const SDNode *U : N->uses()) {
717     if (!hasSourceMods(U))
718       return false;
719 
720     if (!opMustUseVOP3Encoding(U, VT)) {
721       if (++NumMayIncreaseSize > CostThreshold)
722         return false;
723     }
724   }
725 
726   return true;
727 }
728 
729 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
730                                               ISD::NodeType ExtendKind) const {
731   assert(!VT.isVector() && "only scalar expected");
732 
733   // Round to the next multiple of 32-bits.
734   unsigned Size = VT.getSizeInBits();
735   if (Size <= 32)
736     return MVT::i32;
737   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
738 }
739 
740 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
741   return MVT::i32;
742 }
743 
744 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
745   return true;
746 }
747 
748 // The backend supports 32 and 64 bit floating point immediates.
749 // FIXME: Why are we reporting vectors of FP immediates as legal?
750 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
751                                         bool ForCodeSize) const {
752   EVT ScalarVT = VT.getScalarType();
753   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
754          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
755 }
756 
757 // We don't want to shrink f64 / f32 constants.
758 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
759   EVT ScalarVT = VT.getScalarType();
760   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
761 }
762 
763 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
764                                                  ISD::LoadExtType ExtTy,
765                                                  EVT NewVT) const {
766   // TODO: This may be worth removing. Check regression tests for diffs.
767   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
768     return false;
769 
770   unsigned NewSize = NewVT.getStoreSizeInBits();
771 
772   // If we are reducing to a 32-bit load or a smaller multi-dword load,
773   // this is always better.
774   if (NewSize >= 32)
775     return true;
776 
777   EVT OldVT = N->getValueType(0);
778   unsigned OldSize = OldVT.getStoreSizeInBits();
779 
780   MemSDNode *MN = cast<MemSDNode>(N);
781   unsigned AS = MN->getAddressSpace();
782   // Do not shrink an aligned scalar load to sub-dword.
783   // Scalar engine cannot do sub-dword loads.
784   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
785       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
786        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
787        (isa<LoadSDNode>(N) &&
788         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
789       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
790     return false;
791 
792   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
793   // extloads, so doing one requires using a buffer_load. In cases where we
794   // still couldn't use a scalar load, using the wider load shouldn't really
795   // hurt anything.
796 
797   // If the old size already had to be an extload, there's no harm in continuing
798   // to reduce the width.
799   return (OldSize < 32);
800 }
801 
802 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
803                                                    const SelectionDAG &DAG,
804                                                    const MachineMemOperand &MMO) const {
805 
806   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
807 
808   if (LoadTy.getScalarType() == MVT::i32)
809     return false;
810 
811   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
812   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
813 
814   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
815     return false;
816 
817   bool Fast = false;
818   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
819                                         CastTy, MMO, &Fast) &&
820          Fast;
821 }
822 
823 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
824 // profitable with the expansion for 64-bit since it's generally good to
825 // speculate things.
826 // FIXME: These should really have the size as a parameter.
827 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
828   return true;
829 }
830 
831 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
832   return true;
833 }
834 
835 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
836   switch (N->getOpcode()) {
837   case ISD::EntryToken:
838   case ISD::TokenFactor:
839     return true;
840   case ISD::INTRINSIC_WO_CHAIN: {
841     unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
842     switch (IntrID) {
843     case Intrinsic::amdgcn_readfirstlane:
844     case Intrinsic::amdgcn_readlane:
845       return true;
846     }
847     return false;
848   }
849   case ISD::LOAD:
850     if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
851         AMDGPUAS::CONSTANT_ADDRESS_32BIT)
852       return true;
853     return false;
854   }
855   return false;
856 }
857 
858 SDValue AMDGPUTargetLowering::getNegatedExpression(
859     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
860     NegatibleCost &Cost, unsigned Depth) const {
861 
862   switch (Op.getOpcode()) {
863   case ISD::FMA:
864   case ISD::FMAD: {
865     // Negating a fma is not free if it has users without source mods.
866     if (!allUsesHaveSourceMods(Op.getNode()))
867       return SDValue();
868     break;
869   }
870   default:
871     break;
872   }
873 
874   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
875                                               ForCodeSize, Cost, Depth);
876 }
877 
878 //===---------------------------------------------------------------------===//
879 // Target Properties
880 //===---------------------------------------------------------------------===//
881 
882 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
883   assert(VT.isFloatingPoint());
884 
885   // Packed operations do not have a fabs modifier.
886   return VT == MVT::f32 || VT == MVT::f64 ||
887          (Subtarget->has16BitInsts() && VT == MVT::f16);
888 }
889 
890 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
891   assert(VT.isFloatingPoint());
892   // Report this based on the end legalized type.
893   VT = VT.getScalarType();
894   return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
895 }
896 
897 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
898                                                          unsigned NumElem,
899                                                          unsigned AS) const {
900   return true;
901 }
902 
903 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
904   // There are few operations which truly have vector input operands. Any vector
905   // operation is going to involve operations on each component, and a
906   // build_vector will be a copy per element, so it always makes sense to use a
907   // build_vector input in place of the extracted element to avoid a copy into a
908   // super register.
909   //
910   // We should probably only do this if all users are extracts only, but this
911   // should be the common case.
912   return true;
913 }
914 
915 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
916   // Truncate is just accessing a subregister.
917 
918   unsigned SrcSize = Source.getSizeInBits();
919   unsigned DestSize = Dest.getSizeInBits();
920 
921   return DestSize < SrcSize && DestSize % 32 == 0 ;
922 }
923 
924 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
925   // Truncate is just accessing a subregister.
926 
927   unsigned SrcSize = Source->getScalarSizeInBits();
928   unsigned DestSize = Dest->getScalarSizeInBits();
929 
930   if (DestSize== 16 && Subtarget->has16BitInsts())
931     return SrcSize >= 32;
932 
933   return DestSize < SrcSize && DestSize % 32 == 0;
934 }
935 
936 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
937   unsigned SrcSize = Src->getScalarSizeInBits();
938   unsigned DestSize = Dest->getScalarSizeInBits();
939 
940   if (SrcSize == 16 && Subtarget->has16BitInsts())
941     return DestSize >= 32;
942 
943   return SrcSize == 32 && DestSize == 64;
944 }
945 
946 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
947   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
948   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
949   // this will enable reducing 64-bit operations the 32-bit, which is always
950   // good.
951 
952   if (Src == MVT::i16)
953     return Dest == MVT::i32 ||Dest == MVT::i64 ;
954 
955   return Src == MVT::i32 && Dest == MVT::i64;
956 }
957 
958 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
959   return isZExtFree(Val.getValueType(), VT2);
960 }
961 
962 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
963   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
964   // limited number of native 64-bit operations. Shrinking an operation to fit
965   // in a single 32-bit register should always be helpful. As currently used,
966   // this is much less general than the name suggests, and is only used in
967   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
968   // not profitable, and may actually be harmful.
969   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
970 }
971 
972 //===---------------------------------------------------------------------===//
973 // TargetLowering Callbacks
974 //===---------------------------------------------------------------------===//
975 
976 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
977                                                   bool IsVarArg) {
978   switch (CC) {
979   case CallingConv::AMDGPU_VS:
980   case CallingConv::AMDGPU_GS:
981   case CallingConv::AMDGPU_PS:
982   case CallingConv::AMDGPU_CS:
983   case CallingConv::AMDGPU_HS:
984   case CallingConv::AMDGPU_ES:
985   case CallingConv::AMDGPU_LS:
986     return CC_AMDGPU;
987   case CallingConv::C:
988   case CallingConv::Fast:
989   case CallingConv::Cold:
990     return CC_AMDGPU_Func;
991   case CallingConv::AMDGPU_Gfx:
992     return CC_SI_Gfx;
993   case CallingConv::AMDGPU_KERNEL:
994   case CallingConv::SPIR_KERNEL:
995   default:
996     report_fatal_error("Unsupported calling convention for call");
997   }
998 }
999 
1000 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
1001                                                     bool IsVarArg) {
1002   switch (CC) {
1003   case CallingConv::AMDGPU_KERNEL:
1004   case CallingConv::SPIR_KERNEL:
1005     llvm_unreachable("kernels should not be handled here");
1006   case CallingConv::AMDGPU_VS:
1007   case CallingConv::AMDGPU_GS:
1008   case CallingConv::AMDGPU_PS:
1009   case CallingConv::AMDGPU_CS:
1010   case CallingConv::AMDGPU_HS:
1011   case CallingConv::AMDGPU_ES:
1012   case CallingConv::AMDGPU_LS:
1013     return RetCC_SI_Shader;
1014   case CallingConv::AMDGPU_Gfx:
1015     return RetCC_SI_Gfx;
1016   case CallingConv::C:
1017   case CallingConv::Fast:
1018   case CallingConv::Cold:
1019     return RetCC_AMDGPU_Func;
1020   default:
1021     report_fatal_error("Unsupported calling convention.");
1022   }
1023 }
1024 
1025 /// The SelectionDAGBuilder will automatically promote function arguments
1026 /// with illegal types.  However, this does not work for the AMDGPU targets
1027 /// since the function arguments are stored in memory as these illegal types.
1028 /// In order to handle this properly we need to get the original types sizes
1029 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1030 /// passing them to AnalyzeFormalArguments()
1031 
1032 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1033 /// input values across multiple registers.  Each item in the Ins array
1034 /// represents a single value that will be stored in registers.  Ins[x].VT is
1035 /// the value type of the value that will be stored in the register, so
1036 /// whatever SDNode we lower the argument to needs to be this type.
1037 ///
1038 /// In order to correctly lower the arguments we need to know the size of each
1039 /// argument.  Since Ins[x].VT gives us the size of the register that will
1040 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1041 /// for the original function argument so that we can deduce the correct memory
1042 /// type to use for Ins[x].  In most cases the correct memory type will be
1043 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
1044 /// we have a kernel argument of type v8i8, this argument will be split into
1045 /// 8 parts and each part will be represented by its own item in the Ins array.
1046 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1047 /// the argument before it was split.  From this, we deduce that the memory type
1048 /// for each individual part is i8.  We pass the memory type as LocVT to the
1049 /// calling convention analysis function and the register type (Ins[x].VT) as
1050 /// the ValVT.
1051 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1052   CCState &State,
1053   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1054   const MachineFunction &MF = State.getMachineFunction();
1055   const Function &Fn = MF.getFunction();
1056   LLVMContext &Ctx = Fn.getParent()->getContext();
1057   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1058   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1059   CallingConv::ID CC = Fn.getCallingConv();
1060 
1061   Align MaxAlign = Align(1);
1062   uint64_t ExplicitArgOffset = 0;
1063   const DataLayout &DL = Fn.getParent()->getDataLayout();
1064 
1065   unsigned InIndex = 0;
1066 
1067   for (const Argument &Arg : Fn.args()) {
1068     const bool IsByRef = Arg.hasByRefAttr();
1069     Type *BaseArgTy = Arg.getType();
1070     Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1071     MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1072     if (!Alignment)
1073       Alignment = DL.getABITypeAlign(MemArgTy);
1074     MaxAlign = max(Alignment, MaxAlign);
1075     uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1076 
1077     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1078     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1079 
1080     // We're basically throwing away everything passed into us and starting over
1081     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1082     // to us as computed in Ins.
1083     //
1084     // We also need to figure out what type legalization is trying to do to get
1085     // the correct memory offsets.
1086 
1087     SmallVector<EVT, 16> ValueVTs;
1088     SmallVector<uint64_t, 16> Offsets;
1089     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1090 
1091     for (unsigned Value = 0, NumValues = ValueVTs.size();
1092          Value != NumValues; ++Value) {
1093       uint64_t BasePartOffset = Offsets[Value];
1094 
1095       EVT ArgVT = ValueVTs[Value];
1096       EVT MemVT = ArgVT;
1097       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1098       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1099 
1100       if (NumRegs == 1) {
1101         // This argument is not split, so the IR type is the memory type.
1102         if (ArgVT.isExtended()) {
1103           // We have an extended type, like i24, so we should just use the
1104           // register type.
1105           MemVT = RegisterVT;
1106         } else {
1107           MemVT = ArgVT;
1108         }
1109       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1110                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1111         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1112         // We have a vector value which has been split into a vector with
1113         // the same scalar type, but fewer elements.  This should handle
1114         // all the floating-point vector types.
1115         MemVT = RegisterVT;
1116       } else if (ArgVT.isVector() &&
1117                  ArgVT.getVectorNumElements() == NumRegs) {
1118         // This arg has been split so that each element is stored in a separate
1119         // register.
1120         MemVT = ArgVT.getScalarType();
1121       } else if (ArgVT.isExtended()) {
1122         // We have an extended type, like i65.
1123         MemVT = RegisterVT;
1124       } else {
1125         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1126         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1127         if (RegisterVT.isInteger()) {
1128           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1129         } else if (RegisterVT.isVector()) {
1130           assert(!RegisterVT.getScalarType().isFloatingPoint());
1131           unsigned NumElements = RegisterVT.getVectorNumElements();
1132           assert(MemoryBits % NumElements == 0);
1133           // This vector type has been split into another vector type with
1134           // a different elements size.
1135           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1136                                            MemoryBits / NumElements);
1137           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1138         } else {
1139           llvm_unreachable("cannot deduce memory type.");
1140         }
1141       }
1142 
1143       // Convert one element vectors to scalar.
1144       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1145         MemVT = MemVT.getScalarType();
1146 
1147       // Round up vec3/vec5 argument.
1148       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1149         assert(MemVT.getVectorNumElements() == 3 ||
1150                MemVT.getVectorNumElements() == 5);
1151         MemVT = MemVT.getPow2VectorType(State.getContext());
1152       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1153         MemVT = MemVT.getRoundIntegerType(State.getContext());
1154       }
1155 
1156       unsigned PartOffset = 0;
1157       for (unsigned i = 0; i != NumRegs; ++i) {
1158         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1159                                                BasePartOffset + PartOffset,
1160                                                MemVT.getSimpleVT(),
1161                                                CCValAssign::Full));
1162         PartOffset += MemVT.getStoreSize();
1163       }
1164     }
1165   }
1166 }
1167 
1168 SDValue AMDGPUTargetLowering::LowerReturn(
1169   SDValue Chain, CallingConv::ID CallConv,
1170   bool isVarArg,
1171   const SmallVectorImpl<ISD::OutputArg> &Outs,
1172   const SmallVectorImpl<SDValue> &OutVals,
1173   const SDLoc &DL, SelectionDAG &DAG) const {
1174   // FIXME: Fails for r600 tests
1175   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1176   // "wave terminate should not have return values");
1177   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1178 }
1179 
1180 //===---------------------------------------------------------------------===//
1181 // Target specific lowering
1182 //===---------------------------------------------------------------------===//
1183 
1184 /// Selects the correct CCAssignFn for a given CallingConvention value.
1185 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1186                                                     bool IsVarArg) {
1187   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1188 }
1189 
1190 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1191                                                       bool IsVarArg) {
1192   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1193 }
1194 
1195 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1196                                                   SelectionDAG &DAG,
1197                                                   MachineFrameInfo &MFI,
1198                                                   int ClobberedFI) const {
1199   SmallVector<SDValue, 8> ArgChains;
1200   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1201   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1202 
1203   // Include the original chain at the beginning of the list. When this is
1204   // used by target LowerCall hooks, this helps legalize find the
1205   // CALLSEQ_BEGIN node.
1206   ArgChains.push_back(Chain);
1207 
1208   // Add a chain value for each stack argument corresponding
1209   for (SDNode *U : DAG.getEntryNode().getNode()->uses()) {
1210     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) {
1211       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1212         if (FI->getIndex() < 0) {
1213           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1214           int64_t InLastByte = InFirstByte;
1215           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1216 
1217           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1218               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1219             ArgChains.push_back(SDValue(L, 1));
1220         }
1221       }
1222     }
1223   }
1224 
1225   // Build a tokenfactor for all the chains.
1226   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1227 }
1228 
1229 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1230                                                  SmallVectorImpl<SDValue> &InVals,
1231                                                  StringRef Reason) const {
1232   SDValue Callee = CLI.Callee;
1233   SelectionDAG &DAG = CLI.DAG;
1234 
1235   const Function &Fn = DAG.getMachineFunction().getFunction();
1236 
1237   StringRef FuncName("<unknown>");
1238 
1239   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1240     FuncName = G->getSymbol();
1241   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1242     FuncName = G->getGlobal()->getName();
1243 
1244   DiagnosticInfoUnsupported NoCalls(
1245     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1246   DAG.getContext()->diagnose(NoCalls);
1247 
1248   if (!CLI.IsTailCall) {
1249     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1250       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1251   }
1252 
1253   return DAG.getEntryNode();
1254 }
1255 
1256 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1257                                         SmallVectorImpl<SDValue> &InVals) const {
1258   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1259 }
1260 
1261 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1262                                                       SelectionDAG &DAG) const {
1263   const Function &Fn = DAG.getMachineFunction().getFunction();
1264 
1265   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1266                                             SDLoc(Op).getDebugLoc());
1267   DAG.getContext()->diagnose(NoDynamicAlloca);
1268   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1269   return DAG.getMergeValues(Ops, SDLoc());
1270 }
1271 
1272 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1273                                              SelectionDAG &DAG) const {
1274   switch (Op.getOpcode()) {
1275   default:
1276     Op->print(errs(), &DAG);
1277     llvm_unreachable("Custom lowering code for this "
1278                      "instruction is not implemented yet!");
1279     break;
1280   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1281   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1282   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1283   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1284   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1285   case ISD::FREM: return LowerFREM(Op, DAG);
1286   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1287   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1288   case ISD::FRINT: return LowerFRINT(Op, DAG);
1289   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1290   case ISD::FROUND: return LowerFROUND(Op, DAG);
1291   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1292   case ISD::FLOG:
1293     return LowerFLOG(Op, DAG, numbers::ln2f);
1294   case ISD::FLOG10:
1295     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1296   case ISD::FEXP:
1297     return lowerFEXP(Op, DAG);
1298   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1299   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1300   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1301   case ISD::FP_TO_SINT:
1302   case ISD::FP_TO_UINT:
1303     return LowerFP_TO_INT(Op, DAG);
1304   case ISD::CTTZ:
1305   case ISD::CTTZ_ZERO_UNDEF:
1306   case ISD::CTLZ:
1307   case ISD::CTLZ_ZERO_UNDEF:
1308     return LowerCTLZ_CTTZ(Op, DAG);
1309   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1310   }
1311   return Op;
1312 }
1313 
1314 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1315                                               SmallVectorImpl<SDValue> &Results,
1316                                               SelectionDAG &DAG) const {
1317   switch (N->getOpcode()) {
1318   case ISD::SIGN_EXTEND_INREG:
1319     // Different parts of legalization seem to interpret which type of
1320     // sign_extend_inreg is the one to check for custom lowering. The extended
1321     // from type is what really matters, but some places check for custom
1322     // lowering of the result type. This results in trying to use
1323     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1324     // nothing here and let the illegal result integer be handled normally.
1325     return;
1326   default:
1327     return;
1328   }
1329 }
1330 
1331 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1332                                                  SDValue Op,
1333                                                  SelectionDAG &DAG) const {
1334 
1335   const DataLayout &DL = DAG.getDataLayout();
1336   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1337   const GlobalValue *GV = G->getGlobal();
1338 
1339   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1340       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1341     if (!MFI->isModuleEntryFunction() &&
1342         !GV->getName().equals("llvm.amdgcn.module.lds")) {
1343       SDLoc DL(Op);
1344       const Function &Fn = DAG.getMachineFunction().getFunction();
1345       DiagnosticInfoUnsupported BadLDSDecl(
1346         Fn, "local memory global used by non-kernel function",
1347         DL.getDebugLoc(), DS_Warning);
1348       DAG.getContext()->diagnose(BadLDSDecl);
1349 
1350       // We currently don't have a way to correctly allocate LDS objects that
1351       // aren't directly associated with a kernel. We do force inlining of
1352       // functions that use local objects. However, if these dead functions are
1353       // not eliminated, we don't want a compile time error. Just emit a warning
1354       // and a trap, since there should be no callable path here.
1355       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1356       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1357                                         Trap, DAG.getRoot());
1358       DAG.setRoot(OutputChain);
1359       return DAG.getUNDEF(Op.getValueType());
1360     }
1361 
1362     // XXX: What does the value of G->getOffset() mean?
1363     assert(G->getOffset() == 0 &&
1364          "Do not know what to do with an non-zero offset");
1365 
1366     // TODO: We could emit code to handle the initialization somewhere.
1367     // We ignore the initializer for now and legalize it to allow selection.
1368     // The initializer will anyway get errored out during assembly emission.
1369     unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1370     return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1371   }
1372   return SDValue();
1373 }
1374 
1375 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1376                                                   SelectionDAG &DAG) const {
1377   SmallVector<SDValue, 8> Args;
1378 
1379   EVT VT = Op.getValueType();
1380   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1381     SDLoc SL(Op);
1382     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1383     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1384 
1385     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1386     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1387   }
1388 
1389   for (const SDUse &U : Op->ops())
1390     DAG.ExtractVectorElements(U.get(), Args);
1391 
1392   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1393 }
1394 
1395 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1396                                                      SelectionDAG &DAG) const {
1397 
1398   SmallVector<SDValue, 8> Args;
1399   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1400   EVT VT = Op.getValueType();
1401   EVT SrcVT = Op.getOperand(0).getValueType();
1402 
1403   // For these types, we have some TableGen patterns except if the index is 1
1404   if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1405        (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1406       Start != 1)
1407     return Op;
1408 
1409   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1410                             VT.getVectorNumElements());
1411 
1412   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1413 }
1414 
1415 /// Generate Min/Max node
1416 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1417                                                    SDValue LHS, SDValue RHS,
1418                                                    SDValue True, SDValue False,
1419                                                    SDValue CC,
1420                                                    DAGCombinerInfo &DCI) const {
1421   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1422     return SDValue();
1423 
1424   SelectionDAG &DAG = DCI.DAG;
1425   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1426   switch (CCOpcode) {
1427   case ISD::SETOEQ:
1428   case ISD::SETONE:
1429   case ISD::SETUNE:
1430   case ISD::SETNE:
1431   case ISD::SETUEQ:
1432   case ISD::SETEQ:
1433   case ISD::SETFALSE:
1434   case ISD::SETFALSE2:
1435   case ISD::SETTRUE:
1436   case ISD::SETTRUE2:
1437   case ISD::SETUO:
1438   case ISD::SETO:
1439     break;
1440   case ISD::SETULE:
1441   case ISD::SETULT: {
1442     if (LHS == True)
1443       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1444     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1445   }
1446   case ISD::SETOLE:
1447   case ISD::SETOLT:
1448   case ISD::SETLE:
1449   case ISD::SETLT: {
1450     // Ordered. Assume ordered for undefined.
1451 
1452     // Only do this after legalization to avoid interfering with other combines
1453     // which might occur.
1454     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1455         !DCI.isCalledByLegalizer())
1456       return SDValue();
1457 
1458     // We need to permute the operands to get the correct NaN behavior. The
1459     // selected operand is the second one based on the failing compare with NaN,
1460     // so permute it based on the compare type the hardware uses.
1461     if (LHS == True)
1462       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1463     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1464   }
1465   case ISD::SETUGE:
1466   case ISD::SETUGT: {
1467     if (LHS == True)
1468       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1469     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1470   }
1471   case ISD::SETGT:
1472   case ISD::SETGE:
1473   case ISD::SETOGE:
1474   case ISD::SETOGT: {
1475     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1476         !DCI.isCalledByLegalizer())
1477       return SDValue();
1478 
1479     if (LHS == True)
1480       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1481     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1482   }
1483   case ISD::SETCC_INVALID:
1484     llvm_unreachable("Invalid setcc condcode!");
1485   }
1486   return SDValue();
1487 }
1488 
1489 std::pair<SDValue, SDValue>
1490 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1491   SDLoc SL(Op);
1492 
1493   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1494 
1495   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1496   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1497 
1498   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1499   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1500 
1501   return std::make_pair(Lo, Hi);
1502 }
1503 
1504 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1505   SDLoc SL(Op);
1506 
1507   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1508   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1509   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1510 }
1511 
1512 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1513   SDLoc SL(Op);
1514 
1515   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1516   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1517   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1518 }
1519 
1520 // Split a vector type into two parts. The first part is a power of two vector.
1521 // The second part is whatever is left over, and is a scalar if it would
1522 // otherwise be a 1-vector.
1523 std::pair<EVT, EVT>
1524 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1525   EVT LoVT, HiVT;
1526   EVT EltVT = VT.getVectorElementType();
1527   unsigned NumElts = VT.getVectorNumElements();
1528   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1529   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1530   HiVT = NumElts - LoNumElts == 1
1531              ? EltVT
1532              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1533   return std::make_pair(LoVT, HiVT);
1534 }
1535 
1536 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1537 // scalar.
1538 std::pair<SDValue, SDValue>
1539 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1540                                   const EVT &LoVT, const EVT &HiVT,
1541                                   SelectionDAG &DAG) const {
1542   assert(LoVT.getVectorNumElements() +
1543                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1544              N.getValueType().getVectorNumElements() &&
1545          "More vector elements requested than available!");
1546   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1547                            DAG.getVectorIdxConstant(0, DL));
1548   SDValue Hi = DAG.getNode(
1549       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1550       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1551   return std::make_pair(Lo, Hi);
1552 }
1553 
1554 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1555                                               SelectionDAG &DAG) const {
1556   LoadSDNode *Load = cast<LoadSDNode>(Op);
1557   EVT VT = Op.getValueType();
1558   SDLoc SL(Op);
1559 
1560 
1561   // If this is a 2 element vector, we really want to scalarize and not create
1562   // weird 1 element vectors.
1563   if (VT.getVectorNumElements() == 2) {
1564     SDValue Ops[2];
1565     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1566     return DAG.getMergeValues(Ops, SL);
1567   }
1568 
1569   SDValue BasePtr = Load->getBasePtr();
1570   EVT MemVT = Load->getMemoryVT();
1571 
1572   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1573 
1574   EVT LoVT, HiVT;
1575   EVT LoMemVT, HiMemVT;
1576   SDValue Lo, Hi;
1577 
1578   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1579   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1580   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1581 
1582   unsigned Size = LoMemVT.getStoreSize();
1583   unsigned BaseAlign = Load->getAlignment();
1584   unsigned HiAlign = MinAlign(BaseAlign, Size);
1585 
1586   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1587                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1588                                   BaseAlign, Load->getMemOperand()->getFlags());
1589   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1590   SDValue HiLoad =
1591       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1592                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1593                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1594 
1595   SDValue Join;
1596   if (LoVT == HiVT) {
1597     // This is the case that the vector is power of two so was evenly split.
1598     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1599   } else {
1600     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1601                        DAG.getVectorIdxConstant(0, SL));
1602     Join = DAG.getNode(
1603         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1604         VT, Join, HiLoad,
1605         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1606   }
1607 
1608   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1609                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1610 
1611   return DAG.getMergeValues(Ops, SL);
1612 }
1613 
1614 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1615                                                      SelectionDAG &DAG) const {
1616   LoadSDNode *Load = cast<LoadSDNode>(Op);
1617   EVT VT = Op.getValueType();
1618   SDValue BasePtr = Load->getBasePtr();
1619   EVT MemVT = Load->getMemoryVT();
1620   SDLoc SL(Op);
1621   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1622   unsigned BaseAlign = Load->getAlignment();
1623   unsigned NumElements = MemVT.getVectorNumElements();
1624 
1625   // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1626   // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1627   if (NumElements != 3 ||
1628       (BaseAlign < 8 &&
1629        !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1630     return SplitVectorLoad(Op, DAG);
1631 
1632   assert(NumElements == 3);
1633 
1634   EVT WideVT =
1635       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1636   EVT WideMemVT =
1637       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1638   SDValue WideLoad = DAG.getExtLoad(
1639       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1640       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1641   return DAG.getMergeValues(
1642       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1643                    DAG.getVectorIdxConstant(0, SL)),
1644        WideLoad.getValue(1)},
1645       SL);
1646 }
1647 
1648 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1649                                                SelectionDAG &DAG) const {
1650   StoreSDNode *Store = cast<StoreSDNode>(Op);
1651   SDValue Val = Store->getValue();
1652   EVT VT = Val.getValueType();
1653 
1654   // If this is a 2 element vector, we really want to scalarize and not create
1655   // weird 1 element vectors.
1656   if (VT.getVectorNumElements() == 2)
1657     return scalarizeVectorStore(Store, DAG);
1658 
1659   EVT MemVT = Store->getMemoryVT();
1660   SDValue Chain = Store->getChain();
1661   SDValue BasePtr = Store->getBasePtr();
1662   SDLoc SL(Op);
1663 
1664   EVT LoVT, HiVT;
1665   EVT LoMemVT, HiMemVT;
1666   SDValue Lo, Hi;
1667 
1668   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1669   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1670   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1671 
1672   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1673 
1674   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1675   unsigned BaseAlign = Store->getAlignment();
1676   unsigned Size = LoMemVT.getStoreSize();
1677   unsigned HiAlign = MinAlign(BaseAlign, Size);
1678 
1679   SDValue LoStore =
1680       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1681                         Store->getMemOperand()->getFlags());
1682   SDValue HiStore =
1683       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1684                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1685 
1686   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1687 }
1688 
1689 // This is a shortcut for integer division because we have fast i32<->f32
1690 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1691 // float is enough to accurately represent up to a 24-bit signed integer.
1692 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1693                                             bool Sign) const {
1694   SDLoc DL(Op);
1695   EVT VT = Op.getValueType();
1696   SDValue LHS = Op.getOperand(0);
1697   SDValue RHS = Op.getOperand(1);
1698   MVT IntVT = MVT::i32;
1699   MVT FltVT = MVT::f32;
1700 
1701   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1702   if (LHSSignBits < 9)
1703     return SDValue();
1704 
1705   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1706   if (RHSSignBits < 9)
1707     return SDValue();
1708 
1709   unsigned BitSize = VT.getSizeInBits();
1710   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1711   unsigned DivBits = BitSize - SignBits;
1712   if (Sign)
1713     ++DivBits;
1714 
1715   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1716   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1717 
1718   SDValue jq = DAG.getConstant(1, DL, IntVT);
1719 
1720   if (Sign) {
1721     // char|short jq = ia ^ ib;
1722     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1723 
1724     // jq = jq >> (bitsize - 2)
1725     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1726                      DAG.getConstant(BitSize - 2, DL, VT));
1727 
1728     // jq = jq | 0x1
1729     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1730   }
1731 
1732   // int ia = (int)LHS;
1733   SDValue ia = LHS;
1734 
1735   // int ib, (int)RHS;
1736   SDValue ib = RHS;
1737 
1738   // float fa = (float)ia;
1739   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1740 
1741   // float fb = (float)ib;
1742   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1743 
1744   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1745                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1746 
1747   // fq = trunc(fq);
1748   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1749 
1750   // float fqneg = -fq;
1751   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1752 
1753   MachineFunction &MF = DAG.getMachineFunction();
1754   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1755 
1756   // float fr = mad(fqneg, fb, fa);
1757   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1758                     (unsigned)ISD::FMA :
1759                     !MFI->getMode().allFP32Denormals() ?
1760                     (unsigned)ISD::FMAD :
1761                     (unsigned)AMDGPUISD::FMAD_FTZ;
1762   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1763 
1764   // int iq = (int)fq;
1765   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1766 
1767   // fr = fabs(fr);
1768   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1769 
1770   // fb = fabs(fb);
1771   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1772 
1773   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1774 
1775   // int cv = fr >= fb;
1776   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1777 
1778   // jq = (cv ? jq : 0);
1779   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1780 
1781   // dst = iq + jq;
1782   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1783 
1784   // Rem needs compensation, it's easier to recompute it
1785   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1786   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1787 
1788   // Truncate to number of bits this divide really is.
1789   if (Sign) {
1790     SDValue InRegSize
1791       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1792     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1793     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1794   } else {
1795     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1796     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1797     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1798   }
1799 
1800   return DAG.getMergeValues({ Div, Rem }, DL);
1801 }
1802 
1803 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1804                                       SelectionDAG &DAG,
1805                                       SmallVectorImpl<SDValue> &Results) const {
1806   SDLoc DL(Op);
1807   EVT VT = Op.getValueType();
1808 
1809   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1810 
1811   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1812 
1813   SDValue One = DAG.getConstant(1, DL, HalfVT);
1814   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1815 
1816   //HiLo split
1817   SDValue LHS = Op.getOperand(0);
1818   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1819   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1820 
1821   SDValue RHS = Op.getOperand(1);
1822   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1823   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1824 
1825   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1826       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1827 
1828     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1829                               LHS_Lo, RHS_Lo);
1830 
1831     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1832     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1833 
1834     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1835     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1836     return;
1837   }
1838 
1839   if (isTypeLegal(MVT::i64)) {
1840     // The algorithm here is based on ideas from "Software Integer Division",
1841     // Tom Rodeheffer, August 2008.
1842 
1843     MachineFunction &MF = DAG.getMachineFunction();
1844     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1845 
1846     // Compute denominator reciprocal.
1847     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1848                     (unsigned)ISD::FMA :
1849                     !MFI->getMode().allFP32Denormals() ?
1850                     (unsigned)ISD::FMAD :
1851                     (unsigned)AMDGPUISD::FMAD_FTZ;
1852 
1853     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1854     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1855     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1856       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1857       Cvt_Lo);
1858     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1859     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1860       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1861     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1862       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1863     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1864     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1865       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1866       Mul1);
1867     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1868     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1869     SDValue Rcp64 = DAG.getBitcast(VT,
1870                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1871 
1872     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1873     SDValue One64  = DAG.getConstant(1, DL, VT);
1874     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1875     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1876 
1877     // First round of UNR (Unsigned integer Newton-Raphson).
1878     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1879     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1880     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1881     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1882                                     Zero);
1883     SDValue Mulhi1_Hi =
1884         DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One);
1885     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1886                                   Mulhi1_Lo, Zero1);
1887     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1888                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1889     SDValue Add1 = DAG.getBitcast(VT,
1890                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1891 
1892     // Second round of UNR.
1893     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1894     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1895     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1896                                     Zero);
1897     SDValue Mulhi2_Hi =
1898         DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One);
1899     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1900                                   Mulhi2_Lo, Zero1);
1901     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi,
1902                                   Mulhi2_Hi, Add2_Lo.getValue(1));
1903     SDValue Add2 = DAG.getBitcast(VT,
1904                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1905 
1906     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1907 
1908     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1909 
1910     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1911     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1912     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1913                                   Mul3_Lo, Zero1);
1914     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1915                                   Mul3_Hi, Sub1_Lo.getValue(1));
1916     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1917     SDValue Sub1 = DAG.getBitcast(VT,
1918                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1919 
1920     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1921     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1922                                  ISD::SETUGE);
1923     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1924                                  ISD::SETUGE);
1925     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1926 
1927     // TODO: Here and below portions of the code can be enclosed into if/endif.
1928     // Currently control flow is unconditional and we have 4 selects after
1929     // potential endif to substitute PHIs.
1930 
1931     // if C3 != 0 ...
1932     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1933                                   RHS_Lo, Zero1);
1934     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1935                                   RHS_Hi, Sub1_Lo.getValue(1));
1936     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1937                                   Zero, Sub2_Lo.getValue(1));
1938     SDValue Sub2 = DAG.getBitcast(VT,
1939                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1940 
1941     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1942 
1943     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1944                                  ISD::SETUGE);
1945     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1946                                  ISD::SETUGE);
1947     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1948 
1949     // if (C6 != 0)
1950     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1951 
1952     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1953                                   RHS_Lo, Zero1);
1954     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1955                                   RHS_Hi, Sub2_Lo.getValue(1));
1956     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1957                                   Zero, Sub3_Lo.getValue(1));
1958     SDValue Sub3 = DAG.getBitcast(VT,
1959                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1960 
1961     // endif C6
1962     // endif C3
1963 
1964     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1965     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1966 
1967     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1968     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1969 
1970     Results.push_back(Div);
1971     Results.push_back(Rem);
1972 
1973     return;
1974   }
1975 
1976   // r600 expandion.
1977   // Get Speculative values
1978   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1979   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1980 
1981   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1982   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1983   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1984 
1985   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1986   SDValue DIV_Lo = Zero;
1987 
1988   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1989 
1990   for (unsigned i = 0; i < halfBitWidth; ++i) {
1991     const unsigned bitPos = halfBitWidth - i - 1;
1992     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1993     // Get value of high bit
1994     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1995     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1996     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1997 
1998     // Shift
1999     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
2000     // Add LHS high bit
2001     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
2002 
2003     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2004     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2005 
2006     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2007 
2008     // Update REM
2009     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2010     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2011   }
2012 
2013   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2014   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2015   Results.push_back(DIV);
2016   Results.push_back(REM);
2017 }
2018 
2019 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2020                                            SelectionDAG &DAG) const {
2021   SDLoc DL(Op);
2022   EVT VT = Op.getValueType();
2023 
2024   if (VT == MVT::i64) {
2025     SmallVector<SDValue, 2> Results;
2026     LowerUDIVREM64(Op, DAG, Results);
2027     return DAG.getMergeValues(Results, DL);
2028   }
2029 
2030   if (VT == MVT::i32) {
2031     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2032       return Res;
2033   }
2034 
2035   SDValue X = Op.getOperand(0);
2036   SDValue Y = Op.getOperand(1);
2037 
2038   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2039   // algorithm used here.
2040 
2041   // Initial estimate of inv(y).
2042   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2043 
2044   // One round of UNR.
2045   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2046   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2047   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2048                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2049 
2050   // Quotient/remainder estimate.
2051   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2052   SDValue R =
2053       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2054 
2055   // First quotient/remainder refinement.
2056   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2057   SDValue One = DAG.getConstant(1, DL, VT);
2058   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2059   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2060                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2061   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2062                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2063 
2064   // Second quotient/remainder refinement.
2065   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2066   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2067                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2068   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2069                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2070 
2071   return DAG.getMergeValues({Q, R}, DL);
2072 }
2073 
2074 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2075                                            SelectionDAG &DAG) const {
2076   SDLoc DL(Op);
2077   EVT VT = Op.getValueType();
2078 
2079   SDValue LHS = Op.getOperand(0);
2080   SDValue RHS = Op.getOperand(1);
2081 
2082   SDValue Zero = DAG.getConstant(0, DL, VT);
2083   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2084 
2085   if (VT == MVT::i32) {
2086     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2087       return Res;
2088   }
2089 
2090   if (VT == MVT::i64 &&
2091       DAG.ComputeNumSignBits(LHS) > 32 &&
2092       DAG.ComputeNumSignBits(RHS) > 32) {
2093     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2094 
2095     //HiLo split
2096     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2097     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2098     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2099                                  LHS_Lo, RHS_Lo);
2100     SDValue Res[2] = {
2101       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2102       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2103     };
2104     return DAG.getMergeValues(Res, DL);
2105   }
2106 
2107   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2108   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2109   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2110   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2111 
2112   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2113   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2114 
2115   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2116   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2117 
2118   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2119   SDValue Rem = Div.getValue(1);
2120 
2121   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2122   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2123 
2124   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2125   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2126 
2127   SDValue Res[2] = {
2128     Div,
2129     Rem
2130   };
2131   return DAG.getMergeValues(Res, DL);
2132 }
2133 
2134 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2135 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2136   SDLoc SL(Op);
2137   EVT VT = Op.getValueType();
2138   auto Flags = Op->getFlags();
2139   SDValue X = Op.getOperand(0);
2140   SDValue Y = Op.getOperand(1);
2141 
2142   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2143   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2144   SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2145   // TODO: For f32 use FMAD instead if !hasFastFMA32?
2146   return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2147 }
2148 
2149 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2150   SDLoc SL(Op);
2151   SDValue Src = Op.getOperand(0);
2152 
2153   // result = trunc(src)
2154   // if (src > 0.0 && src != result)
2155   //   result += 1.0
2156 
2157   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2158 
2159   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2160   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2161 
2162   EVT SetCCVT =
2163       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2164 
2165   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2166   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2167   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2168 
2169   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2170   // TODO: Should this propagate fast-math-flags?
2171   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2172 }
2173 
2174 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2175                                   SelectionDAG &DAG) {
2176   const unsigned FractBits = 52;
2177   const unsigned ExpBits = 11;
2178 
2179   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2180                                 Hi,
2181                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2182                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2183   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2184                             DAG.getConstant(1023, SL, MVT::i32));
2185 
2186   return Exp;
2187 }
2188 
2189 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2190   SDLoc SL(Op);
2191   SDValue Src = Op.getOperand(0);
2192 
2193   assert(Op.getValueType() == MVT::f64);
2194 
2195   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2196 
2197   // Extract the upper half, since this is where we will find the sign and
2198   // exponent.
2199   SDValue Hi = getHiHalf64(Src, DAG);
2200 
2201   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2202 
2203   const unsigned FractBits = 52;
2204 
2205   // Extract the sign bit.
2206   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2207   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2208 
2209   // Extend back to 64-bits.
2210   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2211   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2212 
2213   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2214   const SDValue FractMask
2215     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2216 
2217   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2218   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2219   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2220 
2221   EVT SetCCVT =
2222       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2223 
2224   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2225 
2226   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2227   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2228 
2229   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2230   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2231 
2232   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2233 }
2234 
2235 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2236   SDLoc SL(Op);
2237   SDValue Src = Op.getOperand(0);
2238 
2239   assert(Op.getValueType() == MVT::f64);
2240 
2241   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2242   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2243   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2244 
2245   // TODO: Should this propagate fast-math-flags?
2246 
2247   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2248   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2249 
2250   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2251 
2252   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2253   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2254 
2255   EVT SetCCVT =
2256       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2257   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2258 
2259   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2260 }
2261 
2262 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2263   // FNEARBYINT and FRINT are the same, except in their handling of FP
2264   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2265   // rint, so just treat them as equivalent.
2266   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2267 }
2268 
2269 // XXX - May require not supporting f32 denormals?
2270 
2271 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2272 // compare and vselect end up producing worse code than scalarizing the whole
2273 // operation.
2274 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2275   SDLoc SL(Op);
2276   SDValue X = Op.getOperand(0);
2277   EVT VT = Op.getValueType();
2278 
2279   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2280 
2281   // TODO: Should this propagate fast-math-flags?
2282 
2283   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2284 
2285   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2286 
2287   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2288   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2289   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2290 
2291   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2292 
2293   EVT SetCCVT =
2294       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2295 
2296   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2297 
2298   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2299 
2300   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2301 }
2302 
2303 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2304   SDLoc SL(Op);
2305   SDValue Src = Op.getOperand(0);
2306 
2307   // result = trunc(src);
2308   // if (src < 0.0 && src != result)
2309   //   result += -1.0.
2310 
2311   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2312 
2313   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2314   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2315 
2316   EVT SetCCVT =
2317       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2318 
2319   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2320   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2321   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2322 
2323   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2324   // TODO: Should this propagate fast-math-flags?
2325   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2326 }
2327 
2328 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2329                                         double Log2BaseInverted) const {
2330   EVT VT = Op.getValueType();
2331 
2332   SDLoc SL(Op);
2333   SDValue Operand = Op.getOperand(0);
2334   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2335   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2336 
2337   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2338 }
2339 
2340 // exp2(M_LOG2E_F * f);
2341 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2342   EVT VT = Op.getValueType();
2343   SDLoc SL(Op);
2344   SDValue Src = Op.getOperand(0);
2345 
2346   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2347   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2348   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2349 }
2350 
2351 static bool isCtlzOpc(unsigned Opc) {
2352   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2353 }
2354 
2355 static bool isCttzOpc(unsigned Opc) {
2356   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2357 }
2358 
2359 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2360   SDLoc SL(Op);
2361   SDValue Src = Op.getOperand(0);
2362 
2363   assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()));
2364   bool Ctlz = isCtlzOpc(Op.getOpcode());
2365   unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32;
2366 
2367   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ||
2368                    Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF;
2369 
2370   if (Src.getValueType() == MVT::i32) {
2371     // (ctlz hi:lo) -> (umin (ffbh src), 32)
2372     // (cttz hi:lo) -> (umin (ffbl src), 32)
2373     // (ctlz_zero_undef src) -> (ffbh src)
2374     // (cttz_zero_undef src) -> (ffbl src)
2375     SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src);
2376     if (!ZeroUndef) {
2377       const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2378       NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32);
2379     }
2380     return NewOpr;
2381   }
2382 
2383   SDValue Lo, Hi;
2384   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2385 
2386   SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo);
2387   SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi);
2388 
2389   // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2390   // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2391   // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2392   // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2393 
2394   unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT;
2395   const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2396   if (Ctlz)
2397     OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32);
2398   else
2399     OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32);
2400 
2401   SDValue NewOpr;
2402   NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi);
2403   if (!ZeroUndef) {
2404     const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32);
2405     NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64);
2406   }
2407 
2408   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2409 }
2410 
2411 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2412                                                bool Signed) const {
2413   // The regular method converting a 64-bit integer to float roughly consists of
2414   // 2 steps: normalization and rounding. In fact, after normalization, the
2415   // conversion from a 64-bit integer to a float is essentially the same as the
2416   // one from a 32-bit integer. The only difference is that it has more
2417   // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2418   // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2419   // converted into the correct float number. The basic steps for the unsigned
2420   // conversion are illustrated in the following pseudo code:
2421   //
2422   // f32 uitofp(i64 u) {
2423   //   i32 hi, lo = split(u);
2424   //   // Only count the leading zeros in hi as we have native support of the
2425   //   // conversion from i32 to f32. If hi is all 0s, the conversion is
2426   //   // reduced to a 32-bit one automatically.
2427   //   i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2428   //   u <<= shamt;
2429   //   hi, lo = split(u);
2430   //   hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2431   //   // convert it as a 32-bit integer and scale the result back.
2432   //   return uitofp(hi) * 2^(32 - shamt);
2433   // }
2434   //
2435   // The signed one follows the same principle but uses 'ffbh_i32' to count its
2436   // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2437   // converted instead followed by negation based its sign bit.
2438 
2439   SDLoc SL(Op);
2440   SDValue Src = Op.getOperand(0);
2441 
2442   SDValue Lo, Hi;
2443   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2444   SDValue Sign;
2445   SDValue ShAmt;
2446   if (Signed && Subtarget->isGCN()) {
2447     // We also need to consider the sign bit in Lo if Hi has just sign bits,
2448     // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2449     // account. That is, the maximal shift is
2450     // - 32 if Lo and Hi have opposite signs;
2451     // - 33 if Lo and Hi have the same sign.
2452     //
2453     // Or, MaxShAmt = 33 + OppositeSign, where
2454     //
2455     // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2456     // - -1 if Lo and Hi have opposite signs; and
2457     // -  0 otherwise.
2458     //
2459     // All in all, ShAmt is calculated as
2460     //
2461     //  umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2462     //
2463     // or
2464     //
2465     //  umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2466     //
2467     // to reduce the critical path.
2468     SDValue OppositeSign = DAG.getNode(
2469         ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi),
2470         DAG.getConstant(31, SL, MVT::i32));
2471     SDValue MaxShAmt =
2472         DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2473                     OppositeSign);
2474     // Count the leading sign bits.
2475     ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi);
2476     // Different from unsigned conversion, the shift should be one bit less to
2477     // preserve the sign bit.
2478     ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt,
2479                         DAG.getConstant(1, SL, MVT::i32));
2480     ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt);
2481   } else {
2482     if (Signed) {
2483       // Without 'ffbh_i32', only leading zeros could be counted. Take the
2484       // absolute value first.
2485       Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src,
2486                          DAG.getConstant(63, SL, MVT::i64));
2487       SDValue Abs =
2488           DAG.getNode(ISD::XOR, SL, MVT::i64,
2489                       DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign);
2490       std::tie(Lo, Hi) = split64BitValue(Abs, DAG);
2491     }
2492     // Count the leading zeros.
2493     ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi);
2494     // The shift amount for signed integers is [0, 32].
2495   }
2496   // Normalize the given 64-bit integer.
2497   SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt);
2498   // Split it again.
2499   std::tie(Lo, Hi) = split64BitValue(Norm, DAG);
2500   // Calculate the adjust bit for rounding.
2501   // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2502   SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32,
2503                                DAG.getConstant(1, SL, MVT::i32), Lo);
2504   // Get the 32-bit normalized integer.
2505   Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust);
2506   // Convert the normalized 32-bit integer into f32.
2507   unsigned Opc =
2508       (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
2509   SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm);
2510 
2511   // Finally, need to scale back the converted floating number as the original
2512   // 64-bit integer is converted as a 32-bit one.
2513   ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2514                       ShAmt);
2515   // On GCN, use LDEXP directly.
2516   if (Subtarget->isGCN())
2517     return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt);
2518 
2519   // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2520   // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2521   // exponent is enough to avoid overflowing into the sign bit.
2522   SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt,
2523                             DAG.getConstant(23, SL, MVT::i32));
2524   SDValue IVal =
2525       DAG.getNode(ISD::ADD, SL, MVT::i32,
2526                   DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp);
2527   if (Signed) {
2528     // Set the sign bit.
2529     Sign = DAG.getNode(ISD::SHL, SL, MVT::i32,
2530                        DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign),
2531                        DAG.getConstant(31, SL, MVT::i32));
2532     IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign);
2533   }
2534   return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal);
2535 }
2536 
2537 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2538                                                bool Signed) const {
2539   SDLoc SL(Op);
2540   SDValue Src = Op.getOperand(0);
2541 
2542   SDValue Lo, Hi;
2543   std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2544 
2545   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2546                               SL, MVT::f64, Hi);
2547 
2548   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2549 
2550   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2551                               DAG.getConstant(32, SL, MVT::i32));
2552   // TODO: Should this propagate fast-math-flags?
2553   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2554 }
2555 
2556 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2557                                                SelectionDAG &DAG) const {
2558   // TODO: Factor out code common with LowerSINT_TO_FP.
2559   EVT DestVT = Op.getValueType();
2560   SDValue Src = Op.getOperand(0);
2561   EVT SrcVT = Src.getValueType();
2562 
2563   if (SrcVT == MVT::i16) {
2564     if (DestVT == MVT::f16)
2565       return Op;
2566     SDLoc DL(Op);
2567 
2568     // Promote src to i32
2569     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2570     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2571   }
2572 
2573   assert(SrcVT == MVT::i64 && "operation should be legal");
2574 
2575   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2576     SDLoc DL(Op);
2577 
2578     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2579     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2580     SDValue FPRound =
2581         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2582 
2583     return FPRound;
2584   }
2585 
2586   if (DestVT == MVT::f32)
2587     return LowerINT_TO_FP32(Op, DAG, false);
2588 
2589   assert(DestVT == MVT::f64);
2590   return LowerINT_TO_FP64(Op, DAG, false);
2591 }
2592 
2593 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2594                                               SelectionDAG &DAG) const {
2595   EVT DestVT = Op.getValueType();
2596 
2597   SDValue Src = Op.getOperand(0);
2598   EVT SrcVT = Src.getValueType();
2599 
2600   if (SrcVT == MVT::i16) {
2601     if (DestVT == MVT::f16)
2602       return Op;
2603 
2604     SDLoc DL(Op);
2605     // Promote src to i32
2606     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2607     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2608   }
2609 
2610   assert(SrcVT == MVT::i64 && "operation should be legal");
2611 
2612   // TODO: Factor out code common with LowerUINT_TO_FP.
2613 
2614   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2615     SDLoc DL(Op);
2616     SDValue Src = Op.getOperand(0);
2617 
2618     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2619     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2620     SDValue FPRound =
2621         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2622 
2623     return FPRound;
2624   }
2625 
2626   if (DestVT == MVT::f32)
2627     return LowerINT_TO_FP32(Op, DAG, true);
2628 
2629   assert(DestVT == MVT::f64);
2630   return LowerINT_TO_FP64(Op, DAG, true);
2631 }
2632 
2633 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2634                                                bool Signed) const {
2635   SDLoc SL(Op);
2636 
2637   SDValue Src = Op.getOperand(0);
2638   EVT SrcVT = Src.getValueType();
2639 
2640   assert(SrcVT == MVT::f32 || SrcVT == MVT::f64);
2641 
2642   // The basic idea of converting a floating point number into a pair of 32-bit
2643   // integers is illustrated as follows:
2644   //
2645   //     tf := trunc(val);
2646   //    hif := floor(tf * 2^-32);
2647   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2648   //     hi := fptoi(hif);
2649   //     lo := fptoi(lof);
2650   //
2651   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2652   SDValue Sign;
2653   if (Signed && SrcVT == MVT::f32) {
2654     // However, a 32-bit floating point number has only 23 bits mantissa and
2655     // it's not enough to hold all the significant bits of `lof` if val is
2656     // negative. To avoid the loss of precision, We need to take the absolute
2657     // value after truncating and flip the result back based on the original
2658     // signedness.
2659     Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2660                        DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2661                        DAG.getConstant(31, SL, MVT::i32));
2662     Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2663   }
2664 
2665   SDValue K0, K1;
2666   if (SrcVT == MVT::f64) {
2667     K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)),
2668                            SL, SrcVT);
2669     K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)),
2670                            SL, SrcVT);
2671   } else {
2672     K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL,
2673                            SrcVT);
2674     K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL,
2675                            SrcVT);
2676   }
2677   // TODO: Should this propagate fast-math-flags?
2678   SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2679 
2680   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2681 
2682   SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2683 
2684   SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2685                                                          : ISD::FP_TO_UINT,
2686                            SL, MVT::i32, FloorMul);
2687   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2688 
2689   SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2690                                DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2691 
2692   if (Signed && SrcVT == MVT::f32) {
2693     assert(Sign);
2694     // Flip the result based on the signedness, which is either all 0s or 1s.
2695     Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2696                        DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2697     // r := xor(r, sign) - sign;
2698     Result =
2699         DAG.getNode(ISD::SUB, SL, MVT::i64,
2700                     DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2701   }
2702 
2703   return Result;
2704 }
2705 
2706 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2707   SDLoc DL(Op);
2708   SDValue N0 = Op.getOperand(0);
2709 
2710   // Convert to target node to get known bits
2711   if (N0.getValueType() == MVT::f32)
2712     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2713 
2714   if (getTargetMachine().Options.UnsafeFPMath) {
2715     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2716     return SDValue();
2717   }
2718 
2719   assert(N0.getSimpleValueType() == MVT::f64);
2720 
2721   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2722   const unsigned ExpMask = 0x7ff;
2723   const unsigned ExpBiasf64 = 1023;
2724   const unsigned ExpBiasf16 = 15;
2725   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2726   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2727   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2728   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2729                            DAG.getConstant(32, DL, MVT::i64));
2730   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2731   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2732   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2733                           DAG.getConstant(20, DL, MVT::i64));
2734   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2735                   DAG.getConstant(ExpMask, DL, MVT::i32));
2736   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2737   // add the f16 bias (15) to get the biased exponent for the f16 format.
2738   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2739                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2740 
2741   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2742                           DAG.getConstant(8, DL, MVT::i32));
2743   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2744                   DAG.getConstant(0xffe, DL, MVT::i32));
2745 
2746   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2747                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2748   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2749 
2750   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2751   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2752 
2753   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2754   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2755       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2756                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2757 
2758   // N = M | (E << 12);
2759   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2760       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2761                   DAG.getConstant(12, DL, MVT::i32)));
2762 
2763   // B = clamp(1-E, 0, 13);
2764   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2765                                   One, E);
2766   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2767   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2768                   DAG.getConstant(13, DL, MVT::i32));
2769 
2770   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2771                                    DAG.getConstant(0x1000, DL, MVT::i32));
2772 
2773   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2774   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2775   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2776   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2777 
2778   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2779   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2780                               DAG.getConstant(0x7, DL, MVT::i32));
2781   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2782                   DAG.getConstant(2, DL, MVT::i32));
2783   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2784                                One, Zero, ISD::SETEQ);
2785   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2786                                One, Zero, ISD::SETGT);
2787   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2788   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2789 
2790   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2791                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2792   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2793                       I, V, ISD::SETEQ);
2794 
2795   // Extract the sign bit.
2796   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2797                             DAG.getConstant(16, DL, MVT::i32));
2798   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2799                      DAG.getConstant(0x8000, DL, MVT::i32));
2800 
2801   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2802   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2803 }
2804 
2805 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2806                                              SelectionDAG &DAG) const {
2807   SDValue Src = Op.getOperand(0);
2808   unsigned OpOpcode = Op.getOpcode();
2809   EVT SrcVT = Src.getValueType();
2810   EVT DestVT = Op.getValueType();
2811 
2812   // Will be selected natively
2813   if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2814     return Op;
2815 
2816   // Promote i16 to i32
2817   if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2818     SDLoc DL(Op);
2819 
2820     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2821     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2822   }
2823 
2824   if (SrcVT == MVT::f16 ||
2825       (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2826     SDLoc DL(Op);
2827 
2828     SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2829     unsigned Ext =
2830         OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2831     return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2832   }
2833 
2834   if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2835     return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2836 
2837   return SDValue();
2838 }
2839 
2840 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2841                                                      SelectionDAG &DAG) const {
2842   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2843   MVT VT = Op.getSimpleValueType();
2844   MVT ScalarVT = VT.getScalarType();
2845 
2846   assert(VT.isVector());
2847 
2848   SDValue Src = Op.getOperand(0);
2849   SDLoc DL(Op);
2850 
2851   // TODO: Don't scalarize on Evergreen?
2852   unsigned NElts = VT.getVectorNumElements();
2853   SmallVector<SDValue, 8> Args;
2854   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2855 
2856   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2857   for (unsigned I = 0; I < NElts; ++I)
2858     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2859 
2860   return DAG.getBuildVector(VT, DL, Args);
2861 }
2862 
2863 //===----------------------------------------------------------------------===//
2864 // Custom DAG optimizations
2865 //===----------------------------------------------------------------------===//
2866 
2867 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2868   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2869 }
2870 
2871 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2872   EVT VT = Op.getValueType();
2873   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2874                                      // as unsigned 24-bit values.
2875          AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24;
2876 }
2877 
2878 static SDValue simplifyMul24(SDNode *Node24,
2879                              TargetLowering::DAGCombinerInfo &DCI) {
2880   SelectionDAG &DAG = DCI.DAG;
2881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2882   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2883 
2884   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2885   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2886   unsigned NewOpcode = Node24->getOpcode();
2887   if (IsIntrin) {
2888     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2889     switch (IID) {
2890     case Intrinsic::amdgcn_mul_i24:
2891       NewOpcode = AMDGPUISD::MUL_I24;
2892       break;
2893     case Intrinsic::amdgcn_mul_u24:
2894       NewOpcode = AMDGPUISD::MUL_U24;
2895       break;
2896     case Intrinsic::amdgcn_mulhi_i24:
2897       NewOpcode = AMDGPUISD::MULHI_I24;
2898       break;
2899     case Intrinsic::amdgcn_mulhi_u24:
2900       NewOpcode = AMDGPUISD::MULHI_U24;
2901       break;
2902     default:
2903       llvm_unreachable("Expected 24-bit mul intrinsic");
2904     }
2905   }
2906 
2907   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2908 
2909   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2910   // the operands to have other uses, but will only perform simplifications that
2911   // involve bypassing some nodes for this user.
2912   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2913   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2914   if (DemandedLHS || DemandedRHS)
2915     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2916                        DemandedLHS ? DemandedLHS : LHS,
2917                        DemandedRHS ? DemandedRHS : RHS);
2918 
2919   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2920   // operands if this node is the only user.
2921   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2922     return SDValue(Node24, 0);
2923   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2924     return SDValue(Node24, 0);
2925 
2926   return SDValue();
2927 }
2928 
2929 template <typename IntTy>
2930 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2931                                uint32_t Width, const SDLoc &DL) {
2932   if (Width + Offset < 32) {
2933     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2934     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2935     return DAG.getConstant(Result, DL, MVT::i32);
2936   }
2937 
2938   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2939 }
2940 
2941 static bool hasVolatileUser(SDNode *Val) {
2942   for (SDNode *U : Val->uses()) {
2943     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2944       if (M->isVolatile())
2945         return true;
2946     }
2947   }
2948 
2949   return false;
2950 }
2951 
2952 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2953   // i32 vectors are the canonical memory type.
2954   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2955     return false;
2956 
2957   if (!VT.isByteSized())
2958     return false;
2959 
2960   unsigned Size = VT.getStoreSize();
2961 
2962   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2963     return false;
2964 
2965   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2966     return false;
2967 
2968   return true;
2969 }
2970 
2971 // Replace load of an illegal type with a store of a bitcast to a friendlier
2972 // type.
2973 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2974                                                  DAGCombinerInfo &DCI) const {
2975   if (!DCI.isBeforeLegalize())
2976     return SDValue();
2977 
2978   LoadSDNode *LN = cast<LoadSDNode>(N);
2979   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2980     return SDValue();
2981 
2982   SDLoc SL(N);
2983   SelectionDAG &DAG = DCI.DAG;
2984   EVT VT = LN->getMemoryVT();
2985 
2986   unsigned Size = VT.getStoreSize();
2987   Align Alignment = LN->getAlign();
2988   if (Alignment < Size && isTypeLegal(VT)) {
2989     bool IsFast;
2990     unsigned AS = LN->getAddressSpace();
2991 
2992     // Expand unaligned loads earlier than legalization. Due to visitation order
2993     // problems during legalization, the emitted instructions to pack and unpack
2994     // the bytes again are not eliminated in the case of an unaligned copy.
2995     if (!allowsMisalignedMemoryAccesses(
2996             VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
2997       SDValue Ops[2];
2998 
2999       if (VT.isVector())
3000         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
3001       else
3002         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
3003 
3004       return DAG.getMergeValues(Ops, SDLoc(N));
3005     }
3006 
3007     if (!IsFast)
3008       return SDValue();
3009   }
3010 
3011   if (!shouldCombineMemoryType(VT))
3012     return SDValue();
3013 
3014   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3015 
3016   SDValue NewLoad
3017     = DAG.getLoad(NewVT, SL, LN->getChain(),
3018                   LN->getBasePtr(), LN->getMemOperand());
3019 
3020   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3021   DCI.CombineTo(N, BC, NewLoad.getValue(1));
3022   return SDValue(N, 0);
3023 }
3024 
3025 // Replace store of an illegal type with a store of a bitcast to a friendlier
3026 // type.
3027 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3028                                                   DAGCombinerInfo &DCI) const {
3029   if (!DCI.isBeforeLegalize())
3030     return SDValue();
3031 
3032   StoreSDNode *SN = cast<StoreSDNode>(N);
3033   if (!SN->isSimple() || !ISD::isNormalStore(SN))
3034     return SDValue();
3035 
3036   EVT VT = SN->getMemoryVT();
3037   unsigned Size = VT.getStoreSize();
3038 
3039   SDLoc SL(N);
3040   SelectionDAG &DAG = DCI.DAG;
3041   Align Alignment = SN->getAlign();
3042   if (Alignment < Size && isTypeLegal(VT)) {
3043     bool IsFast;
3044     unsigned AS = SN->getAddressSpace();
3045 
3046     // Expand unaligned stores earlier than legalization. Due to visitation
3047     // order problems during legalization, the emitted instructions to pack and
3048     // unpack the bytes again are not eliminated in the case of an unaligned
3049     // copy.
3050     if (!allowsMisalignedMemoryAccesses(
3051             VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3052       if (VT.isVector())
3053         return scalarizeVectorStore(SN, DAG);
3054 
3055       return expandUnalignedStore(SN, DAG);
3056     }
3057 
3058     if (!IsFast)
3059       return SDValue();
3060   }
3061 
3062   if (!shouldCombineMemoryType(VT))
3063     return SDValue();
3064 
3065   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3066   SDValue Val = SN->getValue();
3067 
3068   //DCI.AddToWorklist(Val.getNode());
3069 
3070   bool OtherUses = !Val.hasOneUse();
3071   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3072   if (OtherUses) {
3073     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3074     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3075   }
3076 
3077   return DAG.getStore(SN->getChain(), SL, CastVal,
3078                       SN->getBasePtr(), SN->getMemOperand());
3079 }
3080 
3081 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3082 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3083 // issues.
3084 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3085                                                         DAGCombinerInfo &DCI) const {
3086   SelectionDAG &DAG = DCI.DAG;
3087   SDValue N0 = N->getOperand(0);
3088 
3089   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3090   //     (vt2 (truncate (assertzext vt0:x, vt1)))
3091   if (N0.getOpcode() == ISD::TRUNCATE) {
3092     SDValue N1 = N->getOperand(1);
3093     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3094     SDLoc SL(N);
3095 
3096     SDValue Src = N0.getOperand(0);
3097     EVT SrcVT = Src.getValueType();
3098     if (SrcVT.bitsGE(ExtVT)) {
3099       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3100       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3101     }
3102   }
3103 
3104   return SDValue();
3105 }
3106 
3107 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3108   SDNode *N, DAGCombinerInfo &DCI) const {
3109   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3110   switch (IID) {
3111   case Intrinsic::amdgcn_mul_i24:
3112   case Intrinsic::amdgcn_mul_u24:
3113   case Intrinsic::amdgcn_mulhi_i24:
3114   case Intrinsic::amdgcn_mulhi_u24:
3115     return simplifyMul24(N, DCI);
3116   case Intrinsic::amdgcn_fract:
3117   case Intrinsic::amdgcn_rsq:
3118   case Intrinsic::amdgcn_rcp_legacy:
3119   case Intrinsic::amdgcn_rsq_legacy:
3120   case Intrinsic::amdgcn_rsq_clamp:
3121   case Intrinsic::amdgcn_ldexp: {
3122     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3123     SDValue Src = N->getOperand(1);
3124     return Src.isUndef() ? Src : SDValue();
3125   }
3126   default:
3127     return SDValue();
3128   }
3129 }
3130 
3131 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3132 /// binary operation \p Opc to it with the corresponding constant operands.
3133 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3134   DAGCombinerInfo &DCI, const SDLoc &SL,
3135   unsigned Opc, SDValue LHS,
3136   uint32_t ValLo, uint32_t ValHi) const {
3137   SelectionDAG &DAG = DCI.DAG;
3138   SDValue Lo, Hi;
3139   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3140 
3141   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3142   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3143 
3144   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3145   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3146 
3147   // Re-visit the ands. It's possible we eliminated one of them and it could
3148   // simplify the vector.
3149   DCI.AddToWorklist(Lo.getNode());
3150   DCI.AddToWorklist(Hi.getNode());
3151 
3152   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3153   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3154 }
3155 
3156 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3157                                                 DAGCombinerInfo &DCI) const {
3158   EVT VT = N->getValueType(0);
3159 
3160   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3161   if (!RHS)
3162     return SDValue();
3163 
3164   SDValue LHS = N->getOperand(0);
3165   unsigned RHSVal = RHS->getZExtValue();
3166   if (!RHSVal)
3167     return LHS;
3168 
3169   SDLoc SL(N);
3170   SelectionDAG &DAG = DCI.DAG;
3171 
3172   switch (LHS->getOpcode()) {
3173   default:
3174     break;
3175   case ISD::ZERO_EXTEND:
3176   case ISD::SIGN_EXTEND:
3177   case ISD::ANY_EXTEND: {
3178     SDValue X = LHS->getOperand(0);
3179 
3180     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3181         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3182       // Prefer build_vector as the canonical form if packed types are legal.
3183       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3184       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3185        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3186       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3187     }
3188 
3189     // shl (ext x) => zext (shl x), if shift does not overflow int
3190     if (VT != MVT::i64)
3191       break;
3192     KnownBits Known = DAG.computeKnownBits(X);
3193     unsigned LZ = Known.countMinLeadingZeros();
3194     if (LZ < RHSVal)
3195       break;
3196     EVT XVT = X.getValueType();
3197     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3198     return DAG.getZExtOrTrunc(Shl, SL, VT);
3199   }
3200   }
3201 
3202   if (VT != MVT::i64)
3203     return SDValue();
3204 
3205   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3206 
3207   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3208   // common case, splitting this into a move and a 32-bit shift is faster and
3209   // the same code size.
3210   if (RHSVal < 32)
3211     return SDValue();
3212 
3213   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3214 
3215   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3216   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3217 
3218   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3219 
3220   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3221   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3222 }
3223 
3224 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3225                                                 DAGCombinerInfo &DCI) const {
3226   if (N->getValueType(0) != MVT::i64)
3227     return SDValue();
3228 
3229   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3230   if (!RHS)
3231     return SDValue();
3232 
3233   SelectionDAG &DAG = DCI.DAG;
3234   SDLoc SL(N);
3235   unsigned RHSVal = RHS->getZExtValue();
3236 
3237   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3238   if (RHSVal == 32) {
3239     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3240     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3241                                    DAG.getConstant(31, SL, MVT::i32));
3242 
3243     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3244     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3245   }
3246 
3247   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3248   if (RHSVal == 63) {
3249     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3250     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3251                                    DAG.getConstant(31, SL, MVT::i32));
3252     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3253     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3254   }
3255 
3256   return SDValue();
3257 }
3258 
3259 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3260                                                 DAGCombinerInfo &DCI) const {
3261   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3262   if (!RHS)
3263     return SDValue();
3264 
3265   EVT VT = N->getValueType(0);
3266   SDValue LHS = N->getOperand(0);
3267   unsigned ShiftAmt = RHS->getZExtValue();
3268   SelectionDAG &DAG = DCI.DAG;
3269   SDLoc SL(N);
3270 
3271   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3272   // this improves the ability to match BFE patterns in isel.
3273   if (LHS.getOpcode() == ISD::AND) {
3274     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3275       if (Mask->getAPIntValue().isShiftedMask() &&
3276           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3277         return DAG.getNode(
3278             ISD::AND, SL, VT,
3279             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3280             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3281       }
3282     }
3283   }
3284 
3285   if (VT != MVT::i64)
3286     return SDValue();
3287 
3288   if (ShiftAmt < 32)
3289     return SDValue();
3290 
3291   // srl i64:x, C for C >= 32
3292   // =>
3293   //   build_pair (srl hi_32(x), C - 32), 0
3294   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3295 
3296   SDValue Hi = getHiHalf64(LHS, DAG);
3297 
3298   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3299   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3300 
3301   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3302 
3303   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3304 }
3305 
3306 SDValue AMDGPUTargetLowering::performTruncateCombine(
3307   SDNode *N, DAGCombinerInfo &DCI) const {
3308   SDLoc SL(N);
3309   SelectionDAG &DAG = DCI.DAG;
3310   EVT VT = N->getValueType(0);
3311   SDValue Src = N->getOperand(0);
3312 
3313   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3314   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3315     SDValue Vec = Src.getOperand(0);
3316     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3317       SDValue Elt0 = Vec.getOperand(0);
3318       EVT EltVT = Elt0.getValueType();
3319       if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3320         if (EltVT.isFloatingPoint()) {
3321           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3322                              EltVT.changeTypeToInteger(), Elt0);
3323         }
3324 
3325         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3326       }
3327     }
3328   }
3329 
3330   // Equivalent of above for accessing the high element of a vector as an
3331   // integer operation.
3332   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3333   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3334     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3335       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3336         SDValue BV = stripBitcast(Src.getOperand(0));
3337         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3338             BV.getValueType().getVectorNumElements() == 2) {
3339           SDValue SrcElt = BV.getOperand(1);
3340           EVT SrcEltVT = SrcElt.getValueType();
3341           if (SrcEltVT.isFloatingPoint()) {
3342             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3343                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3344           }
3345 
3346           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3347         }
3348       }
3349     }
3350   }
3351 
3352   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3353   //
3354   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3355   //     i16 (trunc (srl (i32 (trunc x), K)))
3356   if (VT.getScalarSizeInBits() < 32) {
3357     EVT SrcVT = Src.getValueType();
3358     if (SrcVT.getScalarSizeInBits() > 32 &&
3359         (Src.getOpcode() == ISD::SRL ||
3360          Src.getOpcode() == ISD::SRA ||
3361          Src.getOpcode() == ISD::SHL)) {
3362       SDValue Amt = Src.getOperand(1);
3363       KnownBits Known = DAG.computeKnownBits(Amt);
3364       unsigned Size = VT.getScalarSizeInBits();
3365       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3366           (Known.countMaxActiveBits() <= Log2_32(Size))) {
3367         EVT MidVT = VT.isVector() ?
3368           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3369                            VT.getVectorNumElements()) : MVT::i32;
3370 
3371         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3372         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3373                                     Src.getOperand(0));
3374         DCI.AddToWorklist(Trunc.getNode());
3375 
3376         if (Amt.getValueType() != NewShiftVT) {
3377           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3378           DCI.AddToWorklist(Amt.getNode());
3379         }
3380 
3381         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3382                                           Trunc, Amt);
3383         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3384       }
3385     }
3386   }
3387 
3388   return SDValue();
3389 }
3390 
3391 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3392 // instructions. If we only match on the legalized i64 mul expansion,
3393 // SimplifyDemandedBits will be unable to remove them because there will be
3394 // multiple uses due to the separate mul + mulh[su].
3395 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3396                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3397   if (Size <= 32) {
3398     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3399     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3400   }
3401 
3402   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3403   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3404 
3405   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3406   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3407 
3408   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3409 }
3410 
3411 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3412                                                 DAGCombinerInfo &DCI) const {
3413   EVT VT = N->getValueType(0);
3414 
3415   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3416   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3417   // unnecessarily). isDivergent() is used as an approximation of whether the
3418   // value is in an SGPR.
3419   if (!N->isDivergent())
3420     return SDValue();
3421 
3422   unsigned Size = VT.getSizeInBits();
3423   if (VT.isVector() || Size > 64)
3424     return SDValue();
3425 
3426   // There are i16 integer mul/mad.
3427   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3428     return SDValue();
3429 
3430   SelectionDAG &DAG = DCI.DAG;
3431   SDLoc DL(N);
3432 
3433   SDValue N0 = N->getOperand(0);
3434   SDValue N1 = N->getOperand(1);
3435 
3436   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3437   // in the source into any_extends if the result of the mul is truncated. Since
3438   // we can assume the high bits are whatever we want, use the underlying value
3439   // to avoid the unknown high bits from interfering.
3440   if (N0.getOpcode() == ISD::ANY_EXTEND)
3441     N0 = N0.getOperand(0);
3442 
3443   if (N1.getOpcode() == ISD::ANY_EXTEND)
3444     N1 = N1.getOperand(0);
3445 
3446   SDValue Mul;
3447 
3448   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3449     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3450     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3451     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3452   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3453     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3454     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3455     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3456   } else {
3457     return SDValue();
3458   }
3459 
3460   // We need to use sext even for MUL_U24, because MUL_U24 is used
3461   // for signed multiply of 8 and 16-bit types.
3462   return DAG.getSExtOrTrunc(Mul, DL, VT);
3463 }
3464 
3465 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3466                                                   DAGCombinerInfo &DCI) const {
3467   EVT VT = N->getValueType(0);
3468 
3469   if (!Subtarget->hasMulI24() || VT.isVector())
3470     return SDValue();
3471 
3472   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3473   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3474   // unnecessarily). isDivergent() is used as an approximation of whether the
3475   // value is in an SGPR.
3476   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3477   // valu op anyway)
3478   if (Subtarget->hasSMulHi() && !N->isDivergent())
3479     return SDValue();
3480 
3481   SelectionDAG &DAG = DCI.DAG;
3482   SDLoc DL(N);
3483 
3484   SDValue N0 = N->getOperand(0);
3485   SDValue N1 = N->getOperand(1);
3486 
3487   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3488     return SDValue();
3489 
3490   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3491   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3492 
3493   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3494   DCI.AddToWorklist(Mulhi.getNode());
3495   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3496 }
3497 
3498 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3499                                                   DAGCombinerInfo &DCI) const {
3500   EVT VT = N->getValueType(0);
3501 
3502   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3503     return SDValue();
3504 
3505   // Don't generate 24-bit multiplies on values that are in SGPRs, since
3506   // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3507   // unnecessarily). isDivergent() is used as an approximation of whether the
3508   // value is in an SGPR.
3509   // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3510   // valu op anyway)
3511   if (Subtarget->hasSMulHi() && !N->isDivergent())
3512     return SDValue();
3513 
3514   SelectionDAG &DAG = DCI.DAG;
3515   SDLoc DL(N);
3516 
3517   SDValue N0 = N->getOperand(0);
3518   SDValue N1 = N->getOperand(1);
3519 
3520   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3521     return SDValue();
3522 
3523   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3524   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3525 
3526   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3527   DCI.AddToWorklist(Mulhi.getNode());
3528   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3529 }
3530 
3531 static bool isNegativeOne(SDValue Val) {
3532   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3533     return C->isAllOnes();
3534   return false;
3535 }
3536 
3537 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3538                                           SDValue Op,
3539                                           const SDLoc &DL,
3540                                           unsigned Opc) const {
3541   EVT VT = Op.getValueType();
3542   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3543   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3544                               LegalVT != MVT::i16))
3545     return SDValue();
3546 
3547   if (VT != MVT::i32)
3548     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3549 
3550   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3551   if (VT != MVT::i32)
3552     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3553 
3554   return FFBX;
3555 }
3556 
3557 // The native instructions return -1 on 0 input. Optimize out a select that
3558 // produces -1 on 0.
3559 //
3560 // TODO: If zero is not undef, we could also do this if the output is compared
3561 // against the bitwidth.
3562 //
3563 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3564 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3565                                                  SDValue LHS, SDValue RHS,
3566                                                  DAGCombinerInfo &DCI) const {
3567   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3568   if (!CmpRhs || !CmpRhs->isZero())
3569     return SDValue();
3570 
3571   SelectionDAG &DAG = DCI.DAG;
3572   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3573   SDValue CmpLHS = Cond.getOperand(0);
3574 
3575   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3576   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3577   if (CCOpcode == ISD::SETEQ &&
3578       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3579       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3580     unsigned Opc =
3581         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3582     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3583   }
3584 
3585   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3586   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3587   if (CCOpcode == ISD::SETNE &&
3588       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3589       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3590     unsigned Opc =
3591         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3592 
3593     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3594   }
3595 
3596   return SDValue();
3597 }
3598 
3599 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3600                                          unsigned Op,
3601                                          const SDLoc &SL,
3602                                          SDValue Cond,
3603                                          SDValue N1,
3604                                          SDValue N2) {
3605   SelectionDAG &DAG = DCI.DAG;
3606   EVT VT = N1.getValueType();
3607 
3608   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3609                                   N1.getOperand(0), N2.getOperand(0));
3610   DCI.AddToWorklist(NewSelect.getNode());
3611   return DAG.getNode(Op, SL, VT, NewSelect);
3612 }
3613 
3614 // Pull a free FP operation out of a select so it may fold into uses.
3615 //
3616 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3617 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3618 //
3619 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3620 // select c, (fabs x), +k -> fabs (select c, x, k)
3621 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3622                                     SDValue N) {
3623   SelectionDAG &DAG = DCI.DAG;
3624   SDValue Cond = N.getOperand(0);
3625   SDValue LHS = N.getOperand(1);
3626   SDValue RHS = N.getOperand(2);
3627 
3628   EVT VT = N.getValueType();
3629   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3630       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3631     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3632                                      SDLoc(N), Cond, LHS, RHS);
3633   }
3634 
3635   bool Inv = false;
3636   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3637     std::swap(LHS, RHS);
3638     Inv = true;
3639   }
3640 
3641   // TODO: Support vector constants.
3642   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3643   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3644     SDLoc SL(N);
3645     // If one side is an fneg/fabs and the other is a constant, we can push the
3646     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3647     SDValue NewLHS = LHS.getOperand(0);
3648     SDValue NewRHS = RHS;
3649 
3650     // Careful: if the neg can be folded up, don't try to pull it back down.
3651     bool ShouldFoldNeg = true;
3652 
3653     if (NewLHS.hasOneUse()) {
3654       unsigned Opc = NewLHS.getOpcode();
3655       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3656         ShouldFoldNeg = false;
3657       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3658         ShouldFoldNeg = false;
3659     }
3660 
3661     if (ShouldFoldNeg) {
3662       if (LHS.getOpcode() == ISD::FNEG)
3663         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3664       else if (CRHS->isNegative())
3665         return SDValue();
3666 
3667       if (Inv)
3668         std::swap(NewLHS, NewRHS);
3669 
3670       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3671                                       Cond, NewLHS, NewRHS);
3672       DCI.AddToWorklist(NewSelect.getNode());
3673       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3674     }
3675   }
3676 
3677   return SDValue();
3678 }
3679 
3680 
3681 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3682                                                    DAGCombinerInfo &DCI) const {
3683   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3684     return Folded;
3685 
3686   SDValue Cond = N->getOperand(0);
3687   if (Cond.getOpcode() != ISD::SETCC)
3688     return SDValue();
3689 
3690   EVT VT = N->getValueType(0);
3691   SDValue LHS = Cond.getOperand(0);
3692   SDValue RHS = Cond.getOperand(1);
3693   SDValue CC = Cond.getOperand(2);
3694 
3695   SDValue True = N->getOperand(1);
3696   SDValue False = N->getOperand(2);
3697 
3698   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3699     SelectionDAG &DAG = DCI.DAG;
3700     if (DAG.isConstantValueOfAnyType(True) &&
3701         !DAG.isConstantValueOfAnyType(False)) {
3702       // Swap cmp + select pair to move constant to false input.
3703       // This will allow using VOPC cndmasks more often.
3704       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3705 
3706       SDLoc SL(N);
3707       ISD::CondCode NewCC =
3708           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3709 
3710       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3711       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3712     }
3713 
3714     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3715       SDValue MinMax
3716         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3717       // Revisit this node so we can catch min3/max3/med3 patterns.
3718       //DCI.AddToWorklist(MinMax.getNode());
3719       return MinMax;
3720     }
3721   }
3722 
3723   // There's no reason to not do this if the condition has other uses.
3724   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3725 }
3726 
3727 static bool isInv2Pi(const APFloat &APF) {
3728   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3729   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3730   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3731 
3732   return APF.bitwiseIsEqual(KF16) ||
3733          APF.bitwiseIsEqual(KF32) ||
3734          APF.bitwiseIsEqual(KF64);
3735 }
3736 
3737 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3738 // additional cost to negate them.
3739 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3740   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3741     if (C->isZero() && !C->isNegative())
3742       return true;
3743 
3744     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3745       return true;
3746   }
3747 
3748   return false;
3749 }
3750 
3751 static unsigned inverseMinMax(unsigned Opc) {
3752   switch (Opc) {
3753   case ISD::FMAXNUM:
3754     return ISD::FMINNUM;
3755   case ISD::FMINNUM:
3756     return ISD::FMAXNUM;
3757   case ISD::FMAXNUM_IEEE:
3758     return ISD::FMINNUM_IEEE;
3759   case ISD::FMINNUM_IEEE:
3760     return ISD::FMAXNUM_IEEE;
3761   case AMDGPUISD::FMAX_LEGACY:
3762     return AMDGPUISD::FMIN_LEGACY;
3763   case AMDGPUISD::FMIN_LEGACY:
3764     return  AMDGPUISD::FMAX_LEGACY;
3765   default:
3766     llvm_unreachable("invalid min/max opcode");
3767   }
3768 }
3769 
3770 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3771                                                  DAGCombinerInfo &DCI) const {
3772   SelectionDAG &DAG = DCI.DAG;
3773   SDValue N0 = N->getOperand(0);
3774   EVT VT = N->getValueType(0);
3775 
3776   unsigned Opc = N0.getOpcode();
3777 
3778   // If the input has multiple uses and we can either fold the negate down, or
3779   // the other uses cannot, give up. This both prevents unprofitable
3780   // transformations and infinite loops: we won't repeatedly try to fold around
3781   // a negate that has no 'good' form.
3782   if (N0.hasOneUse()) {
3783     // This may be able to fold into the source, but at a code size cost. Don't
3784     // fold if the fold into the user is free.
3785     if (allUsesHaveSourceMods(N, 0))
3786       return SDValue();
3787   } else {
3788     if (fnegFoldsIntoOp(Opc) &&
3789         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3790       return SDValue();
3791   }
3792 
3793   SDLoc SL(N);
3794   switch (Opc) {
3795   case ISD::FADD: {
3796     if (!mayIgnoreSignedZero(N0))
3797       return SDValue();
3798 
3799     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3800     SDValue LHS = N0.getOperand(0);
3801     SDValue RHS = N0.getOperand(1);
3802 
3803     if (LHS.getOpcode() != ISD::FNEG)
3804       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3805     else
3806       LHS = LHS.getOperand(0);
3807 
3808     if (RHS.getOpcode() != ISD::FNEG)
3809       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3810     else
3811       RHS = RHS.getOperand(0);
3812 
3813     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3814     if (Res.getOpcode() != ISD::FADD)
3815       return SDValue(); // Op got folded away.
3816     if (!N0.hasOneUse())
3817       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3818     return Res;
3819   }
3820   case ISD::FMUL:
3821   case AMDGPUISD::FMUL_LEGACY: {
3822     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3823     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3824     SDValue LHS = N0.getOperand(0);
3825     SDValue RHS = N0.getOperand(1);
3826 
3827     if (LHS.getOpcode() == ISD::FNEG)
3828       LHS = LHS.getOperand(0);
3829     else if (RHS.getOpcode() == ISD::FNEG)
3830       RHS = RHS.getOperand(0);
3831     else
3832       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3833 
3834     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3835     if (Res.getOpcode() != Opc)
3836       return SDValue(); // Op got folded away.
3837     if (!N0.hasOneUse())
3838       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3839     return Res;
3840   }
3841   case ISD::FMA:
3842   case ISD::FMAD: {
3843     // TODO: handle llvm.amdgcn.fma.legacy
3844     if (!mayIgnoreSignedZero(N0))
3845       return SDValue();
3846 
3847     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3848     SDValue LHS = N0.getOperand(0);
3849     SDValue MHS = N0.getOperand(1);
3850     SDValue RHS = N0.getOperand(2);
3851 
3852     if (LHS.getOpcode() == ISD::FNEG)
3853       LHS = LHS.getOperand(0);
3854     else if (MHS.getOpcode() == ISD::FNEG)
3855       MHS = MHS.getOperand(0);
3856     else
3857       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3858 
3859     if (RHS.getOpcode() != ISD::FNEG)
3860       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3861     else
3862       RHS = RHS.getOperand(0);
3863 
3864     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3865     if (Res.getOpcode() != Opc)
3866       return SDValue(); // Op got folded away.
3867     if (!N0.hasOneUse())
3868       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3869     return Res;
3870   }
3871   case ISD::FMAXNUM:
3872   case ISD::FMINNUM:
3873   case ISD::FMAXNUM_IEEE:
3874   case ISD::FMINNUM_IEEE:
3875   case AMDGPUISD::FMAX_LEGACY:
3876   case AMDGPUISD::FMIN_LEGACY: {
3877     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3878     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3879     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3880     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3881 
3882     SDValue LHS = N0.getOperand(0);
3883     SDValue RHS = N0.getOperand(1);
3884 
3885     // 0 doesn't have a negated inline immediate.
3886     // TODO: This constant check should be generalized to other operations.
3887     if (isConstantCostlierToNegate(RHS))
3888       return SDValue();
3889 
3890     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3891     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3892     unsigned Opposite = inverseMinMax(Opc);
3893 
3894     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3895     if (Res.getOpcode() != Opposite)
3896       return SDValue(); // Op got folded away.
3897     if (!N0.hasOneUse())
3898       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3899     return Res;
3900   }
3901   case AMDGPUISD::FMED3: {
3902     SDValue Ops[3];
3903     for (unsigned I = 0; I < 3; ++I)
3904       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3905 
3906     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3907     if (Res.getOpcode() != AMDGPUISD::FMED3)
3908       return SDValue(); // Op got folded away.
3909 
3910     if (!N0.hasOneUse()) {
3911       SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3912       DAG.ReplaceAllUsesWith(N0, Neg);
3913 
3914       for (SDNode *U : Neg->uses())
3915         DCI.AddToWorklist(U);
3916     }
3917 
3918     return Res;
3919   }
3920   case ISD::FP_EXTEND:
3921   case ISD::FTRUNC:
3922   case ISD::FRINT:
3923   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3924   case ISD::FSIN:
3925   case ISD::FCANONICALIZE:
3926   case AMDGPUISD::RCP:
3927   case AMDGPUISD::RCP_LEGACY:
3928   case AMDGPUISD::RCP_IFLAG:
3929   case AMDGPUISD::SIN_HW: {
3930     SDValue CvtSrc = N0.getOperand(0);
3931     if (CvtSrc.getOpcode() == ISD::FNEG) {
3932       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3933       // (fneg (rcp (fneg x))) -> (rcp x)
3934       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3935     }
3936 
3937     if (!N0.hasOneUse())
3938       return SDValue();
3939 
3940     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3941     // (fneg (rcp x)) -> (rcp (fneg x))
3942     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3943     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3944   }
3945   case ISD::FP_ROUND: {
3946     SDValue CvtSrc = N0.getOperand(0);
3947 
3948     if (CvtSrc.getOpcode() == ISD::FNEG) {
3949       // (fneg (fp_round (fneg x))) -> (fp_round x)
3950       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3951                          CvtSrc.getOperand(0), N0.getOperand(1));
3952     }
3953 
3954     if (!N0.hasOneUse())
3955       return SDValue();
3956 
3957     // (fneg (fp_round x)) -> (fp_round (fneg x))
3958     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3959     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3960   }
3961   case ISD::FP16_TO_FP: {
3962     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3963     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3964     // Put the fneg back as a legal source operation that can be matched later.
3965     SDLoc SL(N);
3966 
3967     SDValue Src = N0.getOperand(0);
3968     EVT SrcVT = Src.getValueType();
3969 
3970     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3971     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3972                                   DAG.getConstant(0x8000, SL, SrcVT));
3973     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3974   }
3975   default:
3976     return SDValue();
3977   }
3978 }
3979 
3980 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3981                                                  DAGCombinerInfo &DCI) const {
3982   SelectionDAG &DAG = DCI.DAG;
3983   SDValue N0 = N->getOperand(0);
3984 
3985   if (!N0.hasOneUse())
3986     return SDValue();
3987 
3988   switch (N0.getOpcode()) {
3989   case ISD::FP16_TO_FP: {
3990     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3991     SDLoc SL(N);
3992     SDValue Src = N0.getOperand(0);
3993     EVT SrcVT = Src.getValueType();
3994 
3995     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3996     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3997                                   DAG.getConstant(0x7fff, SL, SrcVT));
3998     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3999   }
4000   default:
4001     return SDValue();
4002   }
4003 }
4004 
4005 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
4006                                                 DAGCombinerInfo &DCI) const {
4007   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4008   if (!CFP)
4009     return SDValue();
4010 
4011   // XXX - Should this flush denormals?
4012   const APFloat &Val = CFP->getValueAPF();
4013   APFloat One(Val.getSemantics(), "1.0");
4014   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4015 }
4016 
4017 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4018                                                 DAGCombinerInfo &DCI) const {
4019   SelectionDAG &DAG = DCI.DAG;
4020   SDLoc DL(N);
4021 
4022   switch(N->getOpcode()) {
4023   default:
4024     break;
4025   case ISD::BITCAST: {
4026     EVT DestVT = N->getValueType(0);
4027 
4028     // Push casts through vector builds. This helps avoid emitting a large
4029     // number of copies when materializing floating point vector constants.
4030     //
4031     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4032     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4033     if (DestVT.isVector()) {
4034       SDValue Src = N->getOperand(0);
4035       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4036         EVT SrcVT = Src.getValueType();
4037         unsigned NElts = DestVT.getVectorNumElements();
4038 
4039         if (SrcVT.getVectorNumElements() == NElts) {
4040           EVT DestEltVT = DestVT.getVectorElementType();
4041 
4042           SmallVector<SDValue, 8> CastedElts;
4043           SDLoc SL(N);
4044           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4045             SDValue Elt = Src.getOperand(I);
4046             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4047           }
4048 
4049           return DAG.getBuildVector(DestVT, SL, CastedElts);
4050         }
4051       }
4052     }
4053 
4054     if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4055       break;
4056 
4057     // Fold bitcasts of constants.
4058     //
4059     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4060     // TODO: Generalize and move to DAGCombiner
4061     SDValue Src = N->getOperand(0);
4062     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4063       SDLoc SL(N);
4064       uint64_t CVal = C->getZExtValue();
4065       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4066                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4067                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4068       return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4069     }
4070 
4071     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4072       const APInt &Val = C->getValueAPF().bitcastToAPInt();
4073       SDLoc SL(N);
4074       uint64_t CVal = Val.getZExtValue();
4075       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4076                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4077                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4078 
4079       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4080     }
4081 
4082     break;
4083   }
4084   case ISD::SHL: {
4085     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4086       break;
4087 
4088     return performShlCombine(N, DCI);
4089   }
4090   case ISD::SRL: {
4091     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4092       break;
4093 
4094     return performSrlCombine(N, DCI);
4095   }
4096   case ISD::SRA: {
4097     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4098       break;
4099 
4100     return performSraCombine(N, DCI);
4101   }
4102   case ISD::TRUNCATE:
4103     return performTruncateCombine(N, DCI);
4104   case ISD::MUL:
4105     return performMulCombine(N, DCI);
4106   case ISD::MULHS:
4107     return performMulhsCombine(N, DCI);
4108   case ISD::MULHU:
4109     return performMulhuCombine(N, DCI);
4110   case AMDGPUISD::MUL_I24:
4111   case AMDGPUISD::MUL_U24:
4112   case AMDGPUISD::MULHI_I24:
4113   case AMDGPUISD::MULHI_U24:
4114     return simplifyMul24(N, DCI);
4115   case ISD::SELECT:
4116     return performSelectCombine(N, DCI);
4117   case ISD::FNEG:
4118     return performFNegCombine(N, DCI);
4119   case ISD::FABS:
4120     return performFAbsCombine(N, DCI);
4121   case AMDGPUISD::BFE_I32:
4122   case AMDGPUISD::BFE_U32: {
4123     assert(!N->getValueType(0).isVector() &&
4124            "Vector handling of BFE not implemented");
4125     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4126     if (!Width)
4127       break;
4128 
4129     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4130     if (WidthVal == 0)
4131       return DAG.getConstant(0, DL, MVT::i32);
4132 
4133     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4134     if (!Offset)
4135       break;
4136 
4137     SDValue BitsFrom = N->getOperand(0);
4138     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4139 
4140     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4141 
4142     if (OffsetVal == 0) {
4143       // This is already sign / zero extended, so try to fold away extra BFEs.
4144       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4145 
4146       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4147       if (OpSignBits >= SignBits)
4148         return BitsFrom;
4149 
4150       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4151       if (Signed) {
4152         // This is a sign_extend_inreg. Replace it to take advantage of existing
4153         // DAG Combines. If not eliminated, we will match back to BFE during
4154         // selection.
4155 
4156         // TODO: The sext_inreg of extended types ends, although we can could
4157         // handle them in a single BFE.
4158         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4159                            DAG.getValueType(SmallVT));
4160       }
4161 
4162       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4163     }
4164 
4165     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4166       if (Signed) {
4167         return constantFoldBFE<int32_t>(DAG,
4168                                         CVal->getSExtValue(),
4169                                         OffsetVal,
4170                                         WidthVal,
4171                                         DL);
4172       }
4173 
4174       return constantFoldBFE<uint32_t>(DAG,
4175                                        CVal->getZExtValue(),
4176                                        OffsetVal,
4177                                        WidthVal,
4178                                        DL);
4179     }
4180 
4181     if ((OffsetVal + WidthVal) >= 32 &&
4182         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4183       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4184       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4185                          BitsFrom, ShiftVal);
4186     }
4187 
4188     if (BitsFrom.hasOneUse()) {
4189       APInt Demanded = APInt::getBitsSet(32,
4190                                          OffsetVal,
4191                                          OffsetVal + WidthVal);
4192 
4193       KnownBits Known;
4194       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4195                                             !DCI.isBeforeLegalizeOps());
4196       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4197       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4198           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4199         DCI.CommitTargetLoweringOpt(TLO);
4200       }
4201     }
4202 
4203     break;
4204   }
4205   case ISD::LOAD:
4206     return performLoadCombine(N, DCI);
4207   case ISD::STORE:
4208     return performStoreCombine(N, DCI);
4209   case AMDGPUISD::RCP:
4210   case AMDGPUISD::RCP_IFLAG:
4211     return performRcpCombine(N, DCI);
4212   case ISD::AssertZext:
4213   case ISD::AssertSext:
4214     return performAssertSZExtCombine(N, DCI);
4215   case ISD::INTRINSIC_WO_CHAIN:
4216     return performIntrinsicWOChainCombine(N, DCI);
4217   }
4218   return SDValue();
4219 }
4220 
4221 //===----------------------------------------------------------------------===//
4222 // Helper functions
4223 //===----------------------------------------------------------------------===//
4224 
4225 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4226                                                    const TargetRegisterClass *RC,
4227                                                    Register Reg, EVT VT,
4228                                                    const SDLoc &SL,
4229                                                    bool RawReg) const {
4230   MachineFunction &MF = DAG.getMachineFunction();
4231   MachineRegisterInfo &MRI = MF.getRegInfo();
4232   Register VReg;
4233 
4234   if (!MRI.isLiveIn(Reg)) {
4235     VReg = MRI.createVirtualRegister(RC);
4236     MRI.addLiveIn(Reg, VReg);
4237   } else {
4238     VReg = MRI.getLiveInVirtReg(Reg);
4239   }
4240 
4241   if (RawReg)
4242     return DAG.getRegister(VReg, VT);
4243 
4244   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4245 }
4246 
4247 // This may be called multiple times, and nothing prevents creating multiple
4248 // objects at the same offset. See if we already defined this object.
4249 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4250                                        int64_t Offset) {
4251   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4252     if (MFI.getObjectOffset(I) == Offset) {
4253       assert(MFI.getObjectSize(I) == Size);
4254       return I;
4255     }
4256   }
4257 
4258   return MFI.CreateFixedObject(Size, Offset, true);
4259 }
4260 
4261 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4262                                                   EVT VT,
4263                                                   const SDLoc &SL,
4264                                                   int64_t Offset) const {
4265   MachineFunction &MF = DAG.getMachineFunction();
4266   MachineFrameInfo &MFI = MF.getFrameInfo();
4267   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4268 
4269   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4270   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4271 
4272   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4273                      MachineMemOperand::MODereferenceable |
4274                          MachineMemOperand::MOInvariant);
4275 }
4276 
4277 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4278                                                    const SDLoc &SL,
4279                                                    SDValue Chain,
4280                                                    SDValue ArgVal,
4281                                                    int64_t Offset) const {
4282   MachineFunction &MF = DAG.getMachineFunction();
4283   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4284   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4285 
4286   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4287   // Stores to the argument stack area are relative to the stack pointer.
4288   SDValue SP =
4289       DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4290   Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4291   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4292                                MachineMemOperand::MODereferenceable);
4293   return Store;
4294 }
4295 
4296 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4297                                              const TargetRegisterClass *RC,
4298                                              EVT VT, const SDLoc &SL,
4299                                              const ArgDescriptor &Arg) const {
4300   assert(Arg && "Attempting to load missing argument");
4301 
4302   SDValue V = Arg.isRegister() ?
4303     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4304     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4305 
4306   if (!Arg.isMasked())
4307     return V;
4308 
4309   unsigned Mask = Arg.getMask();
4310   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4311   V = DAG.getNode(ISD::SRL, SL, VT, V,
4312                   DAG.getShiftAmountConstant(Shift, VT, SL));
4313   return DAG.getNode(ISD::AND, SL, VT, V,
4314                      DAG.getConstant(Mask >> Shift, SL, VT));
4315 }
4316 
4317 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4318     const MachineFunction &MF, const ImplicitParameter Param) const {
4319   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4320   const AMDGPUSubtarget &ST =
4321       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4322   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4323   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4324   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4325                        ExplicitArgOffset;
4326   switch (Param) {
4327   case GRID_DIM:
4328     return ArgOffset;
4329   case GRID_OFFSET:
4330     return ArgOffset + 4;
4331   }
4332   llvm_unreachable("unexpected implicit parameter type");
4333 }
4334 
4335 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4336 
4337 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4338   switch ((AMDGPUISD::NodeType)Opcode) {
4339   case AMDGPUISD::FIRST_NUMBER: break;
4340   // AMDIL DAG nodes
4341   NODE_NAME_CASE(UMUL);
4342   NODE_NAME_CASE(BRANCH_COND);
4343 
4344   // AMDGPU DAG nodes
4345   NODE_NAME_CASE(IF)
4346   NODE_NAME_CASE(ELSE)
4347   NODE_NAME_CASE(LOOP)
4348   NODE_NAME_CASE(CALL)
4349   NODE_NAME_CASE(TC_RETURN)
4350   NODE_NAME_CASE(TRAP)
4351   NODE_NAME_CASE(RET_FLAG)
4352   NODE_NAME_CASE(RET_GFX_FLAG)
4353   NODE_NAME_CASE(RETURN_TO_EPILOG)
4354   NODE_NAME_CASE(ENDPGM)
4355   NODE_NAME_CASE(DWORDADDR)
4356   NODE_NAME_CASE(FRACT)
4357   NODE_NAME_CASE(SETCC)
4358   NODE_NAME_CASE(SETREG)
4359   NODE_NAME_CASE(DENORM_MODE)
4360   NODE_NAME_CASE(FMA_W_CHAIN)
4361   NODE_NAME_CASE(FMUL_W_CHAIN)
4362   NODE_NAME_CASE(CLAMP)
4363   NODE_NAME_CASE(COS_HW)
4364   NODE_NAME_CASE(SIN_HW)
4365   NODE_NAME_CASE(FMAX_LEGACY)
4366   NODE_NAME_CASE(FMIN_LEGACY)
4367   NODE_NAME_CASE(FMAX3)
4368   NODE_NAME_CASE(SMAX3)
4369   NODE_NAME_CASE(UMAX3)
4370   NODE_NAME_CASE(FMIN3)
4371   NODE_NAME_CASE(SMIN3)
4372   NODE_NAME_CASE(UMIN3)
4373   NODE_NAME_CASE(FMED3)
4374   NODE_NAME_CASE(SMED3)
4375   NODE_NAME_CASE(UMED3)
4376   NODE_NAME_CASE(FDOT2)
4377   NODE_NAME_CASE(URECIP)
4378   NODE_NAME_CASE(DIV_SCALE)
4379   NODE_NAME_CASE(DIV_FMAS)
4380   NODE_NAME_CASE(DIV_FIXUP)
4381   NODE_NAME_CASE(FMAD_FTZ)
4382   NODE_NAME_CASE(RCP)
4383   NODE_NAME_CASE(RSQ)
4384   NODE_NAME_CASE(RCP_LEGACY)
4385   NODE_NAME_CASE(RCP_IFLAG)
4386   NODE_NAME_CASE(FMUL_LEGACY)
4387   NODE_NAME_CASE(RSQ_CLAMP)
4388   NODE_NAME_CASE(LDEXP)
4389   NODE_NAME_CASE(FP_CLASS)
4390   NODE_NAME_CASE(DOT4)
4391   NODE_NAME_CASE(CARRY)
4392   NODE_NAME_CASE(BORROW)
4393   NODE_NAME_CASE(BFE_U32)
4394   NODE_NAME_CASE(BFE_I32)
4395   NODE_NAME_CASE(BFI)
4396   NODE_NAME_CASE(BFM)
4397   NODE_NAME_CASE(FFBH_U32)
4398   NODE_NAME_CASE(FFBH_I32)
4399   NODE_NAME_CASE(FFBL_B32)
4400   NODE_NAME_CASE(MUL_U24)
4401   NODE_NAME_CASE(MUL_I24)
4402   NODE_NAME_CASE(MULHI_U24)
4403   NODE_NAME_CASE(MULHI_I24)
4404   NODE_NAME_CASE(MAD_U24)
4405   NODE_NAME_CASE(MAD_I24)
4406   NODE_NAME_CASE(MAD_I64_I32)
4407   NODE_NAME_CASE(MAD_U64_U32)
4408   NODE_NAME_CASE(PERM)
4409   NODE_NAME_CASE(TEXTURE_FETCH)
4410   NODE_NAME_CASE(R600_EXPORT)
4411   NODE_NAME_CASE(CONST_ADDRESS)
4412   NODE_NAME_CASE(REGISTER_LOAD)
4413   NODE_NAME_CASE(REGISTER_STORE)
4414   NODE_NAME_CASE(SAMPLE)
4415   NODE_NAME_CASE(SAMPLEB)
4416   NODE_NAME_CASE(SAMPLED)
4417   NODE_NAME_CASE(SAMPLEL)
4418   NODE_NAME_CASE(CVT_F32_UBYTE0)
4419   NODE_NAME_CASE(CVT_F32_UBYTE1)
4420   NODE_NAME_CASE(CVT_F32_UBYTE2)
4421   NODE_NAME_CASE(CVT_F32_UBYTE3)
4422   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4423   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4424   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4425   NODE_NAME_CASE(CVT_PK_I16_I32)
4426   NODE_NAME_CASE(CVT_PK_U16_U32)
4427   NODE_NAME_CASE(FP_TO_FP16)
4428   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4429   NODE_NAME_CASE(CONST_DATA_PTR)
4430   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4431   NODE_NAME_CASE(LDS)
4432   NODE_NAME_CASE(DUMMY_CHAIN)
4433   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4434   NODE_NAME_CASE(LOAD_D16_HI)
4435   NODE_NAME_CASE(LOAD_D16_LO)
4436   NODE_NAME_CASE(LOAD_D16_HI_I8)
4437   NODE_NAME_CASE(LOAD_D16_HI_U8)
4438   NODE_NAME_CASE(LOAD_D16_LO_I8)
4439   NODE_NAME_CASE(LOAD_D16_LO_U8)
4440   NODE_NAME_CASE(STORE_MSKOR)
4441   NODE_NAME_CASE(LOAD_CONSTANT)
4442   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4443   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4444   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4445   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4446   NODE_NAME_CASE(DS_ORDERED_COUNT)
4447   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4448   NODE_NAME_CASE(ATOMIC_INC)
4449   NODE_NAME_CASE(ATOMIC_DEC)
4450   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4451   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4452   NODE_NAME_CASE(BUFFER_LOAD)
4453   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4454   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4455   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4456   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4457   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4458   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4459   NODE_NAME_CASE(SBUFFER_LOAD)
4460   NODE_NAME_CASE(BUFFER_STORE)
4461   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4462   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4463   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4464   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4465   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4466   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4467   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4468   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4469   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4470   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4471   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4472   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4473   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4474   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4475   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4476   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4477   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4478   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4479   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4480   NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4481   NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4482 
4483   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4484   }
4485   return nullptr;
4486 }
4487 
4488 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4489                                               SelectionDAG &DAG, int Enabled,
4490                                               int &RefinementSteps,
4491                                               bool &UseOneConstNR,
4492                                               bool Reciprocal) const {
4493   EVT VT = Operand.getValueType();
4494 
4495   if (VT == MVT::f32) {
4496     RefinementSteps = 0;
4497     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4498   }
4499 
4500   // TODO: There is also f64 rsq instruction, but the documentation is less
4501   // clear on its precision.
4502 
4503   return SDValue();
4504 }
4505 
4506 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4507                                                SelectionDAG &DAG, int Enabled,
4508                                                int &RefinementSteps) const {
4509   EVT VT = Operand.getValueType();
4510 
4511   if (VT == MVT::f32) {
4512     // Reciprocal, < 1 ulp error.
4513     //
4514     // This reciprocal approximation converges to < 0.5 ulp error with one
4515     // newton rhapson performed with two fused multiple adds (FMAs).
4516 
4517     RefinementSteps = 0;
4518     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4519   }
4520 
4521   // TODO: There is also f64 rcp instruction, but the documentation is less
4522   // clear on its precision.
4523 
4524   return SDValue();
4525 }
4526 
4527 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4528     const SDValue Op, KnownBits &Known,
4529     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4530 
4531   Known.resetAll(); // Don't know anything.
4532 
4533   unsigned Opc = Op.getOpcode();
4534 
4535   switch (Opc) {
4536   default:
4537     break;
4538   case AMDGPUISD::CARRY:
4539   case AMDGPUISD::BORROW: {
4540     Known.Zero = APInt::getHighBitsSet(32, 31);
4541     break;
4542   }
4543 
4544   case AMDGPUISD::BFE_I32:
4545   case AMDGPUISD::BFE_U32: {
4546     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4547     if (!CWidth)
4548       return;
4549 
4550     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4551 
4552     if (Opc == AMDGPUISD::BFE_U32)
4553       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4554 
4555     break;
4556   }
4557   case AMDGPUISD::FP_TO_FP16: {
4558     unsigned BitWidth = Known.getBitWidth();
4559 
4560     // High bits are zero.
4561     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4562     break;
4563   }
4564   case AMDGPUISD::MUL_U24:
4565   case AMDGPUISD::MUL_I24: {
4566     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4567     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4568     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4569                       RHSKnown.countMinTrailingZeros();
4570     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4571     // Skip extra check if all bits are known zeros.
4572     if (TrailZ >= 32)
4573       break;
4574 
4575     // Truncate to 24 bits.
4576     LHSKnown = LHSKnown.trunc(24);
4577     RHSKnown = RHSKnown.trunc(24);
4578 
4579     if (Opc == AMDGPUISD::MUL_I24) {
4580       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4581       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4582       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4583       if (MaxValBits >= 32)
4584         break;
4585       bool LHSNegative = LHSKnown.isNegative();
4586       bool LHSNonNegative = LHSKnown.isNonNegative();
4587       bool LHSPositive = LHSKnown.isStrictlyPositive();
4588       bool RHSNegative = RHSKnown.isNegative();
4589       bool RHSNonNegative = RHSKnown.isNonNegative();
4590       bool RHSPositive = RHSKnown.isStrictlyPositive();
4591 
4592       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4593         Known.Zero.setHighBits(32 - MaxValBits);
4594       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4595         Known.One.setHighBits(32 - MaxValBits);
4596     } else {
4597       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4598       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4599       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4600       if (MaxValBits >= 32)
4601         break;
4602       Known.Zero.setHighBits(32 - MaxValBits);
4603     }
4604     break;
4605   }
4606   case AMDGPUISD::PERM: {
4607     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4608     if (!CMask)
4609       return;
4610 
4611     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4612     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4613     unsigned Sel = CMask->getZExtValue();
4614 
4615     for (unsigned I = 0; I < 32; I += 8) {
4616       unsigned SelBits = Sel & 0xff;
4617       if (SelBits < 4) {
4618         SelBits *= 8;
4619         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4620         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4621       } else if (SelBits < 7) {
4622         SelBits = (SelBits & 3) * 8;
4623         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4624         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4625       } else if (SelBits == 0x0c) {
4626         Known.Zero |= 0xFFull << I;
4627       } else if (SelBits > 0x0c) {
4628         Known.One |= 0xFFull << I;
4629       }
4630       Sel >>= 8;
4631     }
4632     break;
4633   }
4634   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4635     Known.Zero.setHighBits(24);
4636     break;
4637   }
4638   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4639     Known.Zero.setHighBits(16);
4640     break;
4641   }
4642   case AMDGPUISD::LDS: {
4643     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4644     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4645 
4646     Known.Zero.setHighBits(16);
4647     Known.Zero.setLowBits(Log2(Alignment));
4648     break;
4649   }
4650   case ISD::INTRINSIC_WO_CHAIN: {
4651     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4652     switch (IID) {
4653     case Intrinsic::amdgcn_mbcnt_lo:
4654     case Intrinsic::amdgcn_mbcnt_hi: {
4655       const GCNSubtarget &ST =
4656           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4657       // These return at most the wavefront size - 1.
4658       unsigned Size = Op.getValueType().getSizeInBits();
4659       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4660       break;
4661     }
4662     default:
4663       break;
4664     }
4665   }
4666   }
4667 }
4668 
4669 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4670     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4671     unsigned Depth) const {
4672   switch (Op.getOpcode()) {
4673   case AMDGPUISD::BFE_I32: {
4674     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4675     if (!Width)
4676       return 1;
4677 
4678     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4679     if (!isNullConstant(Op.getOperand(1)))
4680       return SignBits;
4681 
4682     // TODO: Could probably figure something out with non-0 offsets.
4683     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4684     return std::max(SignBits, Op0SignBits);
4685   }
4686 
4687   case AMDGPUISD::BFE_U32: {
4688     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4689     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4690   }
4691 
4692   case AMDGPUISD::CARRY:
4693   case AMDGPUISD::BORROW:
4694     return 31;
4695   case AMDGPUISD::BUFFER_LOAD_BYTE:
4696     return 25;
4697   case AMDGPUISD::BUFFER_LOAD_SHORT:
4698     return 17;
4699   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4700     return 24;
4701   case AMDGPUISD::BUFFER_LOAD_USHORT:
4702     return 16;
4703   case AMDGPUISD::FP_TO_FP16:
4704     return 16;
4705   default:
4706     return 1;
4707   }
4708 }
4709 
4710 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4711   GISelKnownBits &Analysis, Register R,
4712   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4713   unsigned Depth) const {
4714   const MachineInstr *MI = MRI.getVRegDef(R);
4715   if (!MI)
4716     return 1;
4717 
4718   // TODO: Check range metadata on MMO.
4719   switch (MI->getOpcode()) {
4720   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4721     return 25;
4722   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4723     return 17;
4724   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4725     return 24;
4726   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4727     return 16;
4728   default:
4729     return 1;
4730   }
4731 }
4732 
4733 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4734                                                         const SelectionDAG &DAG,
4735                                                         bool SNaN,
4736                                                         unsigned Depth) const {
4737   unsigned Opcode = Op.getOpcode();
4738   switch (Opcode) {
4739   case AMDGPUISD::FMIN_LEGACY:
4740   case AMDGPUISD::FMAX_LEGACY: {
4741     if (SNaN)
4742       return true;
4743 
4744     // TODO: Can check no nans on one of the operands for each one, but which
4745     // one?
4746     return false;
4747   }
4748   case AMDGPUISD::FMUL_LEGACY:
4749   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4750     if (SNaN)
4751       return true;
4752     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4753            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4754   }
4755   case AMDGPUISD::FMED3:
4756   case AMDGPUISD::FMIN3:
4757   case AMDGPUISD::FMAX3:
4758   case AMDGPUISD::FMAD_FTZ: {
4759     if (SNaN)
4760       return true;
4761     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4762            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4763            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4764   }
4765   case AMDGPUISD::CVT_F32_UBYTE0:
4766   case AMDGPUISD::CVT_F32_UBYTE1:
4767   case AMDGPUISD::CVT_F32_UBYTE2:
4768   case AMDGPUISD::CVT_F32_UBYTE3:
4769     return true;
4770 
4771   case AMDGPUISD::RCP:
4772   case AMDGPUISD::RSQ:
4773   case AMDGPUISD::RCP_LEGACY:
4774   case AMDGPUISD::RSQ_CLAMP: {
4775     if (SNaN)
4776       return true;
4777 
4778     // TODO: Need is known positive check.
4779     return false;
4780   }
4781   case AMDGPUISD::LDEXP:
4782   case AMDGPUISD::FRACT: {
4783     if (SNaN)
4784       return true;
4785     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4786   }
4787   case AMDGPUISD::DIV_SCALE:
4788   case AMDGPUISD::DIV_FMAS:
4789   case AMDGPUISD::DIV_FIXUP:
4790     // TODO: Refine on operands.
4791     return SNaN;
4792   case AMDGPUISD::SIN_HW:
4793   case AMDGPUISD::COS_HW: {
4794     // TODO: Need check for infinity
4795     return SNaN;
4796   }
4797   case ISD::INTRINSIC_WO_CHAIN: {
4798     unsigned IntrinsicID
4799       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4800     // TODO: Handle more intrinsics
4801     switch (IntrinsicID) {
4802     case Intrinsic::amdgcn_cubeid:
4803       return true;
4804 
4805     case Intrinsic::amdgcn_frexp_mant: {
4806       if (SNaN)
4807         return true;
4808       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4809     }
4810     case Intrinsic::amdgcn_cvt_pkrtz: {
4811       if (SNaN)
4812         return true;
4813       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4814              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4815     }
4816     case Intrinsic::amdgcn_rcp:
4817     case Intrinsic::amdgcn_rsq:
4818     case Intrinsic::amdgcn_rcp_legacy:
4819     case Intrinsic::amdgcn_rsq_legacy:
4820     case Intrinsic::amdgcn_rsq_clamp: {
4821       if (SNaN)
4822         return true;
4823 
4824       // TODO: Need is known positive check.
4825       return false;
4826     }
4827     case Intrinsic::amdgcn_trig_preop:
4828     case Intrinsic::amdgcn_fdot2:
4829       // TODO: Refine on operand
4830       return SNaN;
4831     case Intrinsic::amdgcn_fma_legacy:
4832       if (SNaN)
4833         return true;
4834       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4835              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4836              DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4837     default:
4838       return false;
4839     }
4840   }
4841   default:
4842     return false;
4843   }
4844 }
4845 
4846 TargetLowering::AtomicExpansionKind
4847 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4848   switch (RMW->getOperation()) {
4849   case AtomicRMWInst::Nand:
4850   case AtomicRMWInst::FAdd:
4851   case AtomicRMWInst::FSub:
4852     return AtomicExpansionKind::CmpXChg;
4853   default:
4854     return AtomicExpansionKind::None;
4855   }
4856 }
4857 
4858 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal(
4859     unsigned Opc, LLT Ty1, LLT Ty2) const {
4860   return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));
4861 }
4862