1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64ExpandImm.h" 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/Support/Debug.h" 19 #include <algorithm> 20 using namespace llvm; 21 22 #define DEBUG_TYPE "aarch64tti" 23 24 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 25 cl::init(true), cl::Hidden); 26 27 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 28 const Function *Callee) const { 29 const TargetMachine &TM = getTLI()->getTargetMachine(); 30 31 const FeatureBitset &CallerBits = 32 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 33 const FeatureBitset &CalleeBits = 34 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 35 36 // Inline a callee if its target-features are a subset of the callers 37 // target-features. 38 return (CallerBits & CalleeBits) == CalleeBits; 39 } 40 41 /// Calculate the cost of materializing a 64-bit value. This helper 42 /// method might only calculate a fraction of a larger immediate. Therefore it 43 /// is valid to return a cost of ZERO. 44 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 45 // Check if the immediate can be encoded within an instruction. 46 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 47 return 0; 48 49 if (Val < 0) 50 Val = ~Val; 51 52 // Calculate how many moves we will need to materialize this constant. 53 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 54 AArch64_IMM::expandMOVImm(Val, 64, Insn); 55 return Insn.size(); 56 } 57 58 /// Calculate the cost of materializing the given constant. 59 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 60 assert(Ty->isIntegerTy()); 61 62 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 63 if (BitSize == 0) 64 return ~0U; 65 66 // Sign-extend all constants to a multiple of 64-bit. 67 APInt ImmVal = Imm; 68 if (BitSize & 0x3f) 69 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 70 71 // Split the constant into 64-bit chunks and calculate the cost for each 72 // chunk. 73 int Cost = 0; 74 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 75 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 76 int64_t Val = Tmp.getSExtValue(); 77 Cost += getIntImmCost(Val); 78 } 79 // We need at least one instruction to materialze the constant. 80 return std::max(1, Cost); 81 } 82 83 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 84 const APInt &Imm, Type *Ty) { 85 assert(Ty->isIntegerTy()); 86 87 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 88 // There is no cost model for constants with a bit size of 0. Return TCC_Free 89 // here, so that constant hoisting will ignore this constant. 90 if (BitSize == 0) 91 return TTI::TCC_Free; 92 93 unsigned ImmIdx = ~0U; 94 switch (Opcode) { 95 default: 96 return TTI::TCC_Free; 97 case Instruction::GetElementPtr: 98 // Always hoist the base address of a GetElementPtr. 99 if (Idx == 0) 100 return 2 * TTI::TCC_Basic; 101 return TTI::TCC_Free; 102 case Instruction::Store: 103 ImmIdx = 0; 104 break; 105 case Instruction::Add: 106 case Instruction::Sub: 107 case Instruction::Mul: 108 case Instruction::UDiv: 109 case Instruction::SDiv: 110 case Instruction::URem: 111 case Instruction::SRem: 112 case Instruction::And: 113 case Instruction::Or: 114 case Instruction::Xor: 115 case Instruction::ICmp: 116 ImmIdx = 1; 117 break; 118 // Always return TCC_Free for the shift value of a shift instruction. 119 case Instruction::Shl: 120 case Instruction::LShr: 121 case Instruction::AShr: 122 if (Idx == 1) 123 return TTI::TCC_Free; 124 break; 125 case Instruction::Trunc: 126 case Instruction::ZExt: 127 case Instruction::SExt: 128 case Instruction::IntToPtr: 129 case Instruction::PtrToInt: 130 case Instruction::BitCast: 131 case Instruction::PHI: 132 case Instruction::Call: 133 case Instruction::Select: 134 case Instruction::Ret: 135 case Instruction::Load: 136 break; 137 } 138 139 if (Idx == ImmIdx) { 140 int NumConstants = (BitSize + 63) / 64; 141 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty); 142 return (Cost <= NumConstants * TTI::TCC_Basic) 143 ? static_cast<int>(TTI::TCC_Free) 144 : Cost; 145 } 146 return AArch64TTIImpl::getIntImmCost(Imm, Ty); 147 } 148 149 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 150 const APInt &Imm, Type *Ty) { 151 assert(Ty->isIntegerTy()); 152 153 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 154 // There is no cost model for constants with a bit size of 0. Return TCC_Free 155 // here, so that constant hoisting will ignore this constant. 156 if (BitSize == 0) 157 return TTI::TCC_Free; 158 159 switch (IID) { 160 default: 161 return TTI::TCC_Free; 162 case Intrinsic::sadd_with_overflow: 163 case Intrinsic::uadd_with_overflow: 164 case Intrinsic::ssub_with_overflow: 165 case Intrinsic::usub_with_overflow: 166 case Intrinsic::smul_with_overflow: 167 case Intrinsic::umul_with_overflow: 168 if (Idx == 1) { 169 int NumConstants = (BitSize + 63) / 64; 170 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty); 171 return (Cost <= NumConstants * TTI::TCC_Basic) 172 ? static_cast<int>(TTI::TCC_Free) 173 : Cost; 174 } 175 break; 176 case Intrinsic::experimental_stackmap: 177 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 178 return TTI::TCC_Free; 179 break; 180 case Intrinsic::experimental_patchpoint_void: 181 case Intrinsic::experimental_patchpoint_i64: 182 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 183 return TTI::TCC_Free; 184 break; 185 } 186 return AArch64TTIImpl::getIntImmCost(Imm, Ty); 187 } 188 189 TargetTransformInfo::PopcntSupportKind 190 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 191 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 192 if (TyWidth == 32 || TyWidth == 64) 193 return TTI::PSK_FastHardware; 194 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 195 return TTI::PSK_Software; 196 } 197 198 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 199 ArrayRef<const Value *> Args) { 200 201 // A helper that returns a vector type from the given type. The number of 202 // elements in type Ty determine the vector width. 203 auto toVectorTy = [&](Type *ArgTy) { 204 return VectorType::get(ArgTy->getScalarType(), 205 DstTy->getVectorNumElements()); 206 }; 207 208 // Exit early if DstTy is not a vector type whose elements are at least 209 // 16-bits wide. 210 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 211 return false; 212 213 // Determine if the operation has a widening variant. We consider both the 214 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 215 // instructions. 216 // 217 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 218 // verify that their extending operands are eliminated during code 219 // generation. 220 switch (Opcode) { 221 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 222 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 223 break; 224 default: 225 return false; 226 } 227 228 // To be a widening instruction (either the "wide" or "long" versions), the 229 // second operand must be a sign- or zero extend having a single user. We 230 // only consider extends having a single user because they may otherwise not 231 // be eliminated. 232 if (Args.size() != 2 || 233 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 234 !Args[1]->hasOneUse()) 235 return false; 236 auto *Extend = cast<CastInst>(Args[1]); 237 238 // Legalize the destination type and ensure it can be used in a widening 239 // operation. 240 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 241 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 242 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 243 return false; 244 245 // Legalize the source type and ensure it can be used in a widening 246 // operation. 247 Type *SrcTy = toVectorTy(Extend->getSrcTy()); 248 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 249 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 250 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 251 return false; 252 253 // Get the total number of vector elements in the legalized types. 254 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 255 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 256 257 // Return true if the legalized types have the same number of vector elements 258 // and the destination element type size is twice that of the source type. 259 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 260 } 261 262 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 263 const Instruction *I) { 264 int ISD = TLI->InstructionOpcodeToISD(Opcode); 265 assert(ISD && "Invalid opcode"); 266 267 // If the cast is observable, and it is used by a widening instruction (e.g., 268 // uaddl, saddw, etc.), it may be free. 269 if (I && I->hasOneUse()) { 270 auto *SingleUser = cast<Instruction>(*I->user_begin()); 271 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 272 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 273 // If the cast is the second operand, it is free. We will generate either 274 // a "wide" or "long" version of the widening instruction. 275 if (I == SingleUser->getOperand(1)) 276 return 0; 277 // If the cast is not the second operand, it will be free if it looks the 278 // same as the second operand. In this case, we will generate a "long" 279 // version of the widening instruction. 280 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 281 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 282 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 283 return 0; 284 } 285 } 286 287 EVT SrcTy = TLI->getValueType(DL, Src); 288 EVT DstTy = TLI->getValueType(DL, Dst); 289 290 if (!SrcTy.isSimple() || !DstTy.isSimple()) 291 return BaseT::getCastInstrCost(Opcode, Dst, Src); 292 293 static const TypeConversionCostTblEntry 294 ConversionTbl[] = { 295 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 296 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 297 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 298 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 299 300 // The number of shll instructions for the extension. 301 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 302 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 303 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 304 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 305 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 306 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 307 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 308 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 309 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 310 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 311 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 312 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 313 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 314 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 315 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 316 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 317 318 // LowerVectorINT_TO_FP: 319 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 320 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 321 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 322 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 323 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 324 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 325 326 // Complex: to v2f32 327 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 328 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 329 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 330 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 331 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 332 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 333 334 // Complex: to v4f32 335 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 336 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 337 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 338 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 339 340 // Complex: to v8f32 341 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 342 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 343 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 344 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 345 346 // Complex: to v16f32 347 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 348 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 349 350 // Complex: to v2f64 351 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 352 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 353 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 354 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 355 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 356 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 357 358 359 // LowerVectorFP_TO_INT 360 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 361 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 362 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 363 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 364 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 365 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 366 367 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 368 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 369 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 370 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 371 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 372 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 373 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 374 375 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 376 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 377 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 378 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 379 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 380 381 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 382 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 383 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 384 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 385 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 386 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 387 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 388 }; 389 390 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 391 DstTy.getSimpleVT(), 392 SrcTy.getSimpleVT())) 393 return Entry->Cost; 394 395 return BaseT::getCastInstrCost(Opcode, Dst, Src); 396 } 397 398 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 399 VectorType *VecTy, 400 unsigned Index) { 401 402 // Make sure we were given a valid extend opcode. 403 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 404 "Invalid opcode"); 405 406 // We are extending an element we extract from a vector, so the source type 407 // of the extend is the element type of the vector. 408 auto *Src = VecTy->getElementType(); 409 410 // Sign- and zero-extends are for integer types only. 411 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 412 413 // Get the cost for the extract. We compute the cost (if any) for the extend 414 // below. 415 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 416 417 // Legalize the types. 418 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 419 auto DstVT = TLI->getValueType(DL, Dst); 420 auto SrcVT = TLI->getValueType(DL, Src); 421 422 // If the resulting type is still a vector and the destination type is legal, 423 // we may get the extension for free. If not, get the default cost for the 424 // extend. 425 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 426 return Cost + getCastInstrCost(Opcode, Dst, Src); 427 428 // The destination type should be larger than the element type. If not, get 429 // the default cost for the extend. 430 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 431 return Cost + getCastInstrCost(Opcode, Dst, Src); 432 433 switch (Opcode) { 434 default: 435 llvm_unreachable("Opcode should be either SExt or ZExt"); 436 437 // For sign-extends, we only need a smov, which performs the extension 438 // automatically. 439 case Instruction::SExt: 440 return Cost; 441 442 // For zero-extends, the extend is performed automatically by a umov unless 443 // the destination type is i64 and the element type is i8 or i16. 444 case Instruction::ZExt: 445 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 446 return Cost; 447 } 448 449 // If we are unable to perform the extend for free, get the default cost. 450 return Cost + getCastInstrCost(Opcode, Dst, Src); 451 } 452 453 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 454 unsigned Index) { 455 assert(Val->isVectorTy() && "This must be a vector type"); 456 457 if (Index != -1U) { 458 // Legalize the type. 459 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 460 461 // This type is legalized to a scalar type. 462 if (!LT.second.isVector()) 463 return 0; 464 465 // The type may be split. Normalize the index to the new type. 466 unsigned Width = LT.second.getVectorNumElements(); 467 Index = Index % Width; 468 469 // The element at index zero is already inside the vector. 470 if (Index == 0) 471 return 0; 472 } 473 474 // All other insert/extracts cost this much. 475 return ST->getVectorInsertExtractBaseCost(); 476 } 477 478 int AArch64TTIImpl::getArithmeticInstrCost( 479 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 480 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 481 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 482 // Legalize the type. 483 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 484 485 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 486 // add in the widening overhead specified by the sub-target. Since the 487 // extends feeding widening instructions are performed automatically, they 488 // aren't present in the generated code and have a zero cost. By adding a 489 // widening overhead here, we attach the total cost of the combined operation 490 // to the widening instruction. 491 int Cost = 0; 492 if (isWideningInstruction(Ty, Opcode, Args)) 493 Cost += ST->getWideningBaseCost(); 494 495 int ISD = TLI->InstructionOpcodeToISD(Opcode); 496 497 switch (ISD) { 498 default: 499 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 500 Opd1PropInfo, Opd2PropInfo); 501 case ISD::SDIV: 502 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 503 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 504 // On AArch64, scalar signed division by constants power-of-two are 505 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 506 // The OperandValue properties many not be same as that of previous 507 // operation; conservatively assume OP_None. 508 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info, 509 TargetTransformInfo::OP_None, 510 TargetTransformInfo::OP_None); 511 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info, 512 TargetTransformInfo::OP_None, 513 TargetTransformInfo::OP_None); 514 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info, 515 TargetTransformInfo::OP_None, 516 TargetTransformInfo::OP_None); 517 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info, 518 TargetTransformInfo::OP_None, 519 TargetTransformInfo::OP_None); 520 return Cost; 521 } 522 LLVM_FALLTHROUGH; 523 case ISD::UDIV: 524 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 525 auto VT = TLI->getValueType(DL, Ty); 526 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 527 // Vector signed division by constant are expanded to the 528 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 529 // to MULHS + SUB + SRL + ADD + SRL. 530 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info, 531 Opd2Info, 532 TargetTransformInfo::OP_None, 533 TargetTransformInfo::OP_None); 534 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, 535 Opd2Info, 536 TargetTransformInfo::OP_None, 537 TargetTransformInfo::OP_None); 538 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, 539 Opd2Info, 540 TargetTransformInfo::OP_None, 541 TargetTransformInfo::OP_None); 542 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 543 } 544 } 545 546 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 547 Opd1PropInfo, Opd2PropInfo); 548 if (Ty->isVectorTy()) { 549 // On AArch64, vector divisions are not supported natively and are 550 // expanded into scalar divisions of each pair of elements. 551 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info, 552 Opd2Info, Opd1PropInfo, Opd2PropInfo); 553 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info, 554 Opd2Info, Opd1PropInfo, Opd2PropInfo); 555 // TODO: if one of the arguments is scalar, then it's not necessary to 556 // double the cost of handling the vector elements. 557 Cost += Cost; 558 } 559 return Cost; 560 561 case ISD::ADD: 562 case ISD::MUL: 563 case ISD::XOR: 564 case ISD::OR: 565 case ISD::AND: 566 // These nodes are marked as 'custom' for combining purposes only. 567 // We know that they are legal. See LowerAdd in ISelLowering. 568 return (Cost + 1) * LT.first; 569 } 570 } 571 572 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 573 const SCEV *Ptr) { 574 // Address computations in vectorized code with non-consecutive addresses will 575 // likely result in more instructions compared to scalar code where the 576 // computation can more often be merged into the index mode. The resulting 577 // extra micro-ops can significantly decrease throughput. 578 unsigned NumVectorInstToHideOverhead = 10; 579 int MaxMergeDistance = 64; 580 581 if (Ty->isVectorTy() && SE && 582 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 583 return NumVectorInstToHideOverhead; 584 585 // In many cases the address computation is not merged into the instruction 586 // addressing mode. 587 return 1; 588 } 589 590 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 591 Type *CondTy, const Instruction *I) { 592 593 int ISD = TLI->InstructionOpcodeToISD(Opcode); 594 // We don't lower some vector selects well that are wider than the register 595 // width. 596 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 597 // We would need this many instructions to hide the scalarization happening. 598 const int AmortizationCost = 20; 599 static const TypeConversionCostTblEntry 600 VectorSelectTbl[] = { 601 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 602 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 603 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 604 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 605 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 606 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 607 }; 608 609 EVT SelCondTy = TLI->getValueType(DL, CondTy); 610 EVT SelValTy = TLI->getValueType(DL, ValTy); 611 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 612 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 613 SelCondTy.getSimpleVT(), 614 SelValTy.getSimpleVT())) 615 return Entry->Cost; 616 } 617 } 618 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 619 } 620 621 AArch64TTIImpl::TTI::MemCmpExpansionOptions 622 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 623 TTI::MemCmpExpansionOptions Options; 624 Options.AllowOverlappingLoads = !ST->requiresStrictAlign(); 625 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 626 Options.NumLoadsPerBlock = Options.MaxNumLoads; 627 // TODO: Though vector loads usually perform well on AArch64, in some targets 628 // they may wake up the FP unit, which raises the power consumption. Perhaps 629 // they could be used with no holds barred (-O3). 630 Options.LoadSizes = {8, 4, 2, 1}; 631 return Options; 632 } 633 634 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 635 unsigned Alignment, unsigned AddressSpace, 636 const Instruction *I) { 637 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 638 639 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 640 LT.second.is128BitVector() && Alignment < 16) { 641 // Unaligned stores are extremely inefficient. We don't split all 642 // unaligned 128-bit stores because the negative impact that has shown in 643 // practice on inlined block copy code. 644 // We make such stores expensive so that we will only vectorize if there 645 // are 6 other instructions getting vectorized. 646 const int AmortizationCost = 6; 647 648 return LT.first * 2 * AmortizationCost; 649 } 650 651 if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) { 652 unsigned ProfitableNumElements; 653 if (Opcode == Instruction::Store) 654 // We use a custom trunc store lowering so v.4b should be profitable. 655 ProfitableNumElements = 4; 656 else 657 // We scalarize the loads because there is not v.4b register and we 658 // have to promote the elements to v.2. 659 ProfitableNumElements = 8; 660 661 if (Ty->getVectorNumElements() < ProfitableNumElements) { 662 unsigned NumVecElts = Ty->getVectorNumElements(); 663 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 664 // We generate 2 instructions per vector element. 665 return NumVectorizableInstsToAmortize * NumVecElts * 2; 666 } 667 } 668 669 return LT.first; 670 } 671 672 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 673 unsigned Factor, 674 ArrayRef<unsigned> Indices, 675 unsigned Alignment, 676 unsigned AddressSpace, 677 bool UseMaskForCond, 678 bool UseMaskForGaps) { 679 assert(Factor >= 2 && "Invalid interleave factor"); 680 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 681 682 if (!UseMaskForCond && !UseMaskForGaps && 683 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 684 unsigned NumElts = VecTy->getVectorNumElements(); 685 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 686 687 // ldN/stN only support legal vector types of size 64 or 128 in bits. 688 // Accesses having vector types that are a multiple of 128 bits can be 689 // matched to more than one ldN/stN instruction. 690 if (NumElts % Factor == 0 && 691 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 692 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 693 } 694 695 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 696 Alignment, AddressSpace, 697 UseMaskForCond, UseMaskForGaps); 698 } 699 700 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 701 int Cost = 0; 702 for (auto *I : Tys) { 703 if (!I->isVectorTy()) 704 continue; 705 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128) 706 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) + 707 getMemoryOpCost(Instruction::Load, I, 128, 0); 708 } 709 return Cost; 710 } 711 712 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 713 return ST->getMaxInterleaveFactor(); 714 } 715 716 // For Falkor, we want to avoid having too many strided loads in a loop since 717 // that can exhaust the HW prefetcher resources. We adjust the unroller 718 // MaxCount preference below to attempt to ensure unrolling doesn't create too 719 // many strided loads. 720 static void 721 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 722 TargetTransformInfo::UnrollingPreferences &UP) { 723 enum { MaxStridedLoads = 7 }; 724 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 725 int StridedLoads = 0; 726 // FIXME? We could make this more precise by looking at the CFG and 727 // e.g. not counting loads in each side of an if-then-else diamond. 728 for (const auto BB : L->blocks()) { 729 for (auto &I : *BB) { 730 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 731 if (!LMemI) 732 continue; 733 734 Value *PtrValue = LMemI->getPointerOperand(); 735 if (L->isLoopInvariant(PtrValue)) 736 continue; 737 738 const SCEV *LSCEV = SE.getSCEV(PtrValue); 739 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 740 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 741 continue; 742 743 // FIXME? We could take pairing of unrolled load copies into account 744 // by looking at the AddRec, but we would probably have to limit this 745 // to loops with no stores or other memory optimization barriers. 746 ++StridedLoads; 747 // We've seen enough strided loads that seeing more won't make a 748 // difference. 749 if (StridedLoads > MaxStridedLoads / 2) 750 return StridedLoads; 751 } 752 } 753 return StridedLoads; 754 }; 755 756 int StridedLoads = countStridedLoads(L, SE); 757 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 758 << " strided loads\n"); 759 // Pick the largest power of 2 unroll count that won't result in too many 760 // strided loads. 761 if (StridedLoads) { 762 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 763 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 764 << UP.MaxCount << '\n'); 765 } 766 } 767 768 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 769 TTI::UnrollingPreferences &UP) { 770 // Enable partial unrolling and runtime unrolling. 771 BaseT::getUnrollingPreferences(L, SE, UP); 772 773 // For inner loop, it is more likely to be a hot one, and the runtime check 774 // can be promoted out from LICM pass, so the overhead is less, let's try 775 // a larger threshold to unroll more loops. 776 if (L->getLoopDepth() > 1) 777 UP.PartialThreshold *= 2; 778 779 // Disable partial & runtime unrolling on -Os. 780 UP.PartialOptSizeThreshold = 0; 781 782 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 783 EnableFalkorHWPFUnrollFix) 784 getFalkorUnrollingPreferences(L, SE, UP); 785 } 786 787 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 788 Type *ExpectedType) { 789 switch (Inst->getIntrinsicID()) { 790 default: 791 return nullptr; 792 case Intrinsic::aarch64_neon_st2: 793 case Intrinsic::aarch64_neon_st3: 794 case Intrinsic::aarch64_neon_st4: { 795 // Create a struct type 796 StructType *ST = dyn_cast<StructType>(ExpectedType); 797 if (!ST) 798 return nullptr; 799 unsigned NumElts = Inst->getNumArgOperands() - 1; 800 if (ST->getNumElements() != NumElts) 801 return nullptr; 802 for (unsigned i = 0, e = NumElts; i != e; ++i) { 803 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 804 return nullptr; 805 } 806 Value *Res = UndefValue::get(ExpectedType); 807 IRBuilder<> Builder(Inst); 808 for (unsigned i = 0, e = NumElts; i != e; ++i) { 809 Value *L = Inst->getArgOperand(i); 810 Res = Builder.CreateInsertValue(Res, L, i); 811 } 812 return Res; 813 } 814 case Intrinsic::aarch64_neon_ld2: 815 case Intrinsic::aarch64_neon_ld3: 816 case Intrinsic::aarch64_neon_ld4: 817 if (Inst->getType() == ExpectedType) 818 return Inst; 819 return nullptr; 820 } 821 } 822 823 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 824 MemIntrinsicInfo &Info) { 825 switch (Inst->getIntrinsicID()) { 826 default: 827 break; 828 case Intrinsic::aarch64_neon_ld2: 829 case Intrinsic::aarch64_neon_ld3: 830 case Intrinsic::aarch64_neon_ld4: 831 Info.ReadMem = true; 832 Info.WriteMem = false; 833 Info.PtrVal = Inst->getArgOperand(0); 834 break; 835 case Intrinsic::aarch64_neon_st2: 836 case Intrinsic::aarch64_neon_st3: 837 case Intrinsic::aarch64_neon_st4: 838 Info.ReadMem = false; 839 Info.WriteMem = true; 840 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 841 break; 842 } 843 844 switch (Inst->getIntrinsicID()) { 845 default: 846 return false; 847 case Intrinsic::aarch64_neon_ld2: 848 case Intrinsic::aarch64_neon_st2: 849 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 850 break; 851 case Intrinsic::aarch64_neon_ld3: 852 case Intrinsic::aarch64_neon_st3: 853 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 854 break; 855 case Intrinsic::aarch64_neon_ld4: 856 case Intrinsic::aarch64_neon_st4: 857 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 858 break; 859 } 860 return true; 861 } 862 863 /// See if \p I should be considered for address type promotion. We check if \p 864 /// I is a sext with right type and used in memory accesses. If it used in a 865 /// "complex" getelementptr, we allow it to be promoted without finding other 866 /// sext instructions that sign extended the same initial value. A getelementptr 867 /// is considered as "complex" if it has more than 2 operands. 868 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 869 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 870 bool Considerable = false; 871 AllowPromotionWithoutCommonHeader = false; 872 if (!isa<SExtInst>(&I)) 873 return false; 874 Type *ConsideredSExtType = 875 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 876 if (I.getType() != ConsideredSExtType) 877 return false; 878 // See if the sext is the one with the right type and used in at least one 879 // GetElementPtrInst. 880 for (const User *U : I.users()) { 881 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 882 Considerable = true; 883 // A getelementptr is considered as "complex" if it has more than 2 884 // operands. We will promote a SExt used in such complex GEP as we 885 // expect some computation to be merged if they are done on 64 bits. 886 if (GEPInst->getNumOperands() > 2) { 887 AllowPromotionWithoutCommonHeader = true; 888 break; 889 } 890 } 891 } 892 return Considerable; 893 } 894 895 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 896 TTI::ReductionFlags Flags) const { 897 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); 898 unsigned ScalarBits = Ty->getScalarSizeInBits(); 899 switch (Opcode) { 900 case Instruction::FAdd: 901 case Instruction::FMul: 902 case Instruction::And: 903 case Instruction::Or: 904 case Instruction::Xor: 905 case Instruction::Mul: 906 return false; 907 case Instruction::Add: 908 return ScalarBits * Ty->getVectorNumElements() >= 128; 909 case Instruction::ICmp: 910 return (ScalarBits < 64) && 911 (ScalarBits * Ty->getVectorNumElements() >= 128); 912 case Instruction::FCmp: 913 return Flags.NoNaN; 914 default: 915 llvm_unreachable("Unhandled reduction opcode"); 916 } 917 return false; 918 } 919 920 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy, 921 bool IsPairwiseForm) { 922 923 if (IsPairwiseForm) 924 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm); 925 926 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 927 MVT MTy = LT.second; 928 int ISD = TLI->InstructionOpcodeToISD(Opcode); 929 assert(ISD && "Invalid opcode"); 930 931 // Horizontal adds can use the 'addv' instruction. We model the cost of these 932 // instructions as normal vector adds. This is the only arithmetic vector 933 // reduction operation for which we have an instruction. 934 static const CostTblEntry CostTblNoPairwise[]{ 935 {ISD::ADD, MVT::v8i8, 1}, 936 {ISD::ADD, MVT::v16i8, 1}, 937 {ISD::ADD, MVT::v4i16, 1}, 938 {ISD::ADD, MVT::v8i16, 1}, 939 {ISD::ADD, MVT::v4i32, 1}, 940 }; 941 942 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 943 return LT.first * Entry->Cost; 944 945 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm); 946 } 947 948 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 949 Type *SubTp) { 950 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 951 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) { 952 static const CostTblEntry ShuffleTbl[] = { 953 // Broadcast shuffle kinds can be performed with 'dup'. 954 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 955 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 956 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 957 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 958 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 959 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 960 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 961 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 962 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 963 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 964 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 965 // 'zip1/zip2' instructions. 966 { TTI::SK_Transpose, MVT::v8i8, 1 }, 967 { TTI::SK_Transpose, MVT::v16i8, 1 }, 968 { TTI::SK_Transpose, MVT::v4i16, 1 }, 969 { TTI::SK_Transpose, MVT::v8i16, 1 }, 970 { TTI::SK_Transpose, MVT::v2i32, 1 }, 971 { TTI::SK_Transpose, MVT::v4i32, 1 }, 972 { TTI::SK_Transpose, MVT::v2i64, 1 }, 973 { TTI::SK_Transpose, MVT::v2f32, 1 }, 974 { TTI::SK_Transpose, MVT::v4f32, 1 }, 975 { TTI::SK_Transpose, MVT::v2f64, 1 }, 976 // Select shuffle kinds. 977 // TODO: handle vXi8/vXi16. 978 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 979 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 980 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 981 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 982 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 983 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 984 // PermuteSingleSrc shuffle kinds. 985 // TODO: handle vXi8/vXi16. 986 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 987 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 988 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 989 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 990 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 991 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 992 }; 993 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 994 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 995 return LT.first * Entry->Cost; 996 } 997 998 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 999 } 1000