1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MacroFusion.h" 15 #include "AArch64Subtarget.h" 16 #include "AArch64TargetObjectFile.h" 17 #include "AArch64TargetTransformInfo.h" 18 #include "MCTargetDesc/AArch64MCTargetDesc.h" 19 #include "TargetInfo/AArch64TargetInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/CodeGen/CSEConfigBase.h" 24 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 25 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 26 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 27 #include "llvm/CodeGen/GlobalISel/Localizer.h" 28 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 29 #include "llvm/CodeGen/MachineScheduler.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCTargetOptions.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/CodeGen.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/TargetRegistry.h" 40 #include "llvm/Target/TargetLoweringObjectFile.h" 41 #include "llvm/Target/TargetOptions.h" 42 #include "llvm/Transforms/Scalar.h" 43 #include <memory> 44 #include <string> 45 46 using namespace llvm; 47 48 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 49 cl::desc("Enable the CCMP formation pass"), 50 cl::init(true), cl::Hidden); 51 52 static cl::opt<bool> 53 EnableCondBrTuning("aarch64-enable-cond-br-tune", 54 cl::desc("Enable the conditional branch tuning pass"), 55 cl::init(true), cl::Hidden); 56 57 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 62 cl::desc("Suppress STP for AArch64"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableAdvSIMDScalar( 66 "aarch64-enable-simd-scalar", 67 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 68 cl::init(false), cl::Hidden); 69 70 static cl::opt<bool> 71 EnablePromoteConstant("aarch64-enable-promote-const", 72 cl::desc("Enable the promote constant pass"), 73 cl::init(true), cl::Hidden); 74 75 static cl::opt<bool> EnableCollectLOH( 76 "aarch64-enable-collect-loh", 77 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 78 cl::init(true), cl::Hidden); 79 80 static cl::opt<bool> 81 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 82 cl::desc("Enable the pass that removes dead" 83 " definitons and replaces stores to" 84 " them with stores to the zero" 85 " register"), 86 cl::init(true)); 87 88 static cl::opt<bool> EnableRedundantCopyElimination( 89 "aarch64-enable-copyelim", 90 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 91 cl::Hidden); 92 93 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 94 cl::desc("Enable the load/store pair" 95 " optimization pass"), 96 cl::init(true), cl::Hidden); 97 98 static cl::opt<bool> EnableAtomicTidy( 99 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 100 cl::desc("Run SimplifyCFG after expanding atomic operations" 101 " to make use of cmpxchg flow-based information"), 102 cl::init(true)); 103 104 static cl::opt<bool> 105 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 106 cl::desc("Run early if-conversion"), 107 cl::init(true)); 108 109 static cl::opt<bool> 110 EnableCondOpt("aarch64-enable-condopt", 111 cl::desc("Enable the condition optimizer pass"), 112 cl::init(true), cl::Hidden); 113 114 static cl::opt<bool> 115 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 116 cl::desc("Work around Cortex-A53 erratum 835769"), 117 cl::init(false)); 118 119 static cl::opt<bool> 120 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 121 cl::desc("Enable optimizations on complex GEPs"), 122 cl::init(false)); 123 124 static cl::opt<bool> 125 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 126 cl::desc("Relax out of range conditional branches")); 127 128 static cl::opt<bool> EnableCompressJumpTables( 129 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 130 cl::desc("Use smallest entry possible for jump tables")); 131 132 // FIXME: Unify control over GlobalMerge. 133 static cl::opt<cl::boolOrDefault> 134 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 135 cl::desc("Enable the global merge pass")); 136 137 static cl::opt<bool> 138 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 139 cl::desc("Enable the loop data prefetch pass"), 140 cl::init(true)); 141 142 static cl::opt<int> EnableGlobalISelAtO( 143 "aarch64-enable-global-isel-at-O", cl::Hidden, 144 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 145 cl::init(0)); 146 147 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 148 cl::init(true), cl::Hidden); 149 150 static cl::opt<bool> 151 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 152 cl::desc("Enable the AAcrh64 branch target pass"), 153 cl::init(true)); 154 155 extern "C" void LLVMInitializeAArch64Target() { 156 // Register the target. 157 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 158 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 159 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 160 auto PR = PassRegistry::getPassRegistry(); 161 initializeGlobalISel(*PR); 162 initializeAArch64A53Fix835769Pass(*PR); 163 initializeAArch64A57FPLoadBalancingPass(*PR); 164 initializeAArch64AdvSIMDScalarPass(*PR); 165 initializeAArch64BranchTargetsPass(*PR); 166 initializeAArch64CollectLOHPass(*PR); 167 initializeAArch64CompressJumpTablesPass(*PR); 168 initializeAArch64ConditionalComparesPass(*PR); 169 initializeAArch64ConditionOptimizerPass(*PR); 170 initializeAArch64DeadRegisterDefinitionsPass(*PR); 171 initializeAArch64ExpandPseudoPass(*PR); 172 initializeAArch64LoadStoreOptPass(*PR); 173 initializeAArch64SIMDInstrOptPass(*PR); 174 initializeAArch64PreLegalizerCombinerPass(*PR); 175 initializeAArch64PromoteConstantPass(*PR); 176 initializeAArch64RedundantCopyEliminationPass(*PR); 177 initializeAArch64StorePairSuppressPass(*PR); 178 initializeFalkorHWPFFixPass(*PR); 179 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 180 initializeLDTLSCleanupPass(*PR); 181 initializeAArch64SpeculationHardeningPass(*PR); 182 initializeAArch64StackTaggingPass(*PR); 183 } 184 185 //===----------------------------------------------------------------------===// 186 // AArch64 Lowering public interface. 187 //===----------------------------------------------------------------------===// 188 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 189 if (TT.isOSBinFormatMachO()) 190 return llvm::make_unique<AArch64_MachoTargetObjectFile>(); 191 if (TT.isOSBinFormatCOFF()) 192 return llvm::make_unique<AArch64_COFFTargetObjectFile>(); 193 194 return llvm::make_unique<AArch64_ELFTargetObjectFile>(); 195 } 196 197 // Helper function to build a DataLayout string 198 static std::string computeDataLayout(const Triple &TT, 199 const MCTargetOptions &Options, 200 bool LittleEndian) { 201 if (Options.getABIName() == "ilp32") 202 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 203 if (TT.isOSBinFormatMachO()) 204 return "e-m:o-i64:64-i128:128-n32:64-S128"; 205 if (TT.isOSBinFormatCOFF()) 206 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 207 if (LittleEndian) 208 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 209 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 210 } 211 212 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 213 Optional<Reloc::Model> RM) { 214 // AArch64 Darwin and Windows are always PIC. 215 if (TT.isOSDarwin() || TT.isOSWindows()) 216 return Reloc::PIC_; 217 // On ELF platforms the default static relocation model has a smart enough 218 // linker to cope with referencing external symbols defined in a shared 219 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 220 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 221 return Reloc::Static; 222 return *RM; 223 } 224 225 static CodeModel::Model 226 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 227 bool JIT) { 228 if (CM) { 229 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 230 *CM != CodeModel::Large) { 231 if (!TT.isOSFuchsia()) 232 report_fatal_error( 233 "Only small, tiny and large code models are allowed on AArch64"); 234 else if (*CM != CodeModel::Kernel) 235 report_fatal_error("Only small, tiny, kernel, and large code models " 236 "are allowed on AArch64"); 237 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 238 report_fatal_error("tiny code model is only supported on ELF"); 239 return *CM; 240 } 241 // The default MCJIT memory managers make no guarantees about where they can 242 // find an executable page; JITed code needs to be able to refer to globals 243 // no matter how far away they are. 244 if (JIT) 245 return CodeModel::Large; 246 return CodeModel::Small; 247 } 248 249 /// Create an AArch64 architecture model. 250 /// 251 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 252 StringRef CPU, StringRef FS, 253 const TargetOptions &Options, 254 Optional<Reloc::Model> RM, 255 Optional<CodeModel::Model> CM, 256 CodeGenOpt::Level OL, bool JIT, 257 bool LittleEndian) 258 : LLVMTargetMachine(T, 259 computeDataLayout(TT, Options.MCOptions, LittleEndian), 260 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 261 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 262 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 263 initAsmInfo(); 264 265 if (TT.isOSBinFormatMachO()) { 266 this->Options.TrapUnreachable = true; 267 this->Options.NoTrapAfterNoreturn = true; 268 } 269 270 if (getMCAsmInfo()->usesWindowsCFI()) { 271 // Unwinding can get confused if the last instruction in an 272 // exception-handling region (function, funclet, try block, etc.) 273 // is a call. 274 // 275 // FIXME: We could elide the trap if the next instruction would be in 276 // the same region anyway. 277 this->Options.TrapUnreachable = true; 278 } 279 280 // Enable GlobalISel at or below EnableGlobalISelAt0. 281 if (getOptLevel() <= EnableGlobalISelAtO) { 282 setGlobalISel(true); 283 setGlobalISelAbort(GlobalISelAbortMode::Disable); 284 } 285 286 // AArch64 supports the MachineOutliner. 287 setMachineOutliner(true); 288 289 // AArch64 supports default outlining behaviour. 290 setSupportsDefaultOutlining(true); 291 } 292 293 AArch64TargetMachine::~AArch64TargetMachine() = default; 294 295 const AArch64Subtarget * 296 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 297 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 298 Attribute FSAttr = F.getFnAttribute("target-features"); 299 300 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 301 ? CPUAttr.getValueAsString().str() 302 : TargetCPU; 303 std::string FS = !FSAttr.hasAttribute(Attribute::None) 304 ? FSAttr.getValueAsString().str() 305 : TargetFS; 306 307 auto &I = SubtargetMap[CPU + FS]; 308 if (!I) { 309 // This needs to be done before we create a new subtarget since any 310 // creation will depend on the TM and the code generation flags on the 311 // function that reside in TargetOptions. 312 resetTargetOptions(F); 313 I = llvm::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 314 isLittle); 315 } 316 return I.get(); 317 } 318 319 void AArch64leTargetMachine::anchor() { } 320 321 AArch64leTargetMachine::AArch64leTargetMachine( 322 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 323 const TargetOptions &Options, Optional<Reloc::Model> RM, 324 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 325 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 326 327 void AArch64beTargetMachine::anchor() { } 328 329 AArch64beTargetMachine::AArch64beTargetMachine( 330 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 331 const TargetOptions &Options, Optional<Reloc::Model> RM, 332 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 333 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 334 335 namespace { 336 337 /// AArch64 Code Generator Pass Configuration Options. 338 class AArch64PassConfig : public TargetPassConfig { 339 public: 340 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 341 : TargetPassConfig(TM, PM) { 342 if (TM.getOptLevel() != CodeGenOpt::None) 343 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 344 } 345 346 AArch64TargetMachine &getAArch64TargetMachine() const { 347 return getTM<AArch64TargetMachine>(); 348 } 349 350 ScheduleDAGInstrs * 351 createMachineScheduler(MachineSchedContext *C) const override { 352 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 353 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 354 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 355 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 356 if (ST.hasFusion()) 357 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 358 return DAG; 359 } 360 361 ScheduleDAGInstrs * 362 createPostMachineScheduler(MachineSchedContext *C) const override { 363 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 364 if (ST.hasFusion()) { 365 // Run the Macro Fusion after RA again since literals are expanded from 366 // pseudos then (v. addPreSched2()). 367 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 368 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 369 return DAG; 370 } 371 372 return nullptr; 373 } 374 375 void addIRPasses() override; 376 bool addPreISel() override; 377 bool addInstSelector() override; 378 bool addIRTranslator() override; 379 void addPreLegalizeMachineIR() override; 380 bool addLegalizeMachineIR() override; 381 bool addRegBankSelect() override; 382 void addPreGlobalInstructionSelect() override; 383 bool addGlobalInstructionSelect() override; 384 bool addILPOpts() override; 385 void addPreRegAlloc() override; 386 void addPostRegAlloc() override; 387 void addPreSched2() override; 388 void addPreEmitPass() override; 389 390 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 391 }; 392 393 } // end anonymous namespace 394 395 TargetTransformInfo 396 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 397 return TargetTransformInfo(AArch64TTIImpl(this, F)); 398 } 399 400 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 401 return new AArch64PassConfig(*this, PM); 402 } 403 404 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 405 return getStandardCSEConfigForOpt(TM->getOptLevel()); 406 } 407 408 void AArch64PassConfig::addIRPasses() { 409 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 410 // ourselves. 411 addPass(createAtomicExpandPass()); 412 413 // Cmpxchg instructions are often used with a subsequent comparison to 414 // determine whether it succeeded. We can exploit existing control-flow in 415 // ldrex/strex loops to simplify this, but it needs tidying up. 416 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 417 addPass(createCFGSimplificationPass(1, true, true, false, true)); 418 419 // Run LoopDataPrefetch 420 // 421 // Run this before LSR to remove the multiplies involved in computing the 422 // pointer values N iterations ahead. 423 if (TM->getOptLevel() != CodeGenOpt::None) { 424 if (EnableLoopDataPrefetch) 425 addPass(createLoopDataPrefetchPass()); 426 if (EnableFalkorHWPFFix) 427 addPass(createFalkorMarkStridedAccessesPass()); 428 } 429 430 TargetPassConfig::addIRPasses(); 431 432 // Match interleaved memory accesses to ldN/stN intrinsics. 433 if (TM->getOptLevel() != CodeGenOpt::None) { 434 addPass(createInterleavedLoadCombinePass()); 435 addPass(createInterleavedAccessPass()); 436 } 437 438 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 439 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 440 // and lower a GEP with multiple indices to either arithmetic operations or 441 // multiple GEPs with single index. 442 addPass(createSeparateConstOffsetFromGEPPass(true)); 443 // Call EarlyCSE pass to find and remove subexpressions in the lowered 444 // result. 445 addPass(createEarlyCSEPass()); 446 // Do loop invariant code motion in case part of the lowered result is 447 // invariant. 448 addPass(createLICMPass()); 449 } 450 451 addPass(createAArch64StackTaggingPass()); 452 } 453 454 // Pass Pipeline Configuration 455 bool AArch64PassConfig::addPreISel() { 456 // Run promote constant before global merge, so that the promoted constants 457 // get a chance to be merged 458 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 459 addPass(createAArch64PromoteConstantPass()); 460 // FIXME: On AArch64, this depends on the type. 461 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 462 // and the offset has to be a multiple of the related size in bytes. 463 if ((TM->getOptLevel() != CodeGenOpt::None && 464 EnableGlobalMerge == cl::BOU_UNSET) || 465 EnableGlobalMerge == cl::BOU_TRUE) { 466 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 467 (EnableGlobalMerge == cl::BOU_UNSET); 468 469 // Merging of extern globals is enabled by default on non-Mach-O as we 470 // expect it to be generally either beneficial or harmless. On Mach-O it 471 // is disabled as we emit the .subsections_via_symbols directive which 472 // means that merging extern globals is not safe. 473 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 474 475 // FIXME: extern global merging is only enabled when we optimise for size 476 // because there are some regressions with it also enabled for performance. 477 if (!OnlyOptimizeForSize) 478 MergeExternalByDefault = false; 479 480 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 481 MergeExternalByDefault)); 482 } 483 484 return false; 485 } 486 487 bool AArch64PassConfig::addInstSelector() { 488 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 489 490 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 491 // references to _TLS_MODULE_BASE_ as possible. 492 if (TM->getTargetTriple().isOSBinFormatELF() && 493 getOptLevel() != CodeGenOpt::None) 494 addPass(createAArch64CleanupLocalDynamicTLSPass()); 495 496 return false; 497 } 498 499 bool AArch64PassConfig::addIRTranslator() { 500 addPass(new IRTranslator()); 501 return false; 502 } 503 504 void AArch64PassConfig::addPreLegalizeMachineIR() { 505 addPass(createAArch64PreLegalizeCombiner()); 506 } 507 508 bool AArch64PassConfig::addLegalizeMachineIR() { 509 addPass(new Legalizer()); 510 return false; 511 } 512 513 bool AArch64PassConfig::addRegBankSelect() { 514 addPass(new RegBankSelect()); 515 return false; 516 } 517 518 void AArch64PassConfig::addPreGlobalInstructionSelect() { 519 // Workaround the deficiency of the fast register allocator. 520 if (TM->getOptLevel() == CodeGenOpt::None) 521 addPass(new Localizer()); 522 } 523 524 bool AArch64PassConfig::addGlobalInstructionSelect() { 525 addPass(new InstructionSelect()); 526 return false; 527 } 528 529 bool AArch64PassConfig::addILPOpts() { 530 if (EnableCondOpt) 531 addPass(createAArch64ConditionOptimizerPass()); 532 if (EnableCCMP) 533 addPass(createAArch64ConditionalCompares()); 534 if (EnableMCR) 535 addPass(&MachineCombinerID); 536 if (EnableCondBrTuning) 537 addPass(createAArch64CondBrTuning()); 538 if (EnableEarlyIfConversion) 539 addPass(&EarlyIfConverterID); 540 if (EnableStPairSuppress) 541 addPass(createAArch64StorePairSuppressPass()); 542 addPass(createAArch64SIMDInstrOptPass()); 543 return true; 544 } 545 546 void AArch64PassConfig::addPreRegAlloc() { 547 // Change dead register definitions to refer to the zero register. 548 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 549 addPass(createAArch64DeadRegisterDefinitions()); 550 551 // Use AdvSIMD scalar instructions whenever profitable. 552 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 553 addPass(createAArch64AdvSIMDScalar()); 554 // The AdvSIMD pass may produce copies that can be rewritten to 555 // be register coaleascer friendly. 556 addPass(&PeepholeOptimizerID); 557 } 558 } 559 560 void AArch64PassConfig::addPostRegAlloc() { 561 // Remove redundant copy instructions. 562 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 563 addPass(createAArch64RedundantCopyEliminationPass()); 564 565 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 566 // Improve performance for some FP/SIMD code for A57. 567 addPass(createAArch64A57FPLoadBalancing()); 568 } 569 570 void AArch64PassConfig::addPreSched2() { 571 // Expand some pseudo instructions to allow proper scheduling. 572 addPass(createAArch64ExpandPseudoPass()); 573 // Use load/store pair instructions when possible. 574 if (TM->getOptLevel() != CodeGenOpt::None) { 575 if (EnableLoadStoreOpt) 576 addPass(createAArch64LoadStoreOptimizationPass()); 577 } 578 579 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 580 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 581 // Therefore, run the AArch64SpeculationHardeningPass before the 582 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 583 // info. 584 addPass(createAArch64SpeculationHardeningPass()); 585 586 if (TM->getOptLevel() != CodeGenOpt::None) { 587 if (EnableFalkorHWPFFix) 588 addPass(createFalkorHWPFFixPass()); 589 } 590 } 591 592 void AArch64PassConfig::addPreEmitPass() { 593 // Machine Block Placement might have created new opportunities when run 594 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 595 // Run the load/store optimizer once more. 596 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 597 addPass(createAArch64LoadStoreOptimizationPass()); 598 599 if (EnableA53Fix835769) 600 addPass(createAArch64A53Fix835769()); 601 // Relax conditional branch instructions if they're otherwise out of 602 // range of their destination. 603 if (BranchRelaxation) 604 addPass(&BranchRelaxationPassID); 605 606 if (EnableBranchTargets) 607 addPass(createAArch64BranchTargetsPass()); 608 609 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 610 addPass(createAArch64CompressJumpTablesPass()); 611 612 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 613 TM->getTargetTriple().isOSBinFormatMachO()) 614 addPass(createAArch64CollectLOHPass()); 615 } 616