1 //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64PromoteConstant pass which promotes constants 10 // to global variables when this is likely to be more efficient. Currently only 11 // types related to constant vector (i.e., constant vector, array of constant 12 // vectors, constant structure with a constant vector field, etc.) are promoted 13 // to global variables. Constant vectors are likely to be lowered in target 14 // constant pool during instruction selection already; therefore, the access 15 // will remain the same (memory load), but the structure types are not split 16 // into different constant pool accesses for each field. A bonus side effect is 17 // that created globals may be merged by the global merge pass. 18 // 19 // FIXME: This pass may be useful for other targets too. 20 //===----------------------------------------------------------------------===// 21 22 #include "AArch64.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "aarch64-promote-const" 53 54 // Stress testing mode - disable heuristics. 55 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, 56 cl::desc("Promote all vector constants")); 57 58 STATISTIC(NumPromoted, "Number of promoted constants"); 59 STATISTIC(NumPromotedUses, "Number of promoted constants uses"); 60 61 //===----------------------------------------------------------------------===// 62 // AArch64PromoteConstant 63 //===----------------------------------------------------------------------===// 64 65 namespace { 66 67 /// Promotes interesting constant into global variables. 68 /// The motivating example is: 69 /// static const uint16_t TableA[32] = { 70 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, 71 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, 72 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, 73 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, 74 /// }; 75 /// 76 /// uint8x16x4_t LoadStatic(void) { 77 /// uint8x16x4_t ret; 78 /// ret.val[0] = vld1q_u16(TableA + 0); 79 /// ret.val[1] = vld1q_u16(TableA + 8); 80 /// ret.val[2] = vld1q_u16(TableA + 16); 81 /// ret.val[3] = vld1q_u16(TableA + 24); 82 /// return ret; 83 /// } 84 /// 85 /// The constants in this example are folded into the uses. Thus, 4 different 86 /// constants are created. 87 /// 88 /// As their type is vector the cheapest way to create them is to load them 89 /// for the memory. 90 /// 91 /// Therefore the final assembly final has 4 different loads. With this pass 92 /// enabled, only one load is issued for the constants. 93 class AArch64PromoteConstant : public ModulePass { 94 public: 95 struct PromotedConstant { 96 bool ShouldConvert = false; 97 GlobalVariable *GV = nullptr; 98 }; 99 using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; 100 101 struct UpdateRecord { 102 Constant *C; 103 Instruction *User; 104 unsigned Op; 105 106 UpdateRecord(Constant *C, Instruction *User, unsigned Op) 107 : C(C), User(User), Op(Op) {} 108 }; 109 110 static char ID; 111 112 AArch64PromoteConstant() : ModulePass(ID) { 113 initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); 114 } 115 116 StringRef getPassName() const override { return "AArch64 Promote Constant"; } 117 118 /// Iterate over the functions and promote the interesting constants into 119 /// global variables with module scope. 120 bool runOnModule(Module &M) override { 121 LLVM_DEBUG(dbgs() << getPassName() << '\n'); 122 if (skipModule(M)) 123 return false; 124 bool Changed = false; 125 PromotionCacheTy PromotionCache; 126 for (auto &MF : M) { 127 Changed |= runOnFunction(MF, PromotionCache); 128 } 129 return Changed; 130 } 131 132 private: 133 /// Look for interesting constants used within the given function. 134 /// Promote them into global variables, load these global variables within 135 /// the related function, so that the number of inserted load is minimal. 136 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); 137 138 // This transformation requires dominator info 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 AU.setPreservesCFG(); 141 AU.addRequired<DominatorTreeWrapperPass>(); 142 AU.addPreserved<DominatorTreeWrapperPass>(); 143 } 144 145 /// Type to store a list of Uses. 146 using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; 147 /// Map an insertion point to all the uses it dominates. 148 using InsertionPoints = DenseMap<Instruction *, Uses>; 149 150 /// Find the closest point that dominates the given Use. 151 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); 152 153 /// Check if the given insertion point is dominated by an existing 154 /// insertion point. 155 /// If true, the given use is added to the list of dominated uses for 156 /// the related existing point. 157 /// \param NewPt the insertion point to be checked 158 /// \param User the user of the constant 159 /// \param OpNo the operand number of the use 160 /// \param InsertPts existing insertion points 161 /// \pre NewPt and all instruction in InsertPts belong to the same function 162 /// \return true if one of the insertion point in InsertPts dominates NewPt, 163 /// false otherwise 164 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, 165 InsertionPoints &InsertPts); 166 167 /// Check if the given insertion point can be merged with an existing 168 /// insertion point in a common dominator. 169 /// If true, the given use is added to the list of the created insertion 170 /// point. 171 /// \param NewPt the insertion point to be checked 172 /// \param User the user of the constant 173 /// \param OpNo the operand number of the use 174 /// \param InsertPts existing insertion points 175 /// \pre NewPt and all instruction in InsertPts belong to the same function 176 /// \pre isDominated returns false for the exact same parameters. 177 /// \return true if it exists an insertion point in InsertPts that could 178 /// have been merged with NewPt in a common dominator, 179 /// false otherwise 180 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, 181 InsertionPoints &InsertPts); 182 183 /// Compute the minimal insertion points to dominates all the interesting 184 /// uses of value. 185 /// Insertion points are group per function and each insertion point 186 /// contains a list of all the uses it dominates within the related function 187 /// \param User the user of the constant 188 /// \param OpNo the operand number of the constant 189 /// \param[out] InsertPts output storage of the analysis 190 void computeInsertionPoint(Instruction *User, unsigned OpNo, 191 InsertionPoints &InsertPts); 192 193 /// Insert a definition of a new global variable at each point contained in 194 /// InsPtsPerFunc and update the related uses (also contained in 195 /// InsPtsPerFunc). 196 void insertDefinitions(Function &F, GlobalVariable &GV, 197 InsertionPoints &InsertPts); 198 199 /// Do the constant promotion indicated by the Updates records, keeping track 200 /// of globals in PromotionCache. 201 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, 202 PromotionCacheTy &PromotionCache); 203 204 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. 205 /// Append Use to this list and delete the entry of IPI in InsertPts. 206 static void appendAndTransferDominatedUses(Instruction *NewPt, 207 Instruction *User, unsigned OpNo, 208 InsertionPoints::iterator &IPI, 209 InsertionPoints &InsertPts) { 210 // Record the dominated use. 211 IPI->second.emplace_back(User, OpNo); 212 // Transfer the dominated uses of IPI to NewPt 213 // Inserting into the DenseMap may invalidate existing iterator. 214 // Keep a copy of the key to find the iterator to erase. Keep a copy of the 215 // value so that we don't have to dereference IPI->second. 216 Instruction *OldInstr = IPI->first; 217 Uses OldUses = std::move(IPI->second); 218 InsertPts[NewPt] = std::move(OldUses); 219 // Erase IPI. 220 InsertPts.erase(OldInstr); 221 } 222 }; 223 224 } // end anonymous namespace 225 226 char AArch64PromoteConstant::ID = 0; 227 228 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", 229 "AArch64 Promote Constant Pass", false, false) 230 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 231 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", 232 "AArch64 Promote Constant Pass", false, false) 233 234 ModulePass *llvm::createAArch64PromoteConstantPass() { 235 return new AArch64PromoteConstant(); 236 } 237 238 /// Check if the given type uses a vector type. 239 static bool isConstantUsingVectorTy(const Type *CstTy) { 240 if (CstTy->isVectorTy()) 241 return true; 242 if (CstTy->isStructTy()) { 243 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); 244 EltIdx < EndEltIdx; ++EltIdx) 245 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) 246 return true; 247 } else if (CstTy->isArrayTy()) 248 return isConstantUsingVectorTy(CstTy->getArrayElementType()); 249 return false; 250 } 251 252 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into 253 /// a load of a global variable initialized with Cst. 254 /// A use should be converted if it is legal to do so. 255 /// For instance, it is not legal to turn the mask operand of a shuffle vector 256 /// into a load of a global variable. 257 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, 258 unsigned OpIdx) { 259 // shufflevector instruction expects a const for the mask argument, i.e., the 260 // third argument. Do not promote this use in that case. 261 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) 262 return false; 263 264 // extractvalue instruction expects a const idx. 265 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) 266 return false; 267 268 // extractvalue instruction expects a const idx. 269 if (isa<const InsertValueInst>(Instr) && OpIdx > 1) 270 return false; 271 272 if (isa<const AllocaInst>(Instr) && OpIdx > 0) 273 return false; 274 275 // Alignment argument must be constant. 276 if (isa<const LoadInst>(Instr) && OpIdx > 0) 277 return false; 278 279 // Alignment argument must be constant. 280 if (isa<const StoreInst>(Instr) && OpIdx > 1) 281 return false; 282 283 // Index must be constant. 284 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) 285 return false; 286 287 // Personality function and filters must be constant. 288 // Give up on that instruction. 289 if (isa<const LandingPadInst>(Instr)) 290 return false; 291 292 // Switch instruction expects constants to compare to. 293 if (isa<const SwitchInst>(Instr)) 294 return false; 295 296 // Expected address must be a constant. 297 if (isa<const IndirectBrInst>(Instr)) 298 return false; 299 300 // Do not mess with intrinsics. 301 if (isa<const IntrinsicInst>(Instr)) 302 return false; 303 304 // Do not mess with inline asm. 305 const CallInst *CI = dyn_cast<const CallInst>(Instr); 306 return !(CI && isa<const InlineAsm>(CI->getCalledValue())); 307 } 308 309 /// Check if the given Cst should be converted into 310 /// a load of a global variable initialized with Cst. 311 /// A constant should be converted if it is likely that the materialization of 312 /// the constant will be tricky. Thus, we give up on zero or undef values. 313 /// 314 /// \todo Currently, accept only vector related types. 315 /// Also we give up on all simple vector type to keep the existing 316 /// behavior. Otherwise, we should push here all the check of the lowering of 317 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging 318 /// constant via global merge and the fact that the same constant is stored 319 /// only once with this method (versus, as many function that uses the constant 320 /// for the regular approach, even for float). 321 /// Again, the simplest solution would be to promote every 322 /// constant and rematerialize them when they are actually cheap to create. 323 static bool shouldConvertImpl(const Constant *Cst) { 324 if (isa<const UndefValue>(Cst)) 325 return false; 326 327 // FIXME: In some cases, it may be interesting to promote in memory 328 // a zero initialized constant. 329 // E.g., when the type of Cst require more instructions than the 330 // adrp/add/load sequence or when this sequence can be shared by several 331 // instances of Cst. 332 // Ideally, we could promote this into a global and rematerialize the constant 333 // when it was a bad idea. 334 if (Cst->isZeroValue()) 335 return false; 336 337 if (Stress) 338 return true; 339 340 // FIXME: see function \todo 341 if (Cst->getType()->isVectorTy()) 342 return false; 343 return isConstantUsingVectorTy(Cst->getType()); 344 } 345 346 static bool 347 shouldConvert(Constant &C, 348 AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { 349 auto Converted = PromotionCache.insert( 350 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); 351 if (Converted.second) 352 Converted.first->second.ShouldConvert = shouldConvertImpl(&C); 353 return Converted.first->second.ShouldConvert; 354 } 355 356 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, 357 unsigned OpNo) { 358 // If this user is a phi, the insertion point is in the related 359 // incoming basic block. 360 if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) 361 return PhiInst->getIncomingBlock(OpNo)->getTerminator(); 362 363 return &User; 364 } 365 366 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, 367 unsigned OpNo, 368 InsertionPoints &InsertPts) { 369 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 370 *NewPt->getParent()->getParent()).getDomTree(); 371 372 // Traverse all the existing insertion points and check if one is dominating 373 // NewPt. If it is, remember that. 374 for (auto &IPI : InsertPts) { 375 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || 376 // When IPI.first is a terminator instruction, DT may think that 377 // the result is defined on the edge. 378 // Here we are testing the insertion point, not the definition. 379 (IPI.first->getParent() != NewPt->getParent() && 380 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { 381 // No need to insert this point. Just record the dominated use. 382 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n"); 383 LLVM_DEBUG(IPI.first->print(dbgs())); 384 LLVM_DEBUG(dbgs() << '\n'); 385 IPI.second.emplace_back(User, OpNo); 386 return true; 387 } 388 } 389 return false; 390 } 391 392 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, 393 unsigned OpNo, 394 InsertionPoints &InsertPts) { 395 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 396 *NewPt->getParent()->getParent()).getDomTree(); 397 BasicBlock *NewBB = NewPt->getParent(); 398 399 // Traverse all the existing insertion point and check if one is dominated by 400 // NewPt and thus useless or can be combined with NewPt into a common 401 // dominator. 402 for (InsertionPoints::iterator IPI = InsertPts.begin(), 403 EndIPI = InsertPts.end(); 404 IPI != EndIPI; ++IPI) { 405 BasicBlock *CurBB = IPI->first->getParent(); 406 if (NewBB == CurBB) { 407 // Instructions are in the same block. 408 // By construction, NewPt is dominating the other. 409 // Indeed, isDominated returned false with the exact same arguments. 410 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 411 LLVM_DEBUG(IPI->first->print(dbgs())); 412 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n"); 413 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 414 return true; 415 } 416 417 // Look for a common dominator 418 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); 419 // If none exists, we cannot merge these two points. 420 if (!CommonDominator) 421 continue; 422 423 if (CommonDominator != NewBB) { 424 // By construction, the CommonDominator cannot be CurBB. 425 assert(CommonDominator != CurBB && 426 "Instruction has not been rejected during isDominated check!"); 427 // Take the last instruction of the CommonDominator as insertion point 428 NewPt = CommonDominator->getTerminator(); 429 } 430 // else, CommonDominator is the block of NewBB, hence NewBB is the last 431 // possible insertion point in that block. 432 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 433 LLVM_DEBUG(IPI->first->print(dbgs())); 434 LLVM_DEBUG(dbgs() << '\n'); 435 LLVM_DEBUG(NewPt->print(dbgs())); 436 LLVM_DEBUG(dbgs() << '\n'); 437 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 438 return true; 439 } 440 return false; 441 } 442 443 void AArch64PromoteConstant::computeInsertionPoint( 444 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { 445 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); 446 LLVM_DEBUG(User->print(dbgs())); 447 LLVM_DEBUG(dbgs() << '\n'); 448 449 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); 450 451 LLVM_DEBUG(dbgs() << "Considered insertion point:\n"); 452 LLVM_DEBUG(InsertionPoint->print(dbgs())); 453 LLVM_DEBUG(dbgs() << '\n'); 454 455 if (isDominated(InsertionPoint, User, OpNo, InsertPts)) 456 return; 457 // This insertion point is useful, check if we can merge some insertion 458 // point in a common dominator or if NewPt dominates an existing one. 459 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) 460 return; 461 462 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n"); 463 464 // It is definitely useful by its own 465 InsertPts[InsertionPoint].emplace_back(User, OpNo); 466 } 467 468 static void ensurePromotedGV(Function &F, Constant &C, 469 AArch64PromoteConstant::PromotedConstant &PC) { 470 assert(PC.ShouldConvert && 471 "Expected that we should convert this to a global"); 472 if (PC.GV) 473 return; 474 PC.GV = new GlobalVariable( 475 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, 476 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); 477 PC.GV->setInitializer(&C); 478 LLVM_DEBUG(dbgs() << "Global replacement: "); 479 LLVM_DEBUG(PC.GV->print(dbgs())); 480 LLVM_DEBUG(dbgs() << '\n'); 481 ++NumPromoted; 482 } 483 484 void AArch64PromoteConstant::insertDefinitions(Function &F, 485 GlobalVariable &PromotedGV, 486 InsertionPoints &InsertPts) { 487 #ifndef NDEBUG 488 // Do more checking for debug purposes. 489 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 490 #endif 491 assert(!InsertPts.empty() && "Empty uses does not need a definition"); 492 493 for (const auto &IPI : InsertPts) { 494 // Create the load of the global variable. 495 IRBuilder<> Builder(IPI.first); 496 LoadInst *LoadedCst = 497 Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV); 498 LLVM_DEBUG(dbgs() << "**********\n"); 499 LLVM_DEBUG(dbgs() << "New def: "); 500 LLVM_DEBUG(LoadedCst->print(dbgs())); 501 LLVM_DEBUG(dbgs() << '\n'); 502 503 // Update the dominated uses. 504 for (auto Use : IPI.second) { 505 #ifndef NDEBUG 506 assert(DT.dominates(LoadedCst, 507 findInsertionPoint(*Use.first, Use.second)) && 508 "Inserted definition does not dominate all its uses!"); 509 #endif 510 LLVM_DEBUG({ 511 dbgs() << "Use to update " << Use.second << ":"; 512 Use.first->print(dbgs()); 513 dbgs() << '\n'; 514 }); 515 Use.first->setOperand(Use.second, LoadedCst); 516 ++NumPromotedUses; 517 } 518 } 519 } 520 521 void AArch64PromoteConstant::promoteConstants( 522 Function &F, SmallVectorImpl<UpdateRecord> &Updates, 523 PromotionCacheTy &PromotionCache) { 524 // Promote the constants. 525 for (auto U = Updates.begin(), E = Updates.end(); U != E;) { 526 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n"); 527 auto First = U; 528 Constant *C = First->C; 529 InsertionPoints InsertPts; 530 do { 531 computeInsertionPoint(U->User, U->Op, InsertPts); 532 } while (++U != E && U->C == C); 533 534 auto &Promotion = PromotionCache[C]; 535 ensurePromotedGV(F, *C, Promotion); 536 insertDefinitions(F, *Promotion.GV, InsertPts); 537 } 538 } 539 540 bool AArch64PromoteConstant::runOnFunction(Function &F, 541 PromotionCacheTy &PromotionCache) { 542 // Look for instructions using constant vector. Promote that constant to a 543 // global variable. Create as few loads of this variable as possible and 544 // update the uses accordingly. 545 SmallVector<UpdateRecord, 64> Updates; 546 for (Instruction &I : instructions(&F)) { 547 // Traverse the operand, looking for constant vectors. Replace them by a 548 // load of a global variable of constant vector type. 549 for (Use &U : I.operands()) { 550 Constant *Cst = dyn_cast<Constant>(U); 551 // There is no point in promoting global values as they are already 552 // global. Do not promote constant expressions either, as they may 553 // require some code expansion. 554 if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst)) 555 continue; 556 557 // Check if this constant is worth promoting. 558 if (!shouldConvert(*Cst, PromotionCache)) 559 continue; 560 561 // Check if this use should be promoted. 562 unsigned OpNo = &U - I.op_begin(); 563 if (!shouldConvertUse(Cst, &I, OpNo)) 564 continue; 565 566 Updates.emplace_back(Cst, &I, OpNo); 567 } 568 } 569 570 if (Updates.empty()) 571 return false; 572 573 promoteConstants(F, Updates, PromotionCache); 574 return true; 575 } 576