1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64Subtarget.h" 16 #include "MCTargetDesc/AArch64AddressingModes.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <functional> 42 #include <iterator> 43 #include <limits> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "aarch64-ldst-opt" 48 49 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 50 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 51 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 52 STATISTIC(NumUnscaledPairCreated, 53 "Number of load/store from unscaled generated"); 54 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 55 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 56 57 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 58 "Controls which pairs are considered for renaming"); 59 60 // The LdStLimit limits how far we search for load/store pairs. 61 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 62 cl::init(20), cl::Hidden); 63 64 // The UpdateLimit limits how far we search for update instructions when we form 65 // pre-/post-index instructions. 66 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 67 cl::Hidden); 68 69 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 70 71 namespace { 72 73 using LdStPairFlags = struct LdStPairFlags { 74 // If a matching instruction is found, MergeForward is set to true if the 75 // merge is to remove the first instruction and replace the second with 76 // a pair-wise insn, and false if the reverse is true. 77 bool MergeForward = false; 78 79 // SExtIdx gives the index of the result of the load pair that must be 80 // extended. The value of SExtIdx assumes that the paired load produces the 81 // value in this order: (I, returned iterator), i.e., -1 means no value has 82 // to be extended, 0 means I, and 1 means the returned iterator. 83 int SExtIdx = -1; 84 85 // If not none, RenameReg can be used to rename the result register of the 86 // first store in a pair. Currently this only works when merging stores 87 // forward. 88 Optional<MCPhysReg> RenameReg = None; 89 90 LdStPairFlags() = default; 91 92 void setMergeForward(bool V = true) { MergeForward = V; } 93 bool getMergeForward() const { return MergeForward; } 94 95 void setSExtIdx(int V) { SExtIdx = V; } 96 int getSExtIdx() const { return SExtIdx; } 97 98 void setRenameReg(MCPhysReg R) { RenameReg = R; } 99 void clearRenameReg() { RenameReg = None; } 100 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 101 }; 102 103 struct AArch64LoadStoreOpt : public MachineFunctionPass { 104 static char ID; 105 106 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 107 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 108 } 109 110 AliasAnalysis *AA; 111 const AArch64InstrInfo *TII; 112 const TargetRegisterInfo *TRI; 113 const AArch64Subtarget *Subtarget; 114 115 // Track which register units have been modified and used. 116 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 117 LiveRegUnits DefinedInBB; 118 119 void getAnalysisUsage(AnalysisUsage &AU) const override { 120 AU.addRequired<AAResultsWrapperPass>(); 121 MachineFunctionPass::getAnalysisUsage(AU); 122 } 123 124 // Scan the instructions looking for a load/store that can be combined 125 // with the current instruction into a load/store pair. 126 // Return the matching instruction if one is found, else MBB->end(). 127 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 128 LdStPairFlags &Flags, 129 unsigned Limit, 130 bool FindNarrowMerge); 131 132 // Scan the instructions looking for a store that writes to the address from 133 // which the current load instruction reads. Return true if one is found. 134 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 135 MachineBasicBlock::iterator &StoreI); 136 137 // Merge the two instructions indicated into a wider narrow store instruction. 138 MachineBasicBlock::iterator 139 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 140 MachineBasicBlock::iterator MergeMI, 141 const LdStPairFlags &Flags); 142 143 // Merge the two instructions indicated into a single pair-wise instruction. 144 MachineBasicBlock::iterator 145 mergePairedInsns(MachineBasicBlock::iterator I, 146 MachineBasicBlock::iterator Paired, 147 const LdStPairFlags &Flags); 148 149 // Promote the load that reads directly from the address stored to. 150 MachineBasicBlock::iterator 151 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 152 MachineBasicBlock::iterator StoreI); 153 154 // Scan the instruction list to find a base register update that can 155 // be combined with the current instruction (a load or store) using 156 // pre or post indexed addressing with writeback. Scan forwards. 157 MachineBasicBlock::iterator 158 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 159 int UnscaledOffset, unsigned Limit); 160 161 // Scan the instruction list to find a base register update that can 162 // be combined with the current instruction (a load or store) using 163 // pre or post indexed addressing with writeback. Scan backwards. 164 MachineBasicBlock::iterator 165 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 166 167 // Find an instruction that updates the base register of the ld/st 168 // instruction. 169 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 170 unsigned BaseReg, int Offset); 171 172 // Merge a pre- or post-index base register update into a ld/st instruction. 173 MachineBasicBlock::iterator 174 mergeUpdateInsn(MachineBasicBlock::iterator I, 175 MachineBasicBlock::iterator Update, bool IsPreIdx); 176 177 // Find and merge zero store instructions. 178 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 179 180 // Find and pair ldr/str instructions. 181 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 182 183 // Find and promote load instructions which read directly from store. 184 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 185 186 // Find and merge a base register updates before or after a ld/st instruction. 187 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 188 189 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 190 191 bool runOnMachineFunction(MachineFunction &Fn) override; 192 193 MachineFunctionProperties getRequiredProperties() const override { 194 return MachineFunctionProperties().set( 195 MachineFunctionProperties::Property::NoVRegs); 196 } 197 198 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 199 }; 200 201 char AArch64LoadStoreOpt::ID = 0; 202 203 } // end anonymous namespace 204 205 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 206 AARCH64_LOAD_STORE_OPT_NAME, false, false) 207 208 static bool isNarrowStore(unsigned Opc) { 209 switch (Opc) { 210 default: 211 return false; 212 case AArch64::STRBBui: 213 case AArch64::STURBBi: 214 case AArch64::STRHHui: 215 case AArch64::STURHHi: 216 return true; 217 } 218 } 219 220 // These instruction set memory tag and either keep memory contents unchanged or 221 // set it to zero, ignoring the address part of the source register. 222 static bool isTagStore(const MachineInstr &MI) { 223 switch (MI.getOpcode()) { 224 default: 225 return false; 226 case AArch64::STGOffset: 227 case AArch64::STZGOffset: 228 case AArch64::ST2GOffset: 229 case AArch64::STZ2GOffset: 230 return true; 231 } 232 } 233 234 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 235 bool *IsValidLdStrOpc = nullptr) { 236 if (IsValidLdStrOpc) 237 *IsValidLdStrOpc = true; 238 switch (Opc) { 239 default: 240 if (IsValidLdStrOpc) 241 *IsValidLdStrOpc = false; 242 return std::numeric_limits<unsigned>::max(); 243 case AArch64::STRDui: 244 case AArch64::STURDi: 245 case AArch64::STRQui: 246 case AArch64::STURQi: 247 case AArch64::STRBBui: 248 case AArch64::STURBBi: 249 case AArch64::STRHHui: 250 case AArch64::STURHHi: 251 case AArch64::STRWui: 252 case AArch64::STURWi: 253 case AArch64::STRXui: 254 case AArch64::STURXi: 255 case AArch64::LDRDui: 256 case AArch64::LDURDi: 257 case AArch64::LDRQui: 258 case AArch64::LDURQi: 259 case AArch64::LDRWui: 260 case AArch64::LDURWi: 261 case AArch64::LDRXui: 262 case AArch64::LDURXi: 263 case AArch64::STRSui: 264 case AArch64::STURSi: 265 case AArch64::LDRSui: 266 case AArch64::LDURSi: 267 return Opc; 268 case AArch64::LDRSWui: 269 return AArch64::LDRWui; 270 case AArch64::LDURSWi: 271 return AArch64::LDURWi; 272 } 273 } 274 275 static unsigned getMatchingWideOpcode(unsigned Opc) { 276 switch (Opc) { 277 default: 278 llvm_unreachable("Opcode has no wide equivalent!"); 279 case AArch64::STRBBui: 280 return AArch64::STRHHui; 281 case AArch64::STRHHui: 282 return AArch64::STRWui; 283 case AArch64::STURBBi: 284 return AArch64::STURHHi; 285 case AArch64::STURHHi: 286 return AArch64::STURWi; 287 case AArch64::STURWi: 288 return AArch64::STURXi; 289 case AArch64::STRWui: 290 return AArch64::STRXui; 291 } 292 } 293 294 static unsigned getMatchingPairOpcode(unsigned Opc) { 295 switch (Opc) { 296 default: 297 llvm_unreachable("Opcode has no pairwise equivalent!"); 298 case AArch64::STRSui: 299 case AArch64::STURSi: 300 return AArch64::STPSi; 301 case AArch64::STRDui: 302 case AArch64::STURDi: 303 return AArch64::STPDi; 304 case AArch64::STRQui: 305 case AArch64::STURQi: 306 return AArch64::STPQi; 307 case AArch64::STRWui: 308 case AArch64::STURWi: 309 return AArch64::STPWi; 310 case AArch64::STRXui: 311 case AArch64::STURXi: 312 return AArch64::STPXi; 313 case AArch64::LDRSui: 314 case AArch64::LDURSi: 315 return AArch64::LDPSi; 316 case AArch64::LDRDui: 317 case AArch64::LDURDi: 318 return AArch64::LDPDi; 319 case AArch64::LDRQui: 320 case AArch64::LDURQi: 321 return AArch64::LDPQi; 322 case AArch64::LDRWui: 323 case AArch64::LDURWi: 324 return AArch64::LDPWi; 325 case AArch64::LDRXui: 326 case AArch64::LDURXi: 327 return AArch64::LDPXi; 328 case AArch64::LDRSWui: 329 case AArch64::LDURSWi: 330 return AArch64::LDPSWi; 331 } 332 } 333 334 static unsigned isMatchingStore(MachineInstr &LoadInst, 335 MachineInstr &StoreInst) { 336 unsigned LdOpc = LoadInst.getOpcode(); 337 unsigned StOpc = StoreInst.getOpcode(); 338 switch (LdOpc) { 339 default: 340 llvm_unreachable("Unsupported load instruction!"); 341 case AArch64::LDRBBui: 342 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 343 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 344 case AArch64::LDURBBi: 345 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 346 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 347 case AArch64::LDRHHui: 348 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 349 StOpc == AArch64::STRXui; 350 case AArch64::LDURHHi: 351 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 352 StOpc == AArch64::STURXi; 353 case AArch64::LDRWui: 354 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 355 case AArch64::LDURWi: 356 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 357 case AArch64::LDRXui: 358 return StOpc == AArch64::STRXui; 359 case AArch64::LDURXi: 360 return StOpc == AArch64::STURXi; 361 } 362 } 363 364 static unsigned getPreIndexedOpcode(unsigned Opc) { 365 // FIXME: We don't currently support creating pre-indexed loads/stores when 366 // the load or store is the unscaled version. If we decide to perform such an 367 // optimization in the future the cases for the unscaled loads/stores will 368 // need to be added here. 369 switch (Opc) { 370 default: 371 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 372 case AArch64::STRSui: 373 return AArch64::STRSpre; 374 case AArch64::STRDui: 375 return AArch64::STRDpre; 376 case AArch64::STRQui: 377 return AArch64::STRQpre; 378 case AArch64::STRBBui: 379 return AArch64::STRBBpre; 380 case AArch64::STRHHui: 381 return AArch64::STRHHpre; 382 case AArch64::STRWui: 383 return AArch64::STRWpre; 384 case AArch64::STRXui: 385 return AArch64::STRXpre; 386 case AArch64::LDRSui: 387 return AArch64::LDRSpre; 388 case AArch64::LDRDui: 389 return AArch64::LDRDpre; 390 case AArch64::LDRQui: 391 return AArch64::LDRQpre; 392 case AArch64::LDRBBui: 393 return AArch64::LDRBBpre; 394 case AArch64::LDRHHui: 395 return AArch64::LDRHHpre; 396 case AArch64::LDRWui: 397 return AArch64::LDRWpre; 398 case AArch64::LDRXui: 399 return AArch64::LDRXpre; 400 case AArch64::LDRSWui: 401 return AArch64::LDRSWpre; 402 case AArch64::LDPSi: 403 return AArch64::LDPSpre; 404 case AArch64::LDPSWi: 405 return AArch64::LDPSWpre; 406 case AArch64::LDPDi: 407 return AArch64::LDPDpre; 408 case AArch64::LDPQi: 409 return AArch64::LDPQpre; 410 case AArch64::LDPWi: 411 return AArch64::LDPWpre; 412 case AArch64::LDPXi: 413 return AArch64::LDPXpre; 414 case AArch64::STPSi: 415 return AArch64::STPSpre; 416 case AArch64::STPDi: 417 return AArch64::STPDpre; 418 case AArch64::STPQi: 419 return AArch64::STPQpre; 420 case AArch64::STPWi: 421 return AArch64::STPWpre; 422 case AArch64::STPXi: 423 return AArch64::STPXpre; 424 case AArch64::STGOffset: 425 return AArch64::STGPreIndex; 426 case AArch64::STZGOffset: 427 return AArch64::STZGPreIndex; 428 case AArch64::ST2GOffset: 429 return AArch64::ST2GPreIndex; 430 case AArch64::STZ2GOffset: 431 return AArch64::STZ2GPreIndex; 432 case AArch64::STGPi: 433 return AArch64::STGPpre; 434 } 435 } 436 437 static unsigned getPostIndexedOpcode(unsigned Opc) { 438 switch (Opc) { 439 default: 440 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 441 case AArch64::STRSui: 442 case AArch64::STURSi: 443 return AArch64::STRSpost; 444 case AArch64::STRDui: 445 case AArch64::STURDi: 446 return AArch64::STRDpost; 447 case AArch64::STRQui: 448 case AArch64::STURQi: 449 return AArch64::STRQpost; 450 case AArch64::STRBBui: 451 return AArch64::STRBBpost; 452 case AArch64::STRHHui: 453 return AArch64::STRHHpost; 454 case AArch64::STRWui: 455 case AArch64::STURWi: 456 return AArch64::STRWpost; 457 case AArch64::STRXui: 458 case AArch64::STURXi: 459 return AArch64::STRXpost; 460 case AArch64::LDRSui: 461 case AArch64::LDURSi: 462 return AArch64::LDRSpost; 463 case AArch64::LDRDui: 464 case AArch64::LDURDi: 465 return AArch64::LDRDpost; 466 case AArch64::LDRQui: 467 case AArch64::LDURQi: 468 return AArch64::LDRQpost; 469 case AArch64::LDRBBui: 470 return AArch64::LDRBBpost; 471 case AArch64::LDRHHui: 472 return AArch64::LDRHHpost; 473 case AArch64::LDRWui: 474 case AArch64::LDURWi: 475 return AArch64::LDRWpost; 476 case AArch64::LDRXui: 477 case AArch64::LDURXi: 478 return AArch64::LDRXpost; 479 case AArch64::LDRSWui: 480 return AArch64::LDRSWpost; 481 case AArch64::LDPSi: 482 return AArch64::LDPSpost; 483 case AArch64::LDPSWi: 484 return AArch64::LDPSWpost; 485 case AArch64::LDPDi: 486 return AArch64::LDPDpost; 487 case AArch64::LDPQi: 488 return AArch64::LDPQpost; 489 case AArch64::LDPWi: 490 return AArch64::LDPWpost; 491 case AArch64::LDPXi: 492 return AArch64::LDPXpost; 493 case AArch64::STPSi: 494 return AArch64::STPSpost; 495 case AArch64::STPDi: 496 return AArch64::STPDpost; 497 case AArch64::STPQi: 498 return AArch64::STPQpost; 499 case AArch64::STPWi: 500 return AArch64::STPWpost; 501 case AArch64::STPXi: 502 return AArch64::STPXpost; 503 case AArch64::STGOffset: 504 return AArch64::STGPostIndex; 505 case AArch64::STZGOffset: 506 return AArch64::STZGPostIndex; 507 case AArch64::ST2GOffset: 508 return AArch64::ST2GPostIndex; 509 case AArch64::STZ2GOffset: 510 return AArch64::STZ2GPostIndex; 511 case AArch64::STGPi: 512 return AArch64::STGPpost; 513 } 514 } 515 516 static bool isPairedLdSt(const MachineInstr &MI) { 517 switch (MI.getOpcode()) { 518 default: 519 return false; 520 case AArch64::LDPSi: 521 case AArch64::LDPSWi: 522 case AArch64::LDPDi: 523 case AArch64::LDPQi: 524 case AArch64::LDPWi: 525 case AArch64::LDPXi: 526 case AArch64::STPSi: 527 case AArch64::STPDi: 528 case AArch64::STPQi: 529 case AArch64::STPWi: 530 case AArch64::STPXi: 531 case AArch64::STGPi: 532 return true; 533 } 534 } 535 536 // Returns the scale and offset range of pre/post indexed variants of MI. 537 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 538 int &MinOffset, int &MaxOffset) { 539 bool IsPaired = isPairedLdSt(MI); 540 bool IsTagStore = isTagStore(MI); 541 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 542 // as in the "unsigned offset" variant. 543 // All other pre/post indexed ldst instructions are unscaled. 544 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 545 546 if (IsPaired) { 547 MinOffset = -64; 548 MaxOffset = 63; 549 } else { 550 MinOffset = -256; 551 MaxOffset = 255; 552 } 553 } 554 555 static MachineOperand &getLdStRegOp(MachineInstr &MI, 556 unsigned PairedRegOp = 0) { 557 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 558 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 559 return MI.getOperand(Idx); 560 } 561 562 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 563 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 564 return MI.getOperand(Idx); 565 } 566 567 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 568 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 569 return MI.getOperand(Idx); 570 } 571 572 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 573 MachineInstr &StoreInst, 574 const AArch64InstrInfo *TII) { 575 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 576 int LoadSize = TII->getMemScale(LoadInst); 577 int StoreSize = TII->getMemScale(StoreInst); 578 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 579 ? getLdStOffsetOp(StoreInst).getImm() 580 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 581 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 582 ? getLdStOffsetOp(LoadInst).getImm() 583 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 584 return (UnscaledStOffset <= UnscaledLdOffset) && 585 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 586 } 587 588 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 589 unsigned Opc = MI.getOpcode(); 590 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 591 isNarrowStore(Opc)) && 592 getLdStRegOp(MI).getReg() == AArch64::WZR; 593 } 594 595 static bool isPromotableLoadFromStore(MachineInstr &MI) { 596 switch (MI.getOpcode()) { 597 default: 598 return false; 599 // Scaled instructions. 600 case AArch64::LDRBBui: 601 case AArch64::LDRHHui: 602 case AArch64::LDRWui: 603 case AArch64::LDRXui: 604 // Unscaled instructions. 605 case AArch64::LDURBBi: 606 case AArch64::LDURHHi: 607 case AArch64::LDURWi: 608 case AArch64::LDURXi: 609 return true; 610 } 611 } 612 613 static bool isMergeableLdStUpdate(MachineInstr &MI) { 614 unsigned Opc = MI.getOpcode(); 615 switch (Opc) { 616 default: 617 return false; 618 // Scaled instructions. 619 case AArch64::STRSui: 620 case AArch64::STRDui: 621 case AArch64::STRQui: 622 case AArch64::STRXui: 623 case AArch64::STRWui: 624 case AArch64::STRHHui: 625 case AArch64::STRBBui: 626 case AArch64::LDRSui: 627 case AArch64::LDRDui: 628 case AArch64::LDRQui: 629 case AArch64::LDRXui: 630 case AArch64::LDRWui: 631 case AArch64::LDRHHui: 632 case AArch64::LDRBBui: 633 case AArch64::STGOffset: 634 case AArch64::STZGOffset: 635 case AArch64::ST2GOffset: 636 case AArch64::STZ2GOffset: 637 case AArch64::STGPi: 638 // Unscaled instructions. 639 case AArch64::STURSi: 640 case AArch64::STURDi: 641 case AArch64::STURQi: 642 case AArch64::STURWi: 643 case AArch64::STURXi: 644 case AArch64::LDURSi: 645 case AArch64::LDURDi: 646 case AArch64::LDURQi: 647 case AArch64::LDURWi: 648 case AArch64::LDURXi: 649 // Paired instructions. 650 case AArch64::LDPSi: 651 case AArch64::LDPSWi: 652 case AArch64::LDPDi: 653 case AArch64::LDPQi: 654 case AArch64::LDPWi: 655 case AArch64::LDPXi: 656 case AArch64::STPSi: 657 case AArch64::STPDi: 658 case AArch64::STPQi: 659 case AArch64::STPWi: 660 case AArch64::STPXi: 661 // Make sure this is a reg+imm (as opposed to an address reloc). 662 if (!getLdStOffsetOp(MI).isImm()) 663 return false; 664 665 return true; 666 } 667 } 668 669 MachineBasicBlock::iterator 670 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 671 MachineBasicBlock::iterator MergeMI, 672 const LdStPairFlags &Flags) { 673 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 674 "Expected promotable zero stores."); 675 676 MachineBasicBlock::iterator NextI = I; 677 ++NextI; 678 // If NextI is the second of the two instructions to be merged, we need 679 // to skip one further. Either way we merge will invalidate the iterator, 680 // and we don't need to scan the new instruction, as it's a pairwise 681 // instruction, which we're not considering for further action anyway. 682 if (NextI == MergeMI) 683 ++NextI; 684 685 unsigned Opc = I->getOpcode(); 686 bool IsScaled = !TII->isUnscaledLdSt(Opc); 687 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 688 689 bool MergeForward = Flags.getMergeForward(); 690 // Insert our new paired instruction after whichever of the paired 691 // instructions MergeForward indicates. 692 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 693 // Also based on MergeForward is from where we copy the base register operand 694 // so we get the flags compatible with the input code. 695 const MachineOperand &BaseRegOp = 696 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 697 698 // Which register is Rt and which is Rt2 depends on the offset order. 699 MachineInstr *RtMI; 700 if (getLdStOffsetOp(*I).getImm() == 701 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 702 RtMI = &*MergeMI; 703 else 704 RtMI = &*I; 705 706 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 707 // Change the scaled offset from small to large type. 708 if (IsScaled) { 709 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 710 OffsetImm /= 2; 711 } 712 713 // Construct the new instruction. 714 DebugLoc DL = I->getDebugLoc(); 715 MachineBasicBlock *MBB = I->getParent(); 716 MachineInstrBuilder MIB; 717 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 718 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 719 .add(BaseRegOp) 720 .addImm(OffsetImm) 721 .cloneMergedMemRefs({&*I, &*MergeMI}) 722 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 723 (void)MIB; 724 725 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 726 LLVM_DEBUG(I->print(dbgs())); 727 LLVM_DEBUG(dbgs() << " "); 728 LLVM_DEBUG(MergeMI->print(dbgs())); 729 LLVM_DEBUG(dbgs() << " with instruction:\n "); 730 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 731 LLVM_DEBUG(dbgs() << "\n"); 732 733 // Erase the old instructions. 734 I->eraseFromParent(); 735 MergeMI->eraseFromParent(); 736 return NextI; 737 } 738 739 // Apply Fn to all instructions between MI and the beginning of the block, until 740 // a def for DefReg is reached. Returns true, iff Fn returns true for all 741 // visited instructions. Stop after visiting Limit iterations. 742 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 743 const TargetRegisterInfo *TRI, unsigned Limit, 744 std::function<bool(MachineInstr &, bool)> &Fn) { 745 auto MBB = MI.getParent(); 746 for (MachineBasicBlock::reverse_iterator I = MI.getReverseIterator(), 747 E = MBB->rend(); 748 I != E; I++) { 749 if (!Limit) 750 return false; 751 --Limit; 752 753 bool isDef = any_of(I->operands(), [DefReg, TRI](MachineOperand &MOP) { 754 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 755 TRI->regsOverlap(MOP.getReg(), DefReg); 756 }); 757 if (!Fn(*I, isDef)) 758 return false; 759 if (isDef) 760 break; 761 } 762 return true; 763 } 764 765 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 766 const TargetRegisterInfo *TRI) { 767 768 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 769 if (MOP.isReg() && MOP.isKill()) 770 Units.removeReg(MOP.getReg()); 771 772 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 773 if (MOP.isReg() && !MOP.isKill()) 774 Units.addReg(MOP.getReg()); 775 } 776 777 MachineBasicBlock::iterator 778 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 779 MachineBasicBlock::iterator Paired, 780 const LdStPairFlags &Flags) { 781 MachineBasicBlock::iterator NextI = I; 782 ++NextI; 783 // If NextI is the second of the two instructions to be merged, we need 784 // to skip one further. Either way we merge will invalidate the iterator, 785 // and we don't need to scan the new instruction, as it's a pairwise 786 // instruction, which we're not considering for further action anyway. 787 if (NextI == Paired) 788 ++NextI; 789 790 int SExtIdx = Flags.getSExtIdx(); 791 unsigned Opc = 792 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 793 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 794 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 795 796 bool MergeForward = Flags.getMergeForward(); 797 798 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 799 if (MergeForward && RenameReg) { 800 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 801 DefinedInBB.addReg(*RenameReg); 802 803 // Return the sub/super register for RenameReg, matching the size of 804 // OriginalReg. 805 auto GetMatchingSubReg = [this, 806 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 807 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 808 if (TRI->getMinimalPhysRegClass(OriginalReg) == 809 TRI->getMinimalPhysRegClass(SubOrSuper)) 810 return SubOrSuper; 811 llvm_unreachable("Should have found matching sub or super register!"); 812 }; 813 814 std::function<bool(MachineInstr &, bool)> UpdateMIs = 815 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 816 if (IsDef) { 817 bool SeenDef = false; 818 for (auto &MOP : MI.operands()) { 819 // Rename the first explicit definition and all implicit 820 // definitions matching RegToRename. 821 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 822 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 823 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 824 assert((MOP.isImplicit() || 825 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 826 "Need renamable operands"); 827 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 828 SeenDef = true; 829 } 830 } 831 } else { 832 for (auto &MOP : MI.operands()) { 833 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 834 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 835 assert((MOP.isImplicit() || 836 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 837 "Need renamable operands"); 838 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 839 } 840 } 841 } 842 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 843 return true; 844 }; 845 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 846 847 #if !defined(NDEBUG) 848 // Make sure the register used for renaming is not used between the paired 849 // instructions. That would trash the content before the new paired 850 // instruction. 851 for (auto &MI : 852 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 853 std::next(I), std::next(Paired))) 854 assert(all_of(MI.operands(), 855 [this, &RenameReg](const MachineOperand &MOP) { 856 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 857 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 858 }) && 859 "Rename register used between paired instruction, trashing the " 860 "content"); 861 #endif 862 } 863 864 // Insert our new paired instruction after whichever of the paired 865 // instructions MergeForward indicates. 866 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 867 // Also based on MergeForward is from where we copy the base register operand 868 // so we get the flags compatible with the input code. 869 const MachineOperand &BaseRegOp = 870 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 871 872 int Offset = getLdStOffsetOp(*I).getImm(); 873 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 874 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 875 if (IsUnscaled != PairedIsUnscaled) { 876 // We're trying to pair instructions that differ in how they are scaled. If 877 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 878 // the opposite (i.e., make Paired's offset unscaled). 879 int MemSize = TII->getMemScale(*Paired); 880 if (PairedIsUnscaled) { 881 // If the unscaled offset isn't a multiple of the MemSize, we can't 882 // pair the operations together. 883 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 884 "Offset should be a multiple of the stride!"); 885 PairedOffset /= MemSize; 886 } else { 887 PairedOffset *= MemSize; 888 } 889 } 890 891 // Which register is Rt and which is Rt2 depends on the offset order. 892 MachineInstr *RtMI, *Rt2MI; 893 if (Offset == PairedOffset + OffsetStride) { 894 RtMI = &*Paired; 895 Rt2MI = &*I; 896 // Here we swapped the assumption made for SExtIdx. 897 // I.e., we turn ldp I, Paired into ldp Paired, I. 898 // Update the index accordingly. 899 if (SExtIdx != -1) 900 SExtIdx = (SExtIdx + 1) % 2; 901 } else { 902 RtMI = &*I; 903 Rt2MI = &*Paired; 904 } 905 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 906 // Scale the immediate offset, if necessary. 907 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 908 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 909 "Unscaled offset cannot be scaled."); 910 OffsetImm /= TII->getMemScale(*RtMI); 911 } 912 913 // Construct the new instruction. 914 MachineInstrBuilder MIB; 915 DebugLoc DL = I->getDebugLoc(); 916 MachineBasicBlock *MBB = I->getParent(); 917 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 918 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 919 // Kill flags may become invalid when moving stores for pairing. 920 if (RegOp0.isUse()) { 921 if (!MergeForward) { 922 // Clear kill flags on store if moving upwards. Example: 923 // STRWui %w0, ... 924 // USE %w1 925 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 926 RegOp0.setIsKill(false); 927 RegOp1.setIsKill(false); 928 } else { 929 // Clear kill flags of the first stores register. Example: 930 // STRWui %w1, ... 931 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 932 // STRW %w0 933 Register Reg = getLdStRegOp(*I).getReg(); 934 for (MachineInstr &MI : make_range(std::next(I), Paired)) 935 MI.clearRegisterKills(Reg, TRI); 936 } 937 } 938 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 939 .add(RegOp0) 940 .add(RegOp1) 941 .add(BaseRegOp) 942 .addImm(OffsetImm) 943 .cloneMergedMemRefs({&*I, &*Paired}) 944 .setMIFlags(I->mergeFlagsWith(*Paired)); 945 946 (void)MIB; 947 948 LLVM_DEBUG( 949 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 950 LLVM_DEBUG(I->print(dbgs())); 951 LLVM_DEBUG(dbgs() << " "); 952 LLVM_DEBUG(Paired->print(dbgs())); 953 LLVM_DEBUG(dbgs() << " with instruction:\n "); 954 if (SExtIdx != -1) { 955 // Generate the sign extension for the proper result of the ldp. 956 // I.e., with X1, that would be: 957 // %w1 = KILL %w1, implicit-def %x1 958 // %x1 = SBFMXri killed %x1, 0, 31 959 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 960 // Right now, DstMO has the extended register, since it comes from an 961 // extended opcode. 962 Register DstRegX = DstMO.getReg(); 963 // Get the W variant of that register. 964 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 965 // Update the result of LDP to use the W instead of the X variant. 966 DstMO.setReg(DstRegW); 967 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 968 LLVM_DEBUG(dbgs() << "\n"); 969 // Make the machine verifier happy by providing a definition for 970 // the X register. 971 // Insert this definition right after the generated LDP, i.e., before 972 // InsertionPoint. 973 MachineInstrBuilder MIBKill = 974 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 975 .addReg(DstRegW) 976 .addReg(DstRegX, RegState::Define); 977 MIBKill->getOperand(2).setImplicit(); 978 // Create the sign extension. 979 MachineInstrBuilder MIBSXTW = 980 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 981 .addReg(DstRegX) 982 .addImm(0) 983 .addImm(31); 984 (void)MIBSXTW; 985 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 986 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 987 } else { 988 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 989 } 990 LLVM_DEBUG(dbgs() << "\n"); 991 992 if (MergeForward) 993 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 994 if (MOP.isReg() && MOP.isKill()) 995 DefinedInBB.addReg(MOP.getReg()); 996 997 // Erase the old instructions. 998 I->eraseFromParent(); 999 Paired->eraseFromParent(); 1000 1001 return NextI; 1002 } 1003 1004 MachineBasicBlock::iterator 1005 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1006 MachineBasicBlock::iterator StoreI) { 1007 MachineBasicBlock::iterator NextI = LoadI; 1008 ++NextI; 1009 1010 int LoadSize = TII->getMemScale(*LoadI); 1011 int StoreSize = TII->getMemScale(*StoreI); 1012 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1013 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1014 Register StRt = getLdStRegOp(*StoreI).getReg(); 1015 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1016 1017 assert((IsStoreXReg || 1018 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1019 "Unexpected RegClass"); 1020 1021 MachineInstr *BitExtMI; 1022 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1023 // Remove the load, if the destination register of the loads is the same 1024 // register for stored value. 1025 if (StRt == LdRt && LoadSize == 8) { 1026 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1027 LoadI->getIterator())) { 1028 if (MI.killsRegister(StRt, TRI)) { 1029 MI.clearRegisterKills(StRt, TRI); 1030 break; 1031 } 1032 } 1033 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1034 LLVM_DEBUG(LoadI->print(dbgs())); 1035 LLVM_DEBUG(dbgs() << "\n"); 1036 LoadI->eraseFromParent(); 1037 return NextI; 1038 } 1039 // Replace the load with a mov if the load and store are in the same size. 1040 BitExtMI = 1041 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1042 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1043 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1044 .add(StMO) 1045 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1046 .setMIFlags(LoadI->getFlags()); 1047 } else { 1048 // FIXME: Currently we disable this transformation in big-endian targets as 1049 // performance and correctness are verified only in little-endian. 1050 if (!Subtarget->isLittleEndian()) 1051 return NextI; 1052 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 1053 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 1054 "Unsupported ld/st match"); 1055 assert(LoadSize <= StoreSize && "Invalid load size"); 1056 int UnscaledLdOffset = IsUnscaled 1057 ? getLdStOffsetOp(*LoadI).getImm() 1058 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1059 int UnscaledStOffset = IsUnscaled 1060 ? getLdStOffsetOp(*StoreI).getImm() 1061 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1062 int Width = LoadSize * 8; 1063 unsigned DestReg = 1064 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1065 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1066 : LdRt; 1067 1068 assert((UnscaledLdOffset >= UnscaledStOffset && 1069 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1070 "Invalid offset"); 1071 1072 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1073 int Imms = Immr + Width - 1; 1074 if (UnscaledLdOffset == UnscaledStOffset) { 1075 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1076 | ((Immr) << 6) // immr 1077 | ((Imms) << 0) // imms 1078 ; 1079 1080 BitExtMI = 1081 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1082 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1083 DestReg) 1084 .add(StMO) 1085 .addImm(AndMaskEncoded) 1086 .setMIFlags(LoadI->getFlags()); 1087 } else { 1088 BitExtMI = 1089 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1090 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1091 DestReg) 1092 .add(StMO) 1093 .addImm(Immr) 1094 .addImm(Imms) 1095 .setMIFlags(LoadI->getFlags()); 1096 } 1097 } 1098 1099 // Clear kill flags between store and load. 1100 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1101 BitExtMI->getIterator())) 1102 if (MI.killsRegister(StRt, TRI)) { 1103 MI.clearRegisterKills(StRt, TRI); 1104 break; 1105 } 1106 1107 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1108 LLVM_DEBUG(StoreI->print(dbgs())); 1109 LLVM_DEBUG(dbgs() << " "); 1110 LLVM_DEBUG(LoadI->print(dbgs())); 1111 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1112 LLVM_DEBUG(StoreI->print(dbgs())); 1113 LLVM_DEBUG(dbgs() << " "); 1114 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1115 LLVM_DEBUG(dbgs() << "\n"); 1116 1117 // Erase the old instructions. 1118 LoadI->eraseFromParent(); 1119 return NextI; 1120 } 1121 1122 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1123 // Convert the byte-offset used by unscaled into an "element" offset used 1124 // by the scaled pair load/store instructions. 1125 if (IsUnscaled) { 1126 // If the byte-offset isn't a multiple of the stride, there's no point 1127 // trying to match it. 1128 if (Offset % OffsetStride) 1129 return false; 1130 Offset /= OffsetStride; 1131 } 1132 return Offset <= 63 && Offset >= -64; 1133 } 1134 1135 // Do alignment, specialized to power of 2 and for signed ints, 1136 // avoiding having to do a C-style cast from uint_64t to int when 1137 // using alignTo from include/llvm/Support/MathExtras.h. 1138 // FIXME: Move this function to include/MathExtras.h? 1139 static int alignTo(int Num, int PowOf2) { 1140 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1141 } 1142 1143 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1144 AliasAnalysis *AA) { 1145 // One of the instructions must modify memory. 1146 if (!MIa.mayStore() && !MIb.mayStore()) 1147 return false; 1148 1149 // Both instructions must be memory operations. 1150 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1151 return false; 1152 1153 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 1154 } 1155 1156 static bool mayAlias(MachineInstr &MIa, 1157 SmallVectorImpl<MachineInstr *> &MemInsns, 1158 AliasAnalysis *AA) { 1159 for (MachineInstr *MIb : MemInsns) 1160 if (mayAlias(MIa, *MIb, AA)) 1161 return true; 1162 1163 return false; 1164 } 1165 1166 bool AArch64LoadStoreOpt::findMatchingStore( 1167 MachineBasicBlock::iterator I, unsigned Limit, 1168 MachineBasicBlock::iterator &StoreI) { 1169 MachineBasicBlock::iterator B = I->getParent()->begin(); 1170 MachineBasicBlock::iterator MBBI = I; 1171 MachineInstr &LoadMI = *I; 1172 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1173 1174 // If the load is the first instruction in the block, there's obviously 1175 // not any matching store. 1176 if (MBBI == B) 1177 return false; 1178 1179 // Track which register units have been modified and used between the first 1180 // insn and the second insn. 1181 ModifiedRegUnits.clear(); 1182 UsedRegUnits.clear(); 1183 1184 unsigned Count = 0; 1185 do { 1186 --MBBI; 1187 MachineInstr &MI = *MBBI; 1188 1189 // Don't count transient instructions towards the search limit since there 1190 // may be different numbers of them if e.g. debug information is present. 1191 if (!MI.isTransient()) 1192 ++Count; 1193 1194 // If the load instruction reads directly from the address to which the 1195 // store instruction writes and the stored value is not modified, we can 1196 // promote the load. Since we do not handle stores with pre-/post-index, 1197 // it's unnecessary to check if BaseReg is modified by the store itself. 1198 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1199 BaseReg == getLdStBaseOp(MI).getReg() && 1200 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1201 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1202 StoreI = MBBI; 1203 return true; 1204 } 1205 1206 if (MI.isCall()) 1207 return false; 1208 1209 // Update modified / uses register units. 1210 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1211 1212 // Otherwise, if the base register is modified, we have no match, so 1213 // return early. 1214 if (!ModifiedRegUnits.available(BaseReg)) 1215 return false; 1216 1217 // If we encounter a store aliased with the load, return early. 1218 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1219 return false; 1220 } while (MBBI != B && Count < Limit); 1221 return false; 1222 } 1223 1224 // Returns true if FirstMI and MI are candidates for merging or pairing. 1225 // Otherwise, returns false. 1226 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1227 LdStPairFlags &Flags, 1228 const AArch64InstrInfo *TII) { 1229 // If this is volatile or if pairing is suppressed, not a candidate. 1230 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1231 return false; 1232 1233 // We should have already checked FirstMI for pair suppression and volatility. 1234 assert(!FirstMI.hasOrderedMemoryRef() && 1235 !TII->isLdStPairSuppressed(FirstMI) && 1236 "FirstMI shouldn't get here if either of these checks are true."); 1237 1238 unsigned OpcA = FirstMI.getOpcode(); 1239 unsigned OpcB = MI.getOpcode(); 1240 1241 // Opcodes match: nothing more to check. 1242 if (OpcA == OpcB) 1243 return true; 1244 1245 // Try to match a sign-extended load/store with a zero-extended load/store. 1246 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1247 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1248 assert(IsValidLdStrOpc && 1249 "Given Opc should be a Load or Store with an immediate"); 1250 // OpcA will be the first instruction in the pair. 1251 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1252 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1253 return true; 1254 } 1255 1256 // If the second instruction isn't even a mergable/pairable load/store, bail 1257 // out. 1258 if (!PairIsValidLdStrOpc) 1259 return false; 1260 1261 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1262 // offsets. 1263 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1264 return false; 1265 1266 // Try to match an unscaled load/store with a scaled load/store. 1267 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1268 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1269 1270 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1271 } 1272 1273 static bool 1274 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1275 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1276 const TargetRegisterInfo *TRI) { 1277 if (!FirstMI.mayStore()) 1278 return false; 1279 1280 // Check if we can find an unused register which we can use to rename 1281 // the register used by the first load/store. 1282 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1283 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1284 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1285 return false; 1286 1287 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1288 // For now, we only rename if the store operand gets killed at the store. 1289 if (!getLdStRegOp(FirstMI).isKill() && 1290 !any_of(FirstMI.operands(), 1291 [TRI, RegToRename](const MachineOperand &MOP) { 1292 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1293 MOP.isImplicit() && MOP.isKill() && 1294 TRI->regsOverlap(RegToRename, MOP.getReg()); 1295 })) { 1296 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1297 return false; 1298 } 1299 auto canRenameMOP = [](const MachineOperand &MOP) { 1300 return MOP.isImplicit() || 1301 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1302 }; 1303 1304 bool FoundDef = false; 1305 1306 // For each instruction between FirstMI and the previous def for RegToRename, 1307 // we 1308 // * check if we can rename RegToRename in this instruction 1309 // * collect the registers used and required register classes for RegToRename. 1310 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1311 bool IsDef) { 1312 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1313 // Currently we do not try to rename across frame-setup instructions. 1314 if (MI.getFlag(MachineInstr::FrameSetup)) { 1315 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1316 << MI << ")\n"); 1317 return false; 1318 } 1319 1320 UsedInBetween.accumulate(MI); 1321 1322 // For a definition, check that we can rename the definition and exit the 1323 // loop. 1324 FoundDef = IsDef; 1325 1326 // For defs, check if we can rename the first def of RegToRename. 1327 if (FoundDef) { 1328 // For some pseudo instructions, we might not generate code in the end 1329 // (e.g. KILL) and we would end up without a correct def for the rename 1330 // register. 1331 // TODO: This might be overly conservative and we could handle those cases 1332 // in multiple ways: 1333 // 1. Insert an extra copy, to materialize the def. 1334 // 2. Skip pseudo-defs until we find an non-pseudo def. 1335 if (MI.isPseudo()) { 1336 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1337 << "\n"); 1338 return false; 1339 } 1340 1341 for (auto &MOP : MI.operands()) { 1342 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1343 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1344 continue; 1345 if (!canRenameMOP(MOP)) { 1346 LLVM_DEBUG(dbgs() 1347 << " Cannot rename " << MOP << " in " << MI << "\n"); 1348 return false; 1349 } 1350 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1351 } 1352 return true; 1353 } else { 1354 for (auto &MOP : MI.operands()) { 1355 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1356 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1357 continue; 1358 1359 if (!canRenameMOP(MOP)) { 1360 LLVM_DEBUG(dbgs() 1361 << " Cannot rename " << MOP << " in " << MI << "\n"); 1362 return false; 1363 } 1364 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1365 } 1366 } 1367 return true; 1368 }; 1369 1370 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1371 return false; 1372 1373 if (!FoundDef) { 1374 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 // Check if we can find a physical register for renaming. This register must: 1381 // * not be defined up to FirstMI (checking DefinedInBB) 1382 // * not used between the MI and the defining instruction of the register to 1383 // rename (checked using UsedInBetween). 1384 // * is available in all used register classes (checked using RequiredClasses). 1385 static Optional<MCPhysReg> tryToFindRegisterToRename( 1386 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1387 LiveRegUnits &UsedInBetween, 1388 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1389 const TargetRegisterInfo *TRI) { 1390 auto &MF = *FirstMI.getParent()->getParent(); 1391 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1392 1393 // Checks if any sub- or super-register of PR is callee saved. 1394 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1395 return any_of(TRI->sub_and_superregs_inclusive(PR), 1396 [&MF, TRI](MCPhysReg SubOrSuper) { 1397 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1398 }); 1399 }; 1400 1401 // Check if PR or one of its sub- or super-registers can be used for all 1402 // required register classes. 1403 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1404 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1405 return any_of(TRI->sub_and_superregs_inclusive(PR), 1406 [C, TRI](MCPhysReg SubOrSuper) { 1407 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1408 }); 1409 }); 1410 }; 1411 1412 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1413 for (const MCPhysReg &PR : *RegClass) { 1414 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1415 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1416 CanBeUsedForAllClasses(PR)) { 1417 DefinedInBB.addReg(PR); 1418 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1419 << "\n"); 1420 return {PR}; 1421 } 1422 } 1423 LLVM_DEBUG(dbgs() << "No rename register found from " 1424 << TRI->getRegClassName(RegClass) << "\n"); 1425 return None; 1426 } 1427 1428 /// Scan the instructions looking for a load/store that can be combined with the 1429 /// current instruction into a wider equivalent or a load/store pair. 1430 MachineBasicBlock::iterator 1431 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1432 LdStPairFlags &Flags, unsigned Limit, 1433 bool FindNarrowMerge) { 1434 MachineBasicBlock::iterator E = I->getParent()->end(); 1435 MachineBasicBlock::iterator MBBI = I; 1436 MachineBasicBlock::iterator MBBIWithRenameReg; 1437 MachineInstr &FirstMI = *I; 1438 ++MBBI; 1439 1440 bool MayLoad = FirstMI.mayLoad(); 1441 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1442 Register Reg = getLdStRegOp(FirstMI).getReg(); 1443 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1444 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1445 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1446 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1447 1448 Optional<bool> MaybeCanRename = None; 1449 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1450 LiveRegUnits UsedInBetween; 1451 UsedInBetween.init(*TRI); 1452 1453 Flags.clearRenameReg(); 1454 1455 // Track which register units have been modified and used between the first 1456 // insn (inclusive) and the second insn. 1457 ModifiedRegUnits.clear(); 1458 UsedRegUnits.clear(); 1459 1460 // Remember any instructions that read/write memory between FirstMI and MI. 1461 SmallVector<MachineInstr *, 4> MemInsns; 1462 1463 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1464 MachineInstr &MI = *MBBI; 1465 1466 UsedInBetween.accumulate(MI); 1467 1468 // Don't count transient instructions towards the search limit since there 1469 // may be different numbers of them if e.g. debug information is present. 1470 if (!MI.isTransient()) 1471 ++Count; 1472 1473 Flags.setSExtIdx(-1); 1474 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1475 getLdStOffsetOp(MI).isImm()) { 1476 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1477 // If we've found another instruction with the same opcode, check to see 1478 // if the base and offset are compatible with our starting instruction. 1479 // These instructions all have scaled immediate operands, so we just 1480 // check for +1/-1. Make sure to check the new instruction offset is 1481 // actually an immediate and not a symbolic reference destined for 1482 // a relocation. 1483 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1484 int MIOffset = getLdStOffsetOp(MI).getImm(); 1485 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1486 if (IsUnscaled != MIIsUnscaled) { 1487 // We're trying to pair instructions that differ in how they are scaled. 1488 // If FirstMI is scaled then scale the offset of MI accordingly. 1489 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1490 int MemSize = TII->getMemScale(MI); 1491 if (MIIsUnscaled) { 1492 // If the unscaled offset isn't a multiple of the MemSize, we can't 1493 // pair the operations together: bail and keep looking. 1494 if (MIOffset % MemSize) { 1495 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1496 UsedRegUnits, TRI); 1497 MemInsns.push_back(&MI); 1498 continue; 1499 } 1500 MIOffset /= MemSize; 1501 } else { 1502 MIOffset *= MemSize; 1503 } 1504 } 1505 1506 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1507 (Offset + OffsetStride == MIOffset))) { 1508 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1509 if (FindNarrowMerge) { 1510 // If the alignment requirements of the scaled wide load/store 1511 // instruction can't express the offset of the scaled narrow input, 1512 // bail and keep looking. For promotable zero stores, allow only when 1513 // the stored value is the same (i.e., WZR). 1514 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1515 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1516 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1517 UsedRegUnits, TRI); 1518 MemInsns.push_back(&MI); 1519 continue; 1520 } 1521 } else { 1522 // Pairwise instructions have a 7-bit signed offset field. Single 1523 // insns have a 12-bit unsigned offset field. If the resultant 1524 // immediate offset of merging these instructions is out of range for 1525 // a pairwise instruction, bail and keep looking. 1526 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1527 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1528 UsedRegUnits, TRI); 1529 MemInsns.push_back(&MI); 1530 continue; 1531 } 1532 // If the alignment requirements of the paired (scaled) instruction 1533 // can't express the offset of the unscaled input, bail and keep 1534 // looking. 1535 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1536 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1537 UsedRegUnits, TRI); 1538 MemInsns.push_back(&MI); 1539 continue; 1540 } 1541 } 1542 // If the destination register of the loads is the same register, bail 1543 // and keep looking. A load-pair instruction with both destination 1544 // registers the same is UNPREDICTABLE and will result in an exception. 1545 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1546 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1547 TRI); 1548 MemInsns.push_back(&MI); 1549 continue; 1550 } 1551 1552 // If the Rt of the second instruction was not modified or used between 1553 // the two instructions and none of the instructions between the second 1554 // and first alias with the second, we can combine the second into the 1555 // first. 1556 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1557 !(MI.mayLoad() && 1558 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1559 !mayAlias(MI, MemInsns, AA)) { 1560 1561 Flags.setMergeForward(false); 1562 Flags.clearRenameReg(); 1563 return MBBI; 1564 } 1565 1566 // Likewise, if the Rt of the first instruction is not modified or used 1567 // between the two instructions and none of the instructions between the 1568 // first and the second alias with the first, we can combine the first 1569 // into the second. 1570 if (!(MayLoad && 1571 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1572 !mayAlias(FirstMI, MemInsns, AA)) { 1573 1574 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1575 Flags.setMergeForward(true); 1576 Flags.clearRenameReg(); 1577 return MBBI; 1578 } 1579 1580 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1581 if (!MaybeCanRename) 1582 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1583 RequiredClasses, TRI)}; 1584 1585 if (*MaybeCanRename) { 1586 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1587 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, 1588 TRI); 1589 if (MaybeRenameReg) { 1590 Flags.setRenameReg(*MaybeRenameReg); 1591 Flags.setMergeForward(true); 1592 MBBIWithRenameReg = MBBI; 1593 } 1594 } 1595 } 1596 } 1597 // Unable to combine these instructions due to interference in between. 1598 // Keep looking. 1599 } 1600 } 1601 1602 if (Flags.getRenameReg()) 1603 return MBBIWithRenameReg; 1604 1605 // If the instruction wasn't a matching load or store. Stop searching if we 1606 // encounter a call instruction that might modify memory. 1607 if (MI.isCall()) 1608 return E; 1609 1610 // Update modified / uses register units. 1611 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1612 1613 // Otherwise, if the base register is modified, we have no match, so 1614 // return early. 1615 if (!ModifiedRegUnits.available(BaseReg)) 1616 return E; 1617 1618 // Update list of instructions that read/write memory. 1619 if (MI.mayLoadOrStore()) 1620 MemInsns.push_back(&MI); 1621 } 1622 return E; 1623 } 1624 1625 MachineBasicBlock::iterator 1626 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1627 MachineBasicBlock::iterator Update, 1628 bool IsPreIdx) { 1629 assert((Update->getOpcode() == AArch64::ADDXri || 1630 Update->getOpcode() == AArch64::SUBXri) && 1631 "Unexpected base register update instruction to merge!"); 1632 MachineBasicBlock::iterator NextI = I; 1633 // Return the instruction following the merged instruction, which is 1634 // the instruction following our unmerged load. Unless that's the add/sub 1635 // instruction we're merging, in which case it's the one after that. 1636 if (++NextI == Update) 1637 ++NextI; 1638 1639 int Value = Update->getOperand(2).getImm(); 1640 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1641 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1642 if (Update->getOpcode() == AArch64::SUBXri) 1643 Value = -Value; 1644 1645 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1646 : getPostIndexedOpcode(I->getOpcode()); 1647 MachineInstrBuilder MIB; 1648 int Scale, MinOffset, MaxOffset; 1649 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1650 if (!isPairedLdSt(*I)) { 1651 // Non-paired instruction. 1652 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1653 .add(getLdStRegOp(*Update)) 1654 .add(getLdStRegOp(*I)) 1655 .add(getLdStBaseOp(*I)) 1656 .addImm(Value / Scale) 1657 .setMemRefs(I->memoperands()) 1658 .setMIFlags(I->mergeFlagsWith(*Update)); 1659 } else { 1660 // Paired instruction. 1661 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1662 .add(getLdStRegOp(*Update)) 1663 .add(getLdStRegOp(*I, 0)) 1664 .add(getLdStRegOp(*I, 1)) 1665 .add(getLdStBaseOp(*I)) 1666 .addImm(Value / Scale) 1667 .setMemRefs(I->memoperands()) 1668 .setMIFlags(I->mergeFlagsWith(*Update)); 1669 } 1670 (void)MIB; 1671 1672 if (IsPreIdx) { 1673 ++NumPreFolded; 1674 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1675 } else { 1676 ++NumPostFolded; 1677 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1678 } 1679 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1680 LLVM_DEBUG(I->print(dbgs())); 1681 LLVM_DEBUG(dbgs() << " "); 1682 LLVM_DEBUG(Update->print(dbgs())); 1683 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1684 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1685 LLVM_DEBUG(dbgs() << "\n"); 1686 1687 // Erase the old instructions for the block. 1688 I->eraseFromParent(); 1689 Update->eraseFromParent(); 1690 1691 return NextI; 1692 } 1693 1694 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1695 MachineInstr &MI, 1696 unsigned BaseReg, int Offset) { 1697 switch (MI.getOpcode()) { 1698 default: 1699 break; 1700 case AArch64::SUBXri: 1701 case AArch64::ADDXri: 1702 // Make sure it's a vanilla immediate operand, not a relocation or 1703 // anything else we can't handle. 1704 if (!MI.getOperand(2).isImm()) 1705 break; 1706 // Watch out for 1 << 12 shifted value. 1707 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1708 break; 1709 1710 // The update instruction source and destination register must be the 1711 // same as the load/store base register. 1712 if (MI.getOperand(0).getReg() != BaseReg || 1713 MI.getOperand(1).getReg() != BaseReg) 1714 break; 1715 1716 int UpdateOffset = MI.getOperand(2).getImm(); 1717 if (MI.getOpcode() == AArch64::SUBXri) 1718 UpdateOffset = -UpdateOffset; 1719 1720 // The immediate must be a multiple of the scaling factor of the pre/post 1721 // indexed instruction. 1722 int Scale, MinOffset, MaxOffset; 1723 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1724 if (UpdateOffset % Scale != 0) 1725 break; 1726 1727 // Scaled offset must fit in the instruction immediate. 1728 int ScaledOffset = UpdateOffset / Scale; 1729 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1730 break; 1731 1732 // If we have a non-zero Offset, we check that it matches the amount 1733 // we're adding to the register. 1734 if (!Offset || Offset == UpdateOffset) 1735 return true; 1736 break; 1737 } 1738 return false; 1739 } 1740 1741 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1742 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1743 MachineBasicBlock::iterator E = I->getParent()->end(); 1744 MachineInstr &MemMI = *I; 1745 MachineBasicBlock::iterator MBBI = I; 1746 1747 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1748 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1749 1750 // Scan forward looking for post-index opportunities. Updating instructions 1751 // can't be formed if the memory instruction doesn't have the offset we're 1752 // looking for. 1753 if (MIUnscaledOffset != UnscaledOffset) 1754 return E; 1755 1756 // If the base register overlaps a source/destination register, we can't 1757 // merge the update. This does not apply to tag store instructions which 1758 // ignore the address part of the source register. 1759 // This does not apply to STGPi as well, which does not have unpredictable 1760 // behavior in this case unlike normal stores, and always performs writeback 1761 // after reading the source register value. 1762 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1763 bool IsPairedInsn = isPairedLdSt(MemMI); 1764 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1765 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1766 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1767 return E; 1768 } 1769 } 1770 1771 // Track which register units have been modified and used between the first 1772 // insn (inclusive) and the second insn. 1773 ModifiedRegUnits.clear(); 1774 UsedRegUnits.clear(); 1775 ++MBBI; 1776 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1777 MachineInstr &MI = *MBBI; 1778 1779 // Don't count transient instructions towards the search limit since there 1780 // may be different numbers of them if e.g. debug information is present. 1781 if (!MI.isTransient()) 1782 ++Count; 1783 1784 // If we found a match, return it. 1785 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1786 return MBBI; 1787 1788 // Update the status of what the instruction clobbered and used. 1789 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1790 1791 // Otherwise, if the base register is used or modified, we have no match, so 1792 // return early. 1793 if (!ModifiedRegUnits.available(BaseReg) || 1794 !UsedRegUnits.available(BaseReg)) 1795 return E; 1796 } 1797 return E; 1798 } 1799 1800 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1801 MachineBasicBlock::iterator I, unsigned Limit) { 1802 MachineBasicBlock::iterator B = I->getParent()->begin(); 1803 MachineBasicBlock::iterator E = I->getParent()->end(); 1804 MachineInstr &MemMI = *I; 1805 MachineBasicBlock::iterator MBBI = I; 1806 1807 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1808 int Offset = getLdStOffsetOp(MemMI).getImm(); 1809 1810 // If the load/store is the first instruction in the block, there's obviously 1811 // not any matching update. Ditto if the memory offset isn't zero. 1812 if (MBBI == B || Offset != 0) 1813 return E; 1814 // If the base register overlaps a destination register, we can't 1815 // merge the update. 1816 if (!isTagStore(MemMI)) { 1817 bool IsPairedInsn = isPairedLdSt(MemMI); 1818 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1819 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1820 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1821 return E; 1822 } 1823 } 1824 1825 // Track which register units have been modified and used between the first 1826 // insn (inclusive) and the second insn. 1827 ModifiedRegUnits.clear(); 1828 UsedRegUnits.clear(); 1829 unsigned Count = 0; 1830 do { 1831 --MBBI; 1832 MachineInstr &MI = *MBBI; 1833 1834 // Don't count transient instructions towards the search limit since there 1835 // may be different numbers of them if e.g. debug information is present. 1836 if (!MI.isTransient()) 1837 ++Count; 1838 1839 // If we found a match, return it. 1840 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1841 return MBBI; 1842 1843 // Update the status of what the instruction clobbered and used. 1844 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1845 1846 // Otherwise, if the base register is used or modified, we have no match, so 1847 // return early. 1848 if (!ModifiedRegUnits.available(BaseReg) || 1849 !UsedRegUnits.available(BaseReg)) 1850 return E; 1851 } while (MBBI != B && Count < Limit); 1852 return E; 1853 } 1854 1855 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1856 MachineBasicBlock::iterator &MBBI) { 1857 MachineInstr &MI = *MBBI; 1858 // If this is a volatile load, don't mess with it. 1859 if (MI.hasOrderedMemoryRef()) 1860 return false; 1861 1862 // Make sure this is a reg+imm. 1863 // FIXME: It is possible to extend it to handle reg+reg cases. 1864 if (!getLdStOffsetOp(MI).isImm()) 1865 return false; 1866 1867 // Look backward up to LdStLimit instructions. 1868 MachineBasicBlock::iterator StoreI; 1869 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1870 ++NumLoadsFromStoresPromoted; 1871 // Promote the load. Keeping the iterator straight is a 1872 // pain, so we let the merge routine tell us what the next instruction 1873 // is after it's done mucking about. 1874 MBBI = promoteLoadFromStore(MBBI, StoreI); 1875 return true; 1876 } 1877 return false; 1878 } 1879 1880 // Merge adjacent zero stores into a wider store. 1881 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1882 MachineBasicBlock::iterator &MBBI) { 1883 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1884 MachineInstr &MI = *MBBI; 1885 MachineBasicBlock::iterator E = MI.getParent()->end(); 1886 1887 if (!TII->isCandidateToMergeOrPair(MI)) 1888 return false; 1889 1890 // Look ahead up to LdStLimit instructions for a mergable instruction. 1891 LdStPairFlags Flags; 1892 MachineBasicBlock::iterator MergeMI = 1893 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1894 if (MergeMI != E) { 1895 ++NumZeroStoresPromoted; 1896 1897 // Keeping the iterator straight is a pain, so we let the merge routine tell 1898 // us what the next instruction is after it's done mucking about. 1899 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1900 return true; 1901 } 1902 return false; 1903 } 1904 1905 // Find loads and stores that can be merged into a single load or store pair 1906 // instruction. 1907 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1908 MachineInstr &MI = *MBBI; 1909 MachineBasicBlock::iterator E = MI.getParent()->end(); 1910 1911 if (!TII->isCandidateToMergeOrPair(MI)) 1912 return false; 1913 1914 // Early exit if the offset is not possible to match. (6 bits of positive 1915 // range, plus allow an extra one in case we find a later insn that matches 1916 // with Offset-1) 1917 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1918 int Offset = getLdStOffsetOp(MI).getImm(); 1919 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 1920 // Allow one more for offset. 1921 if (Offset > 0) 1922 Offset -= OffsetStride; 1923 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1924 return false; 1925 1926 // Look ahead up to LdStLimit instructions for a pairable instruction. 1927 LdStPairFlags Flags; 1928 MachineBasicBlock::iterator Paired = 1929 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1930 if (Paired != E) { 1931 ++NumPairCreated; 1932 if (TII->isUnscaledLdSt(MI)) 1933 ++NumUnscaledPairCreated; 1934 // Keeping the iterator straight is a pain, so we let the merge routine tell 1935 // us what the next instruction is after it's done mucking about. 1936 auto Prev = std::prev(MBBI); 1937 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1938 // Collect liveness info for instructions between Prev and the new position 1939 // MBBI. 1940 for (auto I = std::next(Prev); I != MBBI; I++) 1941 updateDefinedRegisters(*I, DefinedInBB, TRI); 1942 1943 return true; 1944 } 1945 return false; 1946 } 1947 1948 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 1949 (MachineBasicBlock::iterator &MBBI) { 1950 MachineInstr &MI = *MBBI; 1951 MachineBasicBlock::iterator E = MI.getParent()->end(); 1952 MachineBasicBlock::iterator Update; 1953 1954 // Look forward to try to form a post-index instruction. For example, 1955 // ldr x0, [x20] 1956 // add x20, x20, #32 1957 // merged into: 1958 // ldr x0, [x20], #32 1959 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1960 if (Update != E) { 1961 // Merge the update into the ld/st. 1962 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1963 return true; 1964 } 1965 1966 // Don't know how to handle unscaled pre/post-index versions below, so bail. 1967 if (TII->isUnscaledLdSt(MI.getOpcode())) 1968 return false; 1969 1970 // Look back to try to find a pre-index instruction. For example, 1971 // add x0, x0, #8 1972 // ldr x1, [x0] 1973 // merged into: 1974 // ldr x1, [x0, #8]! 1975 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1976 if (Update != E) { 1977 // Merge the update into the ld/st. 1978 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1979 return true; 1980 } 1981 1982 // The immediate in the load/store is scaled by the size of the memory 1983 // operation. The immediate in the add we're looking for, 1984 // however, is not, so adjust here. 1985 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 1986 1987 // Look forward to try to find a pre-index instruction. For example, 1988 // ldr x1, [x0, #64] 1989 // add x0, x0, #64 1990 // merged into: 1991 // ldr x1, [x0, #64]! 1992 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1993 if (Update != E) { 1994 // Merge the update into the ld/st. 1995 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1996 return true; 1997 } 1998 1999 return false; 2000 } 2001 2002 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2003 bool EnableNarrowZeroStOpt) { 2004 2005 bool Modified = false; 2006 // Four tranformations to do here: 2007 // 1) Find loads that directly read from stores and promote them by 2008 // replacing with mov instructions. If the store is wider than the load, 2009 // the load will be replaced with a bitfield extract. 2010 // e.g., 2011 // str w1, [x0, #4] 2012 // ldrh w2, [x0, #6] 2013 // ; becomes 2014 // str w1, [x0, #4] 2015 // lsr w2, w1, #16 2016 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2017 MBBI != E;) { 2018 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2019 Modified = true; 2020 else 2021 ++MBBI; 2022 } 2023 // 2) Merge adjacent zero stores into a wider store. 2024 // e.g., 2025 // strh wzr, [x0] 2026 // strh wzr, [x0, #2] 2027 // ; becomes 2028 // str wzr, [x0] 2029 // e.g., 2030 // str wzr, [x0] 2031 // str wzr, [x0, #4] 2032 // ; becomes 2033 // str xzr, [x0] 2034 if (EnableNarrowZeroStOpt) 2035 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2036 MBBI != E;) { 2037 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2038 Modified = true; 2039 else 2040 ++MBBI; 2041 } 2042 // 3) Find loads and stores that can be merged into a single load or store 2043 // pair instruction. 2044 // e.g., 2045 // ldr x0, [x2] 2046 // ldr x1, [x2, #8] 2047 // ; becomes 2048 // ldp x0, x1, [x2] 2049 2050 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2051 DefinedInBB.clear(); 2052 DefinedInBB.addLiveIns(MBB); 2053 } 2054 2055 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2056 MBBI != E;) { 2057 // Track currently live registers up to this point, to help with 2058 // searching for a rename register on demand. 2059 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2060 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2061 Modified = true; 2062 else 2063 ++MBBI; 2064 } 2065 // 4) Find base register updates that can be merged into the load or store 2066 // as a base-reg writeback. 2067 // e.g., 2068 // ldr x0, [x2] 2069 // add x2, x2, #4 2070 // ; becomes 2071 // ldr x0, [x2], #4 2072 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2073 MBBI != E;) { 2074 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2075 Modified = true; 2076 else 2077 ++MBBI; 2078 } 2079 2080 return Modified; 2081 } 2082 2083 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2084 if (skipFunction(Fn.getFunction())) 2085 return false; 2086 2087 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2088 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2089 TRI = Subtarget->getRegisterInfo(); 2090 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2091 2092 // Resize the modified and used register unit trackers. We do this once 2093 // per function and then clear the register units each time we optimize a load 2094 // or store. 2095 ModifiedRegUnits.init(*TRI); 2096 UsedRegUnits.init(*TRI); 2097 DefinedInBB.init(*TRI); 2098 2099 bool Modified = false; 2100 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2101 for (auto &MBB : Fn) { 2102 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2103 Modified |= M; 2104 } 2105 2106 return Modified; 2107 } 2108 2109 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2110 // stores near one another? Note: The pre-RA instruction scheduler already has 2111 // hooks to try and schedule pairable loads/stores together to improve pairing 2112 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2113 2114 // FIXME: When pairing store instructions it's very possible for this pass to 2115 // hoist a store with a KILL marker above another use (without a KILL marker). 2116 // The resulting IR is invalid, but nothing uses the KILL markers after this 2117 // pass, so it's never caused a problem in practice. 2118 2119 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2120 /// load / store optimization pass. 2121 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2122 return new AArch64LoadStoreOpt(); 2123 } 2124