1*81ad6265SDimitry Andric /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\ 2*81ad6265SDimitry Andric |* *| 3*81ad6265SDimitry Andric |* Released into the public domain with CC0 1.0 *| 4*81ad6265SDimitry Andric |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *| 5*81ad6265SDimitry Andric |* SPDX-License-Identifier: CC0-1.0 *| 6*81ad6265SDimitry Andric |* *| 7*81ad6265SDimitry Andric \*===----------------------------------------------------------------------===*/ 8*81ad6265SDimitry Andric 9*81ad6265SDimitry Andric #include <assert.h> 10*81ad6265SDimitry Andric #include <stdbool.h> 11*81ad6265SDimitry Andric #include <string.h> 12*81ad6265SDimitry Andric 13*81ad6265SDimitry Andric #include "blake3_impl.h" 14*81ad6265SDimitry Andric 15*81ad6265SDimitry Andric const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; } 16*81ad6265SDimitry Andric 17*81ad6265SDimitry Andric INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], 18*81ad6265SDimitry Andric uint8_t flags) { 19*81ad6265SDimitry Andric memcpy(self->cv, key, BLAKE3_KEY_LEN); 20*81ad6265SDimitry Andric self->chunk_counter = 0; 21*81ad6265SDimitry Andric memset(self->buf, 0, BLAKE3_BLOCK_LEN); 22*81ad6265SDimitry Andric self->buf_len = 0; 23*81ad6265SDimitry Andric self->blocks_compressed = 0; 24*81ad6265SDimitry Andric self->flags = flags; 25*81ad6265SDimitry Andric } 26*81ad6265SDimitry Andric 27*81ad6265SDimitry Andric INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], 28*81ad6265SDimitry Andric uint64_t chunk_counter) { 29*81ad6265SDimitry Andric memcpy(self->cv, key, BLAKE3_KEY_LEN); 30*81ad6265SDimitry Andric self->chunk_counter = chunk_counter; 31*81ad6265SDimitry Andric self->blocks_compressed = 0; 32*81ad6265SDimitry Andric memset(self->buf, 0, BLAKE3_BLOCK_LEN); 33*81ad6265SDimitry Andric self->buf_len = 0; 34*81ad6265SDimitry Andric } 35*81ad6265SDimitry Andric 36*81ad6265SDimitry Andric INLINE size_t chunk_state_len(const blake3_chunk_state *self) { 37*81ad6265SDimitry Andric return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) + 38*81ad6265SDimitry Andric ((size_t)self->buf_len); 39*81ad6265SDimitry Andric } 40*81ad6265SDimitry Andric 41*81ad6265SDimitry Andric INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, 42*81ad6265SDimitry Andric const uint8_t *input, size_t input_len) { 43*81ad6265SDimitry Andric size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len); 44*81ad6265SDimitry Andric if (take > input_len) { 45*81ad6265SDimitry Andric take = input_len; 46*81ad6265SDimitry Andric } 47*81ad6265SDimitry Andric uint8_t *dest = self->buf + ((size_t)self->buf_len); 48*81ad6265SDimitry Andric memcpy(dest, input, take); 49*81ad6265SDimitry Andric self->buf_len += (uint8_t)take; 50*81ad6265SDimitry Andric return take; 51*81ad6265SDimitry Andric } 52*81ad6265SDimitry Andric 53*81ad6265SDimitry Andric INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) { 54*81ad6265SDimitry Andric if (self->blocks_compressed == 0) { 55*81ad6265SDimitry Andric return CHUNK_START; 56*81ad6265SDimitry Andric } else { 57*81ad6265SDimitry Andric return 0; 58*81ad6265SDimitry Andric } 59*81ad6265SDimitry Andric } 60*81ad6265SDimitry Andric 61*81ad6265SDimitry Andric typedef struct { 62*81ad6265SDimitry Andric uint32_t input_cv[8]; 63*81ad6265SDimitry Andric uint64_t counter; 64*81ad6265SDimitry Andric uint8_t block[BLAKE3_BLOCK_LEN]; 65*81ad6265SDimitry Andric uint8_t block_len; 66*81ad6265SDimitry Andric uint8_t flags; 67*81ad6265SDimitry Andric } output_t; 68*81ad6265SDimitry Andric 69*81ad6265SDimitry Andric INLINE output_t make_output(const uint32_t input_cv[8], 70*81ad6265SDimitry Andric const uint8_t block[BLAKE3_BLOCK_LEN], 71*81ad6265SDimitry Andric uint8_t block_len, uint64_t counter, 72*81ad6265SDimitry Andric uint8_t flags) { 73*81ad6265SDimitry Andric output_t ret; 74*81ad6265SDimitry Andric memcpy(ret.input_cv, input_cv, 32); 75*81ad6265SDimitry Andric memcpy(ret.block, block, BLAKE3_BLOCK_LEN); 76*81ad6265SDimitry Andric ret.block_len = block_len; 77*81ad6265SDimitry Andric ret.counter = counter; 78*81ad6265SDimitry Andric ret.flags = flags; 79*81ad6265SDimitry Andric return ret; 80*81ad6265SDimitry Andric } 81*81ad6265SDimitry Andric 82*81ad6265SDimitry Andric // Chaining values within a given chunk (specifically the compress_in_place 83*81ad6265SDimitry Andric // interface) are represented as words. This avoids unnecessary bytes<->words 84*81ad6265SDimitry Andric // conversion overhead in the portable implementation. However, the hash_many 85*81ad6265SDimitry Andric // interface handles both user input and parent node blocks, so it accepts 86*81ad6265SDimitry Andric // bytes. For that reason, chaining values in the CV stack are represented as 87*81ad6265SDimitry Andric // bytes. 88*81ad6265SDimitry Andric INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) { 89*81ad6265SDimitry Andric uint32_t cv_words[8]; 90*81ad6265SDimitry Andric memcpy(cv_words, self->input_cv, 32); 91*81ad6265SDimitry Andric blake3_compress_in_place(cv_words, self->block, self->block_len, 92*81ad6265SDimitry Andric self->counter, self->flags); 93*81ad6265SDimitry Andric store_cv_words(cv, cv_words); 94*81ad6265SDimitry Andric } 95*81ad6265SDimitry Andric 96*81ad6265SDimitry Andric INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, 97*81ad6265SDimitry Andric size_t out_len) { 98*81ad6265SDimitry Andric uint64_t output_block_counter = seek / 64; 99*81ad6265SDimitry Andric size_t offset_within_block = seek % 64; 100*81ad6265SDimitry Andric uint8_t wide_buf[64]; 101*81ad6265SDimitry Andric while (out_len > 0) { 102*81ad6265SDimitry Andric blake3_compress_xof(self->input_cv, self->block, self->block_len, 103*81ad6265SDimitry Andric output_block_counter, self->flags | ROOT, wide_buf); 104*81ad6265SDimitry Andric size_t available_bytes = 64 - offset_within_block; 105*81ad6265SDimitry Andric size_t memcpy_len; 106*81ad6265SDimitry Andric if (out_len > available_bytes) { 107*81ad6265SDimitry Andric memcpy_len = available_bytes; 108*81ad6265SDimitry Andric } else { 109*81ad6265SDimitry Andric memcpy_len = out_len; 110*81ad6265SDimitry Andric } 111*81ad6265SDimitry Andric memcpy(out, wide_buf + offset_within_block, memcpy_len); 112*81ad6265SDimitry Andric out += memcpy_len; 113*81ad6265SDimitry Andric out_len -= memcpy_len; 114*81ad6265SDimitry Andric output_block_counter += 1; 115*81ad6265SDimitry Andric offset_within_block = 0; 116*81ad6265SDimitry Andric } 117*81ad6265SDimitry Andric } 118*81ad6265SDimitry Andric 119*81ad6265SDimitry Andric INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, 120*81ad6265SDimitry Andric size_t input_len) { 121*81ad6265SDimitry Andric if (self->buf_len > 0) { 122*81ad6265SDimitry Andric size_t take = chunk_state_fill_buf(self, input, input_len); 123*81ad6265SDimitry Andric input += take; 124*81ad6265SDimitry Andric input_len -= take; 125*81ad6265SDimitry Andric if (input_len > 0) { 126*81ad6265SDimitry Andric blake3_compress_in_place( 127*81ad6265SDimitry Andric self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter, 128*81ad6265SDimitry Andric self->flags | chunk_state_maybe_start_flag(self)); 129*81ad6265SDimitry Andric self->blocks_compressed += 1; 130*81ad6265SDimitry Andric self->buf_len = 0; 131*81ad6265SDimitry Andric memset(self->buf, 0, BLAKE3_BLOCK_LEN); 132*81ad6265SDimitry Andric } 133*81ad6265SDimitry Andric } 134*81ad6265SDimitry Andric 135*81ad6265SDimitry Andric while (input_len > BLAKE3_BLOCK_LEN) { 136*81ad6265SDimitry Andric blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN, 137*81ad6265SDimitry Andric self->chunk_counter, 138*81ad6265SDimitry Andric self->flags | chunk_state_maybe_start_flag(self)); 139*81ad6265SDimitry Andric self->blocks_compressed += 1; 140*81ad6265SDimitry Andric input += BLAKE3_BLOCK_LEN; 141*81ad6265SDimitry Andric input_len -= BLAKE3_BLOCK_LEN; 142*81ad6265SDimitry Andric } 143*81ad6265SDimitry Andric 144*81ad6265SDimitry Andric size_t take = chunk_state_fill_buf(self, input, input_len); 145*81ad6265SDimitry Andric input += take; 146*81ad6265SDimitry Andric input_len -= take; 147*81ad6265SDimitry Andric } 148*81ad6265SDimitry Andric 149*81ad6265SDimitry Andric INLINE output_t chunk_state_output(const blake3_chunk_state *self) { 150*81ad6265SDimitry Andric uint8_t block_flags = 151*81ad6265SDimitry Andric self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END; 152*81ad6265SDimitry Andric return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter, 153*81ad6265SDimitry Andric block_flags); 154*81ad6265SDimitry Andric } 155*81ad6265SDimitry Andric 156*81ad6265SDimitry Andric INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], 157*81ad6265SDimitry Andric const uint32_t key[8], uint8_t flags) { 158*81ad6265SDimitry Andric return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT); 159*81ad6265SDimitry Andric } 160*81ad6265SDimitry Andric 161*81ad6265SDimitry Andric // Given some input larger than one chunk, return the number of bytes that 162*81ad6265SDimitry Andric // should go in the left subtree. This is the largest power-of-2 number of 163*81ad6265SDimitry Andric // chunks that leaves at least 1 byte for the right subtree. 164*81ad6265SDimitry Andric INLINE size_t left_len(size_t content_len) { 165*81ad6265SDimitry Andric // Subtract 1 to reserve at least one byte for the right side. content_len 166*81ad6265SDimitry Andric // should always be greater than BLAKE3_CHUNK_LEN. 167*81ad6265SDimitry Andric size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; 168*81ad6265SDimitry Andric return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN; 169*81ad6265SDimitry Andric } 170*81ad6265SDimitry Andric 171*81ad6265SDimitry Andric // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time 172*81ad6265SDimitry Andric // on a single thread. Write out the chunk chaining values and return the 173*81ad6265SDimitry Andric // number of chunks hashed. These chunks are never the root and never empty; 174*81ad6265SDimitry Andric // those cases use a different codepath. 175*81ad6265SDimitry Andric INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, 176*81ad6265SDimitry Andric const uint32_t key[8], 177*81ad6265SDimitry Andric uint64_t chunk_counter, uint8_t flags, 178*81ad6265SDimitry Andric uint8_t *out) { 179*81ad6265SDimitry Andric #if defined(BLAKE3_TESTING) 180*81ad6265SDimitry Andric assert(0 < input_len); 181*81ad6265SDimitry Andric assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN); 182*81ad6265SDimitry Andric #endif 183*81ad6265SDimitry Andric 184*81ad6265SDimitry Andric const uint8_t *chunks_array[MAX_SIMD_DEGREE]; 185*81ad6265SDimitry Andric size_t input_position = 0; 186*81ad6265SDimitry Andric size_t chunks_array_len = 0; 187*81ad6265SDimitry Andric while (input_len - input_position >= BLAKE3_CHUNK_LEN) { 188*81ad6265SDimitry Andric chunks_array[chunks_array_len] = &input[input_position]; 189*81ad6265SDimitry Andric input_position += BLAKE3_CHUNK_LEN; 190*81ad6265SDimitry Andric chunks_array_len += 1; 191*81ad6265SDimitry Andric } 192*81ad6265SDimitry Andric 193*81ad6265SDimitry Andric blake3_hash_many(chunks_array, chunks_array_len, 194*81ad6265SDimitry Andric BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, 195*81ad6265SDimitry Andric true, flags, CHUNK_START, CHUNK_END, out); 196*81ad6265SDimitry Andric 197*81ad6265SDimitry Andric // Hash the remaining partial chunk, if there is one. Note that the empty 198*81ad6265SDimitry Andric // chunk (meaning the empty message) is a different codepath. 199*81ad6265SDimitry Andric if (input_len > input_position) { 200*81ad6265SDimitry Andric uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; 201*81ad6265SDimitry Andric blake3_chunk_state chunk_state; 202*81ad6265SDimitry Andric chunk_state_init(&chunk_state, key, flags); 203*81ad6265SDimitry Andric chunk_state.chunk_counter = counter; 204*81ad6265SDimitry Andric chunk_state_update(&chunk_state, &input[input_position], 205*81ad6265SDimitry Andric input_len - input_position); 206*81ad6265SDimitry Andric output_t output = chunk_state_output(&chunk_state); 207*81ad6265SDimitry Andric output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]); 208*81ad6265SDimitry Andric return chunks_array_len + 1; 209*81ad6265SDimitry Andric } else { 210*81ad6265SDimitry Andric return chunks_array_len; 211*81ad6265SDimitry Andric } 212*81ad6265SDimitry Andric } 213*81ad6265SDimitry Andric 214*81ad6265SDimitry Andric // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time 215*81ad6265SDimitry Andric // on a single thread. Write out the parent chaining values and return the 216*81ad6265SDimitry Andric // number of parents hashed. (If there's an odd input chaining value left over, 217*81ad6265SDimitry Andric // return it as an additional output.) These parents are never the root and 218*81ad6265SDimitry Andric // never empty; those cases use a different codepath. 219*81ad6265SDimitry Andric INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, 220*81ad6265SDimitry Andric size_t num_chaining_values, 221*81ad6265SDimitry Andric const uint32_t key[8], uint8_t flags, 222*81ad6265SDimitry Andric uint8_t *out) { 223*81ad6265SDimitry Andric #if defined(BLAKE3_TESTING) 224*81ad6265SDimitry Andric assert(2 <= num_chaining_values); 225*81ad6265SDimitry Andric assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2); 226*81ad6265SDimitry Andric #endif 227*81ad6265SDimitry Andric 228*81ad6265SDimitry Andric const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; 229*81ad6265SDimitry Andric size_t parents_array_len = 0; 230*81ad6265SDimitry Andric while (num_chaining_values - (2 * parents_array_len) >= 2) { 231*81ad6265SDimitry Andric parents_array[parents_array_len] = 232*81ad6265SDimitry Andric &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; 233*81ad6265SDimitry Andric parents_array_len += 1; 234*81ad6265SDimitry Andric } 235*81ad6265SDimitry Andric 236*81ad6265SDimitry Andric blake3_hash_many(parents_array, parents_array_len, 1, key, 237*81ad6265SDimitry Andric 0, // Parents always use counter 0. 238*81ad6265SDimitry Andric false, flags | PARENT, 239*81ad6265SDimitry Andric 0, // Parents have no start flags. 240*81ad6265SDimitry Andric 0, // Parents have no end flags. 241*81ad6265SDimitry Andric out); 242*81ad6265SDimitry Andric 243*81ad6265SDimitry Andric // If there's an odd child left over, it becomes an output. 244*81ad6265SDimitry Andric if (num_chaining_values > 2 * parents_array_len) { 245*81ad6265SDimitry Andric memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], 246*81ad6265SDimitry Andric &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], 247*81ad6265SDimitry Andric BLAKE3_OUT_LEN); 248*81ad6265SDimitry Andric return parents_array_len + 1; 249*81ad6265SDimitry Andric } else { 250*81ad6265SDimitry Andric return parents_array_len; 251*81ad6265SDimitry Andric } 252*81ad6265SDimitry Andric } 253*81ad6265SDimitry Andric 254*81ad6265SDimitry Andric // The wide helper function returns (writes out) an array of chaining values 255*81ad6265SDimitry Andric // and returns the length of that array. The number of chaining values returned 256*81ad6265SDimitry Andric // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, 257*81ad6265SDimitry Andric // if the input is shorter than that many chunks. The reason for maintaining a 258*81ad6265SDimitry Andric // wide array of chaining values going back up the tree, is to allow the 259*81ad6265SDimitry Andric // implementation to hash as many parents in parallel as possible. 260*81ad6265SDimitry Andric // 261*81ad6265SDimitry Andric // As a special case when the SIMD degree is 1, this function will still return 262*81ad6265SDimitry Andric // at least 2 outputs. This guarantees that this function doesn't perform the 263*81ad6265SDimitry Andric // root compression. (If it did, it would use the wrong flags, and also we 264*81ad6265SDimitry Andric // wouldn't be able to implement exendable ouput.) Note that this function is 265*81ad6265SDimitry Andric // not used when the whole input is only 1 chunk long; that's a different 266*81ad6265SDimitry Andric // codepath. 267*81ad6265SDimitry Andric // 268*81ad6265SDimitry Andric // Why not just have the caller split the input on the first update(), instead 269*81ad6265SDimitry Andric // of implementing this special rule? Because we don't want to limit SIMD or 270*81ad6265SDimitry Andric // multi-threading parallelism for that update(). 271*81ad6265SDimitry Andric static size_t blake3_compress_subtree_wide(const uint8_t *input, 272*81ad6265SDimitry Andric size_t input_len, 273*81ad6265SDimitry Andric const uint32_t key[8], 274*81ad6265SDimitry Andric uint64_t chunk_counter, 275*81ad6265SDimitry Andric uint8_t flags, uint8_t *out) { 276*81ad6265SDimitry Andric // Note that the single chunk case does *not* bump the SIMD degree up to 2 277*81ad6265SDimitry Andric // when it is 1. If this implementation adds multi-threading in the future, 278*81ad6265SDimitry Andric // this gives us the option of multi-threading even the 2-chunk case, which 279*81ad6265SDimitry Andric // can help performance on smaller platforms. 280*81ad6265SDimitry Andric if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) { 281*81ad6265SDimitry Andric return compress_chunks_parallel(input, input_len, key, chunk_counter, flags, 282*81ad6265SDimitry Andric out); 283*81ad6265SDimitry Andric } 284*81ad6265SDimitry Andric 285*81ad6265SDimitry Andric // With more than simd_degree chunks, we need to recurse. Start by dividing 286*81ad6265SDimitry Andric // the input into left and right subtrees. (Note that this is only optimal 287*81ad6265SDimitry Andric // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree 288*81ad6265SDimitry Andric // of 3 or something, we'll need a more complicated strategy.) 289*81ad6265SDimitry Andric size_t left_input_len = left_len(input_len); 290*81ad6265SDimitry Andric size_t right_input_len = input_len - left_input_len; 291*81ad6265SDimitry Andric const uint8_t *right_input = &input[left_input_len]; 292*81ad6265SDimitry Andric uint64_t right_chunk_counter = 293*81ad6265SDimitry Andric chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); 294*81ad6265SDimitry Andric 295*81ad6265SDimitry Andric // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to 296*81ad6265SDimitry Andric // account for the special case of returning 2 outputs when the SIMD degree 297*81ad6265SDimitry Andric // is 1. 298*81ad6265SDimitry Andric uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 299*81ad6265SDimitry Andric size_t degree = blake3_simd_degree(); 300*81ad6265SDimitry Andric if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { 301*81ad6265SDimitry Andric // The special case: We always use a degree of at least two, to make 302*81ad6265SDimitry Andric // sure there are two outputs. Except, as noted above, at the chunk 303*81ad6265SDimitry Andric // level, where we allow degree=1. (Note that the 1-chunk-input case is 304*81ad6265SDimitry Andric // a different codepath.) 305*81ad6265SDimitry Andric degree = 2; 306*81ad6265SDimitry Andric } 307*81ad6265SDimitry Andric uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; 308*81ad6265SDimitry Andric 309*81ad6265SDimitry Andric // Recurse! If this implementation adds multi-threading support in the 310*81ad6265SDimitry Andric // future, this is where it will go. 311*81ad6265SDimitry Andric size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key, 312*81ad6265SDimitry Andric chunk_counter, flags, cv_array); 313*81ad6265SDimitry Andric size_t right_n = blake3_compress_subtree_wide( 314*81ad6265SDimitry Andric right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); 315*81ad6265SDimitry Andric 316*81ad6265SDimitry Andric // The special case again. If simd_degree=1, then we'll have left_n=1 and 317*81ad6265SDimitry Andric // right_n=1. Rather than compressing them into a single output, return 318*81ad6265SDimitry Andric // them directly, to make sure we always have at least two outputs. 319*81ad6265SDimitry Andric if (left_n == 1) { 320*81ad6265SDimitry Andric memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 321*81ad6265SDimitry Andric return 2; 322*81ad6265SDimitry Andric } 323*81ad6265SDimitry Andric 324*81ad6265SDimitry Andric // Otherwise, do one layer of parent node compression. 325*81ad6265SDimitry Andric size_t num_chaining_values = left_n + right_n; 326*81ad6265SDimitry Andric return compress_parents_parallel(cv_array, num_chaining_values, key, flags, 327*81ad6265SDimitry Andric out); 328*81ad6265SDimitry Andric } 329*81ad6265SDimitry Andric 330*81ad6265SDimitry Andric // Hash a subtree with compress_subtree_wide(), and then condense the resulting 331*81ad6265SDimitry Andric // list of chaining values down to a single parent node. Don't compress that 332*81ad6265SDimitry Andric // last parent node, however. Instead, return its message bytes (the 333*81ad6265SDimitry Andric // concatenated chaining values of its children). This is necessary when the 334*81ad6265SDimitry Andric // first call to update() supplies a complete subtree, because the topmost 335*81ad6265SDimitry Andric // parent node of that subtree could end up being the root. It's also necessary 336*81ad6265SDimitry Andric // for extended output in the general case. 337*81ad6265SDimitry Andric // 338*81ad6265SDimitry Andric // As with compress_subtree_wide(), this function is not used on inputs of 1 339*81ad6265SDimitry Andric // chunk or less. That's a different codepath. 340*81ad6265SDimitry Andric INLINE void compress_subtree_to_parent_node( 341*81ad6265SDimitry Andric const uint8_t *input, size_t input_len, const uint32_t key[8], 342*81ad6265SDimitry Andric uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { 343*81ad6265SDimitry Andric #if defined(BLAKE3_TESTING) 344*81ad6265SDimitry Andric assert(input_len > BLAKE3_CHUNK_LEN); 345*81ad6265SDimitry Andric #endif 346*81ad6265SDimitry Andric 347*81ad6265SDimitry Andric uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 348*81ad6265SDimitry Andric size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key, 349*81ad6265SDimitry Andric chunk_counter, flags, cv_array); 350*81ad6265SDimitry Andric assert(num_cvs <= MAX_SIMD_DEGREE_OR_2); 351*81ad6265SDimitry Andric 352*81ad6265SDimitry Andric // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, 353*81ad6265SDimitry Andric // compress_subtree_wide() returns more than 2 chaining values. Condense 354*81ad6265SDimitry Andric // them into 2 by forming parent nodes repeatedly. 355*81ad6265SDimitry Andric uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; 356*81ad6265SDimitry Andric // The second half of this loop condition is always true, and we just 357*81ad6265SDimitry Andric // asserted it above. But GCC can't tell that it's always true, and if NDEBUG 358*81ad6265SDimitry Andric // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious 359*81ad6265SDimitry Andric // warnings here. GCC 8.5 is particularly sensitive, so if you're changing 360*81ad6265SDimitry Andric // this code, test it against that version. 361*81ad6265SDimitry Andric while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) { 362*81ad6265SDimitry Andric num_cvs = 363*81ad6265SDimitry Andric compress_parents_parallel(cv_array, num_cvs, key, flags, out_array); 364*81ad6265SDimitry Andric memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); 365*81ad6265SDimitry Andric } 366*81ad6265SDimitry Andric memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 367*81ad6265SDimitry Andric } 368*81ad6265SDimitry Andric 369*81ad6265SDimitry Andric INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], 370*81ad6265SDimitry Andric uint8_t flags) { 371*81ad6265SDimitry Andric memcpy(self->key, key, BLAKE3_KEY_LEN); 372*81ad6265SDimitry Andric chunk_state_init(&self->chunk, key, flags); 373*81ad6265SDimitry Andric self->cv_stack_len = 0; 374*81ad6265SDimitry Andric } 375*81ad6265SDimitry Andric 376*81ad6265SDimitry Andric void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); } 377*81ad6265SDimitry Andric 378*81ad6265SDimitry Andric void llvm_blake3_hasher_init_keyed(blake3_hasher *self, 379*81ad6265SDimitry Andric const uint8_t key[BLAKE3_KEY_LEN]) { 380*81ad6265SDimitry Andric uint32_t key_words[8]; 381*81ad6265SDimitry Andric load_key_words(key, key_words); 382*81ad6265SDimitry Andric hasher_init_base(self, key_words, KEYED_HASH); 383*81ad6265SDimitry Andric } 384*81ad6265SDimitry Andric 385*81ad6265SDimitry Andric void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context, 386*81ad6265SDimitry Andric size_t context_len) { 387*81ad6265SDimitry Andric blake3_hasher context_hasher; 388*81ad6265SDimitry Andric hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT); 389*81ad6265SDimitry Andric llvm_blake3_hasher_update(&context_hasher, context, context_len); 390*81ad6265SDimitry Andric uint8_t context_key[BLAKE3_KEY_LEN]; 391*81ad6265SDimitry Andric llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN); 392*81ad6265SDimitry Andric uint32_t context_key_words[8]; 393*81ad6265SDimitry Andric load_key_words(context_key, context_key_words); 394*81ad6265SDimitry Andric hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL); 395*81ad6265SDimitry Andric } 396*81ad6265SDimitry Andric 397*81ad6265SDimitry Andric void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) { 398*81ad6265SDimitry Andric llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context)); 399*81ad6265SDimitry Andric } 400*81ad6265SDimitry Andric 401*81ad6265SDimitry Andric // As described in hasher_push_cv() below, we do "lazy merging", delaying 402*81ad6265SDimitry Andric // merges until right before the next CV is about to be added. This is 403*81ad6265SDimitry Andric // different from the reference implementation. Another difference is that we 404*81ad6265SDimitry Andric // aren't always merging 1 chunk at a time. Instead, each CV might represent 405*81ad6265SDimitry Andric // any power-of-two number of chunks, as long as the smaller-above-larger stack 406*81ad6265SDimitry Andric // order is maintained. Instead of the "count the trailing 0-bits" algorithm 407*81ad6265SDimitry Andric // described in the spec, we use a "count the total number of 1-bits" variant 408*81ad6265SDimitry Andric // that doesn't require us to retain the subtree size of the CV on top of the 409*81ad6265SDimitry Andric // stack. The principle is the same: each CV that should remain in the stack is 410*81ad6265SDimitry Andric // represented by a 1-bit in the total number of chunks (or bytes) so far. 411*81ad6265SDimitry Andric INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) { 412*81ad6265SDimitry Andric size_t post_merge_stack_len = (size_t)popcnt(total_len); 413*81ad6265SDimitry Andric while (self->cv_stack_len > post_merge_stack_len) { 414*81ad6265SDimitry Andric uint8_t *parent_node = 415*81ad6265SDimitry Andric &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN]; 416*81ad6265SDimitry Andric output_t output = parent_output(parent_node, self->key, self->chunk.flags); 417*81ad6265SDimitry Andric output_chaining_value(&output, parent_node); 418*81ad6265SDimitry Andric self->cv_stack_len -= 1; 419*81ad6265SDimitry Andric } 420*81ad6265SDimitry Andric } 421*81ad6265SDimitry Andric 422*81ad6265SDimitry Andric // In reference_impl.rs, we merge the new CV with existing CVs from the stack 423*81ad6265SDimitry Andric // before pushing it. We can do that because we know more input is coming, so 424*81ad6265SDimitry Andric // we know none of the merges are root. 425*81ad6265SDimitry Andric // 426*81ad6265SDimitry Andric // This setting is different. We want to feed as much input as possible to 427*81ad6265SDimitry Andric // compress_subtree_wide(), without setting aside anything for the chunk_state. 428*81ad6265SDimitry Andric // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once 429*81ad6265SDimitry Andric // as a single subtree, if at all possible. 430*81ad6265SDimitry Andric // 431*81ad6265SDimitry Andric // This leads to two problems: 432*81ad6265SDimitry Andric // 1) This 64 KiB input might be the only call that ever gets made to update. 433*81ad6265SDimitry Andric // In this case, the root node of the 64 KiB subtree would be the root node 434*81ad6265SDimitry Andric // of the whole tree, and it would need to be ROOT finalized. We can't 435*81ad6265SDimitry Andric // compress it until we know. 436*81ad6265SDimitry Andric // 2) This 64 KiB input might complete a larger tree, whose root node is 437*81ad6265SDimitry Andric // similarly going to be the the root of the whole tree. For example, maybe 438*81ad6265SDimitry Andric // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the 439*81ad6265SDimitry Andric // node at the root of the 256 KiB subtree until we know how to finalize it. 440*81ad6265SDimitry Andric // 441*81ad6265SDimitry Andric // The second problem is solved with "lazy merging". That is, when we're about 442*81ad6265SDimitry Andric // to add a CV to the stack, we don't merge it with anything first, as the 443*81ad6265SDimitry Andric // reference impl does. Instead we do merges using the *previous* CV that was 444*81ad6265SDimitry Andric // added, which is sitting on top of the stack, and we put the new CV 445*81ad6265SDimitry Andric // (unmerged) on top of the stack afterwards. This guarantees that we never 446*81ad6265SDimitry Andric // merge the root node until finalize(). 447*81ad6265SDimitry Andric // 448*81ad6265SDimitry Andric // Solving the first problem requires an additional tool, 449*81ad6265SDimitry Andric // compress_subtree_to_parent_node(). That function always returns the top 450*81ad6265SDimitry Andric // *two* chaining values of the subtree it's compressing. We then do lazy 451*81ad6265SDimitry Andric // merging with each of them separately, so that the second CV will always 452*81ad6265SDimitry Andric // remain unmerged. (That also helps us support extendable output when we're 453*81ad6265SDimitry Andric // hashing an input all-at-once.) 454*81ad6265SDimitry Andric INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], 455*81ad6265SDimitry Andric uint64_t chunk_counter) { 456*81ad6265SDimitry Andric hasher_merge_cv_stack(self, chunk_counter); 457*81ad6265SDimitry Andric memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv, 458*81ad6265SDimitry Andric BLAKE3_OUT_LEN); 459*81ad6265SDimitry Andric self->cv_stack_len += 1; 460*81ad6265SDimitry Andric } 461*81ad6265SDimitry Andric 462*81ad6265SDimitry Andric void llvm_blake3_hasher_update(blake3_hasher *self, const void *input, 463*81ad6265SDimitry Andric size_t input_len) { 464*81ad6265SDimitry Andric // Explicitly checking for zero avoids causing UB by passing a null pointer 465*81ad6265SDimitry Andric // to memcpy. This comes up in practice with things like: 466*81ad6265SDimitry Andric // std::vector<uint8_t> v; 467*81ad6265SDimitry Andric // blake3_hasher_update(&hasher, v.data(), v.size()); 468*81ad6265SDimitry Andric if (input_len == 0) { 469*81ad6265SDimitry Andric return; 470*81ad6265SDimitry Andric } 471*81ad6265SDimitry Andric 472*81ad6265SDimitry Andric const uint8_t *input_bytes = (const uint8_t *)input; 473*81ad6265SDimitry Andric 474*81ad6265SDimitry Andric // If we have some partial chunk bytes in the internal chunk_state, we need 475*81ad6265SDimitry Andric // to finish that chunk first. 476*81ad6265SDimitry Andric if (chunk_state_len(&self->chunk) > 0) { 477*81ad6265SDimitry Andric size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk); 478*81ad6265SDimitry Andric if (take > input_len) { 479*81ad6265SDimitry Andric take = input_len; 480*81ad6265SDimitry Andric } 481*81ad6265SDimitry Andric chunk_state_update(&self->chunk, input_bytes, take); 482*81ad6265SDimitry Andric input_bytes += take; 483*81ad6265SDimitry Andric input_len -= take; 484*81ad6265SDimitry Andric // If we've filled the current chunk and there's more coming, finalize this 485*81ad6265SDimitry Andric // chunk and proceed. In this case we know it's not the root. 486*81ad6265SDimitry Andric if (input_len > 0) { 487*81ad6265SDimitry Andric output_t output = chunk_state_output(&self->chunk); 488*81ad6265SDimitry Andric uint8_t chunk_cv[32]; 489*81ad6265SDimitry Andric output_chaining_value(&output, chunk_cv); 490*81ad6265SDimitry Andric hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter); 491*81ad6265SDimitry Andric chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1); 492*81ad6265SDimitry Andric } else { 493*81ad6265SDimitry Andric return; 494*81ad6265SDimitry Andric } 495*81ad6265SDimitry Andric } 496*81ad6265SDimitry Andric 497*81ad6265SDimitry Andric // Now the chunk_state is clear, and we have more input. If there's more than 498*81ad6265SDimitry Andric // a single chunk (so, definitely not the root chunk), hash the largest whole 499*81ad6265SDimitry Andric // subtree we can, with the full benefits of SIMD (and maybe in the future, 500*81ad6265SDimitry Andric // multi-threading) parallelism. Two restrictions: 501*81ad6265SDimitry Andric // - The subtree has to be a power-of-2 number of chunks. Only subtrees along 502*81ad6265SDimitry Andric // the right edge can be incomplete, and we don't know where the right edge 503*81ad6265SDimitry Andric // is going to be until we get to finalize(). 504*81ad6265SDimitry Andric // - The subtree must evenly divide the total number of chunks up until this 505*81ad6265SDimitry Andric // point (if total is not 0). If the current incomplete subtree is only 506*81ad6265SDimitry Andric // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have 507*81ad6265SDimitry Andric // to complete the current subtree first. 508*81ad6265SDimitry Andric // Because we might need to break up the input to form powers of 2, or to 509*81ad6265SDimitry Andric // evenly divide what we already have, this part runs in a loop. 510*81ad6265SDimitry Andric while (input_len > BLAKE3_CHUNK_LEN) { 511*81ad6265SDimitry Andric size_t subtree_len = round_down_to_power_of_2(input_len); 512*81ad6265SDimitry Andric uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN; 513*81ad6265SDimitry Andric // Shrink the subtree_len until it evenly divides the count so far. We know 514*81ad6265SDimitry Andric // that subtree_len itself is a power of 2, so we can use a bitmasking 515*81ad6265SDimitry Andric // trick instead of an actual remainder operation. (Note that if the caller 516*81ad6265SDimitry Andric // consistently passes power-of-2 inputs of the same size, as is hopefully 517*81ad6265SDimitry Andric // typical, this loop condition will always fail, and subtree_len will 518*81ad6265SDimitry Andric // always be the full length of the input.) 519*81ad6265SDimitry Andric // 520*81ad6265SDimitry Andric // An aside: We don't have to shrink subtree_len quite this much. For 521*81ad6265SDimitry Andric // example, if count_so_far is 1, we could pass 2 chunks to 522*81ad6265SDimitry Andric // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still 523*81ad6265SDimitry Andric // get the right answer in the end, and we might get to use 2-way SIMD 524*81ad6265SDimitry Andric // parallelism. The problem with this optimization, is that it gets us 525*81ad6265SDimitry Andric // stuck always hashing 2 chunks. The total number of chunks will remain 526*81ad6265SDimitry Andric // odd, and we'll never graduate to higher degrees of parallelism. See 527*81ad6265SDimitry Andric // https://github.com/BLAKE3-team/BLAKE3/issues/69. 528*81ad6265SDimitry Andric while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { 529*81ad6265SDimitry Andric subtree_len /= 2; 530*81ad6265SDimitry Andric } 531*81ad6265SDimitry Andric // The shrunken subtree_len might now be 1 chunk long. If so, hash that one 532*81ad6265SDimitry Andric // chunk by itself. Otherwise, compress the subtree into a pair of CVs. 533*81ad6265SDimitry Andric uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; 534*81ad6265SDimitry Andric if (subtree_len <= BLAKE3_CHUNK_LEN) { 535*81ad6265SDimitry Andric blake3_chunk_state chunk_state; 536*81ad6265SDimitry Andric chunk_state_init(&chunk_state, self->key, self->chunk.flags); 537*81ad6265SDimitry Andric chunk_state.chunk_counter = self->chunk.chunk_counter; 538*81ad6265SDimitry Andric chunk_state_update(&chunk_state, input_bytes, subtree_len); 539*81ad6265SDimitry Andric output_t output = chunk_state_output(&chunk_state); 540*81ad6265SDimitry Andric uint8_t cv[BLAKE3_OUT_LEN]; 541*81ad6265SDimitry Andric output_chaining_value(&output, cv); 542*81ad6265SDimitry Andric hasher_push_cv(self, cv, chunk_state.chunk_counter); 543*81ad6265SDimitry Andric } else { 544*81ad6265SDimitry Andric // This is the high-performance happy path, though getting here depends 545*81ad6265SDimitry Andric // on the caller giving us a long enough input. 546*81ad6265SDimitry Andric uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; 547*81ad6265SDimitry Andric compress_subtree_to_parent_node(input_bytes, subtree_len, self->key, 548*81ad6265SDimitry Andric self->chunk.chunk_counter, 549*81ad6265SDimitry Andric self->chunk.flags, cv_pair); 550*81ad6265SDimitry Andric hasher_push_cv(self, cv_pair, self->chunk.chunk_counter); 551*81ad6265SDimitry Andric hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN], 552*81ad6265SDimitry Andric self->chunk.chunk_counter + (subtree_chunks / 2)); 553*81ad6265SDimitry Andric } 554*81ad6265SDimitry Andric self->chunk.chunk_counter += subtree_chunks; 555*81ad6265SDimitry Andric input_bytes += subtree_len; 556*81ad6265SDimitry Andric input_len -= subtree_len; 557*81ad6265SDimitry Andric } 558*81ad6265SDimitry Andric 559*81ad6265SDimitry Andric // If there's any remaining input less than a full chunk, add it to the chunk 560*81ad6265SDimitry Andric // state. In that case, also do a final merge loop to make sure the subtree 561*81ad6265SDimitry Andric // stack doesn't contain any unmerged pairs. The remaining input means we 562*81ad6265SDimitry Andric // know these merges are non-root. This merge loop isn't strictly necessary 563*81ad6265SDimitry Andric // here, because hasher_push_chunk_cv already does its own merge loop, but it 564*81ad6265SDimitry Andric // simplifies blake3_hasher_finalize below. 565*81ad6265SDimitry Andric if (input_len > 0) { 566*81ad6265SDimitry Andric chunk_state_update(&self->chunk, input_bytes, input_len); 567*81ad6265SDimitry Andric hasher_merge_cv_stack(self, self->chunk.chunk_counter); 568*81ad6265SDimitry Andric } 569*81ad6265SDimitry Andric } 570*81ad6265SDimitry Andric 571*81ad6265SDimitry Andric void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, 572*81ad6265SDimitry Andric size_t out_len) { 573*81ad6265SDimitry Andric llvm_blake3_hasher_finalize_seek(self, 0, out, out_len); 574*81ad6265SDimitry Andric #if LLVM_MEMORY_SANITIZER_BUILD 575*81ad6265SDimitry Andric // Avoid false positives due to uninstrumented assembly code. 576*81ad6265SDimitry Andric __msan_unpoison(out, out_len); 577*81ad6265SDimitry Andric #endif 578*81ad6265SDimitry Andric } 579*81ad6265SDimitry Andric 580*81ad6265SDimitry Andric void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, 581*81ad6265SDimitry Andric uint8_t *out, size_t out_len) { 582*81ad6265SDimitry Andric // Explicitly checking for zero avoids causing UB by passing a null pointer 583*81ad6265SDimitry Andric // to memcpy. This comes up in practice with things like: 584*81ad6265SDimitry Andric // std::vector<uint8_t> v; 585*81ad6265SDimitry Andric // blake3_hasher_finalize(&hasher, v.data(), v.size()); 586*81ad6265SDimitry Andric if (out_len == 0) { 587*81ad6265SDimitry Andric return; 588*81ad6265SDimitry Andric } 589*81ad6265SDimitry Andric 590*81ad6265SDimitry Andric // If the subtree stack is empty, then the current chunk is the root. 591*81ad6265SDimitry Andric if (self->cv_stack_len == 0) { 592*81ad6265SDimitry Andric output_t output = chunk_state_output(&self->chunk); 593*81ad6265SDimitry Andric output_root_bytes(&output, seek, out, out_len); 594*81ad6265SDimitry Andric return; 595*81ad6265SDimitry Andric } 596*81ad6265SDimitry Andric // If there are any bytes in the chunk state, finalize that chunk and do a 597*81ad6265SDimitry Andric // roll-up merge between that chunk hash and every subtree in the stack. In 598*81ad6265SDimitry Andric // this case, the extra merge loop at the end of blake3_hasher_update 599*81ad6265SDimitry Andric // guarantees that none of the subtrees in the stack need to be merged with 600*81ad6265SDimitry Andric // each other first. Otherwise, if there are no bytes in the chunk state, 601*81ad6265SDimitry Andric // then the top of the stack is a chunk hash, and we start the merge from 602*81ad6265SDimitry Andric // that. 603*81ad6265SDimitry Andric output_t output; 604*81ad6265SDimitry Andric size_t cvs_remaining; 605*81ad6265SDimitry Andric if (chunk_state_len(&self->chunk) > 0) { 606*81ad6265SDimitry Andric cvs_remaining = self->cv_stack_len; 607*81ad6265SDimitry Andric output = chunk_state_output(&self->chunk); 608*81ad6265SDimitry Andric } else { 609*81ad6265SDimitry Andric // There are always at least 2 CVs in the stack in this case. 610*81ad6265SDimitry Andric cvs_remaining = self->cv_stack_len - 2; 611*81ad6265SDimitry Andric output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key, 612*81ad6265SDimitry Andric self->chunk.flags); 613*81ad6265SDimitry Andric } 614*81ad6265SDimitry Andric while (cvs_remaining > 0) { 615*81ad6265SDimitry Andric cvs_remaining -= 1; 616*81ad6265SDimitry Andric uint8_t parent_block[BLAKE3_BLOCK_LEN]; 617*81ad6265SDimitry Andric memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32); 618*81ad6265SDimitry Andric output_chaining_value(&output, &parent_block[32]); 619*81ad6265SDimitry Andric output = parent_output(parent_block, self->key, self->chunk.flags); 620*81ad6265SDimitry Andric } 621*81ad6265SDimitry Andric output_root_bytes(&output, seek, out, out_len); 622*81ad6265SDimitry Andric } 623*81ad6265SDimitry Andric 624*81ad6265SDimitry Andric void llvm_blake3_hasher_reset(blake3_hasher *self) { 625*81ad6265SDimitry Andric chunk_state_reset(&self->chunk, self->key, 0); 626*81ad6265SDimitry Andric self->cv_stack_len = 0; 627*81ad6265SDimitry Andric } 628