xref: /freebsd-src/contrib/llvm-project/llvm/lib/ProfileData/SampleProfReader.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the class that reads LLVM sample profiles. It
10 // supports three file formats: text, binary and gcov.
11 //
12 // The textual representation is useful for debugging and testing purposes. The
13 // binary representation is more compact, resulting in smaller file sizes.
14 //
15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation
16 // tool (https://github.com/google/autofdo)
17 //
18 // All three encodings can be used interchangeably as an input sample profile.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ProfileData/SampleProfReader.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/ProfileSummary.h"
27 #include "llvm/ProfileData/ProfileCommon.h"
28 #include "llvm/ProfileData/SampleProf.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compression.h"
31 #include "llvm/Support/ErrorOr.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/LineIterator.h"
34 #include "llvm/Support/MD5.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstddef>
39 #include <cstdint>
40 #include <limits>
41 #include <memory>
42 #include <set>
43 #include <system_error>
44 #include <vector>
45 
46 using namespace llvm;
47 using namespace sampleprof;
48 
49 #define DEBUG_TYPE "samplepgo-reader"
50 
51 // This internal option specifies if the profile uses FS discriminators.
52 // It only applies to text, binary and compact binary format profiles.
53 // For ext-binary format profiles, the flag is set in the summary.
54 static cl::opt<bool> ProfileIsFSDisciminator(
55     "profile-isfs", cl::Hidden, cl::init(false),
56     cl::desc("Profile uses flow sensitive discriminators"));
57 
58 /// Dump the function profile for \p FName.
59 ///
60 /// \param FContext Name + context of the function to print.
61 /// \param OS Stream to emit the output to.
62 void SampleProfileReader::dumpFunctionProfile(SampleContext FContext,
63                                               raw_ostream &OS) {
64   OS << "Function: " << FContext.toString() << ": " << Profiles[FContext];
65 }
66 
67 /// Dump all the function profiles found on stream \p OS.
68 void SampleProfileReader::dump(raw_ostream &OS) {
69   std::vector<NameFunctionSamples> V;
70   sortFuncProfiles(Profiles, V);
71   for (const auto &I : V)
72     dumpFunctionProfile(I.first, OS);
73 }
74 
75 /// Parse \p Input as function head.
76 ///
77 /// Parse one line of \p Input, and update function name in \p FName,
78 /// function's total sample count in \p NumSamples, function's entry
79 /// count in \p NumHeadSamples.
80 ///
81 /// \returns true if parsing is successful.
82 static bool ParseHead(const StringRef &Input, StringRef &FName,
83                       uint64_t &NumSamples, uint64_t &NumHeadSamples) {
84   if (Input[0] == ' ')
85     return false;
86   size_t n2 = Input.rfind(':');
87   size_t n1 = Input.rfind(':', n2 - 1);
88   FName = Input.substr(0, n1);
89   if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
90     return false;
91   if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
92     return false;
93   return true;
94 }
95 
96 /// Returns true if line offset \p L is legal (only has 16 bits).
97 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
98 
99 /// Parse \p Input that contains metadata.
100 /// Possible metadata:
101 /// - CFG Checksum information:
102 ///     !CFGChecksum: 12345
103 /// - CFG Checksum information:
104 ///     !Attributes: 1
105 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash.
106 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash,
107                           uint32_t &Attributes) {
108   if (Input.startswith("!CFGChecksum:")) {
109     StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim();
110     return !CFGInfo.getAsInteger(10, FunctionHash);
111   }
112 
113   if (Input.startswith("!Attributes:")) {
114     StringRef Attrib = Input.substr(strlen("!Attributes:")).trim();
115     return !Attrib.getAsInteger(10, Attributes);
116   }
117 
118   return false;
119 }
120 
121 enum class LineType {
122   CallSiteProfile,
123   BodyProfile,
124   Metadata,
125 };
126 
127 /// Parse \p Input as line sample.
128 ///
129 /// \param Input input line.
130 /// \param LineTy Type of this line.
131 /// \param Depth the depth of the inline stack.
132 /// \param NumSamples total samples of the line/inlined callsite.
133 /// \param LineOffset line offset to the start of the function.
134 /// \param Discriminator discriminator of the line.
135 /// \param TargetCountMap map from indirect call target to count.
136 /// \param FunctionHash the function's CFG hash, used by pseudo probe.
137 ///
138 /// returns true if parsing is successful.
139 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth,
140                       uint64_t &NumSamples, uint32_t &LineOffset,
141                       uint32_t &Discriminator, StringRef &CalleeName,
142                       DenseMap<StringRef, uint64_t> &TargetCountMap,
143                       uint64_t &FunctionHash, uint32_t &Attributes) {
144   for (Depth = 0; Input[Depth] == ' '; Depth++)
145     ;
146   if (Depth == 0)
147     return false;
148 
149   if (Input[Depth] == '!') {
150     LineTy = LineType::Metadata;
151     return parseMetadata(Input.substr(Depth), FunctionHash, Attributes);
152   }
153 
154   size_t n1 = Input.find(':');
155   StringRef Loc = Input.substr(Depth, n1 - Depth);
156   size_t n2 = Loc.find('.');
157   if (n2 == StringRef::npos) {
158     if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
159       return false;
160     Discriminator = 0;
161   } else {
162     if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
163       return false;
164     if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
165       return false;
166   }
167 
168   StringRef Rest = Input.substr(n1 + 2);
169   if (isDigit(Rest[0])) {
170     LineTy = LineType::BodyProfile;
171     size_t n3 = Rest.find(' ');
172     if (n3 == StringRef::npos) {
173       if (Rest.getAsInteger(10, NumSamples))
174         return false;
175     } else {
176       if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
177         return false;
178     }
179     // Find call targets and their sample counts.
180     // Note: In some cases, there are symbols in the profile which are not
181     // mangled. To accommodate such cases, use colon + integer pairs as the
182     // anchor points.
183     // An example:
184     // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
185     // ":1000" and ":437" are used as anchor points so the string above will
186     // be interpreted as
187     // target: _M_construct<char *>
188     // count: 1000
189     // target: string_view<std::allocator<char> >
190     // count: 437
191     while (n3 != StringRef::npos) {
192       n3 += Rest.substr(n3).find_first_not_of(' ');
193       Rest = Rest.substr(n3);
194       n3 = Rest.find_first_of(':');
195       if (n3 == StringRef::npos || n3 == 0)
196         return false;
197 
198       StringRef Target;
199       uint64_t count, n4;
200       while (true) {
201         // Get the segment after the current colon.
202         StringRef AfterColon = Rest.substr(n3 + 1);
203         // Get the target symbol before the current colon.
204         Target = Rest.substr(0, n3);
205         // Check if the word after the current colon is an integer.
206         n4 = AfterColon.find_first_of(' ');
207         n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
208         StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
209         if (!WordAfterColon.getAsInteger(10, count))
210           break;
211 
212         // Try to find the next colon.
213         uint64_t n5 = AfterColon.find_first_of(':');
214         if (n5 == StringRef::npos)
215           return false;
216         n3 += n5 + 1;
217       }
218 
219       // An anchor point is found. Save the {target, count} pair
220       TargetCountMap[Target] = count;
221       if (n4 == Rest.size())
222         break;
223       // Change n3 to the next blank space after colon + integer pair.
224       n3 = n4;
225     }
226   } else {
227     LineTy = LineType::CallSiteProfile;
228     size_t n3 = Rest.find_last_of(':');
229     CalleeName = Rest.substr(0, n3);
230     if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
231       return false;
232   }
233   return true;
234 }
235 
236 /// Load samples from a text file.
237 ///
238 /// See the documentation at the top of the file for an explanation of
239 /// the expected format.
240 ///
241 /// \returns true if the file was loaded successfully, false otherwise.
242 std::error_code SampleProfileReaderText::readImpl() {
243   line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
244   sampleprof_error Result = sampleprof_error::success;
245 
246   InlineCallStack InlineStack;
247   uint32_t TopLevelProbeProfileCount = 0;
248 
249   // DepthMetadata tracks whether we have processed metadata for the current
250   // top-level or nested function profile.
251   uint32_t DepthMetadata = 0;
252 
253   ProfileIsFS = ProfileIsFSDisciminator;
254   FunctionSamples::ProfileIsFS = ProfileIsFS;
255   for (; !LineIt.is_at_eof(); ++LineIt) {
256     if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#')
257       continue;
258     // Read the header of each function.
259     //
260     // Note that for function identifiers we are actually expecting
261     // mangled names, but we may not always get them. This happens when
262     // the compiler decides not to emit the function (e.g., it was inlined
263     // and removed). In this case, the binary will not have the linkage
264     // name for the function, so the profiler will emit the function's
265     // unmangled name, which may contain characters like ':' and '>' in its
266     // name (member functions, templates, etc).
267     //
268     // The only requirement we place on the identifier, then, is that it
269     // should not begin with a number.
270     if ((*LineIt)[0] != ' ') {
271       uint64_t NumSamples, NumHeadSamples;
272       StringRef FName;
273       if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
274         reportError(LineIt.line_number(),
275                     "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
276         return sampleprof_error::malformed;
277       }
278       DepthMetadata = 0;
279       SampleContext FContext(FName, CSNameTable);
280       if (FContext.hasContext())
281         ++CSProfileCount;
282       Profiles[FContext] = FunctionSamples();
283       FunctionSamples &FProfile = Profiles[FContext];
284       FProfile.setContext(FContext);
285       MergeResult(Result, FProfile.addTotalSamples(NumSamples));
286       MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
287       InlineStack.clear();
288       InlineStack.push_back(&FProfile);
289     } else {
290       uint64_t NumSamples;
291       StringRef FName;
292       DenseMap<StringRef, uint64_t> TargetCountMap;
293       uint32_t Depth, LineOffset, Discriminator;
294       LineType LineTy;
295       uint64_t FunctionHash = 0;
296       uint32_t Attributes = 0;
297       if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset,
298                      Discriminator, FName, TargetCountMap, FunctionHash,
299                      Attributes)) {
300         reportError(LineIt.line_number(),
301                     "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
302                         *LineIt);
303         return sampleprof_error::malformed;
304       }
305       if (LineTy != LineType::Metadata && Depth == DepthMetadata) {
306         // Metadata must be put at the end of a function profile.
307         reportError(LineIt.line_number(),
308                     "Found non-metadata after metadata: " + *LineIt);
309         return sampleprof_error::malformed;
310       }
311 
312       // Here we handle FS discriminators.
313       Discriminator &= getDiscriminatorMask();
314 
315       while (InlineStack.size() > Depth) {
316         InlineStack.pop_back();
317       }
318       switch (LineTy) {
319       case LineType::CallSiteProfile: {
320         FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
321             LineLocation(LineOffset, Discriminator))[std::string(FName)];
322         FSamples.setName(FName);
323         MergeResult(Result, FSamples.addTotalSamples(NumSamples));
324         InlineStack.push_back(&FSamples);
325         DepthMetadata = 0;
326         break;
327       }
328       case LineType::BodyProfile: {
329         while (InlineStack.size() > Depth) {
330           InlineStack.pop_back();
331         }
332         FunctionSamples &FProfile = *InlineStack.back();
333         for (const auto &name_count : TargetCountMap) {
334           MergeResult(Result, FProfile.addCalledTargetSamples(
335                                   LineOffset, Discriminator, name_count.first,
336                                   name_count.second));
337         }
338         MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
339                                                     NumSamples));
340         break;
341       }
342       case LineType::Metadata: {
343         FunctionSamples &FProfile = *InlineStack.back();
344         if (FunctionHash) {
345           FProfile.setFunctionHash(FunctionHash);
346           if (Depth == 1)
347             ++TopLevelProbeProfileCount;
348         }
349         FProfile.getContext().setAllAttributes(Attributes);
350         if (Attributes & (uint32_t)ContextShouldBeInlined)
351           ProfileIsCSNested = true;
352         DepthMetadata = Depth;
353         break;
354       }
355       }
356     }
357   }
358 
359   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
360          "Cannot have both context-sensitive and regular profile");
361   ProfileIsCSFlat = (CSProfileCount > 0);
362   assert((TopLevelProbeProfileCount == 0 ||
363           TopLevelProbeProfileCount == Profiles.size()) &&
364          "Cannot have both probe-based profiles and regular profiles");
365   ProfileIsProbeBased = (TopLevelProbeProfileCount > 0);
366   FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
367   FunctionSamples::ProfileIsCSFlat = ProfileIsCSFlat;
368   FunctionSamples::ProfileIsCSNested = ProfileIsCSNested;
369 
370   if (Result == sampleprof_error::success)
371     computeSummary();
372 
373   return Result;
374 }
375 
376 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
377   bool result = false;
378 
379   // Check that the first non-comment line is a valid function header.
380   line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
381   if (!LineIt.is_at_eof()) {
382     if ((*LineIt)[0] != ' ') {
383       uint64_t NumSamples, NumHeadSamples;
384       StringRef FName;
385       result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
386     }
387   }
388 
389   return result;
390 }
391 
392 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
393   unsigned NumBytesRead = 0;
394   std::error_code EC;
395   uint64_t Val = decodeULEB128(Data, &NumBytesRead);
396 
397   if (Val > std::numeric_limits<T>::max())
398     EC = sampleprof_error::malformed;
399   else if (Data + NumBytesRead > End)
400     EC = sampleprof_error::truncated;
401   else
402     EC = sampleprof_error::success;
403 
404   if (EC) {
405     reportError(0, EC.message());
406     return EC;
407   }
408 
409   Data += NumBytesRead;
410   return static_cast<T>(Val);
411 }
412 
413 ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
414   std::error_code EC;
415   StringRef Str(reinterpret_cast<const char *>(Data));
416   if (Data + Str.size() + 1 > End) {
417     EC = sampleprof_error::truncated;
418     reportError(0, EC.message());
419     return EC;
420   }
421 
422   Data += Str.size() + 1;
423   return Str;
424 }
425 
426 template <typename T>
427 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
428   std::error_code EC;
429 
430   if (Data + sizeof(T) > End) {
431     EC = sampleprof_error::truncated;
432     reportError(0, EC.message());
433     return EC;
434   }
435 
436   using namespace support;
437   T Val = endian::readNext<T, little, unaligned>(Data);
438   return Val;
439 }
440 
441 template <typename T>
442 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
443   std::error_code EC;
444   auto Idx = readNumber<uint32_t>();
445   if (std::error_code EC = Idx.getError())
446     return EC;
447   if (*Idx >= Table.size())
448     return sampleprof_error::truncated_name_table;
449   return *Idx;
450 }
451 
452 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
453   auto Idx = readStringIndex(NameTable);
454   if (std::error_code EC = Idx.getError())
455     return EC;
456 
457   return NameTable[*Idx];
458 }
459 
460 ErrorOr<SampleContext> SampleProfileReaderBinary::readSampleContextFromTable() {
461   auto FName(readStringFromTable());
462   if (std::error_code EC = FName.getError())
463     return EC;
464   return SampleContext(*FName);
465 }
466 
467 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() {
468   if (!FixedLengthMD5)
469     return SampleProfileReaderBinary::readStringFromTable();
470 
471   // read NameTable index.
472   auto Idx = readStringIndex(NameTable);
473   if (std::error_code EC = Idx.getError())
474     return EC;
475 
476   // Check whether the name to be accessed has been accessed before,
477   // if not, read it from memory directly.
478   StringRef &SR = NameTable[*Idx];
479   if (SR.empty()) {
480     const uint8_t *SavedData = Data;
481     Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t));
482     auto FID = readUnencodedNumber<uint64_t>();
483     if (std::error_code EC = FID.getError())
484       return EC;
485     // Save the string converted from uint64_t in MD5StringBuf. All the
486     // references to the name are all StringRefs refering to the string
487     // in MD5StringBuf.
488     MD5StringBuf->push_back(std::to_string(*FID));
489     SR = MD5StringBuf->back();
490     Data = SavedData;
491   }
492   return SR;
493 }
494 
495 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
496   auto Idx = readStringIndex(NameTable);
497   if (std::error_code EC = Idx.getError())
498     return EC;
499 
500   return StringRef(NameTable[*Idx]);
501 }
502 
503 std::error_code
504 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
505   auto NumSamples = readNumber<uint64_t>();
506   if (std::error_code EC = NumSamples.getError())
507     return EC;
508   FProfile.addTotalSamples(*NumSamples);
509 
510   // Read the samples in the body.
511   auto NumRecords = readNumber<uint32_t>();
512   if (std::error_code EC = NumRecords.getError())
513     return EC;
514 
515   for (uint32_t I = 0; I < *NumRecords; ++I) {
516     auto LineOffset = readNumber<uint64_t>();
517     if (std::error_code EC = LineOffset.getError())
518       return EC;
519 
520     if (!isOffsetLegal(*LineOffset)) {
521       return std::error_code();
522     }
523 
524     auto Discriminator = readNumber<uint64_t>();
525     if (std::error_code EC = Discriminator.getError())
526       return EC;
527 
528     auto NumSamples = readNumber<uint64_t>();
529     if (std::error_code EC = NumSamples.getError())
530       return EC;
531 
532     auto NumCalls = readNumber<uint32_t>();
533     if (std::error_code EC = NumCalls.getError())
534       return EC;
535 
536     // Here we handle FS discriminators:
537     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
538 
539     for (uint32_t J = 0; J < *NumCalls; ++J) {
540       auto CalledFunction(readStringFromTable());
541       if (std::error_code EC = CalledFunction.getError())
542         return EC;
543 
544       auto CalledFunctionSamples = readNumber<uint64_t>();
545       if (std::error_code EC = CalledFunctionSamples.getError())
546         return EC;
547 
548       FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal,
549                                       *CalledFunction, *CalledFunctionSamples);
550     }
551 
552     FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples);
553   }
554 
555   // Read all the samples for inlined function calls.
556   auto NumCallsites = readNumber<uint32_t>();
557   if (std::error_code EC = NumCallsites.getError())
558     return EC;
559 
560   for (uint32_t J = 0; J < *NumCallsites; ++J) {
561     auto LineOffset = readNumber<uint64_t>();
562     if (std::error_code EC = LineOffset.getError())
563       return EC;
564 
565     auto Discriminator = readNumber<uint64_t>();
566     if (std::error_code EC = Discriminator.getError())
567       return EC;
568 
569     auto FName(readStringFromTable());
570     if (std::error_code EC = FName.getError())
571       return EC;
572 
573     // Here we handle FS discriminators:
574     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
575 
576     FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
577         LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)];
578     CalleeProfile.setName(*FName);
579     if (std::error_code EC = readProfile(CalleeProfile))
580       return EC;
581   }
582 
583   return sampleprof_error::success;
584 }
585 
586 std::error_code
587 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
588   Data = Start;
589   auto NumHeadSamples = readNumber<uint64_t>();
590   if (std::error_code EC = NumHeadSamples.getError())
591     return EC;
592 
593   ErrorOr<SampleContext> FContext(readSampleContextFromTable());
594   if (std::error_code EC = FContext.getError())
595     return EC;
596 
597   Profiles[*FContext] = FunctionSamples();
598   FunctionSamples &FProfile = Profiles[*FContext];
599   FProfile.setContext(*FContext);
600   FProfile.addHeadSamples(*NumHeadSamples);
601 
602   if (FContext->hasContext())
603     CSProfileCount++;
604 
605   if (std::error_code EC = readProfile(FProfile))
606     return EC;
607   return sampleprof_error::success;
608 }
609 
610 std::error_code SampleProfileReaderBinary::readImpl() {
611   ProfileIsFS = ProfileIsFSDisciminator;
612   FunctionSamples::ProfileIsFS = ProfileIsFS;
613   while (!at_eof()) {
614     if (std::error_code EC = readFuncProfile(Data))
615       return EC;
616   }
617 
618   return sampleprof_error::success;
619 }
620 
621 ErrorOr<SampleContextFrames>
622 SampleProfileReaderExtBinaryBase::readContextFromTable() {
623   auto ContextIdx = readNumber<uint32_t>();
624   if (std::error_code EC = ContextIdx.getError())
625     return EC;
626   if (*ContextIdx >= CSNameTable->size())
627     return sampleprof_error::truncated_name_table;
628   return (*CSNameTable)[*ContextIdx];
629 }
630 
631 ErrorOr<SampleContext>
632 SampleProfileReaderExtBinaryBase::readSampleContextFromTable() {
633   if (ProfileIsCSFlat) {
634     auto FContext(readContextFromTable());
635     if (std::error_code EC = FContext.getError())
636       return EC;
637     return SampleContext(*FContext);
638   } else {
639     auto FName(readStringFromTable());
640     if (std::error_code EC = FName.getError())
641       return EC;
642     return SampleContext(*FName);
643   }
644 }
645 
646 std::error_code SampleProfileReaderExtBinaryBase::readOneSection(
647     const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
648   Data = Start;
649   End = Start + Size;
650   switch (Entry.Type) {
651   case SecProfSummary:
652     if (std::error_code EC = readSummary())
653       return EC;
654     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
655       Summary->setPartialProfile(true);
656     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
657       FunctionSamples::ProfileIsCSFlat = ProfileIsCSFlat = true;
658     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
659       FunctionSamples::ProfileIsFS = ProfileIsFS = true;
660     break;
661   case SecNameTable: {
662     FixedLengthMD5 =
663         hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5);
664     bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name);
665     assert((!FixedLengthMD5 || UseMD5) &&
666            "If FixedLengthMD5 is true, UseMD5 has to be true");
667     FunctionSamples::HasUniqSuffix =
668         hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix);
669     if (std::error_code EC = readNameTableSec(UseMD5))
670       return EC;
671     break;
672   }
673   case SecCSNameTable: {
674     if (std::error_code EC = readCSNameTableSec())
675       return EC;
676     break;
677   }
678   case SecLBRProfile:
679     if (std::error_code EC = readFuncProfiles())
680       return EC;
681     break;
682   case SecFuncOffsetTable:
683     FuncOffsetsOrdered = hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered);
684     if (std::error_code EC = readFuncOffsetTable())
685       return EC;
686     break;
687   case SecFuncMetadata: {
688     ProfileIsProbeBased =
689         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased);
690     FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
691     ProfileIsCSNested =
692         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsCSNested);
693     FunctionSamples::ProfileIsCSNested = ProfileIsCSNested;
694     bool HasAttribute =
695         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute);
696     if (std::error_code EC = readFuncMetadata(HasAttribute))
697       return EC;
698     break;
699   }
700   case SecProfileSymbolList:
701     if (std::error_code EC = readProfileSymbolList())
702       return EC;
703     break;
704   default:
705     if (std::error_code EC = readCustomSection(Entry))
706       return EC;
707     break;
708   }
709   return sampleprof_error::success;
710 }
711 
712 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() {
713   if (!M)
714     return false;
715   FuncsToUse.clear();
716   for (auto &F : *M)
717     FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
718   return true;
719 }
720 
721 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() {
722   // If there are more than one FuncOffsetTable, the profile read associated
723   // with previous FuncOffsetTable has to be done before next FuncOffsetTable
724   // is read.
725   FuncOffsetTable.clear();
726 
727   auto Size = readNumber<uint64_t>();
728   if (std::error_code EC = Size.getError())
729     return EC;
730 
731   FuncOffsetTable.reserve(*Size);
732 
733   if (FuncOffsetsOrdered) {
734     OrderedFuncOffsets =
735         std::make_unique<std::vector<std::pair<SampleContext, uint64_t>>>();
736     OrderedFuncOffsets->reserve(*Size);
737   }
738 
739   for (uint32_t I = 0; I < *Size; ++I) {
740     auto FContext(readSampleContextFromTable());
741     if (std::error_code EC = FContext.getError())
742       return EC;
743 
744     auto Offset = readNumber<uint64_t>();
745     if (std::error_code EC = Offset.getError())
746       return EC;
747 
748     FuncOffsetTable[*FContext] = *Offset;
749     if (FuncOffsetsOrdered)
750       OrderedFuncOffsets->emplace_back(*FContext, *Offset);
751   }
752 
753   return sampleprof_error::success;
754 }
755 
756 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() {
757   // Collect functions used by current module if the Reader has been
758   // given a module.
759   // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName
760   // which will query FunctionSamples::HasUniqSuffix, so it has to be
761   // called after FunctionSamples::HasUniqSuffix is set, i.e. after
762   // NameTable section is read.
763   bool LoadFuncsToBeUsed = collectFuncsFromModule();
764 
765   // When LoadFuncsToBeUsed is false, load all the function profiles.
766   const uint8_t *Start = Data;
767   if (!LoadFuncsToBeUsed) {
768     while (Data < End) {
769       if (std::error_code EC = readFuncProfile(Data))
770         return EC;
771     }
772     assert(Data == End && "More data is read than expected");
773   } else {
774     // Load function profiles on demand.
775     if (Remapper) {
776       for (auto Name : FuncsToUse) {
777         Remapper->insert(Name);
778       }
779     }
780 
781     if (ProfileIsCSFlat) {
782       DenseSet<uint64_t> FuncGuidsToUse;
783       if (useMD5()) {
784         for (auto Name : FuncsToUse)
785           FuncGuidsToUse.insert(Function::getGUID(Name));
786       }
787 
788       // For each function in current module, load all context profiles for
789       // the function as well as their callee contexts which can help profile
790       // guided importing for ThinLTO. This can be achieved by walking
791       // through an ordered context container, where contexts are laid out
792       // as if they were walked in preorder of a context trie. While
793       // traversing the trie, a link to the highest common ancestor node is
794       // kept so that all of its decendants will be loaded.
795       assert(OrderedFuncOffsets.get() &&
796              "func offset table should always be sorted in CS profile");
797       const SampleContext *CommonContext = nullptr;
798       for (const auto &NameOffset : *OrderedFuncOffsets) {
799         const auto &FContext = NameOffset.first;
800         auto FName = FContext.getName();
801         // For function in the current module, keep its farthest ancestor
802         // context. This can be used to load itself and its child and
803         // sibling contexts.
804         if ((useMD5() && FuncGuidsToUse.count(std::stoull(FName.data()))) ||
805             (!useMD5() && (FuncsToUse.count(FName) ||
806                            (Remapper && Remapper->exist(FName))))) {
807           if (!CommonContext || !CommonContext->IsPrefixOf(FContext))
808             CommonContext = &FContext;
809         }
810 
811         if (CommonContext == &FContext ||
812             (CommonContext && CommonContext->IsPrefixOf(FContext))) {
813           // Load profile for the current context which originated from
814           // the common ancestor.
815           const uint8_t *FuncProfileAddr = Start + NameOffset.second;
816           assert(FuncProfileAddr < End && "out of LBRProfile section");
817           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
818             return EC;
819         }
820       }
821     } else {
822       if (useMD5()) {
823         for (auto Name : FuncsToUse) {
824           auto GUID = std::to_string(MD5Hash(Name));
825           auto iter = FuncOffsetTable.find(StringRef(GUID));
826           if (iter == FuncOffsetTable.end())
827             continue;
828           const uint8_t *FuncProfileAddr = Start + iter->second;
829           assert(FuncProfileAddr < End && "out of LBRProfile section");
830           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
831             return EC;
832         }
833       } else {
834         for (auto NameOffset : FuncOffsetTable) {
835           SampleContext FContext(NameOffset.first);
836           auto FuncName = FContext.getName();
837           if (!FuncsToUse.count(FuncName) &&
838               (!Remapper || !Remapper->exist(FuncName)))
839             continue;
840           const uint8_t *FuncProfileAddr = Start + NameOffset.second;
841           assert(FuncProfileAddr < End && "out of LBRProfile section");
842           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
843             return EC;
844         }
845       }
846     }
847     Data = End;
848   }
849   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
850          "Cannot have both context-sensitive and regular profile");
851   assert((!CSProfileCount || ProfileIsCSFlat) &&
852          "Section flag should be consistent with actual profile");
853   return sampleprof_error::success;
854 }
855 
856 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() {
857   if (!ProfSymList)
858     ProfSymList = std::make_unique<ProfileSymbolList>();
859 
860   if (std::error_code EC = ProfSymList->read(Data, End - Data))
861     return EC;
862 
863   Data = End;
864   return sampleprof_error::success;
865 }
866 
867 std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
868     const uint8_t *SecStart, const uint64_t SecSize,
869     const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
870   Data = SecStart;
871   End = SecStart + SecSize;
872   auto DecompressSize = readNumber<uint64_t>();
873   if (std::error_code EC = DecompressSize.getError())
874     return EC;
875   DecompressBufSize = *DecompressSize;
876 
877   auto CompressSize = readNumber<uint64_t>();
878   if (std::error_code EC = CompressSize.getError())
879     return EC;
880 
881   if (!llvm::zlib::isAvailable())
882     return sampleprof_error::zlib_unavailable;
883 
884   StringRef CompressedStrings(reinterpret_cast<const char *>(Data),
885                               *CompressSize);
886   char *Buffer = Allocator.Allocate<char>(DecompressBufSize);
887   size_t UCSize = DecompressBufSize;
888   llvm::Error E =
889       zlib::uncompress(CompressedStrings, Buffer, UCSize);
890   if (E)
891     return sampleprof_error::uncompress_failed;
892   DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
893   return sampleprof_error::success;
894 }
895 
896 std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
897   const uint8_t *BufStart =
898       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
899 
900   for (auto &Entry : SecHdrTable) {
901     // Skip empty section.
902     if (!Entry.Size)
903       continue;
904 
905     // Skip sections without context when SkipFlatProf is true.
906     if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
907       continue;
908 
909     const uint8_t *SecStart = BufStart + Entry.Offset;
910     uint64_t SecSize = Entry.Size;
911 
912     // If the section is compressed, decompress it into a buffer
913     // DecompressBuf before reading the actual data. The pointee of
914     // 'Data' will be changed to buffer hold by DecompressBuf
915     // temporarily when reading the actual data.
916     bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
917     if (isCompressed) {
918       const uint8_t *DecompressBuf;
919       uint64_t DecompressBufSize;
920       if (std::error_code EC = decompressSection(
921               SecStart, SecSize, DecompressBuf, DecompressBufSize))
922         return EC;
923       SecStart = DecompressBuf;
924       SecSize = DecompressBufSize;
925     }
926 
927     if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
928       return EC;
929     if (Data != SecStart + SecSize)
930       return sampleprof_error::malformed;
931 
932     // Change the pointee of 'Data' from DecompressBuf to original Buffer.
933     if (isCompressed) {
934       Data = BufStart + Entry.Offset;
935       End = BufStart + Buffer->getBufferSize();
936     }
937   }
938 
939   return sampleprof_error::success;
940 }
941 
942 std::error_code SampleProfileReaderCompactBinary::readImpl() {
943   // Collect functions used by current module if the Reader has been
944   // given a module.
945   bool LoadFuncsToBeUsed = collectFuncsFromModule();
946   ProfileIsFS = ProfileIsFSDisciminator;
947   FunctionSamples::ProfileIsFS = ProfileIsFS;
948   std::vector<uint64_t> OffsetsToUse;
949   if (!LoadFuncsToBeUsed) {
950     // load all the function profiles.
951     for (auto FuncEntry : FuncOffsetTable) {
952       OffsetsToUse.push_back(FuncEntry.second);
953     }
954   } else {
955     // load function profiles on demand.
956     for (auto Name : FuncsToUse) {
957       auto GUID = std::to_string(MD5Hash(Name));
958       auto iter = FuncOffsetTable.find(StringRef(GUID));
959       if (iter == FuncOffsetTable.end())
960         continue;
961       OffsetsToUse.push_back(iter->second);
962     }
963   }
964 
965   for (auto Offset : OffsetsToUse) {
966     const uint8_t *SavedData = Data;
967     if (std::error_code EC = readFuncProfile(
968             reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
969             Offset))
970       return EC;
971     Data = SavedData;
972   }
973   return sampleprof_error::success;
974 }
975 
976 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
977   if (Magic == SPMagic())
978     return sampleprof_error::success;
979   return sampleprof_error::bad_magic;
980 }
981 
982 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
983   if (Magic == SPMagic(SPF_Ext_Binary))
984     return sampleprof_error::success;
985   return sampleprof_error::bad_magic;
986 }
987 
988 std::error_code
989 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
990   if (Magic == SPMagic(SPF_Compact_Binary))
991     return sampleprof_error::success;
992   return sampleprof_error::bad_magic;
993 }
994 
995 std::error_code SampleProfileReaderBinary::readNameTable() {
996   auto Size = readNumber<uint32_t>();
997   if (std::error_code EC = Size.getError())
998     return EC;
999   NameTable.reserve(*Size + NameTable.size());
1000   for (uint32_t I = 0; I < *Size; ++I) {
1001     auto Name(readString());
1002     if (std::error_code EC = Name.getError())
1003       return EC;
1004     NameTable.push_back(*Name);
1005   }
1006 
1007   return sampleprof_error::success;
1008 }
1009 
1010 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() {
1011   auto Size = readNumber<uint64_t>();
1012   if (std::error_code EC = Size.getError())
1013     return EC;
1014   MD5StringBuf = std::make_unique<std::vector<std::string>>();
1015   MD5StringBuf->reserve(*Size);
1016   if (FixedLengthMD5) {
1017     // Preallocate and initialize NameTable so we can check whether a name
1018     // index has been read before by checking whether the element in the
1019     // NameTable is empty, meanwhile readStringIndex can do the boundary
1020     // check using the size of NameTable.
1021     NameTable.resize(*Size + NameTable.size());
1022 
1023     MD5NameMemStart = Data;
1024     Data = Data + (*Size) * sizeof(uint64_t);
1025     return sampleprof_error::success;
1026   }
1027   NameTable.reserve(*Size);
1028   for (uint32_t I = 0; I < *Size; ++I) {
1029     auto FID = readNumber<uint64_t>();
1030     if (std::error_code EC = FID.getError())
1031       return EC;
1032     MD5StringBuf->push_back(std::to_string(*FID));
1033     // NameTable is a vector of StringRef. Here it is pushing back a
1034     // StringRef initialized with the last string in MD5stringBuf.
1035     NameTable.push_back(MD5StringBuf->back());
1036   }
1037   return sampleprof_error::success;
1038 }
1039 
1040 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) {
1041   if (IsMD5)
1042     return readMD5NameTable();
1043   return SampleProfileReaderBinary::readNameTable();
1044 }
1045 
1046 // Read in the CS name table section, which basically contains a list of context
1047 // vectors. Each element of a context vector, aka a frame, refers to the
1048 // underlying raw function names that are stored in the name table, as well as
1049 // a callsite identifier that only makes sense for non-leaf frames.
1050 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() {
1051   auto Size = readNumber<uint32_t>();
1052   if (std::error_code EC = Size.getError())
1053     return EC;
1054 
1055   std::vector<SampleContextFrameVector> *PNameVec =
1056       new std::vector<SampleContextFrameVector>();
1057   PNameVec->reserve(*Size);
1058   for (uint32_t I = 0; I < *Size; ++I) {
1059     PNameVec->emplace_back(SampleContextFrameVector());
1060     auto ContextSize = readNumber<uint32_t>();
1061     if (std::error_code EC = ContextSize.getError())
1062       return EC;
1063     for (uint32_t J = 0; J < *ContextSize; ++J) {
1064       auto FName(readStringFromTable());
1065       if (std::error_code EC = FName.getError())
1066         return EC;
1067       auto LineOffset = readNumber<uint64_t>();
1068       if (std::error_code EC = LineOffset.getError())
1069         return EC;
1070 
1071       if (!isOffsetLegal(*LineOffset))
1072         return std::error_code();
1073 
1074       auto Discriminator = readNumber<uint64_t>();
1075       if (std::error_code EC = Discriminator.getError())
1076         return EC;
1077 
1078       PNameVec->back().emplace_back(
1079           FName.get(), LineLocation(LineOffset.get(), Discriminator.get()));
1080     }
1081   }
1082 
1083   // From this point the underlying object of CSNameTable should be immutable.
1084   CSNameTable.reset(PNameVec);
1085   return sampleprof_error::success;
1086 }
1087 
1088 std::error_code
1089 
1090 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute,
1091                                                    FunctionSamples *FProfile) {
1092   if (Data < End) {
1093     if (ProfileIsProbeBased) {
1094       auto Checksum = readNumber<uint64_t>();
1095       if (std::error_code EC = Checksum.getError())
1096         return EC;
1097       if (FProfile)
1098         FProfile->setFunctionHash(*Checksum);
1099     }
1100 
1101     if (ProfileHasAttribute) {
1102       auto Attributes = readNumber<uint32_t>();
1103       if (std::error_code EC = Attributes.getError())
1104         return EC;
1105       if (FProfile)
1106         FProfile->getContext().setAllAttributes(*Attributes);
1107     }
1108 
1109     if (!ProfileIsCSFlat) {
1110       // Read all the attributes for inlined function calls.
1111       auto NumCallsites = readNumber<uint32_t>();
1112       if (std::error_code EC = NumCallsites.getError())
1113         return EC;
1114 
1115       for (uint32_t J = 0; J < *NumCallsites; ++J) {
1116         auto LineOffset = readNumber<uint64_t>();
1117         if (std::error_code EC = LineOffset.getError())
1118           return EC;
1119 
1120         auto Discriminator = readNumber<uint64_t>();
1121         if (std::error_code EC = Discriminator.getError())
1122           return EC;
1123 
1124         auto FContext(readSampleContextFromTable());
1125         if (std::error_code EC = FContext.getError())
1126           return EC;
1127 
1128         FunctionSamples *CalleeProfile = nullptr;
1129         if (FProfile) {
1130           CalleeProfile = const_cast<FunctionSamples *>(
1131               &FProfile->functionSamplesAt(LineLocation(
1132                   *LineOffset,
1133                   *Discriminator))[std::string(FContext.get().getName())]);
1134         }
1135         if (std::error_code EC =
1136                 readFuncMetadata(ProfileHasAttribute, CalleeProfile))
1137           return EC;
1138       }
1139     }
1140   }
1141 
1142   return sampleprof_error::success;
1143 }
1144 
1145 std::error_code
1146 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) {
1147   while (Data < End) {
1148     auto FContext(readSampleContextFromTable());
1149     if (std::error_code EC = FContext.getError())
1150       return EC;
1151     FunctionSamples *FProfile = nullptr;
1152     auto It = Profiles.find(*FContext);
1153     if (It != Profiles.end())
1154       FProfile = &It->second;
1155 
1156     if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile))
1157       return EC;
1158   }
1159 
1160   assert(Data == End && "More data is read than expected");
1161   return sampleprof_error::success;
1162 }
1163 
1164 std::error_code SampleProfileReaderCompactBinary::readNameTable() {
1165   auto Size = readNumber<uint64_t>();
1166   if (std::error_code EC = Size.getError())
1167     return EC;
1168   NameTable.reserve(*Size);
1169   for (uint32_t I = 0; I < *Size; ++I) {
1170     auto FID = readNumber<uint64_t>();
1171     if (std::error_code EC = FID.getError())
1172       return EC;
1173     NameTable.push_back(std::to_string(*FID));
1174   }
1175   return sampleprof_error::success;
1176 }
1177 
1178 std::error_code
1179 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) {
1180   SecHdrTableEntry Entry;
1181   auto Type = readUnencodedNumber<uint64_t>();
1182   if (std::error_code EC = Type.getError())
1183     return EC;
1184   Entry.Type = static_cast<SecType>(*Type);
1185 
1186   auto Flags = readUnencodedNumber<uint64_t>();
1187   if (std::error_code EC = Flags.getError())
1188     return EC;
1189   Entry.Flags = *Flags;
1190 
1191   auto Offset = readUnencodedNumber<uint64_t>();
1192   if (std::error_code EC = Offset.getError())
1193     return EC;
1194   Entry.Offset = *Offset;
1195 
1196   auto Size = readUnencodedNumber<uint64_t>();
1197   if (std::error_code EC = Size.getError())
1198     return EC;
1199   Entry.Size = *Size;
1200 
1201   Entry.LayoutIndex = Idx;
1202   SecHdrTable.push_back(std::move(Entry));
1203   return sampleprof_error::success;
1204 }
1205 
1206 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
1207   auto EntryNum = readUnencodedNumber<uint64_t>();
1208   if (std::error_code EC = EntryNum.getError())
1209     return EC;
1210 
1211   for (uint32_t i = 0; i < (*EntryNum); i++)
1212     if (std::error_code EC = readSecHdrTableEntry(i))
1213       return EC;
1214 
1215   return sampleprof_error::success;
1216 }
1217 
1218 std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
1219   const uint8_t *BufStart =
1220       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1221   Data = BufStart;
1222   End = BufStart + Buffer->getBufferSize();
1223 
1224   if (std::error_code EC = readMagicIdent())
1225     return EC;
1226 
1227   if (std::error_code EC = readSecHdrTable())
1228     return EC;
1229 
1230   return sampleprof_error::success;
1231 }
1232 
1233 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
1234   uint64_t Size = 0;
1235   for (auto &Entry : SecHdrTable) {
1236     if (Entry.Type == Type)
1237       Size += Entry.Size;
1238   }
1239   return Size;
1240 }
1241 
1242 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
1243   // Sections in SecHdrTable is not necessarily in the same order as
1244   // sections in the profile because section like FuncOffsetTable needs
1245   // to be written after section LBRProfile but needs to be read before
1246   // section LBRProfile, so we cannot simply use the last entry in
1247   // SecHdrTable to calculate the file size.
1248   uint64_t FileSize = 0;
1249   for (auto &Entry : SecHdrTable) {
1250     FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
1251   }
1252   return FileSize;
1253 }
1254 
1255 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
1256   std::string Flags;
1257   if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
1258     Flags.append("{compressed,");
1259   else
1260     Flags.append("{");
1261 
1262   if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
1263     Flags.append("flat,");
1264 
1265   switch (Entry.Type) {
1266   case SecNameTable:
1267     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5))
1268       Flags.append("fixlenmd5,");
1269     else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
1270       Flags.append("md5,");
1271     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix))
1272       Flags.append("uniq,");
1273     break;
1274   case SecProfSummary:
1275     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
1276       Flags.append("partial,");
1277     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
1278       Flags.append("context,");
1279     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
1280       Flags.append("fs-discriminator,");
1281     break;
1282   case SecFuncOffsetTable:
1283     if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered))
1284       Flags.append("ordered,");
1285     break;
1286   case SecFuncMetadata:
1287     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased))
1288       Flags.append("probe,");
1289     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute))
1290       Flags.append("attr,");
1291     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsCSNested))
1292       Flags.append("preinlined,");
1293     break;
1294   default:
1295     break;
1296   }
1297   char &last = Flags.back();
1298   if (last == ',')
1299     last = '}';
1300   else
1301     Flags.append("}");
1302   return Flags;
1303 }
1304 
1305 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
1306   uint64_t TotalSecsSize = 0;
1307   for (auto &Entry : SecHdrTable) {
1308     OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
1309        << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
1310        << "\n";
1311     ;
1312     TotalSecsSize += Entry.Size;
1313   }
1314   uint64_t HeaderSize = SecHdrTable.front().Offset;
1315   assert(HeaderSize + TotalSecsSize == getFileSize() &&
1316          "Size of 'header + sections' doesn't match the total size of profile");
1317 
1318   OS << "Header Size: " << HeaderSize << "\n";
1319   OS << "Total Sections Size: " << TotalSecsSize << "\n";
1320   OS << "File Size: " << getFileSize() << "\n";
1321   return true;
1322 }
1323 
1324 std::error_code SampleProfileReaderBinary::readMagicIdent() {
1325   // Read and check the magic identifier.
1326   auto Magic = readNumber<uint64_t>();
1327   if (std::error_code EC = Magic.getError())
1328     return EC;
1329   else if (std::error_code EC = verifySPMagic(*Magic))
1330     return EC;
1331 
1332   // Read the version number.
1333   auto Version = readNumber<uint64_t>();
1334   if (std::error_code EC = Version.getError())
1335     return EC;
1336   else if (*Version != SPVersion())
1337     return sampleprof_error::unsupported_version;
1338 
1339   return sampleprof_error::success;
1340 }
1341 
1342 std::error_code SampleProfileReaderBinary::readHeader() {
1343   Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1344   End = Data + Buffer->getBufferSize();
1345 
1346   if (std::error_code EC = readMagicIdent())
1347     return EC;
1348 
1349   if (std::error_code EC = readSummary())
1350     return EC;
1351 
1352   if (std::error_code EC = readNameTable())
1353     return EC;
1354   return sampleprof_error::success;
1355 }
1356 
1357 std::error_code SampleProfileReaderCompactBinary::readHeader() {
1358   SampleProfileReaderBinary::readHeader();
1359   if (std::error_code EC = readFuncOffsetTable())
1360     return EC;
1361   return sampleprof_error::success;
1362 }
1363 
1364 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
1365   auto TableOffset = readUnencodedNumber<uint64_t>();
1366   if (std::error_code EC = TableOffset.getError())
1367     return EC;
1368 
1369   const uint8_t *SavedData = Data;
1370   const uint8_t *TableStart =
1371       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
1372       *TableOffset;
1373   Data = TableStart;
1374 
1375   auto Size = readNumber<uint64_t>();
1376   if (std::error_code EC = Size.getError())
1377     return EC;
1378 
1379   FuncOffsetTable.reserve(*Size);
1380   for (uint32_t I = 0; I < *Size; ++I) {
1381     auto FName(readStringFromTable());
1382     if (std::error_code EC = FName.getError())
1383       return EC;
1384 
1385     auto Offset = readNumber<uint64_t>();
1386     if (std::error_code EC = Offset.getError())
1387       return EC;
1388 
1389     FuncOffsetTable[*FName] = *Offset;
1390   }
1391   End = TableStart;
1392   Data = SavedData;
1393   return sampleprof_error::success;
1394 }
1395 
1396 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() {
1397   if (!M)
1398     return false;
1399   FuncsToUse.clear();
1400   for (auto &F : *M)
1401     FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
1402   return true;
1403 }
1404 
1405 std::error_code SampleProfileReaderBinary::readSummaryEntry(
1406     std::vector<ProfileSummaryEntry> &Entries) {
1407   auto Cutoff = readNumber<uint64_t>();
1408   if (std::error_code EC = Cutoff.getError())
1409     return EC;
1410 
1411   auto MinBlockCount = readNumber<uint64_t>();
1412   if (std::error_code EC = MinBlockCount.getError())
1413     return EC;
1414 
1415   auto NumBlocks = readNumber<uint64_t>();
1416   if (std::error_code EC = NumBlocks.getError())
1417     return EC;
1418 
1419   Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
1420   return sampleprof_error::success;
1421 }
1422 
1423 std::error_code SampleProfileReaderBinary::readSummary() {
1424   auto TotalCount = readNumber<uint64_t>();
1425   if (std::error_code EC = TotalCount.getError())
1426     return EC;
1427 
1428   auto MaxBlockCount = readNumber<uint64_t>();
1429   if (std::error_code EC = MaxBlockCount.getError())
1430     return EC;
1431 
1432   auto MaxFunctionCount = readNumber<uint64_t>();
1433   if (std::error_code EC = MaxFunctionCount.getError())
1434     return EC;
1435 
1436   auto NumBlocks = readNumber<uint64_t>();
1437   if (std::error_code EC = NumBlocks.getError())
1438     return EC;
1439 
1440   auto NumFunctions = readNumber<uint64_t>();
1441   if (std::error_code EC = NumFunctions.getError())
1442     return EC;
1443 
1444   auto NumSummaryEntries = readNumber<uint64_t>();
1445   if (std::error_code EC = NumSummaryEntries.getError())
1446     return EC;
1447 
1448   std::vector<ProfileSummaryEntry> Entries;
1449   for (unsigned i = 0; i < *NumSummaryEntries; i++) {
1450     std::error_code EC = readSummaryEntry(Entries);
1451     if (EC != sampleprof_error::success)
1452       return EC;
1453   }
1454   Summary = std::make_unique<ProfileSummary>(
1455       ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
1456       *MaxFunctionCount, *NumBlocks, *NumFunctions);
1457 
1458   return sampleprof_error::success;
1459 }
1460 
1461 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
1462   const uint8_t *Data =
1463       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1464   uint64_t Magic = decodeULEB128(Data);
1465   return Magic == SPMagic();
1466 }
1467 
1468 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
1469   const uint8_t *Data =
1470       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1471   uint64_t Magic = decodeULEB128(Data);
1472   return Magic == SPMagic(SPF_Ext_Binary);
1473 }
1474 
1475 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
1476   const uint8_t *Data =
1477       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1478   uint64_t Magic = decodeULEB128(Data);
1479   return Magic == SPMagic(SPF_Compact_Binary);
1480 }
1481 
1482 std::error_code SampleProfileReaderGCC::skipNextWord() {
1483   uint32_t dummy;
1484   if (!GcovBuffer.readInt(dummy))
1485     return sampleprof_error::truncated;
1486   return sampleprof_error::success;
1487 }
1488 
1489 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
1490   if (sizeof(T) <= sizeof(uint32_t)) {
1491     uint32_t Val;
1492     if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
1493       return static_cast<T>(Val);
1494   } else if (sizeof(T) <= sizeof(uint64_t)) {
1495     uint64_t Val;
1496     if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
1497       return static_cast<T>(Val);
1498   }
1499 
1500   std::error_code EC = sampleprof_error::malformed;
1501   reportError(0, EC.message());
1502   return EC;
1503 }
1504 
1505 ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
1506   StringRef Str;
1507   if (!GcovBuffer.readString(Str))
1508     return sampleprof_error::truncated;
1509   return Str;
1510 }
1511 
1512 std::error_code SampleProfileReaderGCC::readHeader() {
1513   // Read the magic identifier.
1514   if (!GcovBuffer.readGCDAFormat())
1515     return sampleprof_error::unrecognized_format;
1516 
1517   // Read the version number. Note - the GCC reader does not validate this
1518   // version, but the profile creator generates v704.
1519   GCOV::GCOVVersion version;
1520   if (!GcovBuffer.readGCOVVersion(version))
1521     return sampleprof_error::unrecognized_format;
1522 
1523   if (version != GCOV::V407)
1524     return sampleprof_error::unsupported_version;
1525 
1526   // Skip the empty integer.
1527   if (std::error_code EC = skipNextWord())
1528     return EC;
1529 
1530   return sampleprof_error::success;
1531 }
1532 
1533 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
1534   uint32_t Tag;
1535   if (!GcovBuffer.readInt(Tag))
1536     return sampleprof_error::truncated;
1537 
1538   if (Tag != Expected)
1539     return sampleprof_error::malformed;
1540 
1541   if (std::error_code EC = skipNextWord())
1542     return EC;
1543 
1544   return sampleprof_error::success;
1545 }
1546 
1547 std::error_code SampleProfileReaderGCC::readNameTable() {
1548   if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
1549     return EC;
1550 
1551   uint32_t Size;
1552   if (!GcovBuffer.readInt(Size))
1553     return sampleprof_error::truncated;
1554 
1555   for (uint32_t I = 0; I < Size; ++I) {
1556     StringRef Str;
1557     if (!GcovBuffer.readString(Str))
1558       return sampleprof_error::truncated;
1559     Names.push_back(std::string(Str));
1560   }
1561 
1562   return sampleprof_error::success;
1563 }
1564 
1565 std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
1566   if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
1567     return EC;
1568 
1569   uint32_t NumFunctions;
1570   if (!GcovBuffer.readInt(NumFunctions))
1571     return sampleprof_error::truncated;
1572 
1573   InlineCallStack Stack;
1574   for (uint32_t I = 0; I < NumFunctions; ++I)
1575     if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
1576       return EC;
1577 
1578   computeSummary();
1579   return sampleprof_error::success;
1580 }
1581 
1582 std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
1583     const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
1584   uint64_t HeadCount = 0;
1585   if (InlineStack.size() == 0)
1586     if (!GcovBuffer.readInt64(HeadCount))
1587       return sampleprof_error::truncated;
1588 
1589   uint32_t NameIdx;
1590   if (!GcovBuffer.readInt(NameIdx))
1591     return sampleprof_error::truncated;
1592 
1593   StringRef Name(Names[NameIdx]);
1594 
1595   uint32_t NumPosCounts;
1596   if (!GcovBuffer.readInt(NumPosCounts))
1597     return sampleprof_error::truncated;
1598 
1599   uint32_t NumCallsites;
1600   if (!GcovBuffer.readInt(NumCallsites))
1601     return sampleprof_error::truncated;
1602 
1603   FunctionSamples *FProfile = nullptr;
1604   if (InlineStack.size() == 0) {
1605     // If this is a top function that we have already processed, do not
1606     // update its profile again.  This happens in the presence of
1607     // function aliases.  Since these aliases share the same function
1608     // body, there will be identical replicated profiles for the
1609     // original function.  In this case, we simply not bother updating
1610     // the profile of the original function.
1611     FProfile = &Profiles[Name];
1612     FProfile->addHeadSamples(HeadCount);
1613     if (FProfile->getTotalSamples() > 0)
1614       Update = false;
1615   } else {
1616     // Otherwise, we are reading an inlined instance. The top of the
1617     // inline stack contains the profile of the caller. Insert this
1618     // callee in the caller's CallsiteMap.
1619     FunctionSamples *CallerProfile = InlineStack.front();
1620     uint32_t LineOffset = Offset >> 16;
1621     uint32_t Discriminator = Offset & 0xffff;
1622     FProfile = &CallerProfile->functionSamplesAt(
1623         LineLocation(LineOffset, Discriminator))[std::string(Name)];
1624   }
1625   FProfile->setName(Name);
1626 
1627   for (uint32_t I = 0; I < NumPosCounts; ++I) {
1628     uint32_t Offset;
1629     if (!GcovBuffer.readInt(Offset))
1630       return sampleprof_error::truncated;
1631 
1632     uint32_t NumTargets;
1633     if (!GcovBuffer.readInt(NumTargets))
1634       return sampleprof_error::truncated;
1635 
1636     uint64_t Count;
1637     if (!GcovBuffer.readInt64(Count))
1638       return sampleprof_error::truncated;
1639 
1640     // The line location is encoded in the offset as:
1641     //   high 16 bits: line offset to the start of the function.
1642     //   low 16 bits: discriminator.
1643     uint32_t LineOffset = Offset >> 16;
1644     uint32_t Discriminator = Offset & 0xffff;
1645 
1646     InlineCallStack NewStack;
1647     NewStack.push_back(FProfile);
1648     llvm::append_range(NewStack, InlineStack);
1649     if (Update) {
1650       // Walk up the inline stack, adding the samples on this line to
1651       // the total sample count of the callers in the chain.
1652       for (auto CallerProfile : NewStack)
1653         CallerProfile->addTotalSamples(Count);
1654 
1655       // Update the body samples for the current profile.
1656       FProfile->addBodySamples(LineOffset, Discriminator, Count);
1657     }
1658 
1659     // Process the list of functions called at an indirect call site.
1660     // These are all the targets that a function pointer (or virtual
1661     // function) resolved at runtime.
1662     for (uint32_t J = 0; J < NumTargets; J++) {
1663       uint32_t HistVal;
1664       if (!GcovBuffer.readInt(HistVal))
1665         return sampleprof_error::truncated;
1666 
1667       if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
1668         return sampleprof_error::malformed;
1669 
1670       uint64_t TargetIdx;
1671       if (!GcovBuffer.readInt64(TargetIdx))
1672         return sampleprof_error::truncated;
1673       StringRef TargetName(Names[TargetIdx]);
1674 
1675       uint64_t TargetCount;
1676       if (!GcovBuffer.readInt64(TargetCount))
1677         return sampleprof_error::truncated;
1678 
1679       if (Update)
1680         FProfile->addCalledTargetSamples(LineOffset, Discriminator,
1681                                          TargetName, TargetCount);
1682     }
1683   }
1684 
1685   // Process all the inlined callers into the current function. These
1686   // are all the callsites that were inlined into this function.
1687   for (uint32_t I = 0; I < NumCallsites; I++) {
1688     // The offset is encoded as:
1689     //   high 16 bits: line offset to the start of the function.
1690     //   low 16 bits: discriminator.
1691     uint32_t Offset;
1692     if (!GcovBuffer.readInt(Offset))
1693       return sampleprof_error::truncated;
1694     InlineCallStack NewStack;
1695     NewStack.push_back(FProfile);
1696     llvm::append_range(NewStack, InlineStack);
1697     if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
1698       return EC;
1699   }
1700 
1701   return sampleprof_error::success;
1702 }
1703 
1704 /// Read a GCC AutoFDO profile.
1705 ///
1706 /// This format is generated by the Linux Perf conversion tool at
1707 /// https://github.com/google/autofdo.
1708 std::error_code SampleProfileReaderGCC::readImpl() {
1709   assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator");
1710   // Read the string table.
1711   if (std::error_code EC = readNameTable())
1712     return EC;
1713 
1714   // Read the source profile.
1715   if (std::error_code EC = readFunctionProfiles())
1716     return EC;
1717 
1718   return sampleprof_error::success;
1719 }
1720 
1721 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
1722   StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
1723   return Magic == "adcg*704";
1724 }
1725 
1726 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
1727   // If the reader uses MD5 to represent string, we can't remap it because
1728   // we don't know what the original function names were.
1729   if (Reader.useMD5()) {
1730     Ctx.diagnose(DiagnosticInfoSampleProfile(
1731         Reader.getBuffer()->getBufferIdentifier(),
1732         "Profile data remapping cannot be applied to profile data "
1733         "in compact format (original mangled names are not available).",
1734         DS_Warning));
1735     return;
1736   }
1737 
1738   // CSSPGO-TODO: Remapper is not yet supported.
1739   // We will need to remap the entire context string.
1740   assert(Remappings && "should be initialized while creating remapper");
1741   for (auto &Sample : Reader.getProfiles()) {
1742     DenseSet<StringRef> NamesInSample;
1743     Sample.second.findAllNames(NamesInSample);
1744     for (auto &Name : NamesInSample)
1745       if (auto Key = Remappings->insert(Name))
1746         NameMap.insert({Key, Name});
1747   }
1748 
1749   RemappingApplied = true;
1750 }
1751 
1752 Optional<StringRef>
1753 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
1754   if (auto Key = Remappings->lookup(Fname))
1755     return NameMap.lookup(Key);
1756   return None;
1757 }
1758 
1759 /// Prepare a memory buffer for the contents of \p Filename.
1760 ///
1761 /// \returns an error code indicating the status of the buffer.
1762 static ErrorOr<std::unique_ptr<MemoryBuffer>>
1763 setupMemoryBuffer(const Twine &Filename) {
1764   auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true);
1765   if (std::error_code EC = BufferOrErr.getError())
1766     return EC;
1767   auto Buffer = std::move(BufferOrErr.get());
1768 
1769   // Check the file.
1770   if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max())
1771     return sampleprof_error::too_large;
1772 
1773   return std::move(Buffer);
1774 }
1775 
1776 /// Create a sample profile reader based on the format of the input file.
1777 ///
1778 /// \param Filename The file to open.
1779 ///
1780 /// \param C The LLVM context to use to emit diagnostics.
1781 ///
1782 /// \param P The FSDiscriminatorPass.
1783 ///
1784 /// \param RemapFilename The file used for profile remapping.
1785 ///
1786 /// \returns an error code indicating the status of the created reader.
1787 ErrorOr<std::unique_ptr<SampleProfileReader>>
1788 SampleProfileReader::create(const std::string Filename, LLVMContext &C,
1789                             FSDiscriminatorPass P,
1790                             const std::string RemapFilename) {
1791   auto BufferOrError = setupMemoryBuffer(Filename);
1792   if (std::error_code EC = BufferOrError.getError())
1793     return EC;
1794   return create(BufferOrError.get(), C, P, RemapFilename);
1795 }
1796 
1797 /// Create a sample profile remapper from the given input, to remap the
1798 /// function names in the given profile data.
1799 ///
1800 /// \param Filename The file to open.
1801 ///
1802 /// \param Reader The profile reader the remapper is going to be applied to.
1803 ///
1804 /// \param C The LLVM context to use to emit diagnostics.
1805 ///
1806 /// \returns an error code indicating the status of the created reader.
1807 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1808 SampleProfileReaderItaniumRemapper::create(const std::string Filename,
1809                                            SampleProfileReader &Reader,
1810                                            LLVMContext &C) {
1811   auto BufferOrError = setupMemoryBuffer(Filename);
1812   if (std::error_code EC = BufferOrError.getError())
1813     return EC;
1814   return create(BufferOrError.get(), Reader, C);
1815 }
1816 
1817 /// Create a sample profile remapper from the given input, to remap the
1818 /// function names in the given profile data.
1819 ///
1820 /// \param B The memory buffer to create the reader from (assumes ownership).
1821 ///
1822 /// \param C The LLVM context to use to emit diagnostics.
1823 ///
1824 /// \param Reader The profile reader the remapper is going to be applied to.
1825 ///
1826 /// \returns an error code indicating the status of the created reader.
1827 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1828 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
1829                                            SampleProfileReader &Reader,
1830                                            LLVMContext &C) {
1831   auto Remappings = std::make_unique<SymbolRemappingReader>();
1832   if (Error E = Remappings->read(*B.get())) {
1833     handleAllErrors(
1834         std::move(E), [&](const SymbolRemappingParseError &ParseError) {
1835           C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
1836                                                  ParseError.getLineNum(),
1837                                                  ParseError.getMessage()));
1838         });
1839     return sampleprof_error::malformed;
1840   }
1841 
1842   return std::make_unique<SampleProfileReaderItaniumRemapper>(
1843       std::move(B), std::move(Remappings), Reader);
1844 }
1845 
1846 /// Create a sample profile reader based on the format of the input data.
1847 ///
1848 /// \param B The memory buffer to create the reader from (assumes ownership).
1849 ///
1850 /// \param C The LLVM context to use to emit diagnostics.
1851 ///
1852 /// \param P The FSDiscriminatorPass.
1853 ///
1854 /// \param RemapFilename The file used for profile remapping.
1855 ///
1856 /// \returns an error code indicating the status of the created reader.
1857 ErrorOr<std::unique_ptr<SampleProfileReader>>
1858 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
1859                             FSDiscriminatorPass P,
1860                             const std::string RemapFilename) {
1861   std::unique_ptr<SampleProfileReader> Reader;
1862   if (SampleProfileReaderRawBinary::hasFormat(*B))
1863     Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
1864   else if (SampleProfileReaderExtBinary::hasFormat(*B))
1865     Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
1866   else if (SampleProfileReaderCompactBinary::hasFormat(*B))
1867     Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
1868   else if (SampleProfileReaderGCC::hasFormat(*B))
1869     Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
1870   else if (SampleProfileReaderText::hasFormat(*B))
1871     Reader.reset(new SampleProfileReaderText(std::move(B), C));
1872   else
1873     return sampleprof_error::unrecognized_format;
1874 
1875   if (!RemapFilename.empty()) {
1876     auto ReaderOrErr =
1877         SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C);
1878     if (std::error_code EC = ReaderOrErr.getError()) {
1879       std::string Msg = "Could not create remapper: " + EC.message();
1880       C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
1881       return EC;
1882     }
1883     Reader->Remapper = std::move(ReaderOrErr.get());
1884   }
1885 
1886   FunctionSamples::Format = Reader->getFormat();
1887   if (std::error_code EC = Reader->readHeader()) {
1888     return EC;
1889   }
1890 
1891   Reader->setDiscriminatorMaskedBitFrom(P);
1892 
1893   return std::move(Reader);
1894 }
1895 
1896 // For text and GCC file formats, we compute the summary after reading the
1897 // profile. Binary format has the profile summary in its header.
1898 void SampleProfileReader::computeSummary() {
1899   SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1900   Summary = Builder.computeSummaryForProfiles(Profiles);
1901 }
1902