1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Config/config.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/ProfileData/InstrProfReader.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Compression.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/LEB128.h" 42 #include "llvm/Support/ManagedStatic.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/SwapByteOrder.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <cstring> 51 #include <memory> 52 #include <string> 53 #include <system_error> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 static cl::opt<bool> StaticFuncFullModulePrefix( 60 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 61 cl::desc("Use full module build paths in the profile counter names for " 62 "static functions.")); 63 64 // This option is tailored to users that have different top-level directory in 65 // profile-gen and profile-use compilation. Users need to specific the number 66 // of levels to strip. A value larger than the number of directories in the 67 // source file will strip all the directory names and only leave the basename. 68 // 69 // Note current ThinLTO module importing for the indirect-calls assumes 70 // the source directory name not being stripped. A non-zero option value here 71 // can potentially prevent some inter-module indirect-call-promotions. 72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 74 cl::desc("Strip specified level of directory name from source path in " 75 "the profile counter name for static functions.")); 76 77 static std::string getInstrProfErrString(instrprof_error Err, 78 const std::string &ErrMsg = "") { 79 std::string Msg; 80 raw_string_ostream OS(Msg); 81 82 switch (Err) { 83 case instrprof_error::success: 84 OS << "success"; 85 break; 86 case instrprof_error::eof: 87 OS << "end of File"; 88 break; 89 case instrprof_error::unrecognized_format: 90 OS << "unrecognized instrumentation profile encoding format"; 91 break; 92 case instrprof_error::bad_magic: 93 OS << "invalid instrumentation profile data (bad magic)"; 94 break; 95 case instrprof_error::bad_header: 96 OS << "invalid instrumentation profile data (file header is corrupt)"; 97 break; 98 case instrprof_error::unsupported_version: 99 OS << "unsupported instrumentation profile format version"; 100 break; 101 case instrprof_error::unsupported_hash_type: 102 OS << "unsupported instrumentation profile hash type"; 103 break; 104 case instrprof_error::too_large: 105 OS << "too much profile data"; 106 break; 107 case instrprof_error::truncated: 108 OS << "truncated profile data"; 109 break; 110 case instrprof_error::malformed: 111 OS << "malformed instrumentation profile data"; 112 break; 113 case instrprof_error::invalid_prof: 114 OS << "invalid profile created. Please file a bug " 115 "at: " BUG_REPORT_URL 116 " and include the profraw files that caused this error."; 117 break; 118 case instrprof_error::unknown_function: 119 OS << "no profile data available for function"; 120 break; 121 case instrprof_error::hash_mismatch: 122 OS << "function control flow change detected (hash mismatch)"; 123 break; 124 case instrprof_error::count_mismatch: 125 OS << "function basic block count change detected (counter mismatch)"; 126 break; 127 case instrprof_error::counter_overflow: 128 OS << "counter overflow"; 129 break; 130 case instrprof_error::value_site_count_mismatch: 131 OS << "function value site count change detected (counter mismatch)"; 132 break; 133 case instrprof_error::compress_failed: 134 OS << "failed to compress data (zlib)"; 135 break; 136 case instrprof_error::uncompress_failed: 137 OS << "failed to uncompress data (zlib)"; 138 break; 139 case instrprof_error::empty_raw_profile: 140 OS << "empty raw profile file"; 141 break; 142 case instrprof_error::zlib_unavailable: 143 OS << "profile uses zlib compression but the profile reader was built " 144 "without zlib support"; 145 break; 146 } 147 148 // If optional error message is not empty, append it to the message. 149 if (!ErrMsg.empty()) 150 OS << ": " << ErrMsg; 151 152 return OS.str(); 153 } 154 155 namespace { 156 157 // FIXME: This class is only here to support the transition to llvm::Error. It 158 // will be removed once this transition is complete. Clients should prefer to 159 // deal with the Error value directly, rather than converting to error_code. 160 class InstrProfErrorCategoryType : public std::error_category { 161 const char *name() const noexcept override { return "llvm.instrprof"; } 162 163 std::string message(int IE) const override { 164 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 165 } 166 }; 167 168 } // end anonymous namespace 169 170 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 171 172 const std::error_category &llvm::instrprof_category() { 173 return *ErrorCategory; 174 } 175 176 namespace { 177 178 const char *InstrProfSectNameCommon[] = { 179 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 180 SectNameCommon, 181 #include "llvm/ProfileData/InstrProfData.inc" 182 }; 183 184 const char *InstrProfSectNameCoff[] = { 185 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 186 SectNameCoff, 187 #include "llvm/ProfileData/InstrProfData.inc" 188 }; 189 190 const char *InstrProfSectNamePrefix[] = { 191 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 192 Prefix, 193 #include "llvm/ProfileData/InstrProfData.inc" 194 }; 195 196 } // namespace 197 198 namespace llvm { 199 200 cl::opt<bool> DoInstrProfNameCompression( 201 "enable-name-compression", 202 cl::desc("Enable name/filename string compression"), cl::init(true)); 203 204 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 205 Triple::ObjectFormatType OF, 206 bool AddSegmentInfo) { 207 std::string SectName; 208 209 if (OF == Triple::MachO && AddSegmentInfo) 210 SectName = InstrProfSectNamePrefix[IPSK]; 211 212 if (OF == Triple::COFF) 213 SectName += InstrProfSectNameCoff[IPSK]; 214 else 215 SectName += InstrProfSectNameCommon[IPSK]; 216 217 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 218 SectName += ",regular,live_support"; 219 220 return SectName; 221 } 222 223 void SoftInstrProfErrors::addError(instrprof_error IE) { 224 if (IE == instrprof_error::success) 225 return; 226 227 if (FirstError == instrprof_error::success) 228 FirstError = IE; 229 230 switch (IE) { 231 case instrprof_error::hash_mismatch: 232 ++NumHashMismatches; 233 break; 234 case instrprof_error::count_mismatch: 235 ++NumCountMismatches; 236 break; 237 case instrprof_error::counter_overflow: 238 ++NumCounterOverflows; 239 break; 240 case instrprof_error::value_site_count_mismatch: 241 ++NumValueSiteCountMismatches; 242 break; 243 default: 244 llvm_unreachable("Not a soft error"); 245 } 246 } 247 248 std::string InstrProfError::message() const { 249 return getInstrProfErrString(Err, Msg); 250 } 251 252 char InstrProfError::ID = 0; 253 254 std::string getPGOFuncName(StringRef RawFuncName, 255 GlobalValue::LinkageTypes Linkage, 256 StringRef FileName, 257 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 258 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 259 } 260 261 // Strip NumPrefix level of directory name from PathNameStr. If the number of 262 // directory separators is less than NumPrefix, strip all the directories and 263 // leave base file name only. 264 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 265 uint32_t Count = NumPrefix; 266 uint32_t Pos = 0, LastPos = 0; 267 for (auto & CI : PathNameStr) { 268 ++Pos; 269 if (llvm::sys::path::is_separator(CI)) { 270 LastPos = Pos; 271 --Count; 272 } 273 if (Count == 0) 274 break; 275 } 276 return PathNameStr.substr(LastPos); 277 } 278 279 // Return the PGOFuncName. This function has some special handling when called 280 // in LTO optimization. The following only applies when calling in LTO passes 281 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 282 // symbols. This happens after value profile annotation, but those internal 283 // linkage functions should not have a source prefix. 284 // Additionally, for ThinLTO mode, exported internal functions are promoted 285 // and renamed. We need to ensure that the original internal PGO name is 286 // used when computing the GUID that is compared against the profiled GUIDs. 287 // To differentiate compiler generated internal symbols from original ones, 288 // PGOFuncName meta data are created and attached to the original internal 289 // symbols in the value profile annotation step 290 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 291 // data, its original linkage must be non-internal. 292 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 293 if (!InLTO) { 294 StringRef FileName(F.getParent()->getSourceFileName()); 295 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 296 if (StripLevel < StaticFuncStripDirNamePrefix) 297 StripLevel = StaticFuncStripDirNamePrefix; 298 if (StripLevel) 299 FileName = stripDirPrefix(FileName, StripLevel); 300 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 301 } 302 303 // In LTO mode (when InLTO is true), first check if there is a meta data. 304 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 305 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 306 return S.str(); 307 } 308 309 // If there is no meta data, the function must be a global before the value 310 // profile annotation pass. Its current linkage may be internal if it is 311 // internalized in LTO mode. 312 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 313 } 314 315 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 316 if (FileName.empty()) 317 return PGOFuncName; 318 // Drop the file name including ':'. See also getPGOFuncName. 319 if (PGOFuncName.startswith(FileName)) 320 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 321 return PGOFuncName; 322 } 323 324 // \p FuncName is the string used as profile lookup key for the function. A 325 // symbol is created to hold the name. Return the legalized symbol name. 326 std::string getPGOFuncNameVarName(StringRef FuncName, 327 GlobalValue::LinkageTypes Linkage) { 328 std::string VarName = std::string(getInstrProfNameVarPrefix()); 329 VarName += FuncName; 330 331 if (!GlobalValue::isLocalLinkage(Linkage)) 332 return VarName; 333 334 // Now fix up illegal chars in local VarName that may upset the assembler. 335 const char *InvalidChars = "-:<>/\"'"; 336 size_t found = VarName.find_first_of(InvalidChars); 337 while (found != std::string::npos) { 338 VarName[found] = '_'; 339 found = VarName.find_first_of(InvalidChars, found + 1); 340 } 341 return VarName; 342 } 343 344 GlobalVariable *createPGOFuncNameVar(Module &M, 345 GlobalValue::LinkageTypes Linkage, 346 StringRef PGOFuncName) { 347 // We generally want to match the function's linkage, but available_externally 348 // and extern_weak both have the wrong semantics, and anything that doesn't 349 // need to link across compilation units doesn't need to be visible at all. 350 if (Linkage == GlobalValue::ExternalWeakLinkage) 351 Linkage = GlobalValue::LinkOnceAnyLinkage; 352 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 353 Linkage = GlobalValue::LinkOnceODRLinkage; 354 else if (Linkage == GlobalValue::InternalLinkage || 355 Linkage == GlobalValue::ExternalLinkage) 356 Linkage = GlobalValue::PrivateLinkage; 357 358 auto *Value = 359 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 360 auto FuncNameVar = 361 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 362 getPGOFuncNameVarName(PGOFuncName, Linkage)); 363 364 // Hide the symbol so that we correctly get a copy for each executable. 365 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 366 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 367 368 return FuncNameVar; 369 } 370 371 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 372 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 373 } 374 375 Error InstrProfSymtab::create(Module &M, bool InLTO) { 376 for (Function &F : M) { 377 // Function may not have a name: like using asm("") to overwrite the name. 378 // Ignore in this case. 379 if (!F.hasName()) 380 continue; 381 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 382 if (Error E = addFuncName(PGOFuncName)) 383 return E; 384 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 385 // In ThinLTO, local function may have been promoted to global and have 386 // suffix ".llvm." added to the function name. We need to add the 387 // stripped function name to the symbol table so that we can find a match 388 // from profile. 389 // 390 // We may have other suffixes similar as ".llvm." which are needed to 391 // be stripped before the matching, but ".__uniq." suffix which is used 392 // to differentiate internal linkage functions in different modules 393 // should be kept. Now this is the only suffix with the pattern ".xxx" 394 // which is kept before matching. 395 const std::string UniqSuffix = ".__uniq."; 396 auto pos = PGOFuncName.find(UniqSuffix); 397 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise 398 // search '.' from the beginning. 399 if (pos != std::string::npos) 400 pos += UniqSuffix.length(); 401 else 402 pos = 0; 403 pos = PGOFuncName.find('.', pos); 404 if (pos != std::string::npos && pos != 0) { 405 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 406 if (Error E = addFuncName(OtherFuncName)) 407 return E; 408 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 409 } 410 } 411 Sorted = false; 412 finalizeSymtab(); 413 return Error::success(); 414 } 415 416 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 417 finalizeSymtab(); 418 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 419 return A.first < Address; 420 }); 421 // Raw function pointer collected by value profiler may be from 422 // external functions that are not instrumented. They won't have 423 // mapping data to be used by the deserializer. Force the value to 424 // be 0 in this case. 425 if (It != AddrToMD5Map.end() && It->first == Address) 426 return (uint64_t)It->second; 427 return 0; 428 } 429 430 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 431 bool doCompression, std::string &Result) { 432 assert(!NameStrs.empty() && "No name data to emit"); 433 434 uint8_t Header[16], *P = Header; 435 std::string UncompressedNameStrings = 436 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 437 438 assert(StringRef(UncompressedNameStrings) 439 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 440 "PGO name is invalid (contains separator token)"); 441 442 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 443 P += EncLen; 444 445 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 446 EncLen = encodeULEB128(CompressedLen, P); 447 P += EncLen; 448 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 449 unsigned HeaderLen = P - &Header[0]; 450 Result.append(HeaderStr, HeaderLen); 451 Result += InputStr; 452 return Error::success(); 453 }; 454 455 if (!doCompression) { 456 return WriteStringToResult(0, UncompressedNameStrings); 457 } 458 459 SmallString<128> CompressedNameStrings; 460 Error E = zlib::compress(StringRef(UncompressedNameStrings), 461 CompressedNameStrings, zlib::BestSizeCompression); 462 if (E) { 463 consumeError(std::move(E)); 464 return make_error<InstrProfError>(instrprof_error::compress_failed); 465 } 466 467 return WriteStringToResult(CompressedNameStrings.size(), 468 CompressedNameStrings); 469 } 470 471 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 472 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 473 StringRef NameStr = 474 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 475 return NameStr; 476 } 477 478 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 479 std::string &Result, bool doCompression) { 480 std::vector<std::string> NameStrs; 481 for (auto *NameVar : NameVars) { 482 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 483 } 484 return collectPGOFuncNameStrings( 485 NameStrs, zlib::isAvailable() && doCompression, Result); 486 } 487 488 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 489 const uint8_t *P = NameStrings.bytes_begin(); 490 const uint8_t *EndP = NameStrings.bytes_end(); 491 while (P < EndP) { 492 uint32_t N; 493 uint64_t UncompressedSize = decodeULEB128(P, &N); 494 P += N; 495 uint64_t CompressedSize = decodeULEB128(P, &N); 496 P += N; 497 bool isCompressed = (CompressedSize != 0); 498 SmallString<128> UncompressedNameStrings; 499 StringRef NameStrings; 500 if (isCompressed) { 501 if (!llvm::zlib::isAvailable()) 502 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 503 504 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 505 CompressedSize); 506 if (Error E = 507 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 508 UncompressedSize)) { 509 consumeError(std::move(E)); 510 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 511 } 512 P += CompressedSize; 513 NameStrings = StringRef(UncompressedNameStrings.data(), 514 UncompressedNameStrings.size()); 515 } else { 516 NameStrings = 517 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 518 P += UncompressedSize; 519 } 520 // Now parse the name strings. 521 SmallVector<StringRef, 0> Names; 522 NameStrings.split(Names, getInstrProfNameSeparator()); 523 for (StringRef &Name : Names) 524 if (Error E = Symtab.addFuncName(Name)) 525 return E; 526 527 while (P < EndP && *P == 0) 528 P++; 529 } 530 return Error::success(); 531 } 532 533 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 534 uint64_t FuncSum = 0; 535 Sum.NumEntries += Counts.size(); 536 for (size_t F = 0, E = Counts.size(); F < E; ++F) 537 FuncSum += Counts[F]; 538 Sum.CountSum += FuncSum; 539 540 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 541 uint64_t KindSum = 0; 542 uint32_t NumValueSites = getNumValueSites(VK); 543 for (size_t I = 0; I < NumValueSites; ++I) { 544 uint32_t NV = getNumValueDataForSite(VK, I); 545 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 546 for (uint32_t V = 0; V < NV; V++) 547 KindSum += VD[V].Count; 548 } 549 Sum.ValueCounts[VK] += KindSum; 550 } 551 } 552 553 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 554 uint32_t ValueKind, 555 OverlapStats &Overlap, 556 OverlapStats &FuncLevelOverlap) { 557 this->sortByTargetValues(); 558 Input.sortByTargetValues(); 559 double Score = 0.0f, FuncLevelScore = 0.0f; 560 auto I = ValueData.begin(); 561 auto IE = ValueData.end(); 562 auto J = Input.ValueData.begin(); 563 auto JE = Input.ValueData.end(); 564 while (I != IE && J != JE) { 565 if (I->Value == J->Value) { 566 Score += OverlapStats::score(I->Count, J->Count, 567 Overlap.Base.ValueCounts[ValueKind], 568 Overlap.Test.ValueCounts[ValueKind]); 569 FuncLevelScore += OverlapStats::score( 570 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 571 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 572 ++I; 573 } else if (I->Value < J->Value) { 574 ++I; 575 continue; 576 } 577 ++J; 578 } 579 Overlap.Overlap.ValueCounts[ValueKind] += Score; 580 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 581 } 582 583 // Return false on mismatch. 584 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 585 InstrProfRecord &Other, 586 OverlapStats &Overlap, 587 OverlapStats &FuncLevelOverlap) { 588 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 589 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 590 if (!ThisNumValueSites) 591 return; 592 593 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 594 getOrCreateValueSitesForKind(ValueKind); 595 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 596 Other.getValueSitesForKind(ValueKind); 597 for (uint32_t I = 0; I < ThisNumValueSites; I++) 598 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 599 FuncLevelOverlap); 600 } 601 602 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 603 OverlapStats &FuncLevelOverlap, 604 uint64_t ValueCutoff) { 605 // FuncLevel CountSum for other should already computed and nonzero. 606 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 607 accumulateCounts(FuncLevelOverlap.Base); 608 bool Mismatch = (Counts.size() != Other.Counts.size()); 609 610 // Check if the value profiles mismatch. 611 if (!Mismatch) { 612 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 613 uint32_t ThisNumValueSites = getNumValueSites(Kind); 614 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 615 if (ThisNumValueSites != OtherNumValueSites) { 616 Mismatch = true; 617 break; 618 } 619 } 620 } 621 if (Mismatch) { 622 Overlap.addOneMismatch(FuncLevelOverlap.Test); 623 return; 624 } 625 626 // Compute overlap for value counts. 627 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 628 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 629 630 double Score = 0.0; 631 uint64_t MaxCount = 0; 632 // Compute overlap for edge counts. 633 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 634 Score += OverlapStats::score(Counts[I], Other.Counts[I], 635 Overlap.Base.CountSum, Overlap.Test.CountSum); 636 MaxCount = std::max(Other.Counts[I], MaxCount); 637 } 638 Overlap.Overlap.CountSum += Score; 639 Overlap.Overlap.NumEntries += 1; 640 641 if (MaxCount >= ValueCutoff) { 642 double FuncScore = 0.0; 643 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 644 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 645 FuncLevelOverlap.Base.CountSum, 646 FuncLevelOverlap.Test.CountSum); 647 FuncLevelOverlap.Overlap.CountSum = FuncScore; 648 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 649 FuncLevelOverlap.Valid = true; 650 } 651 } 652 653 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 654 uint64_t Weight, 655 function_ref<void(instrprof_error)> Warn) { 656 this->sortByTargetValues(); 657 Input.sortByTargetValues(); 658 auto I = ValueData.begin(); 659 auto IE = ValueData.end(); 660 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 661 ++J) { 662 while (I != IE && I->Value < J->Value) 663 ++I; 664 if (I != IE && I->Value == J->Value) { 665 bool Overflowed; 666 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 667 if (Overflowed) 668 Warn(instrprof_error::counter_overflow); 669 ++I; 670 continue; 671 } 672 ValueData.insert(I, *J); 673 } 674 } 675 676 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 677 function_ref<void(instrprof_error)> Warn) { 678 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 679 bool Overflowed; 680 I->Count = SaturatingMultiply(I->Count, N, &Overflowed) / D; 681 if (Overflowed) 682 Warn(instrprof_error::counter_overflow); 683 } 684 } 685 686 // Merge Value Profile data from Src record to this record for ValueKind. 687 // Scale merged value counts by \p Weight. 688 void InstrProfRecord::mergeValueProfData( 689 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 690 function_ref<void(instrprof_error)> Warn) { 691 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 692 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 693 if (ThisNumValueSites != OtherNumValueSites) { 694 Warn(instrprof_error::value_site_count_mismatch); 695 return; 696 } 697 if (!ThisNumValueSites) 698 return; 699 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 700 getOrCreateValueSitesForKind(ValueKind); 701 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 702 Src.getValueSitesForKind(ValueKind); 703 for (uint32_t I = 0; I < ThisNumValueSites; I++) 704 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 705 } 706 707 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 708 function_ref<void(instrprof_error)> Warn) { 709 // If the number of counters doesn't match we either have bad data 710 // or a hash collision. 711 if (Counts.size() != Other.Counts.size()) { 712 Warn(instrprof_error::count_mismatch); 713 return; 714 } 715 716 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 717 bool Overflowed; 718 Counts[I] = 719 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 720 if (Overflowed) 721 Warn(instrprof_error::counter_overflow); 722 } 723 724 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 725 mergeValueProfData(Kind, Other, Weight, Warn); 726 } 727 728 void InstrProfRecord::scaleValueProfData( 729 uint32_t ValueKind, uint64_t N, uint64_t D, 730 function_ref<void(instrprof_error)> Warn) { 731 for (auto &R : getValueSitesForKind(ValueKind)) 732 R.scale(N, D, Warn); 733 } 734 735 void InstrProfRecord::scale(uint64_t N, uint64_t D, 736 function_ref<void(instrprof_error)> Warn) { 737 assert(D != 0 && "D cannot be 0"); 738 for (auto &Count : this->Counts) { 739 bool Overflowed; 740 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 741 if (Overflowed) 742 Warn(instrprof_error::counter_overflow); 743 } 744 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 745 scaleValueProfData(Kind, N, D, Warn); 746 } 747 748 // Map indirect call target name hash to name string. 749 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 750 InstrProfSymtab *SymTab) { 751 if (!SymTab) 752 return Value; 753 754 if (ValueKind == IPVK_IndirectCallTarget) 755 return SymTab->getFunctionHashFromAddress(Value); 756 757 return Value; 758 } 759 760 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 761 InstrProfValueData *VData, uint32_t N, 762 InstrProfSymtab *ValueMap) { 763 for (uint32_t I = 0; I < N; I++) { 764 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 765 } 766 std::vector<InstrProfValueSiteRecord> &ValueSites = 767 getOrCreateValueSitesForKind(ValueKind); 768 if (N == 0) 769 ValueSites.emplace_back(); 770 else 771 ValueSites.emplace_back(VData, VData + N); 772 } 773 774 #define INSTR_PROF_COMMON_API_IMPL 775 #include "llvm/ProfileData/InstrProfData.inc" 776 777 /*! 778 * ValueProfRecordClosure Interface implementation for InstrProfRecord 779 * class. These C wrappers are used as adaptors so that C++ code can be 780 * invoked as callbacks. 781 */ 782 uint32_t getNumValueKindsInstrProf(const void *Record) { 783 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 784 } 785 786 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 787 return reinterpret_cast<const InstrProfRecord *>(Record) 788 ->getNumValueSites(VKind); 789 } 790 791 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 792 return reinterpret_cast<const InstrProfRecord *>(Record) 793 ->getNumValueData(VKind); 794 } 795 796 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 797 uint32_t S) { 798 return reinterpret_cast<const InstrProfRecord *>(R) 799 ->getNumValueDataForSite(VK, S); 800 } 801 802 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 803 uint32_t K, uint32_t S) { 804 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 805 } 806 807 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 808 ValueProfData *VD = 809 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 810 memset(VD, 0, TotalSizeInBytes); 811 return VD; 812 } 813 814 static ValueProfRecordClosure InstrProfRecordClosure = { 815 nullptr, 816 getNumValueKindsInstrProf, 817 getNumValueSitesInstrProf, 818 getNumValueDataInstrProf, 819 getNumValueDataForSiteInstrProf, 820 nullptr, 821 getValueForSiteInstrProf, 822 allocValueProfDataInstrProf}; 823 824 // Wrapper implementation using the closure mechanism. 825 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 826 auto Closure = InstrProfRecordClosure; 827 Closure.Record = &Record; 828 return getValueProfDataSize(&Closure); 829 } 830 831 // Wrapper implementation using the closure mechanism. 832 std::unique_ptr<ValueProfData> 833 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 834 InstrProfRecordClosure.Record = &Record; 835 836 std::unique_ptr<ValueProfData> VPD( 837 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 838 return VPD; 839 } 840 841 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 842 InstrProfSymtab *SymTab) { 843 Record.reserveSites(Kind, NumValueSites); 844 845 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 846 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 847 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 848 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 849 ValueData += ValueDataCount; 850 } 851 } 852 853 // For writing/serializing, Old is the host endianness, and New is 854 // byte order intended on disk. For Reading/deserialization, Old 855 // is the on-disk source endianness, and New is the host endianness. 856 void ValueProfRecord::swapBytes(support::endianness Old, 857 support::endianness New) { 858 using namespace support; 859 860 if (Old == New) 861 return; 862 863 if (getHostEndianness() != Old) { 864 sys::swapByteOrder<uint32_t>(NumValueSites); 865 sys::swapByteOrder<uint32_t>(Kind); 866 } 867 uint32_t ND = getValueProfRecordNumValueData(this); 868 InstrProfValueData *VD = getValueProfRecordValueData(this); 869 870 // No need to swap byte array: SiteCountArrray. 871 for (uint32_t I = 0; I < ND; I++) { 872 sys::swapByteOrder<uint64_t>(VD[I].Value); 873 sys::swapByteOrder<uint64_t>(VD[I].Count); 874 } 875 if (getHostEndianness() == Old) { 876 sys::swapByteOrder<uint32_t>(NumValueSites); 877 sys::swapByteOrder<uint32_t>(Kind); 878 } 879 } 880 881 void ValueProfData::deserializeTo(InstrProfRecord &Record, 882 InstrProfSymtab *SymTab) { 883 if (NumValueKinds == 0) 884 return; 885 886 ValueProfRecord *VR = getFirstValueProfRecord(this); 887 for (uint32_t K = 0; K < NumValueKinds; K++) { 888 VR->deserializeTo(Record, SymTab); 889 VR = getValueProfRecordNext(VR); 890 } 891 } 892 893 template <class T> 894 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 895 using namespace support; 896 897 if (Orig == little) 898 return endian::readNext<T, little, unaligned>(D); 899 else 900 return endian::readNext<T, big, unaligned>(D); 901 } 902 903 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 904 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 905 ValueProfData()); 906 } 907 908 Error ValueProfData::checkIntegrity() { 909 if (NumValueKinds > IPVK_Last + 1) 910 return make_error<InstrProfError>( 911 instrprof_error::malformed, "number of value profile kinds is invalid"); 912 // Total size needs to be multiple of quadword size. 913 if (TotalSize % sizeof(uint64_t)) 914 return make_error<InstrProfError>( 915 instrprof_error::malformed, "total size is not multiples of quardword"); 916 917 ValueProfRecord *VR = getFirstValueProfRecord(this); 918 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 919 if (VR->Kind > IPVK_Last) 920 return make_error<InstrProfError>(instrprof_error::malformed, 921 "value kind is invalid"); 922 VR = getValueProfRecordNext(VR); 923 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 924 return make_error<InstrProfError>( 925 instrprof_error::malformed, 926 "value profile address is greater than total size"); 927 } 928 return Error::success(); 929 } 930 931 Expected<std::unique_ptr<ValueProfData>> 932 ValueProfData::getValueProfData(const unsigned char *D, 933 const unsigned char *const BufferEnd, 934 support::endianness Endianness) { 935 using namespace support; 936 937 if (D + sizeof(ValueProfData) > BufferEnd) 938 return make_error<InstrProfError>(instrprof_error::truncated); 939 940 const unsigned char *Header = D; 941 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 942 if (D + TotalSize > BufferEnd) 943 return make_error<InstrProfError>(instrprof_error::too_large); 944 945 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 946 memcpy(VPD.get(), D, TotalSize); 947 // Byte swap. 948 VPD->swapBytesToHost(Endianness); 949 950 Error E = VPD->checkIntegrity(); 951 if (E) 952 return std::move(E); 953 954 return std::move(VPD); 955 } 956 957 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 958 using namespace support; 959 960 if (Endianness == getHostEndianness()) 961 return; 962 963 sys::swapByteOrder<uint32_t>(TotalSize); 964 sys::swapByteOrder<uint32_t>(NumValueKinds); 965 966 ValueProfRecord *VR = getFirstValueProfRecord(this); 967 for (uint32_t K = 0; K < NumValueKinds; K++) { 968 VR->swapBytes(Endianness, getHostEndianness()); 969 VR = getValueProfRecordNext(VR); 970 } 971 } 972 973 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 974 using namespace support; 975 976 if (Endianness == getHostEndianness()) 977 return; 978 979 ValueProfRecord *VR = getFirstValueProfRecord(this); 980 for (uint32_t K = 0; K < NumValueKinds; K++) { 981 ValueProfRecord *NVR = getValueProfRecordNext(VR); 982 VR->swapBytes(getHostEndianness(), Endianness); 983 VR = NVR; 984 } 985 sys::swapByteOrder<uint32_t>(TotalSize); 986 sys::swapByteOrder<uint32_t>(NumValueKinds); 987 } 988 989 void annotateValueSite(Module &M, Instruction &Inst, 990 const InstrProfRecord &InstrProfR, 991 InstrProfValueKind ValueKind, uint32_t SiteIdx, 992 uint32_t MaxMDCount) { 993 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 994 if (!NV) 995 return; 996 997 uint64_t Sum = 0; 998 std::unique_ptr<InstrProfValueData[]> VD = 999 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 1000 1001 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 1002 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 1003 } 1004 1005 void annotateValueSite(Module &M, Instruction &Inst, 1006 ArrayRef<InstrProfValueData> VDs, 1007 uint64_t Sum, InstrProfValueKind ValueKind, 1008 uint32_t MaxMDCount) { 1009 LLVMContext &Ctx = M.getContext(); 1010 MDBuilder MDHelper(Ctx); 1011 SmallVector<Metadata *, 3> Vals; 1012 // Tag 1013 Vals.push_back(MDHelper.createString("VP")); 1014 // Value Kind 1015 Vals.push_back(MDHelper.createConstant( 1016 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 1017 // Total Count 1018 Vals.push_back( 1019 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 1020 1021 // Value Profile Data 1022 uint32_t MDCount = MaxMDCount; 1023 for (auto &VD : VDs) { 1024 Vals.push_back(MDHelper.createConstant( 1025 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 1026 Vals.push_back(MDHelper.createConstant( 1027 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 1028 if (--MDCount == 0) 1029 break; 1030 } 1031 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 1032 } 1033 1034 bool getValueProfDataFromInst(const Instruction &Inst, 1035 InstrProfValueKind ValueKind, 1036 uint32_t MaxNumValueData, 1037 InstrProfValueData ValueData[], 1038 uint32_t &ActualNumValueData, uint64_t &TotalC, 1039 bool GetNoICPValue) { 1040 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 1041 if (!MD) 1042 return false; 1043 1044 unsigned NOps = MD->getNumOperands(); 1045 1046 if (NOps < 5) 1047 return false; 1048 1049 // Operand 0 is a string tag "VP": 1050 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1051 if (!Tag) 1052 return false; 1053 1054 if (!Tag->getString().equals("VP")) 1055 return false; 1056 1057 // Now check kind: 1058 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1059 if (!KindInt) 1060 return false; 1061 if (KindInt->getZExtValue() != ValueKind) 1062 return false; 1063 1064 // Get total count 1065 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1066 if (!TotalCInt) 1067 return false; 1068 TotalC = TotalCInt->getZExtValue(); 1069 1070 ActualNumValueData = 0; 1071 1072 for (unsigned I = 3; I < NOps; I += 2) { 1073 if (ActualNumValueData >= MaxNumValueData) 1074 break; 1075 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1076 ConstantInt *Count = 1077 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1078 if (!Value || !Count) 1079 return false; 1080 uint64_t CntValue = Count->getZExtValue(); 1081 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM)) 1082 continue; 1083 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1084 ValueData[ActualNumValueData].Count = CntValue; 1085 ActualNumValueData++; 1086 } 1087 return true; 1088 } 1089 1090 MDNode *getPGOFuncNameMetadata(const Function &F) { 1091 return F.getMetadata(getPGOFuncNameMetadataName()); 1092 } 1093 1094 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1095 // Only for internal linkage functions. 1096 if (PGOFuncName == F.getName()) 1097 return; 1098 // Don't create duplicated meta-data. 1099 if (getPGOFuncNameMetadata(F)) 1100 return; 1101 LLVMContext &C = F.getContext(); 1102 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1103 F.setMetadata(getPGOFuncNameMetadataName(), N); 1104 } 1105 1106 bool needsComdatForCounter(const Function &F, const Module &M) { 1107 if (F.hasComdat()) 1108 return true; 1109 1110 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1111 return false; 1112 1113 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1114 // counters for function with available_externally linkage needs to be changed 1115 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1116 // created. Without using comdat, duplicate entries won't be removed by the 1117 // linker leading to increased data segement size and raw profile size. Even 1118 // worse, since the referenced counter from profile per-function data object 1119 // will be resolved to the common strong definition, the profile counts for 1120 // available_externally functions will end up being duplicated in raw profile 1121 // data. This can result in distorted profile as the counts of those dups 1122 // will be accumulated by the profile merger. 1123 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1124 if (Linkage != GlobalValue::ExternalWeakLinkage && 1125 Linkage != GlobalValue::AvailableExternallyLinkage) 1126 return false; 1127 1128 return true; 1129 } 1130 1131 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1132 bool isIRPGOFlagSet(const Module *M) { 1133 auto IRInstrVar = 1134 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1135 if (!IRInstrVar || IRInstrVar->hasLocalLinkage()) 1136 return false; 1137 1138 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only 1139 // have the decl. 1140 if (IRInstrVar->isDeclaration()) 1141 return true; 1142 1143 // Check if the flag is set. 1144 if (!IRInstrVar->hasInitializer()) 1145 return false; 1146 1147 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1148 if (!InitVal) 1149 return false; 1150 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1151 } 1152 1153 // Check if we can safely rename this Comdat function. 1154 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1155 if (F.getName().empty()) 1156 return false; 1157 if (!needsComdatForCounter(F, *(F.getParent()))) 1158 return false; 1159 // Unsafe to rename the address-taken function (which can be used in 1160 // function comparison). 1161 if (CheckAddressTaken && F.hasAddressTaken()) 1162 return false; 1163 // Only safe to do if this function may be discarded if it is not used 1164 // in the compilation unit. 1165 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1166 return false; 1167 1168 // For AvailableExternallyLinkage functions. 1169 if (!F.hasComdat()) { 1170 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1171 return true; 1172 } 1173 return true; 1174 } 1175 1176 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime 1177 // aware this is an ir_level profile so it can set the version flag. 1178 GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS, 1179 bool InstrEntryBBEnabled) { 1180 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1181 Type *IntTy64 = Type::getInt64Ty(M.getContext()); 1182 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); 1183 if (IsCS) 1184 ProfileVersion |= VARIANT_MASK_CSIR_PROF; 1185 if (InstrEntryBBEnabled) 1186 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY; 1187 auto IRLevelVersionVariable = new GlobalVariable( 1188 M, IntTy64, true, GlobalValue::WeakAnyLinkage, 1189 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName); 1190 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); 1191 Triple TT(M.getTargetTriple()); 1192 if (TT.supportsCOMDAT()) { 1193 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage); 1194 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); 1195 } 1196 return IRLevelVersionVariable; 1197 } 1198 1199 // Create the variable for the profile file name. 1200 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1201 if (InstrProfileOutput.empty()) 1202 return; 1203 Constant *ProfileNameConst = 1204 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1205 GlobalVariable *ProfileNameVar = new GlobalVariable( 1206 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1207 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1208 Triple TT(M.getTargetTriple()); 1209 if (TT.supportsCOMDAT()) { 1210 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1211 ProfileNameVar->setComdat(M.getOrInsertComdat( 1212 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1213 } 1214 } 1215 1216 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1217 const std::string &TestFilename, 1218 bool IsCS) { 1219 auto getProfileSum = [IsCS](const std::string &Filename, 1220 CountSumOrPercent &Sum) -> Error { 1221 auto ReaderOrErr = InstrProfReader::create(Filename); 1222 if (Error E = ReaderOrErr.takeError()) { 1223 return E; 1224 } 1225 auto Reader = std::move(ReaderOrErr.get()); 1226 Reader->accumulateCounts(Sum, IsCS); 1227 return Error::success(); 1228 }; 1229 auto Ret = getProfileSum(BaseFilename, Base); 1230 if (Ret) 1231 return Ret; 1232 Ret = getProfileSum(TestFilename, Test); 1233 if (Ret) 1234 return Ret; 1235 this->BaseFilename = &BaseFilename; 1236 this->TestFilename = &TestFilename; 1237 Valid = true; 1238 return Error::success(); 1239 } 1240 1241 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1242 Mismatch.NumEntries += 1; 1243 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1244 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1245 if (Test.ValueCounts[I] >= 1.0f) 1246 Mismatch.ValueCounts[I] += 1247 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1248 } 1249 } 1250 1251 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1252 Unique.NumEntries += 1; 1253 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1254 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1255 if (Test.ValueCounts[I] >= 1.0f) 1256 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1257 } 1258 } 1259 1260 void OverlapStats::dump(raw_fd_ostream &OS) const { 1261 if (!Valid) 1262 return; 1263 1264 const char *EntryName = 1265 (Level == ProgramLevel ? "functions" : "edge counters"); 1266 if (Level == ProgramLevel) { 1267 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1268 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1269 } else { 1270 OS << "Function level:\n" 1271 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1272 } 1273 1274 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1275 if (Mismatch.NumEntries) 1276 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1277 << "\n"; 1278 if (Unique.NumEntries) 1279 OS << " # of " << EntryName 1280 << " only in test_profile: " << Unique.NumEntries << "\n"; 1281 1282 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1283 << "\n"; 1284 if (Mismatch.NumEntries) 1285 OS << " Mismatched count percentage (Edge): " 1286 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1287 if (Unique.NumEntries) 1288 OS << " Percentage of Edge profile only in test_profile: " 1289 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1290 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1291 << "\n" 1292 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1293 << "\n"; 1294 1295 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1296 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1297 continue; 1298 char ProfileKindName[20]; 1299 switch (I) { 1300 case IPVK_IndirectCallTarget: 1301 strncpy(ProfileKindName, "IndirectCall", 19); 1302 break; 1303 case IPVK_MemOPSize: 1304 strncpy(ProfileKindName, "MemOP", 19); 1305 break; 1306 default: 1307 snprintf(ProfileKindName, 19, "VP[%d]", I); 1308 break; 1309 } 1310 OS << " " << ProfileKindName 1311 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1312 << "\n"; 1313 if (Mismatch.NumEntries) 1314 OS << " Mismatched count percentage (" << ProfileKindName 1315 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1316 if (Unique.NumEntries) 1317 OS << " Percentage of " << ProfileKindName 1318 << " profile only in test_profile: " 1319 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1320 OS << " " << ProfileKindName 1321 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1322 << "\n" 1323 << " " << ProfileKindName 1324 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1325 << "\n"; 1326 } 1327 } 1328 1329 } // end namespace llvm 1330