1 //===- llvm/MC/WinCOFFObjectWriter.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains an implementation of a Win32 COFF object file writer. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/COFF.h" 21 #include "llvm/MC/MCAsmLayout.h" 22 #include "llvm/MC/MCAssembler.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixup.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCSection.h" 29 #include "llvm/MC/MCSectionCOFF.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/MC/MCSymbolCOFF.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/MC/MCWinCOFFObjectWriter.h" 34 #include "llvm/MC/StringTableBuilder.h" 35 #include "llvm/Support/CRC.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/EndianStream.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <cstdint> 46 #include <cstring> 47 #include <ctime> 48 #include <memory> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using llvm::support::endian::write32le; 54 55 #define DEBUG_TYPE "WinCOFFObjectWriter" 56 57 namespace { 58 59 using name = SmallString<COFF::NameSize>; 60 61 enum AuxiliaryType { 62 ATWeakExternal, 63 ATFile, 64 ATSectionDefinition 65 }; 66 67 struct AuxSymbol { 68 AuxiliaryType AuxType; 69 COFF::Auxiliary Aux; 70 }; 71 72 class COFFSection; 73 74 class COFFSymbol { 75 public: 76 COFF::symbol Data = {}; 77 78 using AuxiliarySymbols = SmallVector<AuxSymbol, 1>; 79 80 name Name; 81 int Index; 82 AuxiliarySymbols Aux; 83 COFFSymbol *Other = nullptr; 84 COFFSection *Section = nullptr; 85 int Relocations = 0; 86 const MCSymbol *MC = nullptr; 87 88 COFFSymbol(StringRef Name) : Name(Name) {} 89 90 void set_name_offset(uint32_t Offset); 91 92 int64_t getIndex() const { return Index; } 93 void setIndex(int Value) { 94 Index = Value; 95 if (MC) 96 MC->setIndex(static_cast<uint32_t>(Value)); 97 } 98 }; 99 100 // This class contains staging data for a COFF relocation entry. 101 struct COFFRelocation { 102 COFF::relocation Data; 103 COFFSymbol *Symb = nullptr; 104 105 COFFRelocation() = default; 106 107 static size_t size() { return COFF::RelocationSize; } 108 }; 109 110 using relocations = std::vector<COFFRelocation>; 111 112 class COFFSection { 113 public: 114 COFF::section Header = {}; 115 116 std::string Name; 117 int Number; 118 MCSectionCOFF const *MCSection = nullptr; 119 COFFSymbol *Symbol = nullptr; 120 relocations Relocations; 121 122 COFFSection(StringRef Name) : Name(std::string(Name)) {} 123 }; 124 125 class WinCOFFObjectWriter : public MCObjectWriter { 126 public: 127 support::endian::Writer W; 128 129 using symbols = std::vector<std::unique_ptr<COFFSymbol>>; 130 using sections = std::vector<std::unique_ptr<COFFSection>>; 131 132 using symbol_map = DenseMap<MCSymbol const *, COFFSymbol *>; 133 using section_map = DenseMap<MCSection const *, COFFSection *>; 134 135 using symbol_list = DenseSet<COFFSymbol *>; 136 137 std::unique_ptr<MCWinCOFFObjectTargetWriter> TargetObjectWriter; 138 139 // Root level file contents. 140 COFF::header Header = {}; 141 sections Sections; 142 symbols Symbols; 143 StringTableBuilder Strings{StringTableBuilder::WinCOFF}; 144 145 // Maps used during object file creation. 146 section_map SectionMap; 147 symbol_map SymbolMap; 148 149 symbol_list WeakDefaults; 150 151 bool UseBigObj; 152 153 bool EmitAddrsigSection = false; 154 MCSectionCOFF *AddrsigSection; 155 std::vector<const MCSymbol *> AddrsigSyms; 156 157 MCSectionCOFF *CGProfileSection = nullptr; 158 159 WinCOFFObjectWriter(std::unique_ptr<MCWinCOFFObjectTargetWriter> MOTW, 160 raw_pwrite_stream &OS); 161 162 void reset() override { 163 memset(&Header, 0, sizeof(Header)); 164 Header.Machine = TargetObjectWriter->getMachine(); 165 Sections.clear(); 166 Symbols.clear(); 167 Strings.clear(); 168 SectionMap.clear(); 169 SymbolMap.clear(); 170 MCObjectWriter::reset(); 171 } 172 173 COFFSymbol *createSymbol(StringRef Name); 174 COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol *Symbol); 175 COFFSection *createSection(StringRef Name); 176 177 void defineSection(MCSectionCOFF const &Sec); 178 179 COFFSymbol *getLinkedSymbol(const MCSymbol &Symbol); 180 void DefineSymbol(const MCSymbol &Symbol, MCAssembler &Assembler, 181 const MCAsmLayout &Layout); 182 183 void SetSymbolName(COFFSymbol &S); 184 void SetSectionName(COFFSection &S); 185 186 bool IsPhysicalSection(COFFSection *S); 187 188 // Entity writing methods. 189 190 void WriteFileHeader(const COFF::header &Header); 191 void WriteSymbol(const COFFSymbol &S); 192 void WriteAuxiliarySymbols(const COFFSymbol::AuxiliarySymbols &S); 193 void writeSectionHeaders(); 194 void WriteRelocation(const COFF::relocation &R); 195 uint32_t writeSectionContents(MCAssembler &Asm, const MCAsmLayout &Layout, 196 const MCSection &MCSec); 197 void writeSection(MCAssembler &Asm, const MCAsmLayout &Layout, 198 const COFFSection &Sec, const MCSection &MCSec); 199 200 // MCObjectWriter interface implementation. 201 202 void executePostLayoutBinding(MCAssembler &Asm, 203 const MCAsmLayout &Layout) override; 204 205 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 206 const MCSymbol &SymA, 207 const MCFragment &FB, bool InSet, 208 bool IsPCRel) const override; 209 210 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 211 const MCFragment *Fragment, const MCFixup &Fixup, 212 MCValue Target, uint64_t &FixedValue) override; 213 214 void createFileSymbols(MCAssembler &Asm); 215 void setWeakDefaultNames(); 216 void assignSectionNumbers(); 217 void assignFileOffsets(MCAssembler &Asm, const MCAsmLayout &Layout); 218 219 void emitAddrsigSection() override { EmitAddrsigSection = true; } 220 void addAddrsigSymbol(const MCSymbol *Sym) override { 221 AddrsigSyms.push_back(Sym); 222 } 223 224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 225 }; 226 227 } // end anonymous namespace 228 229 //------------------------------------------------------------------------------ 230 // Symbol class implementation 231 232 // In the case that the name does not fit within 8 bytes, the offset 233 // into the string table is stored in the last 4 bytes instead, leaving 234 // the first 4 bytes as 0. 235 void COFFSymbol::set_name_offset(uint32_t Offset) { 236 write32le(Data.Name + 0, 0); 237 write32le(Data.Name + 4, Offset); 238 } 239 240 //------------------------------------------------------------------------------ 241 // WinCOFFObjectWriter class implementation 242 243 WinCOFFObjectWriter::WinCOFFObjectWriter( 244 std::unique_ptr<MCWinCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 245 : W(OS, support::little), TargetObjectWriter(std::move(MOTW)) { 246 Header.Machine = TargetObjectWriter->getMachine(); 247 } 248 249 COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) { 250 Symbols.push_back(std::make_unique<COFFSymbol>(Name)); 251 return Symbols.back().get(); 252 } 253 254 COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol *Symbol) { 255 COFFSymbol *&Ret = SymbolMap[Symbol]; 256 if (!Ret) 257 Ret = createSymbol(Symbol->getName()); 258 return Ret; 259 } 260 261 COFFSection *WinCOFFObjectWriter::createSection(StringRef Name) { 262 Sections.emplace_back(std::make_unique<COFFSection>(Name)); 263 return Sections.back().get(); 264 } 265 266 static uint32_t getAlignment(const MCSectionCOFF &Sec) { 267 switch (Sec.getAlignment()) { 268 case 1: 269 return COFF::IMAGE_SCN_ALIGN_1BYTES; 270 case 2: 271 return COFF::IMAGE_SCN_ALIGN_2BYTES; 272 case 4: 273 return COFF::IMAGE_SCN_ALIGN_4BYTES; 274 case 8: 275 return COFF::IMAGE_SCN_ALIGN_8BYTES; 276 case 16: 277 return COFF::IMAGE_SCN_ALIGN_16BYTES; 278 case 32: 279 return COFF::IMAGE_SCN_ALIGN_32BYTES; 280 case 64: 281 return COFF::IMAGE_SCN_ALIGN_64BYTES; 282 case 128: 283 return COFF::IMAGE_SCN_ALIGN_128BYTES; 284 case 256: 285 return COFF::IMAGE_SCN_ALIGN_256BYTES; 286 case 512: 287 return COFF::IMAGE_SCN_ALIGN_512BYTES; 288 case 1024: 289 return COFF::IMAGE_SCN_ALIGN_1024BYTES; 290 case 2048: 291 return COFF::IMAGE_SCN_ALIGN_2048BYTES; 292 case 4096: 293 return COFF::IMAGE_SCN_ALIGN_4096BYTES; 294 case 8192: 295 return COFF::IMAGE_SCN_ALIGN_8192BYTES; 296 } 297 llvm_unreachable("unsupported section alignment"); 298 } 299 300 /// This function takes a section data object from the assembler 301 /// and creates the associated COFF section staging object. 302 void WinCOFFObjectWriter::defineSection(const MCSectionCOFF &MCSec) { 303 COFFSection *Section = createSection(MCSec.getName()); 304 COFFSymbol *Symbol = createSymbol(MCSec.getName()); 305 Section->Symbol = Symbol; 306 Symbol->Section = Section; 307 Symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; 308 309 // Create a COMDAT symbol if needed. 310 if (MCSec.getSelection() != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) { 311 if (const MCSymbol *S = MCSec.getCOMDATSymbol()) { 312 COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(S); 313 if (COMDATSymbol->Section) 314 report_fatal_error("two sections have the same comdat"); 315 COMDATSymbol->Section = Section; 316 } 317 } 318 319 // In this case the auxiliary symbol is a Section Definition. 320 Symbol->Aux.resize(1); 321 Symbol->Aux[0] = {}; 322 Symbol->Aux[0].AuxType = ATSectionDefinition; 323 Symbol->Aux[0].Aux.SectionDefinition.Selection = MCSec.getSelection(); 324 325 // Set section alignment. 326 Section->Header.Characteristics = MCSec.getCharacteristics(); 327 Section->Header.Characteristics |= getAlignment(MCSec); 328 329 // Bind internal COFF section to MC section. 330 Section->MCSection = &MCSec; 331 SectionMap[&MCSec] = Section; 332 } 333 334 static uint64_t getSymbolValue(const MCSymbol &Symbol, 335 const MCAsmLayout &Layout) { 336 if (Symbol.isCommon() && Symbol.isExternal()) 337 return Symbol.getCommonSize(); 338 339 uint64_t Res; 340 if (!Layout.getSymbolOffset(Symbol, Res)) 341 return 0; 342 343 return Res; 344 } 345 346 COFFSymbol *WinCOFFObjectWriter::getLinkedSymbol(const MCSymbol &Symbol) { 347 if (!Symbol.isVariable()) 348 return nullptr; 349 350 const MCSymbolRefExpr *SymRef = 351 dyn_cast<MCSymbolRefExpr>(Symbol.getVariableValue()); 352 if (!SymRef) 353 return nullptr; 354 355 const MCSymbol &Aliasee = SymRef->getSymbol(); 356 if (!Aliasee.isUndefined()) 357 return nullptr; 358 return GetOrCreateCOFFSymbol(&Aliasee); 359 } 360 361 /// This function takes a symbol data object from the assembler 362 /// and creates the associated COFF symbol staging object. 363 void WinCOFFObjectWriter::DefineSymbol(const MCSymbol &MCSym, 364 MCAssembler &Assembler, 365 const MCAsmLayout &Layout) { 366 COFFSymbol *Sym = GetOrCreateCOFFSymbol(&MCSym); 367 const MCSymbol *Base = Layout.getBaseSymbol(MCSym); 368 COFFSection *Sec = nullptr; 369 if (Base && Base->getFragment()) { 370 Sec = SectionMap[Base->getFragment()->getParent()]; 371 if (Sym->Section && Sym->Section != Sec) 372 report_fatal_error("conflicting sections for symbol"); 373 } 374 375 COFFSymbol *Local = nullptr; 376 if (cast<MCSymbolCOFF>(MCSym).isWeakExternal()) { 377 Sym->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL; 378 379 COFFSymbol *WeakDefault = getLinkedSymbol(MCSym); 380 if (!WeakDefault) { 381 std::string WeakName = (".weak." + MCSym.getName() + ".default").str(); 382 WeakDefault = createSymbol(WeakName); 383 if (!Sec) 384 WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; 385 else 386 WeakDefault->Section = Sec; 387 WeakDefaults.insert(WeakDefault); 388 Local = WeakDefault; 389 } 390 391 Sym->Other = WeakDefault; 392 393 // Setup the Weak External auxiliary symbol. 394 Sym->Aux.resize(1); 395 memset(&Sym->Aux[0], 0, sizeof(Sym->Aux[0])); 396 Sym->Aux[0].AuxType = ATWeakExternal; 397 Sym->Aux[0].Aux.WeakExternal.TagIndex = 0; 398 Sym->Aux[0].Aux.WeakExternal.Characteristics = 399 COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS; 400 } else { 401 if (!Base) 402 Sym->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; 403 else 404 Sym->Section = Sec; 405 Local = Sym; 406 } 407 408 if (Local) { 409 Local->Data.Value = getSymbolValue(MCSym, Layout); 410 411 const MCSymbolCOFF &SymbolCOFF = cast<MCSymbolCOFF>(MCSym); 412 Local->Data.Type = SymbolCOFF.getType(); 413 Local->Data.StorageClass = SymbolCOFF.getClass(); 414 415 // If no storage class was specified in the streamer, define it here. 416 if (Local->Data.StorageClass == COFF::IMAGE_SYM_CLASS_NULL) { 417 bool IsExternal = MCSym.isExternal() || 418 (!MCSym.getFragment() && !MCSym.isVariable()); 419 420 Local->Data.StorageClass = IsExternal ? COFF::IMAGE_SYM_CLASS_EXTERNAL 421 : COFF::IMAGE_SYM_CLASS_STATIC; 422 } 423 } 424 425 Sym->MC = &MCSym; 426 } 427 428 // Maximum offsets for different string table entry encodings. 429 enum : unsigned { Max7DecimalOffset = 9999999U }; 430 enum : uint64_t { MaxBase64Offset = 0xFFFFFFFFFULL }; // 64^6, including 0 431 432 // Encode a string table entry offset in base 64, padded to 6 chars, and 433 // prefixed with a double slash: '//AAAAAA', '//AAAAAB', ... 434 // Buffer must be at least 8 bytes large. No terminating null appended. 435 static void encodeBase64StringEntry(char *Buffer, uint64_t Value) { 436 assert(Value > Max7DecimalOffset && Value <= MaxBase64Offset && 437 "Illegal section name encoding for value"); 438 439 static const char Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 440 "abcdefghijklmnopqrstuvwxyz" 441 "0123456789+/"; 442 443 Buffer[0] = '/'; 444 Buffer[1] = '/'; 445 446 char *Ptr = Buffer + 7; 447 for (unsigned i = 0; i < 6; ++i) { 448 unsigned Rem = Value % 64; 449 Value /= 64; 450 *(Ptr--) = Alphabet[Rem]; 451 } 452 } 453 454 void WinCOFFObjectWriter::SetSectionName(COFFSection &S) { 455 if (S.Name.size() <= COFF::NameSize) { 456 std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size()); 457 return; 458 } 459 460 uint64_t StringTableEntry = Strings.getOffset(S.Name); 461 if (StringTableEntry <= Max7DecimalOffset) { 462 SmallVector<char, COFF::NameSize> Buffer; 463 Twine('/').concat(Twine(StringTableEntry)).toVector(Buffer); 464 assert(Buffer.size() <= COFF::NameSize && Buffer.size() >= 2); 465 std::memcpy(S.Header.Name, Buffer.data(), Buffer.size()); 466 return; 467 } 468 if (StringTableEntry <= MaxBase64Offset) { 469 // Starting with 10,000,000, offsets are encoded as base64. 470 encodeBase64StringEntry(S.Header.Name, StringTableEntry); 471 return; 472 } 473 report_fatal_error("COFF string table is greater than 64 GB."); 474 } 475 476 void WinCOFFObjectWriter::SetSymbolName(COFFSymbol &S) { 477 if (S.Name.size() > COFF::NameSize) 478 S.set_name_offset(Strings.getOffset(S.Name)); 479 else 480 std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size()); 481 } 482 483 bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) { 484 return (S->Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 485 0; 486 } 487 488 //------------------------------------------------------------------------------ 489 // entity writing methods 490 491 void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) { 492 if (UseBigObj) { 493 W.write<uint16_t>(COFF::IMAGE_FILE_MACHINE_UNKNOWN); 494 W.write<uint16_t>(0xFFFF); 495 W.write<uint16_t>(COFF::BigObjHeader::MinBigObjectVersion); 496 W.write<uint16_t>(Header.Machine); 497 W.write<uint32_t>(Header.TimeDateStamp); 498 W.OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic)); 499 W.write<uint32_t>(0); 500 W.write<uint32_t>(0); 501 W.write<uint32_t>(0); 502 W.write<uint32_t>(0); 503 W.write<uint32_t>(Header.NumberOfSections); 504 W.write<uint32_t>(Header.PointerToSymbolTable); 505 W.write<uint32_t>(Header.NumberOfSymbols); 506 } else { 507 W.write<uint16_t>(Header.Machine); 508 W.write<uint16_t>(static_cast<int16_t>(Header.NumberOfSections)); 509 W.write<uint32_t>(Header.TimeDateStamp); 510 W.write<uint32_t>(Header.PointerToSymbolTable); 511 W.write<uint32_t>(Header.NumberOfSymbols); 512 W.write<uint16_t>(Header.SizeOfOptionalHeader); 513 W.write<uint16_t>(Header.Characteristics); 514 } 515 } 516 517 void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) { 518 W.OS.write(S.Data.Name, COFF::NameSize); 519 W.write<uint32_t>(S.Data.Value); 520 if (UseBigObj) 521 W.write<uint32_t>(S.Data.SectionNumber); 522 else 523 W.write<uint16_t>(static_cast<int16_t>(S.Data.SectionNumber)); 524 W.write<uint16_t>(S.Data.Type); 525 W.OS << char(S.Data.StorageClass); 526 W.OS << char(S.Data.NumberOfAuxSymbols); 527 WriteAuxiliarySymbols(S.Aux); 528 } 529 530 void WinCOFFObjectWriter::WriteAuxiliarySymbols( 531 const COFFSymbol::AuxiliarySymbols &S) { 532 for (const AuxSymbol &i : S) { 533 switch (i.AuxType) { 534 case ATWeakExternal: 535 W.write<uint32_t>(i.Aux.WeakExternal.TagIndex); 536 W.write<uint32_t>(i.Aux.WeakExternal.Characteristics); 537 W.OS.write_zeros(sizeof(i.Aux.WeakExternal.unused)); 538 if (UseBigObj) 539 W.OS.write_zeros(COFF::Symbol32Size - COFF::Symbol16Size); 540 break; 541 case ATFile: 542 W.OS.write(reinterpret_cast<const char *>(&i.Aux), 543 UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size); 544 break; 545 case ATSectionDefinition: 546 W.write<uint32_t>(i.Aux.SectionDefinition.Length); 547 W.write<uint16_t>(i.Aux.SectionDefinition.NumberOfRelocations); 548 W.write<uint16_t>(i.Aux.SectionDefinition.NumberOfLinenumbers); 549 W.write<uint32_t>(i.Aux.SectionDefinition.CheckSum); 550 W.write<uint16_t>(static_cast<int16_t>(i.Aux.SectionDefinition.Number)); 551 W.OS << char(i.Aux.SectionDefinition.Selection); 552 W.OS.write_zeros(sizeof(i.Aux.SectionDefinition.unused)); 553 W.write<uint16_t>(static_cast<int16_t>(i.Aux.SectionDefinition.Number >> 16)); 554 if (UseBigObj) 555 W.OS.write_zeros(COFF::Symbol32Size - COFF::Symbol16Size); 556 break; 557 } 558 } 559 } 560 561 // Write the section header. 562 void WinCOFFObjectWriter::writeSectionHeaders() { 563 // Section numbers must be monotonically increasing in the section 564 // header, but our Sections array is not sorted by section number, 565 // so make a copy of Sections and sort it. 566 std::vector<COFFSection *> Arr; 567 for (auto &Section : Sections) 568 Arr.push_back(Section.get()); 569 llvm::sort(Arr, [](const COFFSection *A, const COFFSection *B) { 570 return A->Number < B->Number; 571 }); 572 573 for (auto &Section : Arr) { 574 if (Section->Number == -1) 575 continue; 576 577 COFF::section &S = Section->Header; 578 if (Section->Relocations.size() >= 0xffff) 579 S.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL; 580 W.OS.write(S.Name, COFF::NameSize); 581 W.write<uint32_t>(S.VirtualSize); 582 W.write<uint32_t>(S.VirtualAddress); 583 W.write<uint32_t>(S.SizeOfRawData); 584 W.write<uint32_t>(S.PointerToRawData); 585 W.write<uint32_t>(S.PointerToRelocations); 586 W.write<uint32_t>(S.PointerToLineNumbers); 587 W.write<uint16_t>(S.NumberOfRelocations); 588 W.write<uint16_t>(S.NumberOfLineNumbers); 589 W.write<uint32_t>(S.Characteristics); 590 } 591 } 592 593 void WinCOFFObjectWriter::WriteRelocation(const COFF::relocation &R) { 594 W.write<uint32_t>(R.VirtualAddress); 595 W.write<uint32_t>(R.SymbolTableIndex); 596 W.write<uint16_t>(R.Type); 597 } 598 599 // Write MCSec's contents. What this function does is essentially 600 // "Asm.writeSectionData(&MCSec, Layout)", but it's a bit complicated 601 // because it needs to compute a CRC. 602 uint32_t WinCOFFObjectWriter::writeSectionContents(MCAssembler &Asm, 603 const MCAsmLayout &Layout, 604 const MCSection &MCSec) { 605 // Save the contents of the section to a temporary buffer, we need this 606 // to CRC the data before we dump it into the object file. 607 SmallVector<char, 128> Buf; 608 raw_svector_ostream VecOS(Buf); 609 Asm.writeSectionData(VecOS, &MCSec, Layout); 610 611 // Write the section contents to the object file. 612 W.OS << Buf; 613 614 // Calculate our CRC with an initial value of '0', this is not how 615 // JamCRC is specified but it aligns with the expected output. 616 JamCRC JC(/*Init=*/0); 617 JC.update(makeArrayRef(reinterpret_cast<uint8_t*>(Buf.data()), Buf.size())); 618 return JC.getCRC(); 619 } 620 621 void WinCOFFObjectWriter::writeSection(MCAssembler &Asm, 622 const MCAsmLayout &Layout, 623 const COFFSection &Sec, 624 const MCSection &MCSec) { 625 if (Sec.Number == -1) 626 return; 627 628 // Write the section contents. 629 if (Sec.Header.PointerToRawData != 0) { 630 assert(W.OS.tell() == Sec.Header.PointerToRawData && 631 "Section::PointerToRawData is insane!"); 632 633 uint32_t CRC = writeSectionContents(Asm, Layout, MCSec); 634 635 // Update the section definition auxiliary symbol to record the CRC. 636 COFFSection *Sec = SectionMap[&MCSec]; 637 COFFSymbol::AuxiliarySymbols &AuxSyms = Sec->Symbol->Aux; 638 assert(AuxSyms.size() == 1 && AuxSyms[0].AuxType == ATSectionDefinition); 639 AuxSymbol &SecDef = AuxSyms[0]; 640 SecDef.Aux.SectionDefinition.CheckSum = CRC; 641 } 642 643 // Write relocations for this section. 644 if (Sec.Relocations.empty()) { 645 assert(Sec.Header.PointerToRelocations == 0 && 646 "Section::PointerToRelocations is insane!"); 647 return; 648 } 649 650 assert(W.OS.tell() == Sec.Header.PointerToRelocations && 651 "Section::PointerToRelocations is insane!"); 652 653 if (Sec.Relocations.size() >= 0xffff) { 654 // In case of overflow, write actual relocation count as first 655 // relocation. Including the synthetic reloc itself (+ 1). 656 COFF::relocation R; 657 R.VirtualAddress = Sec.Relocations.size() + 1; 658 R.SymbolTableIndex = 0; 659 R.Type = 0; 660 WriteRelocation(R); 661 } 662 663 for (const auto &Relocation : Sec.Relocations) 664 WriteRelocation(Relocation.Data); 665 } 666 667 //////////////////////////////////////////////////////////////////////////////// 668 // MCObjectWriter interface implementations 669 670 void WinCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 671 const MCAsmLayout &Layout) { 672 if (EmitAddrsigSection) { 673 AddrsigSection = Asm.getContext().getCOFFSection( 674 ".llvm_addrsig", COFF::IMAGE_SCN_LNK_REMOVE, 675 SectionKind::getMetadata()); 676 Asm.registerSection(*AddrsigSection); 677 } 678 679 if (!Asm.CGProfile.empty()) { 680 CGProfileSection = Asm.getContext().getCOFFSection( 681 ".llvm.call-graph-profile", COFF::IMAGE_SCN_LNK_REMOVE, 682 SectionKind::getMetadata()); 683 Asm.registerSection(*CGProfileSection); 684 } 685 686 // "Define" each section & symbol. This creates section & symbol 687 // entries in the staging area. 688 for (const auto &Section : Asm) 689 defineSection(static_cast<const MCSectionCOFF &>(Section)); 690 691 for (const MCSymbol &Symbol : Asm.symbols()) 692 if (!Symbol.isTemporary()) 693 DefineSymbol(Symbol, Asm, Layout); 694 } 695 696 bool WinCOFFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 697 const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, 698 bool InSet, bool IsPCRel) const { 699 // Don't drop relocations between functions, even if they are in the same text 700 // section. Multiple Visual C++ linker features depend on having the 701 // relocations present. The /INCREMENTAL flag will cause these relocations to 702 // point to thunks, and the /GUARD:CF flag assumes that it can use relocations 703 // to approximate the set of all address taken functions. LLD's implementation 704 // of /GUARD:CF also relies on the existance of these relocations. 705 uint16_t Type = cast<MCSymbolCOFF>(SymA).getType(); 706 if ((Type >> COFF::SCT_COMPLEX_TYPE_SHIFT) == COFF::IMAGE_SYM_DTYPE_FUNCTION) 707 return false; 708 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 709 InSet, IsPCRel); 710 } 711 712 void WinCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 713 const MCAsmLayout &Layout, 714 const MCFragment *Fragment, 715 const MCFixup &Fixup, MCValue Target, 716 uint64_t &FixedValue) { 717 assert(Target.getSymA() && "Relocation must reference a symbol!"); 718 719 const MCSymbol &A = Target.getSymA()->getSymbol(); 720 if (!A.isRegistered()) { 721 Asm.getContext().reportError(Fixup.getLoc(), 722 Twine("symbol '") + A.getName() + 723 "' can not be undefined"); 724 return; 725 } 726 if (A.isTemporary() && A.isUndefined()) { 727 Asm.getContext().reportError(Fixup.getLoc(), 728 Twine("assembler label '") + A.getName() + 729 "' can not be undefined"); 730 return; 731 } 732 733 MCSection *MCSec = Fragment->getParent(); 734 735 // Mark this symbol as requiring an entry in the symbol table. 736 assert(SectionMap.find(MCSec) != SectionMap.end() && 737 "Section must already have been defined in executePostLayoutBinding!"); 738 739 COFFSection *Sec = SectionMap[MCSec]; 740 const MCSymbolRefExpr *SymB = Target.getSymB(); 741 742 if (SymB) { 743 const MCSymbol *B = &SymB->getSymbol(); 744 if (!B->getFragment()) { 745 Asm.getContext().reportError( 746 Fixup.getLoc(), 747 Twine("symbol '") + B->getName() + 748 "' can not be undefined in a subtraction expression"); 749 return; 750 } 751 752 // Offset of the symbol in the section 753 int64_t OffsetOfB = Layout.getSymbolOffset(*B); 754 755 // Offset of the relocation in the section 756 int64_t OffsetOfRelocation = 757 Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 758 759 FixedValue = (OffsetOfRelocation - OffsetOfB) + Target.getConstant(); 760 } else { 761 FixedValue = Target.getConstant(); 762 } 763 764 COFFRelocation Reloc; 765 766 Reloc.Data.SymbolTableIndex = 0; 767 Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment); 768 769 // Turn relocations for temporary symbols into section relocations. 770 if (A.isTemporary()) { 771 MCSection *TargetSection = &A.getSection(); 772 assert( 773 SectionMap.find(TargetSection) != SectionMap.end() && 774 "Section must already have been defined in executePostLayoutBinding!"); 775 Reloc.Symb = SectionMap[TargetSection]->Symbol; 776 FixedValue += Layout.getSymbolOffset(A); 777 } else { 778 assert( 779 SymbolMap.find(&A) != SymbolMap.end() && 780 "Symbol must already have been defined in executePostLayoutBinding!"); 781 Reloc.Symb = SymbolMap[&A]; 782 } 783 784 ++Reloc.Symb->Relocations; 785 786 Reloc.Data.VirtualAddress += Fixup.getOffset(); 787 Reloc.Data.Type = TargetObjectWriter->getRelocType( 788 Asm.getContext(), Target, Fixup, SymB, Asm.getBackend()); 789 790 // FIXME: Can anyone explain what this does other than adjust for the size 791 // of the offset? 792 if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 && 793 Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) || 794 (Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 && 795 Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32)) 796 FixedValue += 4; 797 798 if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) { 799 switch (Reloc.Data.Type) { 800 case COFF::IMAGE_REL_ARM_ABSOLUTE: 801 case COFF::IMAGE_REL_ARM_ADDR32: 802 case COFF::IMAGE_REL_ARM_ADDR32NB: 803 case COFF::IMAGE_REL_ARM_TOKEN: 804 case COFF::IMAGE_REL_ARM_SECTION: 805 case COFF::IMAGE_REL_ARM_SECREL: 806 break; 807 case COFF::IMAGE_REL_ARM_BRANCH11: 808 case COFF::IMAGE_REL_ARM_BLX11: 809 // IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for 810 // pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid 811 // for Windows CE). 812 case COFF::IMAGE_REL_ARM_BRANCH24: 813 case COFF::IMAGE_REL_ARM_BLX24: 814 case COFF::IMAGE_REL_ARM_MOV32A: 815 // IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are 816 // only used for ARM mode code, which is documented as being unsupported 817 // by Windows on ARM. Empirical proof indicates that masm is able to 818 // generate the relocations however the rest of the MSVC toolchain is 819 // unable to handle it. 820 llvm_unreachable("unsupported relocation"); 821 break; 822 case COFF::IMAGE_REL_ARM_MOV32T: 823 break; 824 case COFF::IMAGE_REL_ARM_BRANCH20T: 825 case COFF::IMAGE_REL_ARM_BRANCH24T: 826 case COFF::IMAGE_REL_ARM_BLX23T: 827 // IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all 828 // perform a 4 byte adjustment to the relocation. Relative branches are 829 // offset by 4 on ARM, however, because there is no RELA relocations, all 830 // branches are offset by 4. 831 FixedValue = FixedValue + 4; 832 break; 833 } 834 } 835 836 // The fixed value never makes sense for section indices, ignore it. 837 if (Fixup.getKind() == FK_SecRel_2) 838 FixedValue = 0; 839 840 if (TargetObjectWriter->recordRelocation(Fixup)) 841 Sec->Relocations.push_back(Reloc); 842 } 843 844 static std::time_t getTime() { 845 std::time_t Now = time(nullptr); 846 if (Now < 0 || !isUInt<32>(Now)) 847 return UINT32_MAX; 848 return Now; 849 } 850 851 // Create .file symbols. 852 void WinCOFFObjectWriter::createFileSymbols(MCAssembler &Asm) { 853 for (const std::string &Name : Asm.getFileNames()) { 854 // round up to calculate the number of auxiliary symbols required 855 unsigned SymbolSize = UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size; 856 unsigned Count = (Name.size() + SymbolSize - 1) / SymbolSize; 857 858 COFFSymbol *File = createSymbol(".file"); 859 File->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG; 860 File->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE; 861 File->Aux.resize(Count); 862 863 unsigned Offset = 0; 864 unsigned Length = Name.size(); 865 for (auto &Aux : File->Aux) { 866 Aux.AuxType = ATFile; 867 868 if (Length > SymbolSize) { 869 memcpy(&Aux.Aux, Name.c_str() + Offset, SymbolSize); 870 Length = Length - SymbolSize; 871 } else { 872 memcpy(&Aux.Aux, Name.c_str() + Offset, Length); 873 memset((char *)&Aux.Aux + Length, 0, SymbolSize - Length); 874 break; 875 } 876 877 Offset += SymbolSize; 878 } 879 } 880 } 881 882 void WinCOFFObjectWriter::setWeakDefaultNames() { 883 if (WeakDefaults.empty()) 884 return; 885 886 // If multiple object files use a weak symbol (either with a regular 887 // defined default, or an absolute zero symbol as default), the defaults 888 // cause duplicate definitions unless their names are made unique. Look 889 // for a defined extern symbol, that isn't comdat - that should be unique 890 // unless there are other duplicate definitions. And if none is found, 891 // allow picking a comdat symbol, as that's still better than nothing. 892 893 COFFSymbol *Unique = nullptr; 894 for (bool AllowComdat : {false, true}) { 895 for (auto &Sym : Symbols) { 896 // Don't include the names of the defaults themselves 897 if (WeakDefaults.count(Sym.get())) 898 continue; 899 // Only consider external symbols 900 if (Sym->Data.StorageClass != COFF::IMAGE_SYM_CLASS_EXTERNAL) 901 continue; 902 // Only consider symbols defined in a section or that are absolute 903 if (!Sym->Section && Sym->Data.SectionNumber != COFF::IMAGE_SYM_ABSOLUTE) 904 continue; 905 if (!AllowComdat && Sym->Section && 906 Sym->Section->Header.Characteristics & COFF::IMAGE_SCN_LNK_COMDAT) 907 continue; 908 Unique = Sym.get(); 909 break; 910 } 911 if (Unique) 912 break; 913 } 914 // If we didn't find any unique symbol to use for the names, just skip this. 915 if (!Unique) 916 return; 917 for (auto *Sym : WeakDefaults) { 918 Sym->Name.append("."); 919 Sym->Name.append(Unique->Name); 920 } 921 } 922 923 static bool isAssociative(const COFFSection &Section) { 924 return Section.Symbol->Aux[0].Aux.SectionDefinition.Selection == 925 COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE; 926 } 927 928 void WinCOFFObjectWriter::assignSectionNumbers() { 929 size_t I = 1; 930 auto Assign = [&](COFFSection &Section) { 931 Section.Number = I; 932 Section.Symbol->Data.SectionNumber = I; 933 Section.Symbol->Aux[0].Aux.SectionDefinition.Number = I; 934 ++I; 935 }; 936 937 // Although it is not explicitly requested by the Microsoft COFF spec, 938 // we should avoid emitting forward associative section references, 939 // because MSVC link.exe as of 2017 cannot handle that. 940 for (const std::unique_ptr<COFFSection> &Section : Sections) 941 if (!isAssociative(*Section)) 942 Assign(*Section); 943 for (const std::unique_ptr<COFFSection> &Section : Sections) 944 if (isAssociative(*Section)) 945 Assign(*Section); 946 } 947 948 // Assign file offsets to COFF object file structures. 949 void WinCOFFObjectWriter::assignFileOffsets(MCAssembler &Asm, 950 const MCAsmLayout &Layout) { 951 unsigned Offset = W.OS.tell(); 952 953 Offset += UseBigObj ? COFF::Header32Size : COFF::Header16Size; 954 Offset += COFF::SectionSize * Header.NumberOfSections; 955 956 for (const auto &Section : Asm) { 957 COFFSection *Sec = SectionMap[&Section]; 958 959 if (Sec->Number == -1) 960 continue; 961 962 Sec->Header.SizeOfRawData = Layout.getSectionAddressSize(&Section); 963 964 if (IsPhysicalSection(Sec)) { 965 Sec->Header.PointerToRawData = Offset; 966 Offset += Sec->Header.SizeOfRawData; 967 } 968 969 if (!Sec->Relocations.empty()) { 970 bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff; 971 972 if (RelocationsOverflow) { 973 // Signal overflow by setting NumberOfRelocations to max value. Actual 974 // size is found in reloc #0. Microsoft tools understand this. 975 Sec->Header.NumberOfRelocations = 0xffff; 976 } else { 977 Sec->Header.NumberOfRelocations = Sec->Relocations.size(); 978 } 979 Sec->Header.PointerToRelocations = Offset; 980 981 if (RelocationsOverflow) { 982 // Reloc #0 will contain actual count, so make room for it. 983 Offset += COFF::RelocationSize; 984 } 985 986 Offset += COFF::RelocationSize * Sec->Relocations.size(); 987 988 for (auto &Relocation : Sec->Relocations) { 989 assert(Relocation.Symb->getIndex() != -1); 990 Relocation.Data.SymbolTableIndex = Relocation.Symb->getIndex(); 991 } 992 } 993 994 assert(Sec->Symbol->Aux.size() == 1 && 995 "Section's symbol must have one aux!"); 996 AuxSymbol &Aux = Sec->Symbol->Aux[0]; 997 assert(Aux.AuxType == ATSectionDefinition && 998 "Section's symbol's aux symbol must be a Section Definition!"); 999 Aux.Aux.SectionDefinition.Length = Sec->Header.SizeOfRawData; 1000 Aux.Aux.SectionDefinition.NumberOfRelocations = 1001 Sec->Header.NumberOfRelocations; 1002 Aux.Aux.SectionDefinition.NumberOfLinenumbers = 1003 Sec->Header.NumberOfLineNumbers; 1004 } 1005 1006 Header.PointerToSymbolTable = Offset; 1007 } 1008 1009 uint64_t WinCOFFObjectWriter::writeObject(MCAssembler &Asm, 1010 const MCAsmLayout &Layout) { 1011 uint64_t StartOffset = W.OS.tell(); 1012 1013 if (Sections.size() > INT32_MAX) 1014 report_fatal_error( 1015 "PE COFF object files can't have more than 2147483647 sections"); 1016 1017 UseBigObj = Sections.size() > COFF::MaxNumberOfSections16; 1018 Header.NumberOfSections = Sections.size(); 1019 Header.NumberOfSymbols = 0; 1020 1021 setWeakDefaultNames(); 1022 assignSectionNumbers(); 1023 createFileSymbols(Asm); 1024 1025 for (auto &Symbol : Symbols) { 1026 // Update section number & offset for symbols that have them. 1027 if (Symbol->Section) 1028 Symbol->Data.SectionNumber = Symbol->Section->Number; 1029 Symbol->setIndex(Header.NumberOfSymbols++); 1030 // Update auxiliary symbol info. 1031 Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size(); 1032 Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols; 1033 } 1034 1035 // Build string table. 1036 for (const auto &S : Sections) 1037 if (S->Name.size() > COFF::NameSize) 1038 Strings.add(S->Name); 1039 for (const auto &S : Symbols) 1040 if (S->Name.size() > COFF::NameSize) 1041 Strings.add(S->Name); 1042 Strings.finalize(); 1043 1044 // Set names. 1045 for (const auto &S : Sections) 1046 SetSectionName(*S); 1047 for (auto &S : Symbols) 1048 SetSymbolName(*S); 1049 1050 // Fixup weak external references. 1051 for (auto &Symbol : Symbols) { 1052 if (Symbol->Other) { 1053 assert(Symbol->getIndex() != -1); 1054 assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!"); 1055 assert(Symbol->Aux[0].AuxType == ATWeakExternal && 1056 "Symbol's aux symbol must be a Weak External!"); 1057 Symbol->Aux[0].Aux.WeakExternal.TagIndex = Symbol->Other->getIndex(); 1058 } 1059 } 1060 1061 // Fixup associative COMDAT sections. 1062 for (auto &Section : Sections) { 1063 if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection != 1064 COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) 1065 continue; 1066 1067 const MCSectionCOFF &MCSec = *Section->MCSection; 1068 const MCSymbol *AssocMCSym = MCSec.getCOMDATSymbol(); 1069 assert(AssocMCSym); 1070 1071 // It's an error to try to associate with an undefined symbol or a symbol 1072 // without a section. 1073 if (!AssocMCSym->isInSection()) { 1074 Asm.getContext().reportError( 1075 SMLoc(), Twine("cannot make section ") + MCSec.getName() + 1076 Twine(" associative with sectionless symbol ") + 1077 AssocMCSym->getName()); 1078 continue; 1079 } 1080 1081 const auto *AssocMCSec = cast<MCSectionCOFF>(&AssocMCSym->getSection()); 1082 assert(SectionMap.count(AssocMCSec)); 1083 COFFSection *AssocSec = SectionMap[AssocMCSec]; 1084 1085 // Skip this section if the associated section is unused. 1086 if (AssocSec->Number == -1) 1087 continue; 1088 1089 Section->Symbol->Aux[0].Aux.SectionDefinition.Number = AssocSec->Number; 1090 } 1091 1092 // Create the contents of the .llvm_addrsig section. 1093 if (EmitAddrsigSection) { 1094 auto Frag = new MCDataFragment(AddrsigSection); 1095 Frag->setLayoutOrder(0); 1096 raw_svector_ostream OS(Frag->getContents()); 1097 for (const MCSymbol *S : AddrsigSyms) { 1098 if (!S->isTemporary()) { 1099 encodeULEB128(S->getIndex(), OS); 1100 continue; 1101 } 1102 1103 MCSection *TargetSection = &S->getSection(); 1104 assert(SectionMap.find(TargetSection) != SectionMap.end() && 1105 "Section must already have been defined in " 1106 "executePostLayoutBinding!"); 1107 encodeULEB128(SectionMap[TargetSection]->Symbol->getIndex(), OS); 1108 } 1109 } 1110 1111 // Create the contents of the .llvm.call-graph-profile section. 1112 if (CGProfileSection) { 1113 auto *Frag = new MCDataFragment(CGProfileSection); 1114 Frag->setLayoutOrder(0); 1115 raw_svector_ostream OS(Frag->getContents()); 1116 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1117 uint32_t FromIndex = CGPE.From->getSymbol().getIndex(); 1118 uint32_t ToIndex = CGPE.To->getSymbol().getIndex(); 1119 support::endian::write(OS, FromIndex, W.Endian); 1120 support::endian::write(OS, ToIndex, W.Endian); 1121 support::endian::write(OS, CGPE.Count, W.Endian); 1122 } 1123 } 1124 1125 assignFileOffsets(Asm, Layout); 1126 1127 // MS LINK expects to be able to use this timestamp to implement their 1128 // /INCREMENTAL feature. 1129 if (Asm.isIncrementalLinkerCompatible()) { 1130 Header.TimeDateStamp = getTime(); 1131 } else { 1132 // Have deterministic output if /INCREMENTAL isn't needed. Also matches GNU. 1133 Header.TimeDateStamp = 0; 1134 } 1135 1136 // Write it all to disk... 1137 WriteFileHeader(Header); 1138 writeSectionHeaders(); 1139 1140 // Write section contents. 1141 sections::iterator I = Sections.begin(); 1142 sections::iterator IE = Sections.end(); 1143 MCAssembler::iterator J = Asm.begin(); 1144 MCAssembler::iterator JE = Asm.end(); 1145 for (; I != IE && J != JE; ++I, ++J) 1146 writeSection(Asm, Layout, **I, *J); 1147 1148 assert(W.OS.tell() == Header.PointerToSymbolTable && 1149 "Header::PointerToSymbolTable is insane!"); 1150 1151 // Write a symbol table. 1152 for (auto &Symbol : Symbols) 1153 if (Symbol->getIndex() != -1) 1154 WriteSymbol(*Symbol); 1155 1156 // Write a string table, which completes the entire COFF file. 1157 Strings.write(W.OS); 1158 1159 return W.OS.tell() - StartOffset; 1160 } 1161 1162 MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) 1163 : Machine(Machine_) {} 1164 1165 // Pin the vtable to this file. 1166 void MCWinCOFFObjectTargetWriter::anchor() {} 1167 1168 //------------------------------------------------------------------------------ 1169 // WinCOFFObjectWriter factory function 1170 1171 std::unique_ptr<MCObjectWriter> llvm::createWinCOFFObjectWriter( 1172 std::unique_ptr<MCWinCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) { 1173 return std::make_unique<WinCOFFObjectWriter>(std::move(MOTW), OS); 1174 } 1175