1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCCodeEmitter.h" 20 #include "llvm/MC/MCCodeView.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCFixup.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCFragment.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCObjectWriter.h" 29 #include "llvm/MC/MCSection.h" 30 #include "llvm/MC/MCSectionELF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Alignment.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/EndianStream.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <cstring> 44 #include <tuple> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "assembler" 50 51 namespace { 52 namespace stats { 53 54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 55 STATISTIC(EmittedRelaxableFragments, 56 "Number of emitted assembler fragments - relaxable"); 57 STATISTIC(EmittedDataFragments, 58 "Number of emitted assembler fragments - data"); 59 STATISTIC(EmittedCompactEncodedInstFragments, 60 "Number of emitted assembler fragments - compact encoded inst"); 61 STATISTIC(EmittedAlignFragments, 62 "Number of emitted assembler fragments - align"); 63 STATISTIC(EmittedFillFragments, 64 "Number of emitted assembler fragments - fill"); 65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 67 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 68 STATISTIC(FragmentLayouts, "Number of fragment layouts"); 69 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 70 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 71 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 72 73 } // end namespace stats 74 } // end anonymous namespace 75 76 // FIXME FIXME FIXME: There are number of places in this file where we convert 77 // what is a 64-bit assembler value used for computation into a value in the 78 // object file, which may truncate it. We should detect that truncation where 79 // invalid and report errors back. 80 81 /* *** */ 82 83 MCAssembler::MCAssembler(MCContext &Context, 84 std::unique_ptr<MCAsmBackend> Backend, 85 std::unique_ptr<MCCodeEmitter> Emitter, 86 std::unique_ptr<MCObjectWriter> Writer) 87 : Context(Context), Backend(std::move(Backend)), 88 Emitter(std::move(Emitter)), Writer(std::move(Writer)), 89 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), 90 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { 91 VersionInfo.Major = 0; // Major version == 0 for "none specified" 92 } 93 94 MCAssembler::~MCAssembler() = default; 95 96 void MCAssembler::reset() { 97 Sections.clear(); 98 Symbols.clear(); 99 IndirectSymbols.clear(); 100 DataRegions.clear(); 101 LinkerOptions.clear(); 102 FileNames.clear(); 103 ThumbFuncs.clear(); 104 BundleAlignSize = 0; 105 RelaxAll = false; 106 SubsectionsViaSymbols = false; 107 IncrementalLinkerCompatible = false; 108 ELFHeaderEFlags = 0; 109 LOHContainer.reset(); 110 VersionInfo.Major = 0; 111 VersionInfo.SDKVersion = VersionTuple(); 112 113 // reset objects owned by us 114 if (getBackendPtr()) 115 getBackendPtr()->reset(); 116 if (getEmitterPtr()) 117 getEmitterPtr()->reset(); 118 if (getWriterPtr()) 119 getWriterPtr()->reset(); 120 getLOHContainer().reset(); 121 } 122 123 bool MCAssembler::registerSection(MCSection &Section) { 124 if (Section.isRegistered()) 125 return false; 126 Sections.push_back(&Section); 127 Section.setIsRegistered(true); 128 return true; 129 } 130 131 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 132 if (ThumbFuncs.count(Symbol)) 133 return true; 134 135 if (!Symbol->isVariable()) 136 return false; 137 138 const MCExpr *Expr = Symbol->getVariableValue(); 139 140 MCValue V; 141 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 142 return false; 143 144 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 145 return false; 146 147 const MCSymbolRefExpr *Ref = V.getSymA(); 148 if (!Ref) 149 return false; 150 151 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 152 return false; 153 154 const MCSymbol &Sym = Ref->getSymbol(); 155 if (!isThumbFunc(&Sym)) 156 return false; 157 158 ThumbFuncs.insert(Symbol); // Cache it. 159 return true; 160 } 161 162 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { 163 // Non-temporary labels should always be visible to the linker. 164 if (!Symbol.isTemporary()) 165 return true; 166 167 if (Symbol.isUsedInReloc()) 168 return true; 169 170 return false; 171 } 172 173 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { 174 // Linker visible symbols define atoms. 175 if (isSymbolLinkerVisible(S)) 176 return &S; 177 178 // Absolute and undefined symbols have no defining atom. 179 if (!S.isInSection()) 180 return nullptr; 181 182 // Non-linker visible symbols in sections which can't be atomized have no 183 // defining atom. 184 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( 185 *S.getFragment()->getParent())) 186 return nullptr; 187 188 // Otherwise, return the atom for the containing fragment. 189 return S.getFragment()->getAtom(); 190 } 191 192 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, 193 const MCFixup &Fixup, const MCFragment *DF, 194 MCValue &Target, uint64_t &Value, 195 bool &WasForced) const { 196 ++stats::evaluateFixup; 197 198 // FIXME: This code has some duplication with recordRelocation. We should 199 // probably merge the two into a single callback that tries to evaluate a 200 // fixup and records a relocation if one is needed. 201 202 // On error claim to have completely evaluated the fixup, to prevent any 203 // further processing from being done. 204 const MCExpr *Expr = Fixup.getValue(); 205 MCContext &Ctx = getContext(); 206 Value = 0; 207 WasForced = false; 208 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { 209 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 210 return true; 211 } 212 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 213 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 214 Ctx.reportError(Fixup.getLoc(), 215 "unsupported subtraction of qualified symbol"); 216 return true; 217 } 218 } 219 220 assert(getBackendPtr() && "Expected assembler backend"); 221 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 222 MCFixupKindInfo::FKF_IsTarget; 223 224 if (IsTarget) 225 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target, 226 Value, WasForced); 227 228 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 229 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 230 MCFixupKindInfo::FKF_IsPCRel; 231 232 bool IsResolved = false; 233 if (IsPCRel) { 234 if (Target.getSymB()) { 235 IsResolved = false; 236 } else if (!Target.getSymA()) { 237 IsResolved = false; 238 } else { 239 const MCSymbolRefExpr *A = Target.getSymA(); 240 const MCSymbol &SA = A->getSymbol(); 241 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 242 IsResolved = false; 243 } else if (auto *Writer = getWriterPtr()) { 244 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 245 Writer->isSymbolRefDifferenceFullyResolvedImpl( 246 *this, SA, *DF, false, true); 247 } 248 } 249 } else { 250 IsResolved = Target.isAbsolute(); 251 } 252 253 Value = Target.getConstant(); 254 255 if (const MCSymbolRefExpr *A = Target.getSymA()) { 256 const MCSymbol &Sym = A->getSymbol(); 257 if (Sym.isDefined()) 258 Value += Layout.getSymbolOffset(Sym); 259 } 260 if (const MCSymbolRefExpr *B = Target.getSymB()) { 261 const MCSymbol &Sym = B->getSymbol(); 262 if (Sym.isDefined()) 263 Value -= Layout.getSymbolOffset(Sym); 264 } 265 266 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 267 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 268 assert((ShouldAlignPC ? IsPCRel : true) && 269 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 270 271 if (IsPCRel) { 272 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); 273 274 // A number of ARM fixups in Thumb mode require that the effective PC 275 // address be determined as the 32-bit aligned version of the actual offset. 276 if (ShouldAlignPC) Offset &= ~0x3; 277 Value -= Offset; 278 } 279 280 // Let the backend force a relocation if needed. 281 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { 282 IsResolved = false; 283 WasForced = true; 284 } 285 286 return IsResolved; 287 } 288 289 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, 290 const MCFragment &F) const { 291 assert(getBackendPtr() && "Requires assembler backend"); 292 switch (F.getKind()) { 293 case MCFragment::FT_Data: 294 return cast<MCDataFragment>(F).getContents().size(); 295 case MCFragment::FT_Relaxable: 296 return cast<MCRelaxableFragment>(F).getContents().size(); 297 case MCFragment::FT_CompactEncodedInst: 298 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 299 case MCFragment::FT_Fill: { 300 auto &FF = cast<MCFillFragment>(F); 301 int64_t NumValues = 0; 302 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) { 303 getContext().reportError(FF.getLoc(), 304 "expected assembly-time absolute expression"); 305 return 0; 306 } 307 int64_t Size = NumValues * FF.getValueSize(); 308 if (Size < 0) { 309 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 310 return 0; 311 } 312 return Size; 313 } 314 315 case MCFragment::FT_Nops: 316 return cast<MCNopsFragment>(F).getNumBytes(); 317 318 case MCFragment::FT_LEB: 319 return cast<MCLEBFragment>(F).getContents().size(); 320 321 case MCFragment::FT_BoundaryAlign: 322 return cast<MCBoundaryAlignFragment>(F).getSize(); 323 324 case MCFragment::FT_SymbolId: 325 return 4; 326 327 case MCFragment::FT_Align: { 328 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 329 unsigned Offset = Layout.getFragmentOffset(&AF); 330 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment())); 331 332 // Insert extra Nops for code alignment if the target define 333 // shouldInsertExtraNopBytesForCodeAlign target hook. 334 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() && 335 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 336 return Size; 337 338 // If we are padding with nops, force the padding to be larger than the 339 // minimum nop size. 340 if (Size > 0 && AF.hasEmitNops()) { 341 while (Size % getBackend().getMinimumNopSize()) 342 Size += AF.getAlignment(); 343 } 344 if (Size > AF.getMaxBytesToEmit()) 345 return 0; 346 return Size; 347 } 348 349 case MCFragment::FT_Org: { 350 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 351 MCValue Value; 352 if (!OF.getOffset().evaluateAsValue(Value, Layout)) { 353 getContext().reportError(OF.getLoc(), 354 "expected assembly-time absolute expression"); 355 return 0; 356 } 357 358 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); 359 int64_t TargetLocation = Value.getConstant(); 360 if (const MCSymbolRefExpr *A = Value.getSymA()) { 361 uint64_t Val; 362 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { 363 getContext().reportError(OF.getLoc(), "expected absolute expression"); 364 return 0; 365 } 366 TargetLocation += Val; 367 } 368 int64_t Size = TargetLocation - FragmentOffset; 369 if (Size < 0 || Size >= 0x40000000) { 370 getContext().reportError( 371 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 372 "' (at offset '" + Twine(FragmentOffset) + "')"); 373 return 0; 374 } 375 return Size; 376 } 377 378 case MCFragment::FT_Dwarf: 379 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 380 case MCFragment::FT_DwarfFrame: 381 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 382 case MCFragment::FT_CVInlineLines: 383 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 384 case MCFragment::FT_CVDefRange: 385 return cast<MCCVDefRangeFragment>(F).getContents().size(); 386 case MCFragment::FT_PseudoProbe: 387 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 388 case MCFragment::FT_Dummy: 389 llvm_unreachable("Should not have been added"); 390 } 391 392 llvm_unreachable("invalid fragment kind"); 393 } 394 395 void MCAsmLayout::layoutFragment(MCFragment *F) { 396 MCFragment *Prev = F->getPrevNode(); 397 398 // We should never try to recompute something which is valid. 399 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); 400 // We should never try to compute the fragment layout if its predecessor 401 // isn't valid. 402 assert((!Prev || isFragmentValid(Prev)) && 403 "Attempt to compute fragment before its predecessor!"); 404 405 assert(!F->IsBeingLaidOut && "Already being laid out!"); 406 F->IsBeingLaidOut = true; 407 408 ++stats::FragmentLayouts; 409 410 // Compute fragment offset and size. 411 if (Prev) 412 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); 413 else 414 F->Offset = 0; 415 F->IsBeingLaidOut = false; 416 LastValidFragment[F->getParent()] = F; 417 418 // If bundling is enabled and this fragment has instructions in it, it has to 419 // obey the bundling restrictions. With padding, we'll have: 420 // 421 // 422 // BundlePadding 423 // ||| 424 // ------------------------------------- 425 // Prev |##########| F | 426 // ------------------------------------- 427 // ^ 428 // | 429 // F->Offset 430 // 431 // The fragment's offset will point to after the padding, and its computed 432 // size won't include the padding. 433 // 434 // When the -mc-relax-all flag is used, we optimize bundling by writting the 435 // padding directly into fragments when the instructions are emitted inside 436 // the streamer. When the fragment is larger than the bundle size, we need to 437 // ensure that it's bundle aligned. This means that if we end up with 438 // multiple fragments, we must emit bundle padding between fragments. 439 // 440 // ".align N" is an example of a directive that introduces multiple 441 // fragments. We could add a special case to handle ".align N" by emitting 442 // within-fragment padding (which would produce less padding when N is less 443 // than the bundle size), but for now we don't. 444 // 445 if (Assembler.isBundlingEnabled() && F->hasInstructions()) { 446 assert(isa<MCEncodedFragment>(F) && 447 "Only MCEncodedFragment implementations have instructions"); 448 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 449 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); 450 451 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) 452 report_fatal_error("Fragment can't be larger than a bundle size"); 453 454 uint64_t RequiredBundlePadding = 455 computeBundlePadding(Assembler, EF, EF->Offset, FSize); 456 if (RequiredBundlePadding > UINT8_MAX) 457 report_fatal_error("Padding cannot exceed 255 bytes"); 458 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 459 EF->Offset += RequiredBundlePadding; 460 } 461 } 462 463 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { 464 bool New = !Symbol.isRegistered(); 465 if (Created) 466 *Created = New; 467 if (New) { 468 Symbol.setIsRegistered(true); 469 Symbols.push_back(&Symbol); 470 } 471 } 472 473 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 474 const MCEncodedFragment &EF, 475 uint64_t FSize) const { 476 assert(getBackendPtr() && "Expected assembler backend"); 477 // Should NOP padding be written out before this fragment? 478 unsigned BundlePadding = EF.getBundlePadding(); 479 if (BundlePadding > 0) { 480 assert(isBundlingEnabled() && 481 "Writing bundle padding with disabled bundling"); 482 assert(EF.hasInstructions() && 483 "Writing bundle padding for a fragment without instructions"); 484 485 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 486 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 487 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 488 // If the padding itself crosses a bundle boundary, it must be emitted 489 // in 2 pieces, since even nop instructions must not cross boundaries. 490 // v--------------v <- BundleAlignSize 491 // v---------v <- BundlePadding 492 // ---------------------------- 493 // | Prev |####|####| F | 494 // ---------------------------- 495 // ^-------------------^ <- TotalLength 496 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 497 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 498 report_fatal_error("unable to write NOP sequence of " + 499 Twine(DistanceToBoundary) + " bytes"); 500 BundlePadding -= DistanceToBoundary; 501 } 502 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 503 report_fatal_error("unable to write NOP sequence of " + 504 Twine(BundlePadding) + " bytes"); 505 } 506 } 507 508 /// Write the fragment \p F to the output file. 509 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 510 const MCAsmLayout &Layout, const MCFragment &F) { 511 // FIXME: Embed in fragments instead? 512 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); 513 514 support::endianness Endian = Asm.getBackend().Endian; 515 516 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 517 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 518 519 // This variable (and its dummy usage) is to participate in the assert at 520 // the end of the function. 521 uint64_t Start = OS.tell(); 522 (void) Start; 523 524 ++stats::EmittedFragments; 525 526 switch (F.getKind()) { 527 case MCFragment::FT_Align: { 528 ++stats::EmittedAlignFragments; 529 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 530 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 531 532 uint64_t Count = FragmentSize / AF.getValueSize(); 533 534 // FIXME: This error shouldn't actually occur (the front end should emit 535 // multiple .align directives to enforce the semantics it wants), but is 536 // severe enough that we want to report it. How to handle this? 537 if (Count * AF.getValueSize() != FragmentSize) 538 report_fatal_error("undefined .align directive, value size '" + 539 Twine(AF.getValueSize()) + 540 "' is not a divisor of padding size '" + 541 Twine(FragmentSize) + "'"); 542 543 // See if we are aligning with nops, and if so do that first to try to fill 544 // the Count bytes. Then if that did not fill any bytes or there are any 545 // bytes left to fill use the Value and ValueSize to fill the rest. 546 // If we are aligning with nops, ask that target to emit the right data. 547 if (AF.hasEmitNops()) { 548 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 549 report_fatal_error("unable to write nop sequence of " + 550 Twine(Count) + " bytes"); 551 break; 552 } 553 554 // Otherwise, write out in multiples of the value size. 555 for (uint64_t i = 0; i != Count; ++i) { 556 switch (AF.getValueSize()) { 557 default: llvm_unreachable("Invalid size!"); 558 case 1: OS << char(AF.getValue()); break; 559 case 2: 560 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 561 break; 562 case 4: 563 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 564 break; 565 case 8: 566 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 567 break; 568 } 569 } 570 break; 571 } 572 573 case MCFragment::FT_Data: 574 ++stats::EmittedDataFragments; 575 OS << cast<MCDataFragment>(F).getContents(); 576 break; 577 578 case MCFragment::FT_Relaxable: 579 ++stats::EmittedRelaxableFragments; 580 OS << cast<MCRelaxableFragment>(F).getContents(); 581 break; 582 583 case MCFragment::FT_CompactEncodedInst: 584 ++stats::EmittedCompactEncodedInstFragments; 585 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 586 break; 587 588 case MCFragment::FT_Fill: { 589 ++stats::EmittedFillFragments; 590 const MCFillFragment &FF = cast<MCFillFragment>(F); 591 uint64_t V = FF.getValue(); 592 unsigned VSize = FF.getValueSize(); 593 const unsigned MaxChunkSize = 16; 594 char Data[MaxChunkSize]; 595 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 596 // Duplicate V into Data as byte vector to reduce number of 597 // writes done. As such, do endian conversion here. 598 for (unsigned I = 0; I != VSize; ++I) { 599 unsigned index = Endian == support::little ? I : (VSize - I - 1); 600 Data[I] = uint8_t(V >> (index * 8)); 601 } 602 for (unsigned I = VSize; I < MaxChunkSize; ++I) 603 Data[I] = Data[I - VSize]; 604 605 // Set to largest multiple of VSize in Data. 606 const unsigned NumPerChunk = MaxChunkSize / VSize; 607 // Set ChunkSize to largest multiple of VSize in Data 608 const unsigned ChunkSize = VSize * NumPerChunk; 609 610 // Do copies by chunk. 611 StringRef Ref(Data, ChunkSize); 612 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 613 OS << Ref; 614 615 // do remainder if needed. 616 unsigned TrailingCount = FragmentSize % ChunkSize; 617 if (TrailingCount) 618 OS.write(Data, TrailingCount); 619 break; 620 } 621 622 case MCFragment::FT_Nops: { 623 ++stats::EmittedNopsFragments; 624 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 625 626 int64_t NumBytes = NF.getNumBytes(); 627 int64_t ControlledNopLength = NF.getControlledNopLength(); 628 int64_t MaximumNopLength = 629 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 630 631 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 632 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 633 634 if (ControlledNopLength > MaximumNopLength) { 635 Asm.getContext().reportError(NF.getLoc(), 636 "illegal NOP size " + 637 std::to_string(ControlledNopLength) + 638 ". (expected within [0, " + 639 std::to_string(MaximumNopLength) + "])"); 640 // Clamp the NOP length as reportError does not stop the execution 641 // immediately. 642 ControlledNopLength = MaximumNopLength; 643 } 644 645 // Use maximum value if the size of each NOP is not specified 646 if (!ControlledNopLength) 647 ControlledNopLength = MaximumNopLength; 648 649 while (NumBytes) { 650 uint64_t NumBytesToEmit = 651 (uint64_t)std::min(NumBytes, ControlledNopLength); 652 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 653 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 654 NF.getSubtargetInfo())) { 655 report_fatal_error("unable to write nop sequence of the remaining " + 656 Twine(NumBytesToEmit) + " bytes"); 657 break; 658 } 659 NumBytes -= NumBytesToEmit; 660 } 661 break; 662 } 663 664 case MCFragment::FT_LEB: { 665 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 666 OS << LF.getContents(); 667 break; 668 } 669 670 case MCFragment::FT_BoundaryAlign: { 671 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 672 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 673 report_fatal_error("unable to write nop sequence of " + 674 Twine(FragmentSize) + " bytes"); 675 break; 676 } 677 678 case MCFragment::FT_SymbolId: { 679 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 680 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 681 break; 682 } 683 684 case MCFragment::FT_Org: { 685 ++stats::EmittedOrgFragments; 686 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 687 688 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 689 OS << char(OF.getValue()); 690 691 break; 692 } 693 694 case MCFragment::FT_Dwarf: { 695 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 696 OS << OF.getContents(); 697 break; 698 } 699 case MCFragment::FT_DwarfFrame: { 700 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 701 OS << CF.getContents(); 702 break; 703 } 704 case MCFragment::FT_CVInlineLines: { 705 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 706 OS << OF.getContents(); 707 break; 708 } 709 case MCFragment::FT_CVDefRange: { 710 const auto &DRF = cast<MCCVDefRangeFragment>(F); 711 OS << DRF.getContents(); 712 break; 713 } 714 case MCFragment::FT_PseudoProbe: { 715 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 716 OS << PF.getContents(); 717 break; 718 } 719 case MCFragment::FT_Dummy: 720 llvm_unreachable("Should not have been added"); 721 } 722 723 assert(OS.tell() - Start == FragmentSize && 724 "The stream should advance by fragment size"); 725 } 726 727 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, 728 const MCAsmLayout &Layout) const { 729 assert(getBackendPtr() && "Expected assembler backend"); 730 731 // Ignore virtual sections. 732 if (Sec->isVirtualSection()) { 733 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); 734 735 // Check that contents are only things legal inside a virtual section. 736 for (const MCFragment &F : *Sec) { 737 switch (F.getKind()) { 738 default: llvm_unreachable("Invalid fragment in virtual section!"); 739 case MCFragment::FT_Data: { 740 // Check that we aren't trying to write a non-zero contents (or fixups) 741 // into a virtual section. This is to support clients which use standard 742 // directives to fill the contents of virtual sections. 743 const MCDataFragment &DF = cast<MCDataFragment>(F); 744 if (DF.fixup_begin() != DF.fixup_end()) 745 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 746 " section '" + Sec->getName() + 747 "' cannot have fixups"); 748 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 749 if (DF.getContents()[i]) { 750 getContext().reportError(SMLoc(), 751 Sec->getVirtualSectionKind() + 752 " section '" + Sec->getName() + 753 "' cannot have non-zero initializers"); 754 break; 755 } 756 break; 757 } 758 case MCFragment::FT_Align: 759 // Check that we aren't trying to write a non-zero value into a virtual 760 // section. 761 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 762 cast<MCAlignFragment>(F).getValue() == 0) && 763 "Invalid align in virtual section!"); 764 break; 765 case MCFragment::FT_Fill: 766 assert((cast<MCFillFragment>(F).getValue() == 0) && 767 "Invalid fill in virtual section!"); 768 break; 769 case MCFragment::FT_Org: 770 break; 771 } 772 } 773 774 return; 775 } 776 777 uint64_t Start = OS.tell(); 778 (void)Start; 779 780 for (const MCFragment &F : *Sec) 781 writeFragment(OS, *this, Layout, F); 782 783 assert(getContext().hadError() || 784 OS.tell() - Start == Layout.getSectionAddressSize(Sec)); 785 } 786 787 std::tuple<MCValue, uint64_t, bool> 788 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, 789 const MCFixup &Fixup) { 790 // Evaluate the fixup. 791 MCValue Target; 792 uint64_t FixedValue; 793 bool WasForced; 794 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, 795 WasForced); 796 if (!IsResolved) { 797 // The fixup was unresolved, we need a relocation. Inform the object 798 // writer of the relocation, and give it an opportunity to adjust the 799 // fixup value if need be. 800 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); 801 } 802 return std::make_tuple(Target, FixedValue, IsResolved); 803 } 804 805 void MCAssembler::layout(MCAsmLayout &Layout) { 806 assert(getBackendPtr() && "Expected assembler backend"); 807 DEBUG_WITH_TYPE("mc-dump", { 808 errs() << "assembler backend - pre-layout\n--\n"; 809 dump(); }); 810 811 // Create dummy fragments and assign section ordinals. 812 unsigned SectionIndex = 0; 813 for (MCSection &Sec : *this) { 814 // Create dummy fragments to eliminate any empty sections, this simplifies 815 // layout. 816 if (Sec.getFragmentList().empty()) 817 new MCDataFragment(&Sec); 818 819 Sec.setOrdinal(SectionIndex++); 820 } 821 822 // Assign layout order indices to sections and fragments. 823 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { 824 MCSection *Sec = Layout.getSectionOrder()[i]; 825 Sec->setLayoutOrder(i); 826 827 unsigned FragmentIndex = 0; 828 for (MCFragment &Frag : *Sec) 829 Frag.setLayoutOrder(FragmentIndex++); 830 } 831 832 // Layout until everything fits. 833 while (layoutOnce(Layout)) { 834 if (getContext().hadError()) 835 return; 836 // Size of fragments in one section can depend on the size of fragments in 837 // another. If any fragment has changed size, we have to re-layout (and 838 // as a result possibly further relax) all. 839 for (MCSection &Sec : *this) 840 Layout.invalidateFragmentsFrom(&*Sec.begin()); 841 } 842 843 DEBUG_WITH_TYPE("mc-dump", { 844 errs() << "assembler backend - post-relaxation\n--\n"; 845 dump(); }); 846 847 // Finalize the layout, including fragment lowering. 848 finishLayout(Layout); 849 850 DEBUG_WITH_TYPE("mc-dump", { 851 errs() << "assembler backend - final-layout\n--\n"; 852 dump(); }); 853 854 // Allow the object writer a chance to perform post-layout binding (for 855 // example, to set the index fields in the symbol data). 856 getWriter().executePostLayoutBinding(*this, Layout); 857 858 // Evaluate and apply the fixups, generating relocation entries as necessary. 859 for (MCSection &Sec : *this) { 860 for (MCFragment &Frag : Sec) { 861 ArrayRef<MCFixup> Fixups; 862 MutableArrayRef<char> Contents; 863 const MCSubtargetInfo *STI = nullptr; 864 865 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 866 switch (Frag.getKind()) { 867 default: 868 continue; 869 case MCFragment::FT_Align: { 870 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 871 // Insert fixup type for code alignment if the target define 872 // shouldInsertFixupForCodeAlign target hook. 873 if (Sec.UseCodeAlign() && AF.hasEmitNops()) 874 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF); 875 continue; 876 } 877 case MCFragment::FT_Data: { 878 MCDataFragment &DF = cast<MCDataFragment>(Frag); 879 Fixups = DF.getFixups(); 880 Contents = DF.getContents(); 881 STI = DF.getSubtargetInfo(); 882 assert(!DF.hasInstructions() || STI != nullptr); 883 break; 884 } 885 case MCFragment::FT_Relaxable: { 886 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 887 Fixups = RF.getFixups(); 888 Contents = RF.getContents(); 889 STI = RF.getSubtargetInfo(); 890 assert(!RF.hasInstructions() || STI != nullptr); 891 break; 892 } 893 case MCFragment::FT_CVDefRange: { 894 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 895 Fixups = CF.getFixups(); 896 Contents = CF.getContents(); 897 break; 898 } 899 case MCFragment::FT_Dwarf: { 900 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 901 Fixups = DF.getFixups(); 902 Contents = DF.getContents(); 903 break; 904 } 905 case MCFragment::FT_DwarfFrame: { 906 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 907 Fixups = DF.getFixups(); 908 Contents = DF.getContents(); 909 break; 910 } 911 case MCFragment::FT_PseudoProbe: { 912 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 913 Fixups = PF.getFixups(); 914 Contents = PF.getContents(); 915 break; 916 } 917 } 918 for (const MCFixup &Fixup : Fixups) { 919 uint64_t FixedValue; 920 bool IsResolved; 921 MCValue Target; 922 std::tie(Target, FixedValue, IsResolved) = 923 handleFixup(Layout, Frag, Fixup); 924 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 925 IsResolved, STI); 926 } 927 } 928 } 929 } 930 931 void MCAssembler::Finish() { 932 // Create the layout object. 933 MCAsmLayout Layout(*this); 934 layout(Layout); 935 936 // Write the object file. 937 stats::ObjectBytes += getWriter().writeObject(*this, Layout); 938 } 939 940 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 941 const MCRelaxableFragment *DF, 942 const MCAsmLayout &Layout) const { 943 assert(getBackendPtr() && "Expected assembler backend"); 944 MCValue Target; 945 uint64_t Value; 946 bool WasForced; 947 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); 948 if (Target.getSymA() && 949 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 950 Fixup.getKind() == FK_Data_1) 951 return false; 952 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, 953 Layout, WasForced); 954 } 955 956 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, 957 const MCAsmLayout &Layout) const { 958 assert(getBackendPtr() && "Expected assembler backend"); 959 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 960 // are intentionally pushing out inst fragments, or because we relaxed a 961 // previous instruction to one that doesn't need relaxation. 962 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 963 return false; 964 965 for (const MCFixup &Fixup : F->getFixups()) 966 if (fixupNeedsRelaxation(Fixup, F, Layout)) 967 return true; 968 969 return false; 970 } 971 972 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, 973 MCRelaxableFragment &F) { 974 assert(getEmitterPtr() && 975 "Expected CodeEmitter defined for relaxInstruction"); 976 if (!fragmentNeedsRelaxation(&F, Layout)) 977 return false; 978 979 ++stats::RelaxedInstructions; 980 981 // FIXME-PERF: We could immediately lower out instructions if we can tell 982 // they are fully resolved, to avoid retesting on later passes. 983 984 // Relax the fragment. 985 986 MCInst Relaxed = F.getInst(); 987 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 988 989 // Encode the new instruction. 990 // 991 // FIXME-PERF: If it matters, we could let the target do this. It can 992 // probably do so more efficiently in many cases. 993 SmallVector<MCFixup, 4> Fixups; 994 SmallString<256> Code; 995 raw_svector_ostream VecOS(Code); 996 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo()); 997 998 // Update the fragment. 999 F.setInst(Relaxed); 1000 F.getContents() = Code; 1001 F.getFixups() = Fixups; 1002 1003 return true; 1004 } 1005 1006 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { 1007 uint64_t OldSize = LF.getContents().size(); 1008 int64_t Value; 1009 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); 1010 if (!Abs) 1011 report_fatal_error("sleb128 and uleb128 expressions must be absolute"); 1012 SmallString<8> &Data = LF.getContents(); 1013 Data.clear(); 1014 raw_svector_ostream OSE(Data); 1015 // The compiler can generate EH table assembly that is impossible to assemble 1016 // without either adding padding to an LEB fragment or adding extra padding 1017 // to a later alignment fragment. To accommodate such tables, relaxation can 1018 // only increase an LEB fragment size here, not decrease it. See PR35809. 1019 if (LF.isSigned()) 1020 encodeSLEB128(Value, OSE, OldSize); 1021 else 1022 encodeULEB128(Value, OSE, OldSize); 1023 return OldSize != LF.getContents().size(); 1024 } 1025 1026 /// Check if the branch crosses the boundary. 1027 /// 1028 /// \param StartAddr start address of the fused/unfused branch. 1029 /// \param Size size of the fused/unfused branch. 1030 /// \param BoundaryAlignment alignment requirement of the branch. 1031 /// \returns true if the branch cross the boundary. 1032 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1033 Align BoundaryAlignment) { 1034 uint64_t EndAddr = StartAddr + Size; 1035 return (StartAddr >> Log2(BoundaryAlignment)) != 1036 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1037 } 1038 1039 /// Check if the branch is against the boundary. 1040 /// 1041 /// \param StartAddr start address of the fused/unfused branch. 1042 /// \param Size size of the fused/unfused branch. 1043 /// \param BoundaryAlignment alignment requirement of the branch. 1044 /// \returns true if the branch is against the boundary. 1045 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1046 Align BoundaryAlignment) { 1047 uint64_t EndAddr = StartAddr + Size; 1048 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1049 } 1050 1051 /// Check if the branch needs padding. 1052 /// 1053 /// \param StartAddr start address of the fused/unfused branch. 1054 /// \param Size size of the fused/unfused branch. 1055 /// \param BoundaryAlignment alignment requirement of the branch. 1056 /// \returns true if the branch needs padding. 1057 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1058 Align BoundaryAlignment) { 1059 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1060 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1061 } 1062 1063 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout, 1064 MCBoundaryAlignFragment &BF) { 1065 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1066 // relaxed. 1067 if (!BF.getLastFragment()) 1068 return false; 1069 1070 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF); 1071 uint64_t AlignedSize = 0; 1072 for (const MCFragment *F = BF.getLastFragment(); F != &BF; 1073 F = F->getPrevNode()) 1074 AlignedSize += computeFragmentSize(Layout, *F); 1075 1076 Align BoundaryAlignment = BF.getAlignment(); 1077 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1078 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1079 : 0U; 1080 if (NewSize == BF.getSize()) 1081 return false; 1082 BF.setSize(NewSize); 1083 Layout.invalidateFragmentsFrom(&BF); 1084 return true; 1085 } 1086 1087 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, 1088 MCDwarfLineAddrFragment &DF) { 1089 1090 bool WasRelaxed; 1091 if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed)) 1092 return WasRelaxed; 1093 1094 MCContext &Context = Layout.getAssembler().getContext(); 1095 uint64_t OldSize = DF.getContents().size(); 1096 int64_t AddrDelta; 1097 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1098 assert(Abs && "We created a line delta with an invalid expression"); 1099 (void)Abs; 1100 int64_t LineDelta; 1101 LineDelta = DF.getLineDelta(); 1102 SmallVectorImpl<char> &Data = DF.getContents(); 1103 Data.clear(); 1104 raw_svector_ostream OSE(Data); 1105 DF.getFixups().clear(); 1106 1107 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, 1108 AddrDelta, OSE); 1109 return OldSize != Data.size(); 1110 } 1111 1112 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, 1113 MCDwarfCallFrameFragment &DF) { 1114 bool WasRelaxed; 1115 if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed)) 1116 return WasRelaxed; 1117 1118 MCContext &Context = Layout.getAssembler().getContext(); 1119 uint64_t OldSize = DF.getContents().size(); 1120 int64_t AddrDelta; 1121 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1122 assert(Abs && "We created call frame with an invalid expression"); 1123 (void) Abs; 1124 SmallVectorImpl<char> &Data = DF.getContents(); 1125 Data.clear(); 1126 raw_svector_ostream OSE(Data); 1127 DF.getFixups().clear(); 1128 1129 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); 1130 return OldSize != Data.size(); 1131 } 1132 1133 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, 1134 MCCVInlineLineTableFragment &F) { 1135 unsigned OldSize = F.getContents().size(); 1136 getContext().getCVContext().encodeInlineLineTable(Layout, F); 1137 return OldSize != F.getContents().size(); 1138 } 1139 1140 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, 1141 MCCVDefRangeFragment &F) { 1142 unsigned OldSize = F.getContents().size(); 1143 getContext().getCVContext().encodeDefRange(Layout, F); 1144 return OldSize != F.getContents().size(); 1145 } 1146 1147 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout, 1148 MCPseudoProbeAddrFragment &PF) { 1149 uint64_t OldSize = PF.getContents().size(); 1150 int64_t AddrDelta; 1151 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); 1152 assert(Abs && "We created a pseudo probe with an invalid expression"); 1153 (void)Abs; 1154 SmallVectorImpl<char> &Data = PF.getContents(); 1155 Data.clear(); 1156 raw_svector_ostream OSE(Data); 1157 PF.getFixups().clear(); 1158 1159 // AddrDelta is a signed integer 1160 encodeSLEB128(AddrDelta, OSE, OldSize); 1161 return OldSize != Data.size(); 1162 } 1163 1164 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) { 1165 switch(F.getKind()) { 1166 default: 1167 return false; 1168 case MCFragment::FT_Relaxable: 1169 assert(!getRelaxAll() && 1170 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1171 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F)); 1172 case MCFragment::FT_Dwarf: 1173 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F)); 1174 case MCFragment::FT_DwarfFrame: 1175 return relaxDwarfCallFrameFragment(Layout, 1176 cast<MCDwarfCallFrameFragment>(F)); 1177 case MCFragment::FT_LEB: 1178 return relaxLEB(Layout, cast<MCLEBFragment>(F)); 1179 case MCFragment::FT_BoundaryAlign: 1180 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F)); 1181 case MCFragment::FT_CVInlineLines: 1182 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F)); 1183 case MCFragment::FT_CVDefRange: 1184 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F)); 1185 case MCFragment::FT_PseudoProbe: 1186 return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F)); 1187 } 1188 } 1189 1190 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { 1191 // Holds the first fragment which needed relaxing during this layout. It will 1192 // remain NULL if none were relaxed. 1193 // When a fragment is relaxed, all the fragments following it should get 1194 // invalidated because their offset is going to change. 1195 MCFragment *FirstRelaxedFragment = nullptr; 1196 1197 // Attempt to relax all the fragments in the section. 1198 for (MCFragment &Frag : Sec) { 1199 // Check if this is a fragment that needs relaxation. 1200 bool RelaxedFrag = relaxFragment(Layout, Frag); 1201 if (RelaxedFrag && !FirstRelaxedFragment) 1202 FirstRelaxedFragment = &Frag; 1203 } 1204 if (FirstRelaxedFragment) { 1205 Layout.invalidateFragmentsFrom(FirstRelaxedFragment); 1206 return true; 1207 } 1208 return false; 1209 } 1210 1211 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { 1212 ++stats::RelaxationSteps; 1213 1214 bool WasRelaxed = false; 1215 for (MCSection &Sec : *this) { 1216 while (layoutSectionOnce(Layout, Sec)) 1217 WasRelaxed = true; 1218 } 1219 1220 return WasRelaxed; 1221 } 1222 1223 void MCAssembler::finishLayout(MCAsmLayout &Layout) { 1224 assert(getBackendPtr() && "Expected assembler backend"); 1225 // The layout is done. Mark every fragment as valid. 1226 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { 1227 MCSection &Section = *Layout.getSectionOrder()[i]; 1228 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin()); 1229 computeFragmentSize(Layout, *Section.getFragmentList().rbegin()); 1230 } 1231 getBackend().finishLayout(*this, Layout); 1232 } 1233 1234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1235 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1236 raw_ostream &OS = errs(); 1237 1238 OS << "<MCAssembler\n"; 1239 OS << " Sections:[\n "; 1240 for (const_iterator it = begin(), ie = end(); it != ie; ++it) { 1241 if (it != begin()) OS << ",\n "; 1242 it->dump(); 1243 } 1244 OS << "],\n"; 1245 OS << " Symbols:["; 1246 1247 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { 1248 if (it != symbol_begin()) OS << ",\n "; 1249 OS << "("; 1250 it->dump(); 1251 OS << ", Index:" << it->getIndex() << ", "; 1252 OS << ")"; 1253 } 1254 OS << "]>\n"; 1255 } 1256 #endif 1257