1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/ADT/iterator.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectWriter.h" 32 #include "llvm/MC/MCSection.h" 33 #include "llvm/MC/MCSectionELF.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/MC/MCSymbolELF.h" 36 #include "llvm/MC/MCTargetOptions.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Alignment.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/EndianStream.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Host.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <map> 56 #include <memory> 57 #include <string> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #undef DEBUG_TYPE 64 #define DEBUG_TYPE "reloc-info" 65 66 namespace { 67 68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 69 70 class ELFObjectWriter; 71 struct ELFWriter; 72 73 bool isDwoSection(const MCSectionELF &Sec) { 74 return Sec.getName().endswith(".dwo"); 75 } 76 77 class SymbolTableWriter { 78 ELFWriter &EWriter; 79 bool Is64Bit; 80 81 // indexes we are going to write to .symtab_shndx. 82 std::vector<uint32_t> ShndxIndexes; 83 84 // The numbel of symbols written so far. 85 unsigned NumWritten; 86 87 void createSymtabShndx(); 88 89 template <typename T> void write(T Value); 90 91 public: 92 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 93 94 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 95 uint8_t other, uint32_t shndx, bool Reserved); 96 97 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 98 }; 99 100 struct ELFWriter { 101 ELFObjectWriter &OWriter; 102 support::endian::Writer W; 103 104 enum DwoMode { 105 AllSections, 106 NonDwoOnly, 107 DwoOnly, 108 } Mode; 109 110 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 111 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 112 bool Used, bool Renamed); 113 114 /// Helper struct for containing some precomputed information on symbols. 115 struct ELFSymbolData { 116 const MCSymbolELF *Symbol; 117 StringRef Name; 118 uint32_t SectionIndex; 119 uint32_t Order; 120 }; 121 122 /// @} 123 /// @name Symbol Table Data 124 /// @{ 125 126 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 127 128 /// @} 129 130 // This holds the symbol table index of the last local symbol. 131 unsigned LastLocalSymbolIndex; 132 // This holds the .strtab section index. 133 unsigned StringTableIndex; 134 // This holds the .symtab section index. 135 unsigned SymbolTableIndex; 136 137 // Sections in the order they are to be output in the section table. 138 std::vector<const MCSectionELF *> SectionTable; 139 unsigned addToSectionTable(const MCSectionELF *Sec); 140 141 // TargetObjectWriter wrappers. 142 bool is64Bit() const; 143 bool usesRela(const MCSectionELF &Sec) const; 144 145 uint64_t align(unsigned Alignment); 146 147 bool maybeWriteCompression(uint64_t Size, 148 SmallVectorImpl<char> &CompressedContents, 149 bool ZLibStyle, unsigned Alignment); 150 151 public: 152 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 153 bool IsLittleEndian, DwoMode Mode) 154 : OWriter(OWriter), 155 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 156 157 void WriteWord(uint64_t Word) { 158 if (is64Bit()) 159 W.write<uint64_t>(Word); 160 else 161 W.write<uint32_t>(Word); 162 } 163 164 template <typename T> void write(T Val) { 165 W.write(Val); 166 } 167 168 void writeHeader(const MCAssembler &Asm); 169 170 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 171 ELFSymbolData &MSD, const MCAsmLayout &Layout); 172 173 // Start and end offset of each section 174 using SectionOffsetsTy = 175 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 176 177 // Map from a signature symbol to the group section index 178 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 179 180 /// Compute the symbol table data 181 /// 182 /// \param Asm - The assembler. 183 /// \param SectionIndexMap - Maps a section to its index. 184 /// \param RevGroupMap - Maps a signature symbol to the group section. 185 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 186 const SectionIndexMapTy &SectionIndexMap, 187 const RevGroupMapTy &RevGroupMap, 188 SectionOffsetsTy &SectionOffsets); 189 190 void writeAddrsigSection(); 191 192 MCSectionELF *createRelocationSection(MCContext &Ctx, 193 const MCSectionELF &Sec); 194 195 void writeSectionHeader(const MCAsmLayout &Layout, 196 const SectionIndexMapTy &SectionIndexMap, 197 const SectionOffsetsTy &SectionOffsets); 198 199 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 200 const MCAsmLayout &Layout); 201 202 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 203 uint64_t Address, uint64_t Offset, uint64_t Size, 204 uint32_t Link, uint32_t Info, uint64_t Alignment, 205 uint64_t EntrySize); 206 207 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 208 209 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 210 void writeSection(const SectionIndexMapTy &SectionIndexMap, 211 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 212 const MCSectionELF &Section); 213 }; 214 215 class ELFObjectWriter : public MCObjectWriter { 216 /// The target specific ELF writer instance. 217 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 218 219 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 220 221 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 222 223 bool SeenGnuAbi = false; 224 225 bool hasRelocationAddend() const; 226 227 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 228 const MCSymbolRefExpr *RefA, 229 const MCSymbolELF *Sym, uint64_t C, 230 unsigned Type) const; 231 232 public: 233 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 234 : TargetObjectWriter(std::move(MOTW)) {} 235 236 void reset() override { 237 SeenGnuAbi = false; 238 Relocations.clear(); 239 Renames.clear(); 240 MCObjectWriter::reset(); 241 } 242 243 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 244 const MCSymbol &SymA, 245 const MCFragment &FB, bool InSet, 246 bool IsPCRel) const override; 247 248 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 249 const MCSectionELF *From, 250 const MCSectionELF *To) { 251 return true; 252 } 253 254 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 255 const MCFragment *Fragment, const MCFixup &Fixup, 256 MCValue Target, uint64_t &FixedValue) override; 257 258 void executePostLayoutBinding(MCAssembler &Asm, 259 const MCAsmLayout &Layout) override; 260 261 void markGnuAbi() override { SeenGnuAbi = true; } 262 bool seenGnuAbi() const { return SeenGnuAbi; } 263 264 friend struct ELFWriter; 265 }; 266 267 class ELFSingleObjectWriter : public ELFObjectWriter { 268 raw_pwrite_stream &OS; 269 bool IsLittleEndian; 270 271 public: 272 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 273 raw_pwrite_stream &OS, bool IsLittleEndian) 274 : ELFObjectWriter(std::move(MOTW)), OS(OS), 275 IsLittleEndian(IsLittleEndian) {} 276 277 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 278 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 279 .writeObject(Asm, Layout); 280 } 281 282 friend struct ELFWriter; 283 }; 284 285 class ELFDwoObjectWriter : public ELFObjectWriter { 286 raw_pwrite_stream &OS, &DwoOS; 287 bool IsLittleEndian; 288 289 public: 290 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 291 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 292 bool IsLittleEndian) 293 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 294 IsLittleEndian(IsLittleEndian) {} 295 296 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 297 const MCSectionELF *From, 298 const MCSectionELF *To) override { 299 if (isDwoSection(*From)) { 300 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 301 return false; 302 } 303 if (To && isDwoSection(*To)) { 304 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 305 return false; 306 } 307 return true; 308 } 309 310 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 311 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 312 .writeObject(Asm, Layout); 313 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 314 .writeObject(Asm, Layout); 315 return Size; 316 } 317 }; 318 319 } // end anonymous namespace 320 321 uint64_t ELFWriter::align(unsigned Alignment) { 322 uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment); 323 W.OS.write_zeros(NewOffset - Offset); 324 return NewOffset; 325 } 326 327 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 328 SectionTable.push_back(Sec); 329 StrTabBuilder.add(Sec->getName()); 330 return SectionTable.size(); 331 } 332 333 void SymbolTableWriter::createSymtabShndx() { 334 if (!ShndxIndexes.empty()) 335 return; 336 337 ShndxIndexes.resize(NumWritten); 338 } 339 340 template <typename T> void SymbolTableWriter::write(T Value) { 341 EWriter.write(Value); 342 } 343 344 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 345 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 346 347 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 348 uint64_t size, uint8_t other, 349 uint32_t shndx, bool Reserved) { 350 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 351 352 if (LargeIndex) 353 createSymtabShndx(); 354 355 if (!ShndxIndexes.empty()) { 356 if (LargeIndex) 357 ShndxIndexes.push_back(shndx); 358 else 359 ShndxIndexes.push_back(0); 360 } 361 362 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 363 364 if (Is64Bit) { 365 write(name); // st_name 366 write(info); // st_info 367 write(other); // st_other 368 write(Index); // st_shndx 369 write(value); // st_value 370 write(size); // st_size 371 } else { 372 write(name); // st_name 373 write(uint32_t(value)); // st_value 374 write(uint32_t(size)); // st_size 375 write(info); // st_info 376 write(other); // st_other 377 write(Index); // st_shndx 378 } 379 380 ++NumWritten; 381 } 382 383 bool ELFWriter::is64Bit() const { 384 return OWriter.TargetObjectWriter->is64Bit(); 385 } 386 387 bool ELFWriter::usesRela(const MCSectionELF &Sec) const { 388 return OWriter.hasRelocationAddend() && 389 Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 390 } 391 392 // Emit the ELF header. 393 void ELFWriter::writeHeader(const MCAssembler &Asm) { 394 // ELF Header 395 // ---------- 396 // 397 // Note 398 // ---- 399 // emitWord method behaves differently for ELF32 and ELF64, writing 400 // 4 bytes in the former and 8 in the latter. 401 402 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 403 404 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 405 406 // e_ident[EI_DATA] 407 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 408 : ELF::ELFDATA2MSB); 409 410 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 411 // e_ident[EI_OSABI] 412 uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); 413 W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() 414 ? int(ELF::ELFOSABI_GNU) 415 : OSABI); 416 // e_ident[EI_ABIVERSION] 417 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 418 419 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 420 421 W.write<uint16_t>(ELF::ET_REL); // e_type 422 423 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 424 425 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 426 WriteWord(0); // e_entry, no entry point in .o file 427 WriteWord(0); // e_phoff, no program header for .o 428 WriteWord(0); // e_shoff = sec hdr table off in bytes 429 430 // e_flags = whatever the target wants 431 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 432 433 // e_ehsize = ELF header size 434 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 435 : sizeof(ELF::Elf32_Ehdr)); 436 437 W.write<uint16_t>(0); // e_phentsize = prog header entry size 438 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 439 440 // e_shentsize = Section header entry size 441 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 442 : sizeof(ELF::Elf32_Shdr)); 443 444 // e_shnum = # of section header ents 445 W.write<uint16_t>(0); 446 447 // e_shstrndx = Section # of '.strtab' 448 assert(StringTableIndex < ELF::SHN_LORESERVE); 449 W.write<uint16_t>(StringTableIndex); 450 } 451 452 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 453 const MCAsmLayout &Layout) { 454 if (Sym.isCommon()) 455 return Sym.getCommonAlignment(); 456 457 uint64_t Res; 458 if (!Layout.getSymbolOffset(Sym, Res)) 459 return 0; 460 461 if (Layout.getAssembler().isThumbFunc(&Sym)) 462 Res |= 1; 463 464 return Res; 465 } 466 467 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 468 uint8_t Type = newType; 469 470 // Propagation rules: 471 // IFUNC > FUNC > OBJECT > NOTYPE 472 // TLS_OBJECT > OBJECT > NOTYPE 473 // 474 // dont let the new type degrade the old type 475 switch (origType) { 476 default: 477 break; 478 case ELF::STT_GNU_IFUNC: 479 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 480 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 481 Type = ELF::STT_GNU_IFUNC; 482 break; 483 case ELF::STT_FUNC: 484 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 485 Type == ELF::STT_TLS) 486 Type = ELF::STT_FUNC; 487 break; 488 case ELF::STT_OBJECT: 489 if (Type == ELF::STT_NOTYPE) 490 Type = ELF::STT_OBJECT; 491 break; 492 case ELF::STT_TLS: 493 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 494 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 495 Type = ELF::STT_TLS; 496 break; 497 } 498 499 return Type; 500 } 501 502 static bool isIFunc(const MCSymbolELF *Symbol) { 503 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 504 const MCSymbolRefExpr *Value; 505 if (!Symbol->isVariable() || 506 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 507 Value->getKind() != MCSymbolRefExpr::VK_None || 508 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 509 return false; 510 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 511 } 512 return true; 513 } 514 515 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 516 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 517 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 518 const MCSymbolELF *Base = 519 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 520 521 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 522 // SHN_COMMON. 523 bool IsReserved = !Base || Symbol.isCommon(); 524 525 // Binding and Type share the same byte as upper and lower nibbles 526 uint8_t Binding = Symbol.getBinding(); 527 uint8_t Type = Symbol.getType(); 528 if (isIFunc(&Symbol)) 529 Type = ELF::STT_GNU_IFUNC; 530 if (Base) { 531 Type = mergeTypeForSet(Type, Base->getType()); 532 } 533 uint8_t Info = (Binding << 4) | Type; 534 535 // Other and Visibility share the same byte with Visibility using the lower 536 // 2 bits 537 uint8_t Visibility = Symbol.getVisibility(); 538 uint8_t Other = Symbol.getOther() | Visibility; 539 540 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 541 uint64_t Size = 0; 542 543 const MCExpr *ESize = MSD.Symbol->getSize(); 544 if (!ESize && Base) { 545 // For expressions like .set y, x+1, if y's size is unset, inherit from x. 546 ESize = Base->getSize(); 547 548 // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z, 549 // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give 550 // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most 551 // needs. MCBinaryExpr is not handled. 552 const MCSymbolELF *Sym = &Symbol; 553 while (Sym->isVariable()) { 554 if (auto *Expr = 555 dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) { 556 Sym = cast<MCSymbolELF>(&Expr->getSymbol()); 557 if (!Sym->getSize()) 558 continue; 559 ESize = Sym->getSize(); 560 } 561 break; 562 } 563 } 564 565 if (ESize) { 566 int64_t Res; 567 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 568 report_fatal_error("Size expression must be absolute."); 569 Size = Res; 570 } 571 572 // Write out the symbol table entry 573 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 574 IsReserved); 575 } 576 577 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 578 bool Used, bool Renamed) { 579 if (Symbol.isVariable()) { 580 const MCExpr *Expr = Symbol.getVariableValue(); 581 // Target Expressions that are always inlined do not appear in the symtab 582 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 583 if (T->inlineAssignedExpr()) 584 return false; 585 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 586 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 587 return false; 588 } 589 } 590 591 if (Used) 592 return true; 593 594 if (Renamed) 595 return false; 596 597 if (Symbol.isVariable() && Symbol.isUndefined()) { 598 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 599 Layout.getBaseSymbol(Symbol); 600 return false; 601 } 602 603 if (Symbol.isTemporary()) 604 return false; 605 606 if (Symbol.getType() == ELF::STT_SECTION) 607 return false; 608 609 return true; 610 } 611 612 void ELFWriter::computeSymbolTable( 613 MCAssembler &Asm, const MCAsmLayout &Layout, 614 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 615 SectionOffsetsTy &SectionOffsets) { 616 MCContext &Ctx = Asm.getContext(); 617 SymbolTableWriter Writer(*this, is64Bit()); 618 619 // Symbol table 620 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 621 MCSectionELF *SymtabSection = 622 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize); 623 SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 624 SymbolTableIndex = addToSectionTable(SymtabSection); 625 626 uint64_t SecStart = align(SymtabSection->getAlignment()); 627 628 // The first entry is the undefined symbol entry. 629 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 630 631 std::vector<ELFSymbolData> LocalSymbolData; 632 std::vector<ELFSymbolData> ExternalSymbolData; 633 MutableArrayRef<std::pair<std::string, size_t>> FileNames = 634 Asm.getFileNames(); 635 for (const std::pair<std::string, size_t> &F : FileNames) 636 StrTabBuilder.add(F.first); 637 638 // Add the data for the symbols. 639 bool HasLargeSectionIndex = false; 640 for (auto It : llvm::enumerate(Asm.symbols())) { 641 const auto &Symbol = cast<MCSymbolELF>(It.value()); 642 bool Used = Symbol.isUsedInReloc(); 643 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 644 bool isSignature = Symbol.isSignature(); 645 646 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 647 OWriter.Renames.count(&Symbol))) 648 continue; 649 650 if (Symbol.isTemporary() && Symbol.isUndefined()) { 651 Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName()); 652 continue; 653 } 654 655 ELFSymbolData MSD; 656 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 657 MSD.Order = It.index(); 658 659 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 660 assert(Local || !Symbol.isTemporary()); 661 662 if (Symbol.isAbsolute()) { 663 MSD.SectionIndex = ELF::SHN_ABS; 664 } else if (Symbol.isCommon()) { 665 if (Symbol.isTargetCommon()) { 666 MSD.SectionIndex = Symbol.getIndex(); 667 } else { 668 assert(!Local); 669 MSD.SectionIndex = ELF::SHN_COMMON; 670 } 671 } else if (Symbol.isUndefined()) { 672 if (isSignature && !Used) { 673 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 674 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 675 HasLargeSectionIndex = true; 676 } else { 677 MSD.SectionIndex = ELF::SHN_UNDEF; 678 } 679 } else { 680 const MCSectionELF &Section = 681 static_cast<const MCSectionELF &>(Symbol.getSection()); 682 683 // We may end up with a situation when section symbol is technically 684 // defined, but should not be. That happens because we explicitly 685 // pre-create few .debug_* sections to have accessors. 686 // And if these sections were not really defined in the code, but were 687 // referenced, we simply error out. 688 if (!Section.isRegistered()) { 689 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 690 ELF::STT_SECTION); 691 Ctx.reportError(SMLoc(), 692 "Undefined section reference: " + Symbol.getName()); 693 continue; 694 } 695 696 if (Mode == NonDwoOnly && isDwoSection(Section)) 697 continue; 698 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 699 assert(MSD.SectionIndex && "Invalid section index!"); 700 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 701 HasLargeSectionIndex = true; 702 } 703 704 StringRef Name = Symbol.getName(); 705 706 // Sections have their own string table 707 if (Symbol.getType() != ELF::STT_SECTION) { 708 MSD.Name = Name; 709 StrTabBuilder.add(Name); 710 } 711 712 if (Local) 713 LocalSymbolData.push_back(MSD); 714 else 715 ExternalSymbolData.push_back(MSD); 716 } 717 718 // This holds the .symtab_shndx section index. 719 unsigned SymtabShndxSectionIndex = 0; 720 721 if (HasLargeSectionIndex) { 722 MCSectionELF *SymtabShndxSection = 723 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4); 724 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 725 SymtabShndxSection->setAlignment(Align(4)); 726 } 727 728 StrTabBuilder.finalize(); 729 730 // Make the first STT_FILE precede previous local symbols. 731 unsigned Index = 1; 732 auto FileNameIt = FileNames.begin(); 733 if (!FileNames.empty()) 734 FileNames[0].second = 0; 735 736 for (ELFSymbolData &MSD : LocalSymbolData) { 737 // Emit STT_FILE symbols before their associated local symbols. 738 for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; 739 ++FileNameIt) { 740 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 741 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 742 ELF::SHN_ABS, true); 743 ++Index; 744 } 745 746 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 747 ? 0 748 : StrTabBuilder.getOffset(MSD.Name); 749 MSD.Symbol->setIndex(Index++); 750 writeSymbol(Writer, StringIndex, MSD, Layout); 751 } 752 for (; FileNameIt != FileNames.end(); ++FileNameIt) { 753 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 754 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 755 ELF::SHN_ABS, true); 756 ++Index; 757 } 758 759 // Write the symbol table entries. 760 LastLocalSymbolIndex = Index; 761 762 for (ELFSymbolData &MSD : ExternalSymbolData) { 763 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 764 MSD.Symbol->setIndex(Index++); 765 writeSymbol(Writer, StringIndex, MSD, Layout); 766 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 767 } 768 769 uint64_t SecEnd = W.OS.tell(); 770 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 771 772 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 773 if (ShndxIndexes.empty()) { 774 assert(SymtabShndxSectionIndex == 0); 775 return; 776 } 777 assert(SymtabShndxSectionIndex != 0); 778 779 SecStart = W.OS.tell(); 780 const MCSectionELF *SymtabShndxSection = 781 SectionTable[SymtabShndxSectionIndex - 1]; 782 for (uint32_t Index : ShndxIndexes) 783 write(Index); 784 SecEnd = W.OS.tell(); 785 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 786 } 787 788 void ELFWriter::writeAddrsigSection() { 789 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 790 encodeULEB128(Sym->getIndex(), W.OS); 791 } 792 793 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 794 const MCSectionELF &Sec) { 795 if (OWriter.Relocations[&Sec].empty()) 796 return nullptr; 797 798 const StringRef SectionName = Sec.getName(); 799 bool Rela = usesRela(Sec); 800 std::string RelaSectionName = Rela ? ".rela" : ".rel"; 801 RelaSectionName += SectionName; 802 803 unsigned EntrySize; 804 if (Rela) 805 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 806 else 807 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 808 809 unsigned Flags = ELF::SHF_INFO_LINK; 810 if (Sec.getFlags() & ELF::SHF_GROUP) 811 Flags = ELF::SHF_GROUP; 812 813 MCSectionELF *RelaSection = Ctx.createELFRelSection( 814 RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize, 815 Sec.getGroup(), &Sec); 816 RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 817 return RelaSection; 818 } 819 820 // Include the debug info compression header. 821 bool ELFWriter::maybeWriteCompression( 822 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 823 unsigned Alignment) { 824 if (ZLibStyle) { 825 uint64_t HdrSize = 826 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 827 if (Size <= HdrSize + CompressedContents.size()) 828 return false; 829 // Platform specific header is followed by compressed data. 830 if (is64Bit()) { 831 // Write Elf64_Chdr header. 832 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 833 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 834 write(static_cast<ELF::Elf64_Xword>(Size)); 835 write(static_cast<ELF::Elf64_Xword>(Alignment)); 836 } else { 837 // Write Elf32_Chdr header otherwise. 838 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 839 write(static_cast<ELF::Elf32_Word>(Size)); 840 write(static_cast<ELF::Elf32_Word>(Alignment)); 841 } 842 return true; 843 } 844 845 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 846 // useful for consumers to preallocate a buffer to decompress into. 847 const StringRef Magic = "ZLIB"; 848 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 849 return false; 850 W.OS << Magic; 851 support::endian::write(W.OS, Size, support::big); 852 return true; 853 } 854 855 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 856 const MCAsmLayout &Layout) { 857 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 858 StringRef SectionName = Section.getName(); 859 860 auto &MC = Asm.getContext(); 861 const auto &MAI = MC.getAsmInfo(); 862 863 bool CompressionEnabled = 864 MAI->compressDebugSections() != DebugCompressionType::None; 865 if (!CompressionEnabled || !SectionName.startswith(".debug_")) { 866 Asm.writeSectionData(W.OS, &Section, Layout); 867 return; 868 } 869 870 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 871 MAI->compressDebugSections() == DebugCompressionType::GNU) && 872 "expected zlib or zlib-gnu style compression"); 873 874 SmallVector<char, 128> UncompressedData; 875 raw_svector_ostream VecOS(UncompressedData); 876 Asm.writeSectionData(VecOS, &Section, Layout); 877 878 SmallVector<char, 128> CompressedContents; 879 zlib::compress(StringRef(UncompressedData.data(), UncompressedData.size()), 880 CompressedContents); 881 882 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 883 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 884 ZlibStyle, Sec.getAlignment())) { 885 W.OS << UncompressedData; 886 return; 887 } 888 889 if (ZlibStyle) { 890 // Set the compressed flag. That is zlib style. 891 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 892 // Alignment field should reflect the requirements of 893 // the compressed section header. 894 Section.setAlignment(is64Bit() ? Align(8) : Align(4)); 895 } else { 896 // Add "z" prefix to section name. This is zlib-gnu style. 897 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 898 } 899 W.OS << CompressedContents; 900 } 901 902 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 903 uint64_t Address, uint64_t Offset, 904 uint64_t Size, uint32_t Link, uint32_t Info, 905 uint64_t Alignment, uint64_t EntrySize) { 906 W.write<uint32_t>(Name); // sh_name: index into string table 907 W.write<uint32_t>(Type); // sh_type 908 WriteWord(Flags); // sh_flags 909 WriteWord(Address); // sh_addr 910 WriteWord(Offset); // sh_offset 911 WriteWord(Size); // sh_size 912 W.write<uint32_t>(Link); // sh_link 913 W.write<uint32_t>(Info); // sh_info 914 WriteWord(Alignment); // sh_addralign 915 WriteWord(EntrySize); // sh_entsize 916 } 917 918 void ELFWriter::writeRelocations(const MCAssembler &Asm, 919 const MCSectionELF &Sec) { 920 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 921 922 // We record relocations by pushing to the end of a vector. Reverse the vector 923 // to get the relocations in the order they were created. 924 // In most cases that is not important, but it can be for special sections 925 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 926 std::reverse(Relocs.begin(), Relocs.end()); 927 928 // Sort the relocation entries. MIPS needs this. 929 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 930 931 const bool Rela = usesRela(Sec); 932 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 933 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 934 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 935 936 if (is64Bit()) { 937 write(Entry.Offset); 938 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 939 write(uint32_t(Index)); 940 941 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 942 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 943 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 944 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 945 } else { 946 struct ELF::Elf64_Rela ERE64; 947 ERE64.setSymbolAndType(Index, Entry.Type); 948 write(ERE64.r_info); 949 } 950 if (Rela) 951 write(Entry.Addend); 952 } else { 953 write(uint32_t(Entry.Offset)); 954 955 struct ELF::Elf32_Rela ERE32; 956 ERE32.setSymbolAndType(Index, Entry.Type); 957 write(ERE32.r_info); 958 959 if (Rela) 960 write(uint32_t(Entry.Addend)); 961 962 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 963 if (uint32_t RType = 964 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 965 write(uint32_t(Entry.Offset)); 966 967 ERE32.setSymbolAndType(0, RType); 968 write(ERE32.r_info); 969 write(uint32_t(0)); 970 } 971 if (uint32_t RType = 972 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 973 write(uint32_t(Entry.Offset)); 974 975 ERE32.setSymbolAndType(0, RType); 976 write(ERE32.r_info); 977 write(uint32_t(0)); 978 } 979 } 980 } 981 } 982 } 983 984 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 985 uint32_t GroupSymbolIndex, uint64_t Offset, 986 uint64_t Size, const MCSectionELF &Section) { 987 uint64_t sh_link = 0; 988 uint64_t sh_info = 0; 989 990 switch(Section.getType()) { 991 default: 992 // Nothing to do. 993 break; 994 995 case ELF::SHT_DYNAMIC: 996 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 997 998 case ELF::SHT_REL: 999 case ELF::SHT_RELA: { 1000 sh_link = SymbolTableIndex; 1001 assert(sh_link && ".symtab not found"); 1002 const MCSection *InfoSection = Section.getLinkedToSection(); 1003 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1004 break; 1005 } 1006 1007 case ELF::SHT_SYMTAB: 1008 sh_link = StringTableIndex; 1009 sh_info = LastLocalSymbolIndex; 1010 break; 1011 1012 case ELF::SHT_SYMTAB_SHNDX: 1013 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1014 case ELF::SHT_LLVM_ADDRSIG: 1015 sh_link = SymbolTableIndex; 1016 break; 1017 1018 case ELF::SHT_GROUP: 1019 sh_link = SymbolTableIndex; 1020 sh_info = GroupSymbolIndex; 1021 break; 1022 } 1023 1024 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1025 // If the value in the associated metadata is not a definition, Sym will be 1026 // undefined. Represent this with sh_link=0. 1027 const MCSymbol *Sym = Section.getLinkedToSymbol(); 1028 if (Sym && Sym->isInSection()) { 1029 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1030 sh_link = SectionIndexMap.lookup(Sec); 1031 } 1032 } 1033 1034 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()), 1035 Section.getType(), Section.getFlags(), 0, Offset, Size, 1036 sh_link, sh_info, Section.getAlignment(), 1037 Section.getEntrySize()); 1038 } 1039 1040 void ELFWriter::writeSectionHeader( 1041 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1042 const SectionOffsetsTy &SectionOffsets) { 1043 const unsigned NumSections = SectionTable.size(); 1044 1045 // Null section first. 1046 uint64_t FirstSectionSize = 1047 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1048 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1049 1050 for (const MCSectionELF *Section : SectionTable) { 1051 uint32_t GroupSymbolIndex; 1052 unsigned Type = Section->getType(); 1053 if (Type != ELF::SHT_GROUP) 1054 GroupSymbolIndex = 0; 1055 else 1056 GroupSymbolIndex = Section->getGroup()->getIndex(); 1057 1058 const std::pair<uint64_t, uint64_t> &Offsets = 1059 SectionOffsets.find(Section)->second; 1060 uint64_t Size; 1061 if (Type == ELF::SHT_NOBITS) 1062 Size = Layout.getSectionAddressSize(Section); 1063 else 1064 Size = Offsets.second - Offsets.first; 1065 1066 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1067 *Section); 1068 } 1069 } 1070 1071 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1072 uint64_t StartOffset = W.OS.tell(); 1073 1074 MCContext &Ctx = Asm.getContext(); 1075 MCSectionELF *StrtabSection = 1076 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1077 StringTableIndex = addToSectionTable(StrtabSection); 1078 1079 RevGroupMapTy RevGroupMap; 1080 SectionIndexMapTy SectionIndexMap; 1081 1082 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1083 1084 // Write out the ELF header ... 1085 writeHeader(Asm); 1086 1087 // ... then the sections ... 1088 SectionOffsetsTy SectionOffsets; 1089 std::vector<MCSectionELF *> Groups; 1090 std::vector<MCSectionELF *> Relocations; 1091 for (MCSection &Sec : Asm) { 1092 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1093 if (Mode == NonDwoOnly && isDwoSection(Section)) 1094 continue; 1095 if (Mode == DwoOnly && !isDwoSection(Section)) 1096 continue; 1097 1098 // Remember the offset into the file for this section. 1099 const uint64_t SecStart = align(Section.getAlignment()); 1100 1101 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1102 writeSectionData(Asm, Section, Layout); 1103 1104 uint64_t SecEnd = W.OS.tell(); 1105 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1106 1107 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1108 1109 if (SignatureSymbol) { 1110 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1111 if (!GroupIdx) { 1112 MCSectionELF *Group = 1113 Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat()); 1114 GroupIdx = addToSectionTable(Group); 1115 Group->setAlignment(Align(4)); 1116 Groups.push_back(Group); 1117 } 1118 std::vector<const MCSectionELF *> &Members = 1119 GroupMembers[SignatureSymbol]; 1120 Members.push_back(&Section); 1121 if (RelSection) 1122 Members.push_back(RelSection); 1123 } 1124 1125 SectionIndexMap[&Section] = addToSectionTable(&Section); 1126 if (RelSection) { 1127 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1128 Relocations.push_back(RelSection); 1129 } 1130 1131 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1132 } 1133 1134 for (MCSectionELF *Group : Groups) { 1135 // Remember the offset into the file for this section. 1136 const uint64_t SecStart = align(Group->getAlignment()); 1137 1138 const MCSymbol *SignatureSymbol = Group->getGroup(); 1139 assert(SignatureSymbol); 1140 write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); 1141 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1142 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1143 write(SecIndex); 1144 } 1145 1146 uint64_t SecEnd = W.OS.tell(); 1147 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1148 } 1149 1150 if (Mode == DwoOnly) { 1151 // dwo files don't have symbol tables or relocations, but they do have 1152 // string tables. 1153 StrTabBuilder.finalize(); 1154 } else { 1155 MCSectionELF *AddrsigSection; 1156 if (OWriter.EmitAddrsigSection) { 1157 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1158 ELF::SHF_EXCLUDE); 1159 addToSectionTable(AddrsigSection); 1160 } 1161 1162 // Compute symbol table information. 1163 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1164 SectionOffsets); 1165 1166 for (MCSectionELF *RelSection : Relocations) { 1167 // Remember the offset into the file for this section. 1168 const uint64_t SecStart = align(RelSection->getAlignment()); 1169 1170 writeRelocations(Asm, 1171 cast<MCSectionELF>(*RelSection->getLinkedToSection())); 1172 1173 uint64_t SecEnd = W.OS.tell(); 1174 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1175 } 1176 1177 if (OWriter.EmitAddrsigSection) { 1178 uint64_t SecStart = W.OS.tell(); 1179 writeAddrsigSection(); 1180 uint64_t SecEnd = W.OS.tell(); 1181 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1182 } 1183 } 1184 1185 { 1186 uint64_t SecStart = W.OS.tell(); 1187 StrTabBuilder.write(W.OS); 1188 SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell()); 1189 } 1190 1191 const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4); 1192 1193 // ... then the section header table ... 1194 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1195 1196 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1197 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1198 : SectionTable.size() + 1, 1199 W.Endian); 1200 unsigned NumSectionsOffset; 1201 1202 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1203 if (is64Bit()) { 1204 uint64_t Val = 1205 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1206 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1207 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1208 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1209 } else { 1210 uint32_t Val = 1211 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1212 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1213 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1214 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1215 } 1216 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1217 NumSectionsOffset); 1218 1219 return W.OS.tell() - StartOffset; 1220 } 1221 1222 bool ELFObjectWriter::hasRelocationAddend() const { 1223 return TargetObjectWriter->hasRelocationAddend(); 1224 } 1225 1226 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1227 const MCAsmLayout &Layout) { 1228 // The presence of symbol versions causes undefined symbols and 1229 // versions declared with @@@ to be renamed. 1230 for (const MCAssembler::Symver &S : Asm.Symvers) { 1231 StringRef AliasName = S.Name; 1232 const auto &Symbol = cast<MCSymbolELF>(*S.Sym); 1233 size_t Pos = AliasName.find('@'); 1234 assert(Pos != StringRef::npos); 1235 1236 StringRef Prefix = AliasName.substr(0, Pos); 1237 StringRef Rest = AliasName.substr(Pos); 1238 StringRef Tail = Rest; 1239 if (Rest.startswith("@@@")) 1240 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1241 1242 auto *Alias = 1243 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1244 Asm.registerSymbol(*Alias); 1245 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1246 Alias->setVariableValue(Value); 1247 1248 // Aliases defined with .symvar copy the binding from the symbol they alias. 1249 // This is the first place we are able to copy this information. 1250 Alias->setBinding(Symbol.getBinding()); 1251 Alias->setVisibility(Symbol.getVisibility()); 1252 Alias->setOther(Symbol.getOther()); 1253 1254 if (!Symbol.isUndefined() && S.KeepOriginalSym) 1255 continue; 1256 1257 if (Symbol.isUndefined() && Rest.startswith("@@") && 1258 !Rest.startswith("@@@")) { 1259 Asm.getContext().reportError(S.Loc, "default version symbol " + 1260 AliasName + " must be defined"); 1261 continue; 1262 } 1263 1264 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1265 Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") + 1266 Symbol.getName()); 1267 continue; 1268 } 1269 1270 Renames.insert(std::make_pair(&Symbol, Alias)); 1271 } 1272 1273 for (const MCSymbol *&Sym : AddrsigSyms) { 1274 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1275 Sym = R; 1276 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1277 Sym = Sym->getSection().getBeginSymbol(); 1278 Sym->setUsedInReloc(); 1279 } 1280 } 1281 1282 // It is always valid to create a relocation with a symbol. It is preferable 1283 // to use a relocation with a section if that is possible. Using the section 1284 // allows us to omit some local symbols from the symbol table. 1285 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1286 const MCSymbolRefExpr *RefA, 1287 const MCSymbolELF *Sym, 1288 uint64_t C, 1289 unsigned Type) const { 1290 // A PCRel relocation to an absolute value has no symbol (or section). We 1291 // represent that with a relocation to a null section. 1292 if (!RefA) 1293 return false; 1294 1295 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1296 switch (Kind) { 1297 default: 1298 break; 1299 // The .odp creation emits a relocation against the symbol ".TOC." which 1300 // create a R_PPC64_TOC relocation. However the relocation symbol name 1301 // in final object creation should be NULL, since the symbol does not 1302 // really exist, it is just the reference to TOC base for the current 1303 // object file. Since the symbol is undefined, returning false results 1304 // in a relocation with a null section which is the desired result. 1305 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1306 return false; 1307 1308 // These VariantKind cause the relocation to refer to something other than 1309 // the symbol itself, like a linker generated table. Since the address of 1310 // symbol is not relevant, we cannot replace the symbol with the 1311 // section and patch the difference in the addend. 1312 case MCSymbolRefExpr::VK_GOT: 1313 case MCSymbolRefExpr::VK_PLT: 1314 case MCSymbolRefExpr::VK_GOTPCREL: 1315 case MCSymbolRefExpr::VK_GOTPCREL_NORELAX: 1316 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1317 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1318 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1319 return true; 1320 } 1321 1322 // An undefined symbol is not in any section, so the relocation has to point 1323 // to the symbol itself. 1324 assert(Sym && "Expected a symbol"); 1325 if (Sym->isUndefined()) 1326 return true; 1327 1328 unsigned Binding = Sym->getBinding(); 1329 switch(Binding) { 1330 default: 1331 llvm_unreachable("Invalid Binding"); 1332 case ELF::STB_LOCAL: 1333 break; 1334 case ELF::STB_WEAK: 1335 // If the symbol is weak, it might be overridden by a symbol in another 1336 // file. The relocation has to point to the symbol so that the linker 1337 // can update it. 1338 return true; 1339 case ELF::STB_GLOBAL: 1340 case ELF::STB_GNU_UNIQUE: 1341 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1342 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1343 return true; 1344 } 1345 1346 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1347 // reloc that the dynamic loader will use to resolve the address at startup 1348 // time. 1349 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1350 return true; 1351 1352 // If a relocation points to a mergeable section, we have to be careful. 1353 // If the offset is zero, a relocation with the section will encode the 1354 // same information. With a non-zero offset, the situation is different. 1355 // For example, a relocation can point 42 bytes past the end of a string. 1356 // If we change such a relocation to use the section, the linker would think 1357 // that it pointed to another string and subtracting 42 at runtime will 1358 // produce the wrong value. 1359 if (Sym->isInSection()) { 1360 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1361 unsigned Flags = Sec.getFlags(); 1362 if (Flags & ELF::SHF_MERGE) { 1363 if (C != 0) 1364 return true; 1365 1366 // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) 1367 // (http://sourceware.org/PR16794). 1368 if (TargetObjectWriter->getEMachine() == ELF::EM_386 && 1369 Type == ELF::R_386_GOTOFF) 1370 return true; 1371 1372 // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so 1373 // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an 1374 // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in 1375 // range of a MergeInputSection. We could introduce a new RelExpr member 1376 // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12) 1377 // but the complexity is unnecessary given that GNU as keeps the original 1378 // symbol for this case as well. 1379 if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS && 1380 !hasRelocationAddend()) 1381 return true; 1382 } 1383 1384 // Most TLS relocations use a got, so they need the symbol. Even those that 1385 // are just an offset (@tpoff), require a symbol in gold versions before 1386 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1387 // http://sourceware.org/PR16773. 1388 if (Flags & ELF::SHF_TLS) 1389 return true; 1390 } 1391 1392 // If the symbol is a thumb function the final relocation must set the lowest 1393 // bit. With a symbol that is done by just having the symbol have that bit 1394 // set, so we would lose the bit if we relocated with the section. 1395 // FIXME: We could use the section but add the bit to the relocation value. 1396 if (Asm.isThumbFunc(Sym)) 1397 return true; 1398 1399 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1400 return true; 1401 return false; 1402 } 1403 1404 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1405 const MCAsmLayout &Layout, 1406 const MCFragment *Fragment, 1407 const MCFixup &Fixup, MCValue Target, 1408 uint64_t &FixedValue) { 1409 MCAsmBackend &Backend = Asm.getBackend(); 1410 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1411 MCFixupKindInfo::FKF_IsPCRel; 1412 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1413 uint64_t C = Target.getConstant(); 1414 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1415 MCContext &Ctx = Asm.getContext(); 1416 1417 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1418 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1419 if (SymB.isUndefined()) { 1420 Ctx.reportError(Fixup.getLoc(), 1421 Twine("symbol '") + SymB.getName() + 1422 "' can not be undefined in a subtraction expression"); 1423 return; 1424 } 1425 1426 assert(!SymB.isAbsolute() && "Should have been folded"); 1427 const MCSection &SecB = SymB.getSection(); 1428 if (&SecB != &FixupSection) { 1429 Ctx.reportError(Fixup.getLoc(), 1430 "Cannot represent a difference across sections"); 1431 return; 1432 } 1433 1434 assert(!IsPCRel && "should have been folded"); 1435 IsPCRel = true; 1436 C += FixupOffset - Layout.getSymbolOffset(SymB); 1437 } 1438 1439 // We either rejected the fixup or folded B into C at this point. 1440 const MCSymbolRefExpr *RefA = Target.getSymA(); 1441 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1442 1443 bool ViaWeakRef = false; 1444 if (SymA && SymA->isVariable()) { 1445 const MCExpr *Expr = SymA->getVariableValue(); 1446 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1447 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1448 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1449 ViaWeakRef = true; 1450 } 1451 } 1452 } 1453 1454 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1455 ? cast<MCSectionELF>(&SymA->getSection()) 1456 : nullptr; 1457 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1458 return; 1459 1460 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1461 const auto *Parent = cast<MCSectionELF>(Fragment->getParent()); 1462 // Emiting relocation with sybmol for CG Profile to help with --cg-profile. 1463 bool RelocateWithSymbol = 1464 shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) || 1465 (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE); 1466 uint64_t Addend = 0; 1467 1468 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1469 ? C + Layout.getSymbolOffset(*SymA) 1470 : C; 1471 if (hasRelocationAddend()) { 1472 Addend = FixedValue; 1473 FixedValue = 0; 1474 } 1475 1476 if (!RelocateWithSymbol) { 1477 const auto *SectionSymbol = 1478 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1479 if (SectionSymbol) 1480 SectionSymbol->setUsedInReloc(); 1481 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1482 Relocations[&FixupSection].push_back(Rec); 1483 return; 1484 } 1485 1486 const MCSymbolELF *RenamedSymA = SymA; 1487 if (SymA) { 1488 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1489 RenamedSymA = R; 1490 1491 if (ViaWeakRef) 1492 RenamedSymA->setIsWeakrefUsedInReloc(); 1493 else 1494 RenamedSymA->setUsedInReloc(); 1495 } 1496 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1497 Relocations[&FixupSection].push_back(Rec); 1498 } 1499 1500 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1501 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1502 bool InSet, bool IsPCRel) const { 1503 const auto &SymA = cast<MCSymbolELF>(SA); 1504 if (IsPCRel) { 1505 assert(!InSet); 1506 if (SymA.getBinding() != ELF::STB_LOCAL || 1507 SymA.getType() == ELF::STT_GNU_IFUNC) 1508 return false; 1509 } 1510 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1511 InSet, IsPCRel); 1512 } 1513 1514 std::unique_ptr<MCObjectWriter> 1515 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1516 raw_pwrite_stream &OS, bool IsLittleEndian) { 1517 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1518 IsLittleEndian); 1519 } 1520 1521 std::unique_ptr<MCObjectWriter> 1522 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1523 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1524 bool IsLittleEndian) { 1525 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1526 IsLittleEndian); 1527 } 1528